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ABSTRACT

A COMPUTATIONAL AERODYNAMIC DESIGN OPTIMIZATION
METHOD USING SENSITIVITY ANALYSIS

Mohamed E. Eleshaky
Old Dominion University
Director: Dr. Oktay Baysal

A new and efficient procedure for aerodynamic shape optimization is presented.
The salient lineaments of this procedure are: (1) use of sensitivity analysis approach to
determine analytically the aerodynamic sensitivity coefficients (gradients of the objective
function and constraints); (2) the flowfield solution is obtained either by a computational
fluid dynamics (CFD) analysis or, alternatively, by a flowfield extrapolation method (flow
prediction method) which is based on a truncated Taylor’s series; (3) the aerodynamic
shape definition is not restricted to any class of surfaces and the optimizer automatically
shapes the aerodynamic configuration to any arbitrary geometry; and (4) the procedure does
not require any expertise other than that needed for formulating the optimization problem.

This procedure is successfully demonstrated on two optimization problems.

In the first optimization problem, the ramp shape of a scramjet nozzle-afterbody
configuration is optimized to yield a maximum thrust force coefficient. To gain a detailed
understanding of the complex flowfield features of the nozzle-afterbody configurations
prior to its design optimization, a CFD capability for the mixing of two-dimensional,
viscous, multispecies flows has been developed. It is shown that heavier exhaust mixture
(simulated by a Freon-Argon mixture) undergoes gasdynamic expansion at a smaller rate
than does lighter "air” exhaust flow. The mixing of these flows is modeled in two different

ways in order to compare their relative fidelities in modeling the flow physics and
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computational efficiencies. The computationally less expensive model achieves comparable

quantitative results, but it produces some nonphysical oscillations.

In the second optimization problem, two transonic airfoils are shape optimized. The
shape of the first airfoil is optimized to achieve a minimum drag while maintaining the lift
above a specified value. The shape of the second airfoil is optimized to achieve a maximum

lift while constraining the drag under a specified limit.

In the sensitivity analysis approach, two methods, namely, the direct sensitivity
method and the adjoint variable method, are formulated and discussed in regards to their
relative accuracy and computational requirements. These methods are also compared with
the traditional finite-difference approach to assess their efficiencies. In this study, two
flowfield governing equations are used, namely, the Euler equations and the thin-layer
Navier-Stokes equations. Their discretized equations are solved using an implicit, upwind-
biased, finite-volume scheme. The flux-vector splitting of Van Leer is used in the

discretization of the pressure and convective terms.

Two direct matrix solvers and an iterative solver, which are deemed most applicable
to the large linear systems of algebraic equations arising in the sensitivity approach, are
investigated with regards to their accuracy, efficiency, and computer memory requirements.
These solvers are shown to be feasible only for small two-dimensional problems, and due
to the prohibitively high memory requirements, they become impractical for large two-
dimensional problems and inapplicable for any of the three-dimensional problems. To
alleviate this limitation, a new scheme based on domain-decomposition principles has been

developed and is called the Sensitivity Analysis Domain-Decomposition (SADD) scheme.
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Chapter 1

OVERVIEW AND RATIONALE

In conventional aerodynamic optimization procedures, a dominant contributor to the
computational cost is the calculation of the gradients information (aerodynamic sensitivity
coefficients). Traditionally, the sensitivity coefficients are determined by a finite-difference
approximation which requires repeating the aerodynamic analysis with incremented values
of design variables. The cost of this approach is usually prohibitive particularly when the
flowfield governing equations are expensive to solve. Moreover, this approach sometimes
may provide highly inaccurate gradient information. A preferable approach for obtaining
these coefficients can be achieved by using a sensitivity analysis (an analytical
determination of the sensitivity coefficients). This approach not only eliminates the costly

and repetitive flow analyses, but it also provides exact coefficients.

Another contributor to the computational cost in the above procedures is the
repetitive flowfield analyses (CFD analyses) required during the evolution of the optimum
shape. Usually, these analyses are performed every time the shape changes, even when the
shapes are very close to each other. Therefore, it is desirable to develop a method that can
extrapolate the flowfield solution when the changes in the shape are small and then predict a

new solution at a relatively low computational cost.

In order to investigate the above concepts and thereby develop an efficient
optimization procedure, demonstrative optimization problems have to be defined. One of
the classical optimization problems is maximizing the thrust of an exhaust nozzle. This may

be achieved by shaping the contour of the nozzle. A similar problem of today's current
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2
interest is the optimization of the shape of the nozzle-afterbody of a hypersonic vehicle

powered by a scramjet. This problem allows examination of the procedure in high speed
flow regimes since it involves an expansion of a supersonic flow which mixes with a
hypersonic flow. Furthermore, the nozzle-afterbody configuration involves not only an
internal flow, as do the conventional nozzles, but also an interaction between internal and
external flows. Consequently, this design example facilitates the testing of the procedure

concurrently in different types of flows.

To provide a better understanding of the flowfield features of the nozzle-afterbody
configuration and in turn help its aerodynamic design at high speeds, a CFD capability for
mixing flows has to be developed. For this purpose, the present study is divided into two
parts. Part I focuses primarily on the issue of mixing flows through an internal-external
nozzle of a scramjet engine. Whereas, Part II focuses on the details of the different

components of the new aerodynamic optimization procedure.
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PART I: NOZZLE-AFTERBODY FLOWFIELD ANALYSIS
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Chapter 2
INTRODUCTION TO NOZZLE-AFTERBODY FLOW ANALYSIS

In recent years, the ability to predict the performance characteristics of aircraft
nozzle-afterbody configurations at hypersonic speeds quickly and accurately has become
increasingly important. One of the principle reasons for this is to provide a better
understanding of the flowfield features of these configurations, and hence help their
aerodynamic design at very high speeds. Another important reason is that, above Mach
number of approximately 8, ground test facilities do not duplicate the relevant flight
simulation parameters such as Mach number, Reynolds numbers, gas composition, and
enthalpy level. Therefore, other alternatives should be found for the testing of such aircraft

configurations.

At hypersonic speeds, the propulsion system efficiency must be high, the engine
must add minimum drag and weight to the vehicle, and the engine must process as much air
as possible. These objectives are best met by considering the entire underside of the vehicle
as part of the propulsion system. This concept, referred to as the airframe-integrated
modular scramjet, is illustrated in Fig. 2.1. The concept utilizes the aircraft forebody for
part of the inlet compression and the aftbody as part of the nozzle expansion. This leads to
reducing the size as well as the weight of the nozzle while obtaining the required thrust at
the high Mach numbers. However, the impirgement of the highly underexpanded exhaust
gases on the afterbody and the control surfaces of the aircraft could significantly affect the
overall vehicle stability. Therefore, obtaining the optimum thrust while limiting unfavorable
forces and moments on the vehicle is a crucial issue in the design of the nozzle and

afterbody region.
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The aerodynamic analysis and testing of such nozzle-afterbody configurations is an
important facet of the propulsion-airframe integration effort. As mentioned before, ground-
based testing of actual scramjet-afterbody geometries is not only difficult, but also
expensive due to the high temperatures and pressures incurred in the combustion process.
One of the alternatives for this is the use of a simulant gas to substitute for the actual
combustion products, provided that the dynamic and thermodynamic similitude are
enforced. Perhaps a more economical alternative would be to do the preliminary design
analysis using Computational Fluid Dynamics (CFD) codes, due, in part, to the extremely
rapid growth in the speed and storage capability of the digital computers. Therefore, an
overwhelming degree of reliance has been placed on CFD, especially in the achievement of
hypersonic flight with a NASP-like vehicle (National Aero-Space Plane). This reliance
covers the range of design activities, from the design of aircraft configuration to the design
of the integrated engine system. In fact, the belief that CFD can be used to predict all of the
relevant flow physics, from aircraft take off to orbital speeds and return, has been one of
the reasons for the revival of hypersonic research. However, there is currently very little
experimental data for very high Mach number flows. Hence, some means of calibrating and
validating CFD codes must be achieved before they can be used with complete confidence

in the design process.

2.1 Literature Survey

In the mid-1970's, an experimental technique for the cold gas simulation of a
scramjet exhaust [1-3] was developed as part of the X-24C program. The objectives of this
study were to establish the standards of similitude for a hydrogen-air scramjet exhaust
interacting with a hypersonic vehicle afterbody, and to experimentally validate the
procedures that would be usable in conventional wind tunnels. It was determined in this

study, that in addition to the usual nondimensional similitude parameter requirements for
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inviscid flows (i.e. Mach numbers, pressure ratios, temperature ratios, etc.) the ratio of
specific heats ( ) of the combustion products must also be matched by the simulant gases.
This concept is discussed in further detail in Ref. [4]. It was also determined in Refs. [1-3]
that the nonequilibrium dissociation of gases at high exhaust temperature is deemed
secondary in influencing the aerodynamics. However, the aerodynamic forces were very

sensitive to flow perturbations caused by the nozzle geometry.

An extension of this work was carried out at NASA Langley Research Center by
Cubbage and Monta [5] and Monta [6]. In these studies, a wind tunnel model of a single-
module scramjet nozzle-afterbody configuration was constructed for testing (Fig. 2.2). The
simulant gas mixture was fed into a high pressure plenum chamber via a mounting strut.
The gas in this plenum chamber was expanded through a converging-diverging supersonic
nozzle to approximately Mach 1.7 at the combustor exit plane, where it was further
expanded over the nozzle-afterbody section of the model. This supersonic exhaust flow
also encountered a hypersonic (Mach 6) freestream air flow, through which mixing occured
in free shear layer containing additional expansions and shock waves. A removable tapered
flow fence was used to simulate a quasi two-dimensional flow. When this fence was
removed, the nozzle flow also mixed with the hypersonic freestream in the lateral direction
through a spanwise expansion, causing the flow to become fully three-dimensional.
Experimental data was obtained for a scaled scramjet nozzle-afterbody flowfield using both
air and a Freon/Argon mixture as the simulant gas. Static pressures were measured on the
afterbody surface, for both two-dimensional and three-dimensional flows, with various
nozzle-afterbody geometries. Also, by using a flow rake specifically designed for this
purpose, the off-surface flow was surveyed to obtain the pitot pressures. The data obtained

from these experiments were used to compare with the present computational results.
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Extensive numerical studies were conducted on rocket and nozzle based flows
without solid afterbody surface interaction, that is, the flow from a nozzle exit plane which
flows directly into the freestream. Most of these studies focused mainly on the thrust
vectors generated by the nozzle itself, and not on the actual afterbody flow field plume
structures. However, there were several of these studies which did attempt to analyze the
downstream flow. Deiwert [7] used the thin-shear-layer formulation of the Navier-Stokes
equations in the study of supersonic axisymmetric flow over boattails containing a centered
propulsive jet. Solutions were presented for jet flows expanding supersonically into a low
pressure supersonic freestream flow, with an in-depth analysis of the afterbody flow
structure. Comparison with experimental data showed good agreement in many of the key
flow features, such as, exhaust plume shape and structure, and the location of the external
compression shocks. However, the quantitative comparison of nozzle flow exit angle was
poor, and thought to be due to the improper modeling of turbulent transport phenomena in

the region of separated flow at the base of the nozzle.

Hoffman et al. [8] computed the afterbody flowfield of an axisymmetric cold gas
rocket nozzle flowfield using a complete Navier-Stokes formulation algorithm. They
presented the results of a grid refinement study which showed that the grid resolution is
very important in regions of shear layers and recirculation. It was also shown that the
results obtained on a fine grid, where the grid point spacing was very dense in regions of

expected large gradients, compared much more favorably with the experimental results.

In recent years, with the renewed interest in hypersonics and propulsion airframe
integration, there have been numerous computational studies related to nozzle-afterbody
flows. Most of the literature concentrated on one particular aspect of the flow or its
approximation such as, turbulence modeling, adaptive gridding schemes, shear layer
analysis, and real gas effects. Several of the studies which are directly related to the present

work are given below.
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Barber and Cox [9] presented an overview of computational works being conducted
towards the design of hypersonic airbreathing aircraft, with a section specifically devoted to
the integration of the propulsion system. Povinelli [10] provided a summary of the current
computational works which were directly related to the propulsion systems, including the
nozzle-afterbody section. Harloff et al. [11] conducted two-dimensional Navier-Stokes
analysis of scramjet nozzle flowfields at design and off-design conditions. In this study,
both the nozzle exhaust flow and the external flow were assumed to be air. Nozzle
afterbody flowfields were computed over a range of nozzle exit Mach numbers for over-
expanded and under-expanded flows. Nozzle efficiencies were computed for all of the

cases, however, the numerical results were not compared with experimental data.

In an effort to provide a‘better definition of the nozzle flow field features, use of
adaptive gridding was studied by Hsu [12]. Several cases of air flows were calculated
using a two-dimensional Navier-Stokes code with and without the use of adaptive grids. It
was found that the use of adaptive grid yielded a sharper shock and thinner boundary layer,

as well as diminishing the large region of shock-induced-boundary-layer-separation.

Baysal and Hoffman [13, 14] conducted three-dimensional caiculations of non-
axisymmetric air flow, in which the nozzle jet was allowed to expand and shear in all three
directions. This was accomplished by adding an external side wall and side ramp to the
internal nozzle. Although the general trend of the off-surface experimental data was
followed by the computational results, some discrepancies were observed in both shear
layer and shock regions. The computational results, however, agreed very well with the

experimental surface pressure data.

Lai and Nelson [15] used the three-dimensional Navier-Stokes code, PARC, to
compute nonaxisymmetric nozzle flows. The numerical scheme of this code employed

three-point central differences uniformly throughout the flowfield to approximate spatial
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derivatives. Second- and fourth-order Jameson type artificial dissipations were also
included. Laminar flow computations were carried out for the experimental nozzle
geometry of Re and Leavitt [16], which exhausted into still air. This study indicated that
the shear layer is highly three-dimensional in its structure wiih significant variations from

the top wall to the bottom and the side walls.

In an effort to illustrate the CFD capability in simulating the mixing of multispecies
flows in a nozzle-afterbody, Baysal et al. [17] performed two-dimensional analyses and
compared with the experimental results of Cubbage et al. [5, 18] and Pittman [19]. The
flow was analyzed using two different codes. The first code used was an implicit, upwind,
finite-volume, Navier-Stokes solver which assumed a constant ratio of specific heats (y).
The second code was an explicit MacCormack-scheme based Navier-Stokes solver. This
multispecies code included species continuity equations to account for variable 7 due to the
mixing of the simulant gas (Freon/Argon mixture) with the external freestream air. The
results of further two-dimensional calculations, in which two different mixing models were
compared, was also reported by Baysal et al. [20]. This work was extended by Raysal et
al. [21, 22] to three-dimensional flows and adaptive gridding. The two-dimensional
computational meshes were refined using flow adaptive grids to enhance the computational
solution in the regions of high gradients, and to reduce the overall computational error.
Three-dimensional flow solutions were computed for the nozzle-afterbody test section and
compared with the three-dimensional experimental surface pressure data [5]. It was found
that the Argon/Freon simulant gas expanded at a slower rate than air, which led to a more

pronounced reverse flow region at the cow! tip.

Ray et al. [23] presented two- and three-dimensional results based on Euler
(inviscid) calculations of single and multiple module scramjet afterbody flows using a
Freon/Argon simulant gas mixture. Their results showed good agreement with the

experimental data [3]; however, their calculations were based on the nozzle flow expansion
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into quiescent air not the actual hypersonic flow of air. Also, since they did not include the

viscous effects, shear layers and separated flow regions were not captured.

Edwards [24] studied the exhaust plume/afterbody interactions using the thin-layer
Navier-Stokes equations with a coupled species continuity equation. This allowed for the
solution of a binary gas mixture flow. Computations were performed for the external flow
of air (y =1.4) mixing with a simulant gas (y =1.26). Additional computations were done
with the simulant gas assumed to be air (y =1.4). It was concluded from the computational
results and a kinetic theory of gases rationalization, that the drop in static pressure in
supersonic expansion will be smaller for the y =1.26 gas than for the Y =1.4 gas, and hence

produced greater afterbody forces.

Ruffin et al. [25] have used two- and three-dimensional upwind Navier-Stokes
solvers to perform preliminary analyses for a planned nozzle-afterbody experiment.
Laminar nonreacting computations of a nozzle exhaust flowfield were performed on a grid
of (48x60x3) for the two-dimensional flows and on two patched grids for the three-
dimensional flows. Two-dimensional calculations were conducted with parametric studies
over various Mach numbers, pressure ratios, and afterbody ramp angles in order to help
determine the experimental model loads and optimum afterbody ramp angle and length.
Three-dimensional calculations were performed to predict the shape of the jet plume and the
flow spillage from the windward side of the model into the expanding flow region. Three-
dimensional results were also used to determine optimal locations for experimental probes
and flow measurements devices, and to aid in the design of side flow fences which were

used to minimize the flow spillage.

Tatum et al. [26] conducted two- and three-dimensional analyses of scramjet
external nozzle flowfields and compared surface and off-surface flowfield data of Cubbage

and Monta [5] and of Monta [6]. Air and an Argon/Freon mixture were used as simulant
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gases. The off-surface flowfield was predicted best when calculations were for a turbulent
flow. However, the laminar solution predicted more accurate comparisons of forces and

moments.

Huebner et al. [27] performed two-dimensional CFD analyses on afterbody
configurations to study a number of issues pertinent to hypersonic, airbreathing vehicles.
A comparison of computational results with the schlieren photographs of a powered,
hypersonic, airbreathing cruise missile configuration showed that accurate prediction of
afterbody flow features necessitated the solution of Navier-Stokes equations. It also
showed that, at the least, thin-layer Navier-Stokes solutions were required for any

conditions at which cowl tip boundary layer separation was likely to occur.

2.2 OBJECTIVES

This part of the dissertation is directed towards gaining a detailed understanding of
the complex flowfield features of the nozzle-afterbody configurations. It also aims at
developing a CFD capability for the mixing of multispecies, supersonic and hypersonic
flows. This, in turn, aids the aerodynamic design optimization of the afterbody of
hypersonic vehicles. Also, this computational capability augments the experimental studies

of cold-gas simulation. These objectives are accomplished by:

(1) performing adaptive computations of viscous, multispecies mixing of a supersonic jet

and a hypersonic freestream of air;

(2) addressing two important issues, which arise from the efforts of choosing the
appropriate multispecies mixing model. Firstly, since the flow is turbulent and has
high-speed, some simplifications are possible in modeling the diffusive multispecies

mass transport. The second issue is related to the numerical modeling error that
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manifests itself in the mass deficit. The common practice of assuming that the sum of

species mass ratios is unity, may hide some of this error;

(3) investigating the differences between using air as opposed to a simulant gas

(Freon/Argon mixture) in modeling the exhaust flows.

The organization of this part of the dissertation is as follows. Chapter 3 conveys the
basic formulation for cold gas nozzle-afterbody flow analysis, i.e., the governing equations
for flows with variable specific heats. Also, the baseline solution algorithm as well as
different diffusion velocity models are discussed in Chapter 3. Some representative results
for two types of flows, namely, Air-Air flows and multispecies flows are presented in

Chapter 4.
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Chapter 3
FORMULATION FOR MULTISPECIES FLOW ANALYSIS

3.1 Governing Equations

The nozzle-afterbody flowfield is governed by the Navier-Stokes equations coupled
with a set of continuity equations describing each of the species present in the flowfield.
Since the simulant exhaust gas mixture is cold, the flow is non-reacting and thence the
chemical production terms disappear from the species continuity equations as well as the
Navier-Stokes equations. The conservation form of the time-dependent, compressible,
two-dimensional, Reynolds-averaged Navier-Stokes equations, and species continuity

equations written in generalized coordinates [17] is given below:

8 fF-F) A6-8)
an

ot a& (3.1
where
p pY pv
0 pu pUu+ & P pVu+1_P
Q—J T\ PY F N va+§yP G 7 pwv +n P
pe (e+P)U (e+P)V
Pl pUf. pVf,
‘ 0
o
éxrxx*‘gyrxy nT +171
F=1 §xr +& 1 A -1 e
voJ xy Yy G=71 Mo+ NT,
EB+8 b n.b.+Mm b

A& m+¢ 7)) pn %+ n, 7)1,
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The coordinate transformation Jacobian J is given by:

J=oel_
e In ™Y (3.2)
The contravariant velocities, U and V, are defined as:
U=&u+&v (3.32)
V=Tt +myv (3.3b)
The shear stress, 7, and the heat flux, q , terms are written as follows:
7, =(4+n) (ué‘gx * “n”x) +4 (vé‘é:y * "n”y) (3.4a)
%, = (,1 + u) (Vg‘:y + vnny) + A (uééx + unnx) (3.4b)
T, =l (“géy + T, + "géx + vnnx) (3.4¢)
. of _ oT Y ~
o0& on s=1 (3.52)
oT _ aT y .
d=—k\§ —+n —|+p > I L7
Y (éy aé yan) = sYs s (3.5b)
The terms b, and by in both F,, and G, are given by:
by=1U Toy + V Ty — G (3.6a)
by=u Ty +v Ty, — gy (3.6b)

In the above system, the mass fraction of each species (s) is defined as f; = p, /p .

The enthalpy of each species (s) is denoted by /. The pressure and temperature of the
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mixture are denoted by P and T, respectively. Stokes hypothesis for bulk viscosity,

A+(2/3)p = 0, is invoked. The Cartesian components of the species diffusion velocity Vs

are ﬁs and '17s, which will be defined in Section 3.4.

For the mixing of N species, the subscript (s) varies from 1 to (WV-1). Hence, there
are (N~1) species continuity equations to be solved for f; in addition to the global
continuity equation, two momentum equations, and the energy equation. By virtue of the
conservation of mass, the mass fraction of the Nth species, fj, can then be found from the
following identity [28],

N
£, =10
s=1 3.7)
Therefore, (NV+3) coupled partial differential equations, Eq. (3.1), need to be solved for the
vector of conserved quantities Q. However, in an attempt to compute the global mass
conservation error, the computations are repeated by solving N species continuity

equations, that is, a total of (V+4) coupled equations.

3.1.1 Thermodynamic Model

In this study, all the gases are assumed to be thermally perfect but calorically real
gases. Hence, the enthalpy () of each species (s), the total internal energy, and the

pressure can be expressed as:

T
ho=h+ f Cp, dT (3.8)
298.25
3 Pl
e=s§1 hsfs_-5+5(u2+ v2) (3.9)
P=pR,;,T (3.10)
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The enthalpy of formation and mixture gas constant are denoted by 4° and R, ;0
respectively. Note that the enthalpy of the mixture is the summation of the partial enthalpies
of the species. Equation (3.10) is the ideal gas equation written for a mixture with N

species.

Other thermodynamic quantities, such as, the specific heat at constant pressure for

each species, Cp,, and the ratio of specific heats, 7, are calculated as follows. The specific

heat for each species is first defined by a fourth-order polynomial in temperature [28],

C
P —A +B T+C T2%+D T3+ E T
R s s s s s

s (3.11)

where R is the species gas constant. The coefficients in Eq. (3.11) are given in Table A.1
for each species involved in this study. Knowing the specific heat of each species, the
enthalpy of each species can then be found from Eq. (3.8) with the use of Table A.2. The
total internal energy is then computed from Eq. (3.9). The ratio of specific heats is obtained
from the following relationship:

Y= (—————R”‘"" +1

Chpix = Rois) (3.12)

where Cp,,;. is the mixture specific heat at constant pressure and is given by:

N
Cp.= 2 Cpf
e ot (3.13)

The expression for the mixture gas constant, used in both Eq. (3.10) and Eq. (3.12), is

given by:
>
R . = R
mix = s°s (3‘14)
where,
=R
Rs Ws (3.15)
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R is the universal gas constant given in Appendix A. The molecular weight, w, for

different species are given in Table A.2.

3.1.2_Transport Properties

The determination of the mixture transport properties, namely, the coefficients of

mixture viscosity, mixture thermal conductivity, and diffusion, is discussed in this section.

3.1.2.1 Coefficient of viscosity for gas mixture:
For a mixture of gases of markedly different species, mixture viscosity varies
strongly with species mass fraction. The semi-empirical formula of Wilke [29] given below

is deemed quite adequate in determining the mixutre viscosity:

N
X
Hmix = 2 N—s#—s-‘-'
LY X @
r=1 (3.16)
in which

b = [1 + (:us/.ur)llz(wr/ Ws)1/4]2
i [8 + 8wyw,]1/2 (3.17)

Here, X, and X, are the mole fractions of species s and r; y  and u, are the molecular
viscosities of species s and r at the system temperature and pressure; and w, and w, are the

corresponding molecular weights. Note that &, is dimensionless and, r =s when®,, = 1.

In terms of the mass fraction, f; , the mole fraction of species (s) [30] is given by:

X.= ffws
TN

fr/Wr

rgl (318)

The viscosity of an individual species is computed from the Sutherland law [30],

&_(_’];)3/2'1"0 + S
Uo Ty T+S (3.19)
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where p; and T, are reference values and S is the Sutherland constant. These values for

the species involved in this study are given in Table A.3.

For turbulent flow computations, the turbulent Reynolds stresses in the time
smoothed Navier-Stokes equations are assumed to be proportional to the laminar stress
tensor with a coefficient of proportionality defined as the eddy viscosity, u,. Therefore, for
turbulent calculations, the effective mixture viscosity coefficient, Y, ., defined below is

used,
Hemix = Hmix + Ht (3.20)

A detailed description of the eddy viscosity coefficient, i, is given in Refs. [4,34,35].

3.1.2.2 Coefficient of thermal conductivity for gas mixture:
Coefficient of thermal conductivity for the gas mixture is estimated by a method

analogous to that previously given for viscosity [31],

(3.21)
Here, £, is the thermal conductivity of species (s) and is computed from the Sutherland law
(Eq. (3.19)),

/_c_s_=('L)3/2T'0+S'
T T+S' (3.22)

The reference values k, and T’,, and the Sutherland constants, S’, are also

tabulated for the species involved in this study in Table A.4.
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The dimensionless quantity @, is identical to the one which appeared in the

viscosity equation (Eq. (3.17)).

For turbulent flow computations, the effective thermal conductivity coefficient of

the mixture is given by

kemix = kmix + ktmix (3.23)

where kg, is the turbulent thermal conductivity of the mixture. It is obtained by
specifying turbulent Prandtl number and using the following relation

k = Cpmix H,

hmix Py, (3.24)

In this study, the turbulent Prandtl number is given the value of 0.9.

3.1.2.3 Binary-Diffusion Coefficient:
The Chapman-Enskog kinetic theory formula for the viscosity and the thermal
conductivity were given earlier by Eq. (3.16) and Eq. (3.21); the corresponding formula

[30] for the binary-diffusion coefficient D, between species (s) and (r) is:

3(_1 1
0.00185834/ T we +——r
Dy = Ws W

POz Qs (3.25)

in which Qp ;, is a dimensionless function of temperature and of the intermolecular
potential field for one molecule of (r) and one molecule of (s). This dimensionless quantity

is called the diffusion collision integral and is approximated by:

psr = T*-0.145 4 (T* + 0.5)— 2.0 (3.26)
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where T* = TIT, ;,. The effective temperature, T ,, and the effective collision diameter,

o,,, are averages computed from the separate molecular parameters of each species:

-1
Oy =5 (os+ 07) (3.27)

Tesr = (Te,s Ter)'? (3.28)

These molecular parameters are listed in Table A.5 for the species involved in this

study.

For some engineering calculations [32], the mass diffusivity of all species can be

assumed identical. Hence, the binary-diffusion coefficients, Dy, , can be assumed the same

for all species and be approximated by:

s pSc (3.29)
where the Schmidt number, Sc, is given the value of 0.22.

For turbulent flow computations, the effective binary diffusion coefficient is given

by
Degsr= Dg + Dt,sr (3.30)

where D, , is the turbulent binary diffusion, and is obtained by specifying turbulent
Schmidt number along with the use of the following relation

T pSc, (3.31)

Since for most turbulent mixing problems the turbulent Lewis number, which is the
ratio of the turbulent Prandtl and Schmidt numbers, is approximately unity, the turbulent

Schmidt number is equal to 0.9.
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3.2 Determination of Diffusion Velocities

The diffusion velocity f/"s is the velocity of each species introduced upon the
convection velocity due to all diffusion processes. The diffusion velocity I—/'S is calculated

using two different methods; the simple binary interaction model and the complete

multicomponent diffusive interaction model.

In the binary model, mass diffusivities of all the species are assumed identical, and
only concentration gradient effects are included. Hence, the diffusion velocity is computed

using the Fick's law [31] written as:

ST

==D,, Vi, (3.32)

where the diffusion coefficients, D, ;,, are computed using Eqs. (3.29) and (3.30).

In the complete multicomponent model, it is assumed that there is no thermal
diffusion and that the same body force per unit mass is acting upon each species. Hence,
the species diffusion velocity is determined using the reduced form of the multicomponent

diffusion equation [33] derived from the kinetic theory and written as,

NoI[xx
VXS= 2 l:(DS r
r=1 e

,Sr

3z = YP_
(V’_ V‘)} X% (3.33)

Here the diffusion coefficients, D, g, for each species is computed using Egs. (3.25) and

(3.30).

Equation (3.33) requires solving (V) simultaneous algebraic equtions for each
component of the velocity. It should be noted that for N species, however, the system of N
equations defined by Eq. (3.33) is not linearly independent. Therefore, one of the

equations must be replaced by the following constraint
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N

o<

pLV,=0
b (3.34)

The resulting system of algebraic equations is solved using a lower-upper (LU)

decomposition method.

When solving (N) species continuity equations, the complete multicomponent
model cannot be applied, because Eqs. (3.17) and (3.34) can no longer be satisfied in an

exact manner due to the computational error.

The local mass error, LME, distribution due to the modeling of multispecies mixing

is computed from the formula below, which is evaluated at every grid point

N
LME =p-Y, p;
s=1 (3.35)

The global mass conservation error is also computed by numerically integrating the mass

along the computational domain boundaries.

3.3 Solution Algorithm

When the spatially unsplit, predictor-corrector technique of MacCormack [36] is

applied to the governing equations (Eq. (3.1)), the following algorithm results:

Predictor:
Am ~n ~ n
Q; =9,;-4 [A«’:(F -F ) +4,(6-8, ;] (3.36)
Corrector:
Antl _ 1 AR n+l S n+l S \n+l
g =L0"+ 07 - ar {Vg(F—Fv +V (G-G,)7 } 63
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where Ag and A, are forward spatial differences, and V¢ and V;, are backward spatial

differences. The coordinate transformation is chosen such that A = An=1.0.

This explicit finite difference scheme is second-order accurate in both time and
space. In the present form of this scheme, forward differences are used for all spatial
derivatives in the predictor step while backward differences are used in the corrector step.
This type of differencing is alternated at every other time step in order to eliminate any bias
due to the one-sided differencing and to ensure symmetric computation. An example for

this symmetric sequence is given below for two temporal steps [32]:
Q':‘H = LbLfQiZ' (3.38)
07 =LL,07" (3.39)
where L and Ly are unsplit backward and forward difference operator, respectively.

In order to maintain seccnd-order spatial accuracy, the derivatives appearing in the
viscous terms, Eq. (3.4), are differenced with one-sided spatial differencing in the direction
opposite to those of the fluxes. The scheme is conditionally stable and the time step ts
restricted by the CFL condition. In the present study, the following formula of Tannehill et

al. [37] is vsed to determine the time step

A<l (Ar)er
T 1+2/Rey (3.40)

where G is the safety factor (= 0.9), (At)cpy is the inviscid condition given by

. M 1 T \!
Ao s[Be M yg [ 1 1
ik (Ax +Ay " (4 (Ay)z) (3.41)

Re,is the minimum mesh Reynolds number given by
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Re, =min(Re sy, Reyy) (3.42)
where
Rey, =P ljAx
Hemix (3.43)
ReAy = p |V|Ay
ﬂe,mix (3.44)

where a is the local speed of sound. Before each step, At is computed for each grid point
using Eq. (3.40). The smallest At value is then used to advance the solution over the entire
mesh. After each predictor or corrector step, the primitive variables (p,u,v,e,P,T.f,) are

found by "decoding" the Q vector.

Flows containing strong shocks often cause numerical oscillation which can lead to
program failure. The oscillation is caused by numerical truncation error and can be reduced
by mesh refinement. This can be impractical, particularly for calculations for which the
oscillation is far removed from the region of interest. In the present study, therefore,
fourth-order damping terms known as "artificial viscosity" are added to the differenced
governing equations to suppress the numerical oscillations. The fourth-order smoothing
scheme used here, which is an alternative form of the fourth-order type of smoothing

scheme devised by MacCormak and Baldwin [38], is given by

43 [ 1 PP, 1 7]\ 90]

& (Ax) ox L(M e )(4P ox?| " T [px? ox (3.45)
¢d | 1 [o%], 1?7\ 20

g (Ay) 3 L(M "'a)(ZF dy2 TaT ayz)g_ (3.46)

where 0 < &, &y < 0.5 for stability. These smoothing terms have very small magnitudes

except in regions of pressure and temperature oscillations where truncation error is already

adversely affecting the calculations.
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The computer program for this formulation is block structured and vectorized. Its
average processing rate on the CRAY-2 computer of the National Aerodynamic Simulation

system of NASA is 60us per iteration per grid point.

3.4 Flow-Adaptive Grids

The computational domain includes a region above the cowl where the flow is
hypersonic. The rest of the computational domain is bounded by the lower surface of the
cowl and the ramp, where the supersonic flow through the internal nozzle expands (Fig.
3.1). This computational domain is selected to be (18.5 H x14 H), where H is the
combustor exit height. The cowl and the ramp angles are 12° and 20°, respectively. A
fixed, boundary fitted grid is generated with appropriate clustering in the regions where

high-flow gradients are expected (Fig. 3.2a).

Table 3.1 Computational grid sizes

Block Idim Jdim Total
1 42 41 1722
2 42 41 1722
3 65 42 2730
4 65 41 2665

The global grid, which consists of 8839 cells, is divided into four blocks (Table
3.1). The grid lines are contiguous across the block interfaces, where the solutions from
each side of the interface are matched. In the normal direction, the cow! separates Blocks 1
and 2, and a horizontal line extending from the cowl tip to the downstream separates
Blocks 3 and 4. In the streamwise direction, the normal line at the cowl tip separates
Blocks 1 and 3, and Blocks 2 and 4. This multiblock approach of domain decomposition

alleviates the numerical errors that might occur if the boundaries and the interior of the
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cowl were included in the computational grids [16]. This approach also reduces the
computer core memory requirement, since the largest Block (2730 cells) is about 30% of

the global grid. The computer core memory needed for this study is about 16 Megabytes.

The governing equations are initially solved on this fixed grid until the global error
is reduced by about 2 orders of magnitude. Then the grid is adapted to the current local
flowfield solution using the two-dimensional spring-analogy approach of [39]. The
flowfield is then recomputed on the adapted grid (Fig. 3.2b). This grid adaptation
procedure enhances the solution by reducing the global error by another 2 orders of

magnitude.

The adaptation is done as a sequence of one-dimensional operations. For example,
the operation starts in the &-direction by redistributing the grid points according to a
specified weighting function starting from the 7=0 line to the 17 = 1,,,, line. Then the
process is repeated in the 7)-direction on the £ lines. The weighting function, in the present
study, is derived from the gradient of the composite function, [0.5 p+ 0.3 u+0.2 §],a

specified minimum step size, and a specified maximum step size.

The n-direction adaptations are performed separately for the region above the cowl
(Blocks 1 and 3) and the region below the cowl (Blocks 2 and 4). The &-direction
adaptations are also performed separately, first for Block 1, then for Block 2, and finally
for Blocks 3 and 4 together. At the end, all these separate parts are blended together by
applying the adaptations only to the block interfaces. This practice ensures maintaining the
original shape of the cowl and the block interfaces. Further details of this flow-adaptive

grid scheme, including the necessary equations, are given in Appendix B.
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3.5 Boundary and Initial Conditions

Improper treatment of boundary and initial conditions can lead to serious errors and
perhaps instability. Therefore, special considerations are required in the giztermination of

these conditions.

The boundary conditions are specified explicitly. At the inflow boundary, the flow
is supersonic at the combustor exit and hypersonic at the upstream of the external flow on
the upper cowl surface. Hence, the velocities , the pressure , the temperature, and the
species mass fractions are specified and kept fixed. However, for viscous flow
calculations, appropriate boundary-layer profiles for these properties are required at this
boundary. Therefore, the mass fractions of the species are first specified at the combustor
exit and at the upstream of the external flow. Then, two-dimensional boundary-layer
profiles are generated using a boundary-layer program [40] and imposed at the combustor
exit and at the upstream of the external flow on the upper surface of the cowl. These
profiles ensure the matching with the experimentally specified Mach number, ratio of

specific heats, total pressures, and total temperatures.

At the solid boundary, the walls are considered to be noncatalytic, impermeable,
and adiabatic. The wall pressure is calculated from the boundary-layer assumption that its
normal derivative vanishes at the wall. The density is then calculated from the state

equation. Consequently, the conditions are given by

o2 0% g
on

u=0,v=0 , m— =
on n (3.47)

At the downstream boundary, the outflow is supersonic and the values of the

velocities, static temperature and pressure, and species mass fractions are determined by
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first-order extrapolation from those immediately adjacent upstream values.The density is

then calculated by employing the state equation.

The outer boundary always lies in the freestream of the external flow. Furthermore,
since the normal to the outer boundary is normal to the freestream velocity, the outflow at
this boundary is subsonic. Hence, the characteristic theory necessitates that one of the flow
characteristics point from the outside toward the inside of the computational domain.
Therefore, one of the boundary conditions must be specified analytically. In this study, the
pressure at the outer boundary is set equal to the free-stream value and the remaining flow

variables are computed from the interior flow solution by a zeroth-order extrapolation

ou ov _, oT of,
M_0,2=-0,2-=0,-2=0,P=P
on on ‘o on = (3.48)

Due to the decomposition of the computational domain into four blocks, additional
boundaries are introduced at the block interfaces. The solutions are matched at two sets of
grid points on each side in the normal direction to an interface. This provides second-order

spatial accuracy consistent with the accuracy of the solution algorithm.

The governing equations, Eq. (3.1), also require a set of initial conditions. The
flowfield is initialized by setting the values of velocities, static temperature and pressure,
and species mass fractions at each block to the values of the corresponding upstream

boundary-layer profile.
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Fig. 3.1 Dimensions of the blocks forming the computational grid.
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Chapter 4
RESULTS FOR NOZZLE-AFTERBODY FLOW ANALYSIS

A study of four cases is included in this chapter in an attempt to answer the
objectives and issues raised in Chapter 2. The upstream conditions of the nozzle exhaust
flow and the external flow are given in Table 4.1, where the combustor exit height, H, is
0.01524m. All of the flows are considered to be fully turbulent. Only Case 1 assumes the
exhaust gases to be air in order to show the differences between expanding air as opposed
to a cold simulant gas. In this study, the cold simulant gas for the exhaust gases is a Freon-

12-Argon mixture (Cases 2-4).

Table 4.1 Flow conditions at upstream of computational domain

~ Fluid (by Reynolds Total temp.  Total
Case Flow volume) Mach No. No. based CK) pressure
on(H) (kPa)
1 Combustor Air; 1.7 192,000 475 166.0
exit 79% Nz
21% O,
2-4 Combustor 50% 1.7 7500 467 172.4
exit Freon-12
50%
Argon
1-4 External flow Air; 6.0 346,000 478 2517.0
79% N,
21% O,

The computational models for (Cases 2-4) are presented in Table 4.2. Case 1

assumes a homogeneous composition of the fluid everywhere and at all times. Therefore,
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the species continuity equations and the terms representing the multispecies mixing are not
used for Case 1. However, air is assumed to be only thermally perfect and calorically real.
Computed in Cases 2-4 are the mixing of four species, namely, Nitrogen, Oxygen, Freon-
12, and Argon. The complete multicomponent diffusion model is used in Case 3, but the
binary diffusion model is used in Cases 2 and 4. Only Case 4 does not assume that the sum

of mass ratios of all the species is unity (Eq. (3.7)).

Table 4.2 Computational mixing models

Case Multispecies Specific heats  Diffusive mass  No. of solved
mass transport  ratio is function transport model partial
of differential
equations
1 No Temperature — 4
2 Yes Temperature and  Eqgs.(3.29), 4+3
composition (3.30), (3.32)
3 Yes Temperature and  Eqgs.(3.25), 4+3
composition (3.30), (3.33),
(3.34)
4 Yes Temperature and  Eqgs.(3.29), 4+4

composition (3.30), (3.32)

Before discussing the physical aspects of the individual cases, it is appropriate to
show the accuracy of the computational models. Generally speaking, it is rather difficult to
quantify the computational uncertainty for problems where no exact solutions exist. An
indicator of the computational accuracy is the comparison of the computed results with
available experimental data. Presented in Fig 4.1 are the computed and experimentally
measured pressure distributions on the ramp surface. All pressures are normalized with the
pertinent pressure values at the upstream corner, P3. The rate of expansion of airflow (Case
1) is much higher than that of Freon-Argon mixture (Cases 2-4) at the corner. The

difference between the expansion rates gradually decreases, but the pressure ratios of
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Freon-argon mixture are consistently higher than those of air. The computed pressure
values from Cases 2-4 are very close to each other. In comparison with the experimental
data, they are initially slightly lower, then slightly higher. The computed values of surface
pressures for the air expansion (Case 1) are also slightly lower than the experimental
values, but they match almost identically down the ramp. The major causes for the
discrepancies are related to the following: firstly, an estimated boundary-layer profile is
computationally prescribed for the upstream flow conditions at the combustor exit, where

the boundary-layer profile is not measured experimentally.

In an attempt to assess the effect of employing the commonly used assumption, that
the sum of computationally obtained species mass ratios is unity (Eq. (3.7)), on the
solution accuracy (e.g., Ref. [28]), a flow analysis case, where this assumption is not
used, is performed (Case4). The local mass error, Eq. (3.35), is computed first and the
results are plotted in Fig. 4.2. This error, of course, is identically zero for the other cases.
As expected, this mass error is occuring within the shear layer, where most of the mixing
takes place. It grows in the downstream direction to 2 maximum of 1%. This indicates that
Eq. (3.7) is not just an assumption, but is a necessary closure equation for the conservation

of mass in mixing flows.

Next, in order to quantify the global mass conservation error resulting from not
using Eq. (3.7), the mass deficits of Cases 2 and 4 are computed (Fig. 4.3). The mass
deficit is defined herein as the difference between the numerically integrated outflux and
influx of mass through the boundaries of the computational domain. The solutions of Cases
2 and 4 show convergence in about 4000 iterations (pseudo-time steps). The mass deficit is
less than 1% for Case 2, where Eq. (3.7) is being used in addition to three other species

continuity equations to solve for four species mass fractions. When Eq. (3.7) is not used,
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and consequently four species continuity equations are solved for four species (Case 4),
the mass deficit increases to about 8%. This reconfirms the above finding that Eq. (3.7) is
not just an assumption, but is a necessary closure equation for the conservation of mass in

mixing flows.

In order to gain an insight into the nature of the nozzle-afterbody flowfield, Cases
(1-3) are thoroughly analyzed. The solution for Case 1 is obtained first on a fixed grid,
then on two consecutively flow-adapted grids. The velocity deficit of the shear layer (Fig.
4.4) is captured more accurately due to the adaptation, which results in clustering the grid
along the shear-layer region. The structure of the flowfield is shown through the density
contours (Fig. 4.5a). The internal flow experiences two centered expansion fans prior to
clearing the cowl exit plane and the expansion continues downstream along the ramp. This
is illustrated further by the pressure contours (Fig. 4.5b). The internal nozzle flow
underexpands at the cowl exit plane, where the pressure ratio (based on the combustor exit
value) varies from 0.054 at the cowl tip to 0.20 at the ramp. The minimum pressure ratio of
the flowfield (based on the combustor exit value) is 0.03. The pressure difference across
the cowl varies from 9.988 kPa at the corner to 0.908 kPa at the tip. The shear layer

originates at this point with an expansion, and deflects up 7° with an included angle of 8°.

The density contours for the flow of the Freon-argon mixture are shown in Fig.4.6.
Although the general structure of this flow resembles that of air (Case 1), there are
significant differences. The rate of expansion is slower, and the spreading rate of the shear
layer is higher. The deflection of the shear layer is 10° and the included angle is 15°. This is
mainly attributable to the molecular weight of the simulant gas being three times larger than
air. The pressure ratio (based on the combustor exit value) at the cowl tip plane varies from
0.106 at the cowl tip to 0.50 at the ramp. The pressure difference across the cowl varies
from 16.4 kPa to 2 kPa at the tip. The flow expands further downstream of the external

nozzle to achieve a minimum pressure ratio of 0.055 at the ramp tip. This is shown for
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Case 3 in Fig. 4.7. This indicates that the Freon-argon mixture expands with a slower
expansion rate than that of air, which consequently results in higher forces acting on the

afterbody.

The contours of the specific heat ratio (7) are plotted in Fig. 4.8. It varies
throughout the flowfield as a function of temperature and local gas composition. In Case 1,
however, the variation of ¥ is only due to temperature. Since the temperature variation is
relatively small in the cold-gas simulations, the variation of ¥ from the upstream value of
1.4 is negligible (+ 0.02). For Cases 2-4, the value of yis 1.196 at the combustor exit, and
1.4 at the upstream boundary-layer edge above the cowl. The values of ¥ change in the
streamwise direction and the normal direction, with the large gradients being in the shear-

layer and boundary-layer regions.

The mass fraction contours for Freon-12 and Nitrogen of Case 3 are shown in
Fig.4.9. The fluid composition at the edges of the shear layer is slightly different from its
upstream mixtures. There is a very large gradient of mixture composition through the shear
layer. Some Freon-12 and Argon mixture is entrained upstream with the reversed flow on
the upper surface of the cowl. When Figs. 4.8 and 4.9 are inspected together, it is
observed that the major cause for the variation of yin the shear layer is the change in the

composition of the multispecies fluid. In other regions, such as near the walls, the variation

of v is primarily due to temperature gradients.

Effects of the diffusive mass transport models can be observed by comparing
Fig.4.6a with Fig. 4.6b and comparing Fig. 4.8a with Fig. 4.8b. The complete
multicomponent diffusion model, i.e., Case 3, produces smoother shear layer and
boundary layers. The binary model (Cases 2 and 4) produces more oscillations, with
quantitative results varying by about 2%. These oscillations exist despite the apparent

converged solution of Case 2 as indicated by an examination of Fig. 4.2. Therefore, the
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extra computational cost of the model used in Case 3 may be justified only if better
accuracy and oscillation-free solutions are desired. It should be pointed out that the flows
under consideration are turbulent, high-speed flows. The differences in the results from

these two models are expected to be more pronounced for laminar flows.

The main findings of the nozzle-afterbody flow analysis can be summarized as

follows:

(1) A reversed flow region is detected at the cowl tip due to the large pressure ratio
between the nozzle exit plane and the freestream.

(2) The deflection of the shear layer depends on the utilized simulant gas; the heavier
simulant gas expands at a slower rate than air.

(3) Using flow adaptive grids improves the resolution and the quality of the solution by
decreasing the computational errors.

(4) Modeling the diffusive mass transport by the multicomponent diffusion equation,
Eq. (3.33), is computationally more expensive. However, it produces better results

than that obtained by using the Fick's law (Eq. (3.32).

The above findings help the aerodynamic design formulation of the nozzle-
afterbody configuration given in Chapter 7. In addition, they augment the experimental
studies of cold gas simulation. Some conclusions and recommendations on the flow

analysis of the nozzle-afterbody configurations are given in Chapter 11.
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Fig. 4.2 Local mass error due to mixing of species (Case 4).
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Fig. 4.3 Global mass conservation error for Cases 2 and 4.
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Fig. 4.4 Velocity vectors of Case 1: (a) on fixed grid (b) on flow—-adapted grid.
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Fig. 4.5 (a) Density contours of Case 1 (b) Pressure contours of Case 1 (Y= 1.4).
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Fig. 4.6 (a) Density contours of Case 2 (b) Density contours of Case 3 (variable -Y).
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Fig. 4.7 Pressure contours of Case 3.
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Fig. 4.8 Contours of the ratio of specific heats: (a) Case 2 (b) Case 3.
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Fig. 49 Mass fraction (fs) contours of Case 3: (a) Freon-12 (b) Nitrogen.
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Chapter 5

INTRODUCTION TO DESIGN OPTIMIZATION

5.1 Rationale

The field of aerodynamic shape optimization is still a relatively new field
undergoing rapid changes in methods and focuses. This field of study involves the ability
to determine the boundary shape of aerodynamic configurations. Usually, these
configurations have to achieve certain aerodynamic characteristics subject to given
constraints and have to satisfy the governing equations of their flowfield. Generally, the
aerodynamic shape optimization methods are classified into two basic groups, where
several methods have been developed in each one of them. The first group is the inverse
design methods whereby the aerodynamic shape is generated to match some specified
aerodynamic characteristics. The second group is the numerical optimization methods,
which couple a flowfield analysis algorithm with an optimization algorithm. With these
methods, the engineer is free to choose any function to be maximized or minimized without
imposing preconceived conditions about the optimum. The present aerodynamic shape

optimization method falls into the latter group of methods.

Due to the rapid advances in computer hardware and architecture, computational
fluid dynamics (CFD) has evolved to a level of maturity to simulate complex flows with
reasonable fidelity to fluid physics. As a result, aerodynamic shape optimization now more
than ever includes the results of CFD as an important ingredient of its procedure. However,
most design engineers employ complex general-purpose CFD software packages for

flowfield analysis, and have only scant knowledge of the details of the analysis algorithms
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used in these software packages. Therefore, a major challenge faced by researchers in

aerodynamic optimization is to develop methods that are suitable for use in conjunction
with such software packages. Another challenge is the high computational cost associated
with the flow analysis of many complex real-life problems. In many cases, the designer
cannot afford to analyze the flowfield more than a handful of times. A last challenge
associated with the aerodynamic shape optimization is the computational mesh deformation
due to the changes in the aerodynamic configuration. Simple remeshing rules that translate
grid points at the boundaries usually lead to highly skewed computational meshes, which
are not suitable for CFD flow analyses. This environment motivates a focus on
aerodynamic shape optimization procedures that call for minimal interference with the CFD
analysis package, require only a small number of CFD analyses, and use efficient

remeshing techniques.

Typically, the aerodynamic shape optimization procedure consists of the following
major components (Fig. 5.1): (1) formulation of the objective function and the pertinent
physical as well as geometrical constraints; (2) definition of the aerodynamic shapes, either
by explicitly prescribing these shapes from a matrix of basis shapes, or preferably, by
determining them automatically through the optimization algorithm; (3) CFD analysis; (4)
gradients of the objective function and the constraints with respect to the design variables

(sensitivity coefficients); and (5) optimization algorithm.

The first component of the aerodynamic shape optimization procedure is case
dependent and requires a level of expertise in the field of application in question. The
second component also requires a great deal of experience and skill, if the matrix of
candidate shapes for optimization is to be prescribed effectively. However, this latter
requirement can almost be eliminated, if a method is developed to automatically shape the

aerodynamic configuration to any arbitrary geometry during the optimization process.
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The third and fourth components are the dominant contributors to the computational

cost as well as to the accuracy of the results. Therefore, it is desirable to develop an
approximate analysis method that can predict the flowfield solution for any modification of
the shape at a computational cost which is equal to a small fraction of the complete CFD
analysis cost. Furthermore, generating the first-order gradients of the objective and the
constraint functions by a finite-difference approximation requires repeating the acrodynamic
analysis with incremented values of the design variables. This simple approach has the
disadvantage of being potentially computer intensive, particularly when a complex set of
governing equations is being used for the flow analysis. A preferable approach is to obtain
the sensitivity coefficients directly and analytically from an appropriate set of equations to

eliminate the costly and repetitive flowfield analyses.

The resources required for the solution of the set of equations resulting from the
analytical calculations of the sensitivity coefficients usually increase with the dimensionality
of the problems at a rate which is more than linear. That is, if the number of design
variables or the dimensionality of the aerodynamic configuration increases, the cost of the
solution will typically be more than double. Large problems may also require excessive
computer memory allocations. For these reasons, it is desirable to seek ways for breaking a
large problem into a series of smaller problems. One of the popular methods for achieving
such a break-up is the domain-decomposition technique. The process of decomposition
usually consists of dividing the computational domain around the aerodynamic
configuration into a number of smaller subdomains and then solving each subdomain
separately. This technique not only requires low computer core memory, but also eases the

generation of the computational grids for complex-geometry problems.

The fifth component is also a field of intense research, where many unanswered
issues still exist. A perennial question, for example, is determining the criteria for the

global optimum. Such issues are beyond the objectives of the present study, but rather the
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approach here is to utilize the existing optimization algorithms in a modular manner.

Nevertheless, some of these algorithms need to be modified in order to minimize the

interference between the optimization package and the CFD analysis package.

5.2 Literature Survey

In the following section, the design optimization methods are broadly classified
according to their origin and concepts. Examples of the pioneering works in each class are
also given in this section. Sensitivity analysis is categorized based upon its concepts and it
is reviewed in Section (5.2.2). Applications of sensitivity analysis to decomposed
computational domains have been nonexistent in the field of aerodynamic optimization to
the present date and the closest applications have been in the field of structural mechanics.

Hence, only the earlier germane studies in that field are reviewed in Section (5.2.3).

5.2.1 Design Optimization Methods
In attaining the optimum geometry of a configuration, two basic groups of
aerodynamic optimization methods can be found in the literature, where several methods

were developed in each group.

The first group of design optimization methods is called the inverse design method,
in which one has to specify target aecrodynamic characteristics that need to be met at the
optimum design point (e.g., the surface pressure distribution). Inverse methods were
widely used in the design of wings and airfoils because of their computational efficiencies.
For example, Bauer et al. [41] developed a hodograph method to design wings. This
method solved the full potential equations in the hodograph plane, and hence could not
guarantee a proper treatment of discontinuities, such as shocks, occuring sometimes in the
flowfield. To overcome this difficulty, Giles and Drela [42] developed another method,
based on the Euler equations, which treated the two-dimensional flows around an airfoil as

a set of streamtubes coupled through the position of, and pressure at, the stream interfaces.
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Recently, some of the inverse design methods included the viscous effects through a

coupled integral boundary layer analysis. Examples of this approach include the methods
developed by Drela and Giles [43,44], and Lee and Eyi [45]. Another approach to include
the viscous effect is the one applied by Malone et al. [46], whereby two-dimensional
Navier-Stokes equations were used in the design of an airfoil. All the above methods were
applied to configurations at the transonic speeds. For supersonic and hypersonic flow
regimes, Lee and Mason [47] recently developed a three-dimensional inverse design

method based on the Euler equations.

Instead of achieving the prescribed aerodynamic characteristics, some design
methods use a constrained optimization process to improve the design by minimizing or
maximizing some aerodynamic quantities, such as drag, lift, or pitching moment. These
methods constitute the second group and are commonly called the numerical optimization
methods. Unlike the inverse design methods, numerical optimization methods were not
widely used in practical airfoil design primarily due to the large amounts of computational
resources needed. Nevertheless, the methods will continue to be developed since they have
many advantages, such as the automated design capability, ability to handle multi-point
design, varieties of constraints, and their amenability for inclusion into multidisciplinary

design of complete vehicles.

Examples of the numerical optimization methods, when applied to airfoil design at
the transonic flow regime, were presented by Hicks et al. [48], Vanderplaats [49,50],
Chow [51], and Lee and Eyi [52]. At supersonic flow regime, Pittman [53] applied one of
these method to airfoil design. Generally, these methods require many flowfield analyses to
develop converged designs. Some improvements of the efficiency of these methods were
obtained by using Rizk's method [54]. This method was based on a numerical optimization
methodology but it allowed for a stable iterative algorithm, where an optimizer was used on

each updated configuration even before the flowfield solution converged for a new

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



_ 53
geometry. As a consequence, a typical airfoil design involved only an equivalent of 5 to 10

fully converged flowfield solutions. However, like the other methods in this group, Rizk's
method still used finite-difference approximation to calculate the gradients of the objective
function and constraints. Sorensen [55] developed a design tool for airfoil designs which
was based on an integral boundary layer scheme [56]. Although in this new capability the
gradient information was calculated analytically, it still required many evaluations of the
objective function and constraints before reaching the optimum design. In addition, this
design tool, which is known as XFOIL, is a specialized package for airfoil design and

cannot be applied to other aerodynamic applications.

Some conclusions can be drawn from this brief literature survey. First of all, each
of these groups has its advantages and its shortcomings, hence they have to be considered
as complementary and not competitive. Secondly, each offers a different way of finding
efficient aerodynamic shapes without resorting to an expensive cut-and-try wind tunnel
testing. However, the general theme in all of them is that they require a significant level of
experience and skill to define both the target aerodynamic characteristics and the
geometrical aerodynamic shapes. For completion of the above survey, the readers should
be referred to a survey paper by Dulikravich [57], where other aerodynamic design

concepts were presented and classified according to their origin.

5.2.2 Sensitivity Analysis

One of the key elements of an optimization analysis is the sensitivity analysis. The
sensitivity analysis helps to assess the influence of variations of the design variables on the
analytical model, and guide the selection of the important design variables. In fact, the
sensitivity analysis constitutes a major part of the total optimization calculation. Hence, it is
important to carry out the design sensitivity analysis as efficiently as possible, especially

for complex aerodynamic optimization problems.
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The sensitivity analysis methodology has been available for well over two decades

in structural mechanics [58,59]. However, nonstructural sensitivity analysis, such as
aerodynamic sensitivity analysis, was nonexistent until recently. The major contributors for
such a phase lag are the nonlinear nature of the fluid dynamic equations, existence of
discontinuities, such as shocks, and the difficulties associated with the aerodynamic surface
and volume grid generation. Also, unlike most of the structural problems, the coefficient
matrix of the sensitivity equation for aerodynamics is not symmetric. Only recently and due
to the advent of the supercomputers with large memories, it was possible to solve an
aerodynamic sensitivity equation, since the size of a CFD grid is generally much larger than

a structural grid.

Following the structural mechanics classification [60], aerodynamic sensitivity
analyses may also be broken into two categories, which differ basically in how the
sequence, in which the discretization of the governing equations and their differentiations
with respect to design variables take place. In the first category, called the discrete
sensitivity analysis, the continuous flowfield governing equations are discretized before
they are differentiated with respect to design variables. Whereas, in the second category,
called the variational sensitivity analysis, the continuous flowfield governing equations are
differentiated with respect to design variables first and then they are discretized, if it is

necessary.

In 1986 Sobieski [61] made a plea to the CFD community for extending their
present capability to include the sensitivity analysis. This was followed in 1987 by Yates
[62] who proposed a new variational sensitivity analysis method which was based on the
linearized lifting-surface theory and calculated the rates of change of lifting pressures with
respect to general changes in aircraft geometry, including planform variations. This method
was applicable to steady and unsteady planar and nonplanar lifting surfaces in subsonic,

sonic, and supersonic flow. In 1988, Jameson [63] proposed another variational sensitivity
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analysis method which was based on Euler equations and used the control theory concepts.

The method regarded the aerodynamic design problem as a control problem in which the
control function was the shape of the boundary, and consequently, it was the mapping
function. The variational sensitivity equations were obtained by first rewritting the Euler
equations in terms of the mapping function and then differentiating the resulting equations
with respect to design variables. Recently, this method wa applied to the airfoil design at

transonic speeds by Lewis et al. [64].

Much of the literature concerning the discrete aerodynamic sensitivity analysis
methods appeared in the past three years. For example, in 1989 Elbanna and Carlson [65]
applied one of the discrete aerodynamic sensitivity analysis methods to determine the
sensitivity coefficients for the nonlinear, transonic, small perturbation equation in two
dimensions. This was followed by Baysal and Eleshaky [66] in 1990 who applied three
different methods of the discrete aerodynamic sensitivity analysis to determine the
aerodynamic sensitivity coefficients based on the Euler equations. In addition, they
developed a new method to predict the flowfield solution and successfully compared it to

the flowfield solution obtained via an analysis code.

In an effort to assess the differences between the recults of a variational sensitivity
analysis method and a discrete sensitivity analysis method, Frank and Shubin [67] applied
the two methods to one-dimensional duct flow problem using Euler equations in 1990.
Their results showed that the two methods are equivalent to each other; however, the
discrete sensitivity analysis methodology can be retrofitted to most existing analysis codes
to turn them into design codes. In 1991, Baysal and Eleshaky [68] incorporated their
sensitivity analysis methodology in an aerodynamic design optimization procedure and
developed a new efficient method for aerodynamic design optimization. They also
investigated the sensitivity of the optimum solution to the variation in problem parameters.

In 1991, another research effort by Taylor et al. [69,70] emerged in the area of discrete
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aerodynamic sensitivity analysis. They focused on the development of an approximate

analysis method similar to the one developed by Baysal and Eleshaky [66]. However, the
derivatives of the geometrical terms in their sensitivity equations were treated inefficiently
using finite-difference approximations instead of the direct differentiation used in Ref. [66].
Smith and Sadrehaghighi [71] presented an analytical approach to determine the derivatives

of the coordinates of the grid points with respect to design variables in late 1991.

5.2.3 Sensitivity analysis on Decomposed Computational Domain

The process of shape optimization begins with an initial design, generates a
sequence of improved designs in an iterative algorithm and finally obtains the optimum
shape. A reduction in the size of the model being iterated upon in this process can clearly
increase the ability to treat presently very large aerodynamic problems. One way to achieve

this is the use of domain decomposition.

The idea of domain decomposition has a long history in CFD. This technique was
used to ease the generavion of grids for complex-geometry problems. A complex geometry
configuration may have multiple, joint or disjoint components, all of which may be
geometrically nonsimilar [72-74]. A Hybrid Domain Decomposition (HDD) approach
reported in Refs.[72-74] was developed in order to obtain the flowfield solutions for these
problems. HDD takes advantage of all popular domain decomposition techniques used in
CFD, that is, multiblock grids, zonal grid, and overlapped grids. However, in the present
study and at the early stages of aerodynamic sensitivity analysis, only the multiblock

approach is considered.

Aerodynamic sensitivity analysis applied to subdomains (multiblocks) is very
similar to the sensitivity analysis applied to the substructures recently reported in Ref. [75]
for structural mechanics. However, aerodynamic sensitivity analysis on decomposed

computational domains has never been investigated to this date. The present study
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represents the first successful attempt in this field and the developed scheme will be

referred to as Sensitivity Analysis Domain-Decomposition (SADD) scheme.

In the field of structural mechanics, the domain decomposition is usually called
substructuring. The original motivation of domain decomposition was to break up a large
problem into small parts which couid be solved separately, and then the final solution could
be obtained from these subproblems [76]). The substructuring process can be continued by
substructuring the subproblems; this idea was developed by George [77] and was called
nested dissection. It was particularly useful for certain problems arising from partial

differential equations.

Sobieski [78] developed a procedure for calculating the sensitivity of a
multidisciplinary system with respect to design variables and called it the global sensitivity
equation (GES). Each subsystem may represent a different disciplinary analysis of the
same system. This approach required the derivatives of the individual disciplinary
responses with respect to the input of all other disciplines. Sobieski pointed out that the
cost of these calculations can be very large when the front of the interaction between
disciplines is very large. This can be the case for the aerodynamic sensitivity analysis when

the number of grid points in the interfaces is large.

The conclusion that can be drawn from Sections [5.2.2] and [5.2.3] is, that there
are very few investigations in the area of aerodynamic sensitivity analysis, and they all are
at their very early stages. Hence, there appears to be an urgent need for further and more
comprehensive investigations, in particular, the inclusion of viscous effects, shape design,
and domain decomposition. The present study should provide a clearer path to the efforts in

two subjects, namely, aerodynamic sensitivity analysis and shape design optimization.
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5.3 Present work

The second part of the dissertation covers the development of a new, efficient, and
accurate numerical optimization procedure, which automatically shapes the aerodynamic
configuration to any arbitrary geometry, and which does not require any experience other
than that needed for formulating the optimization problem. The utilized flowfield governing

equations in this study are the Euler equations and the thin-layer Navier-Stokes equations.

The following steps are taken to achieve the above objectives:

(1) Investigating several methods for calculating the aerodynamic sensitivity coefficients,
which are based on the discretized forms of the flowfield governing equations.
Besides obtaining accurate values of these coefficients, a major concern is the
computational feasibility of these methods. By far, the dominant consumer of the
computational time is solving a set of linear algebraic equations resulting from the
sensitivity equation. Therefore, different methods for solving this set of equations are
incorporated and assessed from their computational efficienies point of view.

(2) Developing a domain-decomposition technique to divide the large aerodynamic
optimization problems into smaller ones and to ease the generation of the
computational grid for complex-geometry problems.

(3) Developing an accurate flow prediction method that is capable of predicting all
physical phenomena, which may occur in the flowfield, without performing a
complete CFD analysis.

(4) Demonstrating the capability of the new procedure by optimizing the shape of the
scramjet-nozzle configuration of Fig. (2.2), and by optimizing the shape of a

transonic airfoil.

The organization of this part proceeds as follows. Chapter 6 gives a description of

the flow analysis algorithm used in the present optimization procedure. Chapter 7 provides
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some basic definitions of constrained optimization problems deemed necessary to the

present development. Also, it includes the formulation of two example optimization
problems. Details of flowfield prediction method, the methods for calculating the
aerodynamic sensitivity coefficients, and the Sensitivity Analysis Domain Decomposition
(SADD) scheme are given in Chapter 8. Given in Chapter 9 are the modifications of an
optimization algorithm and the description of the overall shape optimization procedure.
Results of the demonstrative examples are discussed in Chapter 10. Finally, the

conclusions and recommendations are given in Chapter 11.
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Chapter 6
FLOW ANALYSIS FORMULATION

One of the key elements in the design optimization procedure is the flowfield
analysis. A flowfield solution can be obtained either via CFD algorithm or via the flowfield
prediction method described in Chapter 8. However, the development of the flowfield
prediction method as well as the discrete sensitivity analysis methodology is dependent on
the CFD algorithm used to analyze the flowfield. Moreover, as it will become obvious, the
design optimization process has relatively high computational cost. Hence, the design
procedure will be demonstrated only in two dimensions and using two sets of flow
equations, namely, Euler equations and thin-layer Navier-Stokes equations. The flow is
assumed laminar and the fluid is air, which is assumed to be a single species gas. The
extension to two-dimensional, multispecies flows is straightforward, but computations are

certainly more costly.

6.1 Governing Equations

Based on the reasons stated above, the governing equations given in Chapter 3 are
reduced for the flow of air by neglecting the species continuity equations and the terms
representing the species mixing. In addition, the air is assumed to be a thermally and
calorically perfect gas. Under these assumptions as well as the thin-layer approximation the
governing equations [Egs. (3.1)—(3.6)] will take the following form:

90 ,oF oG 3G, _
o0 9t oJn o (6.1)
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pU o
F=L1 pUu+& P & =1 pVu +ny P
J pUV + & P J\pWw+nyP
e+P)U (e+P)V
(6.2)
0
G. = Nx Txx + Ny Txy
y=

1
S\ Mx Txy + Ty Tyy’
Nx by + 7y by

Under the thin-layer assumption, all the derivatives with respect to & in both the shear

stress, 7, and the heat flux, 4, terms are set to zero. Consequently, Eqgs. (3.4)-(3.6) for the

case of non-mixing flows become

Tox = MmReEI<(ﬂ,+u) Unlle + A vnny}

(6.3a)
=M. Re;" {2+ 1)
Tyy = M Re; { A+p) vy + A unnx} (6.3b)
-1
Ty =My Rey” [ (unfly + vyllz) (6.3¢)
. —Moo#
=| s——s———| 1z (a2
“=\Re, Priy-1) <@y (6.42)
. "'Moo# 2
= s——m—"=|Myla
4y Rer Pr(y-1) )’( )ﬂ (6.4b)
Hence, the terms b, and by in both G y are given by:
br=UTx+V Ty~ x (6.5a)
by=u Ty +v Ty - gy (6.5b)
The pressure is related to the conserved variables through the ideal gas law
P =(y-1) e-2(uz+v?)
(v-1) [e-Flu2+v (6.6)
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The contravariant velocities (U and V') and the transformation Jacobian, J , are
defined by Eqgs. (3.2)-(3.3). Stokes hypothesis for bulk viscosity, 4 + (2/3u) = 0, is

invoked, and the molecular viscosity is calculated from the Sutherlands law, Eq. (3.19),

using the constants given in Appendix A.

In Eq. (6.1), the conserved variables of vector Q, Eq. (6.2), are normalized with

the freestream values of density and the local speed of sound for convenience,

v .
& T2 (6.7)

Also used in the non-dimensionalization are the reference length L and the freestream

molecular viscosity, Ueo .

6.2 Finite-Volume Formulation

Unlike in Part I, Eq. (6.1) is solved using an implicit, finite-volume, upwind,
spatially factored algorithm [72-73]. The finite-volume differencing in this algorithm is
formulated by integrating the flowfield governing equation, Eq. (6.1), over a a stationary

control volume (area in two-dimensional flows),

3 ~ .
a_:fUQdV”UF.ndho (6.8)
Ve A

where 7 is the unit normal vector pointing outward from the surface, A, bounding the
control volume, V,, and F is a flux vector given for the assumed two-dimensional flow by:

F=(F) i+(G-Gy)j (6.9)
where (F, G, G,) are the inviscid and viscous fluxes in Cartesian coordinates and( i f) are

the unit vectors in Cartesian coordinates. Equation (6.8) is applied to each cell of the
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computational domain (&, 1) and the following semi-discrete, finite-volume representation
is obtained:

~ ~

( ,+1/2, (ﬁ)i—lﬂ.j + (5 —GV);,,-H/Z—(@ “GV)i-f-1/2=0 (6.10)
ot /i Ag 4an

where A§= An = 1. It should be noted that Q;; represents the conserved variables at the

cell center (cell averaged) and the fluxes are evaluated at the cell surfaces.

6.3 Flow Analysis Algorithm

The governing equations can be treated as time-dependant equations, which are
hyperbolic. Hence, the steady-state solution is obtained by marching in pseudo-time until

the convergence is achieved.

Applying the implicit Euler time integration to Eq. (6.1) and then linearizing the

fluxes yields the following form:

-~

aF) , 5 d6-G.)]" ,
[;Aﬁs@ E I s L BTt

where [a(ﬁ ) /aQ] , [8(6 - 5\,) /aQ] denotes the flux Jacobian matrices and
AQ=Qn+l - gn (6.12)

The steady-state residual, R(Q "), is comprised of the spatial derivative terms

evaluated at time level n and are given by
R(@" =[64F) + &{G-G.)" (6.13)

Equation (6.11) represents a large banded system of linear equations in which AQ

is the unknown. The bandwidth of its coefficient matrix depends on the particular choice of
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spatial discretization and on the grid sizes. It is noteworthy that the coefficient matrix of
Eq.(6.11), in the limit as At approaches infinity, is very similar to the one which is used in

the sensitivity analysis approach. This point is further explained in Chapter 8.

To obtain the steady-state solution of Eq. (6.11), the residual given by Eq. (6.13) is
forced to zero. One way to achieve this is to set At to infinity and then solve the resulting
equation using Newton's method. Usually, this approach exhibits a quadratic convergence.
However, if the initial guess of the solution is not close to the final solution, oscillations
may occur in the solution and, as a result, cause a program failure. To circumvent this
problem, Eq. (6.11) can be iteratively solved by a direct method [79]. In this procedure as
At approaches infinity, Eq. (6.11) becomes the equation of Newton's method. This
procedure is commonly known as the modified Newton's method. In problems where the
initial solution is very far from the steady-state solution, this procedure requires a large
number of iterations to realize quadratic convergence. Hence, this procedure becomes
computationally expensive when it is employed to obtain the initial steady-state solutions of

the optimization problems.

Another way to obtain the steady-state solution is to factor the the left side of Eq.
(6.11) into a sequence of one-dimensional operators [80]. Then, the resulting equation is
solved in a series of sweeps throughout the computational mesh. This approach is called
the approximate factorization method; and when it is applied to Eq. (6.11), it yields the

form given below.

n

{F)
[J[At*- % 20

n[}/ ]’1[ 5 36-6)

Al |ga "7 9Q

or
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[—’— +8 d’i)]nagﬁ =-R(Q")

(6.15)

I S5 a(a_av)]nA = (L n+1
[JAt HRO-T7) ¢ (IAt)AQ

Qn+l=Qn+ AQ

In this form, the solution is easily obtained by solving the two one-dimensional
problems (Eq. (6.15)). In each problem, the inversion of only a block tri- or penta-
diagonal matrix is required. Since this is not expensive, this approach is much cheaper
than the modified Newton's method. Hence, this procedure is used in this study to

obtain the initial steady-state solutions of the optimization problems.

For a steady-state solution, each cell in the computational domain is advanced at

its own time step according to the following equation:

At =CFL {|U] HV} + aﬂgrad(i)l + Igrad(n)l]} B (6.16)

where CFL is the Courant number which may vary from two to five.

6.4 The Inviscid Discrete Form of the Residual

6.4.1 Flux-Vector Splitting

In the present study, the pressure and convective terms are upwind differenced by
the flux-vector splitting method of Van Leer [81]. The inviscid fluxes are spatially
differenced by backward or forward differencing, depending on the characteristics of the
flow at each grid cell. Upwind methods are naturally dissipative and require no artificial

dissipation terms to reduce high gradients in the flowfield.
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In flux-splitting methods [82], the spatial derivatives of the inviscid fluxes are

written conservatively as flux balances across the cell. For example in the &-direction:

oF ~ ~
—) =Fap-Fiap
95/ (6.17)
where the interface flux is constructed as
Fipn=F@ ,0% i+1/2 (6.18)

The conserved state variables on cell interfaces, 0%;,;,,, are determined from an

upwind-biased interpolation of the primitive variables,

Qi—+1/2=Qi+ g[(l—K)V+(1+K)A] '
(6.19)
+ _n. [0}
Qi+1/2‘Qx+1“z[(1+K)V+(1—K) ]}
i+1
where
Ai=Qi+1-0;
(6.20)
Vi=0i-0Qi-1

The type of differencing is determined by assigning different values to x.

The Van Leer method splits the inviscid flux terms, F and G into two vectors as a
forward flux and a backward flux, providing that the Jacobian matrices oF +/8Q have non-

negative eigenvalues and oF /dQ have non-positive eigenvalues.

For a supersonic flow (IMgl > 1),

F*=F F-

0 for Mg 21
(6.21)
Ft=0 F =F for Mg<1
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where M is the contravariant Mach number in the §-direction.

M =%
(6.22)
= U
lgrad (&)
For subsonic flow (lMgl <1},
_ fmas
ae_lorad @) |2 [ (- w2+ u]
J
f?nass{[gy( ut2a )/7} V}
ﬁnergy (6_23)
where
Fhass=tpa (M2 1)%4 (6.24)
finerg}’ == fiass (1-7) 42 (7"1)ﬁa +2a7 + (u2 -; VZ) J
(#-1) (6.25)

~ 0~

and &, &y are the directional cosines.

The differences of split flux vectors are implemented as a balances across a cell.
The inviscid flux balance in the &-direction, Eq. (6.17), for an interior cell (i, j) is given,

for example, by:

5 F*+ 6§ F=[F* (Qrureg) +F (@t -[F* (Q5112) +F (@F 11 (6.26)

A similar expression can be obtained for the inviscid flux balance in 1-direction.
Consequently, the discrete form of the inviscid, steady-state residual contribution in,

Eq.(6.13), is written as,
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The inviscid part of Eq. (6.13) =[F* (05,15 ) +F~ (] ~[F* (Q11n,) B (@Larny)
+ [8 ’ (Q7J+1/2) +G~ (Q7J+1/2)] - [6 (07jan)+6” (QTJ-uz)]

(6.27)

6.4.2 Flux Limiter

Numerical oscillations such as overshoots and undershoots are expected to appear
in the presence of large flow gradients when an upwind-biased scheme is used. A flux
limiter can be used to reduce the upwind-biased scheme to a fully one-sided upwind
scheme in these regions. This in turn ensures a monotonic interpolation and eliminates the

overshoots and the undershoots.

The Van Albada limiter [83] is used in the present study and is implemented by

rewriting the Eq. (6.19) as

Qap=0i+9 {S[1-x$) V+ (1 +x5) 4]

1

(6.28)
0tup=0ir1- 0[S0 +x) V+(1-x5) 4]}
i+1
where
S = ;.VA;-E
A+V +¢ (6.29)

and € is a small number to prevent the division by zero in the regions of zero gradient. The
quantity S is the limiter control function. Its value reaches unity at the regions of small
gradients, thus using no limiter for these regions. However, its value goes to zero for very
large gradients regions, hence reducing to a first-order interpolation. This limiter acts in a

continuously differentiable fashion, and it has the advantage of overcoming the
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convergence problem usually encountered with the minimum-modulus(min-mod) type of
limiter [82].
6.5 The Viscous Discrete Form of the Residual

In the finite-volume formulation, the spatial derivative of the viscous flux G, is

treated as a flux balance across the cell interfaces. That is,

(aaanv )iJ =(Guljriz - G lijorr (6.30)
where (5v)i,j+1/2 is given by
(le)i.j+1/2
R 2). .
=t mhse
(6, )s12 6.31)

The derivative terms in (Gv)i.j+1/2 are one-side differenced to maintain a second-order

approximation. Hence, the terms in (G v),-,,-+1 /2 take the following form:

(G i =0 (6.32a)

(GPhjrr =012 - (ijor - uiy) +% e i [Viijare - Viga = Vi) (6.32b)

(G2 =02 - i = vig) + Ty i (Vi1 (Figoa = Vi) (6.32¢)
(GMhjsrrz = ValGersa - { %(]Vﬂi.m V) + m(aﬁm - a%J)’

+ % ViV - (Vg - 7)) (6.32d)
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where u and v are the Cartesian components of the velocity V and V denotes the
contravariant component given by Eq. (3.3b). As seen from Eq. (6.32), (av)iJ+1 /2 can be
viewed as a function of the cell-centered values of the conserved flow variables at points
(iy) and (i,j+1). Similar argument can be established for (av)i.j-llz. Hence, by combining
Egs. (6.27) and (6.30), the upwind discrete form of the steady-state residual, Eq. (6.13),

at an interior cell (i,j) becomes,

RIJ Qn =[ (Qt+1/2j)+ﬁ-(Q?:+1/2J:| [F ( ‘1/2J)+F (Q“llz*’)]

[ (an/z) +G (Q?J+1/2)]—[G (07112) +6 (QiJ—IIZ}]
-G, (@ij1, @i)- G\ (01 0ij-1) (6.33)

It is clear from Eq. (6.33) that this discrete form is a function of the cell-face values

+
of the conserved variables Qi:tl/Z,j:tl/Z and the cell-centered values of the conserved
variables at the points (i,j) and (i,j£]), i.e., Q; i and Q; el This form is forced to zero at

all computational cells in order to obtain the steady-state solution.

6.6 Initial and Boundary Conditions

The initial conditions are chosen to be the freestream conditions and the boundary
conditions are specified explicitly. For the viscous flow calculations, the walls are
considered to be impermeable and adiabatic. The pressure at the solid surfaces is evaluated
using a zeroth-order extrapolation from the interior point value. The density is then

calculated by employing the state equation. Consequently,

u=0v=029_0 % 9

on on (6.34)

For the inviscid flow calculations, the flow tangency condition is imposed by

setting the the contravariant component of the total velocity normal to the wall to zero. In
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addition, the fluid density and pressure at the surface are extrapolated from the interior.
This means that at the inviscid wall, the following conditions are applied:

P _,

V =0 ap =0, — =
on (6.35)

"on

For both inviscid and viscous flow calculations, the locally one-dimensional

characteristic boundary cenditions are employed for the farfield boundaries. For each cell,

the velocity normal to the boundary and the speed of sound are calculated from the two
locally one-dimensional Riemann invariants given by

Rt=U +-2_4
r-1 (6.36)

The invariants are constant along the characteristics defined by

def
(Tzz" =Uza (6.37)

The local normal velocity at the boundary is calculated by summing the Riemann invariants
and the speed of sound by subtracting the two. The appropriate boundary conditions are
specified after the magnitude of the contravariant Mach number (U/a) and the direction of

the contravariant velocity at each cell are checked.

g >150<0 4=ty SV T=Te P=Pe (g,
IMd>1;U>O %= ,@'=09§£=0,2€‘=0
o€ o€ 0§ o (6.39)
where & is the streamwise coordinate.
IM§|<1;U<0 u=uoo,v=veo,T=Too’a—P=O
95 (6.40)
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Me <1;U>0 a—u=0,?—!=0,a—T=.0,p=pm

o & & (6.41)
For supersonic inflow, all flow characteristics point from the outside toward the

inside of the computational domain. Hence, the inflow boundaries are set equal to the free

stream conditions (Eq. (6.38)).

In the case of supersonic outflow, the flow signals propagate from the inside
toward the outside. Therefore, the flow variables at the outflow boundaries are computed

from the interior flow solution by a zeroth-order extrapolation (Eq. (6.39)).

Finally, due to the decomposition of the computational domain into smaller
subdomains, additional boundaries are introduced at the block interfaces. The solutions are
matched at two sets of grid points on each side in the normal direction to an interface. This
provides second-order spatial accuracy consistent with the accuracy of the solution

algorithm.
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Chapter 7
BASIC OPTIMIZATION DEFINITIONS

Aerodynamic optimization may be achieved by utilizing one of the constrained
optimization methods. Usually, the formulation of aerodynamic optimization problems is
crucial for the success of the optimization process and is case dependent. However, there
are general guidelines for this formulation that will lead to an efficient optimization process.
Section 7.1 focuses on the discussion of this issue along with some definitions deemed
necessary for the present method. This is followed by the standard formulation of the
nonlinear constrained optimization problem. Finally, the standard formulation is applied to

two example problems to be used later for the demonstration of the present method.

7.1 Elements of Constrained Optimization Problems

7.1.1 Design Variables

A typical constrained minimization or maximization problem entails a group of
quantities called design variables. These variables usually vary during the optimization
process in a space within which the search for the optimum takes place (i.e., design space).
In aerodynamic applications, the design variables are generally of a geometric-type; for
example, the coordinates of the surface describing the aerodynamic body are sometimes

considered as design variables. Mathematically, the design variables are denoted by a

vector X, given by

YD = (XDlv XD Dy crecencarenss , XD NDV} (7.1)

where NDV is the number of design variables.
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For aerodynamic shape optimization, different forms of design variables can be
used; however, the choice of the proper form depends on some criteria. These criteria are:
(1) design variables must be selected to converge the optimization process quickly; (2) they
should be able to generate a wide variety of geometries; and (3) they should be consistent
with the flow analysis model. To clarify these criteria, the common ways of describing the
aerodynamic shapes are considered. The shapes of aerodynamic configurations are
commonly described by two classes of functions [84]. The first class is the analytical
functions such as the Legendre polynomial, Wagner functions, and Hicks-Henne
functions. For this class of functions, the design variables usually are the coefficients of

these functions.

The second class of functions is those shape functions that have aerodynamic
origin, such as, the aerofunctions [84] and the airfoil library, which contains a combination
of basic airfoils. The design variables in this case commonly are the weighting coefficients
of the added shape functions. Unfortunately, using such functions in describing the
aerodynamic shapes do not neccessarly generate arbitrary geometries. Moreover, some
experience and skill are required to select the best one that can be used to describe the
shape. Hence, it may be attractive to use the grid point coordinates of the aerodynamic
shape as design variables. However, to ensure the smoothness of the shape during the
optimization process, this usually requires many additional geometrical constraints, and
consequently increases the computational cost. Otherwise, the optimization process may
lead to nonsmooth shapes, which are not adequate for the required flowfield analyses.
Therefore, the consistency between the design variables, which control the configuration

shape, and the analysis model has to exist.

In the present study, to reduce the amount of expertise required for choosing the
shape functions and to alleviate the problem of smoothness of the shape, the aerodynamic

shape is defined by the surface grid points. Equivalently, the relative slopes between these
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grid points may be considered as the design variables (Fig. 7.1). Hence, the optimizer will
shape automatically the aerodynamic configuration to any arbitrary geometry during the
optimization process. Although this approach of shape description results in a large number
of design variables, it has the advantages of being flexible, general and easy to implement.
Moreover, this approach eliminates the closure problem which is usually encountered in

airfoil design problems.

7.1.2 Qbjective Function

A typical constrained optimization problem also entails a function which the
optimizer will drive to the lowest or highest possible value, subject to stated constraints.
This function is the objective function. For aerodynamic applications, the objective function
depends not only on the design variables, but also on the flowfield solution which is an

implicit function of the design variables. This is mathematically translated into

F (@(X,), Xp)

Unlike the inverse design optimization methods, the present direct numerical
optimization method does not prescribe a priori some target acrodynamic characteristics,
which need to be met at the optimum design, e.g., the surface pressure distribution which
yields high lift coefficient. Hence, the present optimization method has the advantage of not
requiring the significant level of skills and experience needed for the choice of the target
aerodynamic characteristics, and consequently the objective function. However, if a
function is selected as an objective function but does not have a minimum or maximum
under the specified constraints, the optimization process will never converge. Hence, a
judicious choice of the objective function is crucial for the success of the optimization
process. For example, the objective function in optimizing an airfoil shape can simply be

the drag coefficient, the lift coefficient, or a combination of these coefficients.
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7.1.3 Constraints
In a typical constrained optimization problem, the consiraints come in two
fundamental forms; namely, side constraints and inequality constraints. Side constraints are
the less restrictive constraints. Their sole purpose is to put lower and upper bounds on the
design variables in order to have, for example, a smooth shape. Usually, the side
constraints are enforced directly onto the design variables. Whereas, the inequality
constraints, in general, cannot be enforced directly onto the design variables, but are
functions of either the design variables or both design variables and the flowfield solution.
Inequality constraints serve to limit how the design can be changed, or to complete the
objective function. For instance, the thicknesses at several prescribed locations of an airfoil
can be considered as inequality constraints. Since they do not depend on the flowfield
solution, they are referred to here as goemetric-type inequality constraints. Another
example of the inequality constraints is the range of the lift coefficient for which it is
required to have a reduction in the drag coefficient. This type of inequality constraint,
which usually depends implicitly on the flow solution, is referred to here as flow-type
inequality constraint. It is important to notice that the side constraints are degenerate
geometric-type inequality constraints, since each side constraint can be written as two

geometric-type inequality constraints.

Since the side constraints are enforced directly onto the design variables, generally
they cut a block out of the design space. This block is usually divided by the inequality
constraints into two domains, namely, a feasible domain and an infeasible domain. The
feasible domain contains all possible design points that satisfy all the inequality constraints.
Whereas, the infeasible domain contains all the points that violate at least one of the
constraints. Hence, the inequality constraints are analogous to fences separating areas in the
design space which allow permissible designs from those areas where the constraints are

violated. A constraint is referred to as satisfied if its equation is true. An inequality
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constraint is considered acrive if its value is very near or equal to zero and affects the
optimization process. Moreover, for an optimum to be found, all constraints must be active
or at least satisfied. A general, two-design-variable, constrained optimization space is

shown in Fig. 7.2.

7.2 Standard Formulation for Optimization Problems

In aerodynamic applications, the above constrained optimization problem is usually

expressed in mathematical terms as finding the vector X, p» Such that

Minimize F (2(X,), X)) (7.2)

subject to the following constraints;

(1) flow-type inequality constraints
G;(0(X,), Xp)<0, j=1, NCONy (1.3)
(2) geometric-type inequality constraints
G,(X,)<0, j= NCONf+ 1, NCON (7.4)
(3) side constraints
Xpo** <Xp, <Xp" i=1, NDV (1.5)
The fact that the optimization problem is assumed to be a minimization rather than a
maximization is not restrictive since instead of maximizing a function it is always possible

to minimize its negative. Similarly, if there is an inequality constraint of an opposite type,

i.e., greater-than-zero type, it can be transformed to a less-than-zero by multiplying it by
-1
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Usually, some numerical difficulties are encountered when solving the above
problem if there is a large discrepancy between the magnitudes of the different design
variables and constraints. Hence, it is necessary for the success of the optimization process
that all design variables and constraints are scaled. A common practice is to normalize them

with a proper coefficient.

7.3 Formulation of Example Optimization Problems

The scramjet nozzle-afterbody configuration, described earlier in Chapter 2, is
chosen as the first example (Fig. 2.2). This configuration allows examining the method in
high speed flow regimes, since the flow of this configuration involves the expansion of a
supersonic flow and mixes with a hypersonic external flow. The reasons for this particular
example problem can be itemized as follows: (1) The computational flow simulations for
this configuration are produced in Chapter 2-4 and in Refs. [16-19]. Therefore, the
flowfield formulation needed in the optimization problem is readily available; (2) The
formulation of the objective function was set up for a planar nozzle by Nickerson et al.
[85]; (3) The flow-type constraints for this optimization problem are relatively well
established as a result of extensive high speed research on the National Aerospace Plane
[86]; (4) The cut-and-try approach was performed by Tatum and Flanagan [87]; and (5)

The configuration involves not only an external flow, but also an internal flow.

As a second example, it is chosen to consider the optimization of a transonic airfoil
shape (Fig. 7.3) [88]. This example helps examining the behavior of the present
optimization procedure in the transonic flow regime, where more nonlinear physical
phenomena exist. The computational flow simulations for this configuration are well
established in the literature, e.g., Rumsey et al. [89]. Therefore, the flowfield formulation

needed in the optimization problem is readily available. Moreover, this optimization
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problem has been studied by other researchers [90,91] using different ways of defining the
airfoil shape.

7.3.1 Scramjet Nozzle-After
In the first demonstrative optimization problem, two cases are considered (Figs. 7.4

and 7.5). In both cases, the objective function in both cases is the axial thrust force

coefficient, F, defined by

F(Q(Xp), Xp) = Lexial
Finflow (7.6)

where F g is the axial component of the thrust force due to nozzle wall shape. It is

obtained by integrating numerically the pressure, P, over the ramp and cowl surfaces.

! n
Faxial = f Pramp dy + J. Pcowl dy
k m 7.7

In Eq. (7.6), F, inflow 18 @ normalizing force for ﬁaxgal and is associated with the inflow.

Generally, this force is given by

~

- 2
Finﬂow - fk Plh (1+yMth) dy (7.8)
In the case of an inflow parallel to the cowl with a constant Mach number, M, this force,

i.e., Finfiow » i centered at the mid-point of the line segment kc, and takes the form

Pth (1+yMt2h) H

Finﬂow =

7.9)

This axial thrust force coefficient is subject to three flow-type inequality constraints

(i.e., NCON = 3). The first constraint requires that the static pressure at the ramp tip, P,
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be forced to reach a percentage, C;, of the freestream static pressure, P_, such that a

maximum expansion over the ramp is reached without any reverse flow, i.e.

G1(0(®p),Xp) =1- 2L <0
€1 P (7.10)

The other two constraints require that the static pressure at the cowl tip, P,,, should
be within specified limits, (C2 and C3), of the freestream static pressure, P.,, such that
expansion waves emanating from the ramp initial expansion do not induce any reverse flow

on either the internal or external cowl surfaces, i.e.

Ca2 P 7.11)

C3 P (7.12)

In addition to the flow-type inequality constraints stated above, there are some
geometrical requirements on the configuration (Fig. 7.4). For example, in order to maintain
the total length of the aircraft as a constant, the axial length of the ramp is fixed. Also, the
thickness of the cowl is kept constant as well as the combustor exit height and the cowl

length. These geometrical requirements are not included in the optimization problem.

In the first design case (Fig. 7.4), it is desired to determine the angles of the nozzle
ramp, ¢, and of the cowl, 8, that yield a maximum axial thrust force coefficient, F, (Eq.
(7.6)) subject to constraints Gj's, given by Egs. (7.10)—(7.12). Hence, there are only two
design variables, Xp, in these stages. The fact that the number of design variables is small
eases the development of the new optimization procedure in its early stages. Side

constraints (i.e., upper and lower limits) are imposed on the ramp and cowl angles.

In the second design case (Fig. 7.5), it is desired to optimize the nozzle ramp shape

which yields a maximum axial thrust force coefficient, F, subject to constraints, Gj's given
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by Eqgs. (7.10)—(7.12). The surface is described by one of its coordinates (x or y) and the
relative slope at each surface grid point. This coordinate is kept fixed during the
optimization process while the relative slope is modified to change the geometrical shape.
Hence, the design variables, X, are the relative slopes at the surface grid points. Side
constraints (i.e., upper and lower limits) are imposed on the relative slopes of the surface
grid points in order to maintain an acceptably smooth aerodynamic surface shape.
Generally, a judicious choice of the upper and lower bounds for the design variables
accelerates the convergence of the optimum solution. Although this way of describing the
shape is inefficient due to the large number of design variables, it has the advantage of
being flexible, general, and easy to implement. It should be emphasized that the purpose of
this study is not to design a nozzle of common interest; rather, it demonstrates a new

capability for aerodynamic shape optimization.

7.3.2. Transonic Airfoil Shape Design

In the second design optimization problem, the optimization of the NACA 0012
airfoil shape is considered. The same approach used in the previous example for defining
the aerodynamic shape is applied in this design problem. That is, the contour of the airfoil
to be optimized is defined by one of its coordinates (x or y) and the relative slope at each
surface grid point (Fig. 7.3). This coordinate is kept fixed during the optimization process
while the relative slope is modified to change the geometrical shape. Hence, the design

variables, X, are the relative slopes at the surface grid points.

Two different design cases are considered in the second design optimization
problem. The first case is to optimize the upper surface of a NACA 0012 airfoil, which
provides a reduced drag coefficient (Cp) while leaving the lift coefficient (C;) greater than

a specified value, Cy ;.. The second case is to optimize the lower surface of a NACA 0012

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



83
airfoil, which provides an increased C; while keeping Cp less than a specified value,

CDmax'
Hence, in the first case, the objective function, F, is given by:

F (Q (XD) ’ XD) = C,D = CDinviscid + CDviscous (7.13)

and the lift constraint is written as:

G Xp),Xp)=1- <0
1(0(Xp) . Xp) Ci (71.14)

where Cy,.;, is a lower limit of C;. The lift coefficient,C;, is given by:

CL = CLinviscid + CLviscous (7.15)
In the second case, the objective function, F, is C; and it is given by:

F(o(Xp),Xp)=Cy (7.16)

and the drag constraint is written as:

Comax (7.17)

where Cp,, is an upper limit of Cp.

In addition to the flow-type inequality constraints stated above for the two design
cases, there are some geometric-type inequality constraints which are imposed on these
design cases. These constraints involve the thickness-to-chord ratio, which must be
positive and not to exceed a specified value, and the thickness at the trailing edge

(T.E.),which must be zero for a closed airfoil;

0< (u =¥/ € < tmax (7.18)
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To enforce the zero T.E. thickness, the initial airfoil is started with zero T.E.
thickness and the T.E. grid point is simply excluded from the design variables. Instead, a
geometrical constraint is imposed on the relative slope at the surface grid point (A8)

adjacent to the T.E. point, i.e.,

(46 ).z < C,e (7.19)

Side constraints (i.e., upper and lower limits) are imposed on the relative slopes of
the surface grid points in order to maintain an acceptably smooth aerodynamic surface
shape. However, it should be emphasized once again that the purpose of these
demonstrative cases is not finding an optimized airfoil of common interest, rather, they
serve as examples to illustrate the new of design optimization capability in the transonic

flow regime.
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Fig. 7.1 Aerodynamic shape definition using grid point coordiates
and the relative slopes as design variables.
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Fig. 7.2 A general constrained optimization space with two design variables.
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Angle of Attack =«

Local relative contour slope = )—(D

(YY) /c=Gj

Fixed Chord Length =c

T.E. = Trailing edge
L.E. = Leading edge

Fig. 7.3 Definition of the airfoil optimization problem.
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Chapter 8
SENSITIVITY ANALYSIS METHODOLOGY

Usually, the analysis of a complex flow begins by the spatial discretization of the
continuous equations into a finite-difference or a finite-volume model. The next step
requires solving the resultant equations for the conserved flowfield variables, Q. In
aerodynamic applications, the sensitivity calculation is then equal to obtaining the
derivatives of the solution to the flowfield equations with respect to the design variables.
This is due to the functional dependence of the objective function and the constraints on the
flowfield solution. The sensitivity calculation is often the major computational cost of the
optimization process. Hence, it is desirable in any optimization procedure to have efficient
algorithms for the sensitivity calculations. In addition, these algorithms must be highly
accurate for the success of the optimization process. This is the main subject of the present

chapter.

8.1 Aerodynamic Sensitivity Coefficients

The derivatives of the objective function, F, and constraints, G;, with respect to the
design variables, X , are commonly known as the sensitivity coefficients. In the field of
structural mechanics, there are two popular approaches for calculating these coefficients
[60]. These are the finite-difference approach and the analytical (or sensitivity analysis)
approach. In this section, these methods are adapted in order to compute the aerodynamic

sensitivity coefficients needed for aerodynamic shape optimization problems.
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8.1.1 Finite-Difference Approach

The simplest technique for calculating the derivative of F and G; is the finite-

difference approximation (Fig. 8.1a). For example, the derivative of F with respect to a

certain design variable, Xp, may be calculated using a first-order forward-difference

approximation given by,

oF _ F[Q(XD + AXD)’ Xpt AXD] -F[O(x )X,

Another commonly used finite-difference approximation is the second-order central-

difference

oF _ F[Q (XD + AXD)’ Xp + AXD] ‘F[Q (XD - AXD)’ Xp - AXD]

oX, 24X, (8.2)

As seen from the above equations, additional flowfield analyses are required to
evaluate the finite-difference approximations. The total number of these analyses depends
on the type of approximation and on how many design variables exist in the design space.
For instance, for NDV design variables, it requires NDV additional flowfield analyses for
the forward-difference approximation, Eq. (8.1), and 2*NDV additional flowfield analyses
for the central-difference approximation (Eq. (8.2)). Therefore, this approach is very
expensive when the numbers of both design variables and flowfield governing equations
are large. Even if these numbers are small, the accuracy of the approximation is greatly
dependent on the step size, AXp. Usually, the selection of the step size and the type of
approximation is an estimate of the degree of the required accuracy [92]. Hence, this
approach has the disadvantages of being neither cheap nor accurate. However, it is widely

used becuase of its generality and its ease of implementation.
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8.1.2 Analytical (or Sensitivity Analysis) Approach

Because of the functional dependence of the objective function and the constraints
on design variables and flowfield solution, which is an implicit function of the design
variables, the sensitivity coefficients can be obtained only via the chain rule of

differentiation as follows:

T
_a_-a_.) o) 22
X, \o%,), \ao/ ox, 83)
G, [aG,\ [aG\ a9
VGJ.E_J= L+ .=, j=I,NCON (84)
X, \X,), \oe| X,

These gradients include two parts, namely, an explicit part (d F/d Xpp)q plus an
implicit part through the dependence on Q. The explicit part is often easy to obtain
compared to the implicit part. Therefore, only the details for the computation of the implicit

part are discussed in this subsection.

The discrete residual form of the governing equations, Eq. (6.33), can be rewritten

in terms of the design variables and conserved flow variables as follows:

R(Q(Xp)Xp)=0 8.5)

Consequently, the analytical approach begins with the differentiation of Eq. (8.5)

with respect to the design variables to yield the sensitivity equation [61],
dR dR | _
BRI

0Xp
Premultiplying Eq. (8.6) once by [(dF/9Q)T. (dR/9Q)-!] and another time by
[(9G;/9Q)T . (aRI19Q)1] yields

00

0Xp

(8.6)
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e

REE

0] \axp| Log] l3g @®.7)
an]T a0 _[anT[Qﬁ_'l .
[aQ 51130 ] aQ] .Ry, j=1,NCONy (88)

Numerically, the calculation of Eqgs. (8.7) and (8.8) is performed in two ways.

These are the direct sensitivity method and the adjoint variable method.

8.1.2.1 Dire nsitivi

This method consists of solving Eq. (8.6) for (0Q/d Xp) and then taking the scalar
product with (JF/dQ) and ( an /d0). Here, Equation (8.6) needs to be solved once for each
design variable, X, so the direct sensitivity method becomes costly when the number of
design variables is large. However, one of the advantages of this method, as will be seen
later in Section 8.3, is its use in predicting the flowfield solution without actually solving

the governing equations of the field flow (Eq. (8.5)).

8.1.2.2 Adjoin iable Meth

The adjoint variable method defines vectors of adjoint variables ( A, A,;), which

are the solutions of the systems,

275 (2]

90| " T a0 (8.9)
and

):au oG ; .

ElEE =[8_Q]]’ j=1,NCON; (8.10)

The adjoint variable method requires the solution of Eq. (8.9) and also requires the

solution of Eq. (8.10) for each flow constraint Gj. However, it should be noticed that the

adjoint systems of equations (8.9) and (8.10) are independent of any differentiation with
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respect to X . Hence, the vectors A, and kzj in Egs. (8.9) and (8.10) remain the same for

all the elements of vector Xp.

The difference between the computational effort associated with the direct
sensitivity method and with the adjoint variable method depends on the relative number of
adjoint vectors and design variables. For example, the adjoint variable method is more
efficient than the direct method, when the number of adjoint vectors (NCONf+1) is smaller
than the number of design variables. On the other hand, the direct sensitivity method is
more efficient when the number of design variables is smaller than the number of adjoint

vectors. Flow charts of these two methods are given in Fig. 8.1b.

Both the direct and adjoint methods involve the solution of a system of equations as
a major part of their computational effort. However, most of the elements of the coefficient
matrix, [dR/dQ], are usually available from the flow solver, hence few computations are
needed, as will be seen later. In addition, when solving for either the adjoint vectors or for
{30/0Xp}, the coefficient matrix needs be factorized once and for all, unlike in CFD
analysis. As a result, the solution of the adjoint vectors or {30/d Xp} is much cheaper than
the flowfield solution. This provides the major computational advantage of these two
analytical methods over the finite-difference approach. This advantage becomes more

pronounced for a large number of design variables.

8.2 Sensitivity Equation

As mentioned before, the sensitivity calculation is equivalent to the mathematical
problem of obtaining the derivatives of the solution of the discretized flowfield governing
equations with respect to the design variables. Therefore, the discretized residual form of
the flowfield governing equations, Eq. (6.33), should now be rewritten in a form which

explicitly includes the design variables or , at least, the terms that are directly related to the
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design variables. Unfortunately, the first possibility does not exist in aerodynamic shape
optimization, since the design variables are usually the parameters that control the shape of
the configuration. Hence, the second possibility is the only choice to express Eq. (6.33). In
the present study, the second possibility is adopted as follows. An implicit relationship is
defined between the controlling parameters and some geometric terms, such as the
projected area and the cell volume, which are involved in the transformation to the
generalized coordinates. Then, Eq. (6.33) is rewritten in terms of these chosen geometric

terms (M2 j+1/2) t0 yield the following functional form for the interior-cell (i,j):

o+

R; j=F

'TJ)

(Q,+1/2 j? z+1/2 j)
+F~ (Qfan,j» Miipa, j)-
+a+(Q;j+1/2,Mlj+1/2) +(Q,"j_1/2’ Mi,j—l/Z)
+G” (Qi.j+1/2’Mi.j+1/2) (Q;T,j—IIZ’Mi-j—IIZ)
—[ Gv(Qij+1, Qij» M . 1/2)]i,j+ 12

+[ Gy (Qi,j»Qij1, M 1/2)]:'.1-1/2 (8.11)

+
( 1—1/2 j? M;_ip, J)
(e

i-1/2,j» 1—1/2 ])

Q) Q) "’9

The sensitivity equation (Eq. (8.6)) is always simultaneous, linear, and algebraic,
regardless of the mathematical nature (nonlinear, transcendental, etc.) of the flowfield
governing equations. In Eq. (8.6), the coefficient matrix is a Jacobian matrix of the partial
derivatives with respect to the conserved flowfield variables, and the right hand side vector
contains the partial derivatives with respect to a particular design variable. These partial
derivatives are evaluated using the X and Q values which satisfy Eq. (8.5). In other
words, a solution Q of the flowfield governing equations is a prerequisite to forming and

solving the sensitivity equation.

To form the sensitivity equation (Eq. (8.6)), the above discrete form, Eq. (8.11),

needs to be differentiated with respect to the conserved flowfield variables and the
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geomeiric terms. This methodology is called the discrete sensitivity analysis and it is

described in Secs. 8.2.1 and 8.2.2.

8.2.1 Left Hand Side (LHS)

To construct the LHS of the sensitivity equation, R; ;j has to be differentiated with
respect to the cell-centered values of the conserved flow variables for all cells in the
flowfield. Fortunately, as seen from Eq. (8.11), R; j is only functionally dependent on the
cell-centered values of the conserved flow variables, Q; ; and Q; 1, and the cell-face
values of the conserved variables Qi“il/z Jjt1/2- In addition, by using Eqs. (6.20), (6.28),
and (6.29), Qi,-ﬂ j2.j+1/2 €an be viewed as functions of the conserved flowfield variables of
the neighboring cells evaluated at their cell centers, i.e., (Q;j Qizs jz1, and Qisz j12)-
Therefore, R;; needs to be differentiated only with respect to Q; j, Qi j+1, and Qis jz in
order to obtain the following linear vector form of the LHS at the interior-cell (i,j) :

~00;2; , —00i1,; . 590i;
LHS of Eq. (8.6)]; =D =% 4 A =W 4 B =N
[ of Eq. ( )]l,j 3%, Xp X

+C aQﬁl‘i +E anz*i +H aQL‘j"Z
oXp oXp oXp
+ F-aQE-l + (—;aQ-i_J:+l +I—aQL‘j+2
oXp oXp oXp (8.12)

The coefficients A through 7 in the above equation are 4x4 blocks for 2-D equations and
are functions of the Jacobian matrices of the split fluxes F * and G i, and the Jacobians of

the viscous fluxes. Further details of Eq. (8.12) are described in Appendix C.

Since all Jacobian matrices are available for the interior cells from the flowfield
solver, few computations are needed to assemble the coefficient matrix [dR/JQ] at the
interior points. However, it is necessary to revise Eq. (8.12) at the boundary points in

order to include the boundary conditions. For example, if the conserved flowfield variables
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of the boundary condition at i = / boundary is related only to conserved flowfield variables

of the first adjacent interior-cell, Eq. (8.12) becomes

=9Qi2j  +9Qi-1;  7]|9Qij
LHS of Eq. (8.6))j =|D 22+ AZEM 4 B =
[LHS of Eq. (8.6)]; 00/ * 20;; * oXp

. 53Qi+1.j N E—aQi+2j N i_l—aQi.i-z

oXp oXp oXp
+F2i , goipm | ;90i
oXp oXp oXp (8.13)

where A , B, and D are modified according to the relations between Q; j and both Q; 5 ;
and Q; , ;. Similar expressions can also be obtained for the other boundaries. Another
example for a revised expression for Eq. (8.12) as applied to Eq. (6.35) is given in

Appendix C.

The coefficient matrix [dR/JQ] as well as its transpose are sparse square matrices
with a block-banded structure, wherein all the nonzero elements are confined within a band
formed by diagonals parallel to the main diagonal. The number of nonzero diagonals in the
matrix depends on the type of both discretization of the governing equations and the flow
regime. For example, for two-dimensional problems, the first-order upwind discretization,
which requires a five-point stencil, results in five nonzero block diagonals in which the
elements are (4x4) blocks. Whereas, the second- or third-order upwind discretizations,
which require a nine-point stencil, yield nine nonzero block diagonals. Moreover, when
dealing with a supersonic flow in the streamwise direction and using an upwind scheme to
discretize of the governing equations, either the positive or the negative fluxes in the

- streamwise direction are zeros. Hence, the number of nonzero diagonals reduces either to
four in the case of first-order upwind discretization or to seven in the case of second- or
third-order upwind discretizations. More details about the structure of the coefficient matrix

are given in Section (8.4.1).
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An important advantage of using an upwind scheme over a central difference
scheme is that, in the latter, zero elements may appear in the diagonal. This causes the
failure of the solution to the system of linear equations if no pivoting strategy is employed

in the solution algorithm.

8.2.2 Right Hand Side (RHS)
The (i,j) row of the RHS of the sensitivity equation [0R;;/0X p] is constructed by

differentiating first the R;; with respect to the geometrical terms (M;4;/3 ;4;,2) and then
multiplying the results by the derivatives of these geometric terms with respect to the design

variables, X, as follows:

oR ,'J aF*(Q i+1/2,4? ;+1/2,/) aF Q i+1/2,j° M z+1/24)} oM i+1/2,j
a)_f;) L oM i+1/2,j oM +1/24 aXD
| oF 1Q, 124 M i—1/2J) +af Q%ips M i—1/2J)} oM i1p
oM 12 oM iap, " 9Xp
+ aG *(Q ij+1/2° 'J+1/2) +aG-(QJ?J+1/2’ M ijap) .aM ig+12
L oM 12 oM ;js2 oXp
_|9G +(Q-x‘,-1/2’ M iJ'—1/2) G (@5 M :.;-1/2)} M ijap
oM iyj-1/2 oM ij-1/2 a}_f_p
BG (Qij+1,.Q ijM ijr12) OM jsap2
oM ij+1/2 | afp
. 090G (0 ijQ ij-1» Mij_12) OM jap
oM ij-1/2 afp (8.14)

In Eq. (8.14), the derivatives of both split-fluxes and viscous fluxes with respect to
the geometric terms are straightforward to obtain, and detailed examples are given in details

in Appendix D.

Determining the derivatives of the geometric terms (M;4y5 j+1/2) With respect to the
design variables, X, requires an analytical expression for M = M(Xp). In other words, it

depends on whether the Cartesian coordinates (¥, ¥), and consequently the equations for the
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grid generation routine, are directly related to the design variables; usually, they are not,
except at the boundaries of the aerodynamic body where the shape is changed by the design

variables. Therefore, the geometrical terms (M5 ;+1/2) need to be first expressed in

terms of the coordinates (x, y) which can easily be expressed in terms of the coordinates at

the boundaries (J?b, ib). Then, the coordinates (Bc'b, ?b} of the boundaries are expressed in
terms of the design variables. This procedure of expressing (M;.;,» Jj#1/2) enjoins that their

derivatives are expressed as,

S(M i:tl/2.j:t1/2) =8(M iilIZJiI/Z).a(E).a(fb) +8(M iil/2Ji1/2) ) o)
oX da(x) ox, " 9X, o(y) 9y, X, (8.15)

Advantages of this procedure are its generality, its ease of implementation, and its
high accuracy. These are usually the necessary requirements for a good sensitivity analysis

routine.

Another method for determining these derivatives is using of a finite-difference
approximation for o(M;1;/ ;+1,2)/0Xp with a small step size, AXp. In spite of the
simplicity of this method and its generality, it produces highly iraccurate results due to the
truncation and condition errors inherent into the approximation [92]. Hence, the finite-
difference approximations are not recommended to be used on a regular basis other than in

providing a check for the terms of Eq. (8.15).

8.3 Flowfield Prediction Method (Approximate Analysis)

In any optimization procedure the objective function and constraints are usually
evaluated several times before reaching their optimum values. In addition, for aerodynamic
applications each of these evaluations requires a flowfield solution. Therefore, it would be

very expensive if a CFD analysis is performed each time. This necessitates finding a
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technique that takes advantage of the computations performed at one design point to reduce
the computational cost of the analysis at another design point. Fortunately, by-products of
the direct sensitivity method (Sec. 8.1.2.1) for calculating the aerodynamic sensitivity
coefficients are the derivatives of the flowfield solution with respect to the design variables.
Hence, using these derivatives at a certain design point along with the flowfield solution at
the same point can provide the solution at another design point. This concept is referred
herein as the flowfield prediction meihod, and it is inspired by the reanalysis used in the
structural design optimization [93]. Although this technique is approximate in nature, it
works well in the structural design optimization problems when the latter design point is

close to the former.

In the flowfield prediction method, the new flowfield solution vector {Q*}
corresponding to a modified set of design variables X is approximated by a truncated

Taylor's series,

ders _ NDV N aQ
0'(%5)=0(%B)+ 3, (x5~ X5 '_)’ %
( D) ( D ; ( b D ) aXDi Xp =Xp (8.16)

where {d0/0Xp ; ) is the first-order sensitivity derivative of the flowfield solution vector,

and {Q°} is the flowfield solution vector corresponding to the set of design variables, X" s

Substitution of Eq. (8.6) into Eq. (8.16) results in,

oR (Q°(X5).X5 oR (QUAXB).XB) (v =
{ (Qg D) D)} AQ =- (Q (_D) D)]( D"XDO)

0 Xp | (8.17)
where 40=0" (?—(- D*') ~-Q° (f Do) Equation (8.17) gives the changes in Q due to changes in
Xp. In other words, the flowfield solution, {Q*}, associated with the configuration, X; D*,
is obtained via Eq. (8.17), when the flowfield solution, {Q°), associated with the

configuration, X, is given.
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The flowfield solution, {@°), in this method can either be obtained via a CFD
analysis or be a previously predicted flowfield solution. The latter procedure is called
predictiorn. based on prediction, whereas the former is called prediction based on analysis.
The second procedure allows flowfield solutions to be progressively “built up” from
previous predictions, all of which have the common genesis of a single initial CFD analysis
solution. Thus, a flowfield solution for a complex final shape may be obtained through
incrementally additive design variables modifications. Otherwise, a grossly erroneous
prediction is produced if an equivalent large design variables modification is attempted. It
should be noted, however, that the first-order sensitivity derivative of the flowfield solution

has to be updated at every prediction using the updated flowfield solution.

Due to the truncation error of the first-order Taylor's series, the flow prediction is
certainly less accurate than the CFD analysis. Consequently, it is natural to question the
quality and accuracy of the successive flowfield predictions when different step sizes,
AXp's, are used. This is crucial for the success of the optimization procedure since it helps
in putting the proper limits on AX, during the optimization process. Thus, a section in the
chapter describing the results (Sec. 10.2) is devoted to explore this issue. Nevertheless,
solving flowfield prediction of Eq. (8.16) costs only a small fraction of solving Eq. (8.11),
since [0R/0Q] and [0R/Xp] are already assembled (i.e., Egs. (8.12) and (8.14)) in solving
the sensitivity equation (Eq. (8.6)). Therefore, for relatively small values of AXp),

significant time savings are realized at the expense of some accuracy.

8.4 Solution Methods for the Linear Equations
of the Analytical Approach

As mentioned in Section 8.2, both direct sensitivity and adjoint variable methods
involve the solution of a system of linear equations (e.g., Eq. (8.6) and Egs. (8.9)-(8.10))

as a major part of their computational effort. Hence, it is necessary for the numerical
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methods which solve these systems to be efficient and feasible in order not only to reduce
the cost of obtaining the sensitivity coefficients, but also to increase the efficiency of the
overall optimization procedure. Methods for solving systems of linear algebraic equations
are readily divided into two classes, namely, the direct methods and the iterative methods.
The choice of the proper methods is often hard since it is usually affected by one of the
following factors: storage requirements, applicability, accuracy obtained, and CPU-time
required. Some of these factors which are deemed important to the present study are

investigated in the next subsections.

8.4.1 Comments on Direct Matrix Inversion Method:

For two-dimensional problems, in which the computational domain has / cells in
the &-direction and J cells in the 77-direction, the coefficient matrix [JR/JQ] (or its
transpose) has the dimension (n x n), where n is (41J). The storage requirement is about the
same for most of the general direct methods, that is, a minimum of about #2 + rn, where r
is the number of right-hand sides. Hence, for problems where (16*(1J)2) is large, the
computer memory allocation will be prohibitively high, sometimes to the extent that it
requires much larger computer core memory than those available in supercomputers.
Therefore, the storage requirement is usually considered the most important factor affecting

the choice in direct methods.

Consequently, two types of storage techniques [94] are devised in the present
study, that take advantage of the matrix structure to reduce the storage. The first technique
is the sparse matrix storage technique in which only the nonzero elements are stored. The
second technique is the diagonal storage of the banded matrices in which all the elements
within the bandwidth including the zeros are stored. In spite of the large reduction in
storage usually achieved by these techniques, the computer memory requirement is still

high for very large two-dimensional problems as well as three-dimensional problems.
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Hence, further measures are sought to reduce the storage requirements, and they will be

discussed next.

One effective measure is using of different strategies in ordering the unknowns,
such that it takes advantage of the flow regime, the type of computational grid, and the
number of unknowns in each flow direction. For example, when dealing with a supersonic
flow in the streamwise direction and using an upwind scheme to discretize the governing
equations, either the positive or the negative fluxes in the streamwise direction are zeros.
Therefore, if the unknowns are ordered such that the outer sweep is in tthe normal direction
(n-direction), the coefficient matrix will have super- and sub-diagonal bandwidths (4/+3)
or (8/+3) depending on the type of discretization (Fig. 8.2). Consequently, when using the
banded storage technique, it is required to store (8/+7)*(41J) for first-order discretization
and (161+7)*(41J) elements for second- or thrid-order discretizations. Whereas, if the
unknowns are ordered such that the outer sweep is in the streamwise direction (€-
direction), the coefficient matrix will have a super-diagonal bandwidth of (4J+3) and sub-
diagonal bandwidth of 7, or a super-diagonal bandwidth (8/+3) and sub-diagonal
bandwidth of I/ depending on the type of discretization (Fig. 8.3). In this type of
ordering, the number of elements needed to be stored is only (4J+11)*(41J) for the first-
order discretization and it is only (8/+15)*(41J) for the second-order discretization.
Therefore, if / and J are equal, the second type, which takes advantage of the flow regime,

will result in about 60% memory saving over the first type.

To see the effect of unknown ordering on the memory requirements when different
types of computational grids are used, a representative C-grid around an airfoil (Fig. 8.4a)
is considered. The cell nodes are ordered in one of various ways, which is called Order A
herein [79,88]. For third-order upwind discretization of the governing equations, this
ordering leads to a fully banded matrix (Fig. 8.4b) with a half-bandwidth of (16%J+3).

Shown in Fig. 8.5a is a C-grid for an airfoil with the more commonly used ordering,
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which is called Order B herein. This ordering does not lead to a banded structure because
of the coupling between both sides of the wake cut. Therefore, the coefficient matrix
[dR/0Q] has a banded matrix with a half-bandwidth of (8*J +3) plus extraneous enteris
outside the band (Fig. 8.5b). This results in requiring a sparse matrix solver [95], or full
matrix storage, which requires a prohibitively large memory. The third type of ordering is
called Order C herein and it is shown in Fig. 8.6a. Although, for the third-order upwind
discretization Order C yields a fully banded matrix (Fig. 8.6b) like Order A but with a half-
bandwidth of (8*I + 3), it has the disadvantage of requiring relatively more memory since /
is usually greater than J. Therefore, Order A is considered the most efficient one for this
type of computational grid. In fact, Order A for the C-type grid is equivalent to using an H-
grid. Hence, different strategies in ordering the unknowns, which take advantage of the
type of computational grid, and the number of unknowns in each direction, can affect the

memory requirements significantly.

The accuracy of the direct methods depends on the specific system of equations in
question and the matter is too complex to be said in a general statement. However, to
highlight this issue, it is important to know the basic idea of direct methods. Direct methods
usually solve the system of linear equations in a finite number of operations which can be
specified in advance, so that the number of operations performed is independent of the
accuracy desired. An exact solution would be obtained if there were no round-off errors.
Hence, the accuracy of the approximate solution obtained by a computer is a function of the
condition and size of the matrix, the accuracy of the arithmetic as performed by the

computer, and the algorithm used for solution [96].

In the present study, two direct matrix solvers have been used to solve the systems
given by Eq. (8.6) and Eqs. (8.9)-(8.10), and are compared with each other to assess their

efficiency, accuracy, and storage requirements. These are the sparse matrix solver [95] and
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the banded matrix solver [97]. Both of these solvers use the standard Gauss elimination

method after the off-diagonal zeros have been eliminated.

8.4.2 Comments on Iterative Methods

Generally, iterative methods are preferred for solving a single large sparse system
of linear equations for which convergence is known to be rapid. Iterative methods,
however, are less useful for solving systems with many right-hand sides. Usually, iterative
methods begin with an approximate solution to the linear system and obtain an improved
solution with each step of the process. An iterative process would require an infinite
number of steps to obtain an exact solution. The accuracy of the obtained solution depends
on the number of iterations performed, the condition of the matrix as well as its size, the

accuracy of the arithmetic performed by the computer and the particular algorithm used.

One of the important advantages of the iterative methods over the direct methods is
the relatively low computer memory requirements. However, it is important to distinguish
between two types of iterative methods. The first type is the relaxation schemes which
require diagonally dominant coefficient matrices. Since this restriction is satisfied only by
the first-order upwind finite-volume representations of the flowfield governing equations
[98], the relaxation schemes are restricted to this class of discretization of the flowfield
governing equations. The second type of methods is the iterative schemes which are based
on the conjugate gradient methods, such as, the generalized minimum residual (GMRES)
methods [99]. This latter type does not require diagonally dominant coefficient matrices,
but it does require the eigenvalues of the coefficient matrices to be clustered around unity.
Thus, preconditioning of the coefficient matrices is essential for the success of these
methods. In addition, the consequent choice of an effective and stable preconditioner is
extremely important to the success of these methods, as it is further discussed in Chapter

10.
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8.5 Sensitivity Analysis Domain Decomposition (SADD) scheme

For large two-dimensional and three-dimensional problems, both direct matrix
inversion and iterative methods become impractical to be used because of the prohibitively
high computer memory requirements. A viable and principally different alternative is to
develop a domain-decomposition technique that breaks up the single-domain into small
subdomains and then to solve the sensitivity equation of each subdomain separately.
Hence, the domain-decomposition technique reduces the high memory requirements of the
single-domain. Another advantage of this technique over a single-domain technique is the
ease of grid generation for complex-geometry problems. A complex aerodynamic
configuration may have multiple, joint or disjoint components, all of which may be
geometrically nonsimilar [72-74]. The Hybrid Domain Decomposition (HDD) approach
reported in Refs. [72-74] has been developed in order to obtain the flowfield solutions for
these problems. The HDD scheme takes advantage of all popular domain decomposition
techniques used in CFD, that is, multiblock grids, zonal grid, and overlapped grids.
However, in the present approach the sensitivity analysis will only be applied to problems
where the decomposed computational domain is of multiblock type. This technique,
referred to here as Sensitivity Analysis Domain Decomposition (SADD) scheme, is inspired
by the boundary-element substructuring methods developed in strucutral mechanics [75]
and the global sensitivity equation (GSE) procedure developed by Sobieski [78] to calculate

the sensitivity of a multidisciplinary system with respect to design variables.

The Sensitivity Analysis Domain Decomposition (SADD) scheme works by
dividing the computational domain around the configuration into a number of subdomains.
Then, each subdomain is divided again into internal and boundary-interface cells (Fig.
8.7). The idea behind the break-up within the subdomain is to find a set of unknowns
which decouples the computations of the individual subdomains. As a result, the sensitivity

equation for each subdomain can be written as:
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[akf}"[kir a0i\k\ [Taril*
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][] | |h
0! 00
where i refers to the internal cells of the kth subdomain and b refers to the boundary-
interface cells for all subdomains, which are used in the decoupling process. The total
number of subdomains is NBL. The coefficient matrix for the interior of the kth subdomain
is [0RY9Q!1k. The coefficient matrices resulting from the .interaction between the kth
subdomain and all boundary-interface cells and vice versa are [0R¥/aQP1¥ and [ORb/9Qi1*.
The coefficient matrix for all the boundary-interface cells is [dR?/dQb]. An example for the
assembling of these matrices is illustrated in Fig. 8.8. The terms
{ 30" OX, D} “ and ( 9Q? /X, D} are the sensitivity derivatives of the flowfield solution for
the internal cells of the kth subdomain and all boundary-interface cells, respectively. The
terms [aR Ll aX—D]kand [aR b/ B)TD] are the sensitivity derivatives of the discretized
residual form of the governing equations for the internal cells of the kth subdomain and all

boundary-interface cells, respectively.

The sensitivity of the flowfield solution for the internal cells {3Q ¢ /0Xp}* is
expressed in terms of the sensitivities of all flowfield solutions at boundary-interface cells

{aQ? /aX; D}. This can be shown by using Eq. (8.18) as follows:

(3B T
{aYD} B ]:[an:l] aQb aYD + aQ‘ BX_D » (8.19)

Substituting Eq.(8.19) into Eq.(8.18) to eliminate {E)Qi /a;TD}" and repeating this

procedure for other subdomains yields
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[ R ] {aQ b } _
a0 . |aXp
where [ 0R /90 ], is the effective coefficient matrix for the boundary-interface cells given
E3 {am}_NZBL[aRkaHaRTT‘[aRfr

aQ e aQb k=1 aQi aQi J aQb (8.21)
and [0R / 9Xp) . is the effective RHS for the boundary-interface cells given by,
RS R
Xpl. LaXp| Silagi ] [Lag! oXp (8.22)

The matrix inversions in Eqs. (8.21) and (8.22) are not done explicitly. Instead, the

0Xp e (8.20)

by,

following products given by Egs. (8.23) and (8.24) are obtained by solving the systems of
Eq. (8.25) and Eq. (8.26), respectively:

[a"—k]l rﬂ}l (M,

[Leg* | | LeQ? (8.23)
and
i VR [api Tk
e
290°¢ | | dXp (8.24)
k R i k
e = | 55
o0° (8.25)
and
B
a0’ (8.26)

It should be r_loticed that Eq. (8.25) and Eq. (8.26) have the same coefficient matrix

and are similar to Eq. (8.6) for a single domain. This means that the previous decoupling
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process has resulted in breaking up the single domain into small sub-domains which can be
solved separately. Hence, the SADD scheme can now be summarized in the following

steps:

(1) Form the LU-decomposition of the coefficient matrix [dR¥/JQIIK of the
subdomain £ and solve the systems Eqs. (8.25) and (8.26). If obtaining the
LU-decomposition is expensive, then it is better to save the LU factors into a

computer diskfile.

(2) Form the products [ 9R /9Q ¢ |% [ M 1% and [ oR 530 1% [Z1F for

the subdomain k.

(3) Substitute into Eq. (8.21) and Eq. (8.22).

(4) Repeat the steps 1 through 3 for all the subdomains to form [ 0R /9Q ], and
[0R / 8Xp] .

(5) Solve Eq. (8.20) to obtain {90 ® /oXp ).

(6) Substitute {0 ¢ /8Xp} into the following modified form of Eq. (8.19)

[ LU ]"{QQ_"}"=_[ aR"r{aQb}_F[aRi

k
a}TD aQ b afD a}TD:| (8.27)

then use the saved LU factors of the subdomain  to cbtain {9Q | /0Xp | *.

(7) Repeat Step 6 for all the subdomains, i.e., NBL times, to obtain the

sensitivity of the flowfield solutions of their internal cells.

It is clear from the SADD scheme that it is highly efficient for parallel computers
since the subdomains are independent of each other. However, if a domain is broken-up

into too many small subdomains in order to reduce the memory requirements, many
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boundary-interface cells will be created. Consequently, the number of right hand sides of
Eq. (8.25) will dramatically increase. This means that reducing the memory requirements
results in high computational costs. Therefore, it is recommended that the number of
subdomains be kept as small as possible in order not to offset the computational advantage

of the scheme.

When the SADD scheme is applied to the systems of the adjoint vectors given by
Egs. (8.9) and (8.10), it yields

2 T1E T page y

J:gg; T gg:]T _ {’Mb%j 535_4, k=1, NBL (8.28)
(=TT 02T), g Jo

2] [y ) W]

j=1,NCONy (8.29)

where (llf > ¢ ) {l'bij }k) and ({Alb }, {Azbj }) are the adjoint vectors for the internal cells of

the kth subdomain and all the boundary-interface cells, respectively.

8.5.1 The Analytical (or Sensitivity Analysis) Approach Using the SADD Scheme:
Equations (8.3) and (8.4) of the aerodynamic sensitivity coefficients given in

Section [8.2] are adapted to the multi-domains using Egs. (8.18), (8.28), and (8.29). For

instance, these coefficients take the following forms in case of the direct sensitivity method:

.

oF ' Jag?

T NBL
2’| " |ox, kz

vr =9 _

8X

oF

5

0 aQ'
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T RYL:
VG.Ea_(}:a_fj +an o0’ NBL.a_G_f..QQ_l_
Toax, \8X,), \a@?| |oX,| «=1|\e@!| |oX,
J = 1,NCON;(8.31)
dG,
VG, = —
> &

) J = NCON;+ 1, NCON (8.32)

The adjoint variable method, the aerodynamic sensitivity coefficients take the
following forms after using Eqgs. (8.28) and (8.29):

___EF_= T faRb NBL ‘ \k
e x (l) \ox, }12 1{( ik %,/ (8.33)
% %x, "\, {23 {BYD = [(12") {afuf
= 1, NCON; (8.34)
VG.E—a—G—j
T, Jj = NCONs+ 1, NCON (8.35)
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Fig. 8.1 (a) Details of the finite-difference approach
(b) Details of the sensitivity analysis approach.
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Chapter 9
AERODYNAMIC SHAPE OPTIMIZATION PROCEDURE

The overall process of aerodynamic design optimization consists of the following
major components: CFD analysis, the sensitivity analysis, the approximate flow analysis,

and the optimization method (Fig. 9.1).

9.1 CFD Analysis

The flowfield simulations are performed using the general purpose, finite-volume
Euler/Navier-Stokes CFD code “VUMXZ3”. The formulation given in Chapter 6 is
implemented in this code. This code has been applied to analyze a variety of complex
internal and external flows [72]. It produces consistent and repeatable flow simulations in
the sense that small perturbations to design variables are accurately reflected in the flowfield

~ solution. The CFD analysis is performed in any one of the following situations: (1) at the
end of each optimization iteration to check the design; (2) when the number of approximate
analyses reaches its specified limit as will be seen later; and (3) when new gradients of

constraints and objective function are needed, i.e., when the search direction changes.

9.2 Sensitivity Analysis

A key part of the present design procedure is the sensitivity analysis described in
Chapter 8, where the derivatives of the constraints, the objective function and the
conserved flow variables, with respect to the design variables are computed. The

derivatives quantify the effects of each design variable on the design and thereby identify
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the most important design changes to make en route to the optimum design. Hence, their
accuracies are important for the success of the optimization process. This component
constitutes the first difference between the present procedure and the conventional

procedures.

9.3 Approximate Flow Analysis

In the present study, the flow prediction method, which is also given in Chapter 8,
is used only through the one-dimensional search of the optimization process to obtain an
approximate analysis. This component is crucial for the efficiency of the optimization
process and constitutes the second difference between this procedure and the conventional

procedures, as will be seen in the next section.

9.4 Optimization Algorithm

In choosing a design procedure for solving general aerodynamic shape optimization
problems, several features are desirable. Firstly, the number of times the flowfield analysis
must be performed should be kept as low as possible since the analysis is computationally

- . expensive. This is particularly true when the number of flowfield governing equations is
large. Secondly, the amount of gradient information required in the design process should
be reduced or, if possible, eliminated. A wide variety of optimization algorithms, which
satisfy the second feature, are available in general optimization software packages. Of
interest here is the so-called method of feasible directions modified by Vanderplaats and
Moses [100] and implemented in the general purpose optimization routine “ADS” [101].
This method has the features that it progresses rapidly to an optimum design and that it
requires the gradient information for the objective and constraints active at only a given

point in the optimization process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



120

When using the optimization routine (ADS) as a “black box™ in a design procedure,
it will require a handful of evaluations of the objective function and constraints, before the
optimal design is reached. Hence, it is desirable to modify this optimization routine (ADS)
such that the new procedure will have the capability of providing the objective function and
constraints without resorting to the expensive CFD analysis. This capability is the so-called
flow prediction method and is described in details in Chapter 8. In this section, limitations
of this method when incorporated with the method of feasible directions, are discussed.

Also, a brief review of the method of feasible directions is given in this section.

9.4.1 New Procedure for The Method of Feasible Directions

When using the method of feasible directions to solve the nonlinear constrained
optimization problem defined by Egs. (7.2) to (7.5), i.e., finding the vector Xp, the

optimization process proceeds iteratively by the common update formula,
Xgt=Xg+a" s ©.1)

In Eq. (9.1), X are the current aerodynamic shape design variables, X7 *! are the
new aerodynamic shape design variables, @* > 0 is the move parameter, and S is a vector
of search direction. Thus, &* S is the step size for Xp. The number of optimization
iterations is r, where r=0 for the initial acrodynamic shape. It is obvious from Eq. (9.1) that
for an iterative optimization approach there are only two parameters, &* and S, that need

to be calculated for each optimization iteration.

In general, one optimization iteration of the optimization process consists of the

following eight stages:

(1) start vith an initial vector of design variables, X3, i.e., initial geometry.

(2) perform a CFD analysis to get the flowfield solution, Q.
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(3) calculate all information related to the current design such as the objective

function, constraints and their gradient. Normalize the gradients.

(4) check the convergence criterion; continue, if not satisfied, terminate
otherwise.

(5) determine a search direction, S”, which is in the “usable-feasible” sector of the

design space using the method of feasible directions [100].

(6) perform a one-dimensional search along the direction of S’ to evaluate the
move parameter, a”, which reduces the objective function as much as

possible subject to the constraints.

(7) update Xp * using Eq.(9.1) and generate a new computational grid

accordingly.
(8) Increment r and return to Stage 1.

This procedure is implemented in the general purpose routine “ADS” and it is given
in Fig. 9.2 for a “black box” use. Stages 1, 2, 7, and 8 are self explanatory. In Stage 3 the
gradient information are either provided through an external routine or computed by a
finite-difference approximation through “ADS”. The convergence criteria used for the
optimization algorithm, i.e., Stage 4 are: (1) the maximum number of iterations; (2)
prescribing some values for the absolute or the relative change in the objective function.
Stage 5 of finding “the usable-feasible” search direction by the method of feasible
directions is explained in Ref. [100]. Stage 6 represents a major drawback when using the
above procedure as a “black box” and constitutes one of the differences between the new
and the conventional optimization procedures. Hence, this stage will be explained in more

detail in the following subsection to show this difference and to elucidate this drawback .
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9.4.2 A Modified One-dimensional Search Cycle

Once a search direction has been found, the move parameter, o.*, should be chosen
such that it minimizes the objective function in this direction. This problem is called the
one-dimensional search since the only variable is ¢. This is commonly done by one of the
following methods: a polynomial interpolation, a golden section method, or a combination

of them.

For each of these methods the objective function F is calculated for several values
of & in order to find *. Hence, the optimization process will be expensive if actual
flowfield analysis is performed in each cycle of the one-dimensional search. In other
words, if the optimization routine is used as a “black box”, the cost of the optimization
process will be prohibitive. Fortunately, the changes in X during the one-dimensional
search cycle are sometimes small. Hence, the present optimization procedure takes
advantage of this situation and replaces the CFD analysis during the one-dimensional
search cycle, where the changes of X are small, by the flow prediction method of Chapter

8.

Although this approach may seem attractive, it has two limitations. The first
limitation is due to the fact that sometimes large values of X, may cause a failure of the
approximate flowfield analysis. Usually, this situation occurs when the first estimate for
o is large. As a remedy for this problem, the present procedure limits the first estimate of
" to a small value such that the changes in X}, are kept within 2 % of their normalized
values. The second limitation is due to the fact that after using the approximate analysis
successively for different values of ¢, the approximate flowfield solutions start to
deteriorate giving crude estimates for the values of the objective function. This usually
occurs if the number of cycles required for the one-dimensional search exceeds a certain
limit. As a remedy for this problem, the present procedure restricts the number of one-

dimensional search cycles, within which the successive approximate analysis is performed,
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to 15. Hence, if the value of the move parameter, o, is not reached within 15 cycles, one
CFD analysis is performed to update the flowfield solution and to provide a new baseline

solution for the approximate flowfield analysis.
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Fig. 9.1 Flow chart of the new aerodynamic design optimization procedure.
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Fig. 9.2 Flow chart of the “black box” use of “ADS".
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Chapter 10
RESULTS AND DISCUSSION

As mentioned in Chapter 5, the development of the new aerodynamic optimization
procedure is achieved in four steps. The results of each step are presented and discussed in
a separate section herein. Presented in Section 10.1 is an assessment of the numerical
methods (including the SADD scheme) that are used to solve the system of linear equations
of the analytical approach. Section 10.2 covers a series of computations used to assess the
accuracy and feasibility of the flowfield prediction method in different flow regimes. A
comparison between the different methods that are used to calculate the aerodynamic
sensitivity coefficients is presented in Section 10.3. Finally, some demonstrations showing

the design capability of the new optimization procedure are given in Section 10.4.

The upstream flow conditions for the demonstrative cases involving the nozzle-
afterbody configuration (Fig. 2.2) are given in Table 10.1. These conditions are kept
constant during an optimization process. The height of the combustor exit (H) is 0.01524

m and all the solid walls are assumed to be adiabatic.

Table 10.1 Upstream flow conditions for the nozzle-afterbody

configuration.
: ﬁeynolds No. Total temp. Total pressure
Flow Mach No. based on (&) °K) (kPa)
Combustor exit (th) 1.665 340,000 338.0 189.6
External Flow 6.000 330,000 491.3 2489.0

(free stream)
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The upstream flow conditions for the demonstrative cases, in which the NACA
0012 airfoil is used as a baseline configuration, are 0.8 Mach number, 0.5 million

Reynolds number based on the chord length, and zero angle of attack.

10.1 An Assessment of the Solution Methods for The System
of Equations of The Analytical Approach

10.1.1 Results on Single Grids

In the present study, only the direct and iterative solvers used for the system of
linear algebraic equations (Eq. (8.6)), which arise in the analytical approach, are
considered. As mentioned in Section 8.4, only two direct solvers are deemed most suitable
for the present study. These are the sparse matrix solver and the banded matrix solver. On
the other hand, only one iterative solver is deemed most applicable to the system of linear
equations of the present study. This solver is the generalized minimum residual (GMRES)
solver. In this section, efficiencies, accuracies and storage requirements of these solvers are
assessed. For this purpose, the configuration shown in Fig. 7.4 is considered, where the
design variables Xp; and X5, are given the values of 20° and 12°, respectively. The
computations are performed using a second-order discretization of the flowfield governing
equations and using a grid (Fig. 10.1) with (52x40) cells. Consequently, the system of
linear equations has a square coefficient matrix with 8320 rows and, at most, 36 nonzero

elements per row.

A comparison of the sparse matrix and the banded matrix solvers, as applied to the
above system of equations, reveals that they both require 43 Megabytes of memory.
However, unlike for the banded matrix solver, the appropriate memory allocation for the
sparse matrix solver can only be determined after many trials. This may be explained as
follows. When using the sparse matrix solver, the coefficient matrix of Eq. (8.6) is

factorized in two stages, first symbolically and then numerically. Symbolic factorization is
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a factorization of only the nonzero structure of the coefficient matrix whereas numeric
factorization is the standard “LU” factorization. Despite the fact that only the values and
locations of the nonzero elements are stored when using the sparse matrix solver, additional
memory allocations are also required for the fill-in elements (elements which result from
zero entry of the coefficient matrix becoming a nonzero in the L or U as a consequence of
the elimination process). Since the required number of fill-in is not known a priori,
different numbers of fill-in and, consequently, its attendant memory allocations must be

attempted in order to determine the most efficient one.

Comparing the results of the two direct solvers as used in the present study
indicates that their numerical accuracies are the same. Whereas, a comparison of the
computational times required by the two direct solvers reveals that the sparse matrix solver
is significantly less efficient. For instance, the sparse matrix solver requires about 212
CPU seconds on the CRAY-2 computer of the Numerical Aerodynamic Simulation (NAS)
of NASA to solve the above system of equations. The banded matrix solver requires only
23 CPU seconds for the same system. Such a large difference in computational time is due
to the fact that most of the computational time of the sparse matrix solver is spent in
performing the symbolic factorization (199 CPU seconds for the present case). Usually,
performing the symbolic factorization is considered a computational advantage if different
systems of equations with the same nonzero structure of the cozfficient matrices are solved.
However, this is not the case in the present study since the same nonzero structure of the
coefficient matrix is not always guaranteed. It should be noted that the time required by the
sparse matrix solver for the numerical factorization and the forward and backward
substitutions is less than that of the banded matrix solver (13 CPU seconds compared to 23

CPU seconds).

The GMRES solver implemented in the software package SITRSOL [102] is

employed to solve the system of equations given by Eq. (8.6). Since preconditioning of the
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coefficient matrix of this system is essential for the success of the GMRES solver, three
types of preconditioners implemented also in this software package are tried. These are the
diagonal (Jacobi) preconditioner, the Incomplete LU factorization (ILU(k)), where Kis the
level of fill-in, and the truncated Neuman polynomial expansion. These preconditioners can
be employed either as a left or as a right preconditioner. The computer core memory of this
solver is found to be 24 Megabytes when no preconditioner is employed. However,

depending upon the utilized preconditioner, additional memory allocations may be required.

As mentioned in Section 8.4.2, the choice of an effective and stable preconditioner
is extremely important to the success of the GMRES solver. Since the best of the above
three preconditioners is not known a priori, each one of them needs to be tried once as a left

preconditioner and once as a right preconditioner. It is found that only the JLU(1)

preconditioner succeeds to solve the present system when it is used as a left preconditioner.
In this case, the total computer memory required for this solver is increased to 40

Megabytes, which is almost the same as that required for the direct solvers.

Usually a convergence criterion has to be met in the iterative solvers in order to
declare the system of equations as solved, e.g., when the residual reaches a tolerance of
10-14, However, this does not mean that the exact solution is reached by the solver.
Hence, the solution of the banded matrix solver is considered in the present study as a
baseline solution to check the accuracy of the final solution of the GMRES solver. In other
words, to check whether an exact solution is reached or not, the following L,—norm is

defined:

agm 2

0Xp1

(10.1)

/\/ m=NEQ
Ly-norm = Z (

m=1

o™ )
0Xp1/p

G

where subscripts G and B denote the GMRES solver and the banded matrix solver,

respectively. NEQ denotes the number of unknowns. The L,-norms given in Table 10.2
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are obtained when using the ILU (1) left preconditioner. As can be seen from this table, the
L,-norm is of the same order as the tolerance criterion up to a tolerance of 10-8 where it
starts to level off. Therefore, the system of equations is declared solved in the present study
when a tolerance of 10-9 is reached.

Table 10.2 An assessment of the GMRES solver when using
different tolerance criteria.

Execution time for

only the iterative
Tolerance criterion  Number of iterations procedureab Lz-norm

(CPU seconds)
10-04 14 2.1700¢ 2.3457*10-04
10-05 16 2.2240 2.8291%*10-05
10-06 18 2.7864 2.6592*10-06
10-07 20 3.1440 2.7893%10-07
10-08 22 3.2260 2.1717%10-08
10-09 24 3.7710 1.1207*10-08
10-10 26 3.9760 1.1010*10-08
10-11 28 4.1860 1.0980*10-08
10-12 29 4.9732 1.0976*10-08
10-15 36 5.8220 1.0976*10-08
10-20 47 6.4030 1.0976%10-08

2The time required for each right hand side.
YThe time required for the JLU is about seven CPU seconds and is constant in all computations.
°The number of unknowns is 8,320,

The computational time of the GMRES solver as employed in the present study is
divided into two parts— the time for Incomplete LU factorization and the time for the
iterative procedure. The time for ILU does not change if the same coefficient matrix is used
with different right hand sides, which is the case herein. On the other hand, the time for the
iterative procedure changes according to the desired accuracy of the solution as indicated in
Table 10.2. For instance, the iterative procedure requires about four CPU seconds for each

right hand side when a tolerance of 10-1! is specified and it requires 2.78 CPU seconds
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when a tolerance of 10-6 is specified. This means that as the tolerance criterion increases,
the time for the iterative procedure increases. However, unlike the L,-norm, the time
required for the iterative procedure consistently increases as the tolerance criterion

decreases.

To summarize the above findings, the execution times and the memory
requirements of the above solvers are compared in Table 10.3. All execution times givn in
this table are normalized by that required for the LU factorization in the banded matrix
solver which is 22 CPU seconds. Also, all memory requirements are normalized by that
required for the banded matrix solver which, as mentioned above, is about 43 Megabytes.
When employing the GMRES solver, a tolerance criterion of 10-10is used.

Table 10.3 A Comparison of the different solvers applicable to
the system of linear equations Eq.(8.6).

B Solver Execution time Memory
Factorization Each RHS requirement
Banded matrix solver 1.00 0.022 1.00
Sparse matrix solver 9.59 0.022 1.00
GMRES solver
(using left ILU(1) preconditioner) 0.318 0.130 0.93

The number of unknowns is 8,320.

It can easily be concluded from Table 10.3 that the banded matrix solver is the most
feasible one when the number of right hand sides is large. Hence, it will be used to solve

ithe systems of equations in the SADD scheme (Egs. (8.20), (8.25), and (8.26)).

10.1.2 Results on Domain Decomposed Grids

To assess the computational advantages of the SADD scheme, a computer program
called MAisSA (Multiblock Aerodynamic Sensitivity Analysis) is developed. Three cases

(Cases 5.a, 5.b, and 5.c)-are considered. These cases differ basically in the number of
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subdomains into which the computational domain is divided, and consequently, in the
number of boundary-interface cells. The configuration of Fig. 7.4 is considered for all

three cases with a global computational domain of size (52x40) cells (Fig. 10.1). The Xp;
and Xp, are given the values of 20° and 12°, respectively. The distinguishing features of
these cases are given for reference in Table 10.4.

Table 10.4. The distinguishing features of the cases used to
demonstrate the flow prediction.

Case No. of subdomains No of interfaces Size of each

subdomain
(cells)

5.a 1 0 52x40
(Single domain)

5h ) 1 20x40
32x40

20x20
S5.c 4 3 20x20
32x20
32x20

The global computational grid consists of 52x40 cells.

In Case 5.a, the computational domain consists of one block. Hence, there are no
boundary-interface cells. This is essentially similar to the previous calculations on a single
grid. In Case 5.b, the computational domain is divided into two subdomains as shown in
Fig. 10.2a. As can be seen from this figure, the number of boundary-interface cells in this
case are 80, and as a result, the number of decoupling unknowns is 320. In Case 5.c, the
computational domain is divided into four subdomains (Fig. 10.3a). As a result, the

number of boundary-interface cells becomes 142, which means that the number of
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decoupling unknowns in Case 5.c is 568. Structures of the global coefficient matrices of

Case 5.b and Case 5.c are given in Figs. 10.2b and 10.3b, respectively.

The effect of varying the number of decoupling unknowns on the execution time
and the memory requirements is investigated and typical results are presented in Table
10.5. All execution times of this table are normalized by the time required for Case 5.a
which is 23 CPU seconds. All memory requirements are normalized by the memory

allocations required for Case 5.a which is 56 Megabytes.

Table 10.5. Effect of number of decoupling unknowns on the
execution time and memory requirements.

Case de?cﬁipcl)ifng Execution time Memory Ly-norm
unknowns requirementd
5.a 0 1.0 1.000 0
5.b 320 2.1 0.817 0.12%10-16
S5.c 568= 2.8 0.588 1.60*10-16

2 The global computational grid consists of 52x40 cells.

As can be seen from the Ly-norms in Table 10.5, the numerical accuracies of all the
cases are the same. However, their execution times and memory requirements are
significantly different. In general, as the number of decoupling unknowns increases due to
the increase in the number of subdomains, the memory requirements decrease and the

execution times increase.

The memory requirement is reduced by more than 40% in Case 5.c (four
subdomains) and by 19% in Case 5.b (two subdomains). The reason for this can easily be
seen by the inspecing Table 10.4, which shows that the size of the largest subdomain in
Case 5.c is about 30% of the global grid and is about 60% of the global grid in Case 5.b.

Hence, it can be concluded that the savings in memory requirements are strongly related to
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the size of the largest subdomain. Therefore, for large 2-D problems and for all 3-D
problems, where the size of the largest subdomain can be kept small, the savings in
memory requirements are expected to be more pronounced. Thus, using the SADD scheme
in large 2-D as well as 3-D problems should make it possible to solve these problems easily

on the supercomputers available today.

In spite of the increase in the execution times of Case 5.b and Case 5.c, the rate of
the increase decreases as the number of decoupling unknowns increases. For instance, in
Case 5.b (320 decoupling unknowns), the execution time is increased by 100% of the time
required for Case 1.a (zero subdomain or zero decoupling unknowns). Whereas, in Case
5.c (568 decoupling unknowns), the execution time is increased only by 40% of the time
required for Case 5.b. It should be noted that the size of subdomains used in the present
study is relatively small. It is believed that the decrease in the above rates becomes more
pronounced for subdomains with larger sizes. However, the drawback of increasing the
execution time is generally not as significant to offset the well-known advantages of the
domain-decomposition techniques; these techniques subdivide a large problem into small

manageable ones and ease the grid generation for a complex-geometry problem [72-74].

10.2 Demonstration of Flowfield Prediction Method

Three series of computations (Cases 6-8) are included in this section to investigate
the behavior of the flowfield prediction method in different flow regimes, and to attempt to
answer the issues raised in Section 8.3. In Cases 6 and 7, the simplified model of the
nozzle-afterbody section (Fig. 7.4) is considered and the flow is assumed to be inviscid.
These cases demonstrate the behavior of the method in the supersonic and hypersonic flow
regimes. In Case 8, a NACA 0012 airfoil is considered (Fig. 7.3) and viscous effects are

included by using the thin-layer Navier-Stokes equations (Eq. 6.1). This case serves to
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demonstrate the behavior of the flowfield prediction method in the transonic flow regime,

which is highly nonlinear.

The main reasons behind Case 6 are to compare the results of the flowfield
prediction method with the available experimental data and to assess the behavior of the
method in the absence of shocks. In Cases 6.a and 6.b, the flowfield solutions for two
configurations, where one configuration is obtained by a small modification of the other,
are obtained by forcing the discrete form of the flowfield governing equations, (Eq. (6.27),
to zero at all computational cells using the flow analysis code. The baseline configuration
has Xpp; = 18° and X, = 12° (Case 6.a), while the modified configuration has Xj,; = 20°
and Xp, = 12° (Case 6.b). That is, the changes in Xp; and X, are 11.1% and 0%,
respectively. Equation (8.17) is solved for the changes in Q (i.e., AQ) due to the above
changes in Xp. The Jacobian matrix and the right hand side of this equation are evaluated
using the flowfield solution (Fig. 10.4a) associated with the configuration (Xp; = 18° and
Xpp = 12°). Then, the predicted flowfield solution associated with the configuration (Xp,; =

20° and X, = 12°) is obtained by using Eq. (8.16). This is referred to as Case 6.c.

The normalized pressure contours obtained via the flow prediction technique (Case
6.c) are compared favorably with their corresponding contours (Case 6.b) obtained by the
flow analysis code (Fig.10.4b). It is also seen from this figure that the axial thrust force
coefficient, F, obtained using the flow prediction results differs only by 0.08% from that
obtained using the flow analysis solution. The surface pressure coefficient (Cp)
distributions on the ramp obtained from the predicted flowfield solution are compared in
Fig. 10.5 with their corresponding values obtained via the flowfield analysis code and the
experimental data of Cubbage and Monta [5]. Examination of this figure indicates that the
numerical results agree with each other as well as with the experimental data. The slight
discrepancy with the data is attributed to viscous effects, which are not accounted for in the

governing equation of the flow (Eq. (6.27)). The results shown in Figs. 10.4 and 10.5
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demonstrate the accuracy of predicting the flowfield solution when no shocks exist in the

flowfield and also when the design variable, X, is changed by 11.1%.

Next, the second series of computations (Case 7) is included to investigate the
quality and accuracy of the flowfield solution in the presence of shocks as well as when
different step sizes of design variables are used. In addition, these cases help assessing the
accuracy of the flowfield solution when the technique of prediction based on prediction
(discussed in Section 8.3) is used. The distinguishing features of Case 7 are presented in

Table 10.6.

Table 10.6. The distinguishing features of the cases used to
demonstrate the SADD scheme.

— Deflection

Case Angle, 6 Flowfield Solution Method

7.a 0° CFD Analysis

7.b 2.5°,5¢%, 10° CFD Analysis

7.c 2.5%5° 10° Prediction based on CFD analysis
of 8 =0°

7.d 5° Prediction based on CFD analysis
of 8 =2.5°

7.e 5° Prediction based on Prediction
of 6 =2.5°

The flowfield governing equations (Eq. (6.27)) are solved to obtain the flowfield
solution first for a flat ramp surface at oo = 10° (Case 7.a). Then, the ramp surface is
modified in such a way that a shock can be generated- a compression corner is formed at
38% length from the ramp corner by turning the surface at an angle, 6, from the ramp

surface (Fig. 10.6). Therefore, the angle 6 serves as a design variable in Case 7. CFD
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analyses are performed for three values of 6: 2.5°, 5°, and 10° (Case 7.b). Finally, the
flowfields for the above @ values are predicted using the analysis for the flat ramp surface,
S that is, 8= 0° (Case 7.c). In other words, the 8 = 0° configuration (Case 7.a) is denoted by
X3 in Egs. (8.16) and (8.17), and any one of the 6 # 0° configurations (Case 7.c) is
denoted by Xp. The flow of Case 7.a over the ramp is free of shocks. However, flows
containing compression shocks due to ramp wall deflection (6 0°) are predicted based on

the shock-free flow.

The pressure coefficient distributions along the ramp for the Cases 7.a, 7.b, and 7.c
are shown in Fig. (10.7). The analysis (Case 7.b) and the predicted (Case 7.c) results are
indistinguishable up to the compression corner. The compression corner shocks are also
predicted very well. As expected, discrepancies begin to appear for the larger 0 values,
i.e., for larger design variable modifications. It should be noticed that a discontinuous
physical phenomenon (shock) is predicted based on a flow which does not have that

phenomenon (shock-free).

A more quantitative measure of the discrepancies can be provided by plotting the
percentage of the deviation of the predicted Cp to the Cp value obtained from analysis
(Fig.10.8). The maximum deviation is only 2% for 8 = 2.5°, but it increases to 22% for
6= 10°. These deviations are attributed to the fact that the flowfield solution depends
nonlinearly on the design variables. It should be noticed that the predicted flowfield
solution in this study is approximated by a Taylor's series, Eq. (8.16), in which the gauge

function is the powers of the small changes in design variables, (}T 1; -X Do) Therefore, the
above observed deviations may decrease if other gauge functions, e.g., logarithmic, are
used in the Taylor's series. However, the deviations shown here are typical of trends

usually observed when a nonlinear problems are locally linearized. Therefore, it can be

concluded that the prediction method, due to truncation error, exhibits increasing
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inaccuracies as the step size, AXp, increases and eventually produces unacceptable

solutions when the modification becomes too large.

The success of the prediction method for the off-surface flow is assessed by
examining the density contours of the internal nozzle jet flow. Shown in Fig. 10.9 are the
density contours of the shock-free flow (Case 7.a). When @ is equal to 2.5° a
compression corner shock is created (Fig. 10.10). Since this shock is embedded in the
broad ramp expansion, it effectively delays the ongoing ramp expansion spatially
downstream. As seen from Fig. 10.10, the contours of the predicted flow (Case 7.c, 8 =
2.5°) match those of the analysis (Case 7.b, 8 = 2.5°) up to the shock, and start deviating
only slightly downstream of the compression corner. Furthermore, the angle and the
strength of the shock are very well predicted. This clearly indicates that the prediction
method inherently contains and correctly models the characteristics wave propagation of
supersonic flow. In other words, this demonstrates that it is possible to accurately represent

the flow physics by the prediction model for small design variable modifications.

Another issue, which appeals to the curiosity is the success of the prediction
method when an existing modification in a configuration is enlarged; for example,
predicting the flow for 6= 5° when the flow of 6 =2.5° is given. Shown in Fig. 10.11 are
three sets of density contours in comparison: the flow analysis of 8 = 5° (Case 7.b), the
flow predictions of 8= 5° based on the flow analysis of 8= 2.5° (Case 7.d), and the flow
predictions of 6 = 5° based on the predictions of @ = 2.5° (Case 7.e). Two points are
noteworthy here. Firstly, Case 7.d aims at predicting the flow due to an enlarged
modification (6 from 2.5° to 5°), but not predicting a new physical phenomenon,; that is, the
prediction method is given a shock with which it begins. The comparison of this case with
the analysis is as satisfactory as the one observed in Fig. 10.10, despite the fact that the
shock in Fig. 10.11 is stronger. Secondly, this figure illustrates the feasibility and quality

of the flowfield prediction when it is based on another flowfield prediction. For example,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



139

the prediction of 6 = 5° flowfield (Case 7.¢) is based on the Case 7.c prediction for 6 =
2.5°, which is based on the flowfield analysis of Case 7.a. Since the truncation error of Eq.
(8.16) occurs twice and progressively during this process, although associated with smaller
modifications, the agreement of Case 7.e is slightly less successful than that of Case 7.d.
Therefore, it may be concluded that higher level predictions may be further used for crude,

but efficient estimates of flowfield solutions of highly modified shapes.

Finally, the accuracy of the flowfield prediction method in case of viscous transonic
flows is assessed. A series of computations (Case 8) of Fig. 10.12 is conducted, where all
but the first design variable of the upper airfoil surface are changed by 5%. The first design
variable is changed by 14% to achieve the perturbed shape shown in this figure. The
distributions of pressure coefficients (Cp) shown in Fig. 10.13 are obtained from three
different flowfield solutions. The first and the second flowfield solutions are obtained by
solving the viscous flow governing equations (Eq. (6.33)) for the baseline configuration
(Case 8.a), and the modified airfoil (Case 8.b), respectively. Whereas, the third flowfield
solution is obtained using the flowfield prediction method (Egs. (8.16) and (8.17)). These
flowfield solutions are shown via the density contours in Figs. 10.14a and 10.14b, From
Figs. 10.13 and 10.14, it can be seen that the analysis and the predicted results on the
perturbed surface of the airfoil are indistinguishable after and before the region where the
shock and the boundary layer interact. However, the slight discrepancies seen are believed
to be due to the shock-boundary layer interactions which may increase the degree of
nonlinearity of the relationship between the flowfield solution and the design variables
(i.e., Q = Q (Xp)). Hence, it is possibly the relatively large change (14%) in the first
design variable, X, that causes these discrepancies. This reconfirms the previous finding
which shows that the accuracy of the prediction is very dependant on the magnitude of
AXp. Therefore, the maximum of AX), for each design variable per flow prediction step is

conservatively restricted during the optimization process to 2% of its nominal value. This is
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important since an accurate prediction of the flow properties, particularly on the surface, is
of great importance for a successful shape optimization. This point is further explained in

Sec. 10.4.

10.3 A Comparison of Aerodynamic Sensitivity Coefficient Methods

The configuration shown in Fig. 7.4 is considered to examine both the accuracy
and the efficiency of the sensitivity methods described in Section 8.1. Only the derivatives
of the objective function, F, with respect to design variables are considered. As mentioned
in Chapter 8, obtaining these derivatives via the finite—difference approximation (Eg. (8.1))
requires the perturbation of each design variable, X p» by a step size AXp. Then, the
flowfield is computed for each new X, using the flow analysis code. The sensitivity
coefficients obtained via all three methods are normalized by the sensitivity coefficients

obtained by the direct method, where Eq. (8.6) is evaluated using the flowfield solution

associated with Xp; = 20° and X5, = 12°,

Since the best values for AXp's of the finite-difference approximation are not
known a priori, different values of AX are attempted. This is shown in Figs. 10.15 and
10.16 for Xp; and Xp,, respectively. Of course, the results of both direct and adjoint
methods should be identical in this case since both of them are based on the same flowfield
solution. As seen from these figures, the selection of the suitable step size of the finite-
difference approximation is an estimate for the degree of desired accuracy. For example, if
an accuracy of = 5% is required, the changes in design variables should not exceed +4%.
This reconfirms the findings of a previous investigation [92] that the finite-difference

method results are highly dependent on the step size.

The computational times for obtaining the sensitivity coefficients of the objective

function, F, by all three methods are given in Table 10.7 for the case of two design
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variables. The system of linear equations arising from the analytical approach is solved
using the banded matrix solver. All execution times in this table are normalized by the time

required for the direct sensitivity method which is 23 CPU seconds on CRAY-2 of NAS.

Table 10.7 Execution times to compute the sensitivity coefficients of
the objective function, VF,

Approacha Time
Finite difference approximation 2.872
(3 flowfield solutions)
Direct Sensitivity Method® 1.000
(1 flowfield solution plus sensitivity coefficients via banded solver)
Adjoint variable Method® 0.980

(1 flowfield solution plus sensitivity coefficients via banded solver)

|

8Grid size is (53x41) in all computations.
bNumber of design variables = 2.
®Number of adjoint vectors = 1.

It is concluded from Table 10.7 that the adjoint variable method requires slightly
less time than the direct method. This is because there is only one adjoint vector (i.e., A
for F) to be solved for when using the adjoint variable method. Whereas, in the direct
method, there are two derivatives of the conserved flowfield variables,
(BQ /0Xp1, 0Q /asz) for which the equations need to be solved. In other words, the
difference in the total execution time of the two methods is due to the extra time required for
solving for an additional right hand side. The time required by the finite-differsnce
approximation is significantly higher than that required by the direct method and the adjoint

variable method. This is due to the repetitive flowfield analyses.
10.4 Demonstration of The Aerodynamic Shape Optimization Procedure

To assess the computational advantages of the proposed shape optimization

procedure, a computer code called ADOS (Aerodynamic Design Optimization using
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Sensitivity analysis) is developed. The example problems described earlier in Chapter 7 are
solved using this computer code. To further demonstrate the shape optimization capability
of ADOS, three design cases (Cases 9-11) are considered. In Case 9, the configuration
shown in Fig. 7.4 is optimized using three different optimization procedures in order to
investigate the efficiency of the new optimization procedure. In Case 10, the configuration
shown in Fig. 7.5 is optimized starting from three different initial shapes in order to assess
the accuracy of the proposed design procedure. Cases 9 and 10 exercise the new design
capability in high speed flow regimes. In the third case (Case 10), the shape of the airfoil
(Fig. 7.3) is optimized for different objective functions in order to examine the behavior of

the optimization procedure in the transonic flow regime.

Table 10.8 Results of different aerodynamic design optimization

procedures.
Xpi, Xpa,
Procedure deg deg F G G, Gs
Initial values
All 22.91 17.18 0.1201 -0.4223 1.2531 0.4082
Optimum values
1 18.34 16.42 0.1319 -0.0156 -0.3812 -0.1234
2 18.85 16.62 0.1322 -0.0162 -0.4030 -0.0685
3 18.95 16.53 0.1325 -0.0124  -0.3586  -0.1008

Presented in Table 10.8 are the results of the three optimization procedures used in
Case 9. In Procedure 1, the sensitivity coefficients [VF, VGj] are computed by the
traditional finite-difference approach (Eq. (8.1)). In Procedures 2 and 3, however, they are
computed using the analytical approach, i.e.,the sensitivity analysis. In Procedures 1 and
2, a CFD analysis is performed every time the optimizer changes the design variables. In
Procedure 3, an approximate flow analysis (Egs. (8.16) and (8.17)) is performed if the
optimizer is in the one-dimensional search cycle, and a CFD analysis is performed when
the sensitivity coefficients are needed. All of these procedures are started from the same

initial design.
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Since the optimization requires that all constraints be satisfied (Egs.(7.10)-(7.12)),
the values of G, G, G are all less than zero. The value of G, is the closest to zero,
which indicates that it is the active constraint for this optimization problem. For the
objective and constraints functions as defined by Egs. (7.6) and (7.10)—(7.12), the
optimum ramp and cowl angles are determined to be Xp; = 18.95° and X, = 16.62°,
respectively. The values of the constants in Egs. (7.10)-(7.12) used here are C 1=06, C,
= 1.0, C3= 1.5. The values of the optimum axial thrust coefficient obtained by these
procedures differ by £0.03%. Therefore, all three procedures have comparable accuracies

and they can be considered acceptable for engineering purposes.

In order to assess the relative efficiencies of Procedures 1-3, their computational
execution times are given in Table 10.9. Also shown in this table are the number of CFD
analyses and the number of approximate flow analyses performed in each procedure. All
the execution times are normalized by that of Procedure 3, which is approximately 1.39
CPU hours on the CRAY-2 computer at NAS. After a comparison of the execution times, it
can easily be concluded that Procedure 3 is the most efficient one. This is due to the fact
that a CFD flow analysis is the most expensive component of the present aerodynamic

design optimization method and Procedure 3 uses the fewest number of CFD analyses.

Table 10.9 Normalized computational times required by different
aerodynamic optimization procedures.

No. of CFD No. Of approx. flow
Procedure®b Execution time analyses analyses
1 4.480 32 -
2 2.848 20 -
3 1.000 6 14

8Grid size is (53x41) in all procedures.
bNumber of design variables = 2.
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Procedures 1-3 require six optimization iterations to get a converged optimum
solution. The history of the optimization process for Procedure 3 is shown in Fig, 10.17.
Shown in Figs. 10.18 and 10.19 are the pressure distribution histories on both the ramp
and cowl surfaces for different optimization iterations. As expected, the flow expands more
rapidly with the increased ramp angle, and that, in turn, increases the axial thrust force
coefficient. However, it should be noted that the ramp angle is bounded by the constraint

G, , which imposes the no-reverse-flow condition at the ramp tip.

Next, the ramp shape of the configuration shown in Fig. 7.5 is optimized. Three
different and arbitrary shapes (Fig. 10.20) are chosen as the initial design shapes for the
ramp; namely, a flat ramp surface at o= 10° (Case 10.a), a concave surface with its axis
(the straight line connecting the corner point and the ramp endpoint) at & = 25.7° (Case
10.b), and a convex surface with its axis at & = 29.5° (Case 10.c). The distinguishing
features of Case 10 are given in Table 10.10. The reason for starting the optimization from
three different initial shapes is to determine how close the resulting optimized ramp shapes
are to each other. Ideally, they should be identical irrespective of their initial shape, so that,
the designer using this method in the production mode can start with any shape that is
convenient. That is, the final optimized shape should ideally be independent of the initial
shape.

Table 10.10. Distinguishing features of the ramp shape
optimization cases.

The slope of initial
Caseab Initial ramp shape ramp expansion
10.a Flat 1°
10.b Concave 35.0°
10.c Convex 23.5°

——_—”——_—M
8Grid size is (53x41) in all cases.
bNumber of design variables = 47.
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Presented in Fig. 10.21 is the evolution of the ramp shapes during their
optimization processes. For each case, the ramp corner point and the axial length are the
only fixed parameters. As seen from Figs. 10.21a and 10.21b, shapes subsequent to the
initial shape, denoted by the increasing iteration numbers, systematically approach the final
optimum shape. For example, the flat shape surface of Case 10.a (Fig. 10.21a) changes to
a concave shape at the first iteration and, as the optimization process continues, the
concavity of the shape increases. It should be noticed that after the second iteration, the
slope of the initial ramp expansion does not change with the same rate as that of the ramp
tip. This means that no significant increases in the expansion rate at the ramp corner occurs
after the second iteration despite the recompression of the flow by the succeeding shapes.
The opposite of this occurs in Case 10.b (Fig.10.21b), where the shape concavity
decreases during the last three iterations. A comparison of the optimum shapes of Case 10
along with their initial shapes is shown in Fig. 10.20. The optimum shapes are almost
identical for 70% of the surface and show a small difference towards the tip. When the axis
angles, o, of the optimum shapes are compared, it can be seen that the difference between
Case 10.b and 10.c is indistinguishable (less than 0.3%) and that of Case 10.a differs from
them by only 3%.

The effect of the optimization of the shape on the off-surface flowfield is just as
pronounced as it is on the surface properties. The Mach number contours of both initial and
optimum configurations of Case 10.a are presented in Fig. 10.22. The expansion patterns
are significantly different. The rate of expansion is much higher inside the nozzle for the
optimum shape (Fig. 10.22b), which results in a higher Mach number at the nozzle exit
plane. The consequence of this is evidenced in the shear layer, which is thinner and has a
smaller angle with the horizontal for the optimum shape. Also, the expansion along the
external part of the nozzle ramp is no longer predominantly in the streamwise direction, but

a significant portion is in the normal direction. This indicates that cancellation of the cowl
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corner centered-expansion waves occurs at the optimized ramp surface, which is a

characteristic feature of bell-type nozzles.

The coefficient of thrust for each shape is an integrated value of the local flow
quantity, Cp. To study this local flow quantity and its distribution over the optimum shape,
the pressure coefficients of all three shapes are plotted in Fig. 10.23. Again, the initial
distributions are vastly different as chosen deliberately. The optimum distributions are not
identical but very close to each other. This should be expected since the objective function
(Eq. (7.5)), which guides the shape optimization, is an integrated property (F). It appears
that each Cp distribution compensates for the slight differences exhibited in each case’s
initial rate of centered flow expansion over the ramp. For example, Case 10.b has the
largest expansion at the corner, then it recompresses more downstream to match the
expansion of the other cases. From Figs. (10.21) and (10.23), it is observed that any small
difference in the ramp initial angle affects the centered expansion significantly. Hence,
obtaining truly identical optimal shapes is highly unlikely. Nevertheless, the results of all

cases are very close to each other.

Plotted in Fig. 10.24 are the histories of the objective functions, F, during the
optimization iterations. The initial ' value of Case 10.b is the highest, and all three shapes
converge to an optimum F value within 14 optimization iterations. Case 10.a and 10.c have
identical optimum F values to the fourth significant digit, and that of Case 10.b differs from

" them by less than 0.5%.

The computational time for each one of the above cases (Case 10) is about seven
hours on the CRAY-2 computer of NAS. For example, Case 10.a requires 180 evaluations
of the objective function over the course of 14 optimization iterations. At the end of each
iteration, there is a CFD analysis accompanied with the objective function evaluation for the

newly improved shape. This means that only 14 CFD analyses are performed, whereas,
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166 flowfield prediction calculations are performed. Comparing the computational time of
an analysis (600 seconds) and a flowfield prediction (40 seconds), it can easily be realized
that the aerodynamic optimization procedure is more efficient by employing the present

prediction method.

Finally, the aerodynamic shape optimization procedure is applied for two transonic
airfoil design problems, described earlier in Section 7.3, in order to evaluate its efficiency
and performance at the transonic speeds (Case 11). In this case viscous computations are
performed using a C-grid with 120x32 cells. The grid is regenerated for the various
intermediate airfoil shapes that are evoluted during the optimization. Both design problems
(Case 11.a and Case 11.b) start by the NACA 0012 airfoil as an initial baseline airfoil. The
Mach contours for the flow past this baseline airfoil are shown in Fig. 10.25. In both
cases, only one surface of the airfoil is shape optimized and the immediate vicinity of the
leading edge is excluded. Therefore, only 29 points on one surface rather than all 89 points

along the entire airfoil become the design variables.

The first design problem (Case 11.a) aims at reshaping the upper surface of the
baseline airfoil in order to minimize the drag coefficient while keeping the lift coefficient
greater than an arbitrarily assigned Cy,,;, value of 0.2. The final shape, as shown in
Fig.(10.16a), is appreciably different than the baseline. The pressure distribution computed
on the redesigned airfoil is also given in Fig. 10.26a. The suction peak level on the upper
surface is increased and the pressure gradient downstream of the shock is slightly
increased. The new design results in an increased included angle at the trailing angle. This
causes an increase in the pressure gradient, which in turn increases the viscous drag. On
the other hand, the increased suction peak results in an increased wave drag, since the
upper surface shock is located further downstream than that of the baseline airfoil (Fig.
10.27). Although, the lower surface shock changes in just the opposite manner, this

change is much less than that of the upper surface shock. Therefore, the total drag is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



148

increased, as seen in the optimization history (Fig. 10.28). Certainly, the Cj,,;, would not
have been obtained otherwise. However, the optimum value of Cp (0.01713) is the

minimum value for this specified C,,;, .

The optimum airfoil shape of Case 11.a is obtained after 13 optimization iterations,
where 178 evaluations of the objective functions are needed. Only at the end of each
iteration, there is a CFD analysis accompanied with the objective function evaluation for the
new improved shape. This means that 13 CFD analyses are performed, whereas the flow
prediction is performed 165 times. Comparing the computational time of a CFD analyses
(900 CPU seconds) and a viscous flow prediction (70 CPU seconds), it can easily be
realized that the aerodynamic optimization procedure becomes much more efficient by the
use of the viscous flow prediction method. The total computational time for this design

problem is about eight hours on the CRAY-YMP computer of NAS.

The second design problem (Case 11.b) is the reshaping of the lower surface of the
baseline airfoil to maximize the lift coefficient while keeping the drag coefficient less than
Cpma value of 0.02. The pressure distribution computed on the redesigned airfoil is shown
in Fig. 10.29. Similar to Case 11.a, the total drag at the optimum design is increased, but
the main reason in this case is the increased wave drag as a consequence of moving the
location of the lower surface shock further upstream. In addition, the included trailing edge
angle of the final design is decreased, which in turn decreases the pressure gradient
downstream of the shock. Consequently, the viscous drag is decreased. Shown in Fig.
10.30 are the Mach contours for the optimized airfoil. By comparing Figs. 10.27 and
10.30, it is observed that the upper surface shock of Case (11.a) is located further

downstream than that of Case 11.b.

The optimization history of Case 11.b is plotted in Fig. 10.31. The optimum C;,

value is 0.1751. The airfoil shape of Case 11.b was obtained after nine optimization
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iterations, which is less than that required in Case 11.a. However, 190 objective function
evaluations are needed in this case. Only nine CFD analyses are performed to compute the
objective function, whereas, the rest of the objective function evaluations are obtained by
the flow prediction method. Case 11.b requires about seven hours on the CRAY-YMP

computer of NAS.
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Fig. 10.1 Typical computational grid for Case 5.a.
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Chapter 11
CONCLUSIONS AND RECCMMENDATIONS

To gain a detailed understanding of the complex flowfield features of the nozzle-
afterbody configurations, a CFD capability for two-dimensional, viscous, mixing flows
was developed and explained in the first part of the dissertation. The mixing of a
supersonic jet and a hypersonic flow, during the expansion through an internal-external
nozzle with and without multispecies, was analyzed. The surface pressure distributions
compared favorably with the available experimental data. Although the computations on
fixed grids produced reasonable solutions, adaptation of the grids to the flows improved
the resolution by decreasing the computational errors. Comparisons between the case,
where the exhaust was simulated by Freon—Argon mixture, and the case, where the exhaust
was simulated by air, showed that the heavier simulant gas expands at a slower rate than

air, which consequently results in higher forces acting on the afterbody.

Since the flows were turbulent and had high speeds, the diffusive mass transport
could be modeled in at least two different ways. Using the computationally more expensive
model, which was derived from the complete kinetic theory, could be justified for such
mixing only if more accurate and quantitatively better results are required. Also, the results
indicated that using an exact equation for the sum of mass ratios being unity to eliminate
one of the species continuity equations, was necessary for the mass conservation in mixing

flows.

One of the important flowfield features of the planar nozzle-afterbody configuration

was the presence of a reversed flow region at the cowl tip due to the large pressure ratio
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between the nozzle exit plane and the freestream. Another feature of this flowfield was that
the mixing occured through a shear layer which deflected upwards at an angle varying from

7° to 10° depending upon the gas that was utilized to model the exhaust flow.

The above CFD capability can be used to advance the conventional wind tunnel
studies of scramjet afterbody flows using cold simulant exhaust gases, which in turn can
help in the actual design of the lower aft internal-external nozzle of a hypersonic vehicle
(e.g., NASP). However, it is suggested for future work on this subject that three—
dimensional calculations be performed in order to include the effects of the spanwise

expansion inherent in these configurations [14, 22].

Based upon the above results of the nozzle-afterbody configuration, a simplified
design optimization problem was defined to serve as one of the demonstrative examples for
the new design optimization procedure developed and explained in the second part of the
dissertation. This optimization procedure consisted of the following major components: (1)
CFD flow analyses; (2) evaluations of the required gradients by means of sensitivity
analyses; (3) approximate flow analyses; and (4) a modified optimization algorithm. The
present study focused on the efficiencies and the accuracies of component procedures two

through four.

A mathematical formulation was developed for the analytical determination of the
aerodynamic sensitivity coefficients based on discretized forms of flowfield governing
equations. The utilized flowfield governing equations in this part of the study were the 2-D
Euler equations and the 2-D thin layer Navier—Stokes equations for a single species. In the
analytical approach, two methods, namely, the direct sensitivity method and the adjoint
variable method, were assessed with regards to their relative accuracies and computational
requirements. Results showed that the two methods yield identical results. However, the

direct method is more economical than the adjoint method when the number of design
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variables is less than the number of adjoint vectors (the number of flow-type constraints
plus one). Otherwise, the adjoint variable method is more economical. A comparison
between the analytical approach and the traditional finite—difference approach showed that
the analytical approach is significantly more computationally economical than the finite—

difference approach.

An assessment of the direct and iterative methods, which were deemed most
applicable to the large systems of linear equations arising in the present analytical approach,
was presented. Based on a single-domain grid, computations were performed using three
solvers, namely, a sparse matrix solver, a banded matrix solver, and an iterative solver
(GMRES). Comparisons between these solvers indicated that the banded matrix solver is
generally the most economical one when the number of right hand sides is large (e.g., a
large number of design variables or a large number of adjoint vectors). The results
indicated also that, due to large memory requirements, these solvers are not feasible for
large two-dimensional problems and, also, inapplicable for any of the three-dimensional

problems.

Since large systems could not be solved using the above methods, a principally
different approach was proposed. The computational domain was divided into small
subdomains and then each subdomain was solved separately. This approach is refered to
herein as the “SADD” scheme. This scheme was successfully demonstrated by solving a
system of linear equations based on a relatively small global computational grid (52x40
cells). The results showed that 40% savings in computer memory requirements can be
achieved by using this scheme. However, these savings are expected to be more
pronounced for larger two-dimensional problems and for all three-dimensional problems,
where the size of the largest subdomain can be kept small. An important feature of this
scheme is that it can be easily used to solve systems of linear equations arising in complex—

geometry problems (e.g., multi-element airfoils). Currently, the SADD scheme is being
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implemented in a general purpose computer program called “MAisSA” [103]. The current
version of this program is only applicable to two-dimensional aerodynamic optimization
problems and its extension to three-dimensions is a topic of future investigation on this

subject.

To replace most of the repetitive CFD analyses required in conventional
aerodynamic optimization procedures, a flowfield extrapolation method, called flow
prediction method herein, was developed. The behavior of this method in different flow
regimes was investigated by predicting the flowfield of a perturbed scramjet-afterbody
configuration and a perturbed transonic NACA-0012 airfoil. The predicted flowfield and
the predicted surface flow properties compared very well with those obtained by
performing complete CFD analyses for the same perturbed shapes. However, discrepancies
between these results started to emerge and grow when large perturbation steps were used.
This was attributed to two reasons, namely, the type of gauge function of the Taylor's
series used in this study and the truncation errors. Based on a shock—free flowfield solution
of the unperturbed shape, the results showed that this method has the capability of
predicting shocks and other large gradients generated when the shape is perturbed.
However, as the step size of the changes increased, it exhibited increasing inaccuracies due
to the above two reasons and eventually produced unacceptable solutions when the changes
became too large. Hence, it was concluded that the flow prediction method can accurately

represent the flow physics for small changes in design variables.

Additionally, the capability of using the flow prediction method to predict
flowfields of successively perturbed shapes, without requiring intermediate CFD analysis,
was successfully demonstrated. However, the results showed that discrepancies began to
appear when too many flow predictions were successively performed. Hence, the method

was used successively only for crude but efficient estimates of the flowfield solutions
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during the one-dimensional search cycle of the optimization process, where estimated

values of the objective function and constraints were usually sufficient.

The computational time required by the flow prediction method was found to be an
order of magnitude less than that required for a complete CFD analysis for the same
configuration. This computational gain is expected to be more pronounced as the number of

grid points, which represent the computational domain, increases.

The overall optimization procedure was implemented in a new general purpose
computer program “ADOS”, and was successfully demonstrated by optimizing the above
scramjet nozzle-afterbody configuration to yield a maximum axial thrust force coefficient. It
was also demonstrated by optimizing the shapes of two transonic airfoils for minimum drag

and maximum lift, respectively.

To demonstrate the feasibility and the accuracy of the present optimization
procedure, three different design optimization procedures, including the present procedure,
were presented. Comparisons indicated that these procedures yield almost identical
optimization results. However, the new procedure, which employed the flow prediction
method and used the analytical evaluation of the sensitivity coefficients, was shown to be

the most economical one.

Finally, to reduce the amount of expertise for choosing the functions defining the
aerodynamic shapes and to alleviate the problems of shape smoothness, the aecrodynamic
shape in the above optimization problems was defined by a combination of the surface grid
points and the relative slopes between these points. The optimization results of nozzle-
afterbody configurations showed that by starting from three different arbitrary designs,
namely, a flat surface, a concave surface, and a convex surface, the same optimum shape
could be obtained. This indicated the generality of the present method and its capability of

obtaining optimum shapes irrespective of the initial design shapes. Despite the large
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number of design variables associated with this approach to defining the shape, it has the
advantage of being flexible and easy to implement. A concurrent investigation [104] has
shown that the use of Bernstein-Bezier polynomial parameterization of the design surface
dramatically reduces the number of design variables, and in turn, improves the overall

efficiency of the present procedure.

Although the iterative approximately factored (AF) algorithm used in this study
accounted for a large portion of the overall CPU-time of the optimization procedure, it was
essential for providing initial CFD solutions to optimization problems. Therefore, as an
improvement for the overall efficiency of the procedure, it is suggested for future studies to

replace the current CFD solver by another one that uses Newton's method [104].

In order to provide a design capability to help in optimizing the shape of an actual
scramjet nozzle-afterbody of a hypersonic vehicle (e.g., NASP), future investigations
should include the implementation of suitable turbulence modeling and the application of
the prcsént sensitivity analysis methodology to multispecies flowfield governing equations.
This methodology, with its promising results and versatility, should subsequently be
applied to other CFD algorithms. One such algorithm is Roe's flux-difference splitting.
Finally, the extension of the present procedure to three-dimensional problems is necessary
for the actual design of a complete hypersonic vehicle as well as other complex—geometry

configurations (e.g., a wing-pylon-nacelle configuration).
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Appendix A

PARAMETERS FOR THERMODYNAMIC AND TRANSPORT
PROPERTIES

Tables For Prediction of Thermodynamic and Tran

Table A.1 Coefficientst for the specific heat
function, Cp(T), Eq.(3.11)

Substance A B C D E Temp.

range,’K
Ar 2.5000 0.0000 0.0000 0.0000 0.0000 0 - 6000
Fry, 1.6966 0.03460 -0.428*10~4 0.199*10~7  0.0000 100 - 600
N, 3.6916 -0.00133  0.265%10~5 -0.976*10~9  0.0000 270 ~ 775
0O, 3.7189 -0.02516 0.858*10~5 -0.829*10-8  0.0000 270 - 760

$Values are found by a curve fit of the data tabulated in Ref. [105]

Table A.2 Thermodynamic quantities

Substance Enthalpy of formationt+,h° Molecular Weightt,w
(Joule/kg)
Ar - 1.55146*10° 0.39948%102
1337) — 4,18881*106 1.20914*102
N, 3.02736%105 0.28016*102
O, — 2.72918*105 0.31999*102

*+Values are evaluated at 298.25 °K.
#Values are obtained from Ref.[31].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



194
Table A.3 Sutherland Law viscosity parameters
for Dilute-Gas

Substance U, Pa.sec T,, °K S,°K Temp. range,°’K
Arf 2.125%10-5 273.11; 144.44 200 - 1500
Fryp* 1.192*%10-5 273.11 191.29 100 - 1000
N,# 1.663*10~5 273.11, 106.66 223 - 1500
Oy# 1.191%10-5 273.11, 138.88 230 - 200

—_—
$Data are obtained from Ref. [30].

*Data are obtained by a curve fit of the data of Ref, [106].

Table A.4 Sutherland Law thermal conductivity parameters
for Dilute-Gas

Substance ko, T, °K S', °K Temp. range,°’K
watts m-1°K-1
Art 1.640%10~2 273.114 150.00 214 - 1500
Fryp* 8.536%10~2 273.11, 3728.93 100 — 1000
N,# 2.420%10~2 273.114 166.66 208 - 1200
% 2.455%10~2 273.11 22222 217 - 600

$Data are obtained from Ref. [30].
+Data are obtained by a curve fit of the data of Ref. [106].

Table A.S Molecular parameters for Dilute-Gas*

Substance Collision diameter, ¢ Molecular temperature, T
(A) °K)
Ar 3.542 93.3
Fryp 5.250 253.0
N, 3.798 714
0, 3.467 106.7

tData are obtained from Ref. [106].

A.2 Universal Gas Constant

R =8.3144*103 Joule kg-mole-1 °K-!
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Appendix B
ADAPTIVE GRIDS

The self-adaptive grid procedure outlined by Nakahashi and Deiwert [39] has been
adopted in this study to adapt and restructure the computational grids. The adaptive-grid
methodology is based on variational principles. The procedure is analogous to applying
tension and torsion spring forces proportional to the local flow gradient at every grid point
and finding the equilibrium position of the resulting system of grid points. The 2-D
problem of grid adaption is split into a series of one-dimensional problems along the
computational coordinate lines (Fig. B.1). The reduced 1-D problem then requires a
tridiagonal solver to find the location of grid points along a given coordinate line. The 2-D
adaption is achieved by the sequential application of the method in each coordinate

direction.

The tension force directs the redistribution of points to the high gradient regions. To
maintain smoothness and a measure of orthogonality of grid lines, torsional forces, which
relate information between the family of lines adjacent to one another, are introduced. It
should be noted that the smoothness and orthogonality constraints are direction-dependent,
since they relate only the coordinate lines that are being adapted to the neighboring lines that

have already been adapted.

The concept of splitting the 2-D adaption into series of one directional adaptions is
shown in Fig. B.1. In this procedure, a flowfield solution is obtained using the unadapted
grid shown in Fig. B.1a, and the points in this grid are adapted to the flow solution as

follows. The first adaption, as shown in Fig. B.1b, marches from left to right; adaption has
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already taken place along the first and second lines, and the third line is currently being
adapted. The second adaption Fig. B.1c marches from bottom to top, "adapting" the
adapted grid. This example is an arbitrary order of adaption and marching directions; any

other order will also produce an adapted grid.

Shown in Fig. B.2 is the "current" adaption line in more detail. The equation
controlling the redistribution of points along each line consists of two parts. The first part is
the one directional approach utilizing tension spring constants. The second part is the
addition of the torsion term. The tension spring constant (w) have the effect of clustering
the redistributed points into high gradient regions. The torsion term provides a correction to

this redistribution to maintain continuity between sequentially adapted lines.

The "current” line to be adapted is j, and the marching is from bottom to top. This
implies that lines (j-/) and (j-2) have already been adapted. In this analysis, j is being used
as the marching direction and i is being used as the adaption direction. (i) varies from 1 to
n, where n is the total number of grid points along j-line. The arc length at D, s; Jjo 18

defined (along j) as

S1 =5t v (i1 = 2P + 0y - 2 (B.1)

A spring-like force is defined to act between each i and i+1 nodes such that
gAs=K (B.2)
where @, the spring constant, is a weighting function based on the flow gradient, and X is

the resultant force. In order to redistribute the points along a line with the minimum

solution error, the weighting function is defined as

- B
G=10+Af (B.3)
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wheref;- is a function of the gradient of the flow variable, g, i.e.,

f;' —fmin

f; =fmax _fmin

dq.

and f = a—q‘-
§ (B.4)

Since the adaption is based on a scalar function g, this function can be evaluated as

a specified combination of the conservative flow variables Q or any specified fluid

properties that represent the flow field.

The A and B are constants directly related to the grid spacing and are chosen to

maintain the grid intervals to within the limits (45,,;, and 45, ) . The value of 4 is

constant throughout the grid adaption and is given by:

A=(4s,./4s,,.)- 1.0 B4)
The value of B is computed (by an iterative process) for each j -line to provide
specified As, . = computed As, ;. (B.5)

That is, the computed minimum grid spacing is equal to the specified value. A detailed

description of the derivation of B is given by Nakahshi and Deiwert [39].

For this set of equations, with no torsion term, It can be solved directly for As;.

Taking the sum of both sides of Eq. (B.2) gives

np‘. IlP'
As,=s =K 1/w
o ome S (B.6)
giving
np;
K=s /Y lo
maxt = (B.7)
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where np; is the total number of grid intervals along j constant line. Substituting back in

Eq. (B.2), we obtain

np;
As; = sm/(q > 1/w,)
t=1 (B.8)

The above solution technique is used only along the initial adaption line. Continuing
this approach for successive line-by-line adaptions will not necessarily create a mesh that is
sufficiently smooth for flowfield analysis. Therefore, to provide a measure of orthogonality
and smoothness, the connectivity between adjacent j lines needs to be existed. This is done
by introducing the concept of torsion force which is a function of the j, j -1 and j -2 lines.

The torsion force is evaluated as
F,=—1(s,~ ) (B.9)

where the torsion parameter 7 defines the magnitude of this torsion force and s’ defines its

inclination (i.e., orthogonality and smoothness). The derivation and the recommended

value of the torsion parameter, 7, is given in Nakahshi and Deiwert [39].

Finally, Eq. (B.2) can be rewritten to represent the force balance, i.e.,
(‘%(sm_si)"wi—l(si“si-1)=0 (B.10)

To introduce the torsion force to the system of equations, Eq. (B.9) is added to Eq. (B.10)
to obtain,

“%(si+1“si)‘mz_1(si‘si_1)""’1(“': ~5) =0

(B.11)

which is rearranged to produce the coefficients of the tridiagonal matrix used to solve for

S that is,
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@_ 1545 (“%"a’i-

- {
2 AT IR L Ty

1 : (8.12)

+1

This equation is written for each interval along the adaption line, producing a
system of (np; - 1) equations. Since 5; and s, are known, there are (np; — 2) row in the

matrix. This equation is solved iteratively until,

np;
E |s.(‘)— s¢D|<103 %5
3 ] max
i=1 (B.13)

The values of As,,;, and As,,,, used in the present study are 0.25 and 1.5,
respectively. Once the 2-D grid is adapted in both directions to the flowfield gradients, the
flowfield solution is interpolated onto the new grid using a second-order, one-dimensional

Lagrange interpolation.
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Fig. B.1 Splitting of 2-D adaption into one-directional adaptions.

i-1

Fig. B.2 Adaption line j , showing tension and torsion springs.
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Appendix C
ELEMENTS OF THE LHS OF SENSITIVITY EQUATION

C.1 Obtaining The Coefficients Matrices for The Sensitivity Equation

If the geometric terms (M4yy5, j11/2) in Eq. (8.11) are kept constant, Eq. (8.11) can
be rewritten in the following functional form,

Rij= Ri.j(Q,Tim_j, Qs> OF > @5 jeu Qi Qi ) (C.1)

Differentiating the above equation with respect to the conserved flowfield variables yields
the ijth row of the left hand side of Eq. (8.6) as follows:

oR;; 9Q%p; . OR;j 907 1p;
i+1/24 %p 3 i—1/24 9Xp
oR;; 90 g,;n/z . ORij g E.{_—l/z
Qip %P 307, b
oR;; 00 EI/ZJ . _ORij 00T ap,
00%ap; 9Xp  0QTip; oXp
oR;; 00 ?i.,;n/z L_ORy 90 &'-1/2
007z Xp Q%2 OXp
ORij 0Qijw  ORij 9Qij  ORij 0Q::
BQ ij+1 aX—D BQ i aX—D aQ iy-1 pr

[LHS of Eq. (8.6)];j =

(C2)

To obtain the derivatives of R;; with respect to Q;;4; ,Q;; , and 0% 1112 jin the

above equation, the discrete form of the residual given by Eq. (8.11) is used. This yields

the following expressions:
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ORij _9[Gv(Qij-1, Qijp Mij-11)lij-172
90 ;-1 00 ;i1
=(A)ij (C.3)

ORij _9[Gv(Qij-1, Qijp Mij_1p)lij-1/2

0Q ;j 9Q;;
_9[Gv(Qij+1, Qijs Mij+112)ligerr
00 ;;
=(B v)j (C.4)

ORij _ 9[Gv(Qij+1, Qijp Mij+1p)lijr12
00 j+1 00j+1
=(C v)ij (C.S)

Rij 9 [ﬁ +(Q 129 Mi+ 1/2J)]

a0, 12§ a0 i+ 1724 (C.6)

Rij _ 9 [ﬁ 1Q i1 Mi- 1/2J)]

o0 i 1/24 0Q i- 1/24 (C.7)

oR;; 0 [ﬁ—(Q'h 125 Mi+ 1/2J)]

00% 1 112 B 00% + 1124 (C.8)
aR,'J - 0 [ﬁ-(Qt- 1124 M;._ IIZJ)]
00 }_ 11, 007_1pj (C.9)

3R;; =a[5+(Q"‘-'j+1,2, M i,j+1/2)]

00} jv1p2 907 j+ 112 (C.10)
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oR;; =_a[a*(Q-;.j-112’M"-f"1/2)]

07 ;-1 Q% i1 (C.11)

oR;; _a[a—(Q?,j+ll2’MiJ+1/2)]

0% jvin 0% j+1n (C.12)
oR;; =__a[6-(Q?.j-IIZ’M"-J'*1/ )]
007 j-112 9Q7,j-11r (C.13)

The expressions given by Egs. (C.6)—(C.13) are equivalent to the Jacobian
matrices of the split fluxes F*and G*. Denoting the Jacobian matrices of the split fluxes

F*and G* by A* and B%, respectively, yields the following form of Eq. (C.2),

007 .- 20~ ...
[LHS of Eq. 8.6)ij= Afupj —2d _ AT Qi 1py

X, = AL %,
907 907 1
+Bljnn ——a%: 2Bl __a;(i,) L
+AT aQ;.+1/2.j - aQT_1/2J‘
i+1/2j oXp T 212 ———BJTD
007; 20,
+B gy 2 _p- 22
9Q ij-1 00 ;; 00 ;;
+ (Ay);; —2—+(B L =W (C ..____‘:""1
( v) Lj aXD ( v) iJ aXD ( v) ij aXD

(C.149)

According to Eq. (6.19), the cell-face values of the conserved variables 0%, i
and Q%; j+ir2 €an be viewed as functions of Q;4 ; 3 and Q; ;. For example, 07,5, jand

Q"i4112, jCan be rewritten in the following functional relationship:

Qi = Pining Qi-14> i j» Qiv 1)) (C.15)
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Ofnr2j = Qv (Qis Qi+ 1> Qi+2) (C.16)
Consequently,

20 2:1/2,,' _ 9052 9Q i1y, 0Q7%,1p,; 90 i N 90,1125 00 i1
oXp 9Q;,; oXp 00;; 0Xp 0Q;.,; 0Xp

(C.17)
00 }’:1,2 i _ 90 12 99 N 00 F1y, 0Q i1 . 007,124 9Q is2j
aXp 00;; &Xp 0Q;.; oXp 0Quy; 0Xp (C.18)

Using Eq. (6.19), the derivatives of Q*,-ﬂ,z, j in Egs. (C.17) and (C.18) are

obtained as follows:
aQ?-{-l/ZJ 9
m-fz(l - K]
=a (C.19)
007 1p, ¢
—_— = 1——
=aj (C.20)

0Q;n; 4

=a3 (C.21)
aQT+1/2'_¢
a—Qi‘i—']-z(l'“f)[I]

~as (C.22)
007 .py ( ¢)
T _ g @iy
00 41 ol

=a; (C.23)
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¢
202, -7 (1-x]

Therefore, Egs. (C.17) and (C.18) can be rewritten as

aQ?:l/Z.i - 1aQ‘—1"+(12 Qc,;+asan+1J
oXp oXp oXp oXp

aQ-z!.+1/2,j = as aQ i +a aQ i+1j +a laQ i+2,j

oXp oXp aXD oXp
Similarly,
aQ-i-i-'-l/Z = b, aQiJ—l +bs aQ,”, +b3 aQa.1+1
oXp oXp oXp oXp
aQEijl/Z = b3 aQ ij bzaQ_i_.‘iH +by aQL‘J+2
oXp oXp oXp oXp
where,
b1=-2(1- 001
1777
by= (1 —gx 1]

bs=2(1+n0

205

(C.24)

(C.25)

(C.26)

(C.27)

(C.28)

(C.29)

(C.30)

(C.31)

Similar expressions can be obtained for (9Q}_p, il afb) and (an -1/ 31?0)‘

Substituting these expressions as well as the expressions given by Egs. (C.25)-(C.28) into

Eq. (C.14) yields,
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[LHS of Eq. (8.6));; = D_agi-&i + 7901 | 590i

Xp afp oXp
+C aQ_ii” +E aQi“z*i +H aQi‘i"z
oXp oXp oXp
+F aQi""l +G aQi"“ +1 aQL"“
oXp oXp oXp (C.32)
where, _ N
D=-aq A,' -124 (C.33)
A=a Al ipj- @A 1pj- BAT_p; (C34)
B=a (A:++ 12,j= A _1pe, j)" a3 (A,-*_ 12, Ai v 112, j)
+ bz(BiTj r12-B; j_ 1/2)— b3(BiTj— 12-B; j+ 1/2)
+(By )i (C.35)
C=mAl 1pj+ar A 1pj— a1 A7 _yp; (C.36)
E=ay1 A, 1p,j (C.37)
H=-b B ;_1p (C.38)
F=b Biv1p—b2 Bij_1p-b3 B, 1p+(Av)i; (C39)
G=bs Bljs1n+b2 B, 1p-b1B;_15+(Cv)ij (C.40)
I—= bl Bi._j‘i' 12 * (C.41)

The coefficients A through I are 4x4 blocks for two-dimensional equations and are
functions of both the Jacobian matrices of the split fluxes, A* and B%, and the Jacobians
of the viscous fluxes. It is noteworthy that these coefficients are very similar to those used
in the upwind relaxation algorithm of Thomas and Walters [98]. However, the Jacobians of
the viscous fluxes in the present formulation are different than those appeared in Ref. [98].

This is due to the fact that in the present formulation the viscosities at the cell-interfaces are
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considered as functions of the conserved variables to maintain the consistency between

both sides of the sensitivity equation (Eq. (8.6)).

C.2 An Example of The Boundary Conditions of
The Sensitivity Equation

To provide a consistent treatment for the boundary conditions, the same boundary
conditions used in the flow analysis is used in the sensitivity equations. For example, to
apply inviscid wall boundary condition to the sensitivity equation, Eq. (6.35) is used.
Hence, like the flow analysis, the boundary condition at j = 1 is applied directly to the cell-

interface primitive variables at the wall as follows,

@12 = dio (C42)
Y POV o
qi'3/2 = ql.l + Z{ (1 - K)(Ql.l ql,o) + (1 + K) (quz - ql.l)) (C 43)
d g o — a: g
iz = di2 -7 {1+ 0 (gi2 - gi1) + (1 + 9 (9i3 - 4i2)) (C.4)
where,
Pio = Pin (C.45)
Uio = Ui,1 - ﬁx.',m Viip (C.46)
Vio = Vi1 - ﬁyr.m Viip (C4T)
Pio=P;y (C.48)
Consequently, the revised expression for Eq. (C.27) atj = 1 is given by
20° 90 : . .
—432 _ op, Qio , by aQ_i‘ Libs 92
oXp oXp oXp 0Xp (C.49)
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and at the wall,

aQ?.I/Z = aQ i,0

oXp oXp (C.50)
Similarly,
907 iz _ 9Qio
oXp 0Xp (C.51)

Using Egs. (C.49)—(C.51) in Eq. (C.14) yields the following revised expression

for Eq. (C.32)
Q&-Zl an-11 aQ:+1 1
LHS of Eq. (8.6
[ f Eq. (8.6));,1 oK, el 3%y
an+21 [ ano ]anl
+|F
oX| Xp ain Xp
_— GaQ12+laQ13
oXp dXp (C.52)

where the terms H , F, and B are revised using Eqgs.(C.49)—(C.51) to yield the following

forms,

= . _ _
B= az(Az 12, A - 1/2.,')- as (Ai+— 12,j = Ai w1, j)

+b2B i1 03B, (C.53)
F=2b, B j+12— Bij_1p— B ; i-12 (C.54)
a0 (C.55)

In Eq. (C.52), the term (9Q; ,/0Q; ; ) is given by

90; , _ 90; , 99; , 9g; 1
00i1 dq; 0 94i,190; 1 (C.56)
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where the transformation matrices [0Q; o/ 9q; o] and[3g; 1/ 3Q; 1] are used to facilitate the

conversion from conserved variables to primitive variables, and vice versa. Finally, the

derivatives of g; , with respect to ¢;; in Eq. (C.56) is given by

0 9 9 0
90 _ 0 1-M) e - M)are 0
aqi'l o —(nx ﬂy) i,1/2 1 —(ﬁy)%'llz 0
1 1

0 0 (C.57)

———— e
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Appendix D

THE DERIVATIVES OF THE SPLIT-FLUX F*
WITH RESPECT TO GEOMETRIC TERMS

In Eq. (8.14), M;, ;5 jrepresents a vector that contains the geometric terms &,y |
and (]Vé l /J ) evaluated at the cell-interface (i+1/2, jand it is given below.

ve|
4
Mivipj=| &
Sy Ji+12 (D.1)
Therefore,
adf o T
oF +(Qm/z, » Misvap, j)
| Avel)
aF+(Q;+1/2,j’ M; . 172, j) - aF+(Q,T+1/2' i M; 1, j)
oM; .12, j agx
oF TQFH . Mi+1n, j)
9, i+1/2 (D.2)

The elements of the above expression (Eq. (D.2)) are obtained for both subsonic

and supersonic flows as follows: For subsonic flow when Mg <1,

f‘;‘lass
Fhws (& (T 20) ] )
A e Mg (-ae2a)9+v)

Sénergy i+1/2,j (D.3)

i«‘“(Q.ll . Miv 12, ) = (IV_J?'I-).
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where

finass = pa (M§+ 1)2/4

(D.4)
(I-)u2+2(y-1)Ha+2a2  (u2+ vz)]
fenergy = f}-nassl: +
¥ (»-1) 2 (D.5)
ﬁ=gxu+2yv (D.6)
My=L (D.7)
and Ex ,Ey are the directional cosines. Consequently, the elements of Eq. (D.2) are,
~ f.x"nass
3F1Qf+1n,j, M., 1/2.j) _ [fhass {[éx( -U+2a)/ }} +u }
Vel by \husll -7+ 2a)1+v)
f'gnergy i+1/2,j (D.8)
GFTQ,H,Z i Mis 1/2,j) _
3(5::) i +1/2,
af;nass
96y
Ofhess ([, (~+20)/ 9+ ) + Fhase| (=T +20) 7+ B ()11
(li’é_l) %
T ng a;‘% (&, (<7420 40 }+ fass & ()1
af':a'nergy
o : i+1/2,j
(D.9)
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aF*(Q‘ +1/2, Ml"i‘ I/Z'j) =
3(‘5y) i+1/2,j 3
Sinass
&y
s {2, (—5+26)/ 9] 41 ) + fhoues (=14
2] < o,
J i+ j mass
' 112 a;; ‘[gy( u+2a)/7]+v +f,*mss[( u+2¢l)/7+§y -V)”]
¥
afgnergy
agy i+102,j
(D.10)
The derivatives in Egs. (D.8)—(D.10) are given by,
(ﬂ:&) = [pu (Mg +1) /2)inp,;
& Ji +1/2j (D.11)
(ﬂj&) = [pv (Mg + 1) / 2]i +1/2,
08y Ji+12 (D.12)

0 fnersy _ (a f,*,,ass) {(1-%2 +2(y-1)Fa+2a2 (u2+ Vz)]
i 4172, j & Jinanj (#-1) 2 Lan

{/+ [2(1-7)Eu+2('y-1)ua ]}
+ mass
(#-1) 1]

~p
Uox

D.13)
(aﬁe:ergy) = (af:{:mss) [(l-ﬁﬁZ + 2('y-1)ﬂa +2q2 +(u2 + VZ)]
agy i+1/2,j aéj, i+1/2, j (72' 1) 2 i+1/2,j
{+ [2(1-7)Ev+2(y—1)va ]}
+ {J mass
(»-1) i+1/2,j

(D.14)
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Next, for supersonic flow when Mg 21,

F*=F F =0

hence,
pU
s f U
F+(Q,-+1/2,,-, M; 1/2.j}=—}- zU: :g:i
(e+P)U
Alternatively,
( pu
b (e \% ( Z E P)
F+(Q,-+1,2.j, M; . 1/2,j) = (]—J—él) 2 ? ,\x
T (Pi‘-"'*' EyP )
(e+P)u
Consequently, the elements of Eq. (D.2) are
( pu
3?1Q2+1n,j, Mi+1/2.j) _ (pﬁu+§xP)
AVE[17 ) w12, ( v+ Ey p)
(e+P)u
pu
F N7 1, o M) _ (lVé‘l\ pul+P
= = |
a(é’x) i 4112, Jlinng (e f’;,v) y
pv
aﬁTQ;+lﬂ,j’ M;.,. 1/2.j) = (lVén pvu
a(E,) o2y T livpg pv2+ P
(e+P)v

i+1/2, j

i+1/2, j

P

i+1/2, j

i+1/2, j

i+1/2, j
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(D.15)

(D.16)

(D.17)

(D.18)

(D.19)
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