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ABSTRACT

NONLINEAR RESPONSE AND FATIGUE ESTIMATION OF 

SURFACE PANELS TO WHITE AND NON-WHITE 

GAUSSIAN RANDOM EXCITATIONS

Jean-Michel Dhainaut 
Old Dominion University, 2001 

Director: Dr. Chuh Mei

In stochastic structural dynamics, the majority o f analyses have dealt with linear 

structures under stationary, Gaussian, and band-limited white noise excitations. 

Although these simplifying assumptions may be justified, in many processes 

experimental data have shown quite frequently the non-stationary and non-Gaussian 

characteristics o f the loads. An efficient finite element modal formulation has recently 

been developed to extend the analysis to nonlinear structural responses. Laminated plate 

theory and von Karman large displacement relations are used to derive the nonlinear 

equations of motion for an arbitrarily laminated composite panel subjected to combined 

acoustic and thermal loads. The nonlinear equations o f motion in structural node degrees 

o f freedom are then transformed to a set of coupled nonlinear equations in truncated 

modal coordinates with rather small degrees o f freedom. Recorded B-1B flight acoustic 

pressure fluctuations have shown the non-white power spectral density (PSD) 

characteristics. This work presents for the first time the nonlinear large amplitude 

response and fatigue life estimation of arbitrary laminated composite panels subjected to 

non-white pressure fluctuations with or without a high thermal environment. The 

Palmgrem-Miner theory is combined with the rainflow counting cycles method in time 

domain, and with transformed Gaussian models in the frequency domain, to estimate the 

panel fatigue life.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Equivalent band-limited White Noise Sound Pressure Level excitations (EWSPL), which 

have the same acoustic power within the bandwidth as the B-1B flight data, are 

generated. Nonlinear response and fatigue life are predicted for the identical panels 

subjected to EWSPL. Monte Carlo numerical simulation is used for the analysis o f  the 

EWSPL. Results show that the flight data with non-white PSD give higher stress 

characteristics and shorter fatigue life than the corresponding EWSPL.
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1

CHAPTER 1 

INTRODUCTION

Sonic fatigue has become a major problem for aircraft, missiles, and spacecraft where 

highly reliable structures are required. In fact, it was not until the late 1950’s when the 

first incident on aircraft structures in close proximity to high intensity jet exhaust noise 

was reported that a research effort was then undertaken [1]. Experimental work was 

carried out on some full-scale models, and tests were made on large prototype assemblies 

(Figures 1.1 and 1.2). Load processes, whose time histories frequently reveal 

considerable non-Gaussian and non-white properties, were recorded. Due to analytical 

limitations, theoretical studies were performed using simple panel models under the 

influence o f a fluctuating random pressure with Gaussian and white-noise spectral 

characteristics. In these early works, the predictions generally overestimated the 

response levels, and it was not possible to get better agreement than within a factor o f 

two. As the power o f the engines increased and aircraft pushed their performance 

envelope further, new problems arose. Apart from the large pressure fluctuation within 

the engine vicinity, a large thermal stress region, due mainly to aerodynamic heating, had 

to be included in the analytical models. It soon became apparent that with the theoretical 

and computational tools available at that time, a complete model from structure to fatigue 

life estimation was far too complicated. Therefore, the process designs for industry were 

based on experimental data and empirical relations derived from testing to modify the 

simple analytical predictions.

The journal model used for this work is the A1AA Journal
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Figure 1.1 Sonic Fatigue Failure from B-47 Test Performed in 1952 [1]

Figure 1.2 Contours o f Overall Sound Pressure Levels on 
a B-52 Wing during Take-Off, 1958 [1]
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Although, the power o f the engines was still increasing dramatically, the use o f  higher 

air bypass ratios to reduce environmental noise moderated the increases in radiated sound 

pressure levels. This engine noise alleviation, combined with improved design 

guidelines, retarded further analytical developments. This was the state o f the art by the 

early 1970’s. It was not until the 1980’s that new interest arose in association with the 

use of advanced composite materials. One o f the major advantages that composite 

materials provide over metals is an increased strength to weight ratio. The added strength 

o f the composite allows thinner and less stiff panels, resulting in relatively large 

displacements under normal acoustic loading and finite thermal deformation or buckling 

at temperatures that are lower than those that are typical o f homogeneous metals. Both of 

these effects were nonlinear, and they could not only severely limit structural fatigue life 

but also made predicting fatigue life extremely difficult. A better understanding o f  these 

nonlinear random vibrations, coupled with high temperature distortion effects, was 

therefore necessary so that more accurate analytical models could be developed.

The first approach to overcome the lack o f a complete theoretical treatment led to the 

development o f new design guidelines. It was quickly realized that with the multitude of 

composite stacking, it was impractical as well as inefficient to test experimentally every 

conceivable design configuration. This brought an urgent need for fatigue analysis and 

design guidelines that were in close agreement with actual behavior. The improvements 

in the understanding o f the fatigue mechanism, in conjunction with the explosive growth 

in computational performance, offers new possibilities to researchers in refining models 

involving both acoustic and thermal loading.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4

The prediction of the fatigue life of a structure can be approached either through a 

crack growth analysis or a Miner’s law calculation [2]. The former approach is related to 

the low-cycle failure, while Miner’s law is related to high-cycle fatigue failure, which is 

more widely used within the aerospace industry and will be reviewed in the present work. 

It is important to keep in mind that the fluctuating stress responsible for fatigue failure is 

in the form o f a continuous random process. Therefore, techniques for predicting 

statistical averages and distributions of random loading characteristics relevant to fatigue 

have to be available. From Figure 1.3 it is seen that a clear-cut definition of response 

“cycle” and “peak” presents difficulties once the response is no longer narrow-band. On 

this subject, opinions differ as to how the response should be processed to yield relevant 

peak and cycle information. Should double maxima, such as those marked ‘A’ in Figure 

1.3, be counted as two significant peaks? Should the minor maxima just be disregarded? 

These questions are still open. This work does not intend to arbitrate among the different 

“counting” approaches, but rather it is concerned with the statistical distributions 

obtained for the “peaks” once they have been defined in a certain fashion in terms o f the 

maxima and crests. Once the fatigue theorists decide just how the peak information 

needs to be handled in their calculations, the considerations illuminated in this work 

should be relevant.

Before moving into a detailed literature survey on sonic fatigue analytical 

approaches, a brief discussion o f the different sources o f acoustic and thermal loadings is 

addressed.

1.1 Acoustic Loads

Early work on acoustic loading was concerned with sound radiation caused by high
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velocity jets. In 1952, Lord Lighthill [3, 4] showed theoretically the dependence o f  the 

intensity o f sound radiation on je t exhaust velocity. For near-field pressure fluctuation 

around a jet engine, a semi-empirical method was produced by the Engineering Sciences 

Data Unit (ESDU) [5], Reviews o f je t exhaust impingement models were given by 

Lansing et al. [6 ] in 1972 and modeling the effects of ground reflection on radiated 

pressure fluctuations was discussed by Scholton [7] in 1973. Another source giving rise 

to pressure fluctuations is the turbulent boundary layer. Early measurements were made 

by Bull [8 ] for subsonic boundary layers, and, in a more recent work, Mixson and
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Roussos [9] discussed the existing data for Mach numbers up to 2.5. In addition to the 

structures that are subjected to widely distributed acoustic loads, local high intensity 

pressure fluctuations arise from instabilities such as cavities, separated flow, and shock 

waves. In this respect, there has not been extensive study o f these phenomena although 

in 1972 Coe and Chyu [10, 1 1 ] conducted a useful investigation study on a scaled model.

1.2 Thermal Loads

The thermal problem in aerospace applications has its origins in the late 1940s. 

During World War 13, airplane speeds had become high enough for compressibility 

phenomena to play a significant role in performance. Mainly, there are three sources of 

loads exerted on the external surfaces. These are pressure, skin friction (shearing 

stresses), and aerodynamic heating. Pressure and skin friction play important roles in 

aerodynamic lifting and drag, but aerodynamic heating is more predominant and can 

affect the structural behavior in many ways. In 1956, Bisplinghoff [12] identified the 

basic structural and aeroelastic considerations for high-speed vehicles: (i) the material’s 

properties are degraded at elevated temperatures, (ii) allowable stresses are reduced and 

(iii) time dependent material behavior such as creep come into play. The effects of 

aerodynamic heating become significant at Mach numbers above 2.5. Early approaches 

were described in a 1956 paper by Van Driest [13] and in a 1960 text by Truitt [14]. The 

difficulties presented by high temperatures accompanying flights at supersonic speeds 

became evident and became known as the thermal barrier. For a long time, the thermal 

barrier caused concern that large structural weight increases would be required to keep 

material temperatures within allowable limits. Subsequently, Hoff [15] and Heldenfels
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[16] found that these concerns did not materialize because the problems were overcome 

through research and the development of effective thermal structures.

1.3 Analytical Approaches for Response Analysis

Stochastically excited linear systems have been studied in great detail, and numerous 

analytical techniques exist for both stationary and nonstationary problems. 

Unfortunately, the majority o f structural responses are nonlinear and not many techniques 

exist for the analysis. Crandall and Zhu [17], To [18], Roberts [19], and Spanos and 

Lutes [20] have presented excellent and comprehensive reviews on techniques for 

nonlinear random vibrations. The various approaches are given briefly in the following 

paragraphs.

13.1 Fokker-Planck-Kolmogorov (FPK) Equations Approaches

The FPK equations approaches give an exact solution for a restricted class o f simple 

problems. If  the excitation is sufficiently broadband, it is possible to model the response 

as a multi-dimensional Markov process. On the basis o f this Markov model, which is 

essentially a diffusion process, one can formulate governing equations in time. The most 

general extension o f FPK equations approaches to nonlinear second order equations was 

due to Caughey [21]. Exact steady-state solutions o f a rather wide class o f Multi- 

Degrees-of-Freedom (MDOF) nonlinear systems to white noise are available [22, 23]. In 

general, the transitional Probability Density Function (PDF) cannot be found with the 

FPK equations approach. Without this transitional probability, it is generally impossible 

to obtain the correlation function and Power Spectral Density (PSD) o f the response. The 

difficulty in dealing exactly with solutions of stochastically excited nonlinear systems has
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led to an intensified effort to develop approximate methods that will tackle a broader 

class o f problems than presently with the FPK analysis.

13.2 Perturbation Approaches

In this approximate method, the stochastically exited nonlinear system is treated in 

the same way as a deterministically excited system. The solution is represented as an 

expansion o f the powers of a small parameter which specifies the size o f  the nonlinearity. 

The perturbation approach was applied to a continuous nonlinear system by Lyon [24] 

and to discrete nonlinear systems by Crandall [25]. The perturbation approximation, 

however, will not give accurate results for systems possessing large nonlinearities [26] as 

shown in Figure 1.4.
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Figure 1.4 RMS Responses o f a Hardening System by Perturbation, 
EL and FPK Approaches [26]
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1 J J  Equivalent Linearization (EL) Approaches

The EL approaches technique is based on the concept o f replacing the nonlinear 

system with an equivalent linear system such that the difference between the two systems 

is minimized. Basically, the method is the statistical extension o f  the well-known 

Krylov-Bogoliubov equivalent linearization method for deterministic vibration problems. 

The extension o f this approximate method to problems o f  random excitations was made 

independently by Booton [27] and Caughey [28]. Atalik and Utku [29] have presented a 

direct and generalized procedure for the equivalent linearization approach for the MDOF 

nonlinear systems that may be nonlinear in inertial, velocity, and restoring forces. The 

coefficients o f the equivalent linear system can be obtained by direct application o f 

partial differentiation and expectation operators to the functionals involving nonlinear 

terms. For mathematical derivations o f the equivalent linearization technique and its 

applications to a variety o f nonlinear dynamic systems, readers are referred to the book 

by Roberts and Spanos [30]. Sakata and Kimura [31] developed a method to calculate 

the nonstationary response o f a nonlinear system subjected to non-white excitation. The 

method consists in modification o f the EL and the use o f  the moment equations o f the 

equivalent linear system to evaluate the mean square response. The limitation here is the 

assumption o f a Gaussian response in order to obtain the higher moments (order greater 

than two) from the second order moments.

1.3.4 Numerical Simulation Approaches

The Monte Carlo simulation method estimates the response statistics o f randomly 

excited nonlinear structural systems [32-34], In the past, both analog and digital 

computational systems have been used for Monte Carlo simulations. Only digital
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systems are used presently. The approach mainly consists o f generating a large number 

o f sample excitations, calculating the corresponding response samples, and processing the 

desired response statistics. Obviously, this approach can be used for estimating the 

response statistics o f both stationary and nonstationary excitations. The major drawback 

o f this approach is the computation time and cost.

The various analysis techniques discussed for nonlinear random vibration systems in 

Section 1.3 did not consider the thermal environment. A brief review o f  sonic fatigue 

analysis and design methods for aircraft and spacecraft structural panels in a combined 

thermal acoustic environment is presented.

1.4 Nonlinear Random Response of Panels in an Elevated Thermal Environment

Sonic fatigue design guides have been developed for metallic structures by Rudder 

and Plumblee [35] and for graphite-epoxy composite structures by Holehouse [36]. The 

design guides were based on the semi-empirical test data or Miles’ simplified single­

mode approach.

Vaicaitis and his coworkers have used the Galerkin’s method (to Partial Differential 

Equations (PDE) and the modal approach) in conjunction with the time domain Monte 

Carlo numerical simulation [32-34] for the prediction of nonlinear response o f isotropic 

[37, 38] and composite [39, 40] panels subjected to acoustic and thermal loads. Lee [41- 

43] has used the PDE/Galerkin method in conjunction with the equivalent linearization 

[30] technique and investigated the thermal effects on the dynamics o f vibrating isotropic 

plates and the improvement o f variance and cumulants using an abridged Edgeworth 

series [44]. The use o f the PDE/Galerkin method, however, limits its applicability to a 

simple panel platform o f rectangular shape and simple boundary conditions.
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Extension o f the Finite Element (FE) method to nonlinear response o f  isotropic beam 

and plate structures under combined acoustic and thermal loads was first reported by 

Locke and Mei [45, 46] using the EL technique with an iterative scheme. The application 

o f the FE/EL procedure was further extended to composite panels by Mei and Chen [47]. 

In the FE/EL solution procedure, the thermal postbuckling or thermal finite deflection 

structural problem is solved first. The thermal deflection and thermal stresses are treated 

as known preconditions for the subsequent random response analysis. The random 

response thus considers only one o f the two coexisting thermal postbuckling positions 

[48]. The FE/EL method, therefore, does not give accurate predictions for snap-through 

and large-amplitude nonlinear random motions. Experiments by Ng and Clevenson [49], 

Istenes et al. [50], and Murphy et al. [51, 52] have shown that the dynamic response o f 

acoustically excited thermally buckled plates may exhibit the following two types o f 

motion: (i) small amplitude vibrations about one o f the coexisting static equilibrium 

configurations, and (ii) large amplitude nonlinear snap-through oscillations between and 

over the two postbuckling positions. Reviews of large deflection analyses in sonic 

fatigue design have been given by Mei and Wolfe [53], Benaroya and Rebak [54], 

Vaicaitis [37], Clarkson [55], and Wolfe et al. [56].

1.5 Models for Structural Reliability Analysis

Fatigue life analysis is divided into two main categories as indicated by experimental 

observations. At low stress levels (high-cycle fatigue), the pre-crack initiation period 

may constitute a significant percentage of the usable fatigue life, whereas at high stress 

amplitude (low-cycle), fatigue cracks start to develop during early cycles. The transition 

between low and high-cycle fatigue usually occurs between 101 and 105 cycles. Because

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

o f the nature o f the random loading in this work, only high-cycle fatigue conditions are 

addressed.

1.5.1 Stress-Life (S-N) Diagrams

The first systematic and quantitative investigation of fatigue damage was provided by 

August Wohler in 1858 and resulted in the widely known S-N curves (i.e., stress (S) 

versus number (N) o f cycles to failure). This curve conveniently displays basic fatigue 

data in the elastic stress range. Because o f the scatter in fatigue life data at any stress 

level, it has been agreed that there is not just one S-N curve for a given material, but a 

family o f S-N curves, using probability o f  failure as a parameter. These curves are called 

S-N-P curves. The above curves can generally be found in fatigue structural design 

manuals. For instance, a design guide was developed by the Air Force in 1975 for 

military aircraft [35]. Analytical representation o f  the S-N curves is commonly given in 

the form N=K S‘̂  where P and K  are material parameters estimated from test data. Due to 

the high uncertainty in the relationship between S and N, the parameters K  and p  are 

regarded as random variables [57, 58]; in such cases, statistical analysis leads to an 

expression for N  in terms o f the statistics o f the dispersed data. It should be realized that 

the S-N approach, though still widely used in design applications, does not deal with any 

physical phenomena within the material. Only the total life to fatigue fracture is 

considered.

1.5.2 Cumulative Damage Theories

The stress amplitude experienced by a structural member may often vary during its 

service life. In such case, i.e., under a variable amplitude loading, the direct use o f
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standard S-N curves is not possible. To estimate fatigue life in more general 

circumstances, Palmgren [59] and Miner [2] proposed that fatigue fracture is a result o f 

linear accumulation o f partial fatigue damage. The weakness o f that approach is it does 

not account for sequential effects. That is, it assumes that damage caused by a stress 

cycle is independent of where it occurs in the load history. To overcome the 

shortcomings o f the Palmgren-Miner approach, a number of nonlinear damage 

hypotheses have been proposed. One of the first was proposed by Marco and Strakey 

[60], in which the classical Palmgren-Miner hypothesis, linear accumulation o f partial 

fatigue damage, has an exponent that is a function o f the stress level. Many other 

examples o f nonlinear damage accumulation can be found in the literature [61-63]. In 

general, they all require material and shaping constants that have to be determined from a 

series o f step tests, which requires a large amount o f testing.

1.5.3 Continuum Damage Mechanics

In the previous section, the damage accumulation rules were presented in relation to 

fatigue due to loading at various amplitudes. The concept o f  cumulative damage, 

however, has a much wider meaning and is used to characterize globally all deterioration 

phenomena taking place in the material. Despite the diversity o f these phenomena, it is 

useful to try to describe them jointly within a single model. Models o f  this type utilize a 

damage measure D{t) and an external load function Q(t). One can postulate the following 

general differential equation o f the model,

P̂ = /[O (O ,0 « ]  ( l . l )
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When the right hand side of Equation 1.1 is independent o f the damage D(t), then the 

solution o f the equation with the initial condition D(0)=0 is given by the previous 

Palmgren-Miner equation. For more details on the derivation see Bolotin [64] and 

Madsen et al. [58]. When the right hand side o f Equation 1.1 is not zero or independent 

o f  D(t), the continuum damage mechanics attempt to introduce a variable, treated as an 

internal variable of the material, which will describe the fine details o f the fatigue- 

fracture pattern. The first characterization of damage along this line o f  work was done in 

1958 by Kachanov [65], who introduced a scalar measure o f damage D(t) to characterize 

macroscopically the internal degradation of the material. An important extension to 

Kachanov’s idea was to incorporate damage into the general constitutive equations of the 

deformed body. Much work was done in this area [6 6 , 67, 6 8 ], and in general the 

equations can be represented as

s{t) = F {S,D ) (1.2)

where e is the strain tensor, S  is the stress and D a damage measure (scalar or tensor), and 

F  is an appropriate functional. This approach to fatigue life estimation is only applicable 

to some very special cases in low-cycle fatigue and will not be considered in this work.

1.6 Statistical Characterization of Non-Gaussian and Non-Stationary Random 

Loads

Throughout their service life, aerospace structures are subjected to loads that vary 

with time in a very complicated manner. Most traditional fatigue analyses are based 

upon a representation of loads in the form of periodic deterministic functions o f time, and 

the basic characteristics of fatigue accumulation are expressed in terms o f the number of 

loading cycles. At present, it is widely accepted that fatigue analyses performed under
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constant cyclic amplitude representations does not represent adequately the complexity o f 

the fatigue process under actual complicated loadings. Irregular time histories, such as 

random loads that fluctuate in time continuously, must be considered and suitably 

modeled.

There are situations where the load acting on a structure cannot be assumed to be 

Gaussian and/or stationary. An important problem that arises is the effective 

characterization o f such random processes. For the purpose o f fatigue analysis, we are 

interested primarily in the description o f high statistical moments (mean, variance, 

skewness, and kurtosis) o f non-Gaussian load (stress) processes. The fluctuating pressure 

fields experienced by high-speed flight vehicles frequently exhibit considerable 

nonstationary and non-Gaussian characteristics. These properties are, of course, reflected 

in the response of aircraft and spacecraft surface panels. An additional source o f 

deviation from a normal distribution arises from the nonlinear panel behavior. It is well 

known that there are numerous possibilities for mathematical representation o f non­

normal random processes depending on the application convenience. Generally, a non- 

Gaussian process is created by functional transformation from a Gaussian process. The 

Weibull distribution has been widely used in the characterization of random loading- 

based fatigue lifetime and has fit experimental data quite well at high stress levels [69]. 

On the other hand, relatively little work on nonstationary stochastic fields has been 

published to date. In this regard, Hammond and Moss [70] were concerned with 

characterizing the time varying nature o f the nonstationary signal, and Merritt [71] with 

nonstationary gunfire environments. Piersol [72] has presented an optimum analysis 

procedure for the nonstationary vibro-acoustic data measured during space vehicle
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launches. Dargahi-Noubary [73] has presented a uniformly modulated nonstationary 

model for the seismic records o f  earthquakes and underground nuclear explosions.

No literature was found on nonlinear panel response at elevated temperatures 

subjected to nonstationary excitation.

1.7 Cycles Counting

Recalling that stress response for fatigue failure is in the form o f  a continuous random 

process, techniques for predicting statistical averages and distributions o f random loading 

characteristics relevant to fatigue are needed. If the stress produced by the random load 

is “narrow band” then the stress history has more or less the appearance o f a sine wave o f 

slowly varying frequency and amplitude. For each upward crossing o f zero, the stress 

time history displays a single peak (Figure 1.3-a). As the load bandwidth increases, the 

time history displays multiple peaks for each upward crossing o f  zero (Figure 1.3-b), and 

there is no obvious definition o f stress cycles. The stress time history is usually reduced 

to a sequence of events that can be regarded as compatible with constant amplitude data. 

Those methods are known as cycle counting techniques. Dowling [74] provided an 

excellent summary o f the different counting methods.

The three methods of cycle counting most commonly used are: (i) the peak counting 

method, (ii) the range counting method, and (iii) the rain/low counting method. In the 

peak counting method, a stress cycle is attributed to each peak that lies above zero with 

the amplitude of the cycle being placed equal to the value o f  the peak. The range 

counting method considers two half-cycles associated with each positive or negative 

peak. Methods (i) and (ii) yield similar results for narrow band processes, but quite 

different results may be obtained for wide band processes. The rainflow method uses a
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specific cycle counting scheme to account for effective stress ranges and identified stress 

cycles related to closed hysteresis loops in the cyclic stress-strain curves. This counting 

method was developed by Professor T. Endo and his colleagues [75] in Japan around 

1968. It is generally thought that rainflow counting yields the most realistic estimate of 

fatigue damage. Typically, the peak counting method will yield a higher estimate o f the 

damage while the range counting method will predict less damage. Because of the 

heuristic nature o f the standard rainflow counting techniques, as well as their complicated 

sequential structure, it is difficult to determine the probability distribution o f the rainflow 

amplitudes for a random process. In recent years, a new definition of the rainflow cycle 

amplitude has been given by Rychlik [76, 77, 78] that expresses the rainflow cycle 

amplitude in an explicit analytical manner and provides the basis for deriving the long­

time distribution for ergodic stationary processes. The new definition is based on the 

assumption that the sequence o f extrema has some type of Markov structure. Bishop and 

Sherrat [79, 80] developed a theoretical solution for the estimation of the rainflow range 

density functions using statistics computed directly from power spectral density data. 

Dirlik [81] produced an empirical closed form expression for the probability density 

function of rainflow ranges using extensive computer simulations to model the signals 

using the Monte Carlo technique.

At this time, the state o f the art for sonic fatigue design, in addition to the old existing 

design guides, is the incorporation o f fatigue analysis within the commercial Finite 

Element codes (NASTRAN, ALGOR, ANSYS, etc.). The Structural Acoustic Branch at 

NASA Langley Research Center currently has implemented some o f their nonlinear 

acoustic panel response problems using an equivalent linearization RMS approach [82,
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83]. This approach aims to appropriately linearise the system based upon RMS statistics. 

However, the new vibration tools being used for this work rely on accurate evaluation o f 

all statistical moments up to the fourth moment, rather than just the zero-th moment used 

for the RMS calculation.

1.8 Motivation and Dissertation Organization

Sonic fatigue has been considered as one of the major design considerations for the 

Joint Strike Fighter (JSF). In addition, the surface panels o f many high-speed flight 

vehicles (e.g., the X-33, RLV, X-38, and Hyper-X etc.) presently under development will 

be exposed to high levels of acoustic pressure fluctuations and elevated temperatures. At 

present almost all the sonic fatigue design guides are based on experimental data and/or 

very simplified models. It was quickly realized that with the multitude of different 

composite stackings and new materials being introduced constantly, it was impractical as 

well as inefficient to test every conceivable design configuration experimentally. This 

brought an urgent need for improved sonic fatigue analysis and design methods for 

aircraft and spacecraft structural panels. Recorded B-1B flight acoustic pressure 

fluctuations have shown the non-white power spectral density (PSD) characteristics. The 

objective of the present work is to present a versatile finite element modal formulation 

that could predict the stress response o f an arbitrary laminated composite panel subjected 

to random loadings in an elevated thermal environment. The finite element formulation 

presented is capable o f predicting responses under non-white pressure fluctuations. The 

linear/nonlinear large amplitude responses and fatigue life estimation o f panels subjected 

to non-white pressure fluctuations and a generated equal power white noise are 

compared.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19

The organization of this work is as follows. In Chapter 1, a synopsis and literature 

survey is given of the existing knowledge on random dynamics and fatigue technology. 

Attention is focused on features of the responses and fatigue phenomena that are of prime 

interest in stochastic modeling. Chapter 2 contains the mathematical development o f the 

nonlinear finite element model o f an arbitrarily laminated panel subjected to a set of 

simultaneously applied thermal and acoustic loads. The governing equations o f motion 

are derived in structural degree o f freedom. Chapter 3 is entirely directed toward theories 

o f high-cycles random fatigue life estimations. Special emphasis is given to the rainflow 

counting cycle method (RFC) and to Dirlik’s approach in the frequency domain. In 

addition, two classes of models are distinguished and analyzed for the fatigue life 

estimation of slightly nonlinear responses (transformed Gaussian Models) and Gaussian 

processes with non-zero mean (SMCTP). Chapter 4 uses the theory o f the previous two 

Chapters and goes through the preliminary tasks and procedures to solve the fatigue 

problem. These include solving the linear eigen-value problem for the modal 

transformation as well as the critical buckling temperature. Apart from these, numerical 

considerations like the integration scheme, time step, sampling frequency and others are 

also addressed. Finally, the basic Matlab commands for fatigue life estimation are 

highlighted with numerical examples. Chapter 5 presents the validation o f the modal 

finite element and the RFC counting cycle methods. Discussions o f  fatigue life for 

rectangular panels subjected to: (i) recorded pressure fluctuations and simulated white 

noise, (ii) recorded pressure fluctuations and simulated white noise in a high temperature 

environment are given. Numerical results include time histories, probability/amplitude
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peak distributions and PSD o f panel maximum deflection and stress/strain. Finally, 

concluding remarks and possibilities for future research work are presented in Chapter 6 .
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CHAPTER 2 

FINITE ELEMENT FORMULATION

The governing nonlinear equations o f  motion are derived for an arbitrarily laminated 

composite rectangular plate subjected to a set o f simultaneously applied thermal and 

acoustic loads. The thermal load is taken to be an arbitrary steady-state temperature 

distribution, i.e., AT=AT(x,y,z). The acoustic excitation is assumed either to be a band- 

limited white or non-white Gaussian random pressure, uniformly distributed over the 

structural surface. The finite element formulation is based on the von Karman large 

deflection theory and the classic laminated plate theory (CLPT). The following 

assumptions are made throughout the derivation:

(1) The panel is thin (L/h>20).

(2) In-plane inertia, rotatory inertia, and transverse shear deformation effects are 

negligible.

(3) von Karman nonlinear strain-displacement relations are valid.

(4) The quasi-steady state thermal stress theory with arbitrary temperature distribution is 

applied.

(5) Proportional damping, §.£0 r=<̂ n>5, is used.

(6 ) Straight lines perpendicular to the midsurface before deformation remain straight and 

perpendicular after deformation.

(7) The transverse normals do not experience elongation, i.e., they are inextensible. 

Bogner-Fox-Schmit (BFS) [84] C 1 conforming rectangular elements are adopted in the 

derivation. A C 1 conforming element is one that provides inter-element continuity o f the
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displacement field, w(x,y) in the z-direction, and its first derivatives vv* and wy, but not 

inter-element continuity o f all second derivatives of w(x,y).

2.1 Displacement Functions

The BFS element has a total o f 24 degrees o f freedom (DOF): 16 bending DOF {wb} 

and 8  in-plane DOF {wm} in each element (Figure 2.1).

Figure 2.1 Nodal Degrees of Freedom o f a BFS C 1 Conforming Rectangular Element 

The 16 bending DOF {w*} and 8  in-plane DOF {wm} are expressed as

y

(2.1)

{Wm } = { « /  U2  U3 U4 V/ V2 V 3 V 4 f (2.2)
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The bending displacement w and the in-plane displacements u, v are approximated as 

a bi-cubic and a bi-linear polynomial function in x and y, which can be written as,

w = a t + a2x  + a3y  + aAx 2 + a5xy  + a6y 2 + a7x 3 + atx 2y  + a9xy2 + al0y 3 

+ aux 3y  + al2x 2y 2 +al3xy3 + aux 3y 2 + a lsx 2y 3 + a l6x 3y 3 

= [Hw{x ,y)]{a j

u = bt + b2x  + b3y  + b4xy
(2.3)

= [H u(x,y)]{b}

v = b5 +b6x + b7y  + b%xy  

= [/fv(x,y)]{6 }

where the interpolation functions are

[Hw(x ,y ) \=  {l x  y  x 2 xy y 2 x 3 x 2y  x y 2 y 3 x 3y  x 2y 2 xy3 

x 3y 2 x 2y 3 x3y 3}

[Hu(x ,y )]= { l  x  y  xy  0 0 0 0} (2.4)

[Hv(x,y)]={0 0 0 0 1 x  y  xy}

and the generalized coordinates are

{a}= {ai a2 a3 a4 as a6 a7 a8 a9 a l0 a n  a t2 a I3 a l4 al5 a]6}
(2.5)

b2 b3 b4 bs b6 b7 b8}

The generalized coordinates {a} and {6 } are related to the nodal DOF vectors by the two

transformation matrices [7*] and [Tm], respectively, as

(2.6)
{6}=[7-J{h. J
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The detailed derivation of bending and in-plane transformation matrices [7*] and [Tm] is 

given in Appendix A. The element displacement functions then can be rewritten in terms 

o f nodal displacement vectors as

w = [H .(x ,y ) ] { a }= [H , (x, >-)][ T„ ]{ wb}

u = [H ^x ,y )}{b}=  [Hu(x,y)][T„]{Wm } (2.7)

v = [//„ (x, ,) ]{ * } -  [H, (jc,

2.2 Nonlinear Strain-Displacement Relations

The von-Karman large deformation strain-displacement relations are given by

£ } =

*y J

(2.8)

where {e} is the total strain vector measured at the stress-free (flat at Tref) state. The in­

plane strain vector {s0} consists o f two components, the membrane strain } and the 

non-linear von-Karman strain }, as

{£° }={*-}+  M

du
dx
dv
dy

du dv h —
dy dy

> + —< 
2

(dwI d r .
rd w '2

<Qy.
, dw dw

dx dy

(2.9)
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The bending curvature vector {<} is defined as

M =

- 2

d 2w

~dx2~
d2w
dy2
d2w
dxdy

(2 .10)

By using the finite element displacement functions in section 2.2, the in-plane strain 

vector components and the curvature vector components can be rewritten in terms o f  the 

element nodal displacement vector as follows

t e M c . H r J k , }

(dw)
dx
dw

dy.

= | [ 0 ][cs ][rj{w ,}

4 [ 0 ] f o ] k }

M = l C b][Tb]{wb}

= [ £ J K }

(2 .11)

(2 .12)

(2.13)

where

[ C j =

* & * .< * .* ) 1

-^~[Hv(x,y)]
dy

~  [Hu (x , y)]+ [Hv (x, y )] 
ay dx
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0 1 0 y 0 0 0 0
= 0 0 0 0 0 0 1 X (2

0 0 1 X 0 1 0 y .

[6 ] is the slope matrix

M -

dw
dx
0

0

dw
dy 

dw dw
dy dx

(2.15)

and

[C,]=
j r [ n j x , y ) }
dx

(2.16)
0 I 0 2x y  0 
0 0 1 0 x  2y

3x2 2xy y 2 0 3 x2y  2xy2 y 3 3x2y 2 2xy3 3 x 2y 3
2 2xy 3 y 2 x 3 2x2 y  3xy2 2x3 y 3 x2 y 2 3 x Jy 2

[c.]= dy

- 2 S s r ^ H ^ x ' ^dxdy

0 0 0 2 0 0 
0 0 0 0 0 2 
0 0 0 0 2 0

6x 2y  0 0
0 0 2x 6 y
0 4x 4y  0

6xy 2 y 2 0 6xy2 2 y 3
0 2x 6xy 2xJ 

6 x 2 8xy 6 y 2 12x2 y

6xy3 
6 x3 y  

12xy2 18x2 y 2
6 x 2 y

(2.17)

The matrices [Bm], [5^], and [.Bb] are the strain interpolation matrices corresponding 

to in-plane, large deflection, and bending strain components, respectively. Similarly, the
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subscripts m, 6, and b denote that the strain components are due to membrane, large 

deflection, and bending, respectively.

2 3  Constitutive Relations

The linear constitutive relations for the k!h orthotropic lamina (Figure 2.2) in the 

principal material coordinates (*/, x2) are

(2.18)

where [Q]k is the reduced stiffness matrix of the composite lamina, and {a}k is the 

coefficient o f thermal expansion. The terms in [Q] can be evaluated as follows

E,

' o ’, ' Qu 0 , 2 0  '

f \

° 2 ► = 0 , 2 0 2 2 0 < S 2 > — « « 2 ► AT

.^1 2 . k 0 0 1
sO) k I y  n. 0 k y

0„ =

Q{2 = _ V2\^l
l ~ Vl2V2l 1 - ^ 2 1

022 =
l ~ Vl2V2l

Q<56 =  G I2

(2.19)

Figure 2.2 A Fiber-Reinforced Lamina with Global and Material Coordinate Systems
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Consider the composite lamina in Figure 2.2 having an arbitrary orientation angle 6. The 

stress and strain transformation relations from the principal directions x\, x-i to x, y  body 

directions are

(2 .20)

rbV

o-x
* 2 > = f c ( 0 )]- *2 '={T£m \ e y

J n . . V 7 i2 . y **.
where

c 2 s2 2sc c2 s 2 SC
[T .m ] = s 2 c2 -  2 sc . f o w l - s 2 c2 —sc

— sc sc c2 — s 2 — 2 sc 2 sc c 2 —s 2
(2.21)

with c=cos(0), j=sin(6 ). Thus, the stress-strain relations for a generalized fdh lamina, with 

an orientation angle 6 (Figure. 2.3), taking into consideration temperature change, 

becomes

M *  =
Qn 012 016 e* a X

\

<CTy • = Qii 022 026 * Sy 1 > a y ►

. V k 061 062 066 _k \ y  *y. a k)

(2.22)

or

M *  = [Q l  ( fc } -A r{ a } J  

where [q  ̂  ,the transformed reduced stiffiiess matrix, is given by

[ e l  “ f c w r t e l f c w ]

The resultant forces and moments per unit length are

({#} , {A/})= JV}*(1 ,z)dz

(2.23)

(2.24)

(2.25)
-A/2
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h-k =  z * + i  -  Zjt

Figure 2 3  Coordinate System and Layer Numbering for a Typical Laminated Plate

and the constitutive equations for a laminate can be written as

\ M \

A B 
B D

e
K

N AT

M
(2.26)

AT  .

where [A], [.B], and [D] are the laminate extensional, extension-bending, and bending 

stiffness matrices, respectively, and are given by

4  =

= E ( 0 //)4 (z». 1 - 2 »)

i , j  = 1,2,6
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B = r  (5 . )  zdzy i-h/ 2
i , j  = 1,2,6  (2.27)

= \ i ( e s ) M «  -*f)^ k* 1

d = r  is..) zidz
i , j  = 1,2,6

- Z,J)
3  i= l

The vectors {.A/4 7-} and {Mir} are the in-plane force and moment due to thermal 

expansion

(KtI . {*4r})= ‘jfeWWCU)*
-h i  2

(2.28)

= S  /  Ig l  AT{a}4 ( l ,* )*
*=1

Substituting Equations 2.11 thru 2.13 into Equation 2.26, the resultant force and moment 

vectors {N} and {M) per unit length can be written as

W H M k l + M W - K r l

= Mfc }+ Mfc* }+[s]{k}-Kr } (2.29)
“ M J + K I + K I - K r !

{A f}=[B ]K  }+[/>]{*}-{)!/„}

=  W k  }+  M k f +  M M ~  W ar } (2.30)

or, in terms o f the element nodal displacement vectors, as follows

M = M M  I K  }*\UM K  I K  1+M M I K  I- I (2.3 0

{3/)=[s][s„ ] K }+\  [bM *» I K }+M M  I K  I- } (2.32)
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2.4 Equations of Motion In Structural Node Degree o f Freedom

The element nonlinear equations of motion are derived applying the principle o f 

virtual work,

S W ^ S W . ^ - S W ^ ^ O  (2.33)

which states that for an element in equilibrium, the total work done by internal and 

external forces (including inertia forces by means o f D ’Alembert’s principle) on an 

infinitesimal virtual displacement is null. The internal and external work on a plate 

element produced by internal and external forces, respectively, are given by

S>r.m = f a e ° Y { N } + $ K } r {M})iA (2.34)
A

SW ^  = J{5w(p(x, y , t) -  phwJt) -  5u(phu „ ) -  5v(phv n ))dA (2.35)
A

where A is the element area.

Recalling Equations 2.11 to 2.13, the virtual in-plane strain, {<Sep}, and curvature, 

{<5kt}, vectors can be expressed as

(2.36)

{ & } = 5 ([5 ( ]K } )  = [a4 ]{Sws } (2.37)

where

(2-38)
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= j [ e p » ] K } + j [ e p . l K }

2 L “  "JV " ' 2

(2.39)

“ [ e p . ] ^ . }

Substituting Equations 2.38 and 2.39 into 2.36, the virtual in-plane strain can be rewritten 

as

( & ■ } = [ « . ] { * . .} + [ # , ] { « » ,}  (2.40)

Finally, the internal work is expanded into many terms by replacing the resultant force 

and moment vectors {N} and {M )  (Equations 2.31 and 2.32), together with the virtual 

in-plane strain, {<5^}, and curvature, {<5/c}, vectors (Equations 2.37 and 2.40) into 

Equation 2.34, to get

= L P J K , M e p e] M r

■ (M[s„ ]{w. }+ J M[ePo ]{» ,)+  [ f l p ,  Ifw,}-{jVar }j dA

■ (feP.lk.}+ \ [ b ][6][b b ]K}+[D ][B ,]K } -  (Af AT)

where the terms o f product are listed as follows

dA

i f r > J [ B j [ A ] [ B „ ] { w „ } d A (2.41-1)

I \  {SH-. }r [5. r Mt»P. ]Md* (2.41-2)

JL̂ J’PJ’PPJKP* (2.41-3)

-  I f r .Y lB j  frtrW (2.41-4)
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JL fcw'. r  [b ,  r  [ e j  U ]{b .  ]{». }<u (2.41-5)

l \ { ^ } r [ B j [ 6 } T {A}[8}[Be } W sdA (2.41-6)

(2.41-7)

(2.41-8)

(2.41-9)

(2.41-10)

I f y ’J M W . B A M d A (2.41-11)

(2.41-12)

The digit after the equation number 2 .41-x indicates the term number. For instance, term 

6  is the same as Equation 2.41-6. Expressions for the linear stiffness matrices will be 

given first. Next, expressions for the first-order nonlinear stiffness matrices, depending 

linearly on {w6} or {wm}, will be expressed. Finally, expressions for the second-order 

nonlinear stiffness matrix depending quadratically on {h^}, and thermal load vectors will 

be addressed.

2.4.1 Linear Stiffness Matrices

Terms 1, 3, 9, and 11 can be combined in matrix form as

r * * r
! S w J

K  K m  

K b  K
w b (2.42)

where the linear bending, bending-membrane, and membrane stiffness matrices, 

respectively, are
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[ K ] -  i[ B t t[D ]{Bi }dA

I U  = [ K J  = [ [ B j [ B ] { B t }dA

[*.]- XI-B-f U][B„]dA

It can be easily determined by inspection that

dw

[ e J M -

o
dx

0
dy

dw dw

N
N.ATy

N,A Txy

dy dx _

= K r P „ ] k }

where [A^r] is the resultant thermal force matrix

K r l  =
N ATx N ATxy

N ATxy N ATy

Substituting Equation 2.46 into term 8  yields

5wh
I dw,

^NAT ® 
0  0

wk
w_

where the thermal stiffness matrix is

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)[̂ VAT

2.4.2 First-Order Nonlinear Incremental Stiffness Matrices

Adding terms 2 and 5 and rewriting the resulting terms using Equation 2.51 and breaking 

[ n \ N m \  into two equal terms yields
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n \Nm n \bm

2 W

= ^ { S w bY [  nWm ]{ wb}+ ^{S w m }r [nXmb]{wb }+ y  {8wb }T [nXbm]{wm }

=  \ { ^ n , Y  l [ B m] T[ A ] [ Q  ][fle]c£4{vi/6}+{S wb}T [ A \ B m} u { ' w m}
2  A A

= I  ( 5m--}r ;[«J r [ A ][« ][ B .\U {  n  } + i  { 5 n  f  J[ B, Y  [ e  T  [ A  ] [ B. }iA { W.}
Z  A 2 . A

+ \ {5 wA}r J[.B*f [ 9  J  [ A ][Bm}U  {wm }
^  A

=  \ { S w mY  \ [ Bm] T[ A ] [ e  ][Be]dA{wb} + \ { 8  w j  l [ B gJ [ d X  [ A ] [ B m}iA{ \vm}

(2.50)

+ ̂ ” „}T \[B gY [ N m][Bg }dA{wb }
2- A

By inspection it is seen that

[6 J  M [fi„ ] K , } = [e J  {N . } = [AT. ][/>,] k  } (2.51)

where the matrix [iVm], which depends directly on membrane displacement {wm}, is

[ * J  = (2.52)

Consequently, the first-order nonlinear incremental stiffness matrices are linearly 

dependent on {w*} and {wm}, and are, respectively

k J  ■=[»». 7  = [ [ B j [ A [ s \ [ B e \dA (2.53)

(2.54)
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Adding terms 7 and 10 and following a similar procedure as for terms 2 and 5, we have
"Xnb 0

2[<5w J [ 0  0 w .

= fswj  ftBjleYlBUB'faM+UswJ IlBJlBllenB'fyM
A  2 . A

= ] [ B j [ e Y m [ B t \iA{wb} + \ $ w bY $_BaY[eJ[B\[Bb\iA{*,b}
Z  a  I  A

l[B „J [b }[6 }[Be^ A { w b}
Z  A

(2.55)

+ ^ { * v » r ; [ s j [ f i ] [ a ] [ B . ] < M { w 4}
Z  A

By inspection it is determined that

[ 0 r M f o ] M =  f f l  { * .} =  [ J V . R I W  (2.56)

where the matrix [A^] depends directly on the bending displacement {w&}, and is given 

by

[ N * ]  =
^Bxy Nsy

(2.57)

The first-order nonlinear incremental stiffness matrix is linearly dependent on {w*}, and 

becomes

kj= ifer[er[«p4]+[sert̂ »]k]+[ssrM«][B.])<M ass)

2.4.3 Second-Order Nonlinear Incremental Stiffness Matrix

The second-order nonlinear stiffness matrix is derived from term 6
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L \s w b r
A  S n J

*2 b  0

0 0
Wk

w_
(2.59)

where the second-order incremental nonlinear stiffiiess matrix is quadratically dependent 

on {w*} through the relation

(2.60)

2.4.4 Therm al Load Vectors

Terms 4 and 12 are thermal load vectors and can be described as

|<5wmJ l / w j
(2.61)

where the element bending and membrane force vectors, due to thermal effects, are

(2.62)

and

m&T } (2.63)

Combining Equations 2.42, 2.48, 2.53-4, 2.58-9 and 2.61, the virtual work o f the internal 

forces on a plate element becomes

=
[ f t*
<5w„

f 1 J

^N A T 0" 1
+  — n \Nm +  n \NB n \bm

\ *m b 3 1 0 0 2 .  " l mb 0  .

1+ — 
3

n 2b 0  

0  0
i * U f t * n / w
**J ( f t* J  t / W .

(2.64)

From Equation 2.35, the virtual work o f the external forces on a plate element is

SW ^  = £ [<5w(- phw + p it) )  + du(- phii) + 5v(- phvj[dA (2.35)

where pit) is the random fluctuation pressure generated by the acoustic excitation.
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Using the element displacement functions, Equation 2.7, the inertia and partial 

displacement variables in Equation 2.34 can be rewritten as

S“ = [Hu] [ T j^ w m} (2.65)

A '- t f f . I t r .  ]{»».}

Substituting the above expressions into Equation 2.35, the finite element form o f  the 

virtual work due to the external forces on an element becomes

= I  iK n r J K f  ( r  ph[H .}{T t }{wt }{y,t }* p ( x . y , t > )

+{Sw. 7  [r. 7  [H. J  (- pt f f f .  ][r, ] {*„})

+ f a .  f  [T. J  Iff.  Y  (- ph[H,  ] [T. ]{*„})]<« (2.66)
\
\dw_

mb 0  

0  m_
+ U * * Y l p > < ' A

where [mb] and [mm] are the bending and in-plane mass matrices defined, respectively as

iP > > [T j[n J [H .] {T b]dA (2.67)

k .1-  L/4 r.nw.r[tf.][r.]+[r.r[ff.m .][r.lk  (2.68)

and the random force vector {pb{t)} is defined as

(/>»«}= i [ T j [ H j  p (x ,y ,t )d A  (2.69)
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Combining Equations 2.64 and 2.66 into Equation 2.33, the element equations of motion 

for a plate under combined acoustic and thermal load can be expressed as

~ m b 0 " K ]
(

~ K K m " k N 6 T o '
\

--
0 m m_ R J \ k mb k m _ 0 0

wk
w.

+
f l n \S m  +  n \SB n \bm ' 1+ —\ b O' \

_ nlmb 0 3 0 0 J
f n l  = f / w ]  , \ p b(t)\
l ^ J  \PmAT

(2.70)

n  o j
For simplicity and ease in the physical understanding, Equation 2.70 is rewritten as

~m b 0  ' { * . 1 y +

/
~k b k B

]r o '

0 \ 1
** 0 0

wk

f k. -h JcNm T  \NB k \bm
_1_ k 2b o '

\

\
JcK \mb 0

I

0 0 7

Wa1 =  +
WrJ 1 0 J

(2.71)

where the first-order nonlinear stiffness matrices, depending linearly on {vv6} and {wm}, 

are

16m ] )

and the second-order matrix quadratically dependent on {wb} is

(2.72)

k ]  = ^ k J  (2.73)

The subscripts B , N AT, N m , and NB  denote the stiffness matrix corresponding to the 

laminate extension-bending [B ], in-plane force components }, {Nm} = [v4] }, and

{N B } = [B ] {k} , respectively.

Assembling all the elements and taking into account the kinematic boundary 

conditions, the system equations o f motion in structural node DOF can be represented as 

follows
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M M +  ( M  -  [*  « r  ] ■+ [K, ] ■+ [AT, D W  = f o r  } + {no} (2.74b)

where [M\, [K\, and {P} denote the system mass, linear stiffiiess matrices, and load 

vector, respectively; and [AT/] and [Ay denote the first-order and second-order nonlinear 

stiffiiess matrices which depend linearly and quadratically on displacement {W}.

For given temperature rise AT and random loads, Equation 2.74 can be solved by 

numerical integration in the structural node DOF. This approach has been carried out for 

random response analysis with simulated random loads by Green and Killey [85] and 

Robinson [8 6 ]. It turned out to be costly computationally because of the following:

(i) the large number o f DOF of the system,

(ii) the nonlinear stiffiiess matrices [AT/] and [Ay have to be assembled and updated

from the element nonlinear stiffiiess matrices at each time step, and

(iii) the allowable integration time step was extremely small.

Consequently, in the solution procedure in Chapter 4, Equation 2.74 is transformed into a 

set of truncated modal coordinates with rather small DOF.
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CHAPTER 3

FATIGUE ANALYSIS AND RAINFLOW CYCLES

Experience has shown that structures that are subjected to periodic loads fail after a 

finite number o f load cycles at a stress that is significantly lower than their predicted 

static failure loads. This phenomenon is known as fatigue. It is common practice for 

designers to work with S-N curves, which are empirical data relating the failure stress 

levels to the number o f load cycles. The S-N curves are obtained by performing tests in 

which the specimens are loaded by periodic (mostly harmonic) loads with amplitudes that 

are changed between specimens and observing the number o f cycles to failure. Many 

specimens must be tested in order to generate a reliable S-N curve, and such curves have 

been produced in many design manuals. When plotted using logarithmic scales, these 

data usually yield a trend toward a straight line with negative slope.

Experienced designers use the S-N curves only as guidelines. The reason is that 

actual structures do not have geometrical configurations and loading conditions that are 

consistent with the published test specimen data. Usually practical loadings are not 

harmonic and certainly do not have constant amplitude cycles. The oscillating load does 

not always have zero mean, and the ratio between maximum and minimum amplitudes 

does not always coincide with fatigue tested specimens, and therefore with the data 

contained in the manuals. During the past 40 years, theories for damage accumulation 

were developed and applied. Most o f these applications were based on experimental 

observations, and during the early periods o f the design to fatigue, most procedures were
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not explained theoretically. One way to deal with varying amplitude loads is to form 

equivalent load cycles and then to use one o f the many damage accumulation methods. 

The equivalent load cycles are formed by pairing the local maxima with the local 

minima, and there are many definitions of cycle counting in the literature. The Rainflow  

Cycle (RFC) method was first introduced by Endo in 1967. (More details are given in a 

paper by Matsuishi and Endo [75].) Subsequently, it has become the most commonly 

used cycle counting method in engineering. The validity o f the RFC method has been 

studied, e.g., Dowling [74], where the accuracy o f fatigue life predictors, which were 

based on eight commonly used cycle counting methods, were investigated. The 

conclusion o f Dowling’s confirmation experiment was that “ ... the counting o f  all closed 

hysteresis loops as cycles by means of the rainflow counting method allows accurate life 

predictions. The use o f any method of cycle counting other than range pair or rainflow 

methods can result in inconsistencies and gross differences between predicted and actual 

fatigue lives.”

The original definition by Endo is a complicated recursive algorithm. Since then, 

several equivalent algorithms for counting rainflow cycles have been presented. Two 

local definitions o f RFCs were given by Rychlik [76-78] and Bishop and Sherratt [79]. 

From these definitions it is possible to formulate events for stochastic processes, which 

represent the forming o f rainflow cycles, and are suitable for probabilistical 

computations. It will be shown later in this chapter that the statistical properties 

necessary for fatigue calculations can be extracted either from the time domain or from 

the power spectral densities (PSD). These two definitions break down the rainflow range 

mechanism into logical steps, which can be analyzed using Markov process theory.
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Then, using a theoretically based relationship, the problem o f obtaining the rainflow 

range density function from the PSD data is solved. The principal drawback is that the 

excitation acoustic load is assumed stationary, ergodic, and Gaussian, which is not the 

case in the stress response of panels subjected to high acoustic loads regardless of the 

state o f the elevated thermal environment. By comparing the fatigue results from a finite 

element analysis (FEA) model generated PSD with FEA model generated time histories, 

it is possible to develop some conclusions about the models that have been analyzed in 

the present work. The best comparison is between FEA model generated time/PSD and 

experimentally obtained fatigue estimates. This will provide the ultimate validity test for 

the new techniques; unfortunately this will not be possible because experimental fatigue 

data are not available to the author presently.

The present chapter will consider fatigue life estimation in the time and frequency 

domains, but it will only define the Rychlik definition to obtain the rainflow range 

probability distribution function (PDF). The empirical closed form expression for the 

probability density function of rainflow ranges given by Dirlik [81] is also addressed. 

The Rychlik RFC method will be retained as the cycle counting method for fatigue life 

calculations. Finally, two extensions o f  the general fatigue life evaluation procedure have 

been introduced for better estimates of: (i) moderately large nonlinear random response 

(without temperature effects), and (ii) the snap-through or oil canning phenomenon (with 

temperature effects) between the two buckled positions.

3.1 Inputs for Fatigue Life Estimates

For fatigue life estimation the measured strains or stresses, which are also called loads 

in fatigue analysis, can be given in one o f  the two following forms:
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(1) As a measurement of the time history of the stress or strain with some sampling 

frequency in Hertz. Such loadings will be denoted by x(t), 0 < t < T ,  where t  is the 

time and T the duration o f  the measurement

(2) In the frequency domain as a power spectrum. This means that the data are 

represented by a Fourier series

x(t)  «  m + £  [u, cos(<s),f)+ 6 , sin(m,f)]
» = t

zwhere coj = ——  are the angular frequencies, m is the mean o f the signal, and a, and bt 

are Fourier coefficients.

3.2 Statistical Characterization

Some general properties o f  a measured load (type 1) can be summarized by using a 

few simple characteristics. Those are: the mean, m, defined as the average of all values; 

the standard deviation cr, the variance o'2, which measures the variability around the mean 

in a linear and quadratic scale; the skewness, skew, which vanishes for symmetric

distributions and becomes positive or negative if the distribution develops a longer tail to

the right or the left o f the mean; and the kurtosis, /cur, which shows how much the load 

departs from an ideal Gaussian process. The mean and central moment quantities are 

estimated by,

m = ^ -\x ( t)d t  (3.1)
 ̂ 0

<r2 = 7 r J M t ) ~ m f d t  (3.2)
1 o
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Another important property is the crossing spectrum or crossing intensity p(u) defined as 

the intensity o f up-crossings, the average number o f  up-crossings per time unit, o f  a level 

u by x(t) as a function o f u. The mean frequency, fo, is usually defined as the number of 

times x(t) crosses upwards the mean value normalized by the length of the interval T, i.e., 

fo=p(ni), but in some cases fa will be defined as the average number of rainflow cycles per 

time unit. The irregularity factor, a, measures how dense the local extremes are relative 

to the mean frequency fa. For a narrowband signal there will be only one local maximum 

between up-crossings of the mean level, giving an irregular factor equal to one. As the 

signal becomes more broadband, there is more than one local extreme yielding to an 

irregularity factor close to zero. The process of fatigue damage accumulation depends 

only on the values and the order of the local extremes in the load, i.e., the exact path is 

not important and the sequence o f local extremes is called the sequence o f  turning points 

(TP). The statistical characterization is general in the sense that it can be applied to 

Gaussian and non-Gaussian processes.

3 3  Frequency Modeling

The most important characteristic of a load (type 2) in the frequency domain is its 

power spectrum

(3.5)
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where A(o is the sampling interval, i.e. co^iAco and a„ bi are Fourier coefficients. The

If the sampled signal contains exactly 2N+1 points, then x(t) is equal to its first Fourier 

series at the sampled points. In the special case when N=2n, the so called Fast Fourier 

Transform (FFT) can be used in order to compute the Fourier coefficients, and the 

spectrum, from the measured signal (load) and, in reverse, the signal from the 

coefficients. The Fourier coefficients to the zero frequency o f the Fourier series are just 

the mean o f the signal, while the variance or zero-order spectral moment is given by

3.4 Rainflow Cycles, Crossings and Hysteresis Loops

As mentioned previously, in fatigue applications it is generally agreed that the shape 

o f  the load connecting two intermediate local extremes is o f no importance, and only the 

values o f the local minima and maxima o f the load sequence influence the lifetime. 

Consequently, the load process can be characterized by its sequence o f local extremes, 

also called turning points. Suppose that {Xt}ao represents a process with a finite number

recorded data file $(©,.)= (<of.,s f.) is called the power spectrum o f  x(t). The sequence,

called a sequence of phases and the Fourier series can be

written as follows

(3-6)

<y2 ~ \s(ac>)da> = A©£s(m,) (3.7)
0

Similarly, higher-order spectral moments are defined by

oo
= ja>‘s(o})do} (3.8)

0
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o f local extremes occurring at the time period f/, 12, .... For simplicity, assume that the 

first local extreme is a minimum, and then the sequence of turning points can be denoted 

as

TP{{Xt } ) = { x ii, X h, X h, X lt, X ti, X t i . . .}={m0, M 0,ml, M i,m2, M 2,m3, M 3, - }  (3.13)

where m* denotes a minimum and Mk a maximum, see Figure 3.1.

M,
Afi J  \  1 \ 
 f — rr-V-

M*

■A ■ w U
.Vfg

* A .Afo * / .  \
•. / V m3 \

■ ' < 1 J .  ■tUj
m5

mi I
\ 1v \  J 

V
rrifl

v
mT

%mg

Figure 3.1 Load Curve where TP are Marked by Dots (•)

■ I stress

standing

hanging

strain

Figure 3.2 Hysteresis Loop in the Stress-Strain

As stated previously, the most widely used cycle counting method is the rainflow 

counting which was designed to catch both slow and rapid variations o f the load by 

forming cycles by pairing high maxima with low minima even if they are separated by 

intermediate extremes. Each local maximum is used as the maximum o f a hysteresis loop
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with an amplitude that is computed by the rainflow algorithm. What the algorithm really 

does is to count hysteresis cycles for the load in the stress-strain plane (Figure 3.2). As 

mentioned in the introduction, there are several ways of defining the RFC. However, they 

are all basically the same. The only difference is the treatment of the so-called residual,

recursive algorithm equivalent to the original definition given by Rychlik [76].

The formal definition is:

Let X(t), 0 < t < T, be a function with finitely many local maxima o f  height Mk 

occurring at times f*. For the maximum at time tk define the follow ing right and left 

minima

From each local maximum Mk one shall try to reach above the same level, in the 

backward (left) and forward (right) directions, with a as small a downward excursion as

which is the hysteresis loops that were not closed. The RFC used in this work is the non-

(3-14)

where

sup{r e  [O.r*): X  (t) > X ( tk) \ i f X  (t) >X (tk) for some t e  [0, tk)
0 , otherwise

(3.15)
inf{/ € {tk,T ] : X ( t)  > X ( t k)} , i fX(t)  >X{tk) for some t e ( tk,T]

T, otherwise

Then the k!h RFC is defined as {rn^ c , M k ), where

max(mt ,m k ), i f  t( < T  
m~, i f  tk = T

(3.16)

The definition is best understood graphically illustrated in Figure 3.3 and defined as:
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possible. The minima, mk and m*k on each side are identified. That minimum which 

represents the smallest deviation from  the maximum Mk is defined as the corresponding 

rainflow minimum m ^ c .

RFCmt =m

Figure 3.3 Definition o f the Rainflow Cycle, as given by Rychlik [76]

Consider tk being the time o f the h!h local maximum with the corresponding rainflow 

amplitude s ^ c = (Mk -  m ^ c ) /2 , the amplitude of the attached hysteresis loop. For very 

complicated loads, like a Brownian or chaotic motion, where there are infinitely many 

local extremes in a finite interval, the rainflow is redefined as follows. Rainflow 

minimum mRFC(t) for all time points t  o f a load x{t) is defined in such a way that the 

rainflow amplitude x(t)- r n ^ l f )  is zero if the point x(t) is not a strict local maximum of 

the load. It is also possible to divide the set of rainflow cycles into two groups, 

depending on whether the rainflow minimum occurs before or after the maximum. The 

two different kinds o f cycles occur on an up-going or a down-going hysteresis arm, and 

are called hanging and standing RFC (see Figure 3.2), respectively. The standing cycles 

are defined as ,M k), when the minimum occurs before the maximum, and the
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hanging cycles are defined as (M k,mj*FC), when the minimum occurs after the 

maximum. For a more precise definition the reader is referred to Rychlik [76]. The RFC 

counting can be interpreted as a pair of a minimum m ^ c and a maximum M t, where the 

amplitude is the most important characteristic for fatigue evaluation. In fatigue estimates, 

a cycle is often represented as a range-mean pair. The definition of the amplitude, the 

range and the mean cycle is (Figure 3.4)

amplitude = {_Mk - m ^ c )/2

range = M k - m ^ c (3.17)

mean = [Mk + m ^ c ) / 2

maximum

amplitude

rangemean

amplitude

minimum

Figure 3.4 Definitions o f Amplitude, Range and Mean

As will be shown in Chapter 4 the set of amplitudes is often represented in the form o f a 

histogram or a cumulative histogram (Figure 4.7). The important problem is to find the 

true distribution o f cycles or Markov chain as the duration T  tends to infinity. This is a 

difficult problem that will be addressed later on in section 3.5.
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Besides the RFC, another simpler definition is needed, namely the min-max cycles. 

From the turning points (TP) it is an easy process to extract the min-max cycles, also 

called Peak-Through-Valley Cycle (PTVC). The definition is as follows:

Let X(t), 0 < t < T, be a function with finitely many load maximum o f  height Mk 

occurring at times tk. Then the fdh min-max cycle is defined as (mb Mk), where mk is the 

minimum preceding Mb and the kfh max-min cycle is defined as (.Mbmt+i) and is the 

minimum succeeding Mb

The observed cycles can be visualized as a cloud o f  points in the min-max plane 

(Figure 4.6).

3.5 Rainflow Matrix

Since the wave oscillation (load) intensity is closely related to the first passage 

problem, it can be practically handled if some Markov structure o f  the process is 

assumed. While Gaussian processes are an important class o f models for linear 

problems, Markov processes are the appropriate models as far as rainflow models are 

concerned. In this section, the so-called Markov Chain o f  TP will be introduced.

An arbitrary load sequence of TP will be called a Markov chain o f TP if it forms a 

Markov chain, i.e., if  the distribution o f a local extremum depends only on the value of 

the previous extremum. The elements in the histogram matrix o f  min-to-max cycles and 

max-to-min cycles are equal to the observed number o f transitions from a minimum (or 

maximum) to a maximum (or minimum) o f specified height. Consequently, the 

probabilistic structure o f the Markov chain o f TP is fully defined by the expected 

histogram matrix o f min-to-max and max-to-min cycles, sometimes called Markov 

Matrices. In other words, the above can be restated as follows: From the discretized TP
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the cycles in the load can be extracted, e.g., RFC or min-max cycles. The cycle count can 

then be summarized in a two dimensional histogram and be represented by a matrix. Let 

us define for RFC the rain/low matrix f JtFC, for min-max cycles the min-max matrix F,

and for max-min cycles the max-min matrix F . Figure 3.5 illustrates the matrices F ^ 0, 

F, and F  for a discrete load. Finding the expected rainflow matrix is a difficult problem 

requiring significant computational time. Only explicit results are known for special 

classes o f processes, e.g., if the load is stationary diffusion, a Markov chain, or a function 

o f  a vector valued Markov chain.
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3.6 Damage Accumulation

For design purposes experiments are often made on a specimen o f material subjected 

to a constant amplitude load, and one counts the number o f cycles until specimen failure.

fatigue life is set to infinity, N(s) « oo. In general one uses the Wholer (S-N) model,

where s„ is called the fatigue limit, and K  and P are material property dependent 

variables that can be approximated by their expected values E[fS\ and E\K\. In the above 

equation st is identical to s j f c defined in the previous section. The two constants K  and

P are determined by linear regression of experimental data on various material specimens 

under uniform loading.

For random loads o f variable amplitude, the S-N curves and a cycle counting method 

are combined by means of the Palmgren-Miner linear damage accumulation theory to 

predict fatigue failure. The Palmgren-Miner hypothesis is that the fatigue damage 

incurred at a given load level is proportional to the sum o f the number of cycles applied 

at that stress level divided by the total number of cycles required to cause failure at the 

same level. When the fatigue loading involves many levels o f stress amplitude, the total 

damage is a sum o f the different cycle ratios and failure occurs when the cycle ratio sum 

equals to unity, i.e.,

The number of load cycles N(s) as well as the amplitudes s are recorded. For small 

amplitudes no damage is generally observed even during extended experiments and the

N (s) =
00

(3.19)
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3.6.1 Time Domain

Combining Equations 3.18 and 3.19 in the time domain, with the assumption that if  

the k!h cycle has an amplitude causing damage equal to l/N(sk) for random ergodic 

stationary processes, total damage is then

E[D(t)] = E = E
j<tt N (sk) A . t c k

= E [ - ^ D p(t)] (3.20)

where the sum contains all cycles that have been completed up to time t. If the total 

damage exceeds one at time t, the fatigue life ' f  is reached. For high cycle fatigue, the 

time to failure is considered long, more than 1 0 s//o, and then the damage, £>p(r), can be 

approximated by its expected value E[Dp(r)]. A very simple life predictor is obtained 

when E[K\ is replaced by a constant equal to the median value o f K. This leads to the 

simplified fatigue life predictor

T f  = ---- ------ (3.21)
E[D(t)]

3.6.2 Frequency Domain

In the time domain, the estimation of the probability distribution o f the load 

amplitudes was achieved through means o f a cycle counting, more precisely the rainflow 

cycle approach. When the load is expressed in the frequency domain, the probability 

amplitude distribution cannot not be extracted directly from the PSD except in some 

special cases. The spectral domain approach is a two-step procedure. The first part is to 

compute for a given load, stress having a specific covariance function or rather PSD, the 

so-called Markov matrix. That means joint density o f the minimum and the following 

maximum. This is done for processes that are assumed Gaussian, which means that they 

are the sum o f cosine functions with different frequencies, independent phases uniformly
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distributed and Rayleigh amplitudes. In the second part, using the approximation that the 

sequence o f local extremes is a Markov chain, the rainflow matrix is computed. Note 

that the second step is totally independent of whether the process is Gaussian or not. 

Obviously, for nonlinear systems the phases are usually dependent and the amplitudes not 

Rayleigh, and hence the process is not Gaussian. Selecting a method o f  computing the 

Markov matrix may not be easy and depends on particular applications. This topic is the 

subject o f extensive research within the oceanographic community that deals with fatigue 

life o f offshore platforms [76-81, 87]. A theoretical solution based on the work of Rice 

[8 8 ] for Gaussian random ergodic stationary processes have been derived by Bishop and

density function o f rainflow ranges using extensive computer simulations to model the 

signals using the Monte Carlo technique. Dirlik’s empirical relation is also based on 

stationary, ergodic and Gaussian processes with the Markov assumption. The empirical 

expression for rainflow ranges is expressed as

Sherratt [79-80].

3.7 D irlik’s Approximation

Dirlik [81] has produced an empirical closed form expression for the probability

+  D ^ Z e  2

(3.22)

where p(S) is the probability density function of rainflow ranges o f S, and

oo
(3.23)

0

(3.24)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

m, /m,
*m = J  (3-25)m0 \ m 4

_  2(xm - a 2) 
1 + a : (3-26>

( l - g - D ,  + D,2)
^  u  (3-27)

D3 = l -£>,-£> ,  (3.28)

e = L 25( g - D , - ^ )  ( 3 2 9 )

*  = - ? ■ 2 (3.30)
1 - a - D l +Df  

S

2V ^7
Z  = T ^ =  (3-31)

and the stress range S  is

The total damage is given by

S  = lyfm ^Z  (3.32)

£ [fl] = £ [ / - ] ^ 'j S s p(S)<iS =£[/*] | -  Z S ' p i s )  (3.33)
A. o A £<s,

where E[P] is the expected number o f peaks defined as E[P~\ = Ajm4/m 2 , and S* is the

maximum design value of the ultimate stresses that for aluminum structures are in the 

neighborhood of 45,000 to 55,000 psi (310xl06 to 379xl06 Pa) in areas which are fatigue 

critical. The higher moments, m2 and m ,̂ are calculated using Equation 3.23.
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Note the importance o f the rainflow amplitudes distribution and in particular the 

value of the material constant /J-power in fatigue life prediction either from the time or 

frequency domains approaches.

3.8 Transformed Gaussian Processes (TGP)

The present section remains the subject o f a great deal o f research by the 

oceanographic community related to fatigue life o f offshore platforms submitted to 

random sea loads. One possibility in approaching slightly non-Gaussian nonlinear 

processes in the frequency domain is to approximate them by transformed Gaussian 

processes X ( t )  =  G{x(t)) ,  where X ( t )  is Gaussian and G a deterministic function. For 

fatigue analysis G should be related to the crossing intensity /i(u). Then, having a 

spectrum of transformation, the rainflow matrix can be approximated. There are several 

ways to proceed when selecting the transformation deterministic function G. The 

simplest alternative is to estimate the function G directly from data by some parametric 

means. A more physically motivated procedure is to use some o f the parametric 

functions proposed in the literature, based on approximations of nonlinear wave theory. 

For instance, the transformation proposed by Ochi and Ahn [89] is a monotonic 

exponential function while Winterstein’s model [90] is a monotonic cubic Hermite 

polynomial. Both transformations use moments o f X(t) to compute G. This approach is 

used in the present work to obtain an additional fatigue life estimate for the nonlinear 

problem yielding to moderately large displacements.
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3.9 Rainflow Matrix for a Switching Markov Chain of Turning Points (SMCTP)

Processes in which the mean level or the standard deviation takes two distinct levels 

and changes abruptly are called switching processes. The most common case is when the 

load alternates between two different states. As long as the load is in one o f the states, 

the RFC are made up of alternations between turning points belonging only to one part of 

the load. When the state changes there is the introduction of extra RFC with larger 

amplitude. These extra cycles are represented in the total rainflow matrix. For more 

details on the procedure, the reader is referred to Johannesson [91]. This approach is 

used in the present work for the snap-through phenomenon that occurs when a panel 

vibrates with small amplitudes alternating about the two thermally buckled positions.
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CHAPTER 4 

SOLUTION PROCEDURE

The previous two chapters have described the finite element modeling in structural 

degree o f  freedom of a panel subjected to high acoustic loads in an elevated thermal 

environment and the reliability theory needed for fatigue life estimations. In order to 

proceed with solutions of specific problems, various preliminary computational tasks 

need to be performed. These include solving the linear eigen-problems to obtain the 

frequencies and mode shapes for the modal transformation as well as the critical buckling 

temperature, all of which are required subsequently. Apart from these, accurate time 

histories o f random pressure fluctuations with flat power spectral densities need to be 

generated at different sound pressure levels over a predetermined bandwidth. Numerical 

considerations like the integration scheme, time step selection, and removing the transient 

response to ensure accurate response statistics are also addressed. Furthermore, post­

processing o f the resultant displacement, strain/stress time histories and fatigue estimates 

require computation of power spectral densities, probability density functions and also 

various statistical moments such as mean, variance, skewness and kurtosis. Finally, the 

principal steps to follow and Matlab commands for accurate reliability calculations in the 

time and the frequency domain are highlighted with a numerical example. This chapter 

deals with these aspects and certain implementation considerations that are introduced 

throughout the different sections.
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4.1 Equations of Motion in M odal Coordinates

The equations o f motion in structural DOF, Equation 2.74, are general in the sense 

that they can be solved for any isotropic or composite panel. Moreover, the system 

equation o f motion in structural DOF is transformed into a set o f truncated modal 

coordinates that first requires the solution of the linear vibration problem

It}'"col
~Mb 0 ' \ t b f - X K b'

0 k . I " K tb K » .

For unsymmetrically laminated composite panels, the laminate coupling stiffness [5] is 

not zero, which leads to a non-null submatrix [Kb]. Consequently, the bending {<&,}(r) and 

in-plane {$OT}(r) modes are coupled in Equation 4.1. However, for isotropic or symmetric 

composites the laminate coupling stiffness [B] is null, and there is no coupling between 

the bending {0*}(r) and in-plane {0m}(r) modes. As a result, the in-plane displacement 

{Wm} will be expressed as a function o f the bending displacement { Wb}.

4.1.1 Symmetric Laminates

For symmetrically laminated composite and isotropic panels, the laminate coupling 

stiffness [B] is null and the two submatrices in Equation 2.74 are

[ * . ]  = [* .« .]=  o (4.2)

By neglecting the membrane inertia term, the membrane displacement vector can be 

expressed in terms o f the bending displacement vector as

{ K  }'= f c ,  ]"'' } -  [Km  M  }) (4.3 )

Then equations of motion can be written in terms of the bending displacement as
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{M „  p t } +  ( f e »  ]  ■- [ K Nir B f r , } +  [^ r ,^  I K ,  r feMr }
, . (4.4)

+ fe .» R }+ (fe J -[* fcI* ,.r  [*,. ,]R }=  fe ^ k  few}

In the above system, the nonlinear stiffness matrices can be expressed in terms o f the 

modal coordinates. This is accomplished by expressing the panel response as a linear 

combination o f some base functions (modal transformation) as

W  = Z  ? r  ( O k  }(r> = Mfe} (4.5)
1

where {<&>}(r) corresponds to the normal modes o f the linear vibration problem

(4.6)

The nonlinear stiffness matrices [Kibm] and [K2b] are both represented as functions of 

{Wb}. They can be expressed as the sum o f  products o f modal coordinates and nonlinear 

modal stiffnesses matrices as

f e , J = f e . „ J  = 2 > , w  (4.7)
r= l

f e j = i  i  ? ,w ? ,  w f c »  W ] " ”  (4 .8 )
r=I i= l

where the super indexes o f those non-linear modal stiffness matrices denote that they are 

assembled from the corresponding element non-linear stiffness matrices. Those non­

linear stiffness matrices are evaluated with the corresponding element components,

{w£}(r), obtained from the known system mode { ^ } (r).

The element nonlinear stiffness matrix is linearly dependent on the element

displacement {wm} as shown in Equation 2.54.

[*,«. ] - \  k J  = J I [*, J  K (w. )][». W  (4.9)
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Recalling the membrane displacement vector o f Equation 4.3,

= [ * . ] "  } - 1 1  ? , r  r 1)  (4.io)

r= I j=sl

It is observed that is the stun o f two matrices

[« ,* .]  = [ « » ] - i i ? . ( ') 9 . ( 0 [ A : IM.(» '.) i<"> (4.11)
r= 1 j= l

The first [k "  ] is assembled from the element nonlinear stiffness matrices, and they are

evaluated with the corresponding element components {wm}Ar obtained from the known

system {Wm }Ar = [Km ]"' {Pm&T } . In addition, the second [ & m](ts) is evaluated similarly

with the known system {Wm }{rz) = [Km ] " 1 [KXmb} s) }(r>.

Introducing a structural modal damping term 2^ra>rM r [ /] , the modal damping, £r,

can be determined experimentally or pre-selected from a similar structure. The equations

o f motion, Equation 4.4, are reduced to a set o f coupled modal equations as

[m ] {,}+ 2 & } +  M +  f c j  fe}= {?} (4.12)

where the diagonal modal mass is

[A7]= k f[ M „ ]  fo] = M ,[l] (4.13)

the linear and cubic terms are
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w  m  (4 . 1 5 )
=1 1=1

and the modal thermal and random load vector is

(4.16)
The nonlinear random response for a given symmetric composite or isotropic panel at a 

certain temperature can thus be determined from Equation 4.12 or 4.21 by a numerical 

integration scheme.

4.1.2 Unsymmetric Laminates

For unsymmetrically laminated composite panels, the laminate coupling stiffness 

[B\*0 leads to the two submatrices [ATg] and [AT/jvg], neither o f which are zero. The linear 

vibration from Equation 4.1 becomes

co.
~ M b 0 ' k ' f - X K b ~

0 tn __k . r " K l

|>*
k

(4.17)

where the bending {^>}(r) and in-plane {0m}(r) modes are thus coupled. Consequently, the 

in-plane displacement {Wm} does not need to be expressed as a function o f  the bending 

displacement {0^}. Following the same procedure as for the symmetric laminates, the 

panel response is expressed as

<t>b 1 (<■)
- M M (4.18)

The nonlinear stiffness matrices [AT/] and [Ay can be expressed as the sum o f products of 

modal coordinates and nonlinear modal stiffness matrices as
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(4.19)
n

and

fc ] = Z S 9, (1)9, ('fe fe, F ’ (4.20)

where the super indices of those nonlinear modal stiffness matrices denote that they are 

assembled from the corresponding element nonlinear stiffness matrices. The element 

nonlinear stiffness matrices are evaluated with the corresponding element components 

{wa}(r) and {wm}(r) obtained from the known system modes {0 i} (r) and {^m}(r), 

respectively.

With the introduction o f a structural modal damping 2£r<»rM r [ /] ,  equations o f 

motion (Equation 2.74b) reduce to a set o f  coupled modal equations as

[m ] f e k f c l + K M - O  {?}= {p} (4.21)

where the diagonal modal mass and linear stiffness matrices are

(4.22)

(4.23)

the quadratic and cubic terms are

(4.24)

(4.25)
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and the modal thermal and random load vector is

!+{;>«}) (4.26)

The nonlinear random response for a given symmetric or unsymmetric composite panel at 

a certain temperature can then be determined from Equations 4.12 and 4.21 using 

numerical integration. The main three advantages of the modal transformation are the 

following:

(i) DOF o f {q} is small,

(ii) there is no need to assemble and update the nonlinear quadratic and cubic terms,

(iii) the time step o f integration could be larger.

The DOF of {q} depends on the number o f modes that have to be considered in order 

to accurately capture the desired response. The accuracy o f the solution is directly 

related to the discretizing or mesh size of the panel. Under those circumstances, a 

convergence test for modes and mesh sizes that will give a set o f modal equations for 

accurate response must be performed prior to any further calculations. For instance, in 

the nonlinear random vibration problem o f a rectangular isotropic plate, it was found that 

a mesh size of 14 by 10 in a quarter plate and the lowest four symmetric modes were 

sufficient in order to have converged solutions [92].
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4.2 Loading Pressure Fluctuations

4.2.1 White Random Pressure Simulation

Consider a random pressure p(x^ ,t)  acting on the surface o f a high-speed flight 

vehicle. The pressure acting normal to the panel surface varies randomly in time and 

space along the surface coordinates x and y. The pressure p{xy,t) is characterized by a 

cross-spectral density function Gp(^, q, to), where ^ = x \-X 2 and rj=y\ - y 2  are the spatial 

separations and a  is the frequency in rad/sec. The simplest form o f the cross-spectral 

density is the truncated Gaussian white noise pressure, uniformly distributed with spatial 

coordinates x  and y

where Go is constant and f c is the upper cut-offfrequency in Hertz (Hz). The expression 

for Go can be written as [37]

where po is the reference pressure, po = 2.90075 10' 9 psi (20 pPa), and Sound Pressure 

Level (SPL) is expressed in decibels (dB). A typical simulated random load at 120 dB

angles uniformly distributed between 0 and 2k. The PSD value of the random process is 

obtained by taking the ensemble average o f the Fourier transform o f the random load. 

The PSD value is then compared to the exact one given by Equation 4.28. The analyses

(4.27)
0  i f  f <  0  or f  > f c

G0 = p i  10,SPL! 10 (4.28)

SPL is shown in Figure 4 .1 . The band-limited white noise is generated by a Fortran code 

that simulates a random pressure using complex numbers with independent random phase
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presented are obtained for a cut-off frequency of 1024 Hz. The default selected 

frequency bandwidth in this work is Aar=0 rad/sec (1 cycle/sec) with the random load 

prescribed in decibels. For instance, a uniformly Gaussian random load o f  120 dB over a 

frequency range o f 0-1024 Hz corresponds to an Overall Sound Pressure Level (OASPL) 

o f 150 dB.

The random input p(xy,t) was simulated using the Fortran code (Appendix B) given 

by Vaicaitis [93] with a total number o f  points o f 16384, cut-off frequency 1024 Hz and 

time step 1/8192. Thus, the length o f  the simulated process is 1/8192 x 16384 = 2  

seconds. The fundamental frequency o f  the panel selected for this study is about 107 Hz, 

and the fundamental period is 0.0093 second. Thus, the simulated process covers 214 

natural periods o f the panel [94]. It has been shown in previous studies that for a 

stationary response, reasonable statistical properties are obtained from a time history that 

contains more than 1 0 0  natural periods o f the structure.

In Chapter 3, the FFT was selected to compute the power spectrum o f the responses 

and it was seen that it is a numerically suitable technique when the total number o f points 

is expressible as a power o f two. The FFT is a complicated algorithm that becomes 

computationally lengthy when the input file size is not a power o f two. For instance, note 

that the Fortran code for the white random pressure fluctuation simulation uses a similar 

FFT base. The total number o f input points is 16384, which correspond to 2 to the 14th 

power.

4.2.2 Non-W hite (NW) Random Pressure Data

The random pressure fluctuations with non-White (or non-flat) characteristics have 

been obtained from recorded flight data provided by the Structural Dynamic Branch,
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AFRL at Wright-Patterson Air Force Base. The two microphone data files correspond to 

a B-1B aircraft with full afterburners in take-off configuration. The take-off data are 

broken into three sequences: (i) rolling, (ii) rotation, and (iii) gear-up. The two data files 

are not the same length in time. The first take-off sequence is about 35 seconds in 

duration while the second take-off sequence is much shorter and only lasts for about 15 

seconds. More information about the experimental data can be found in Appendix C. In 

Figure 4.2, the time history, PDF and PSD of the NW pressure fluctuations are plotted. 

The PSD and PDF plots show that the two data sets still have Gaussian characteristics but 

a non-flat PSD. The principal indication of non-flat characteristics appears over 100-400 

Hz interval, where a “hump” is observed. At first glance, two frequencies at about 180 

and 350 Hz are especially pronounced.

4 .23  Equivalent White Sound Pressure Level (EWSPL) Simulation

The SPL of the simulated white noise is obtained from the two Root Mean Squares 

(RMS) of the recorded flight pressure fluctuation data. The RMS can be obtained either 

from the time domain or from the frequency domain when integrating over the frequency 

range (Equation 4.28). Knowing the RMS value o f the data recorded, Equation 4.28 can 

be solved for the Sound Pressure Level (SPL) that will constitute the input noise level for 

the Equivalent White-Noise Sound Pressure Level (EWSPL). The fact o f having the 

same RMS value is equivalent to saying that the flight data (NW) and the EWSPL have 

equivalent power or the same area under the PSD curve. Figure 4.3 shows the PSD for 

the NW and the EWSPL for a sampling rate of 5000. It also appears that the modes 

within the 100-400 Hz range o f the NW pressure will have the biggest impact in the 

response. The corresponding dB values for the EWSPL are also shown in Figure 4.3.
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4.2.4 M onte Carlo Simulation (MCS)

For the Monte Carlo Simulation (MCS) an ensemble o f  ten time histories is generated 

by specifying different seeds (ISEED, Appendix B) to the random number generator in 

the Fortran code described in section 4.2.1. The response statistics are generated from an 

ensemble o f p= 10 time histories at each load level. Estimates o f the RMS displacement 

serve as a basic comparison with response of the two flight data sets (NWs), which 

essentially have the RMS as their basic unknown. Additionally, confidence intervals for 

the mean value o f the RMS estimate are generated to quantify the degree o f uncertainty 

in the results. For an input quantity x„ whose value is estimated from p  independent 

observations x,-.* o f x,-, are obtained under the same conditions o f measurement. The input 

estimate is the sample mean

and the standard uncertainty «(x,) to be associated with x,- is the estimated standard 

deviation o f  the mean [95]

4 3  Time Step Considerations

The time step o f integration depends on the scheme selected (i.e., explicit or implicit),

scheme is selected, i.e., the system is conditionally stable, stability is achieved as soon as 

a solution is obtained. Conversely, the explicit integration schemes will diverge showing 

instability in the system. For an implicit scheme a solution is always obtained, i.e., the

(4.29)

(4.30)

the element size and the order o f nonlinearity to be studied. If  an explicit integration
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system is always unconditionally stable. It is widely recognized that an implicit scheme 

is faster than explicit schemes because a larger time step can be used for a converged 

solution. However, for an equal time step the explicit scheme is much faster than the 

implicit scheme because o f its simplicity and ease in programming. In practical structural 

problems, engineers first try the implicit integration scheme because lower integrating 

time steps can be used. However, as soon as the time step becomes o f  the order of 10"4  

for converged solutions, engineers switch to explicit schemes because they are more 

suitable for the computation.

Depending on the nonlinearity o f  the system a more or less refined mesh would be 

necessary to catch the response characteristics. The more nonlinear the system the more 

refined the mesh and the smaller the integrating time step. There are a variety of 

textbooks on numerical approaches that give empirical relations to estimate the maximum 

usable time steps for explicit and implicit schemes. For instance, Zienkiewics and Taylor 

[96] report empirical relations for the time step o f integration as a function o f the element 

size h. After this brief discussion, it becomes obvious that modal truncation reduces the 

step integration time by reducing the DOF. The mesh size remains the same for accuracy 

purposes. Computational time is also saved because the nonlinear matrices do not need 

to be assembled and updated at each time step.

One should also keep in mind the Nyquist-Shannon sampling theorem, which 

basically states that it is necessary to sample a time sequence at least two times faster 

than the highest frequency present in the waveform to uniquely resolve that frequency 

from the lower frequency

M . Z j y  (4-31)
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where f c is the cut-off upper frequency o f  the uniformly random load generated.

Taking into consideration the above remarks, an appropriate time step was selected as 

follows. Knowing the highest frequency o f the panel Ats is evaluated and used as the 

time integration step-size for a given loading. Then the step-size of integration is cut into 

one-half until the time histories of the response are found identical. For simplicity in the 

modal FEA code the time step, At, for the explicit integration scheme (Runge-Kutta) is 

selected as a power o f two such that the specified loading at each At is maintained. As 

mentioned previously, a radix- 2  number of time history samples is chosen to facilitate use 

o f  the FFT algorithm employed in the subsequent analysis. Note that for linear problems 

the Nyquist time-step, Ats, is generally sufficient for the explicit scheme. However, for 

nonlinear problems the identical verification o f the responses for two decreasing 

consecutive time steps is required, which yields a much smaller integration time step.

4.4 Runge-Kutta Integration Scheme

The Runge-Kutta method [97] is an explicit step by step process in which an 

approximation <?*+/ is obtained from qk in such a way that the power series expansion of 

the approximation would coincide, up to terms o f a certain hN in the spacing h=tk+Hk, 

with the actual Taylor series development o f q(tk+h) in powers o f h. No preliminary 

differentiation is needed, and this method has the advantage that no initial values are 

needed beyond the prescribed values. Instead o f  using values of the N  derivatives at y  at 

one point, only the values o f the first derivatives at N  suitably chosen points are required. 

In this work, given the initial values o f the modal displacement [q] and modal 

velocity {q}, the nonlinear modal equation, given by Equation 4.12 or 4.21, is solved
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using the time domain numerical integration scheme for {q}. Once the modal 

displacement {q} is known, the system nodal displacement vector is evaluated using 

Equation 4.5 or 4.18.

The fourth-order accuracy Runge-Kutta scheme, 0(h4), is given by

?*+i =<ik+ -^(b i + 2b2 + 2b3 + b4) (4.32)

where the coefficients bi-b4 are

bx = hF(tk, qk)

b2 = hF ^tk + ^ h , qk

(4.33)

b3 = b F \tk + - h ,  qt + \ b 2 

K  =hF{tk + h , qk +b3)

Because o f the nature o f  the problem to be analyzed, the explicit integration scheme was 

selected over an implicit integration scheme for the following reasons:

(i) The computational ease o f the Runge-Kutta method makes it quite simple to 

program and implement.

(ii) As explained in Chapter 3, fatigue life can be estimated from the power spectra 

where the accuracy o f the response frequency content becomes critical for the 

evaluation o f the higher moments. It was shown earlier that the Nyquist-Shannon 

sampling theorem requires that a time sequence be sampled at a rate greater than 

twice its highest frequency. For instance, for a cut-off frequency of 1024 Hz, the 

minimum time step is approximately 5x1 O' 3 sec before any convergence criteria 

are even applied to the response.
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4.5 C ritical Buckling Tem perature

The evaluation of the critical buckling temperature ATr is derived for an arbitrary 

isotropic/composite plate from the nonlinear system equations of motion with the random 

loading {/?£(/) }=0, temperature distribution A Tixy) and no inertia terms (Static Problem)

f
K bm~ K-NS.T O'

\ 0 0

\Wb
W_

(4.34)
f l ' n wA w, ) + n wb(w , ) 1 ~N2b{Wb) O'

I2 0
T” —

3 0  0 y

Wb
W_

b&T

mAT „

The evaluation of critical buckling temperature applies only to isotropic and/or

symmetric laminates with the bending stiffness matrix [5] equal to zero. On the other

hand, for unsymmetical laminates ([£] *= 0 ), the plate will experience finite large thermal

deformation as shown in Figure 4.4.

w/h

Finite thermal deformation, [B] f O  and/or AT(x,y,z)

Post-Buckling, [B ]=0 and AT(x,y)

1.0

Figure 4.4 Buckling and Finite Thermal Deformation

Before buckling and just before reaching the critical buckling temperature, the plate 

remains flat with no bending, {fVb}=0. When the temperature is uniform through the 

thickness, the plate will only be subjected to a compressive thermal force {A^r} since the 

thermal moments {MAT} become zero after integration over the thickness. The bending
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stiffness matrix and bending displacement being zero implies that all the matrices 

depending on [.B] and {Wb } = 0  become null

[ * -  ] = [ * „  ] = k j  = k  J  = K .  ] = k , ]  = 0  (4.35)

and the only nonlinear term that is not equal to zero is the first-order nonlinear 

incremental matrix [Nwm] that depends on the membrane displacement {Wm}. Rewriting 

Equation 4.34 into two equilibrium equations:

Bending Equilibrium Equation

f  [Kt ] -  [Kmr ] + i  k  (W„ )]V  } = 0 (4.36)

Membrane Equilibrium Equation

l K .W J = { P ^ r ]  (4.37)

From Equation 4.37 the membrane displacement needed for the evaluation of the first- 

order nonlinear incremental matrix [A^m] can be obtained from

k . } = k . r { P « r }  (4.38)

As mentioned previously the plate remains flat until the critical buckling temperature is 

reached. At that instant the plate buckles into one of two possible buckled positions. 

Consequently, resolving Equation 4.36 presents a stability problem that is resolved using 

the First Order Truncated Taylor’s Expansion

4 '(K } + { A (r 4 } )= 4 '({ rs })+

where the stability criterion is,

{AWb}>0, UNSTABLE

{AWb}=0, CRITICAL (4.40)

{A tn}= 0  (4.39)
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{AfTb}<0, STABLE

Returning to the buckling stability problem, it becomes

{Wt ) (4.41)

Substituting Equation 4.41 into Equation 4.39,

(4.42)

Recall that just before reaching the critical buckling temperature, the plate remains flat 

with no bending, {Wb}=0. Consequently,

From the previous derivations, it is known that the matrices [AT&] and [ K n a t \  are 

independent on {Wb}, so

The differentiation of the first-order nonlinear matrix (W/vm] that is evaluated w ith the 

membrane displacement {Wm} involves some global characteristics of the [JV/] matrix 

linearly dependent upon displacements {W}={Wb, Wm}T. The general concept is that the 

equilibrium equations, in terms o f displacement, result in an unsymmetric secant matrix 

but with appropriated manipulations a symmetric secant matrix can be found for the 

nonlinear matrices [JV/] and [Afe]. The proof o f such a concept can only be derived at the 

element level, and following are some basic manipulations for the [«/] matrix. For more

{(T» } = 0 (4.43)

(4.44)
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details the reader is referred to Wood and Schrefler [98]. The [«/] matrix with some of 

the conditions given in Equation 4.35 reduces to,

M  =
n iNm n \bm

n I mb 0
(4.45)

where in this case {w} represents the element displacements before integration and 

assembly for prescribed kinematic boundary conditions.

Proceeding with the differentiation,

< 4 4 6 )

where, using the relations given by Equation 2.51, the differentiation matrix is defined as

_d{w}M M
(4.47)

~7T7\ M* ] M }+( -4 -7 [«tbm ] M } r ] |K } + k tm ] |K  1d \™b) )  )  l ^ K )  )

k J k } M J  k }

and using the relations given by Equation 2.51

[0 T Mfo. ] K  }= [0 r  R , } = [v. ][B, ] K }
the following relation is derived

(2.51)

A wb) d \wb)
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= J [ « . r f ^ s [ ^ . ] l t * . } « K } +  W . M w . }
* V/, tW*/ >  ̂ W W*} j

= P » r [ « n 4 « . ] ^ f ^ r - i K } ] + i{b j {n a b ,\u[-£-m }
a )  a

= P . F K I b , W
A

~  [̂ ljVm]

Following the same procedure,

and

^ K , }
K m ] K } +

A™*,)
K m ] K ,}

SI*. f  [N . I* .  \ u y b } + Jt»- r w  [A l* . J« j{w. }

= m [ s & \  K ] K m > * ' , } +  W - M w . } ̂ \ d \w mf )  A y a { w mj  J

A W " U  )  A

= M \ B j [ A l B m\lA
A

= K m ]

K J  K }

(4.48)

(4.49)

-4 - i a* , r [a m *, fa  k  }
. “ lW 6 f A J
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-  P J [ A \ e l B M - f - A v , b}\
■> J

= I l s J U M ^ i u
A

=  [WIm* ]

Similarly and recalling that the slope matrix [0] is a function o f {w*}

(4.50)

A Wm}
[» u J  Km}

d M

=  0
(4.51)

Combining Equations 4.48 to 4.51 and replacing them in Equation 4.46, it is finally found 

that the differential o f the first-order nonlinear matrix n; is,

T M w}] = h ] (4.52)
d \w } \2

Even though the demonstration has to be carried out at the element level, the general 

concept can be extended to the assembled system, where the matrix [N/m„] o f  interest for 

the buckling temperature problem becomes,

(4.53)

After substitution o f Equations 4.43, 4.44 and 4.53 into Equation 4.42, the first-order 

Taylor expansion o f  the bending stability equation reduces to

'•'({*»'»})= k - K mr + 0 (4.54)
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where the [AT*] is constant while [KNaT] and [NtNm] are linear functions o f the temperature 

change AT(x,y). Applying the stability criteria {AfVb}=0, the buckling temperature 

problem reduces to an eigenvalue problem in the form

(4.55)

and the critical temperature change is given by

ATcr= kxAT{x,y) (4.56)

where A/ is the lowest eigen-value and {<f>}\ the corresponding buckling mode shape.

The critical buckling temperature evaluation can be summarized as follows. For a 

given temperature distribution AT(x,y), the system membrane displacements {Wm} are 

calculated with Equation 4.38, and from it the element deflections {wOT} are extracted. 

The first-order element nonlinear incremental matrix [«//vm] is evaluated with the vector 

{Nm}=\A\\Bm\{wm}, and then assembled to obtain (W/w*,]. Finally, the eigen-problem 

equation is solved for the lowest eigenvalue, which is the ratio between the given 

temperature and the critical buckling temperature.

4.6 Post-Computation of Strains and Stresses

After the modal displacement {q} for a given combination of acoustic load and the 

particular elevated temperature case is determined at each time step, {Wb} and {Wm} can 

be evaluated with Equation 4.5 and Equation 4.10 for symmetric panels

w = i > , ( o { f c r = M f e }  ( « )
r* l
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4*.r({pM-ii«,(o?.«[*,,*rfcr) (4.io)
= r {p^r >-1 1  ?, w?, »fc ]•■ \km i ,r'M n

r= I j= I

and Equation 4.18 for unsymmetric panels

M - P H ' A l f

The element in-plane strain {e0} and curvature {k } can be calculated using Equation 2.8 

to Equation 2.13.

M = k } + k ° M * }
(4.57)

= [Bm JK *}+^  [e\B 0 ]K } +  [Bb Jwb}

Note that for isotropic or symmetric composites the membrane displacement {Wm}, 

Equation 4.10, is the sum o f two terms. The first term is constant, depending on the 

thermal membrane load {P m A r},  and the second is quadratically dependent on the modal 

displacement {q}. The total element strain is obtained from Equation 4.57 and stresses 

for the k!h layer are obtained using Equation 2.22

H  = [ e l  ( H - A r M . )  (4.58)

and stress and strain in the material principal directions are then obtained using Equation 

2.20. Using the above equations, the strain/stresses at any point in the plate can be 

computed. Because the derived finite element model is displacement based, the 

strains/stresses are discontinuous across element interfaces, including nodes. It was 

shown by Barlow [99], and Cook et al. [100], that strains and stresses are most accurate 

when computed at the (AM) x (AM) Gauss points o f  an element, where x AMs the
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Gauss quadrature rule used to evaluate the bending stiffness matrices. For instance, the 

highest polynomial required in the strain/stress calculations for the BFS-C1 conforming 

element is o f a 9?h order. Knowing that a polynomial o f degree 2/V-l is integrated exactly 

by N  points Gauss quadrature, five Gaussian points are sufficient to exactly compute the 

area integration. The linear bending stiffness matrices involved in the strain/stress 

calculation will then be derived using one order less for numerical integration, i.e., four 

Gaussian points will be retained. The result is then extrapolated to the nodal points or 

other desired points. If  a full plate model is used the accuracy can also be improved by 

averaging the strain/stress from different local nodal values, which share the same global 

node number.

4.7 Data M anipulation

The panel is initially at rest. An initial transient response is therefore induced before 

the response becomes fully developed. The transient response must be eliminated to 

ensure that the accurate response statistics are recovered. For each input loading o f time 

history, the first half-second of the response is taken out o f the total run. In section 3.4 it 

was shown that in order to improve the FFT algorithm it was convenient to use a total 

number o f points that will be a power o f two. Consequently, for each displacement and 

strain/stress response the data were linearly interpolated in order to produce 2 " points 

where n is an integer. Under this format the data was used for statistical characterization 

as well as for fatigue estimation.

Recall from section 4.3.4 that for a Monte Carlo numerical simulation an ensemble of 

1 0  time histories was merged together to form a single long time history o f 1 0  x W i 

seconds where ttoai corresponds to the total time of each o f the experimental data sets. On
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the other hand, note that since only two flight data ensembles (NW) are available, a 

Monte Carlo numerical simulation is not possible for the recorded data.

As mentioned above, the number o f points and number o f ensembles has an important 

role for the PSD calculation. The evaluation of the PSD using the Matlab command 

“pwelch” is defined as follows

[PxXyF] = pwelch(x, NFFT, Fs, Window, Noverlap) (4.59)

where x  is a discrete-time signal, NFFT  is an integer indicating the length of the FFT (in 

most cases equal to the number o f points), Fs is the sampling frequency in Hz, Window is 

the length of the segments windowed with a Hanning window, Noverlap is the number of 

overlapping sections, Pxx is the PSD in power/Hz units and F  is the frequency range in 

Hz. For instance, suppose that the response is constituted o f 10 time histories with each 

one consisting of 8192 points. The “pwelch” command in Matlab is expressed as follows 

for a prescribed sampling frequency o f 1 Hz.

[PxXyF] = pwelch(x, 81920, 8192, hanning(57P2), 0) (4.60)

For frequent Matlab users it is important to note the difference between the “pwelch” 

command and the traditional “[.Prc,F]=psd(x)” command to estimate PSD’s. Although 

the difference may be small, it is important because a density can be integrated to obtain 

an estimate o f the average power over a given frequency interval, e.g., evaluation o f the 

higher moments from PSD. After integration, units of power are obtained instead of 

power/freq units. Moreover, “pwelch” returns the single-sided spectrum by default. This 

means that the total power o f  the signal is contained in half the spectrum over the interval
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0 to Fs/2. In other words, when the single sided PSD is integrated over the interval 

[0,/s/2], the average power estimate over the entire Nyquist frequency interval is 

evaluated. O f course, the same result may be obtained when integrating the double-sided 

PSD estimate, i.e., using the “psd(x)” command, over the interval [—Fs/2 ,/\?/2 ]. To do so, 

an additional scaling factor o f 2 is introduced in the single-sided case. This results in an 

offset in dB o f 10 x log\o(2) =3 dB higher in the single-sided over the double-sided case.

4.8 Fatigue Estimates

Based on the information in Chapter 3, this section will explain through examples 

how to estimate fatigue life from the time and frequency domains. The majority of the 

selected examples were extracted from the Ph.D. dissertation o f  Johannesson [91]. The 

examples will also serve as a validation of the fatigue estimation subroutines used in the 

present work. The principal step in the solution procedure will be addressed explicitly by 

outlining the Matlab procedure necessary for their calculations. The data correspond to 

deep-water sea loadings used in oceanography for fatigue estimation of offshore 

platforms. In the time domain only one approach is considered, i.e., from the rainflow 

cycle (RFC) to fatigue life estimation with the only assumption o f  a piecewise stationary 

load. The frequency domain implies that the load has to be assumed ergodic, stationary 

and Gaussian. Some of the information in the next two sections may be repetitive from 

Chapter 3, but it is important for clarity purposes.

4.8.1 Time Domain

Basically, the way the RFC can be extracted from a load history, and how fatigue life 

can be estimated are shown. The first step in the analysis is the crossing intensity 

function p(u), that is, the number o f crossings per unit time that up-crosses the level u.
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4.8.1.1 Crossing Intensity

The number o f up-crossings as a function of level are calculated from the 

sequence o f  turning points (TP) extracted from the load. This is accomplish through the 

following Matlab subroutines

x=load.dat % load

tp=dat2tp(x) % Extract the TP from the load file (4.61)

lc=tp21c(tp) % Calculates number o f up-crossings from the TP

Figure 4.5 shows plots o f the crossing intensity in (a) number of up-crossings for the sea 

load data, and (b) on a normal probability scale to see how much they deviate from a 

Gaussian process. N  independent observations o f identically distributed Gaussian 

variables form a straight line in log normal plot. It is readily observed that the crossing 

function data has Gaussian characteristics.

(a) Number of upcrossings (b) Normal Probability Plot
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Figure 4.5 (a) Level Crossing Intensity and (b) Normal Probability Plot for Sea Load
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4.8.1.2 Extraction o f Rainflow Cycles

Recall from Chapter 3 that the RFC and min-max cycles are evaluated from the 

TP. Since each cycle is a pair o f local maximum and local minimum in the load, the

Figure 4.6 shows the min-max and RFC in the load. The RFC contains more cycles with 

high amplitudes compared to min-max cycles. The set o f pairs in the min-max cycle 

counting are more dispersed than in the RFC. This becomes more evident in the 

amplitude histograms shown in Figure 4.7.

4.8.1.3 Damage and Fatigue Life Estimate

Now that the load and the load probability distribution are known the damage and 

consequently the fatigue life can be calculated from Equation 3.20 and 3.21.

cycle count can be visualized as pair sets in the R2-plane. The Matlab commands that

extract the counting cycles from the TP are

RFC=tp2rfc(tp) % Extract RFC from TP
(4.62)

MM=tp2mm(tp) % Extract min-max from TP

E[D(t)] = E  S — I—  = £  K -£ s f  = E[KDp(t)]
t<ik iy \ Sk) t<jk J

(3.20)

(3.21)

where For the numerical application, A=1.818xl09 and

>3=3.2. The Matlab commands are

T=x(end, 1 )-x( 1,1) % Period

D=cc2dam(RFC)/T % Damage (4.63)

Fatigue_life=K/D/3600 % Fatigue life in hours
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The fatigue lives obtained in [91] and in the above calculations are identical. Both yield 

a fatigue life of 596.93x104 hours. Obviously this sea load data causes little damage to 

the structure since the failure time is about 700 years.
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Figure 4.6 min-max and RFC Plots for Sea Data
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Figure 4.7 min-max Cycles and RFC Distribution o f Sea Data
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4.8.2 Switching Markov Processes

The theoretical background and validation behind the analysis o f switching Markov 

processes are contained in Johannesson [91]. This approach permits the estimation o f the 

fatigue life for a stationary-Gaussian process that has two different states of equilibrium. 

In the present work, the Switching Markov Process approach is used to estimate the 

fatigue life o f panels whose dynamic response corresponds to a snap-through motion 

type. Basically, the former approach assumes that the mean level o f a given load may 

take two distinct levels and change abruptly between the two stationary-Gaussian states. 

The change between the different states is assumed to be governed by a Markov chain.

In the following example the load corresponds to a sequence of the snap-through 

motions o f the 15x12x0.06 in. isotropic panel that will be studied in detail in the next 

chapter. More precisely, the load (stress) corresponds to 1/32 o f the SPL o f the second 

set o f non-white flight data (NW2) at an ambient temperature of AT/ATcr=2.0. The 

maximum stress response alternates between two different mean levels, corresponding to 

the two thermally buckled positions. The changes o f states are defined as follows: (i) 

upper buckled position when the load value is positive, and (ii) downward buckled 

position when the stress value is negative. In Figure 4.8 the observed stress response is 

shown while the alternating lower curve monitored the occurrence o f the load switches 

between the two states or buckled positions. As long as the load is in one o f the states, 

the RFC are made up of alternations between TP belonging only to that part o f the load. 

When the state changes, there is the introduction o f an extra rainflow cycle with larger 

amplitude. These extra cycles can be seen in the total rainflow matrix shown in the 3-D 

plot o f Figure 4.9.
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Figure 4.9 3-D Plot o f Rainflow Matrix 

The fatigue life estimates using the RFC time domain and the modified RFC for 

Rainflow Matrix for a Switching Markov Chain o f Turning Points SMCTP are shown in 

Table 4.1. It is observed that SMCTP yields to lower fatigue life and consequently it is 

less conservative than the traditional RFC defined by Rychlik in [76].

Table 4.1

Comparison of Fatigue Estimates for Traditional RFC and SMCTP RFC

RFC RFC
(Traditional) (SM CTP)

Fatigue
(hours) 4.841x107 3.837xl07
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4.83  Frequency Domain

In this section the two possible approaches for fatigue estimation from the load 

spectrum are considered and compared. The first one is the direct application o f  the 

empirical relation derived by Dirlik (section 3.7.1) into the Palmgren-Miner damage 

equation. The second is the two-step procedure where the Markov matrix is evaluated by 

assuming that the TP obeys a Markov chain process, i.e., the evolution of the turning 

points depends only on the most recent local extreme and not on the whole history o f  

turning points. Recall that the second step of the procedure is independent of the process, 

whether Gaussian or not. The methods needed for computing the Markov matrix can be 

complex and depend on the particular problem.

4.8.3.1 Dirlik’s Approach and Transformed Gaussian Processes (TGP)

For nonlinear slightly non-Gaussian processes the method o f using transformed 

Gaussian processes seems to yield good results in some special cases. The next Matlab 

elements develop the Winterstein function as a Gaussian transformation function where 

the transformation is chosen to be a monotonic cubic polynomial, calibrated such that the 

first four moments o f the transformed model match the moments o f the true process. The 

algebraic expression for the transformation is

G(x) = m + K  x a[xn + c, (xn2 - 1)+ c2 (x„3 -  3x„ )] (4.64)

where m and er are the mean and standard deviation, and

x„ = (x -m )/< r

K  = (l +2c? +6ct)~U2
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c, =
_  skew  (l -  O.OljjAewj + 0.3skew2)

(l + 0 .2  kur)

c2 = 0. l((l + 1 .25k)U3 - 1^1 -1 .43 skew
kur

2 \ I—0.1(iur+3)

For these numerical simulations o f the fatigue estimates using the frequency domain 

no results were available for comparison in the existing literature. The frequency domain 

approach was then verified by using the sea load case of the previous section. The results 

obtained were in good agreement and are tabulated in Table 4.2.

Table 4.2

Comparison o f Fatigue Estimates for Sea Load

RFC 
(Time Domain)

Gauss T ransform ation 
(Frequency Domain)

Dirlik 
(Frequency Domain)

Fatigue
(hours) 596.93 lxlO 4 599.218xl04 601.0236 xlO4

It is immediately observed that the two frequency domain approaches are less 

conservative than the RFC method in the time domain.

In the next sample calculation a slightly nonlinear stress response is considered in 

order to show the sensitivity o f the frequency domain approaches to a non-Gaussian load. 

The selected stress response has been extracted from old data and is not representative of 

any result that may appear later in this work. The important characteristic o f such 

response is that its sequence o f TP slightly deviates from a Gaussian distribution as is 

shown in Figure 4.10.
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(a) Number of upcrossings (b) Normal Probability Plot

  data
 Gaussian

2000

1500

1000

500

2 1 0 1 2

9 9 . 9 9 %

-  9 9 . 9 %

- M %
-■ 9 8 %

- 9 5 %
- 9 0 %c

7 0 %

5 0 %

3 0 %

®  - 1
10%

5 %

2%O  - 2

- 3 0. 1%

0.01%

2-2 0
level u x 10 x 10

Figure 4.10 (a) Level Crossing Intensity and (b) Normal Probability Plot 

Following the same procedures as for the previous examples, the fatigue life 

estimations for the different approaches are shown in Table 4.3

Table 4 3

Comparison o f Fatigue Estimates for Non-Gaussian Load

RFC 
(Time Domain)

Gauss Transform ation 
(Frequency Domain)

Dirlik 
(Frequency Domain)

Fatigue
(hours) 4.051 IxlO5 23.124xl07 9.163xl07

It can be readily observed that the three fatigue life approaches give quite different 

results. The difference arises from the fact that the data PDF (or sequence o f TP) is not 

exactly Gaussian and the peak distribution cannot be accurately estimated from the 

response PSD.
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CHAPTER 5 

RESULTS AND DISCUSSION

The nonlinear element equations developed in Equation 2.73 are general in the sense 

that they are applicable for beam [45], rectangular [46, 48, and 86], and triangular [47, 

101, and 102] plate finite elements. The finite element employed in the present study is 

the BFS [84] C 1 -conforming rectangular plate element, which has been developed in 

Chapter 2. Accurate nonlinear analytical multimode results and test data for isotropic or 

composite panels under acoustic and thermal loads are not available in the literature. 

Validation o f the present nonlinear modal formulation will thus consist o f  the following 

two parts: (i) assess the accuracy o f  the left hand side of Equations 4.12 and 4.21, and (ii)

validate the simulated random modal load \(j)J {P6(0} , and thermal modal load

W fo u -}  on the right side of the above mentioned equations. Mesh and modal 

convergences are then studied for accurate displacement and strain/stress responses. The 

numerical results presented in the following sections correspond to the panel center and 

stresses are calculated at the top surface, i.e., at z = hi2. In order to demonstrate the 

versatility o f the present approach the results are divided into three sections. Results 

include: displacement and stress time histories, Probability Density Functions (PDF), 

Power Spectral Densities (PSD), cycles and amplitudes distributions, peak distributions, 

and finally threshold up-crossing rates.

Section 5.2 deals with the random response of an isotropic panel subjected to 

increasing pressure fluctuations. This allows observation o f the shifting and broadening
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o f  the spectral peaks towards the higher frequencies (PSD), as well as the change in the 

response characteristics. In Section 5.3, the influence estimation of response 

characteristics on fatigue life is analyzed and discussed in detail for linear and nonlinear 

systems. For the numerical application, AT=1.52xl025 and P=4.8 are employed for 

isotropic aluminum panels. Section 5.4 follows the same approach as the previous 

section, but this time the panel is also subjected to a uniform temperature distribution AT  

with AT/ATct=2.0. The panel responses show the three distinct motion zones: (i) small 

deflection random vibration about one o f the two thermally buckled equilibrium 

positions, (ii) snap-through or oil-canning phenomenon between the two thermally 

buckled positions, and (iii) large amplitude nonlinear random vibration encompassing 

both thermally buckled positions. A small temperature ratio, AT/ATW=2.0, was selected 

in order to utilize the S-N curves at ambient temperature without introducing a large error 

in fatigue life estimates o f isotropic panels. The temperature effect is not introduced in 

the composite panels because o f their substantially larger critical buckling temperatures. 

Special attention will be focused on the fatigue life estimation o f the snap-through or oil- 

canning phenomenon. Sections 5.5 and 5.6 discuss the influence o f thermal effects in the 

response characteristics on fatigue life estimations. The traditional approaches are 

compared to the Switching Markov Processes [91] (SMCTP) when snap-through is 

encountered. Section 5.7 extends the fatigue life estimation analysis to composite 

structures. Fatigue design considerations o f isotropic and composites panels based on S- 

N curves are discussed in detail. In addition, the influence o f  the material property, (3, on 

fatigue life is addressed. Finally, Section 5.8 study in detail the responses and fatigue 

lives of an L-shaped panel subjected to acoustic load and AT/ATa=0.0 and 2.0.
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5.1 Modal Finite Element Validation

5.1.1 Nonlinear Modal Stiffness Coefficients

Validation o f the nonlinear modal formulation has already being verified via many 

previous published results. For instance, the accuracy of the nonlinear stiffness matrices 

in modal coordinates has been verified by Shi et al. [103] for nonlinear free vibration of 

fundamental and higher modes of plates and beams. However, the finite element modal 

equations for two-mode especially symmetric plate with [0/90/0] orthotropic laminates 

are compared in detail with a two-mode Duffing equations derived using the 

approximated classical continuum Galerkin’s approach. The material properties are the 

following: E\=22.5 Mpsi, £ 2= 1.17 Mpsi, Gi 2=0 . 6 6  Mpsi, p=0.1468xl0"3 lb-sec2/in .4  and 

vi2=0.22. The derivation o f the nonlinear stiffness matrices using the classical approach 

is given in Appendix D. This comparison permits a more physical insight into the values 

and the nature o f each o f the nonlinear stiffness matrices. For instance, for the lowest 

two modes (1,1) and (1,3), two nonlinear terms are null in the nonlinear Duffing 

equation. In the two modal equations, the coefficients to the modal displacement {y,33} 

and {7 ,3 qn \ are zero leaving each one o f the two modal equations with only three 

nonlinear terms. The classical continuum and finite element nonlinear coefficients for a 

14 by 10 by 0.04 in., simply supported [0/90/0] orthotropic plate, are shown in Table 5.1. 

Immovable in-plane boundary conditions u(0j0=u(aj0=v(x,0)=v(x,b)=0 are considered 

and the plate is modeled with 16 by 16 or 256 BFS elements in a quarter plate.

Generally, such a refined mesh is not necessary because the accuracy criterion is 

based on the finite displacement rather than the value o f the nonlinear coefficients.
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However, for comparison purposes a 16 by 16 mesh on a quarter plate was necessary to 

obtain good converged solutions.

Table 5.1

Nonlinear Coefficients for the 14x10x0.040 in. [0/90/0] Graphite-Epoxy Panel

<ln QuQn *13*11 ? i33

Galerkin

1st Eq. 3.0111x10s -6.1445 xlO4 2.2973x106 0.0

2nd Eq. -2.048 lxlO4 2.2973x106 0.0 1.9221 xlO7

FE

I st Eq. 3.0123x10s -5.985 lxlO4 2.3158xl06 1.0448xl0‘s

2nd Eq. -1.9852xl04 2.3105xl06 3.085 lxlO '5 1.9341xl07

FE: Finite Element on 16x16 Mesh in Quarter Plate 

5.1.2 Random  Load, {/*(/)}

The validation o f simulated random loads is by comparison o f the linear 

displacements with linear analytical results shown in Table 5.2. Linear analytical 

displacement random response results for single and multiple modes are given in 

Appendix E. The random load considered is uniform over the panel and is simulated as 

described in Section 4.2.1. The FPK method [19,104] is an exact solution [105] to the 

nonlinear single DOF forced Duffing equation where the random input load and response 

are Gaussian with zero-mean. The FPK solution is compared with the present modal 

finite element time domain numerical simulation for one and four modes. Results are 

also shown in Table 5.2. Very good agreement is obtained for the linear systems where
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the error is less than 0.05%. The nonlinear system results are reasonably accurate except 

at the 100 dB SPL where the classic FPK solution is higher than the nonlinear finite 

element solution.

Table 5.2

Comparison o f RMS Wc/h for a Simply Supported 

15x12x0.040 in. Isotropic Plate

SPL

(dB)

L inear Analytical 

4 modes 7 modes

FE/L/NS 

4 modes E rr.%

FPK  [104,105] 

1 mode

FE/NL/NS 

1 mode 4 modes

90 0.2759 0.2759 0.2760 0.0362 0.249 0.257 0.266

100 0.8725 0.8725 0.8728 0.0362 0.592 0.565 0.578

110 2.7590 2.7590 2.7600 0.0362 1.187 1.283 1.432

120 8.7248 8.7250 8.7281 0.0362 2.200 2.389 2.572

FE: Finite Element; L: Linear; NL: Non-Linear; NS: Numerical Simulation

5 .13  Thermal load, {p4Ar }

Similarly, the validation o f the thermal load is by comparison of the thermal 

deflections o f a plate with all edges clamped under a uniformly distributed temperature. 

For finite element analyses, an 8 by 8 mesh models one quarter o f the plate. The lowest 

four linear thermal critical buckling modes (1,1), (3,1), (1,3), and (3,3) are retained for 

the calculations. The displacements and stresses are compared with the Don Paul’s 25 

modal functions theoretical results [106] shown in Figure 5.1. From the figure it can be 

concluded that the agreement for the displacement is excellent, and the agreement for the 

stresses is acceptable. The slight difference in stresses may have two explanations: (i) the
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use o f displacement-based finite elements and (ii) the number o f modes (4) may not be 

sufficient.

" Don Paul (25 modal functions) 
—  FEM (4 modes on 8x8 mesh)

0<

Don Paul 
FEM

15
20 T

c Don Paul 
  FEM

15
Nondimensional Thermal Load

Figure 5.1 Comparison o f Thermal Maximum Deflection and Stresses 

5.1.4 Convergence Test

The number o f modal coordinates to be included in the analyses for converged 

deflection and stress is studied first. The Root Mean Square (RMS) maximum non- 

dimensional deflection, and the RMS maximum stress versus number o f modes at 

EWSPL o f 131.91 dB using 1, 2, 4, and 6 modes are shown in Figure 5.2. It is concluded 

that four modes are sufficient for converged deflection and stress responses. 

Strain/Stresses are calculated at the top surface o f the panel (z=hl2). For the 15 by 12 by 

0.06 inches isotropic panel chosen in the numerical examples, the shearing stress is zero 

and the maximum principal strain/stress is in the y-direction. Even though converged

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



102

displacement and strain/stress responses were found for four modes, it was decided to 

include in the calculations all the modes within the frequency range o f the simulated 

random pressure fluctuations (0-1024 Hz).

■3 1.955

1.945

1.93:

1 3 4 5 62
Number of Modes

5850

5750 -

1 3 4 62 5
Number of Modes

Figure 5.2 Convergence o f  RMS Maximum Deflection and Stress o f a 15x12x0.060 in. 

Simply Supported Isotropic Plate at 131.91 dB SPL

Table 5.3 shows that the first five modes are inside the frequency range before the roll­

off o f  the excitation PSD. The lowest five frequencies and their corresponding mode 

shapes are shown in Figure 5.3.

Table 5.3

Frequencies (Hz) o f a Simply Supported 15x12x0.060 in. Isotropic Plate

Mode (1,1) (3,1) (W ) (3,3) (5,1) (5,3)

Exact

FE

80.516

80.516

331.818

331.818

473.277

473.292

724.645

724.655

834.618

834.668

1227.730

1227.420
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Two other studies for accurate and converged response predictions were also 

performed. They are the finite element mesh sizes and the integration time steps. For a 

five-mode solution, it was found that a quarter plate model o f 14 by 10 mesh size is more 

than adequate. The time step o f integration At=l/8192=1.2207xl0'4 sec was first 

selected, then the time step was cut in half until time histories for two successively 

smaller integration time steps were found to be identical. Then, the maximum time step 

giving identical responses was found to be A/=l/8192 sec. It is important to note that the 

response time histories time step convergence test must be performed at the highest SPL 

input. Having identical time histories at the high SPL input o f 131.91 dB will assure the 

matching of the response time histories at all the lower SPL values.

I 1 Plate Mesh 
1/4 Plate

I ! Mode (3.1)
f2=331.8Hz

Mode (3.3) 
f *724.7 Hz4

0 0

Mode (1,1) 
f =80.51 Hz

Mode (1,3) 
f3=473.3 Hz

Mode (5.1) 
f = 8 3 4 .7  Hz

Figure 5.3 First Five Mode Shapes o f  a 15x12x0.060 in. Simply Supported Plate
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5.2 Non-White (NW2) Pressure Fluctuations at AT =0

A simply supported isotropic plate with immovable in-plane conditions 

w(0,y)=w(a,y)=v(x,0)=v(x,&)==0 is studied in detail. The plate is 15 by 12 by 0.06 in. and is 

modeled with 140 BFS elements in a quarter plate. The number of structural node DOF 

{Wb} is 560 for the system equations given in Equation 4.4. The material properties are 

£=10.587 psi, v=0.3, and p=1.723xl0'4 lbf-sec2/in.4. A proportional damping ratio o f 

^rtor=^s<oJ with ^/=0.02 is used. In order to have a better understanding o f the different 

characteristics (Gaussian, Non-Gaussian) of nonlinear dynamic systems the highest 

original recorded pressure fluctuations (NW2 ) is divided by the coefficients 256, 8, and 4. 

The sound pressure levels corresponding to each new input loading case are 83.75, 

113.84 and 119.87 dB, respectively. Fatigue life estimates are evaluated for each one of 

the four case loadings. However, since only the original (highest SPL) data recorded sets 

are representative o f a real-life loading, conclusions based on comparison with the 

EWSPL would only be addressed for the NWi (131.43 dB) and NW2 (131.91 dB) in 

Section 5.3.

5.2.1 Time Histories and Probability Density Functions (PDF)

The time histories and PDF o f maximum deflection and maximum principal stress are 

plotted in Figures 5.4 to 5.7. For the 83.75 dB sound pressure input, the panel response is 

linear and the time history for stress is similar to the displacement response (Gaussian). 

However, as the input levels increase and the panel exhibits nonlinear characteristics, the 

stress PDF progressively changes toward a more representative Rayleigh distribution 

shifted by the mean stress. Furthermore, the increase in mean stress with the increasing 

input sound pressure levels is shown in Figures 5.4 to 5.7 as well as in Table 5.4. The
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time history at the highest sound pressure level (131.91 dB) is clearly nonlinear 

(Wc/h>1.0), and the non-Gaussian stress behavior is demonstrated by the presence of a 

non-zero mean, shown in Figures 5.6, 5.7, and in the stress PSD in Figure 5.13. The 

large deviation from the Gaussian is more clearly observed on the strain PDF in Figures 

5.6 and 5.7 and the larger kurtosis values in Table 5.4. The RMS, mean values and 

higher moments corresponding to input levels 83.75, 113.84, 119.87, and 131.9 dB are 

also shown in Table 5.4.

Table 5.4

Moments o f the Wc/h and Maximum Stress for a 15x12x0.06 in. 

Isotropic Plate at SPL=83.75, 113.84, 119.87 and 131.91 dB

SPL
dB

RMS M ean Variance Skewness Kurtosis

Wc/h

83.75 0.0223 -0.000712 0.152 -0.00462 0.377

113.84 0.5737 -0.00103 0.770 0.141 -0.206

119.87 1.105 -0.00704 1.0701 0.00324 -0.570

131.91 1.958 -0.00819 1.424 -0.00295 -0.860

psi

Stress

psi •2 , .2 psi ./psi. psi3./psi3. psi4./psi4.

83.75 47.00506 -0.605 6.855 0.091 0.997

113.84 1209.480 262.411 34.360 0.948 0.987

119.87 2575.842 989.884 48.765 1.290 1.899

131.91 5858.491 3195.180 70.0749 1.410 2.401
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The increase in the mean stress and consequently the deviation from a Gaussian 

distribution is caused by the in-plane stretching due to the large panel deflections. Recall 

from chapter 2 that the in-plane strain {e°} consists o f  two components, the membrane

between strain and stress is given by the linear transformation in Equation 2.22. W ith the 

increasing degree of nonlinearity, the membrane displacements and the transverse 

displacements in the von-Karman terms tend to dominate the strain-displacement 

relations. These effects are clearly evident in Figures 5.7, 5.9, and 5.11 where the stress 

time histories and PDF for the higher SPLs (119.87 dB and 131.9 dB) for the maximum 

stresses, and its two basic elements, pure bending and in-plane stress components, are 

plotted separately. Sometimes, for moderately large deflections various

theories predict the nonlinear displacement response but use a linear stress-displacement 

relationship to obtain the stresses. When the linear stress term is mentioned above, it 

means that in the strain-displacement relation (Equation 2.8) only the bending strain z { k} 

is considered. By doing so, fatigue life estimation can be-evaluated from the frequency 

domain without relaxing any assumption since the stress will have the same Gaussian 

characteristics as the displacement. This approach can be valid occasionally, but it does 

not give a realistic and consistent approach to calculate the fatigue life o f structures 

subjected to large deflections. It should be noted that at the high SPL (131.91 dB) the 

maximum peak occurs at about 36,000 psi in Figure 5.7, which is just slightly below the 

yield strength (40,000 psi) for the 2014 aluminum alloy. This shows that for the chosen 

panel geometry the recorded pressure fluctuations (131.47 dB and 131.91 dB) are very 

high and should produce relatively low fatigue life estimates.

strain |e° )  , and the non-linear von-Karman strain The constitutive relation
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5.2.2 Pow er Spectral Densities (PSD)

The PSD for deflection and maximum principal stress at different SPL are shown in 

Figures 5.12 and 5.13. At the lowest input level (83.75 dB) where the response is linear, 

distinct peaks can be observed at the lowest five natural frequencies given in Table 5.3. 

Furthermore, similar characteristics can be seen between the PSD o f displacement and 

stress. The responses are basically small deflection (RMS(Wc/h)=0.0223) random 

vibration dominated by the fundamental mode (1,1). As the SPL increases, the distinct 

peaks that are characteristics o f linear vibration tend to flatten and shift towards the 

higher frequencies. At the high input levels 119.87 dB and 131.91 dB in Figure 5.13, a 

mean value is observed (also see Table 5.4) and the distinct peaks are no longer evident 

and the PSD tends to exhibit the characteristics o f a wide-band process.

The PSD for the bending and in-plane stress components are shown in Figures 5.14 

and 5.15. For the bending component, a similar conclusion to that for the maximum 

stress can be drawn. For the in-plane PSD, it is important to note that at the lowest input 

level a multiplicity of peaks not corresponding to any of the five bending natural 

frequencies appear. Those small resonance peaks away from the linear frequencies result 

from the quadratic terms o f the stress/strain relationship. Eventually, the peaks coalesce 

as the response PSD becomes highly nonlinear and exhibits a broadband behavior.

From all the PSD plots, it is observed that the frequency shifting and the peak 

broadening are more pronounced at the higher frequencies. For instance, there are five 

distinct peaks at the lowest SPL (83.75 dB), as the SPL increases the peaks tend to flatten 

and only one peak can be identified at the high 131.91 dB.
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Some advantages o f the present time domain modal formulation over the equivalent 

linearization (EL) technique as a basis for fatigue life calculations are worth mentioning. 

As it was mentioned in Chapter 3, it appears that fatigue life depends exclusively on the 

stress amplitude distribution. The EL uses a linearised system that inaccurately reflects 

the spatial distribution o f  the nonlinear system. Fatigue life calculations based on these 

quantities, i.e., moments o f the stress from PSD (Equation 3.8), would consequently be 

affected significantly. Moreover, the use of the EL and fatigue life in the frequency 

domain requires some careful considerations. Recall that peaks in equivalent linear PSD 

might occur at the same frequencies as the fully nonlinear case but they would not reflect 

the broadening effect.

The other methods such as the Dirlik’s and the Transformed Gaussian Processes 

(TGP), which are principally based on Rice work [88], have shown that signals exhibiting 

Gaussian probability density characteristics can be represented by an infinite number o f 

sine waves combined with random phases, i.e., by continuous frequency spectra. The 

frequency spectrum defines the signal in a statistical sense so that the higher order 

probability density functions are derivable from the frequency spectrum. Based upon 

this, some relationships have been developed that allow estimation o f the peak 

distribution when the response PSD is known. Figures 5.6 and 5.7 showed that the stress 

response is no longer Gaussian as the response becomes highly nonlinear. In that case, 

the statistical stress response characteristics are no longer properly defined by the PSD. 

The estimated probability peak distribution greatly overestimates the fatigue life, as will 

be shown later in this chapter in Table 5.5.
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5.23 Amplitude Distribution Histograms (ADH)

The min-max (F) and RFC (F**c) cycles and positive amplitude distribution o f the 

maximum principal stress for each of the loading cases are shown in Figures 5.15 to 5.18 

where the normalized amplitude (maginitude/std) range is plotted versus the number o f 

occurrences. In all loading cases it is clearly observed that the RFC contains more cycles 

with high amplitudes compared to min-max cycles. The sets o f pairs in the min-max 

cycle counting plots are more dispersed than in the RFC plots at the lowest SPL. 

However, as the SPL increases the sets of pairs in the min-max cycle counting become 

more condensed and start to look like the RFC cycle counting. This becomes more 

evident in the amplitude histograms where the min-max and RFC cycles “spatial 

distribution shapes” approximate each other with the varying SPL. It is important to note 

though that the RFC cycles counting method still yields higher amplitudes than the min- 

max cycles counting approach.

For comparison, a Rayleigh distribution is given for each amplitude distribution plot. 

If  the stress produced is narrow-band then by definition the stress time history has the 

appearance of a sine wave o f slowly varying frequency and amplitude. For each upward 

crossing of zero, the time history displays a peak. For such process, the theoretical peak 

distribution is Rayleigh. When the stress time history is more complicated a number o f 

“smaller” peak maxima (and minima) occur between the zeros. When the difference 

between a maximum and the succeeding minimum increases, the existence of these 

smaller peaks (with high frequency content) may become important. In this case, they 

will cause extra losses to be induced in the already pre-stressed material and thus, to a 

certain extent, may affect the fatigue life.
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5.2.4 Peak Distribution and Up-Crossing Threshold

The positive peak distributions for displacement and principal maximum stress at 

different SPL are shown in Figures 5.20 and 5.21. For comparison, a Rayleigh 

distribution is given with each displacement and stress peak distributions. At the low 

SPL (83.75 dB), when the response is linear, the displacement and stress response peak 

distributions are practically Rayleigh. The slight deviation from a pure Rayleigh 

distribution is due to the nature of the responses time histories that are not totally narrow- 

banded. As the responses become nonlinear with the increasing SPL, the peak 

distributions follow neither a Rayleigh nor a Gaussian distribution, and the tails o f  the 

peak distributions become fatter indicating the increase in nonlinearities. A narrow- 

banded signal has a “true” Rayleigh peak distribution while a wide-banded signal has a 

Gaussian type distribution based on theory. To obtain a “true” Rayleigh distribution only 

one peak maximum (or minimum) occur between two succeeding zero crossings o f  the 

signal, while in the case o f a Gaussian type peak distribution “smaller” peak maxima (or 

minima) occur between the zeros. As a result, the positive peaks stress distribution that is 

a fundamental input for fatigue life analysis, will always lie between a Gaussian and 

Rayleigh distribution for random analysis.

The threshold up-crossing rates for the maximum principal stress are shown in Figure 

5.22 for increasing SPL inputs. For a linear response o f 83.75 dB, the threshold up- 

crossing rate closely approximates a theoretical Gaussian process and the number o f 

cycles per second is 206. As the SPL input increases and the response becomes more 

Rayleigh-like, the up-crossing rates are 258, 360, and 522 peaks/sec for the 113.84, 

119.87, and 131.91 dB inputs, respectively.
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5.2.5 Fatigue Life Estimates for NW2

Fatigue life estimates for each of the four SPL cases just studied will be evaluated 

using the time and frequency domain methods. The fatigue approaches are the RFC in 

the time domain and Dirlik’s and transformed Gaussian in the frequency domain. As 

mentioned earlier, since the recorded pressure fluctuations are only representative for the 

highest load inputs, fatigue life estimates from their corresponding simulated EWSPL 

will not be addressed. For each one o f the fatigue estimation approaches the results are 

shown in Table 5.5.

Table 5.5

Fatigue Estimates in Hours for NW 2 at Different SPL

SPL (dB)
RFC 

(Time Domain)
TGP

(Frequency Domain)
Dirlik 

(Frequency Domain)
83.75 2.59x10“ 1.67xlOls 1.65xlOi:>

113.84 5.58x10s 9.77xl07 1.39xl08

119.84 1.43xl04 4.33xl07 3.71xl06

131.91 276.90 1.64xl06 4292
AT=1.52x102S and /3=4.8

It can be readily observed that the two frequency domain approaches are less 

conservative than the RFC method. The discrepancy between the RFC time domain and 

the frequency approaches increases as the input level increases. That means as the 

response becomes more nonlinear the frequency domain approaches tend to overestimate 

the fatigue life. These results were expected, since as was mentioned previously in 

sections 5.2.3 and 5.2.4, the maximum stress PSD at high SPL does not properly 

characterize the statistical properties o f the signal. As a result, the probability peak 

distribution is not estimated accurately, which produces the overestimate o f  fatigue life
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results. It is also concluded that the Winterstein TGP [90] approach is not applicable for 

processes that deviates slightly from a Gaussian distribution. Table 5.5 shows that for the 

three lower input levels the fatigue life can be assumed to be infinite, but that is not a 

realistic result. Consequently, in the following sections fatigue life estimates using the 

Winterstein TGP will be omitted. As mentioned earlier, only the original two recorded 

data sets correspond to an actual loading condition and the discussion of the other input 

loadings will not yield any realistic conclusion.

5-3 Non-White (NW) and Equivalent Sound Pressure Levels (EW SPL) a t AT =0

In this section let us consider the two recorded B-1B flight data sets and their 

EWSPL, and let us estimate their fatigue life using the RFC and the Dirlik frequency 

approaches. The discussions and plots for NWi and NW i are similar. There were 

substantially no differences in the results, making the presentation o f both sets o f data 

redundant. Since some o f the figures for NW 2 were presented in section 5.2, the present 

section will retain NW],

For the EWSPL a Monte Carlo numerical procedure was used with an ensemble o f 10 

time histories. In order to see how the PSD response was smoothed by calculating several 

realizations (Monte Carlo simulation), the PSD for the maximum principal stress of the 

recorded data NWi and its EWSPLi are shown in Figure 5.23. By taking an ensemble of 

10 stress time histories and applying a Hanning window at the end o f  each ensemble the 

FFT is smoothed because it is calculated from the average o f the 10 ensembles instead 

from only one realization. For the 10 stress time histories o f both recorded data sets the 

uncertainty interval is 0.0040% for displacement and 11.61% for stress.
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In addition, the amplitude distribution histograms (ADH) and fatigue life estimation 

based on pure bending stress from linear theory are included for comparison.

Maximum S trass

0 200 400 600 800 1000 1200
Froq, Hz

Figure 5.23 Monte Carlo Simulation/Data Smoothing

5.3.1 Amplitude D istribution Histograms (ADH)

The min-max and RFC cycles and ADH o f the maximum stress and the pure bending 

stress are shown in Figures 5.24 to 5.27. As expected, in all cases it is clearly observed 

that the RFC contains more cycles with high amplitudes compared to min-max cycles, 

and that the set o f pairs in the min-max cycle counting plots are more dispersed than in 

the RFC plots. In addition, the cycles for pure bending are much more dispersed than for 

the maximum stress. This phenomenon becomes clearer in the amplitude histograms 

where the maximum stress distribution deviates substantially from a “true” Rayleigh 

distribution (narrow-band). In addition, the amplitude distribution for maximum stress 

reveals an increase in amplitudes at the “tail” o f  the distribution that exert considerable 

influence on fatigue life estimates. A change in the magnitude o f the amplitudes is not 

observed between the maximum and bending stress because the data previously were 

normalized. Otherwise, the magnitude o f the bending stress should be higher (see section 

5.3.2) because the calculated linear displacement is higher.
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5.3.2 Peak D istribution Histograms (PDH)

The peak distribution of the maximum stress and pure bending stress are shown in 

Figure 5.28. Recall that the last subplot in Figure 5.21 represents the peak distribution of 

the maximum stress for NW 2 . As it can be observed from those figures, in all cases the 

PDH lie between a Gaussian and a Rayleigh distribution shifted by the mean stress value. 

For the linear stresses (pure bending, z {k } ), the response should be close to Gaussian 

(Figure 5.9) yielding a close peak Rayleigh distribution. On the other hand, the 

maximum stresses have a response that is close to Rayleigh (Figure 5.7) due to the 

membrane stress component that dominates the response at high SPL. For such 

processes, the PDH seems to deviate from a Rayleigh to a more Gaussian distribution. In 

addition, the PDH plots also show that a linear analysis gives higher stresses compared to 

the nonlinear analysis.

These results support the idea that it is not realistic to use a linear approach for the 

fatigue life estimation o f  large amplitude random vibrations. The sources o f  error in 

Equation 3.20 or 3.33 arise from both the stress amplitude range and the peak 

distribution. The first overestimates the stress amplitude range by using the linear 

displacement in the stress calculation. Secondly, the evaluated PDH show that the peaks 

are concentrated over a small portion of the distribution range. Both o f these effects tend 

to underestimate the fatigue life o f structural panels.

In the next section, the difference in fatigue life between the linear and nonlinear 

stresses will be quantified in the time domain (RFC) and the frequency domain (Dirlik).
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Figure 5.28 Maximum Stress Peak Distribution for a 15x12x0.060 in. 

Simply Supported Isotropic Plate at NWi and EWSPLi
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5 3 3  Fatigue Life Estimates

Results for fatigue life estimates for the two-recorded data sets N W t, NW 2 and their 

corresponding EWSPL are given in Table 5.6. Throughout the discussion, it should be 

noted that the time domain RFC gives the more realistic and accurate solution because it 

is not limited by the ergodic stationary and Gaussian process assumptions [74].

T able 5.6

Fatigue Life Estimates in Hours for NW and EWSPL

RFC

L inear N onlinear

Dirlik 

Linear N onlinear
NWi 16.11 322.27 6766 62635

EW SPL, 12.11 406.22 6174 92198

NW , 10.52 276.90 4992 43112
EW SPLj 9.49 310.58 3814 63785

*=1.52x10“  and 0=4.8

When the stress response analysis is performed using a linear structural or plate 

analysis, the fatigue life can be estimated from either the time or frequency domain. In 

the linear analysis, the PDF o f the sequence o f  TP of the load is always near Gaussian 

with zero mean and Rayleigh peak distributions. Theses with the stationary assumption 

satisfy all the conditions of the frequency domain approach. However, Table 5.6 shows 

that at high SPL (131.47 and 131.91 dB) the fatigue life for the RFC and Dirlik approach 

differ considerably. Similarly, when the stress response analysis is performed using a 

nonlinear analysis at high SPL the fatigue life for the RFC and Dirlik approach differ 

significantly. However, this time the sequence o f TP o f the stress is non-Gaussian and 

the peak distribution does not follow a likely Rayleigh distribution. The Dirlik’s 

frequency domain approach idealizes the load as a stationary and Gaussian process,
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which means that it is completely characterized by its cross-spectral density function and 

the first moments of the PSD. Nevertheless, for nonlinear responses the load is not 

Gaussian and the frequency phases are non-Rayleigh dependent on amplitudes; these lead 

to significant errors that underestimate the accumulated damage as shown in Table 5.6. It 

can be concluded that the frequency approaches are only applicable to linear or very 

slightly nonlinear stationary Gaussian processes. The only fatigue method really 

applicable to nonlinear stationary non-Gaussian processes is the RFC time domain.

These results should catch the attention of the sonic fatigue design community, since 

it appears that the commonly used linear approach produces to high structural stress 

penalties compared with the stress when the nonlinear analysis was used. It also appears 

that the flight non-white stress responses are giving more conservative fatigue estimates 

(11-20%) than their corresponding EWSPLi^. No further discussions are made on the 

former point since in order to be conclusive, more refined studies involving extensive 

experimental work are required.

5.4 Non-White Pressure Fluctuations at AT =2.0

This section follows a similar outline as in section 5.2 except that it wall not be 

divided into multiple sub-sections and the data considered for the plots is NW2. The 

mode shapes used to resolve the combined thermal and acoustic problem are the linear 

thermal critical buckling modes given by Equation 4.55. The material properties are the 

same as given previously with an additional coefficient o f thermal expansion 

a=12.5 x 10“*/°F, and a proportional damping ratio o f r̂Cor=̂ sCos with £/=0.02. In order 

to observe the three distinct panel motion response characteristics, (i) small deflection 

random vibration about one of the two thermally buckled equilibrium positions, (ii) snap-
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through or oil-canning phenomenon between the two thermally buckled positions, and 

(iii) large amplitude nonlinear random vibration covering both thermally buckled 

positions at a fixed thermal load, the highest recorded data set (NW2 ) is divided by the 

coefficients 2 5 6  and 3 2 .  The corresponding new input SPLs are 8 3 . 7 5  and 1 0 1 . 8 0  dB, 

respectively. Figures 5 . 2 9  and 5 . 3 0  show the three distinctive displacement and 

maximum stress responses, and resultant PDF at A T / A T c r = 2 . 0 .  At 8 3 . 7 5  dB and 

A T / A T c r = 2 . 0 ,  the time histories in Figures 5 . 2 9  and 5 . 3 0  show clearly the linear random 

responses about one o f the thermally buckled positions. In this case, a static mean 

response for deflection (Wc/h)AT= ± 0 . 8 4 6 3  and stress (CTy) AT= 1 6 5 5 . 8 7 1  psi is introduced. 

The PDF is Gaussian shifted by the mean value response and normalized with the 

standard deviation (magnitude/std). The response PSD plots in Figures 5 . 3 1  and 5 . 3 2  

show the general increase of the panel vibration frequencies, e.g., from 8 0 . 5 1 6  Hz 

(Figures 5 . 1 2  or 5 . 1 3  at A T = 0  or Table 5 . 3 )  to 1 1 3 . 9 7  Hz (Figures 5 . 3 1  and 5 . 3 2  at 

A T / A T ct= 2 . 0 )  for the fundamental mode ( 1 , 1 ) .  As the SPL increased to 1 0 1 . 8 0  dB, the 

time histories show that snap-through motions and the deflection PDF has two noticeable 

peaks (non-Gaussian). This occurs because the panel is vibrating about the two 

equilibrium positions, and confirms clearly the drawback in using the EL approach with 

the Gaussian response assumption. The EL technique [ 4 5 - 4 7 ]  can only predict one of the 

two equilibrium positions. A t  the high SPL o f 1 3 1 . 9 1  dB, the large deflection RMS Wc/h 

is 1 . 9 7 7 0  that covers both buckled positions. The broadening and shifting o f the peaks in 

the PSD plots in Figures 5 . 3 1  and 5 . 3 2  further observe nonlinearities.
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Figure 5.29 Displacement Time Histories and PDF for a 15x12x0.060 in. Simply 

Supported Isotropic Plate at SPL= 83.75, 101.80, 131.91 dB and AT/ATCT=2.0
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



146

The RMS, mean values, and higher moments corresponding to input levels o f 8 3 . 7 5 ,  

1 0 1 . 8 0  and 1 3 1 . 9  dB are also shown in Table 5 . 7 .  Recall the skewness and kurtosis 

computed for room temperature ( A T / A T c r = 0 . 0 )  from the stress time histories in Table 5 . 4 .  

At room temperature the kurtosis and skewness increase as the input SPL is increased. 

At AT/ATct=2.0, the stability problem introduced by the combined loading (thermal and 

acoustic) does not exhibit a clear pattern for the third and fourth moment behavior. These 

effects correspond to a loss of symmetry and flattening of the stress PDF that is mainly 

due to the increase o f  the in-plane stress.

Table 5.7

Moments of the Wc/h and Maximum Stress of the 15x12x0.06 in. 

Isotropic Plate at SPL=83.75, 101.80, 131.91 dB and A T / A T c r = 2 . 0

SPL
dB
&

AT/ATcr=2.0
RMS Mean Variance Skewness Kurtosis

Wc/h

83.75 0 . 8 1 7 4 0 . 8 4 6 3 0 . 1 3 9 0 0 . 0 9 5 9 0 . 3 7 7

101.80 0 . 7 7 7 3 - 0 . 1 1 9 8 0 . 8 9 2 2 0 . 2 7 8 2 - 1 . 7 2 9

131.91 1 . 9 7 7 0 - 0 . 0 0 8 3 1 . 4 3 0 9 - 0 . 0 0 3 9 0 - 0 . 8 9 4

psi

Stress

psi •2 , -2 psi Jp s i . •3 / -3psiVpsr. •4 # -4psi J p s i .

83.75 1 6 5 6 . 0 4 8 1 6 5 5 . 8 7 1 4 . 9 2 2 7 . 1 0 3 2 9 1 . 1 5 9

101.80 1 4 3 2 . 8 4 2 - 5 4 1 . 2 6 9 3 6 . 4 2 3 0 . 5 1 8 - 1 . 4 7 5

131.91 5 7 2 9 . 1 2 0 2 5 6 1 . 3 0 6 7 1 . 5 8 7 1 . 2 4 6 1 . 9 6 0
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At the low 83.75 dB SPL, the thermal load produces thermal post-buckling o f the 

panel and small random vibrations are induced about one o f  the buckled states. At 

131.91 dB, the panel exhibits large amplitude vibrations between the two equilibrium 

positions. For these two states, the displacement and stress responses are similar 

(Gaussian), and consequently their ADH, peak distributions, and up-crossing rate plots 

can be described similarly. However, the snap-through phenomena only appear under 

certain combined thermal and acoustic loads. This kind o f phenomenon has frequently 

been found in experimental tests [50, 107]. Murphy [51] studied this stability problem 

and found that snap-through motion could not be excited in all instances. At times the 

only responses the panel can exhibit are small or large amplitude vibrations about one or 

the other o f the two buckled positions, respectively. Amplitude Distribution Histograms 

(ADH), peak distributions and up-crossing threshold crossing rates per unit time for snap- 

through motion are illustrated. Figures 5.33 and 5.34 show the ADH, peak distributions, 

and threshold crossing rates o f the maximum principal stress. It can be observed from 

these results that the stress response is no longer Gaussian and the peak distribution and 

up-crossings do not follow a Rayleigh distribution. In addition, the snap-through 

phenomenon introduces some difficulties for the evaluation of the probability peak 

distribution by shifting from one equilibrium position to another. This topic will be 

studied in more detail in the next section. It should be noted that many adverse thermal 

conditions that could result in degradation of fatigue life have not been considered in the 

modal finite element model. Temperature dependent material properties such as strength 

and stiffness that could affect the panel responses considerably and consequently the 

fatigue life (S-N curves) are not represented in this work.
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5.5 Snap-Through Fatigue Life Estimate

The theoretical details o f the transformation (SMCTP) o f the traditional RFC [76] to 

estimate fatigue life o f dynamic responses whose mean level may take two distinct levels 

are contained in Johannesson [91]. The snap-through fatigue life estimates using the two 

RFC approaches are shown in Table 5.8. In the SMCTP the abrupt alternation between 

the two buckled positions are introduced in the RFC (Figure 4.9). The account o f  those 

extra peaks yields lower fatigue life estimates. The difference in fatigue life between the 

EWSPL and NW is due to the number of times the process switches between the two 

buckled positions. Figure 5.35 shows the maximum principal stress time histories and 

states o f  NW 2 and its corresponding EWSPL2 . From the states plot, it is observed that the 

NW 2 response contains a larger number o f alternations that yield to a lower fatigue life. It 

is concluded that the snap-through fatigue life estimate rapidly deteriorates with 

increasing number o f alternations. Consequently, for structural safety purposes, the 

design o f panels at high acoustic load in a thermal environment should avoid to have any 

snap-through motion. For structural reliability, it is better to have a higher RMS stress 

value (higher SPL at constant A T / A T c r )  but a more stable motion. The in-plane stress 

component has the effect o f stabilizing the panel responses at high temperatures.

Table 5.8

Comparison o f Fatigue Life Estimates in Hours for Traditional RFC 

and SMCTP RFC for Snap-Through o f NW and EWSPL

SPL=101.80 dB 
and AT/ATcr=2.0

RFC
(Traditional)

RFC
(SMCTP)

EW SPL! 11.985x10' 9.989x10'
NW , 9.53 lxlO7 7.521xl07

EW SPL 2 6.349 xlO7 5.298xl07
n w 2 4.841xl07 3.837xl07
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5.6 Non-White (NW) and Equivalent Sound Pressure Levels (EWSPL) at AT =2.0

Fatigue life estimates results for the recorded pressure fluctuations NW|, NW2, and 

their corresponding EWSPL at a uniform temperature distribution o f AT/ATcr=2.0 are 

given in Table 5.9. These values are compared with the reliability estimates with no 

temperature effects in the third column of Table 5.6. Results show that the panels under 

the combined acoustic and thermal load have shorter fatigue life.

Table 5.9

Fatigue Life Estimates in Hours for 

NW and EWSPL at AT/ATCT=2.0

RFC

NW ! 252.24
EW SPLj 307.58

n w 2 219.43
e w s p l 2 229.77

K=l.52x10“  and £=4.8

Time histories, up-crossing threshold and peak distribution of maximum stress for 

NW2 at AT/ATcr=0, 2 .0  are shown in Figure 5.36. From these figures it is observed that 

there is a very slight differences in response characteristics at the high SPL due to the 

temperature distribution differential. The displacement RMS responses are only 

increased by 1 % while the RMS stress responses are decreased about 2 % (see Tables

5.4 and 5.7 at SPL=131.91 dB). The small reduction in stresses is easily understood by 

looking at Equation 4.58. The buckling temperature being low (ATcr=2.0751°F), the 

thermal stress component has little contribution on the total stress at high SPL for the 

studied panel geometry. However, fatigue life estimates at AT/ATcr=2.0 are reduced 

about 20-26 % based on fatigue lives at ambient temperature, i.e., at AT/ATcr=0. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



drastic difference in fatigue life arises from the RFC method described in Section 3.4. 

Physically, the thermal post-buckling deflection adds some stiffness to the structure that 

becomes a little bit snappy under random loading. This is not reflected in the RMS or 

mean values, but it has direct impact on the stress amplitudes. Recall that the fatigue life 

(Equation 3.20) depends on the stresses amplitudes s ^ c = {Mk -  m ^ c )/2 and their peak 

distribution. A slight difference in the cycle counting method could yield very different 

results because the stress amplitude is raised to the power o f the material property that 

is equal to 4.8. Mentioning the material properties, the present finite element modal 

formulation assumes temperature independent properties. If temperature dependent 

material properties were included in the formulation the difference in fatigue life would 

probably be more pronounced (different S-N curve). In addition, the stress responses 

proceeding from NW give 4 and 29 % lower fatigue life estimates than their 

corresponding EWSPL, respectively. Once again, this last observation is not conclusive 

because it is only based on the actual non-white pressure fluctuations and given panel 

geometry. The differences in fatigue estimation may also arise from the duration of the 

fluctuating pressure time histories that can have considerable influence on the statistical 

characteristics o f the responses, i.e., Gaussian, non-Gaussian, stationary, and non- 

stationary. Undoubtedly, more work is required to make sure that NW stress responses 

yield more conservative fatigue life estimates than the stress responses o f  an equal power 

EWSPL. Similarly, a more detailed study o f  sources o f nonlinearities o f the stress 

response is required. Finally, the former study could include initial geometric 

imperfections, temperature dependent material properties, aerodynamic loads, and load 

sequencing, just to mention a few.
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5.7 Fatigue Life Design Considerations of Isotropic and Composite Panels

In this last section different parameters influencing the panel fatigue life are studied 

in detail. First, based on S-N curves o f an isotropic and a composite panels the 

strain/stress region more suitable for fatigue life are studied in detail. Finally, the 

influence o f material property p  and structural damping £ are considered.

5.7.1 S-N Curves for Aluminum and Graphite-Epoxy Panels

For fatigue life design purposes the S-N curves for different material and loading 

conditions can be used as a first guideline. Depending on the estimated RMS stress/strain 

value and the desired number of cycles (fatigue life) the most adequate material can be 

selected. Figure 5.37 shows the S-N curves for Aluminum and Graphite-Epoxy panels. 

Material properties o f Aluminum and Graphite-Epoxy are given in Sections 5.2 and 5.1.1, 

respectively. From Figure 5.37 it appears that for high RMS strain values the Aluminum 

has a longer fatigue life than Graphite-Epoxy. However, for low-medium strain values 

the Graphite-Epoxy demonstrated longer reliability than Aluminum. As a numerical 

example, an Aluminum plate and a special orthotropic [0/90/0]s Graphite-Epoxy plate o f 

dimension 15 by 12 by 0.060 inches with identical structural damping (£/=2%) subjected 

to (NW2) are studied. The numerical example shows that for the given load condition a 

Graphite-Epoxy panel yields a longer fatigue life than Aluminum. In reality, the 

advantage o f  the composite panel is even greater since the matrix (Epoxy) has a higher 

structural damping ratio than Aluminum. Section 5.7.3 shows that by increasing the 

damping ratio, the stress response characteristics are changed and fatigue life is increased 

considerably. Icons on the Figure 5.37 mark the fatigue life for each o f the two panels.
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5.7.2 Influence of Material Property on Fatigue Life

Next, the influence o f the material property, /J, obtained by linear regression o f a 

given S-N curve is analyzed. By analyzing the behavior of /?, the influence o f the second 

independent material property, K, is studied simultaneously. The two material properties 

are related by Equation 3.18 as K  = N s f . The damage intensity as a function o f the 

first material property (3 is shown in Figure 5.38 for the Aluminum. The plot shows the 

increase in damage with increasing /?. A similar conclusion could have been inferred 

from Equations 3.20 or 3.33 where the total damage is a function o f the stress amplitudes 

raised to the power /?.

10'

  For given K and sk |
and panel geometry j

o  10 a

4 4.5 8.55 6.5 95.5 6 87 7.5
Material Property p 

Figure 5.38 Damage Intensity as Function o f Material Property (3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



158

5.8 Nonrectangular Composite Panel with Mixed Boundary Conditions

Finally, in order to show the versatility of the finite element modal formulation a 

[0/90/0]s Graphite-Epoxy panel with complex platform and boundary conditions is 

studied in detail for AT/ATcr=0.0 and 2.0. The panel geometry and boundary conditions 

are shown in Figure 5.39. The 14 by 10 by 0.060 in. L-shaped plate is modeled with a 14 

by 10 mesh or 84 BFS elements in a full plate. The Graphite-Epoxy properties are given 

in Section 5.1.1 with coefficients o f thermal expansion ai=-0.04xl0"V>F, a2=16.7xlO'V>F 

and proportional damping ratio o f §-or=^s<ai with £/=0.02. All modes within the cut-off 

frequency range (1024 Hz) are included for maximum displacement and strain response 

calculations.

5.8.1 Maximum Deflection and Stress Responses

The elements where maximum deflection and maximum strain occurred are searched 

and located at each integration time step. During the entire integration process, the node 

or location of the maximum deflection remains unchanged. However, the node for the 

maximum strain oscillates among the four nodes o f  the BFS element [84] o f maximum 

strain. The element o f  maximum strain is obtained by searching the maximum strain 

component, x, y , or xy  at each element node. The element o f maximum strain being 

located, the maximum principal strain is first calculated at Barlow’s points then 

extrapolated at the desired node point as described in Section 4.6. In Figure 5.39 the 

element of maximum displacement is indicated by the letter “A,” while the letter “B” 

indicates the element for maximum strain.
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y

Figure 539  Nonrectangular Panel with Mixed Boundary Conditions

5.8.2 Nonrectangular Composite Panel Under Non-White (NW) Pressure 

Fluctuations at AT=0.0

Time histories and PDF for maximum deflection, fFm/h, and maximum strain, e, are 

shown in Figures 5.40. Figure 5.41 illustrates ADH and peak probability distribution of 

maximum strain. From the deflection/strain time histories, Figure 5.40, it is observed 

that the panel exhibits linear vibrations. The responses PDF are close to Gaussian 

distribution as shown in Figure 5.40. Rainflow ADH and probability peak distribution in 

Figure 5.41 revealed that the response peaks slightly deviates from a Rayleigh 

distribution. The deviation from Rayleigh for the linear vibration was explained in detail 

in Section 5.2.4.
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5.8.3 Nonrectangular Composite Panel Under Non-White (NW) Pressure 

Fluctuations at AT/ATcr=2.0

Figure 5.42 shows that the panel exhibits small vibrations about one of the two 

buckled positions, and the responses PDF are close to Gaussian distribution shifted by the 

mean value (normalized with the standard deviation). Figure 5.43 reveals that rainflow 

A D H  and probability peak distribution slightly deviate from Rayleigh.

5.8.4 Fatigue Life Estimates for NW2 and EWSPL2 at AT/ATCr=0.0 and 2.0

Fatigue life estimates for the recorded pressure fluctuations NW 2 and its 

corresponding EWSPL at uniform temperature distributions o f A T / A T c r = 0 . 0  and 2.0 are 

given in Table 5.10. Results show that the panel under recorded pressure fluctuations, 

NW 2, yields to slightly shorter fatigue life than its EWSPL at AT/ATcr=0.0 and 2.0. An 

interesting result is that at the same acoustic loading fatigue life at AT=0 is a lower than 

at AT/ATcr=2.0. This result is not physically correct but can be explained as follows. For 

this composite panel the buckling temperature is high (ATCT= 21.517 °F) and thermal 

effects are not negligible. Consequently, S-N  curves have to take into consideration o f 

thermal effects for composite materials.

Table 5.10

Fatigue Life Estimates in Hours of L-Shaped Panel for 

NW 2 and EWSPL2 at AT/ATcr=0.0 and 2.0

RFC
AT/ATcr=0.0 AT/ATCT=2.0

n w 2
EWSPL*

1.101x10*
1.120xl09

1.117x10*
1.162xl09

*:=1.37xl0'28 and £=9.97
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CHAPTER 6 

CONCLUSION

It is revealed that the actual flight acoustic pressure fluctuations are o f high intensity, 

nearly Gaussian and non-white. A versatile and efficient finite element time domain 

modal formulation with the Monte Carlo approach is employed to determine the panel 

nonlinear response with non-Gaussian probability density functions. The non-Gaussian 

response characteristics arise from nonlinearities o f structural systems and not from the 

load that is o f  Gaussian character. Higher order correlations and spectra are utilized to 

represent these processes in time and frequency domains, respectively. The Palmgren- 

Miner damage theory and the rainflow counting cycles (RFC) method are used for fatigue 

estimation o f complex random responses. Results showed that the traditional sonic 

fatigue methods with stationary Gaussian white-noise acoustic pressure are conservative. 

Limited flight data o f non-white PSD give shorter fatigue life estimates by 10-20%.

The finite element time domain modal formulation is presented for the prediction o f 

nonlinear random response of isotropic and orthotropic panels subjected to acoustic 

pressure fluctuations within or without an elevated thermal environment The modal 

formulation has been proven to be computationally efficient because the number o f 

modal equations is small compare with the structural degree of freedom approach; the 

nonlinear modal stiffness matrices are constant matrices and the time step of integration 

could be reasonably large. Another advantage o f the present finite element model is that 

it can be easily modified to take into considerations more physical input characteristics.
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In this respect, it is becoming increasingly apparent that the development of 

supersonic/hypersonic vehicles cannot become commercially viable until the fatigue 

aspects o f severe aerodynamic loadings, in addition to combined acoustic and thermal 

loads, are better understood. The magnitude and character o f the stress response depends 

on the structural geometry and its orientation with respect to the flow. A complete 

description o f  the panel motion requires consideration of the influence o f thermal effects 

(convective and aerodynamic), and the variation of the wind velocities from point to 

point on the structure. In the early stages o f takeoff, the aft surface Thermal Protection 

Systems (TPS) will be in the near field o f  the noise radiated from the engine exhaust. As 

the speed increases, the effect of engine exhaust noise (except near the exhaust nozzles) 

will decrease, and at Mach 1 and higher speeds the acoustic loads are expected to be 

negligible. However, at supersonic and hypersonic speeds, the fluctuating surface 

pressures due to converting turbulent boundary layer excitation will become significant. 

In addition, local impinging shocks on the structural surface can induce severe dynamics 

loads. As future work, an extension o f  the present finite element model including 

aerodynamics loads (supersonic and hypersonic) and its coupling with thermal loads will 

help the design and in understanding the behavior o f future high-speed flight vehicles.

The majority o f the methods used presently for fatigue life estimation consider the 

loads and responses as stationary and Gaussian. However, the maximum stress response 

is shown to be non-Gaussian and peaks do not follow a Rayleigh type distribution. It is 

known that for linear systems subjected to a Gaussian input the type o f distribution is 

always Gaussian, i.e., it does not change in the nonstationary state. This, however, is not 

true for nonstationary states of nonlinear systems [108]. Aircraft and spacecraft are
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designed to perform a variety o f missions for different flight regimes. Therefore, 

response calculations and fatigue life estimates o f the surface panels should reflect the 

different mission profiles since drastic changes in acoustic, thermal, and aerodynamic 

conditions can be produced. This will lead to the consideration o f nonstationary random 

processes in sonic fatigue design. In this respect, the most significant shortcoming o f the 

widely used Palmgren-Miner hypothesis is that it does not account for sequential effects; 

that is, it assumes that damage caused by a stress cycle is independent of where it occurs 

in the load time history. The nonstationary fatigue design area is wide open since there is 

no single established cycle counting method in the literature for responses with 

nonstationary characteristics. For instance, the widely recognized rainflow cycle 

counting method considers the stress response as a Markov process that is limited by the 

stationary assumption. Finally, the RFC has been used for many years, but it cannot be 

accommodate all types o f stationary and non-Gaussian response processes. In this work, 

the rainflow analysis o f switching Markov loads [91] was extended for the first time to 

estimate the fatigue life o f  stationary snap-through or oil-canning phenomena in the 

Aerospace field.
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APPENDICES

A. Transformation Matrices [T6] and [Tm]

The displacement vector of the BFS finite element is

{S}=[w, w^, w y , u, vf (A.1)

The displacement vector includes the transverse displacement vector {w, , w  y , w }

and the membrane vector {u, v}. The element transverse displacement function w  and the 

in-plane displacement functions u, v are approximated as a bi-cubic and a bi-linear 
polynomial functions in x and y, which can be written as

w  = a x + a 2x  + a 3y  + a 4x 2 + a 5xy + a6y 2 + a 7x 3 + a %x 2y  + a^xy2 + a xoy 3 

+ a x Xx 3y  + a X2x 2y 2 + a X3x y 3 + a ux 3y 2 + a lsx 2y 3 + a x6x 3y 3 (A.2)
= [H w(x ,y ) ]XxX6{a }x16x1

u =  bx + b2x  + b3y  + b^xy

■18x1

v = b5 + b6x  + b7y  + btxy

= [tfv(x,.y)]U8{Z>}8

(A.3)

(A.4)
18x1

The coordinates of a 4-node rectangular plate element is shown below

4 (Q.b) 3 (a .b j

T
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The displacement vector of membrane and transverse displacement can be expressed for 
the BFS C1-conforming element as

(A.5)i - 1 x  y xy 0 0 o o X
•

tvJ 0 0 0 0 1 X y  xy
A.

w "l X y x2 xy y 2 x 3 x2y
0 1 0 2x y  0 3 x 2 2j«y
0 0 1 0 x  2 y 0 x2
0 0 0 0 1 0 0 2x

xy2 / x 3}; x 2y 2 x y 3 x 3y 2 x 2y 3 V I
*■ '

y 2 0 3x2y 2 x y 2 y 3 3 x 2y 2 x y 3 3 x 2y 3 I
2xy 3 y 2 x 3 2 x 2y 3 x y 2 2 x 3y 3 x 2y 2 3 x 3y 2 al5
2 y 0 3x2 4 xy 3 y 2 6 x 2y 6 x y 2 9 x 2y 2 *16.

(A.6)

Substituting the nodal coordinates into Equation A.5, the nodal displacement {wm} can be 

expressed in the matrix form as {wm }gxI = [Tm £ s {Z>}8x1 ,

A “ 1 0 0 0 0 0 0 0" A '

U2 1 a 0 0 0 0 0 0 b2
U3 1 a b ab 0 0 0 0 b,
“ 4 1 0 b 0 0 0 0 0 b<

V1 0 0 0 0 1 0 0 0 b5
V2 0 0 0 0 1 a 0 0 b6
V3 0 0 0 0 1 a b ab b2

-V4 . 0 0 0 0 1 0 b 0 A.

(A.7)

The in-plane transformation matrix [Tm] is therefore obtained by inverting the above 
matrix [T*,]'1.

Similarly, substituting the nodal coordinates into Equation A.6, the nodal 

displacement {w*} can be expressed in the matrix form as {wA } = [r6 ]"1 £*},
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’ w . '1 0 0 0 0 0 0 0
*2 1 a 0 a 2 0 0 a 3 0

1 a b a 2 ab b 2 a 3 a 2b

*4 1 0 b 0 0 b 2 0 0
0 1 0 0 0 0 0 0
0 1 0 2 a 0 0 3a2 0
0 1 0 2 a b 0 3a2 2 ab

< . = 0 1 0 0 b 0 0 0
w .y i 0 0 1 0 0 0 0 0
w .y2 0 0 1 0 a 0 0 ■>a~

W .y3 0 0 1 0 a 2b 0 a 2

w .y< 0 0 1 0 0 2b 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 2a
0 0 0 0 1 0 0 2 a
0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 a \
0 0 0 0 0 0 0 0 a 2

ab2 b3 a 3b a 2b2 a b 3 a 3b2 a 2b3 a 3b3
0 b3 0 0 0 0 0 0 * 4

0 0 0 0 0 0 0 0 «S

0 0 0 0 0 0 0 0 a 6
b 2 0 3 a 2b 2  ab2 b 3 3 a 2b2 2  ab3 3 a 2b 3
b 2 0 0 0 b 3 0 0 0 a %
0 0 0 0 0 0 0 0

C

a 9
0 0 a 3 0 0 0 0 0 a io

2 ab 3 b 2 a 3 2 a 2b 3ab2 2 a 3b 3a2b 2 3 a 3b 2 <*\\
0 3 b 2 0 0 0 0 0 0 °\2
0 0 0 0 0 0 0 0 *13

0 0 3a2 0 0 0 0 0 *14

2b 0 3 a 2 4 ab 3b2 6 a 2b 6ab2 9 a 2b 2 *15

2b 0 0 0 3b2 0 0 0 /V
where the bending transformation matrix [7*] is therefore obtained by inverting the above 
matrix [7y*.
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B. Fortran Code for Gaussian-Starionary Random Load Generation

SIMLOAD

N -NO. OF INTERVALS IN THE SPECTRUM
N SHOULD BE AN INTEGER POWER OF TWO 

NPT —NO.OF POINTS FOR THE TIME SERIES
NPT SHOULD BE INTEGER POWER OF TWO. NPT>N 

ISEED -RANDOM NUMBER SEED
TTOTAL = N/FMAX TTOTAL IS THE TOTAL INTEGRATION TIME
DT = N/(NPT*FMAX) DT IS THE INTEGRATION TIME STEP SIZE

INSTRUCTIONS FOR SETTING THE DATA
1- TAKE HIGHEST FREQUENCY, FMAX
2- MINIMUM TIME STEP IS STEP_MIN=l/(2.5xFMAX)
3- N=FMAX x 2
4- PICK UP TOTAL RUNNING TIME (1 SEC, 2 SEC ...) T_total=N/FMAX
5- SELECT NPT TO SATISFY 2-

N
STEP=------------

NPT x FMAX

PROGRAM SIMLOAD 
IMPLICIT REAL*8 (A-H,0-Z)

C COMMON /XFER/ISTEP,DSTEPJDT,Y(16384)
C COMMON /XFER/DT,Y(16384)
C REAL* 8 DT,Y(2)

DIMENSION X(16384), Y(16384),SP(2048), W(2048),RAND(16384) 
COMPLEX X,ZIMAG

OPEN (1 ,file='d:\research\load_st\pressure.dat')
OPEN (2,file-d:\research\load_st\npt.dat')
OPEN (3,file='d:\research\load_st\finax.dat')
OPEN (4,file='d:\research\load_st\n.dat')
DATA FMAX/1024./
DATA N,NPT /2048,16384/

INITIALIZE VARIABLES
SPL=120
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C SPP = 8.41438*10**(-18.+SPL/10.)
PI = 3.1415926 
PI2 = PI*2.0 
NP1 = N+l
ZIMAG = CMPLX(0.0,1.0)
SPPW = SPP/PI2 
WU = FMAX*PI2 
DW = WU/FLO AT(N)
DO 119 1=1,NP1 
SP(I) = SPPW 
W(I) = (I-1)*DW 

119 CONTINUE
AREA = SPP*FMAX 
SQ2DW = DSQRT(2.0*DW)
TTOTAL=PI2/DW 
DT=TT OT AL/FLO AT (NPT)

C SET X(1)=0. IN ORDER TO OBTAIN NEW MEAN ZERO TIME SERIES
X( 1 )=CMPLX(0.0,0.0)

DO 50 I=N+1,NPT
X(I)=CMPLX(0.0,0.0)

50 CONTINUE
C GENERATE RANDOM PHASE ANGLES UNIFORMLY DISTRIBUTED 
BETWEEN ZERO AND 2.*PI

ISEED=12357 
DO 51 1=1,N

51 RAND(I)=RAN(ISEED)
DO 601=2,N+l
PHI=RAND(I-1 )*PI2 
P1 =SQ2DW*DSQRT(SP(I))
X(I)=P 1 *CDEXP(-ZIMAG*PHI)

60 CONTINUE
C PERFORM FORWARD TRANSFORM

CALL FFT(X,NPT, 1)
C GET REAL PART

DO 701=1,NPT
Y(I)=RE AL(X(I»

70 CONTINUE
WRITE( 1 ,FMT = 100) Y
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100 FORMAT (fl 8.8)
WRITE (2,*) NPT 
WRITE (3,*) FMAX 
WRITE (4,*) NT>T,SPP 
STOP 
END

SUBROUTINE FFT(X,NJtC)
IMPLICIT INTEGER(A-Z)
REAL*4 GAIN,PI2,ANG,RE,IM 
COMPLEX X(N),XTEMP,T,U(16),V,W 
LOGICAL NEW
DATA PI2, GAIN, NO JCO/6.283185307,1.0,0,0/
NEW=NO.NE.N 
IF (.NOT.NE W)GOTO 2 
L2N=0 
NO=l

1 L2N=L2N+1 
NO=NO+NO

EF(NO.LT.N)GOTO 1 
GAIN=1.0/N 
ANG=PI2*GAIN 
RE=COS(ANG)
IM=SIN(ANG)

2 IF(.NOT.NEW. AND.K*KO.GE. 1 )GOTO 4 
U( 1 )=CMPLX(RE,-SIGN(IM,FLO AT(K)))

DO 3 1=2,L2N
3 U(I)=U(I-1)*U(I-1)

KO=K
4 SBY2=N

DO 7 STAGE=1,L2N 
V=U(STAGE)
W=(l.0,0.0)
S=SBY2 
SBY2=S/2 
DO 6 L=1,SBY2 
DO 5 1=1,N,S
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P=I+L-1
Q=P+SBY2
T=X(P)+X(Q)
X(Q)=(X(P)-X(Q))*W

5 X(P)=T
6 W=W*V
7 CONTINUE

DO 91=1,N 
ENDEX=I-1 
JNDEX=0 
DO 8 J=1,L2N 
JNDEX=JNDEX+JNDEX 
ITEMP=INDEX/2
IF(ITEMP+ITEMP.NE.INDEX)JNDEX=JNDEX+1 
ENDEX=ITEMP

8 CONTINUE 
J=JNDEX+1

IF(J.LT.I)GOTO 9 
XTEMP=X(J)
X(J)=X(I)
X(I)=XTEMP

9 CONTINUE
IF(K.GT.O)RETURN

DO 10 1=1,N
10 X(I>=X(I)*GAIN

RETURN
END
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C. Recorded Flight Data

Data set 1:

B-1B AEB Baseline Flight # 1 
Ground - max AB - takeoff roll 

TIME HISTORY - AMPLITUDE 
0.32692307E+04 0.15294118E-03 0.OOOOOOOOE+OO 0.10944930E+02

1 1 5  MIKE 5 71564 0.35681E+00
B-1B AEB Baseline Flight # 1 
Ground - max AB - rotate 

TIME HISTORY - AMPLITUDE 
0.32692307E+04 0.15294118E-03 0.OOOOOOOOE+OO 0.89407883E+01

1 1 5  MIKE 5 58460 0.37086E+00
B-1B AEB Baseline Flight # 1 
Ground - max AB - gear up 

TIME HISTORY - AMPLITUDE 
0.32692307E+04 0.15294118E-03 0.OOOOOOOOE+OO 0.14953213E+02

1 1 5  MIKE 5 97772 0.32552E+00

Data set 2:

B-1B AEB Baseline Flight # 2 
Ground - max AB - roll 

TIME HISTORY - AMPLITUDE 
0.32692307E+04 0.15294118E-03 0. OOOOOOOOE+OO 0.49325061E+01

1 1 5  MIKE 5 32252 0.36949E+00
B-1B AEB Damped Flight # 2 
max AB - rotate 

TIME HISTORY - AMPLITUDE 
0.32692307E+04 0.15294118E-03 0.00000000E+00 0.49318943E+01

1 1 5  MIKE 5 32248 0.38909E+00
B-1B AEB Damped Flight # 2 
max AB - gear up 

TIME HISTORY - AMPLITUDE 
0.32692307E+04 0.15294118E-03 0. OOOOOOOOE+OO 0.49325061E+01

1 1 5  MIKE 5 32252 0.33682E+00
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Data Recorded 1 Data Recorded 2

4  6 8
Time, sec

2 3 4
Time, sec

Time, sec
14 16

Time, sec

toQ.

-2
20 25 30

Time, sec

-0.5

-1

-1.5

-2
11 12 13

Time, sec
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D. Continuum Classical Solution

1. Equation of Motion
The classical plate thin-plate theory based on the Kirchhoff hypothesis and the von 

Karman-type geometric nonlinearity lead to the total strains

ex =e°+zKx (Dla)

e y =e°y +zKy (Dlb)

Yxy = Yx +ZKzy (Die)

where the membrane strains are defined as

e ; = K , x + j ! f , J  ( D 2 a )

(D2b)

Y°Xy = U > y  + V»x +W »x (D 2 C )

and assuming that the slopes w ,\ ,w ,2y ,w ,x w ,y are very small compared to unity, the

middle surface curvatures can be written as

Kx = _w>xx Ky = Kxy = -2w,v (D3)

The dynamic composite plate nonlinear equations are obtained by applying the 
d’Alembert’s principle to an element of the layer of the laminate. Integrating the
d’Alembert’s equations over the thickness of the plate h, gives the following equations

^  + N xy,y = P U fl Nxyj + N y.y =  P V, (D4)

M xja + + M yyy = N xw ^  + 2 N zyW ^ + N yW ^ + p ix , y , t )  =  phw,„ (D5)
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where the average mass density of the composite laminate is defined by

p= f a *

The constitutive relations for a laminated composite plate are

\N ]  
I M \

A B 
B D

I*
K

where the laminate stiffness A, B, and D  are defined by the following integrals

187

(D6)

(D7)

(Aij,B ij,D ij) = g ( l , z , z 2) (g iy)t d z ,  i , j = l ,  2, 6 (D8)

and the matrix Q  is the transformed reduced stiffness matrix.

For a specially orthotropic plate, the component At6 =  A26 =  D x6 = D26 = Bi} = 0. 

Equation (D7) can be rewritten as the half-inverted constitutive equation,

\M \
A 0 
0 D*

[AT]
k: (D9)

where

A = A -i D  = D (DIO)
The Airy stress function F  is defined such that

N y = F >~ (Dll)

Assuming that the effect of the in-plane inertia forces can be neglected, the inertia 
terms in u and v in equation (D4) can be dropped. Replacing equations (D3), (D7), (D9), 
and (D11) in equation (D5) leads to the equation of motion in the transverse direction.

phw  = L{w -(j)(F , w) — p  =  0 

where L / is a linear operator defined as

(D12)
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and <f>(F,w) represents the nonlinear terms expressed as

<p(F, w) = F Jyy wixx- 2 F ,v  wtxy+ F txz w5>y

To ensure uniqueness in the solution the compatibility equation is derived by combining 
the second derivatives of the membrane strain equations (D2)

Combining equations (D9), (D11), and (D14) the compatibility equation can be rewritten

Equations (D12) and (D15) are the dynamic governing equations of motion of a specially 
orthotropic composite plate undergoing moderately large deflections. The solution of 
these equations in the general case is unknown. In the present work, the approximate 
Galerkin’s approach has been retained.

2.2 Method of analysis for lowest two modes (1,1) and (13)

Consider a rectangular [0/90/0] orthotropic composite plate of dimensions a  by b by 
h. The boundary conditions are simply supported boundary and are defined as,

£ +F —v ,yyx &y.xr /  xy^xy (D14)

L2F  +  ±<K w, w) = 0 (D15)

where L2 is a new linear operator defined as

(D16)

x = ± a :  vv = 0 D u w ,zx+ D n w,yy = 0
x  = ± b : w  =  0 D n wyxx + D n wt)y = 0 (D17)
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The deflection function, w(x,y,t), that satisfies the equations of motions (D12), (D15) as 
well as the boundary conditions (D17) for two arbitrary modes is

w(x,y,r) = A
a  b 53 a  b

(D18)

Under a uniform loading only the odd modes are not zero. Consequently, the lowest two 
modes are either (1,1), (1,3) or (1,1), (3,1). For the present case, the dimensions a  and b 

of the rectangular orthotropic plate gives the second lowest mode for m3 = 1, n3 = 3. The 

transverse displacement becomes

w (x ,y ,t )  =  h qx, (0 sin(—) sin(̂ i) + qx3 (/) sin(—) sin(^-) 
a b a  b

(D19)

Replacing (D19) in the compatibility equation (D15) and solving the partial differential 
equation term by term leads to particular solution of the stress function F  =  Fp + F h , 

which is has the form

FP = Fpi Cos

Fp6 Cos

+ Fp2 Cos
2 Tty 

_ b _+ Fp3Cos
Any
~ V _

+ Fp, Cos

1 
1 

O
s

i 
i

+ FpS Cos 2nx Any

a  b

2 k x  

a

2 nx 2ny 
a b

+ Fp 7 Cos

where the coefficients are

p  _  a 2h \ q n  + 9 g,z3)
p i 32 bl A.22

it _  & h qu (qlx 2ql3)
32 a 2Au

2tcc 2ny 
a  b

+ Fp g Cos
2nx 4 ny 

a  b
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}2h 2i 
6 4 a zAu

p  b 2h2q\Xqn

b 2h2q 23 
p4 288a 2Au

a  b h quqn _
32(16 a 4 Au + 4 a 2b 2(2Al2 + A66) +  b4A22)FPs = A ," " ™  . .  . . . .  (D20)

 _____________ a  b  h_giign____________
'6 8 (a,4 ,+aV ( 2 4 J+/<«) + A ;̂2)

,.2t2r.2
 ____________Q ^  ^  g ..g l3____________

'7 8 (a 4Au + a 2b2(2A l2 + A66) + b4A22)

p“ 32(16a4̂ 1I+ 4 a V (2 ^ I2+ ^ 66) + 64yl22)

The homogenous solution Fh is assumed such it satisfies the inplane boundary 

conditions. For immovable edges, the inplane boundary conditions are

x  = 0 ,a  :F xy= 0  j j ( s °  )dxdy = 0
1 (D21)

x  =  0 , 6  : F  ̂ = 0  J J ( £ ;  - j ” ,2y ybufy =  0

and the assumed homogenous solution is

— x 2 — y 2 F. =  N  v— + N  —  
h y 2 2

Substituting (D2) and (Dll) into (D21) and integrating over the surface gives,

x7 _ Tt2h2{a 2A'u (q 2u + 9 q 2z) - b 2A]2 (q 2u + qf2)
8a 2( A Z - A ; ,A „ )

(D22)
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jy 7C2h \ b 2A^2 { q ^  + q n ) - a 2A'u ( q 1u  + 9  q f 3 )
y  0 - 2 /  a ' 2  ,• , •S ^ C A l - A ^ )

Substituting the stress function F  into the equation of motion (D12) and applying 
Galerkin’s method yields to the two modes modal equations.

4 l l  + 6 , o |4 'll +  P a l Q l l  +  P b t f u Q u  +  P c \ <J l \ <J l3  +  P d \ Q \ 3  ~  P o i O  ^  m \ 

^13 +  6 \>2^I3 +  P a l Q u  +  P b 2 Cl \ \ (l \ 3  +  P c 2 <l l l iI l 3  +  P d 2 (i \ 3  =  P o ( 0  ^  m 2

where the linear frequencies terms are

„2 7 c \ b 4D'n + 2 a 2b \D '„  +2D'66) +  a 4D'22

, .2 _ x \ b 4D'u +18a 2b 2{D\2 + 2D'66) + 8 la 4D ’22
O}02 4T4Ta  b hp

the modal masses are

16m 1 _ 2  l 2 „K h p

16m, =
3n h p

(D23)

(D24)

(25)

and the non linear terms are

K 4K a 4A[x +  b 4A ^ ) Jt4h{a4Alx- 2 a 2b2A^ + b 4A,’n ) 
l6 a 4b 4pA'n A ’22

n 4h {9a4A,* + 4b 4A ^ ) Jt4h (9 a 4A'x -10a 2b 2A^ + b 4A „ )  
l6 a 4b4pA muA^ 8 a 4b 4p(A?2 - A ^ )

_________ n 4h________________   n 4h_____
+ p ( a 4A ’u + a 2b 2(2Al2 + A ^ )  +  b 4A n ) +  l6 p ( l6 a 4A'u + 4 a 2b 2(2A'l2 + A ^) + b4A ^ )
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A , ~  * * *

P . i  —

16pa*A'u 

Pax =0 

tc4h
16 p a 4A^

_  TZAh (9 a AA'u + 4 b 4A2 2 )  7t4h {9 a 4A'u  -  10a 2b 2A ’2 + b 4A y )

b2 l6 a 4b 4pA jlA^2 8 a 4b 4p(Aj2 - A ^ A ^ )

n 4h

P(.a * A  11 + a 2b 2(2 A l2 +  -^66) +  b 4 A2 2 )

Pc2=<>

0  _ + b 4A „ ) K*h(%\a4Alx -18a 2b 2A‘n + b 4A „ )
16a4b4pA'nA^ Sa4b 4p(A'x2 -  A'uA ^ )
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E. Linear Random Vibration

From PDE for an isotropic rectangular plate,

pA^r+ Z)V4w = /;0(O 
at

(El)

For a simply supported boundary condition, the plate deflection and mode shape are

y , t )  = ' £ ' £ q mn ( M m  (x , y )

4>mn(X’ y )  = sin ntjpc'] . ( m ity  x sin ---
a J {  b

After substitution of Equation (E2) into Equation (El) and applying the modal 
orthogonality condition, the modal equations are

(E2)

a +(B=?xim n  ' w mn'1mn m ,n= 1,3,5.

Adding a structural damping,

q.mn ®nm9mn P o ( t )
m .

°>mn =-«*JA
\ p h a ' - d ) '

rad/sec

mm„ =mn
_  m nn1ph

16

(E3)

(E4)

(E5)

(E6)

where and are the natural frequency and modal mass, respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



194

The response to Equation (E4) is given by Equations (3-57) and (7-37) in reference [109],

gxSB(/]
F \ n 2  1 — ^  *  * ^ 0 fF7' \
E 'X .Q m n l  0  2 c  ,_ 3  ( ^ 7 )

set mn=r and kl=s,

£[9-9«] = £[?,«,]- r.  ( t v , + 4 , < ° , f o ( f ) --------------  ^
[(<0,J  -  ffl,2 7  +  ( £ ,a > ,  +  X £ , o ,  +  £ , t o r ) ]

The root mean square of maximum deflection from Equation (E2) is

RMS(Wm ) =  <
. r=l (E9)

= M?? ]+ 4̂ 2 ]+ • • • ■+ ̂ E[qxq 2]+  - • Y 2
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