
Old Dominion University
ODU Digital Commons
Mechanical & Aerospace Engineering Theses &
Dissertations Mechanical & Aerospace Engineering

Summer 1992

Runge-Kutta Upwind Multigrid Multi-Block
Three-Dimensional Thin Layer Navier-Stokes
Solver
Frank E. Cannizzaro
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/mae_etds
Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by the Mechanical & Aerospace Engineering at ODU Digital Commons. It has been
accepted for inclusion in Mechanical & Aerospace Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For
more information, please contact digitalcommons@odu.edu.

Recommended Citation
Cannizzaro, Frank E.. "Runge-Kutta Upwind Multigrid Multi-Block Three-Dimensional Thin Layer Navier-Stokes Solver" (1992).
Doctor of Philosophy (PhD), dissertation, Mechanical & Aerospace Engineering, Old Dominion University, DOI: 10.25777/
y3p6-ht88
https://digitalcommons.odu.edu/mae_etds/228

https://digitalcommons.odu.edu/?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds/228?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

RUNGE-KUTTA UPWIND
MULTIGRID MULTI-BLOCK THREE-DIMENSIONAL

THIN LAYER NAVIER-STOKES SOLVER

Frank E. Cannizzaro

B.S. May 1986, Old Dominion University

M.S. August 1988, Old Dominion University

A Dissertation submitted to the Faculty of Old Dominion University

in Partial Fulfillment of the Requirement for the Degree of

DOCTOR OF PHILOSOPHY

MECHANICAL ENGINEERING

OLD DOMINION UNIVERSITY

AUGUST 1992

Approved by:

Robert L. Ash (Director)

Osama A. Kandil Oktay Baysal

Arthur C. Taylor Manuel D. Salas

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

ABSTRACT

A state-of-the-art computer code has been developed that incorporates a modified

Runge-Kutta time integration scheme, Upwind numerical techniques, Multigrid acceler­

ation, and Multi-block capabilities (RUMM). A three-dimensional thin-layer formulation

of the Navier-Stokes equations is employed. For turbulent flow cases, the Baldwin-Lomax

algebraic turbulence model is used. Two different upwind techniques are available, van

Leer’s flux-vector splitting and Roe’s flux-difference splitting. Full approximation multi­

grid plus implicit residual and corrector smoothing were implemented to enhance the rate

of convergence. Multi-block capabilities were developed to provide geometric flexibil­

ity. This feature allows the developed computer code to accommodate any grid topology

or grid configuration with multiple topologies. The results shown in this dissertation

were chosen to validate the computer code and display is geometric flexibility, which is

provided by the multi-block structure.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow ner. Further reproduction prohibited w ithout p erm issio n .

DEDICATION

To my family, who has always supported me and cheered me on through all of my

endeavors. I dedicate this work to my parents, who gave me the best start in life anyone

could ask for. They have provided unyielding support and encouragement.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

ACKNOWLEDGMENT

1 would like to thank Dr. Ash for taking over as director of my graduate committee,

after my original advisor left. Dr. Ash accepted the position even though it was a political

nightmare. I would also like to thank my other faculty advisors, Dr. Kandil, Dr. Baysal,

and Dr. Taylor for being on my graduate committee.

My thanks to Manuel Salas, my first branch head at NASA Langley Research Center,

and also one of my graduate committee advisors. I really enjoyed being a part of his

branch and having him as my branch head. Many people have helped me along the

way. One has been my assistant branch head, James Keller. He always looked out for

me and did what he could to help me. From the beginning Duane Melson, of NASA,

has been a great support and friend and got me started in the correct direction in CFD

research. Also, Joseph Morrison, of Analytical Services and Materials, Inc., has been a

good friend and provided good advice.

A special thanks to Alaa Elmiligui, who has been a Ph.D. student with me, in the

exact same situation, and my officemate. I have the deepest respect and appreciation for

Alaa. He gave me a lot of support and has been a great friend.

This work was supported by NASA Langley Research Center Grant No. NAG 1-633.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ith out p erm issio n .

TABLE OF CONTENTS

LIST OF T A B L E S .. v

LIST OF F IG U R E S .. vi

NOMENCLATURE... xi

Chapter 1 INTRODUCTION... 1

1.1 Historical Perspective... 1

1.2 Physical Problems of Interest..7

1.3 Objective of Dissertation.. 9

1.4 Requirements of Proposed Computational Fluid Dynamics

Computer Code ... 10

1.5 Numerical A n a ly s is ...11

Chapter 2 GOVERNING E Q U A TIO N S .. 14

2.1 Full Navier-Stokes Equations ...14

2.2 Thin-Layer Navier-Stokes Equations in Body-Fitted

Coordinates..19

2.3 Turbulence... 21

2.4 Turbulence Modelling... 25

2.5 Baldwin-Lomax Algebraic Turbulence Model........................... 28

2.6 Euler Equations .. 30

ii

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Chapter 3 NUMERICAL SC H E M E S ...31

3.1 van Leer’s Flux-Vector Splitting... 31

3.2 Roe’s Flux-Difference S p litting ..34

3.3 MUSCL Type Differencing..35

3.4 Time Integration M e th o d .. 37

3.5 Local Time Stepping... 40

3.6 Implicit Variable Coefficient Residual Sm oothing....................41

3.7 Implicit Corrector Smoothing .. 42

Chapter 4 MULTIGRID MULTI-BLOCK AND THEIR INTERACTION . 43

4.1 M ultigrid ... 43

Topic 1 Linear Equations... 44

Topic 2 Non-linear Equations.. 47

Topic 3 Fortran Data S tructu re ..49

Topic 4 V- and W -Cycles...52

4.2 Multi-block Structure... 58

Topic 1 Multi-Block Storage and Programing Strategy.........................60

4.3 Multigrid Multi-Block Arrangem ents.. 65

Topic 1 Time Integration Strategy with Multigrid...................................67

Chapter 5 BOUNDARY C O N D IT IO N S ... 70

5.1 Far Field Inflow/Outflow Boundaries.. 71

5.2 Symmetry Plane and Solid Wall Conditions.......................... 73

5.3 Block Interface Conditions..73

5.4 Definition of Multigridable Index .. 75

iii

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Chapter 6 CASES S T U D IE D ..77

6.1 Inviscid Corner Flow... 77

Topic 1 Multiple Interface Requirem ents.. 85

6.2 Pseudo Two-Dimensional Jet Exhaust P lum e....................... 92

6.3 Laminar and Turbulent Flows Over a Flat Plate 105

Topic 1 Laminar F lo w .. 105

Topic 2 Turbulent F lo w ... 105

6.4 Turbulent Flow Over an ONERA M6 W in g 109

6.5 Requirements for Non-Interface with Interface Multiple

Boundary Conditions.. 118

6.6 Afterbody with Internal Nozzle .. 120

Chapter 7 C O N C LU S IO N S .. 142

BIBLIOGRAPHY .. 148

Appendix A Full Navier-Stokes Equations in Body-Fitted

Coordinates .. 155

Appendix B Multigrid Restriction and Prolongation Operations 160

B.1 Restriction O peration ..160

B.2 Prolongation Operation...164

iv

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

LIST OF TABLES

Table 3.1 Multistage Coefficients for First and Pure Second Order

Schemes.. 40

Table 3.2 Multistage Coefficients for Fromm and a = 1/3 Schemes. . . . 40

Table 4.1 Legs for Four Level W-Cycle... 55

V

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

LIST OF FIGURES

Figure 3.3.1 Schematic of MUSCL Type Differencing..36

Figure 4.1.3.1 Multigrid Storage Arrangement for Arrays.......................................50

Figure 4.1.4.2 Schematic of Computation Sequence for a Four-Grid V-Cycle. . 53

Figure 4.1.4.3 Schematic of Computation Sequence for a Four Grid W-Cycle. . 55

Figure 4.1.4.4 Schematic of Full Multigrid Four Grid Level V -C y cle 57

Figure 4.1.4.5 Schematic of Full Multigrid Four Grid Level W -Cycle 58

Figure 4.2.1.1 Multigrid Multi-block Storage Arrangement for Arrays 60

Figure 4.3.2 Multigrid Multi-block Interaction Schematic................................... 6 6

Figure 6.1.1 Schematic of Compression Comer Duct...78

Figure 6.1.2 Mach Line Contours, M , n / e4 = 3.0 and a = 9.5°........................... 80

Figure 6.1.3 Compression Comer Shock... 80

Figure 6.1.4 Comparison of Relative Pressure Distributions on Wall of

Comer Flow.. 82

Figure 6.1.5 Grid Refinement Study on Comer Flow... 83

Figure 6.1.6 Convergence Histories for the Comer Flow Using Different

Extrapolation Techniques..84

Figure 6 .1.1.7 Eight-Block Configuration for Compression Comer.......................85

Figure 6 .1.1. 8 Four-Block Interface...87

Figure 6 .1.1.9 Mach Line Contours for the Single-Block Calculation,

Miniet = 3.0 and a = 9.5°..89

vi

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Figure 6.1.1.10 Mach Line Contours for the Eight-Block Calculation,

Miniet = 3.0 and a = 9.5°..89

Figure 6.1.1.11 Pressure Line Contours for the Single-Block Calculation,

Miniet = 3.0 and a = 9.5°..90

Figure 6.1.1.12 Pressure Line Contours for the Eight-Block Calculation,

M i n i e t = 3.0 and a = 9.5°..90

Figure 6.1.1.13 Comparison of Convergence Histories Between the Single-

Block and Eight-Block Calculations for the Comer Flow. . . . 91

Figure 6.2.14 Schematic of Pseudo Two-Dimensional Jet Exhaust Plume. . . 93

Figure 6.2.15 Grid Used for the Present Pseudo Two-Dimensional Jet

Exhaust Plume Calculations... 94

Figure 6.2.16 Comparisons Between Different Extrapolations of

Roe’s Scheme and a Shock Fitting Code for a Pseudo

Two-Dimensional Exhaust Plume..98

Figure 6.2.17 Convergence History Comparisons Between Different

Extrapolation Techniques for the Pseudo Two-Dimensional Jet

Exhaust Plume...99

Figure 6.2.18 Mach Line Contours for Roe’s Scheme, Moo = 2.5,

M j e t = 1.5, P j e t / P o o = 3.5, and T j e t / T o o = 3.0....................... 1 0 0

Figure 6.2.19 Mach Line Contours for van Leer’s Scheme, Moo = 2.5,

M j e t = 1-5, P j e t / P o o = 3.5, and T j et / T o o = 3.0........................ 1 0 0

Figure 6.2.20 Pressure Line Contours for Roe’s Scheme, Moo = 2.5,

M j e t = 1.5, P j e t / P o o = 3.5, and T j e t / T o o = 3.0........................ 1 0 1

Figure 6.2.21 Pressure Line Contours for van Leer’s Scheme, Moo = 2.5,

M j e t = 1.5, P j e t / P o o = 3.5, and T j e t / T o o = 3.0........................ 1 0 1

vii

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Figure 6.2.22 Comparison Between Roe’s Flux-Differencing and van Leer’s

Rux-Vector Splitting for a Pseudo Two-Dimensional Exhaust

Plume... 104

Figure 6.3.2.23 Laminar R at Plate Comparisons with Analytical Calculations 106

Figure 6.3.2.24 Convergence Histories for the Laminar Flat Plate Flow

Comparing Different Acceleration Techniques....................... 107

Figure 6.3.2.25 Turbulent R at Plate Comparisons with Analytical

C alcu la tions ... 108

Figure 6.4.26 Schematic of C-O Mesh Topology for ONERA M6 W ing.. . 109

Figure 6.27 Comparison of Numerical Results with Experimental Data for

ONERA M6 Wmg... 112

Figure 6.4.28 Comparison Between the Present Results and Other Numerical

Results for the ONERA M6 Wing..116

Figure 6.4.29 Convergence History for ONERA M6 Wing at = 0.84,

a = 3.06°, R = 11.7 x 106/u n it ...117

Figure 6.5.30 Interface Condition at Trailing Edge of Wing......................... 119

Figure 6.6.31 Sketch Of Afterbody Model Showing Internal Details. All

Dimesions are in Inches Unless Otherwise N o ted 123

Figure 6.6.32 Details of the Nozzle. Linear Dimensions Are in Inches . . . 124

Figure 6.6.33 Afterbody Surface and Exterior Polar Grid Configuration. . . 125

Figure 6.6.34 Afterbody Grid Geometry... 126

Figure 6.6.35 Internal Nozzle with Combined H-H and Polar Grid

Topologies..127

Figure 6.6.36 Schematic of H-H Grid and Polar Grid Topologies

Interfacing..128

viii

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Figure 6.6.37 Comparison of Preliminary Configuration Geometry and Actual

Configuration Geometry..129

Figure 6.6.38 Preliminary Afterbody Nozzle Top Wall Pressure Coefficient 130

Figure 6.6.39 Preliminary Afterbody Nozzle Side Wall Pressure

C oefficient.. 130

Figure 6.6.40 Preliminary Afterbody Nozzle Top Wall Pressure Coefficient. 131

Figure 6.6.41 Preliminary Afterbody Nozzle Top Wall Pressure Coefficient. 131

Figure 6.6.42 Comparison of Single-Block Afterbody Grids for Top Wall

Pressure Coefficient... 133

Figure 6.6.43 Comparison of Single-Block Afterbody Grids for Side Wall

Pressure Coefficient... 133

Figure 6.6.44 Comparison of Single-Block Afterbody Grids for Top Wall

Pressure Coefficient... 134

Figure 6.6.45 Comparison of Single-Block Afterbody Grids for Side Wall

Pressure Coefficient... 134

Figure 6.6.46 Schematic of Afterbody for Two Block External

Configuration.. 135

Figure 6.6.47 Comparison of Single-Block and Two-Block Afterbody Nozzle

Top Wall Pressure Coefficient..136

Figure 6.6.48 Comparison of Single-Block and Two-Block Afterbody Nozzle

Side Wall Pressure Coefficient...136

Figure 6.6.49 Schematic of Four-Block Internal and External Afterbody

Configuration... 137

Figure 6.6.50 Comparison of Two-Block and Four-Block Afterbody Nozzle

Top Wall Pressure Coefficient..139

ix

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Figure 6.6.51 Comparison of Two-Block and Four-Block Afterbody Nozzle

Side Wall Pressure Coefficient. .. 139

Figure 6.6.52 Comparison of Single-Block and Four-Block Afterbody Nozzle

Top Wall Pressure Coefficient..140

Figure 6.6.53 Comparison of Single-Block and Four-Block Afterbody Nozzle

Side Wall Pressure Coefficient...141

Figure B .l Two-Dimensional Restriction Operation..160

Figure B.2 Three-Dimensional Fine and Coarse Grid.......................................162

Figure B.1.3 Three-Dimensional Fine and Coarse Grid Cell Centers 163

Figure B .l.4 Three-Dimensional Restriction Operation......................................164

Figure B.2.5 Two-Dimensional Prolongation Operation...................................... 165

Figure B.2.6 Three-Dimensional Prolongation Operation....................................166

x

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

NOMENCLATURE

A flux Jacobian

a local speed of sound

A + turbulence constant, 26.

c chord or body length

Ck l e b Klebanoff constant, 0.3

Cep turbulence constant, 1 .6

cp coefficient of pressure

Cp dimensional specific heat at constant pressure

Cwk turbulence constant, 1 .0 {value used for transonic flow}

Cy dimensional specific heat at constant volume

C F L Courant-Friedrichs-Lewy stability limit

CFL* standard CFL with no residual smoothing

e; dimensional internal energy

E total internal energy per unit volume

f forcing function in finite-difference problem used in multigrid process

f , f v Eulerian and viscous Reynolds Favrd density averaged dimensional flux
vectors in the x-direction

FMG full multigrid cylces

F ,F V nondimensional Eulerian and viscous flux vectors in the ^-direction

F i F dimensional and nondimensional Eulerian flux vectors in the x-direction

Fv, Fv dimensional and nondimensional viscous flux vectors in the x-direction

F S indicates Fuselage Station location on the afterbody

9 grid

9, 9v Eulerian and viscous Reynolds Favre density averaged dimensional flux
vectors in the y-coordinate direction

G, Gy nondimensional Eulerian and viscous flux vectors in the 77-direction

G, G dimensional and nondimensional Eulerian flux vector in the y-direction

xi

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Gv, Gv dimensional and nondimdnsional viscous flux vectors in the y-direction

H total enthalpy per unit volume

h specific enthalpy per unit volume

h y h y Eulerian and viscous Reynolds Favre density averaged dimensional flux
vectors in the z-direction

H, H v nondimensional Eulerian and viscous flux vectors in the ^-direction

H , H dimensional and nondimensional Eulerian flux vectors in the z-direction

dimensional and nondimensional viscous flux vectors in the z-direction

restriction operator from h-spacing to 2 h-spacing

4 prolongation operator from 2 h-spacing to h-spacing

j grid cell Jacobian of transformation

I i kinetic energy

k coefficient of thermal conductivity

h von Karman’s constant 0.4

I<2 Clauser constant, 0.0168

k i coefficient of turbulent thermal conductivity

L finite-difference operator

M Mach number

N n-stage modified Runge-Kutta time integration

P, P dimensional and nondimentional static pressure

Pr Prandtl number

PrT turbulent Prandtl number

P E potential energy

9 normalize contravariant velocity

9 Reynolds Favrd density averaged dimensional vector of conservative
variables

Q nondimensional vector of conservative variables in body-fitted coordinates

Q, Q dimensional and nondimensional vectors of conservative variables in
Cartesian coordinates

R Reynolds number

R + , R - non-negative and non-positive Riemann invariants

S* isentropically derived entropy value

Se left eigenvector matrix relative to the ^-direction

xii

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

0 - 1
^ I

right eigenvector matrix relative to the ^-direction

t nondimensional time

t dimensional time

T , T dimensional and nondimensional static temperature

U solution to finite-difference problem used in multigrid process

u approximate solution to finite-difference problem used in multigrid process

U, V, w contravariant velocities in the y-, and ^-coordinate directions

ue local scaled contravariant velocity in the ^-direction

u , u dimensional and nondimensional Cartesian velocity in the x-Cartesian
coordinate direction

V error in approximate solution to finite-diffference problem used in
multigrid process

V , V dimensional and nondimensional Cartesian velocity in the y-Cartesian
coordinate direction

Vol volume of cell

w , w dimensional and nondimensional Cartesian velocity in the z-Cartesian
coordinate direction

x , y , z nondimensional Cartesian coordinate directions

x , y , z dimensional Cartesian coordinate directions

y+ length scale for law of the wall

o; angle of attack

13 7 -1

Pe variable coefficient for residual smoothing in the ^-direction

7 ratio of specific heats cp/cv

A indicates eigenvalue

A diagonal eigenvalue matrix

(XT turbulent eddy viscosity

j i , fi dimensional and nondimensional molecular viscosity

LJ vorticity

Pi P dimensional and nondimensional density

a 1 (H | A T A
P(H+llT) \ P r ' P rX)

T shear stress

xiii

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

t R Reynolds stress tensor

t t combined stress tensor of t r + t

£ (7 -i)-P ôr âm n̂ar eQuations or small parameter
£, 7], (nondimensional body-fitted coordinate directions

d partial derivative

3ft gas constant

y backward differencing or gradient

A forward differencing

xiv

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Subscripts

g ghost cell

in t interior cell

t represents £, rj, (

L values obtained from the left side of a cell face

n normal

R values obtained from the right side of a cell face

r e f reference

x, y, z indicates derivatives relative to these Cartesian directions

oo free-stream value

Superscripts

h grid spacing

n time level

v indicates viscous-dependent values

dimensional Cartesian value

normalized

— non-positive eigenvalues

+ non-negative eigenvalues

nondimensional Cartesian value or Roe averaged variable

Favre density-averaged fluctuating value

Favre density-averaged time-independent value

XV

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Chapter 1 INTRODUCTION

1.1 Historical Perspective

Over the past thirty to forty years the advancement in computer resources and capa­

bilities has grown exponentially. Along with this advancement has been the development

and implementation of many numerical techniques for predicting fluid flows for different

geometrical configurations. As both hardware and software improve, more and more

complicated problems are being analyzed. Aerodynamic flows ranging from continuum

to rarefied flows are being simulated with computers. One of the first major developments

for continuum flow in computational aerodynamics was the boundary integral method,

also known as the panel method. Its initial use was for the solution of subsonic lin­

earized potential flows. This method was first employed by Hess and Smith in 1962 [1]

for computing flows for three-dimensional, non-lifting bodies. Panel methods were ex­

tended to lifting flows [2] for inviscid, low Mach numbers, where compressibility effects

were small, and supersonic flows [3] (presently there exists integral equation methods

for solving transonic flows, such as those by Kandil and Yates [4] and Kandil and Hong

[5]). Transonic flows presented difficulties because the subsonic flow regions required

elliptic solution techniques, and the supersonic flow regions required hyperbolic solution

techniques.

In 1970, Murman and Cole [6] successfully solved the transonic small disturbance

equations for transonic aerodynamic flow fields using a successive line over relaxation

(SLOR) algorithm, with a scheme known as the “type difference scheme”. They used

central differencing for the subsonic regions and upwind, one sided differencing, for the

1

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

supersonic regions. This provided the proper biasing for the numerical differentiation of

the discretized governing equations relative to the characteristic directions for information

propagation. For many flow configurations the potential flow equations are sufficient, but

they assume isentropic, irrotational flow which is not valid for flows containing shock

waves. However, for weak shock waves, these assumptions are valid up to second-order

approximations. A more precise solution of inviscid transonic flows can be obtained by

using the Euler equations.

Solving the Euler equations requires more memory and computational time than

the potential equations. Another landmark in 1970 was the work of Magnus and

Yoshihara [7], who produced one of the first Euler computer codes accepted for computing

transonic flows. They used the Lax-Wendroff scheme, which required an added artificial

viscosity to remain stable. Artificial viscosity, also called artificial dissipation and

numerical dissipation, is a numerical term that is related to the type of technique used

in approximating the governing equations of motion, and should not be mistaken with

the physical viscosity of a fluid. It will be referred to as numerical dissipation for the

remainder of this dissertation. Numerical dissipation is required to stabilize numerical

schemes, and is not a physical phenomena of the flow field. Another significant

contribution came from MacCormack in 1969 [8], where he introduced a two stage

predictor-corrector explicit scheme for iteratively solving inviscid flows about three-

dimensional bodies. In 1972, MacCormack and Paullay [9] developed the rationale

used for applying space discretization to the Euler equations. Another major contribution

came from Beam and Warming [10], who used an implicit finite-difference algorithm to

solve the conservative form of the Euler equations. A trapezoidal formula was chosen

to integrate the unknown conserved variables, which produced an implicit difference

equation. An Alternating Direction Implicit (ADI) method, based on those introduced by

2

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Douglas [11], Peaceman and Rachford [12], and Douglas and Gunn [13], was used to

execute the integration in time. Beam and Wanning [10] incorporated a hybrid scheme

which switched from central differencing, for subsonic regions, to upwind differencing

whenever the local characteristic speeds were of the same sign, as is the case for

supersonic regions. This is similar to the technique used by Murman and Cole [6].

The reduction of an implicit scheme into an alternating direction scheme was originally

introduced by Gourlay and Mitchell in 1966 [14]. Briley and MacDonald [15] developed

an equivalent alternating direction technique for solving non-linear hyperbolic equations,

and applied it to the three-dimensional, compressible Navier-Stokes equations in 1974.

They applied central differences to compute the spatial flux derivatives. The alternating

direction method was also used by Steger [16] in 1978. He incorporated it into general

curvilinear coordinates for computing transonic flow about arbitrary two-dimensional

geometries using a finite difference scheme. It was also employed by Pulliam and Steger

[17] in the same year for computing transonic, three-dimensional inviscid and viscous

flows using a finite-difference method, with central differencing applied to the spatial flux

derivatives. Beam and Warming [18] again used the alternating direction method in then-

finite difference scheme for computing the solution to the compressible Navier-Stokes

equations, where central differencing was applied to the spatial flux derivatives.

Expanding on the concept of biasing the type of numerical differencing used on

the flux vectors, were the biasing depends upon whether the flow field surrounding the

point of interest is subsonic or supersonic, Steger [19] introduced the concept of splitting

each flux-vector, from the conservation law form of the governing equations, into two

flux-vectors. The vectors were chosen so that the Jacobian matrix of one of the split

flux-vectors would contain only positive real eigenvalues, and the other only negative

real eigenvalues. This type of separation allows for upwind differencing to be used for

3

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

each point of interest: backward differences would be used for terms associated with

positive eigenvalues and forward differences would be used for terms associated with

negative eigenvalues. Executing this type of splitdng of the flux-vectors removes the

need to switch between central differencing and upwind differencing, where the type of

differencing chosen was based upon the local Mach number at the point of interest. Steger

and Warming [20] developed this technique in what is known as flux-vector splitting in

their paper in 1981. Upwind differencing is an attempt to model the directions of signal

propagation. Two schemes that closely model the characteristic propagation directions

are the A-scheme, by Moretti [21], and the Split Coefficient Matrix (SCM) scheme, by

Chakravarthy, Anderson, and Salas [22J. Unfortunately, these two schemes can only be

applied to the non-conservative form of the governing equations, and therefore require

shock fitting techniques to locate the shock waves. In 1982, van Leer [23] introduced

another type of flux-vector splitting that provided smooth transitions between the split

fluxes when the eigenvalues changed signs, and good shock capturing capabilities. This

approach is considered a pseudo particle approach. Other types of upwind methods

are those that iteratively solve the Riemann problem, such as Godunov [24] proposed

in 1959. This approach is based on the shock tube membrane rupturing problem, and

solves the Riemann problem at every cell face of the physical domain, searching for

a shock, expansion, an d /o r contact wave. Another approach is to approximate the

Riemann problem to a set of equations that can be solved exactly. Schemes that solve the

approximate Riemann problem are known as flux-difference splitting schemes. Examples

of these types of methods have been developed by Roe [25, 26], Lombard, Oliger, and

Yang [27], and Engquist and Osher [28]. Both flux-vector splitting and flux-difference

splitting can be applied to the conservative form of the governing equations, and therefore,

4

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

as shown by Lax [29], Lax and Richtmyer [30], and Lax and Wendroff [31], capture a

shock implicitly by solving the governing equations.

A method introduced in 1981 by Jameson, Schmidt, and Turkel [32], applies central

differencing to the spatial flux derivatives and used the classical four-stage Runge-Kutta

time-stepping scheme for solving the governing equations. This approach was modified to

require less computer memory, as shown by Jameson and Baker [33], with the knowledge

that the coefficients for each time stage could be modified to provide various stability

and amplification characteristics. In 1985, Jameson [34] explained that adjusting the time

integration coefficients and the number of stages would alter the stability and amplification

regions. He also revealed the benefits of evaluating the numerical dissipation at various

stages, using a different set of coefficients than that of the time integration. This work

provided a significant step for the central difference computer programs. The use of

multistage Runge-Kutta methods with modified time integration coefficients has also been

investigated for upwind solvers [35-37]. The flux-vector splitting and flux-difference

splitting methods are becoming more popular and the multistage Runge-Kutta scheme

is widely accepted.

The solution of realistic fluid dynamic problems can become CPU intensive, and as

more grid points or cells are added, the amount of CPU time increases in a non-linear

fashion. One approach being used to accelerate the convergence rate of iterative schemes

was introduced in 1964 by Fedorenko [38]. He presented a technique called multigrid.

This process was further developed by Brandt [39] for boundary value problems and

applied to the small disturbance equation by South and Brandt [40] for transonic flow

calculations. It was later applied to the Euler equations by Ni [41] and Jameson [34, 42].

This method has become an integral part of many steady-state flow solvers for Euler and

Navier-Stokes equations, for both central-difference and upwind-differencing schemes.

5

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ith out p erm issio n .

As the numerical techniques advanced beyond the geometrically uncomplicated test

configurations to multiple element airfoils, internal/external engine designs, and entire

aircraft configurations, the grid generation process became much more difficult. Much

research has been directed toward this problem [43-46]. It became apparent that

developing the grid topologies for these configurations would be easier if the geometries

were divided into sections or blocks and then joined together in a fashion that a computer

program could analyze. This approach is often referred to as domain decomposition.

There are different types of domain decomposition. One approach is to have the grid

patches or blocks overlap and/or be embedded with each other. This is also referred to as

the Chimera grid scheme. One of the first to use this technique was Boppe in 1977 [47]

for transonic wing flows. Others were Hedman [48] and Thompson[49]. Atta [50] and

Atta and Vadyak [51] used this approach to solve the transonic full potential equations.

Benek, Steger, and Dougherty [52] and Benek, Buning, and Steger [53] used the Chimera

approach with the Euler equations for transonic airfoil and wing/body configurations,

respectively. Eberhardt and Baganoff [54] used the embedded grid approach for a

supersonic blunt cylindrical body configuration, and tried to address the problem of

properly maintaining flow discontinuities across grid boundary interfaces. Maintaining

conservation across grid interface boundaries is a difficult problem for the Chimera grid

embedding scheme, especially for higher order extrapolations.

Another type of domain decomposition is grid or block patching. This approach

does not allow the grid patches or blocks to overlap. The blocks interface along the same

surface. Grid or block patching was done by Chambier, Ghazzi, Veuillot, and Viviand

[55] in 1981, for a system of hyperbolic equations. They used compatibility equations

to develop the interface boundary approach, which provided good results for transonic

channel flows. Unfortunately this approach is not conservative and therefore unsuitable

6

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

where flow discontinuities cross block interfaces. This problem was approached by

Rai, Chakravarthy, and Hessenius [56] and Rai [57]. Mastin and McConnaughey [58]

investigated the issue of higher order solutions on block patched grids with C1 continuity

(lines meet one to one) at the interface with no grid discontinuities and compared these

results to configurations where the blocks overlapped. A number o f researchers have

used the block patching method without the C1 continuity condition [59-66]. Others,

while still maintaining the C1 continuity were able to handle a variety of complex

configurations [67-70]. It should be noted that only C1 continuity provides both higher-

order extrapolations and conservation of fluxes across block interfaces.

1.2 Physical Problems of Interest

Many present day Computational Fluid Dynamics (CFD) computer codes have state-

of-the-art solvers. The current effort being put forth is to take these numerically advanced

computer codes and use them on more physically demanding geometries. It is no longer

sufficient for a computer code to only provide analysis for a wing; it needs to be capable

of including a fuselage and a nacelle. In analyzing such a configuration, one can see

that these geometries cannot be accommodated with only one grid or mesh. In many

cases, different grid topologies should be used for different parts o f the configuration.

For example, a C-O mesh may be desired for the wing, an H -0 mesh for the fuselage

and a polar grid inside the nacelle. To accommodate these different components, even

if they were of the same mesh topology, a computer code capable of handling the

different sections of the configuration separately with sufficient communication between

the sections is required. This computer code must either be specially designed for this

particular type of problem, or be what is generally called a multi-block computer code.

A multi-block computer code would be the most accommodating. It should be flexible

7

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

enough to allow the user to divide a given configuration into many different sections, or

blocks, and use a mesh topology that best suits each particular section or block. Plus,

if required, each block could be handled differently, in terms of the flow solvers or

governing equations. This approach is often referred to as domain decomposition.

Another configuration that requires multiple block capabilities is afterbodies, with

internal nozzles. These configurations also require different mesh topologies. For the

external body a polar grid is used. For the internal nozzle, a polar grid is best suited at

the wall of the body for two dependent reasons. One is that at the end of the body, where

the external and internal blocks meet, the meshes need to match with C1 continuity, due

to the interface constraints of the current multi-block computer code. Therefore, the best

way for the grid lines to match up at interfaces is to use the same mesh topology, and due

to the external geometry constraints, a polar grid is best suited. Unfortunately a polar grid

in the internal nozzle is extremely demanding because the nozzle is not axisymmetric, but

rectangular; therefore two mesh topologies are used in the internal nozzle. A polar mesh

is used at the wall region, because it will match the external geometry with C1 continuity

and it requires packing in only one direction. This is beneficial in using Navier-Stokes

equations, especially if using an algebraic turbulence model, because there will be only

one coordinate direction necessary for a length scale. The second mesh topology is an

H-H mesh, which will interface with the polar grid and fill in the remainder of the interior

of the nozzle. This case will be explained in more detail in the results section.

Other configurations of current interest, such as the National Aerospace Plane, with its

multiple scram jets, and Advanced Tactical Fighters with thrust vectoring/thrust reversing

nozzles definitely require a multi-block computer code for computational analysis. In

analyzing scram jets and thrust vectoring/thrust reversing nozzles, a multi-block computer

code is needed to handle the different grids and the multiple boundary conditions a

8

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

particular block face might encounter. It would not be uncommon for a block face to

have two or more different boundary conditions.

1.3 Objective of Dissertation

The objective of this dissertation was to develop a state-of-the-art computer code

that was capable of handling all of the aforementioned configurations. The efforts were

directed toward steady-state solutions, which allowed for different types of convergence

accelerators to be used. The main thrust of this project was to develop a computer

code that was capable of handling many different problems of various mesh topologies,

configurations, and boundary conditions, without requiring any changes to the basic

computer code. To achieve this, the computer code had to have grid independent

subroutines that were adaptable to various boundary conditions. It had to allow for more

than one type of boundary condition on a given grid surface, such as for the surface of

the grid wrapping around a wing and forming a wake line or wake cut. Mesh topology

independence pertains not only to one type of mesh at a time, but also the ability to

handle multiple mesh topologies at the same time. To accommodate all of these desired

qualities it was determined that a multi-block computer code was required. A multi-block

computer code provides the flexibility of handling all of the different grid configurations,

plus the interaction of cases that if not analyzed with such a computer code, would require

a computer program modified just for the one specific configuration. Also, a multi-block

computer code can provide the flexibility of having different mesh topologies interact.

Knowing that this type of computer code is going to be used provides more flexibility for

the grid generation process, by allowing the best grid topology for each particular section

of the configuration being studied, without being overly concerned with what topologies

the other grid sections are going to posses. This remains true even for a multi-block

9

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

computer code that requires C1 continuity at the block interfaces. C1 continuity does not

put a restriction on the types of meshes that can be used.

1.4 Requirements of Proposed Computational
Fluid Dynamics Computer Code

The proposed Computational Fluid Dynamics (CFD) computer code was to be capable

of accommodating internal/external flows, wing body configurations, and afterbodies with

internal nozzles. This computer code was to be mesh topology independent, allowing it to

handle C-O, C-H, O-O, H-H, and H -0 mesh topologies and their interactions. Although

today’s state-of-the-art computers permit very large memory requirements, a judicious

use of computer memory is still required. As more complex configurations are tested, it

is easy to have a half million to one and a half million points in a grid. In developing

this computer program consideration was given to its readability.

There is a trade off at some point between legibility and computational efficiency. An

example of this is in having a three-dimensional array in a corresponding set of nested “do

loops”. If the array is kept as a three-dimensional array, then when it is compiled only

the inner “do loop” will be vectorized, but if the three-dimensional array is collapsed into

a one-dimensional array then only one “do loop” is needed and instead of vectorizing

a line at a time, the computer will vectorize a volume at a time. This would greatly

decrease the amount of CPU time required per calculation. Unfortunately working with

and manipulating a collapsed three-dimensional array can become quite cumbersome. The

method adopted in the present work was to maintain the arrays in their three-dimensional

form in the subroutines, attain vectorized inner “do loops” where ever possible, and write

the computer code in such a manner that would allow the rearranging of the arrays in a

subroutine from three-dimensional to either two-dimensional or one-dimensional, without

affecting the main program or the other subroutines.

10

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

1.5 Numerical Analysis

Much has been accomplished in using the central difference operators with explicidy

added dissipation for the solution of transonic flows, but as with all approaches there

are a few drawbacks. One is that central difference computer codes require added

second and fourth order dissipation for stability and to reduce oscillations. This requires

a certain amount of numerical experimentation for tuning the coefficients. Another

common problem is that due to the numerical operator’s nature, it tends to smear contact

discontinuities and shocks. The central-difference operators generally require more points

at and in the shock so as to produce a sharp shock. A significant advantage o f the

central-difference methods is that they require less logic in evaluating the fluxes than

the current upwind solvers; where upwind is defined as using only one-sided differences.

Also, central-difference operators are generally set up with enough damping to provide

sufficient smoothing, even in an explicit time integration approach. Thus, they again can

save CPU effort by not requiring an implicit method just to damp the high frequency

errors generated during the iteration process.

Some of the advantages of an upwind scheme are that its damping characteristics are

built into the flux evaluator. There is no need to add explicit second and fourth order

dissipation for stability; therefore there is no fine tuning of the dissipation. Also, by

evaluating the fluxes with an upwind approach there is less smearing of shocks and contact

discontinuities, and fewer points, as few as two or three, are required to adequately capture

a shock than are required for a central-difference scheme. This can be very helpful in

making calculations on a preliminary grid which is constructed without prior knowledge

of where certain physical changes of the flow are going to occur, and yet sufficient

results may still be obtained because the upwind schemes are more forgiving in areas

where central-difference schemes would require more points. A possible disadvantage

11

R ep ro d u ced with p erm iss io n o f th e copyright ow ner. Further reproduction prohibited w ithout p erm issio n .

of upwind schemes is that since their dissipation is built in to their formulation, there

generally is no mechanism to directly decrease the amount of dissipation introduced by

the scheme for a given flow condition. Different upwind schemes can have different

amounts of dissipation.

Most upwind schemes have implicit time marching. So even though they may capture

all of the desired features on a coarser grid than the central-difference computer codes,

the central-difference computer codes can execute on a finer grid, which can provide

sufficient resolution, in less time than the implicit, upwind computer code can on a

coarser grid [71]. It was on this basis that an explicit upwind code was to be developed.

The choice was made to use a modified Runge-Kutta explicit time integration method,

very similar to that used in most central-difference computer codes. If modifying the

coefficients used in the Runge-Kutta method provides sufficient damping for the general

cases of interest, then the project will be considered successful.

The first topic covered in the dissertation is the development of the governing equa­

tions. Starting with the Navier-Stokes equations in dimensional Cartesian form. These

equations are converted to nondimensional body-fitted coordinates, and are modified to

a thin layer formulation, for all three coordinate directions. Turbulent equations are

developed by executing the Favre density averaging on the Cartesian form of the full

Navier-Stokes equations. The Favre density averaging was chosen because the governing

equations are for compressible flow. Algebraic turbulence modelling was chosen to re­

solve the turbulent flows. The turbulence equations were written in thin-layer body-fitted

coordinates. The Baldwin-Lomax [72] algebraic turbulence model was chosen to provide

the eddy viscosity values used in the turbulence equations. An explanation of this model

and the equations that are used is provided.

12

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

The two different types of upwind solvers are presented in the Numerical Schemes

chapter. A brief explanation of van Leer’s [23] flux-vector splitting and Roe’s [25, 26]

flux-difference splitting are presented. These two methods are dependent upon the method

used to provide values for the splitting of the fluxes. The extrapolation method utilized in

this work is the Monotone Upstream-centered Schemes for Conservative Laws (MUSCL)

type differencing, which is subsequently explained. Then the time integration method

used to advance the solution is provided, followed by a definition of the time step, At ,

and the different types of implicit residual smoothing, and implicit corrector smoothing.

Chapters 2 and 3 provide the governing equations and the solution methods employed

in this work. Chapter 4 explains multigrid acceleration and how it is employed in

accelerating a numerical solution to a steady-state. It also provides a schematic of a

computer listing to show an efficient method of programming this acceleration technique

that allows grid independent subroutines. This is important because it sets the foundation

for expanding the computer program to have multi-block capabilities.

The multi-block structure developed for this computer program is also presented in

Chapter 4. How it is implemented and a schematic of its incorporation into the computer

listing is provided. The same chapter addresses the issue of the multi-block multigrid

interactions, as well as provides the sequence for one multigrid cycle incorporating

smoothers and multiple blocks.

The boundary conditions used for this computer program are explained in Chapter 5.

Along with the standard boundary conditions, the interface requirements are provided as

well. The cases studied are provided in Chapter 6. They were chosen to validate the

computer program and show its flexibility to handle different geometrical configurations.

The final chapter contains concluding remarks about the cases studied and the success

of the computer code.

13

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Chapter 2 GOVERNING EQUATIONS

2.1 Full Navier-Stokes Equations

This work is directed toward solving compressible fluid flows for various configu­

rations and physical cases. Many global properties of fluid flow can be obtained from

simplified equation sets, but as the interests focus to areas closer to the body and global

properties are not the only interest, more physics are needed in the governing equations.

This is especially true where there are geometry changes in a body or in investigating

wake regions and shear layers. It is these cases that require equations which include

viscous phenomenon. For early researchers in CFD, the equations of choice were the

potential equations coupled with boundary-layer equations. As computer equipment im­

proved the more versatile Navier-Stokes equations became the governing equations of

choice, and they are chosen as the governing equations of fluid motion for this work.

Although they are computationally more demanding, they eliminate the approximations

and restrictions implied in the older potential flow-boundary-layer approaches.

The full Navier-Stokes Equations in dimensional Cartesian coordinate notation can

be written as;

dt dx dy dz
(2.1.1)

where,

PVJ \Jpu
Q = < pv > F = < > (2.1.2)

14

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

G =

pv
V V \Jpuv

pv2 + p
pvw

. (£ + #) * .

G , = {

0
hi)
m
'T'u v'2/z

+ wt$2 - q$

(2.1.3)

and

H =

pw
ww wpuw
pviv

W wO , wou; + p

0
h i
h i
^zz

utm + vrrz + w h i - qi I

(2.1.4)
p w -t-p

. (e + p) w .

The dimensional quantities, p, u, v, w, p, and E are the density, Cartesian velocities,

pressure, and total energy per unit volume, respectively. The dimensional shear stress is

represented by t , and q represents the dimensional heat flux. Invoking Stokes hypothesis,

the shear stress terms become

2 „ (0du dv d w \ „
m ~ 3 M{ d x dy d z Y

2 „ (dw du d v \

du dw
dx dz

v _ . f d u d v \ _ v
T* * - > i { d $ + d x) ~ Trx

- _ - _ -
Trz~ f l \ d z + d x) ~ T**'

(2.1.5)

'dv d i v \
,dz + d y)

where p. is the dynamic viscosity. The formulation for the heat flux term is

q = -&vr (2.1.6)

where T is the temperature, and the coefficient of thermal conductivity, k, is given by

k = -£^ (2.1.7)

where cp and Pr are the specific heat at constant pressure and the Prandtl number,

respectively. These equations are coupled with the perfect gas equation of state:

p = p&T

15

(2.1.8)

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

where -R is the gas constant. The assumption of a calorically perfect gas is made allowing

(2.1.9)

where cv is the specific heat at constant volume, and e,- is the internal energy. Thus,

where the potential energy (PE) and other terms are assumed to be small or constant and

have a negligible effect; therefore

It is more convenient to have the equations in nondimensional form, because it

allows for easier scaling of the flow case of interest, especially in investigating viscous

flows. Doing so allows the independent variation of such parameters as the Mach

number, Reynolds number, and Prandtl number, so that the computational results can

be generalized and not be restricted to a specific geometrical configuration. Also, the

flow variables are normalized so that their values will be between certain limits. Defining

X , pref , Tre/ , aref , and pref to be the reference length, density, temperature, speed of

sound, and dynamic viscosity, the following nondimensionalizations were employed;

E = p e, + i (u 2 + i;2 + u;2) + P E + . . . (2 . 1.10)

P = (r t - !)iOC« = (7 “ 1) E - | p(u2 + v2 + w2)
(2 . 1.11)

and 7 = which is the ratio of specific heats.

u

x

P r e f
> P u ^ 2 ’

P r e f a r e f

V

P

V
w

(2 . 1.12)

16

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

These nondimensionaiizations allowed the governing equations to be rewritten as:

q q d { G - G v} d { H - H v)

dt dx dy dz
(2.1.13)

where

Q =

/ \
p pu

pu pu2 + p
pv F = < puv
pw puw

. E , k (E + p)u J

Fv =
M,ref
R ref

0
TXx
Txy

U dTUTXX + VTxy + WTXZ + -pT-fa

(2.1.14)

and likewise for G, Gv , H, and H v. Here H, M ref , R ref , and j3 are the total

Enthalpy per unit volume, reference Mach number, reference Reynolds number, and

7 - 1 , respectively.

A Cartesian coordinate system may be ill-suited for many types of geometries. It

can cause an inefficient use of points, and it can be very cumbersome to implement the

proper boundaries for solving a given configuration. Using a curvilinear grid permits a

better fitting grid around the body, and a more efficient use of cells. The cell sizes can

change so that in regions of very small gradients, away from the body, large cells can be

used. This allows more cells to be used near the body where the flow gradients are larger

and require more cells for accuracy. The body-fitted coordinates can then be transformed

into a computational domain that has equal sized cells. There are advantages to this,

such as having the body surface selected as a boundary in the computational domain,

allowing for easy application of the boundary conditions. Performing the transformation

from Cartesian coordinates to curvilinear or body-fitted coordinates, £, 7 , and £ is

17

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

accomplished by the following formulations:

£ = £ { * ,s/,*}, v = y { x , y , z] , C = C { z ,y ,2}

d _ 9 d_ d_
dx ~ ^ x d i + V x dri Clac
d _ d 9 9 (2.1.15)

dy ~ ^y d i + Vvl h j + Caac

9 - 9 JL ! L
9 z ~ ^ 9£ + Vz9 n + 9 C

It can be shown that the metrics are:

6 = J (w - y ^ v) » tv = - J { x nH - x Czn) » & = J O w “ *Ci6i)

% = - « / (^ 2 C - y CZ t) , 7l y = J (x ^ Z C - X (Z () , T]z = ~ J (x ^ ~ Z f t/£)

G - j (y ^ T) ~ y v z e) , Cy = - J { x ^ Z j , - x v z t) , (g = J (x ^ y r , - x v y z)

(2.1.16)

where the sub-characters x, y, and z on (, rj, and (represent partial derivatives of

the body-fitted coordinates relative to the sub-characters. Here J is the Jacobian of

transformation;

9 i £ , y ,C}J =
9 { x , y , z }

These formulations allow the governing equations to be written as;

£x £y £z
Vx Vy v z
Cx Cy Cz

(2.1.17)

dQ 9 { F - F V} 9 { G - G V} 9 { H - H V}
a t + ^ + 9 c

(2.1.18)

where

q = 9-
y J ’

F — - j (^ xF + t]x G + (XH) , Fv — — (^XFV + rjxGv + CiHy' j

G — ~j(€i/F + VyG + CyH^Ji Gv = ~j(£yFv + ^yGy + (jiHv'j

H = j ^ g F + rjgG + Cz H) , H v = j (t zFv + y zGv + (ZH V)

(2.1.19)

18

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

with
' pU '

1 puU + p£x
F = - < p v U + p ty >,

pwU + p(z
(E + P) U

pwV + prjz
(E + p)V

(2.1.20)
pW

l pu W + p(x
H = —< p v W + pCy >

pw W + pCz
. (E + P) W

where U, V, and W are the contravariant velocities defined as,

U = u£x + vrjx + w(x

V = U ^ y - \ - VT)y + w £ y (2.1.21)

W = U (z + VT)Z + w (z

Due to their complexity, Fv, Gv, and Hv, are provided in Appendix A.

2.2 Thin-Layer Navier-Stokes Equations in Body-Fitted Coordinates

Many fluid flow cases do not require the full Navier-Stokes equations. Generally there

is a surface that has its normal perpendicular to the main streamwise flow. It is on this

surface that a boundary layer will develop; therefore the cross flow and cross derivative

viscous terms may be so small as to be considered negligible in comparison to the other

flow terms. To sufficiently capture the boundary layer, many points are required near the

boundary, thus allowing the governing equations to accurately predict the large gradients

in the boundary layer. In some cases the physics of the fluid flow may require the full

Navier-Stokes equations, but if there is not a dense packing of points in all directions the

gradients of the flow will still not be captured, thus producing the same solution as that

of the thin-layer equations. A compromise is to have the thin-layer approximation to the

Navier-Stokes equations in all three coordinate directions. One reason is that it allows

for generality in different flow cases, meaning that whichever direction is going to have

19

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

a boundary layer develop, the computer program is already capable of accommodating

it. Plus, if there is significant cross flow and cross derivative flow characteristics, then

the computer code is ready to accommodate them as well, provided there is sufficient

packing of points in the required directions.

By examining each viscous flux individually and eliminating the cross derivative

terms in that flux, the three viscous, thin-layer Navier-Stokes fluxes in body-fitted

nondimensional form are:

Fv =

0.

ws(<!>2) + tz®
k (j>2 (uv,£ + VV£ + WW^) -J- $ [/ + eT^4,2 , (2.2.1)

where, <f>2 = t& + +(%, and, $ = + v g y + u;^*)

and

Gv = M refl ̂
J Rfef

0.
uv (62) + i)xQ
vv (02)+riyQ
wt)(62) + Vz®

„ 6 2 (u u v + vvv + wwv) + 0 F + e T v 6 2 ,
(2.2.2)

where, 02= rfc + r/2 + rj2z, and, 0 = ^ (u vr}x+vvriy+wvT]z)

Hv = MrefP
J Rfef

0.
u c (p 2) + C xi’
H i {p) + Cyi’
^ c (^ 2) + Czi’

k (p2(uu{ + W£ + w w + ipW + eT^ip2 t (2.2.3)

where, <p£ = C“ + Cy + C*> and, ip = ^(ucCx+^cCjz+wck)

20

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

and e = These three fluxes can replace the Fv, Gv, and Hv in equation (2.1.18),

which is the full Navier-Stokes equation in body-fitted nondimensional form. All of the

other terms in that equation will remain the same.

2.3 Turbulence

There are very few flows, outside of academic cases, that are laminar and attached.

Most laminar cases are separated. The majority of flow cases are turbulent, which may

have attached flow even though the laminar case would be separated. In other cases the

turbulent flow may be separated as well. The larger the separation region, the greater the

difficulty in resolving the flow. There are two ways turbulent flows can be resolved. One

is by direct simulation, which uses the Navier-Stokes equations and directly solves for the

different turbulent scales, down to the mean free path. This requires a tremendous number

of points and has thus far been limited to a very small set of problems, for which the

Reynolds numbers are in the range of one to three thousand [73]. The second approach is

to use a turbulence model that will account for all of the different turbulent scales. This

approach requires the use of the Reynolds averaged Navier-Stokes equations. Turbulence

models can range from algebraic eddy viscosity models, which are the simplest, to second

order closure models involving a minimum of seven additional differential equations

which must be solved simultaneously with the original governing flow equations.

Turbulence modeling was the approach chosen for the current work. The first step was

to obtain the Reynolds averaged Navier-Stokes equations. Since the problems of interest

are for compressible flows, the Favre density averaging approach was selected [73, 74].

21

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

The following formulations were used to perform the Favre density averaging:

7 = 2 , s = £p, f = ? , a = e S .
P P P P

where u = u + ii, T = T + T, H = H + H

note p = p + p — ~p + p (2.3.1)

and (p + />)/ = 0.0

but / ^ 0.0

Using this formulation allows the continuity equation to be written as

f + = 0. (2.3.2)
Ot O X i

The momentum equations become

, 8{".j - } . , 9 /
~ 9 r " + = “ & ; + d x j + ' ,9 ^ (2-3 J)

while the energy equation evolves to

d { E \ d \ p u iH + pitiH - ujTij - Tijuj - k§£- \
- A - I + - I -----------------------J - i — L i — L i I = o. (2.3.4)

at ox{

Utilizing the average turbulent kinetic energy, K , and the fluctuating kinetic energy,

K , where

p K = ^ - = pK, and K = ̂ (2.3.5)

it can be shown that

H = h + K + I< (2.3.6)

and

H = h + u m + K - I< (2.3.7)

22

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

This in turn yields

puiH = puih - T-^Um + puiK

where

(2.3.8)

(2.3.9)

and is defined as the Reynolds stress tensor. Implementing the previous relation into the

energy equation produces

d {*} q r Q/ji _
— | p u iH + puih - k — - T i j U j - T ^ f i m - T i jU j + p u i k | = 0 . (2.3. 10)

m ' dxi i r “ ' “ ' r " ’"' dxi

The following terms need to be accommodated in order to solve the governing equations

puih, rfjUj, Tijili, pu iK (2.3.11)

The first term, pu{h, is generally considered the turbulent heat flux, and is often modelled

as

puih = - k r V T (2.3.12)

where kt is the coefficient of turbulent thermal conductivity [73], The second term, rff,

will be modelled using the Boussinesq’s assumption [73, 75]:

Ttj = - p U i t i j = p i
d'Uj j Otli 2 dllm £

r — 7 ”dxi dx j 3 d x m tJ 3

where p i is the turbulent eddy viscosity and is related to k i by

kT = W *

(2.3.13)

Prl
(2.3.14)

with PTi being the turbulent Prandtl number. It is common practice to combine r/j

with T{j to give

TU = (P + P i)
duj du{ 2 dum
dxi dx j 3 d x m ,J

(2.3.15)

23

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

The remaining two terms rijuj and puiK are either considered negligible and therefore

accommodated by the turbulence model, or they are solved for as dependent variables in

higher order schemes. For the present work these terms are assumed to be accommodated

by the model. In executing the Faviti density averaging, the equation of state needs to

be included, which in turn becomes

P = (7 - 1)
~ PUiUi
E - - pK (2.3.16)

Thus, the turbulent full Navier-Stokes equations in dimensional Cartesian form become;

dq . d (f - f v) d { g - g v) d(h - hv)
F t + dx + dy + Fz _ u - ̂ °

where

Q =

f v = (p + P i)

p pu
'pu 'pvi2 + p
~pv / = puv
~pw ~puw

f ~ \
. E , . (E + p j u ,

f
0.

2 [9 du _ dv _ dw
f ('Ey

I 2pK
3(/J+/Jt)

dv 1 du,
dx "■* dy

dw 1 du,
dx ' dz

UZ
n d u dv_ d w \ . ~ (d v , . d u \

dx dy dz J "■ y d x ' dy J

W (dw 1 d u \
Y dx T d z) + U 2pK

<l{h + h t)

+

+

(k+kT) d T
(H+Ht) dx

(2.3.18)

24

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

9 =

p v
~puv

p v 2 + p
~pvw

. (e + p) v ,

g v = (p + p i) <

0 .

du . dv_
d y " ■ * d x

o d v du_ d w
d y d x d z

d v I d w
d z d y

) + ” s(m 5 t) +

(fc+fc-r)
(fl+H t)

“ (,5 7 + 5 7

d T
dy

(2.3.19)

h = <

pw
~puw
~pvw

- ~ 0 I —>ur pOil) t p
. (■£ + ?) « '.

K = (p + Vt)<

0.

5 u . I dtv
d z ' d x

d v I 9 u ;

5s “r 5jT

o9m 9m 9tM i 2pK
d z d x d y \ 3(/j+/4t)

(t+fcrldT

(2.3.20)

the ““’’ has been removed for clarity, and the lower case letters q, f , f v, g, gv, h, and h v

are used to signify a difference between the other equation sets.

2.4 Turbulence M odelling

For the present work an algebraic turbulence model was chosen. Although these

models generally do not resolve separated regions very well, they are easy to implement

25

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

and provide reasonable results for unseparated flows. Other turbulence models, such as

the two equation models K - e, K - w, and K - r , are generally more applicable,

especially in wake regions, but they require a certain amount of adjusting for a particular

class of problems and are more complicated. The second order closure models are

still in their early stages and are not commonly used for complicated geometries and

configurations. It was decided that an algebraic turbulence model would be sufficient

for the flows that were to be tested, and that it would provide a good starting point for

validating the turbulence equations. More complicated models could be incorporated in

the future.

In using an algebraic turbulence model, the turbulent kinetic energy term, K , is

dropped, because there is no mechanism in an algebraic turbulence model that can account

for K. For consistency it is also dropped from the equation of state. Thus, writing the

turbulent full Navier-Stokes equations in nondimensional Cartesian form produces;

pu
Q = Pv 5 F

pw

pu
pu2 + p

puv
puw

(2.4.2)

E . (E + p)u

26

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

2_(ndu _ dv d w \
3 ^ Hy Hz J

Fv = ^ r * - (n +
■Hre f

du i dv_
dy dx

du I dw
HZ + HZ

tl (2 p . - ga - %s) + v (la- + +3 ^ M dy dz J ' \ d y ' dx J '

« (f t + f e) + * £ ■

G =

p v

p u v

p v 2 + p

p v w

. (£ + p) v ,

^ M ref (t ̂
G v — — (p + p t)

t l r e f

0.

du I dv_
dy dx

(_ SM. _
^ dy dx

dv i dw
dz ' dy

. (du I d v \ I 2 (n dv
l \H5 + HZJ + U3V2^

W +

H =

p w

p u w

p v w
..2 + p

(E + p) w ,

H v =
M ,r e f

R r e f
(/* + /*t)

0.

d u , d io
3s dx

3« I 3u>
dz ' dy

2 / o3u) cfu _
3 dz dx

“(fe + &) + » ($
i n l f o Q m _ 9u _ dt
W Z \ ~ d z dx d>

27

(2.4.3)

d w \
dz J

>

du d w \ I
~ h z ~ n r) +

_L
dy J "t* dy ,

(2.4.4)

►

chA
Qy)

+ §?)+

■) + * £ .

(2.4.5)

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

where

CT = p(p + n T) (/ £ + (2A6)

In comparing with the thin-layer Navier-Stokes equations in nondimensional Cartesian

form, the only difference is between the viscous fluxes, Fv, Gv, and Hv, where the

viscoscity, p, is relaced by the sum p + p i , and jp r is replaced with -y (j r + .

Therefore, to obtain the turbulent thin-layer Navier-Stokes equations in body-fitted

nondimensional form, these two simple changes need to be made to the laminar, thin-layer

Navier-Stokes body-fitted nondimensional equations.

2.5 Baldwin-Lomax Algebraic Turbulence Model

The Baldwin-Lomax algebraic turbulence model [72] is a two layer eddy viscosity

model. The inner layer eddy viscosity model is the Prandtl-van Driest formulation defined

as:

W i n n e r = p P t 2 -5 *1)
M Tef

where

I = h y 1 - e z p j - - ^ j (2.5.2)

M = the magnitude of the vorticity,

, i / / du d v \ 2 f dv d w \ 2 / dw d u \ 2
M = + \ d - z ~ W + (foT ~ £ h)

and

I IPw^max Rref k a\
f = ! / i ----------- \ T7— (2-5-4>

P w y ^ r e f

where, y is the distance normal to the wall, k\ is von Karman’s constant (0.4), A +

is taken as a constant (26.0), and u max is the maximum vorticity along the coordinate

direction normal to the wall. For a particular wall location, pw and p w are the values of

density and molecular viscosity at the wall, respectively. The original Baldwin-Lomax

28

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

algebraic turbulence model did not use u max, but instead suggested using the shear stress

at the wall, t w . This can produce erroneous values for the turbulence model if the

flow is separated; therefore using uimax has been found to be more reliable, and if there

isn’t any flow separation on the wall, w m a x can be shown to approximately equal t w .

The second part or outer layer of the Baldwin-Lomax algebraic turbulence model is the

Clauser Formulation, given as;

f^Touter — K-Tpcp P Fwake^KLEB ̂ (2.5.5)

where
VmaxFn

Fwake — ^ or

Oyjk VmaxVdi f

r e f

the smallest of
the two values

(2.5.6)

with the Clauser constant IF> = 0.0168, Ccp = 1.6, Cwk = 1.0 for transonic flow, and

Vdif = (\ / u 2 + v2 + u r) - (^ / u 2 + v2 + w 2) (2.5.7)
' ' Jmax ' ' |m«n

along the coordinate perpendicular to the surface at a particular wall location. For example

the difference is along a constant x-location, if x is the streamwise direction. The value

ymax corresponds to when F(y) = F (y)max, where

F(y) = y M ! _ e x p j - ^ } (2.5.8)

In the wake region the exponential term for the previous equation is set equal to zero.

The Klebanoff intermittency factor is given as;

Fk l e b = 1 + 5.5 y Ck l e b
6 '

ymax

- l
(2.5.9)

where Ck l e b = 0.3.

29

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

To obtain the eddy viscosity, both the outer and the inner formulations are computed

for that particular streamwise coordinate location. Then a comparison is made between

the two viscosities to determine the location, starting from the wall or slip line, where the

inner eddy viscosity value becomes larger than the outer eddy viscosity value. It is at this

location that one switches from using the inner eddy viscosity model’s values to using the

values from the outer eddy viscosity model. The final eddy viscosity values are used in

conjunction with the dynamic viscosity when the viscous flux derivatives are computed.

2.6 Euler Equations

The Euler equations are obtained by the simple elimination of the viscous terms,

Fv, GVi and H v, from the nondimensional, body-fitted, thin-layer Navier-Stokes equa­

tions. This is easily accommodated in the computer code by having the viscous fluxes

evaluated in a separate subroutine.

30

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Chapter 3 NUMERICAL SCHEMES

Upwind solvers were chosen to determine the inviscid fluxes. They gather informa­

tion from both sides of an interface and then, based on the characteristic directions, a

blending of the gathered information is performed. In this process if there is supersonic

flow passing through a cell face then information from only the upstream side of the cell

face is used. If the flow is subsonic, information from both upstream and downstream

of the cell face is used. This process is based on a one-dimensional analysis, and thus

assumes that information passes normal to the cell face. There have been studies to

use true multi-dimensional characteristic directions, but they have met with only limited

success [76]. The general approach is to perform one-dimensional analyses in the three

coordinate directions independently, and then sum the results from the three directions.

This was the method adopted for the present work.

The viscous fluxes at the cell interfaces are evaluated using central-difference oper­

ators, because these operators are better suited for these terms, especially evaluating the

second order derivatives.

3.1 van Leer’s Flux-Vector Splitting

Flux-vector splitting is similar to the method of characteristics because it attempts to

establish zones of influence and dependence in the flow field. Each flux-vector is split

into a forward flux-vector and a backward flux-vector, allowing upwind differencing to

be used for the spatial derivatives of the split fluxes. In 1982, van Leer [23] introduced

a flux-vector splitting scheme that was designed to meet seven requirements. These

31

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

requirements were to provide, among other qualities, continuous split flux-vectors, so

there would be smooth transitions when eigenvalues changed signs, and stationary shock

structures within no more than two cells. These are qualities that the previous flux-vector

splitting techniques lacked [2 0].

Following Ref. [23], the flux vectors F, G, and H can each be split into two vectors,

a forward flux-vector based on non-negative eigenvalues, and a backward flux-vector

based on non-positive eigenvalues.

where I = £,r), and £ to indicate the three coordinate directions.

For subsonic local Mach numbers, IM/I < 1.0 (in general notation for body-fitted

coordinates [77]), a local scaled contravariant velocity component, u/, is defined as

F = F+ + F~, G = G+ + G~, H = H + + H~ (3.1.1)

For local supersonic Mach numbers:

Mi > 1.0, F f = Fh Fj~ = 0

Mi < -1 .0 , F f = 0, F f = Fi
(3.1.2)

(3.1.3)

where the local Mach number is given as

(3.1.4)

and a is the local speed of sound. The fluxes are:
1

ix{—ui ± 2a) / 7 + u

^ = i , (- B l ± 2 a) h + vmass * (3.1.5)

lg{ - u i ± 2 a) / i + w

Jenergyenergy

32

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

where,

ln —

V l + i + i ’
n = x, y, z (3.1.6)

ftass = ± p a j (M t ± 1 r

and

Here,

/«
±energy

-f3uf ± 2fiu\a + 2a2 u2 + v 2 + w2
17“ - 1 +

Ft = F Fv = G Fq = H

(3.1.7)

(3.1.8)

(3.1.9)

and

U£ = U U v = V UC= w (3.1.10)

p = 7 - 1 (3.1.11)

The “+” indicates the forward flux and the indicates the backward flux.

Carrying out a central difference on each flux vector at the cell center gives:
R H S =

-A«[F ^ - F + ^ F ^ - F - ,

+ GU ^ a U + Gi

(3.1.12)

The present formulation, when applied to transonic and low supersonic flows, does

not require the use of flux limiters for essentially oscillation free shocks. This was noticed

by Anderson, Thomas, and van Leer [78], von Lavante and Haerd [79], Melson and von

Lavante [80], and Cannizzaro, von Lavante, and Melson [81] and was explained in more

detail by van Leer [23].

33

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

3.2 Roe’s Flux-Difference Splitting

Roe’s flux-difference splitting is an upwind scheme that approximates the Riemann

problem at an interface between two cells by Roe’s averaging procedure [82]. The

spatial derivatives across a cell interface (for example, the ^-direction) can be written

conservatively as a flux balance across the cell in the form:

f)F■
< 3 i »

where F is the numerical flux-vector at the corresponding cell interface. Following Ref.

[83], the cell interface flux is evaluated as

F » L = j K i W i ! } + FL{Q L) - | i | (A ®] (3.2 .2)

Fl and Fji are the flux vectors computed from the left and right states, and A is the

Roe averaged flux Jacobian matrix

A = a [q] (3.2.3)

where

a = 1 5 (3'2'4)dQ

and

A = S(\A\S ̂ (3.2.5)

The A refers to the difference between the state variables on the left and right sides of

the cell interface (For example, A Q = Q r — Ql)- and S ^ 1 are the left and right

eigenvector matrices, respectively, for the direction, and A is the diagonal eigenvalue

matrix. The present notation was adopted from Ref. [83], because it provides a simple

programming strategy of these expressions. The ~ ’s refer to Roe averages computed as

ULy / PL+URy / PR r n n c yu - ---- ,— ■==— (3.2.6)
y / P L + y / P R

34

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

The last term in equation (3.2.2), | a | (Qij - Q l) is a damping term due to the upwind

character of the scheme and is given in detail in Ref. [82] as

(Qr ~ Ql) =

0 4

U O 4 + lxat5 + 0 6

va 4 + lya 5 + o 7

w a 4 + lzCC5 + a s

05

where,

and

6 5 = ha 4 + ilia 5 + ua^ + va 7 + wa$ —
a i g t

7 - 1

a 1 =

a 2 —

a 3 =

J M

1 y /9
2a 2 J

1 y/V
2a 2 J

|u / + 5 |(A p + paAu /)

|u / — 5 |(A p — paAuj)

a 4 = o i - f Q 2 + 0 : 3

0 5 — 5 (0:2 - “ 3)

J

V v
J

J

o 6 =

a 7 =

08 —

|f i/ |/5 (A u - lxAui)

|u / |/5 (A u — lyAui)

|?J/|/5(A iu — lzAui)

(3.2.7)

(3.2.8)

(3.2.9)

With J p = v / / 2 + /2 + /2 , for / = t , 7/, or (, and 5 representing the Roe averaged

enthalpy.

3.3 MUSCL Type Differencing

Rather than determine the values of the inviscid fluxes at the cell centers and

then extrapolate them to the cell interfaces, Monotone Upstream-centered Schemes for

Conservative Laws (MUSCL) type differencing was used to determine the flux values at

the cell interfaces. The dependent variables are extrapolated to the cell interfaces and

35

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

from these extrapolated values the fluxes at the cell interfaces are computed. This can

be seen in Fig. 3.3.1. Thus,

i?+ r f + (e f + i) F-+ r F - (Q - + i)

0 } * - # ($ *) GT+ i = G - (« - + ,) (3.3.1)

Where the “+” and are used to distinguish between the two directions of extrapolation.

This approach provides a more accurate blending of the fluxes, because the blending will

be based on the flow values at the interface rather than on some type of weighted averaging

of the flow values from the separate cell centers.

In many cases the primitive, or non-conservative, variables are extrapolated in the

MUSCL approach rather than the conservative variables.

i+1/2

i-2 i+2i-1 i+1

Cell Interface
Figure 3.3.1 Schematic of MUSCL Type Differencing

The extrapolation procedure was written in the /c-scheme formulation, where

swtch
qi+k = q> + (3.3.2)

with V,- = qi — q i - i and A,- = qi+ 1 — qi- The value of k determines the spatial accuracy

of the extrapolation; k = -1 is pure second order accurate upwind, k = 0 is Fromm’s

(1968) scheme [84], which is second order accurate upwind biased, n = 1/3 is third

36

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

order accurate, upwind biased (it is less than third order accurate for multidimensional

computations), and k = 1 is the second order accurate central difference. If “swtch” is

set equal to zero, then the extrapolation is first order.

3.4 Time Integration Method

There are two types of time integration schemes used to advance numerical calcula­

tions to steady state solutions. One is implicit and the other is explicit time integration.

Implicit time integration schemes [11-18] require more computational work per time

step, but they allow the time steps to be large and aid in the propagation of boundary

information because of their elliptic nature. Many implicit schemes involve the solu­

tion of either scalar or block tri-diagonal matrices, or they approximate these matrices

with bi-diagonal or even diagonal matrices [85]. Explicit methods usually require at

least two computation stages, such as MacCormack’s [8] predictor-corrector method, or

they can have many stages, such as a Runge-Kutta multistage scheme. Modem imple­

mentation of Runge-Kutta methods can be found in the work of Jameson, Schmidt, and

Turkel, [32], Jameson and Baker [33], and Jameson [34]. More stages generally permit

a higher CFL number, and better error smoothing properties. With each stage, the flux

evaluations are computed. After completing all of the stages, the numerical solution is

advanced one time step. Most upwind methods use an implicit time integration technique

because it provides better smoothing and the fluxes are evaluated only twice per time

step (once for time level “n”, and once for time level “n+1”). Thus, if a multistage

method is employed, more stages may be required to provide comparable smoothing,

causing more flux evaluations, which could lead to a higher computational effort than the

implicit time integration approach. The explicit time integration schemes are generally

central-difference schemes because the flux evaluations cost much less than the upwind

37

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

approach; therefore more stages can be executed at a cheaper computational cost than

using an implicit time integration.

The current work was directed at having an upwind explicit computer program.

Upwind methods were chosen for their accuracy, and explicit time integration was

chosen in an attempt to capitalize on what the central-difference explicit schemes have

accomplished, in terms of computational speed. Also, in considering a multi-block

computer program, there will be many flow configurations that will not allow the implicit

sweeps to be conducted across all of the blocks simultaneously. Instead, each implicit

sweep would have to be performed one block at a time, reducing the effectiveness of

propagating boundary information across the entire domain. Although this will change the

convergence rate, it has not been reported to cause a divergence of the numerical solution.

The basic characteristics that are desired for the explicit time integration are good

high frequency error damping, a minimum amount of computational effort, and robust­

ness. The damping qualities are required for two reasons. One obviously is because the

computer program will converge properly and expediently. Second, if good high fre­

quency error damping is not achieved, multigrid acceleration will not perform properly.

The amount of computational effort required is important, because if too many stages are

required, it would cost less to use implicit time integration. If the scheme is not robust,

it will not be generally applicable to various flow configurations, which would defeat the

main purpose of developing this computer program.

To obtain these characteristics it was determined that the ability to adjust the stability

range and amplification factor would provide avenues by which the explicit technique

could be tuned to satisfy the necessary damping qualities. The multistage Runge-Kutta

method has been modified for many of the explicit central difference codes [32, 8 6], and

therefore was chosen as the time integration technique for the proposed computer code.

38

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

The classical fourth order Runge-Kutta time integration scheme was used by Jameson,

Schmidt, and Turkel [32] for solving a finite-volume formulation of the Euler equations

(It provides fourth order temporal accuracy for linear equations and second order accuracy

for non-linear equations). This approach requires storing the solution at each stage as

follows;

Q1 = Q u ~ y R H S { Q n}

Q2 = Q n - ^ R H S { Q 1}
2 (3.4.1)

Q3 = Q n - A t R H S { Q 2}

qu+1 = Qn - ^ - [.R H S { Q n} + 2 R H S { Q 1} + 2R H S { Q 2} + R H S { Q 3}]

This would be very memory intensive for a three-dimensional computer code (where

R H S represents the flux evaluations). In 1983, Jameson and Baker [33] presented the

following four stage Runge-Kutta scheme;

Q1 = Q n ~ q i A t R H S { Q n}

Q2 = Q n - a o A t R H S l Q 1}
(3.4.2)

Q3 = Q n - a 3 A t R H S { Q 2}

Qn+1 = Qn - a 4 A t R H S { Q 3}

The coefficients q i, 0 2 , and Q3 could be independently varied to obtain a range of

stability and amplification properties. The coefficient for the last stage, q4, must equal

one for consistency, and also to provide at least first order accuracy in time. This new

approach was also adopted by others [87]. Initially, researchers still used the standard

four stage scheme coefficients of a\ = 1 , a 2 = 3 , a 3 = and a4 = 1 .0 , which can be

obtained from a Taylor series expansion. Attempts to obtain more desirable stability and

amplification characteristics were pursued by varying the coefficients and the number of

stages [42, 8 8 , 89]. These approaches were soon investigated for upwind schemes by the

present author [35] and others [36, 37]. The coefficients developed by coworkers [35] for

39

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

this computer program are presented for various extrapolations in the following tables 3.1

3.2. The linear wave equation was used as the model equation. A full explanation of the

approach and detailed results can be found in the Ph.D. dissertation of Alaa Elmiligui

[90], who was a coworker in the development of the computer program.

Table 3.1 Multistage Coefficients for First and Pure Second Order Schemes.

First Order Pure Second Order

Number of Stages Number of Stages

Multistage Coefficients 2 3 4 2 3 4

0.220 0.105 0.056 0.220 0.150 0.091

OC2 1.000 0.325 0.152 1.000 0.400 0.240

az 1.000 0.340 1.000 0.420

Ot4 1.000 1.000

Table 3.2 Multistage Coefficients for Fromm and k = 1/3 Schemes.

| | $ s
Fromm K = 1/3

Number of Stages Number of Stages

Multistage Coefficients 2 3 4 2 3 4

a i 0.420 0.210 0.110 0.460 0.220 0.135

a 2 1.000 0.440 0.255 1.000 0.480 0.260

<23 1.000 0.46 1.000 0.440

<24 1.000 1.000

3.5 Local Time Stepping

Local time stepping allows each cell to advance in time at its own or local stability

limit. This approach provides for faster signal propagation, which produces faster

convergence to a steady state solution. The local time step A t is based on the Courant-

Friedrichs-Lewy (CFL) stability limit. It is calculated as follows;

— — — — — — (3 5 1)
A t ~ A + A t v + A tc + A t j? + At* + At}!

40

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

where
C F L
At]

with Ui = ulx+ v l y + w l z being the contravariant velocity for the direction, a the local

> A i = N + « V ^ (3-5‘2)

speed of sound, A/ the eigenvalue, and <f>i = y j l2 + I2 + I2. The viscous contributions

to the time step are:

C F L > X t = t + ^(|W»I + \y*\ + IV*I) (3.5.3)
A t j ~ ‘ p

The first three terms on the right hand side of equation (3.5.1) are due to the stability

limitation on the inviscid flux, while the last three terms are due to viscous flux stability

limitations. The viscous time step limitation terms, ^ r , make the scheme more robust

on fine viscous grids for boundary-layer type flows [91, 92].

3.6 Implicit Variable Coefficient Residual Smoothing

The purpose of residual smoothing is to reduce the magnitude of any spikes in the

residuals. The residuals are generated by executing the flux differentiations, and are

used to adjust the values of the dependent variables. These adjustments are necessary

for the dependent variables to obtain their correct values for the given flow conditions.

Residual smoothing can reduce high frequency errors, which is beneficial for multigrid

acceleration techniques. Reducing these errors allows the restriction process in multigrid

to be implemented without causing aliasing (Aliasing is further explained in the chapter

containing multigrid). Implicit residual smoothing can increase the stability region and

enhance the damping properties of a multistage time-stepping scheme. The formulation

for three-dimensional problems is usually applied in the form,

(/ - f a V ^) (I - A,V„A„) (/ - f a V cA C)R* = R (3.6.1)

where R is the residual, and V and A are the standard backward and forward difference

operators relative to the f, 7/, and (directions. The coefficients /?£, /3V, and fa can be

41

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

constant, which applies the same magnitude of damping on every residual value. That

approach is useful but not as general as having variable coefficients. Variable coeffi­

cients self-adjust to produce damping only where needed; therefore variable-coefficient,

residual-smoothing can provide better convergence than the constant coefficients without

tuning. The two-dimensional variable coefficient method presented by Swanson, Turkel

and White [93] was extended to three-dimensions as follows:

where / = £, 77, and £. This formulation makes /?/ a function of the grid aspect ratio and

the basic explicit scheme CFL*. The optimum ratio was found to be { f f j r « 2.0 [93].

This operator was applied before each Runge-Kutta stage.

3.7 Implicit Corrector Smoothing

Corrector smoothing was applied using constant coefficients. This technique was to

provide a better multigrid correction value from the coarser meshes, by eliminating any

erroneous spikes in the correction data.

C F L * + Xjj
(3.6.2)

the spectral radii, A/. The ratio of is the C F L of the smoothed scheme to that of

42

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Chapter 4 MULTIGRID MULTI-BLOCK
AND THEIR INTERACTION

4.1 Multigrid

Multigrid is a technique used to accelerate the rate of convergence. It has been

adapted to solve the ordinary and partial differential equations found in fluid mechanics.

Acceleration is achieved by attacking the low frequency errors, which generally are not

well damped by the equation solver. Most equation solver techniques can damp the high

frequency errors, but require more iterations to damp out the low frequency errors, and

as the number of mesh or grid points increases, it takes the original equation solver many

more iterations to reduce the low frequency errors. The number of iterations increases

non-linearly with the number of cells. True multigrid performance does not diminish

with an increase in the number of grid points. Hence, multigrid can provide a converged

solution in the same number of cycles as a grid that contained only every other point

The multigrid technique reduces the low frequency errors by solving a set of

governing equations on successively coarser grids. Thus, what was a low frequency

on a fine grid becomes a higher frequency on a coarser grid. In multigrid a fine grid

that has had every other point eliminated in all directions is defined as a coarser grid.

Thus, the equation solver is again working on high frequency error, for which it is best

suited. Information gained from the coarser grids is used to reduce the low frequency

errors on the finer grids. Generally three or four grid levels are used for a calculation.

Also, running calculations on the coarser grids requires less computational work because

of reduction in the number of points.

43

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Multigrid acceleration techniques were originally applied to linear elliptic equations.

They have since been modified to handle non-linear hyperbolic equations. Excellent

developments of multigrid techniques can be found in references [94-96]. Multigrid

performs a certain amount of averaging of flow variables in restricting the values from a

fine grid to a coarser grid, and in prolongating the correction to the flow variables from a

coarse grid to a finer grid. Thus, it is better suited for elliptic flows than for parabolic or

hyperbolic flows, due to the way information is physically propagated in the flow field.

At the present, multigrid techniques have had their biggest impact in transonic flows,

but modifications are being introduced to handle other demanding flow cases, such as

hypersonic flows.

A brief explanation of multigrid will be presented in two sections. The first section

will explain multigrid methods for linear equations. This will provide the basis for the

second section, which will explain multigrid methods with non-linear equations.

4.1.1 Linear Equations

Consider the problem

L hUh = f h (4.1.1)

where L h is a linear, finite-difference operator on a grid, gh, and h is the cell spacing.

The forcing function, f h, is known and Uh is the solution to the problem on the grid

with spacing h. If we take u h as an approximation to Uh with an error of V h, i.e.

V h = Uh - u h (4.1.2)

then equation (4.1.1) can be written as

L h (u h + V/l) = f h (4.1.3)

44

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Since L h is a linear operator, this can be written as

L h (u h ĵ + L h (v h) = f h (4.1.4)

If V h is a smooth function, meaning it does not have any high frequency errors, it can be

represented on a coarser grid, g2h, with spacing 2 h, which has twice the spacing between

points as the grid with spacing h. The grid g2h, is formed by removing every other point

in grid gh. Therefore, g2h G gh. Points are eliminated from g2h to form gih and so

forth to form g8h, g 16h, etc. Each subsequent grid is a subset of the previous grid. (If a

function is not smooth, aliasing will occur during the transformation of information from

the finer to the coarser grids, thus preventing an accurate representation of data from the

finer grid on the coarser grid.)

It is possible to solve for an approximation to V h on grid g2h, using the equation

L 2 h (j l hVhJ = /2h ^ h _ L h u h ̂ (415)

where i f 1 is the restriction operator which transfers the values of a function from the

fine grid to the coarse grid (An explanation of the restriction operator and how it is

implemented can be found in Appendix B). If the coarse grid forcing function is defined

as

f 2h = l l h (f h - z V) (4.1.6)

and the coarse grid error is taken to be

V 2h = l l hV h (4.1.7)

then

L 2 h y 2 h = j 2 h (41>8)

Since equation (4.1.8) is for a grid that is coarser than equation (4.1.1), the numerical

evaluation of V 2h is much cheaper than the evaluation of V h on the fine grid. Once V 2h

45

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

is obtained, it is used to correct the fine grid iterative solution, uh, using

(>) = (>) + 4 hV 2h (4.1.9)
\ / new \ / old

The coarse grid to fine grid transfer operator, I^h, is the prolongation operator (An

explanation of the prolongation operator and how it is implemented can be found in

Appendix B).

Since the form of equation (4.1.8) is the same as equation (4.1.1), it is obvious that a

grid with spacing 4h can be used to find corrections to the “solution” of the problem on

the grid with spacing 2h. Successively coarser grids may be used until a grid is reached

which is so coarse that a direct solution may be used (or a nearly exact solution with

only a few relaxation sweeps). The correction from the coarsest grid is then used to

correct the correction on the next finer grid; and this is continued through successively

finer grids until the finest level is reached and the approximate solution is updated.

The usefulness of corrections obtained on a coarser grid is dependent on the smooth­

ness of the fine grid error passed to the coarse grid. Hence, it is absolutely necessary that

the high-frequency components of the error on the fine grid are reduced, if not completely

eliminated. It is the responsibility of the smoother (usually a relaxation algorithm) to

damp the high frequency components of the error. The removal of the low-frequency

components of the error is unimportant for all but the coarsest grid since these frequencies

can be resolved on the coarser grids where they become high-frequencies. If the high-

frequencies are not damped, then the restriction operator will pass aliased information to

the coarser grid and the entire multigrid scheme will cease to converge [97]. Obviously,

the choice of smoother is critical to multigrid functioning properly.

46

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

4.1.2 Non-linear Equations

The previous development of the multigrid scheme was for linear operators. Unfor­

tunately, many problems in engineering are described by non-linear equations or sets of

equations. This is particularly true in the field of Computational Fluid Dynamics (CFD).

Because of the non-linear nature of the equations, the Full Approximation Storage (FAS)

multigrid scheme [40] must be used (FAS is applicable to both linear and non-linear

problems). A brief description of FAS follows and relies heavily on the description of

multigrid for linear problems given in the previous section.

In the development of multigrid for linear problems, the linearity of the operator

was used to split the error out from the approximate solution as shown in the step from

equation (4.1.3) to equation (4.1.4) above. If the operator is non-linear, this splitting is not

valid. Instead, the derivation proceeds as follows, starting with the non-linear problem:

L hUk = f h (4.1.10)

Again, the substitution for the exact solution is made to give:

L h (u h + V h} = f h (4.1.11)

Now, L huh is subtracted from both sides of equation (4.1.11) to give:

L h (uh + V h) - L h (u h ĵ = f h - L h (u h ĵ (4.1.12)

On the coarse grid, equation (4.1.12) becomes:

L 2h(l l huh + V2A) - L 2h(l l huh) = l l h (f h ~ L huh ĵ (4.1.13)

As in the linear case, it is assumed that the error, V h, can be represented accurately on

the next coarser grid as V 2h. If the second term on the left-hand side is moved to the

47

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

right-hand side, equation (4.1.13) can be written as:

L 2h(u 2h) = f 2h (4.1.14)

where

f h = l l h [f h - L huh) + L 2h(l l hu h) (4.1.15)

and

u2h = l l hu h + V 2h (4.1.16)

The values of u2h are obtained on the coarse grid and used to update the fine grid

solution using the following equation:

Note that the prolongation term on the right-hand side of equation (4.1.17) is the correction

correction to the fine grid solution as in the linear case. This is an important difference

because it allows the use of the fine grid boundary conditions on all the coarse grids as

well. As with the linear problem, the non-linear FAS scheme uses the same operator on

all the grids. This of course simplifies the programming of the multigrid scheme.

The following section describes the data structure and programming approach chosen

in an attempt to efficiently code the multigrid acceleration technique. The structure was

then utilized to allow the inclusion of multi-block flexibility with a minimum amount of

changes to the existing computer program. Setting up the data structure in this manner

allows considerable flexibility in how the subroutines are coded, as will be explained in

the following sections.

new
(4.1.17)

to be applied to the fine grid solution. Examination of this term shows that the solution

on the coarse grid is actually a solution to the originally posed problem and not just a

48

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

4.1.3 Fortran Data Structure

In explaining how the data structure was chosen, an understanding of how the memory

is set up in a computer is needed. Despite the number of dimensions in an array, all

data are stored in a one-dimensional array. During compilation, pointers are generated

that indicate the register locations where different data can be acquired. This process

is invisible to the user, but knowing how the memory process works allows one to

exploit it to conserve memory space and write a general computer program that is easy

to read. Knowledge of how the computer memory is arranged provides flexibility in

how subroutines can be written, and be generic in terms of the different types of mesh

topologies it can handle.

It is a general practice in Fortran to use common blocks to dimension arrays, and

transfer those arrays from the main program to the subroutines and from subroutine

to subroutine. When using common blocks, the array dimensions are set in the main

program and in all the subroutines at compilation, thus fixing the size of the arrays in

the subroutines. This becomes a disadvantage for a multigrid computer code, because

of the numerous grid levels (generally a minimum of three). Each successively coarser

grid level, for a three-dimensional computer code, has one-eighth as many grid points

as the next finer grid level; therefore requiring much less memory space than for the

finer grid level. The arrays could be made one-dimensional, and include all grid levels.

Unfortunately this approach requires special counters and pointers to allow calculations to

be preformed on the different grid levels. Another approach would be to have a separate

three-dimensional array for each grid level, but it would be very cumbersome to manage.

Furthermore, separate subroutines would be required to handle the different grid levels,

which would obviously not be efficient. The most straightforward approach is to account

49

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

for all of the points that an array will need, including all grid levels, and set this array up

as a one-dimensional array in a common block in the main program. However, instead of

using common blocks in the subroutines, the main program should pass the information

required by each subroutine through its argument list. When an array is passed through

a subroutine argument, what is actually passed is the starting location, or address, where

that array data can be found. Therefore, by passing to the subroutine the starting location

and the dimensions of the array, for that particular grid level, the array can then be

dimensioned in the subroutine during execution time, allowing the size of the array to

change depending on the dimensions passed to the subroutine. The subroutine then deals

with only that section of the array that the prescribed dimensions allow it to access.

In the main program, the arrays used for multigrid are stored as one-dimensional

arrays. An integer is then created whose values are the starting addresses for the multigrid

data stored in the array. Generally, the fine grid data are stored first, then the intermediate

grids, and then finally the coarse grid data. A schematic drawing of this storage sequence

is shown in Fig. 4.1.3.1.

Starting address for grid 8h
Starting address for grid 2h \

Starting address for grid h Starting address for grid 4h

Figure 4.1.3.1 Multigrid Storage Arrangement for Arrays.

The starting locations and dimensions of the data arrays for each of the multiple

grids are pre-calculated and stored in integer arrays as a function of the grid. A Fortran

example is given below for the grid arrays containing the x, y, and z coordinates of the

points in a three-dimensional computational domain. Several notational conventions are

50

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

used throughout the paper. The variable ngrid always refers to the maximum number of

multigrid levels and grid level 1 refers to the finest grid.

program multigrid
parameter (ngrid=4)
parameter (il=97, jl=33, kl=17)
parameter (i2=(il+1)/2, j2=(jl+l)/2, k2=(kl+l)/2)
parameter (i3=(i2+l)/2, j3=(j2+l)/2, k3=(k2+l)/2)
parameter (i4=(i3+l)/2, j4=(j3+l)/2, k4=(k3+l)/2)
parameter (ijkmax=il*jl*kl + i2*j2*k2 +

i3*j3*k3 + i4*j4*k4)

common /mg/ istart(ngrid),idim(ngrid)
common /coord/ x(ijkmax)y(ijkmax),z(ijkmax)

imax(l) = il
jmax(l) = jl
kmax(l) = kl
istart(1) = 1

do 100 igrid=2,ngrid
imax(igrid) = (imax(igrid-1) + 1) / 2
jmax(igrid) = (jmax(igrid-1) + 1) / 2
kmax(igrid) = (kmax(igrid-1) + 1) / 2
istart(igrid) = istart(igrid-1) +

imax(igrid-1)*jmax(igrid-1)*
kmax(igrid-1)

100 continue

do 200 igrid=l,ngrid
call metrics(x(istart(igrid)) , y(istart(igrid)),

z(istart(igrid)),...
imax(igrid),jmax(igrid),
kmax(igrid),...)

200 continue

51

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

subroutine metrics(x,y,z,...,imax,jmax, kmax,...)
dimension x(imax,jmax,kmax),y(imax,jmax,kmax),

z(imax,jmax,kmax)

4.1.4 V- and W-Cycles

One multigrid cycle is started by performing work, or iterations, on the finest grid

level, restricting that information to the next coarser grid, performing iterations on that

grid level and then continuing on to a coarser grid level. Once iterations have been

performed on the coarsest grid level, the correction information is prolonged to the

next finer grid level. This continues until the last iterations are performed on the finest

grid level, thus completing one multigrid cycle. The cycles are repeated until sufficient

convergence is obtained on the finest grid. In this section, fixed cycles known as V- and

W-Cycles will be described.

In the present work, Fortran IF statements were avoided as much as possible. This

led to a method of coding the multigrid cycles that relied heavily on DO loops. Basically,

a standard V-Cycle can be broken into halves. The first half is the restriction part of the

cycle going from the fine grid through the coarser grids down to the coarsest grid. The

second half is the prolongation part of the cycle going from the coarsest grid up to the

finest grid. An example is shown in Fig. 4.1.4.2 for a four level multigrid. The circles

indicate when iterations are performed on the given grid level, and the lines between grid

levels indicate either a restriction or prolongation operation. Notice that the circle for the

fine grid at the beginning of the cycle is omitted since the iterations on the fine grid are

performed at the end of the prolongation section. This ensures that the last operations

52

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Restriction Half

Coarse O 8h

Figure 4.1.4.2 Schematic of Computation Sequence for a Four-Grid V-Cycle.

in a multigrid cycle include updates on the fine grid. The control of the grid level is

handled by DO loops as shown in the following, where rtcycle is the total number of

multigrid cycles to be performed. The fine grid is 1, the coarsest grid is ngrid; iterate

is the iterative solver, restrict performs the restriction operation, and prolong performs

the prolongation operation.

igrid=l
call iterate (...,igrid,...)

do 5000 icycle=l,ncycle

do 1000 igrid=2,ngrid,1

53

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

call restrict(...,igrid-1,igrid,....)
call iterate(. . .,igrid,...)

1000 continue

do 2000 igrid=ngrid-l,1,-1

call prolong(...,igrid+1,igrid,...)
call iterate(...,igrid,...)

2000 continue
5000 continue

It is often necessary to perform more than one iteration on a given grid level to get

the required smoothness in the error for multigrid to perform correctly. For simplicity,

this iteration loop has been left out of the section of code shown above.

A W-Cycle can be thought of as consisting of several components which are similar

to V-Cycles but with varying ‘coarsest’ and ‘finest’ grid levels. This idea is shown in

Fig. 4.1.4.3, where a W-Cycle is expanded graphically to show its Tegs’.This requires

a simple coding modification to the V-Cycle program to allow W-Cycles. Another DO

54

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Figure 4.1.4.3 Schematic of Computation Sequence for a Four Grid W-Cycle.

loop is added to perform the various legs of the W-Cycle and then the beginning and

ending grid levels of the legs are varied to create the W-Cycle. For the four-grid-level

W-Cycle shown in Fig. 4.1.4.3, the fine and coarse grids, as a function of the W-Cycle

‘leg’, are shown in the following table. This W-Cycle has only four legs; the fifth leg

Table 4.1. - Legs for Four Level W-Cycle.

LEG

ileg

FINE GRID

ifine(ileg)

COARSE GRID

icoarse(ileg)
1 1 4

2 3 4
3 2 4
4 3 4

(5) (1)

is actually the first leg of the next W-Cycle, but it is shown here for completeness. A

representative listing of the Fortran coding for the W-Cycle is shown below. The variable

nleg is the number of legs in the cycle; for example, nleg = 4 for the W-Cycle shown in

55

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Fig. 4.1.4.3. The variable ileg specifies the current leg of the cycle and varies from 1 to

nleg. The bold characters show the changes from the V-Cycle code to the W-Cycle code.

igrid=i fine (1)
call iterate(...,igrid,...)

do 5000 icycle=l,ncycle
do 3000 ileg=l,nleg

do 1000 igrid=ifine (ileg) +l,icoarse (ileg) , 1

call restrict(...,igrid-1,igrid,....)
call iterate(...,igrid,...)

1000 continue

do 2000 igrid=icoarse (ileg) -l,if±ne (ilog+1) ,-1

call prolong(...,igrid+1,igrid, ...)
call iterate(...,igrid,...)

56

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

2000 continue
3000 continue
5000 continue

One method often used to increase the rate of convergence when utilizing the multi-

grid process is to execute what is called full multigrid (FMG). If the grid configuration

contained enough cells to support a four level V-Cycle, FMG would start by just cycling

through the coarse grids; therefore the initial V-Cycle may be only a two level V-Cycle,

where the two grids used are the two coarsest grids of the possible four grids. Of the

two coarsest grids, the finer is treated as a solution grid; therefore its multigrid forcing

function is zero. After a sufficient drop in the residual the next finer grid will be in­

cluded into the process, making either a three level V-Cycle or the coarsest grid could

be dropped from the cycle so that only a two level V-Cycle will still be used. It is the

computer code operator’s decision whether a two or three level V-Cycle is used. This

process is continued until the finest grid is incorporated into the V-Cycle. The objective

is that convergence will be enhanced because on just the coarser grids the solution will

set up faster and also require less CPU time; therefore, once the fine grid is included

into the V-Cycle, the large flow field characteristics should be developed. The FMG for

a V-Cycle is shown in Fig. 4.1.4.4 and for a W-Cycle in Fig. 4.I.4.5.

Fine

Coarse

Figure 4.1.4.4 Schematic of Full Multigrid Four Grid Level V-Cycle

57

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Fine

Coarse

Figure 4.1.4.5 Schematic of Full Multigrid Four Grid Level W-Cycle

4.2 Multi-block Structure

The multi-block concept is best explained by considering complex grid configurations.

If one considers the case of an engine mounted on a wing/body configuration, or an

internal/external afterbody, or any other designs containing multiple solid surfaces, it

becomes apparent that these designs cannot be handled with a simple single-block

configuration. But, if each element of the configuration can be accommodated separately,

the grid generation task becomes much easier. Plus, in some cases more than one type of

grid topology may be required. One task is the grid generation of these configurations,

and deciding what grid topology to employ. One body part may best be fit with an H-H

topology, while another may be best fit with an H -0 topology. A multi-block code which

can handle multiple solid boundaries for various topologies and configurations, such as

those mentioned in the first chapter, without requiring changes to the source code, allows

one to grid a given configuration in a manner that provides an optimum topology for the

different components of the grid.

A multi-block computer code allows a complex configuration to be divided into

sections or blocks. Each block can be defined as a six sided volume, and can be of

a different grid topology. Each side or face of the block can have different boundary

conditions than the other faces. Plus, each face can be divided into multiple segments or

patches, with each patch having a different boundary condition. The blocks communicate

58

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

with each other through interface conditions. Interface conditions can also be used to

allow a block to communicate with itself, such as across a wake cut for a wing calculation.

The simplest interface condition is for the grid lines to have C1 continuity at the interfaces,

meaning the grid lines have to match one for one (be homogeneous) across the interface,

and that the grid be continuous across the interface. More complex interface conditions

would allow more grid points on one block face of the interface than on the other block

face of the interface. The type of interface conditions that can be allowed depends on the

sophistication o f the interface routine. Note that the only way to maintain higher order

accuracy and flux conservation across an interface is by having a continuous grid across

the block interfaces. Further discussion on interfaces will be provided in the boundary

condition chapter.

The present multi-block code was designed on the premise that if it can accommodate

multiple blocks, and each block can have various boundary conditions, then the source

code can handle any geometrical configuration that can be represented with six-sided

blocks. The block and boundary information is provided to the executable through

an input file. This allows the source code to accommodate the different geometrical

configurations without being altered.

Once the code was developed to handle the multigrid format, the amount of work

needed to include multi-block flexibility was greatly reduced; since the subroutines were

grid level independent for the multigrid structure, they will be block independent as well.

The only constraints on some of the subroutines will be the boundary condition ranges,

which will be passed through the argument list. The last decision before making changes

which would provide the multi-block capabilities, is whether to execute all multigrid

levels in each block and then proceed to the next block (this method is called executing

multigrid inside of multi-block), or execute the flux evaluations for all the blocks at a

59

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

particular multigrid level then proceed to the next multigrid level for all blocks (this

method is called executing multi-block inside of multigrid). It was decided that better

communication would be delivered if multi-block inside of multigrid was used. This will

be explained further in the multi-block multigrid interaction section.

4.2.1 Multi-Block Storage and Programing Strategy

Basically, each of the subroutines in the multigrid computer code was designed to be

independent of the multigrid level. This same characteristic makes each of the subroutines

independent of the block passed to it in a multi-block environment; therefore, the memory

allocation scheme described in figure 4.1.3.1 is expanded to include multiple blocks as

shown in figure 4.2.1.1.

Block 1

Block 2

Block 3

Block 4

Block 5

Figure 4.2.1.1 Multigrid Multi-block Storage Arrangement for Arrays.

60

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

To accommodate the extra memory needed for the multi-block strategy, an extra

index is added to the pointers and parameters used for finding a specific location in an

array and defining the size of the arrays, respectively. The changes to the previously

shown multigrid code structure are indicated in bold print.

c
c
c

c
c
c

c
c
c

program multigrid
parameter (ngrid=4)
parameter (nblock=2)

BLOCK 1

parameter
parameter
parameter
parameter
parameter

BLOCK 2

parameter
parameter
parameter
parameter
parameter

TOTALS

(111=97,
(i21=(ill+1)/2,
(i31=(i22+l)/2,
(i42=(i31+l)/2,

jll=33,
j22=(jll+1)/2,
j32=(j22+l)/2,
j 42=(j32+l)/2,

kl2=17)
k22=(kl2+l)/2)
k32=(k22+l)/2)
k42=(k32+l)/2)

(ijkmax2=(il2*jl2*kl2 + i22*j22*k22
i32* j32*k32 + i42*j42*k42;)

(112=65, jl2=49, kl2=33)
(122= (112+1)/2, j22= (jl2+l)/2, k22=(k!2+l)/2)
(132= (122+1)/2, j32=(j22+l)/2, k32=(k22+l)/2)
(142= (132+1) /2r j42=(j32+l)/2, k42=(k32+l)/2)
(ijkmax2= (H2*jl2*kl2 + 122*j22*k22 +

132*j32*k32 + 142*j42*k42))

parameter (ijkmax = ijkmaxl+ijkmax2)

common /mg/ istart(ngrid, nbloc), idim(ngrid,nbloc)
common /coord/ x(ijkmax), y(ijkmax),z(ijkmax)

imax(l,2) = il2

61

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

jmax (1,1) = jl 1
kmax(l ,1) = kll
istart(1,1) = 1

do 100 igrid=2,ngrid
imax(igrid,1) = (imax(igrid-1,2) + 1) / 2
jmax(igrid,1) = (jmax(igrid-1,1) + 1) / 2
kmax(igrid,I) = (kmax(igrid-1,I) + 1) / 2
istart(igrid,I) = istart(igrid-1, 1) +

imax (igrid-1,1) *jmax(igrid-1,1) *
kmax(igrid-1,1)

100 continue

imax (1,2) — 112
jmax (1,2) = jl2
kmax (1,2) — kl2
istart (1,2) = istart (ngrid, 1) + imax (ngrid, 1)* jmax (ngrid, 1)

kmax (ngrid, 1)

do 110 igrid=2, ngrid
imax (igrid, 2) = (imax (igrid-1,2) + 1) / 2
jmax (igrid, 2) = (jmax (igrid-1,2) + 1) / 2
kmax (igrid, 2) = (kmax (igrid-1,2) + 1) / 2
istart (igrid, 2) = istart (igrid-1,2) +

imax (igrid-1,2) *jmax (igrid-1,2) *
kmax (igrid-1,2)

110 continue

do 200 igrid=l,ngrid
do 200 iblock=l, nblock

62

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

call metrics(x(istart(igrid,iblock)),y(istart(igrid,Iblock)) ,
z (istart(igrid,Iblock)), ...
imax(igrid,iblock), jmax(igrid,iblock),
kmax(igrid,iblock), . . .)

200 continue

subroutine metrics(x,y,z,...,imax,jmax,kmax,...)
dimension x(imax,jmax,kmax), y(imax,jmax,kmax),

z(imax,jmax,kmax)

It is important to notice that in this example no changes were made to the subroutine

metrics. Only changes to the main program were required and these involved the pointers.

The important working subroutines in the computer code are the same for the multi­

block program as for the multigrid computer code. New communication routines must

be written to pass data between the blocks, but these are a separate issue and will be

discussed in the Boundary Conditions chapter.

Once the pointers are set up to accommodate a multi-block grid, then the DO loop

structure must be modified to include loops to visit all of the blocks. The example for a

W-Cycle has been modified to include multi-block flexibility and is shown by the bold

characters in the following example:

igrid=ifine(1)
do 900 iblock=l,nblock
call iterate(...,igrid,iblock, ...)

63

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

do 5000 icycle=l,ncycle
do 3000 ileg=l,nleg

do 1000 igrid=ifine(ileg)+1, icoarse(ileg),1
do 1000 ±block=l,nblock

call restrict(. . .,igrid-1, igrid, iblock,)
call iterate(...,igrid,iblock,...)

1000 continue

do 2000 igrid=icoarse(ileg)-1,ifine(ileg+1),-1
do 2000 iblock=l,nblock

call prolong(...,igrid+1, igrid, iblock, ...)
call iterate(...,igrid,iblock,...)

2000 continue
3000 continue
5000 continue

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

At this point the advantages of grid topology independent subroutines has become

apparent. The same subroutine can be used for all levels of multigrid for each block

with no special logic required in the subroutine. Having only one subroutine to handle

a specified set of tasks, regardless of the multigrid level on a block, also reduces the

chances of coding errors, and the overall size of the source code. Also, a grid topology

independent multi-block formulation allows the same executable to calculate the flows

for a variety of geometric configurations.

4.3 Multigrid Multi-Block Arrangements

As stated in the multi-block structure section, there are two strategies that can be

used in programming the multi-block - multigrid interaction.

• Multigrid Inside of Multi-Block

• Multi-Block Inside of Multigrid

The first strategy is to have all multigrid levels run on a particular block before continuing

on to the next block of the computational domain. This is referred to as the multigrid

inside of multi-block method. This method lends itself to allowing an efficient use of

memory space by computing one block at a time, writing that block out, reading in

another block and operating on it before continuing to the next block. This is a very

appealing way to handle computational problems that have large memory requirements.

The disadvantage of this approach is that there is no communication between the coarse

grid levels of the different blocks. At best this would only reduce the rate of convergence,

because the lower frequencies would not be properly damped, if damped at all. At

worst, the program will diverge, which becomes the case more times than not [68, 69].

Therefore, this approach was deemed unacceptable, because of its lack of robustness.

65

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

The second strategy, multi-block inside of multigrid, was chosen for this work. This

approach operates with all of the blocks at the same multigrid level. Once the calculations

for a particular multigrid level are completed, all of the blocks are processed to the next

multigrid level, where operations are continued. A schematic of this approach is shown in

Fig. 4.3.2. A problem with this approach is that if the memory requirements dictate that

only one block be in use at a time, the input/output operation count becomes exceedingly

high. The positive side of this approach is that this strategy mimics the same rate of

exchange of information between cells as a single-block calculation. Thus, exactly the

same convergence can be produced, and the original numerical efficiency of the single­

block computer program is maintained, except for the time lost during the exchange of

information across the block interfaces. The last statement is true only if the interface

boundary conditions are of C1 continuity, and there are no convergence acceleration

techniques employed that are dependent on the placement of boundary locations.

MULTIGRID / MULTIBLOCK STRATEGY

DO * b=1,NBLOCKS

CALL PROLONG
* CONTINUEDO * fc1,NBLOCKS

CALL RESTRICT
* CONTINUE

DO * l=1,NBLOCKS

* CONTINUE

Figure 4.3.2 Multigrid Multi-block Interaction Schematic.

66

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

4.3.1 Time Integration Strategy with Multigrid

The calculation of a multigrid, four-grid, V-Cycle on a multi-block configuration, us­

ing an n-stage Runge-Kutta time integration is outlined below. As previously mentioned,

the type of multigrid multi-block interaction that was employed in the present work was

multi-block inside of multigrid. The governing equation is

N [Au‘‘] = —A t [V (u‘) - f \ = R H S i (4.3.1)

where N is the n-stage modified Runge-Kutta time integration scheme used to smooth out

the high frequency errors, and i represents h, 2h, 4h, 8h, etc. to indicate the different

grid spacings. The numerical derivatives of the flux-vectors are symbolized by L '^u1),

where L l is the operator providing the Euler or thin-layer Navier-Stokes flux derivatives,

and ul represents the dependent variables. For the finest grid level, gh, f h is zero, because

there is no multigrid forcing function for the finest grid level, only for the coarser grid

levels. Starting the V-Cycle on the finest grid, gh, iterations are performed to smooth out

the high frequency errors. One iteration involves computing all stages of the modified

Runge-Kutta time integration method. The flux derivatives, which are called residuals,

are computed for all blocks before continuing on to the next stage of the modified

Runge-Kutta method. After each stage the dependent variables are updated, as well as

the boundary and interface conditions. Also, if there is to be any residual smoothing, it is

incorporated before the dependent variables are updated. After completing the necessary

number of iterations to remove the high frequency errors, the dependent variables and

the residuals are restricted to the next grid level, g2h. Equation (4.1.15) provides the

relation used to obtain f 2h. In this relation are two types of restriction processes. One

is the restriction of the dependent variables I%h(uh), and the other is the restriction of

the residuals l \ h [Lhuh] . The initial values of u2h are obtained on the coarse grid by the

67

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

following volume weighted averaging,

E V olf u f
u2h « / f (>) = S L - (4.3.2)

E Volf
i=1

The approximation sign is used because the error term, V 2h, shown in equation (4.1.16),

is unknown and unaccountable (This initial value of u2h will be used later as part of

the correction for uh in the prolongation process from g2h to gh). The restriction of the

residuals is performed by a simple summation of the residuals from the eight fine grid

cells that compose a coarse grid cell, as shown in Fig. (B.1.4). The dependent variable

residual restriction is given by

L 2h (u 2h) = I 2hh [l V] = Y , (4 3 3)
1 = 1

With the initial u2h values, the boundary and interface conditions are computed. The

iterative process is performed again, eliminating the high frequency errors so that the 2h

grid data can be successfully restricted to the 4h grid. The same equations that provided

the relations for the transformation from gh to g2h can be used to restrict data from g2h

to g4h. After the high frequency errors are eliminated on this grid level, the data can

be restricted to the g8h level. Finishing the necessary number of iterations on g8h, the

prolongation operation is then performed from g8h to gih . The prolongation process

provides a correction to the already existing uih values. This is done by calculating the

difference between which was computed by the restriction process, and the u8h that

has been updated by the iteration process. This is accomplished by the relation given in

equation (4.1.17), which is rewritten here as follows,

old
(4.3.4)(,Ah_____ _ i T^/t Lsfc j8h f .Ah\Iu \a)oU + ‘A u “ M " J,

Then with the corrected uAh more iterations are computed and then the correction data is

prolonged to the next finer grid, g2h. After iterating on this grid level the correction data

68

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

is finally prolonged back to the finest grid, gh. This completes one multigrid V-Cycle.

The computation of a W-Cycle is similar.

69

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Chapter 5 BOUNDARY CONDITIONS

In general most CFD computer codes have what can be called standard inflow/outflow

far field boundaries, inviscid wall, viscous wall, and symmetry plane boundary conditions.

With a multi-block code there is an added interface boundary condition, which is used

to exchange information between adjoining blocks. Each block is defined as a six sided

volume, where each side is considered to be a face. For the present work, each face

has two layers of ghost cell layers which contain boundary information. The ghost cells

are used when the fluxes are being evaluated. Having two ghost cells allows higher

order operations to be performed at block interfaces without any loss of accuracy or

modifications. For solid wall boundaries only the ghost cell closest to the interior is

used. It enforces no flow through the wall, and either parallel flow along an inviscid wall

or no slip on a viscous wall. The only contribution a solid wall provides to the flux is

the pressure term in the momentum equations. For the symmetry plane, inflow/outflow

far field boundaries, and interfaces, the fluxes are computed at the boundary in the same

manner as for an interior point, because both layers of ghost cells on the block face

are used.

Boundary conditions normally drive the flow field. Ghost cells are used as an aid

in enforcing boundary conditions accurately. These cells can be used in different ways.

One way is to treat them as storage space to maintain dependent variable values on a

wall. They are also used to maintain the far field boundary information, which controls

the type of flow field the geometrical configuration will encounter.

70

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

The present control volume approach uses ghost cells as an extension of the interior

cells of the computational domain. This allows the ghost cells to have assigned volume

and area vectors. For external far fields, the ghost cell values are determined based on

the prescribed flow conditions and interior cell values of the computational domain. The

intent is to have ghost cell values that represent what the correct flow values would be

in those specific x, y, and z locations for an identical physical flow field.

In treating the wall boundaries, the ghost cells again have volumes and area vectors,

but rather than store flow information on the wall, they maintain values that when

combined with the first interior cell, normal to the wall, provide the correct wall flow

quantities. This approach is useful in evaluating the fluxes, because it allows the gathering

of cell information for the first interior cell, normal to the wall, to be conducted with the

same approach as any other interior cell in the domain.

5.1 Far Field Inflow/Outflow Boundaries

For the far field inflow/outflow boundaries the Mach number normal to the cell face

is computed to determine if the flow is subsonic or supersonic at the inflow/outflow

boundary. If the flow is supersonic then the direction of the flow is determined and a

direct transfer of the reference conditions to the ghost cells is used for the inflow case.

For outflow, a linear extrapolation of the interior values to the ghost cells is used. If the

flow is subsonic then the one-dimensional characteristic equations are used to determine

the ghost cell values. The two Riemann invariants, R +, and R ~, are computed, and their

average taken to give the velocity normal to the cell face, qn, which is used to indicate

whether the case is an inflow or outflow boundary condition. From the one-dimensional

71

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

characteristic equations, the following formulations are obtained;

Qref == ^ r e f l x “I" Vre f l y 4*

Qint ~ u int^x 4" v int^y 4" W{ntlz

. 2
R — Qint 4" . a int

7 - 1

K~ = q „ f - <5' L1)

9„ = i (t f + + . f r)

ln
ln = — = , where I = £, 77, & £, and n = x , ?/, & z

with a being the speed of sound, and subscripts re / and inf indicating reference and

interior, respectively. If the normal velocity, q n , is negative, then the boundary condition

is subsonic inflow. The ghost-cell, Cartesian velocities are computed based on the

reference Cartesian velocities, u ref , v ref , and w Tef , and the difference between the

average Riemann normal velocity, qn , and the reference normal velocity, qTef as follows;

s * = PJr e f / P r e f

Ug = UTef 4" {qn 9re/)̂ z
(5.1.2)

Vg = Vref 4- (<?n — Q re f ^ l y

Wg — W ref 4" {qn 9re/)̂ z
where s* is an isentropically derived entropy value, and g denotes the ghost cell values.

This formulation stipulates that the entropy will not change across the far field boundary.

For the subsonic outflow case;

s — Pint / Pint

Ug = Ujnt 4" (qn 9ini)(z
(5.1.3)

v g — v int 4" {qn (Jint){y

Wg — Wjn t -(- {qn qint)^z

72

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

The density and total energy per unit volume are then computed as follows;

a? S * \

99 = ' 'V ,. 7 7 (5.1.4)

f t =
7

E 9 = + \ P 9 (U9 + V9 + w l)

5.2 Symmetry Plane and Solid Wall Conditions

For the symmetry plane boundary condition, the velocity vectors of the two interior

cells adjacent to the symmetry plane are reflected into the ghost cells, and the densities

and total energies per unit volume are transferred direcdy. The inviscid wall conditions

reflect the velocity vector of the first interior cell across the wall surface, maintaining

the tangential velocity, just as with the symmetry condition. The pressure and density

are obtained from the interior cells by either a direct transfer or a linear extrapolation.

The total energy per unit volume is then computed using the ghost cell values. For

the viscous wall the same procedures are used with the exception of having a no slip

condition on the wall.

5.3 Block Interface Conditions

The interface conditions require that the blocks meet with C1 continuity, meaning

that the grid lines are continuous and that continuous grid metrics are maintained across

block interfaces. This approach allows ghost cells of one block to receive information

by direct transfer from the corresponding cells in the adjoining block; therefore the

process is a one to one transfer of data, with no averaging or approximation. Having

the two layers of ghost cells on each block face allows operations at the interface to be

73

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

performed in the same manner as any operation would be performed in the interior. There

is no issue concerning the conservation of mass or a flux balance across the interface

due to the continuity requirement across the interface. Plus, this approach provides

the same order of accuracy at the interface cells that is present in the interior cells.

All other interface conditions cannot provide both higher order accuracy and maintain

a complete conservation of the fluxes across an interface. One advantage of this type

of interface condition is that it allows the computer code to obtain exactly the same

convergence for a case that could be run as a single block. This was very helpful as a

debugging tool during the initial development of the computer program. The computer

code was developed to allow any face o f one block to interface with any face of another

block. This required that the indices of one block be allowed to adjoin different index

families of the adjacent block. Also the interface routine permits the indices to increase

in the same direction or in opposite directions across a block interface. All that is

required is that both blocks adhere to the right hand rule. More sophisticated interface

conditions can be implemented by changing the interface routine to one that best suits

a particular configuration’s requirements. The rest of the computer code will remain the

same, because at no other time is it necessary for the blocks to interact with each other.

That is why the two layers of ghost cells on each block face are used. Once these cells

have been updated the blocks are not required to communicate with each other until the

next iteration. Each block is self-contained, allowing it to go through the flux evaluator

and the prolongation and restriction multigrid routines without requiring any additional

cell information from the other blocks.

Each face of a block can be divided into multiple segments or patches, and each

patch can have a different boundary condition. The only constraint on these patches is

that they need to be of multigridable indices, so that the physical x, y, and 2 locations of

74

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

the patch will not change when the solver is on a different multigrid level. This is very

important, especially if one of the multiple patches is interfacing with another block.

5.4 Definition of Multigridable Index

A multigridable index is an integer value based on 2n+ l. An example of a multi­

gridable index is the number 129, which is 27+ l. It is multigridable because if this

were the number of points in a particular coordinate direction, and every other point was

eliminated, the total number of points would become 65, which is 26+ l, and the 65th

point would be in the same x, y, and z location as the 129th point of the finer grid. Also,

if every other point were eliminated again, the total number of points would become 33,

which is 25+ l. The 33rd point would also be in the exact x, y, and z location as the 65th

and the 129th points of the finer grids. This would not be the case if the initial number of

points on the fine grid was 112. If every other point is eliminated, starting from the first

point, the total number of points would be 61, and the 61st point would not be in the same

x, y, and z location as the 112th point This is very important when multiple boundaries

are used, because when patches are involved, the starting and ending index needs to be

multigridable; otherwise error could be introduced into the calculations due to moving

boundary locations or the exchange of incorrect information across interfaces. When the

restriction process to remove every other point is executed on a 65-point grid, every value

less than 65 that is a multigridable index will maintain the same x, y, and z location.

It should be noted however, that the convergence rate for a problem can change

if a single-block domain is divide into multiple blocks when residual and/or corrector

smoothing is being employed. The smoothers employed in the present computer code only

operate on one block at a time, and if a domain has been divided into smaller segments,

then the influence of boundaries at one end of the entire computational domain will take

75

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

longer to reach flow field data at the other end of the domain. For subsonic flows this

could definitely slow the rate of convergence, whereas it may be beneficial to supersonic

flows, based on the physical directions of information propagation. Therefore, dividing a

single block into multiple blocks may provide better or worse convergence, depending on

the physics of the flow when various domain boundary-dependent acceleration techniques

are employed.

76

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Chapter 6 CASES STUDIED

The flow cases presented here were chosen to validate the computer code, and display

its flexability in accommodating different types of geometrical configurations. Known

flow cases were chosen to validate the incorporated flow solvers. This was done to

insure that the employed acceleration techniques of residual and corrector smoothing,

and multigrid acceleration were not introducing error into the final numerical results.

The flexibility was examined by testing a variety of geometric flow configurations.

First a comer flow case was computed using a single block, then using a multi-block

configuration. Next the multiple inflow boundary condition was tested, followed by a

multiple boundary condition including a block interfacing with itself. The final case

tested required true multi-block capabilities, coupled with the ability to accommodate an

interface between blocks with different mesh topologies. All of the flow configurations

were computed with the same computer code, only changes to the input file were required;

therefore proving the computer code’s flexibility.

6.1 Inviscid Corner Flow

The first case studied was an inviscid comer flow. The main reason this case was

chosen was to demonstrate that the present multi-block method allowed the interior cells

at the interfaces of the blocks to be treated as any other interior cell. This approach

allowed the multi-block configuration to produce the exact same results as the single-block

configuration. This was demonstrated by computing the flow field using a single-block

grid configuration, and then dividing that single block into eight blocks and computing

77

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

the flow field again. By doing so, this case showed what is required of the interface

routine for similar flow configurations. Finally, the three-dimensional flow effects of this

case required that there be no coordinate direction biasing of the flow solution by the

computer code.

A compression comer was generated by placing a compression ramp on the bottom

and back walls of a rectangular duct. A schematic of the comer generated from the

connection of the back and bottom walls is shown in Fig. 6.1.1. Indicated in the figure

are Pb, which was taken as a pressure reference point, and Yc, which indicates the y

location at the intersection of the compression ramps. These values were used in results

comparisons. The supersonic inlet flow was Afin/e< = 3.0, and the ramp angles were

a = 9.5°. Thus, the grid and therefore the flow was symmetric about the intersection

o f the back and bottom walls, forming the compression comer. For supersonic comer

Y

FLOW

Figure 6.1.1 Schematic of Compression Comer Duct.

78

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

flow, three shock structures are produced. Two of the shock structures are wedge flow

shocks, and their flow properties can be verified using two-dimensional analysis based

on the Mach number normal to the leading edge of the wedge. The third structure is

produced when the two wedge shocks coalesce to form a three-dimensional flow region

shaped like a cone, with its apex located at the intersection of the leading edges of the

compression ramps. The base of the cone is coincident with the exit plane of the duct.

These characteristics can be seen in Fig. 6.1.2, where Mach line contours are projected

on the back and bottom walls, and on the exit plane of a 49x49x49 channel or duct grid.

This case was performed using FMG, no flux limiter, and modified Runge-Kutta time

integration. The position of the wedge shocks is shown on the back and bottom walls

by the region of highly concentrated Mach lines perpendicular to the inflow direction.

The edges of the cone shaped shock surface can also be seen on these two walls. Four

flow regions are present on the exit plane. In the upper right comer is free-stream flow,

which is one-dimensional. From the middle of the plane to the lower left comer, the

flow is three-dimensional, and the bottom of the cone surface, a partial disc, can be seen.

The wedge shock planes, which are two-dimensional flows, can be seen in the upper left

comer and the lower right comer of the exit plane. Note that since the geometry of the

channel is symmetric about the compression comer (the one joining the back and bottom

walls to the exit plane of the channel), the flow field should be and is symmetric about

this comer. Comer flow shock structures are identified by having triple points, where the

three-dimensional flow region meets the wedge shock flow and the one-dimensional free-

stream flow region. The results shown here have two triple points. Shown in Fig. 6.1.3

is a schematic of how a plane parallel with the exit plane of the channel would appear.

It shows the flow structure that results from this type of comer flow (figure based on

information obtained from Ref. [98]). The present flow results are in good agreement

79

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Figure 6.1.2 Mach Line Contours, M,n/ei = 3.0 and a = 9.5°.

I/ 2-D
1/ FLOW
I REGION

WALL
SHOCK FREE STREAM

CORNER SHOCK

2 - D FLOW REGION

WALL SHOCK

Figure 6.1.3 Compression Comer Shock.

80

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

with the numerical results of Marconi [98] and Kutler [99]. Shown in Fig. 6.1.4 is

a comparison of the present work with the shock fitting numerical results of Marconi

[98], the finite difference results of Kutler [99], and the experimental results of West and

Korkegi [100]. It shows the relative pressure distribution on the surface of the back wall

along a coordinate line that is parallel to the exit plane of the channel (Note that since the

geometry of the channel is symmetric about the compression comer, either the back or

bottom wall could have been used). The results of Marconi and Kuder were plotted from

data presented in Ref. [98], where they solved for the comer flow in a two-dimensional

plane, similar to what is shown in Fig. 6.1.3. The range of the pressure distribution for

the present work is very similar to Kutler’s predictions, but the shock is smeared in the

present study because its structure is skewed relative to the computational grid, and the

grid spacing in the streamwise direction is rather coarse.

To better capture the shock, the same test case was performed on a 65x65x65 grid. A

comparison between the 49x49x49, the previously mentioned grid and a 33x33x33 grid

is shown in Fig. 6.1.5, where it can be seen that the shock is less smeared on the finer

grids. The packing of points in the streamwise direction has a very significant influence

on this type of results comparison. Convergence histories are shown in Fig.6.1.6 for this

comer flow case using different extrapolation techniques. As expected, the first-order

extrapolation converged the quickest, followed by Fromm’s method and k=1/3. The

residual for the pure second-order upwind method became hung after converging nine

orders.

81

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

1.0 3.0
9.5

0.8

0.6

o EXP. DATA
 Kutler

Marconi
 Pres. 2nd Order

0.2

o0.0

- 0.2
1.00.80.60.40.20.0

(r-r„)/z
Figure 6.1.4 Comparison of Relative Pressure Distributions on Wall of Comer Flow.

82

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

1.0
3.000

9.5
0.8

0.6

33x33x33
49x49x49
65x65x65

0.2

0.0

- 0.2
0.8 1.00.0 0.2 0.4 0.6

(r-r0)/z

Figure 6.1.5 Grid Refinement Study on Comer Flow.

83

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

 e Third Order
 h Fromm

Second Order
 First Order

- 1

- 3

§>
M - 7

'0-v^-0'0-0-<3
- 9

- 1 1

- 1 3
300200100

WorkUnits

Figure 6.1.6 Convergence Histories for the Comer
Flow Using Different Extrapolation Techniques.

84

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

6.1.1 Multiple Interface Requirements

To test the multi-block capabilities, the 65x65x65 comer flow grid was divided into

eight blocks by bisecting each coordinate direction. A schematic of the block domains

is shown in Fig. 6.1.1.7, where the shaded surfaces indicate the interfaces between the

blocks. For computing the fluxes, the exchange of information across an interface needs

Figure 6.1.1.7 Eight-Block Configuration for Compression Comer.

to include only the ranges of the interior cells on that interface. However, when using

multigrid techniques, consideration must be given to the restriction and prolongation

operations. Whether or not there are interfaces has no influence on the present restriction

process, but it can have an influence on the prolongation process. By dividing the

85

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

domain into blocks there are block boundaries where there would have normally been

standard interior cells. This can affect the values produced by the trilinear interpolation

prolongation process. The prolongation process is explained in Appendix B. The standard

procedure for the present prolongation process at a boundaiy is to set the corrections to

zero. That is because the boundaiy ghost cells are not solved directly; they are updated

based on the flow values o f the interior cells. This indicates that the correction at a block

interface should be treated differently than that of a solid surface. Interface corrections

should allow the prolongation process to compute the same results for a divided region

as it would for an undivided region. To properly execute the prolongation process at an

interface requires computing the correction for the ghost cell values and using them in

the same manner as the correction values of the interior cells. The problem arises at the

edges of the interface. It is these locations that require information from the ghost cells

normal to the block interface, and also from the cells diagonal to it. This can be seen

in Fig. 6.1.1.8, where a plane from four interfacing blocks is shown. The thick lines

represent the interior regions of the blocks, and the thin lines represent the ghost cells.

If the four blocks were joined as one, the prolongation for the upper left comer of block

1 would be influenced by information in the other three blocks; therefore the range of

information transferred should fill the ghost cells of block 1 with the first two bottom

rows of “x’s” from block 2, the four lower right comer “o’s” from block 3 and the first

two right-hand-side columns of “z’s” from block 4. Transferring these values then allows

the prolongation for the upper left comer of block 1 to produce the same values as would

be produced if the four blocks were combined as one. It is important to note that block 1

interfaces with only blocks 2 and 4; therefore, the range of information gathered across

an interface needs to include more than just the values from the interior cells; it needs to

obtain two extra cells from each end of the interface. A range which includes two extra

86

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Interior Cells

Block 3 Block 2

Block 4 Block 1

Ghost Cells.

Figure 6.1.1.8 Four-Block Interface.

cells at each end of the interface provides the “o”s from block 3 to block 1, and allows the

ghost cells of each block to have all of the information necessary to correctly complete

the prolongation process. Since information is exchanged between at most two blocks at

a time, two passes through the interface routine are required so that all of the interface

ghost cells (beyond the interior index range of the interface) will be updated with the

current interior cell values from the different blocks. This is necessary since the interface

87

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

ghost cells are updated in a sequential manner, generally starting with block 1 interfaces,

then proceeding to block 2 and so on. As one can see from Fig. 6.1.1.8, the interface

ghost cell values required by block 1 from block 3 will lag because block 1 gets its final

block 3 information from block 4. Therefore, until block 4 has had its interfaces updated

with current block 3 information, the information block 4 passes to block 1, on the first

pass through the interface routine, will be from the previous time step. This problem is

eliminated by executing the interface routine twice. Also, this method requires that block

1 only know the blocks that are normal to its interfaces, and not what blocks are diagonal

to its comers, which in this test case is block 3. This simplifies the input information

about the boundary conditions. Also, this interface approach satisfies the requirements

of a block having three connected surfaces as interfaces, which occurs in this eight-block

comer flow configuration. Notice that every block in this configuration interfaces with

three other blocks, as can be ascertained from Fig. 6.1.1.7.

In Fig. 6.1.1.9 and Fig. 6.1.1.10 the Mach line contours from the single-block and

eight-block calculations are shown, respectively, on the back and bottom walls, and the

exit plane of the channel. For the eight-block configuration, the interfaces between the

blocks are shown as thick solid lines on the back and bottom walls, and exit plane. As

can be seen, the Mach lines pass through the interfaces without deviation, proving that

the interfaces are not introducing any error. Similar Tesults are displayed in Figs. 6.1.1.11

and 6.1.1.12, where the pressure contours are shown for both the single- and eight-block

configurations, respectively. Again, there is no difference in the contours between the

single-block and the eight-block calculations. As shown in Fig. 6.1.1.13, the convergence

histories for the single-block and the eight-block calculations are the same.

88

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Figure 6.1.1.9 Mach Line Contours for the
Single-Block Calculation, M tn/ei = 3.0 and a = 9.5°.

Figure 6.1.1.10 Mach Line Contours for the
Eight-Block Calculation, = 3.0 and a = 9.5°.

89

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Figure 6.1.1.11 Pressure Line Contours for the
Single-Block Calculation, M,n/e< = 3.0 and a = 9.5°.

Figure 6.1.1.12 Pressure Line Contours for the
Eight-Block Calculation, Min\et = 3.0 and a = 9.5°.

90

R ep ro d u ced with p erm issio n o f th e copyrigh t ow ner. Further reproduction prohibited w ithout p erm issio n .

Eight Blocks
Single Block

- 1

- 3

•a
-3•co
CO
0)

a :

- 5

- 9

-1 1

- 1 3
0 1 0 0 2 0 0 300

WorkUnits

Figure 6.1.1.13 Comparison of Convergence Histories Between the
Single-Block and Eight-Block Calculations for the Corner Flow.

91

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

6.2 Pseudo Two-Dimensional Jet Exhaust Plume

The second case studied was an inviscid pseudo two-dimensional jet exhaust plume.

This case tested the multiple boundary input format of the computer code as well as

provided a basis for comparing the two different upwind solvers, in terms of their ability

to predict both slip lines and shocks. It also served as a forum for the examination of

the different extrapolation techniques of pure second order upwind, Fromm’s scheme,

and k = 1/3. This case is considered a pseudo two-dimensional flow because the cross

flow is negligible.

The inflow surface of the computational domain was divided into two sections. One

section had as its inflow conditions the exhaust from a je t of height “h”, where M jet = 1.5.

The second section had a ffee-stream inflow of Moo = 2.5. The static pressure and

static temperature ratios between the two flows were p jet/Poo = 3.5 and T je t/T ^ 3.0,

respecitvely. A schematic of this flow field is provided in Fig. 6.2.14. This figure

identifies the slip line, expansion fan, and shock that is present in this type of flow.

The “wall” in this figure was actually treated as a symmetry plane. The grid generated

for the pseudo two-dimensional plume flow is shown in Fig. 6.2.15. This case was

first tested incorporating Roe’s flux-differencing using: (1) pure second order upwind,

(2) Fromm’s scheme, and (3) k = 1/3 extrapolation of the primitive variables, without

the use of a flux limiter. These results were compared with those from a validated shock

fitting code developed by Salas [101]. This case was evaluated using FMG, variable

coefficient residual smoothing and modified Runge-Kutta time integration. At the first

station, x/h « 1.0, shown in Fig. 6.2.16a, the second order extrapolation produced a

larger undershoot at the slip line than the other higher order methods. It is comparable

everywhere else, produces a smaller overshoot at the shock, and has no oscillations. The

k = 1/3 continually produces the largest overshoot at the shock and is accompanied by

92

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

a small oscillation (Figs. 6.2.16d - 6.2.16e), up until station x/h « 5.0 (Fig. 6.2.16e).

At this station and station x/h = 10., shown in Fig. 6.2.17f, the overshoots at the shock

are greatly diminished for all extrapolation methods. The two vertical columns along

the right side of the figures indicate the packing density of points in the y/h direction.

The shock fitting computer code generates its own grid, and its packing density is shown

as the first column starting on the left The Roe scheme employed a different grid,

which had a vertical packing density shown as the right column. The columns are shown

in the order of the flow solver legend, with the far left column representing the grid

spacing for the last flow solver in the legend. Based on these results, and the desire

not to employ a limiter (because of the convergence difficulties they produce), the pure

second order upwind extrapolation method was chosen for the next case. Convergence

history comparisons between the different extrapolation techniques for the pseudo two-

dimensional je t exhaust plume are shown in Fig. 6.2.17.

Y
i i

7.5 h

Shock
Expansion Fan

Figure 6.2.14 Schematic of Pseudo Two-Dimensional Jet Exhaust Plume.

93

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Figure 6.2.15 Grid Used for the Present Pseudo
Two-Dimensional Jet Exhaust Plume Calculations.

The next comparison for this case was between Roe’s flux-difference splitting and

van Leer’s flux-vector splitting. Figures 6.2.18 and 6.2.19 show the Mach line contours

for Roe’s flux-difference splitting method, and van Leer’s flux-vector splitting method,

respectively. In Figs. 6.2.20 and 6.2.21 are the pressure contours for Roe’s scheme and

van Leer’s scheme, respectively. Both methods employed the same Runge-Kutta time

integration scheme, using pure second order upwind extrapolation, without flux limiters,

and they employed variable-coefficient residual-smoothing. Conservative variables were

extrapolated for van Leer’s scheme, because the use of primitive variables is known to

cause oscillations. Primitive variables were extrapolated for Roe’s scheme. The Mach

line contours appear to provide the same solution, with van Leer’s method spreading the

slip line a little wider than Roe’s method. This is to be expected, because flux-vector

splitting does not have a mechanism for resolving the slip line, which flux-difference

94

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

splitting does because it is based on an approximate Riemann solver. Overall the

differences in the two sets of contours are negligible. Further comparisons of these

results are shown in Figs. 6.2.22a - 6.2.22f, with the validated shock fitting code of

Salas [101]. The first figure (Fig. 6.2.22a) is for station x/h « 1.0, the only disparity

between the flux-vector splitting and the flux-difference splitting methods comes just

after the constant Mach number region and just before the slip line. In that region, the

flux-difference splitting method has a larger undershoot Both upwind methods have the

same magnitude of undershoot and overshoot at the shock, and neither had an overshoot

at the slip line. The shock fitting method tends to have oscillations in the transition

region between the expansion fan and the constant Mach number region, but provides

crisp results throughout the remainder of the flow for this x/h location. For x/h « 2.0,

shown in Fig. 6.2.22b, one can again see that the only disparity between the van Leer

and Roe methods is the undershoot by Roe’s scheme at the slip line. Starting at this

x/h location, the overshoot at the shock has essentially disappeared. This is due to the

shock becoming aligned with the grid. The next location, x/h « 2.5 (Fig. 6.2.22c),

shows that the undershoot from Roe’s scheme at the slip line has diminished. At the

x/h « 3.0 location, shown in Fig. 6.2.22d, the Roe and van Leer methods are providing

the same magnitude of undershoot at the slip line, but at x/h « 5.0 (Fig. 6.2.22e) and

x/h = 10.0 (Fig. 6.2.22f) the two upwind methods are providing essentially the same

error in the overshoots and undershoots; however, Roe’s scheme again gives a slightly

larger undershoot at the slip line.

Overall the agreement between the two upwind methods was very good and their

results compare well with those of the shock fitting computer code of Salas [101]. Both

Roe’s and van Leer’s upwind methods predict overshoots and undershoots at slip lines

and shocks on a grid that is not properly aligned with the flow physics.

95

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

y /h

2.5

.. Roe k = 1/3
Roe Fromm

.. Roe 2nd Order
_ Shock Fitting

2.0

1.5

1.0

0.5
x/h **1.0

0.0
1.5 1.7 1.9 2.1 2.3 2.5

I
_ s
- I
— s

g i
m =
I =

Mach

(a)

y /h

2.5

2.0

1.5 Roe k = 1/3
 Roe Fromm
 Roe 2nd Order
 Shock Fitting1.0

0.5
x/h ** 2.0

0.0
2.0 2.2 2.41.8

Mach

(b)

Figure 6.2.16 Comparisons Between Different Extrapolations of Roe’s Scheme and a
Shock Fitting Code for a Pseudo Two-Dimensional Exhaust Plume. (Continued . . .)

96

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

!!!!! !! ")P"!!""!"" ""0325

3

2
Roe k = 1/3
Roe Fromm
Roe 2nd Order
Shock Fitting

y /h

1

x / h ** 2 .5

o
1.8 2.0 2.2 2.4

Mach

(C)

3.0

Roe k = 1/3
... Roe Fromm
... Roe 2nd Order
_ Shock Fitting

2.0
y /h

1.0

x / h % 3 .0

0.0
1.9 2.1 2.3 2.5

Mach

(d)

Figure 6.2.16 Comparisons Between Different Extrapolations of Roe’s Scheme and a
Shock Fitting Code for a Pseudo Two-Dimensional Exhaust Plume. (Continued . . .)

97

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

6.0 .. Roe k = 1/3
.. Roe Fromm
_ Roe 2nd Order
_ Shock Fitting5.0

4.0

y /h
3.0

2.0

x / h 5 .01.0

0.0
2.0 2.2 2.4

Mach

(e)

Roe k =. 1/3
Roe Fromm
Roe 2nd Order
Shock Fitting

y /h 3

x / h = 10.0

2.0 2.42.2
Mach

(f)

Figure 6.2.16 Comparisons Between Different Extrapolations of Roe’s Scheme
and a Shock Fitting Code for a Pseudo Two-Dimensional Exhaust Plume.

98

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Lo
g

(R
es

id
ua

l)
2

 © Third Order
 (. Fromm

Second Order
 First Order0

- 2

- 4

- 6

- 8

- 1 0

- 1 2
2 0 0 400 500 6000 1 0 0 300

WorkUnits

Figure 6.2.17 Convergence History Comparisons Between Different
Extrapolation Techniques for the Pseudo Two-Dimensional Jet Exhaust Plume.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Figure 6.2.18 Mach Line Contours for Roe’s Scheme,
Moo = 2.5, M jet = 1.5, Pjet I Poo = 3.5, and T jetJT00 = 3.0.

Figure 6.2.19 Mach Line Contours for van Leer’s Scheme,
M o o -- 2.5, M j e t = 1-5, P ' j e t / P o o = 3.5, and T j e t / T o o = 3.0.

100

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Figure 6.2.20 Pressure Line Contours for Roe’s Scheme,
Moo = 2.5, Mjet = 1.5, Pjet/PoO = 3.5, and Tjet/Too = 3.0.

Figure 6.2.21 Pressure Line Contours for van Leer’s Scheme,
M o o = 2.5, M j e t = 1.5, P j e t / P o o = 3.5, and T j e t / T o o = 3.0.

101

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

2.5

van Leer
Roe
Shock Fitting2.0

1.5

1.0

0.5
x / h * * 1 .0

0.0
1.5 2.1 2.3 2.51.7 1.9

Mach

(a)

2.5

2.0

1.5
van Leer
Roe
Shock Fitting

y/h
1.0

0.5
x / h ** 2 .0

0.0
1.8 2.2 2.42.0

Mach

(b)

Figure 6.2.22 Comparison Between Roe’s Flux-Differencing and van Leer’s Flux-Vector
Splitting for a Pseudo Two-Dimensional Exhaust Plume. (Continued . . .)

102

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

^

van Leer
Roe
Shock Fitting

y/h 2

x / h * 2.5

2.2 2.41.8 2.0

y/h

Mach

(c)

3.0

2.0 van Leer
Roe
Shock Fitting

1.0
x / h as 3.0

0.0
1.9 2.1 2.3 2.5

Mach

(d)

Figure 6.2.22 Comparison Between Roe’s Flux-Differencing and van Leer’s Flux-Vector
Splitting for a Pseudo Two-Dimensional Exhaust Plume. (Continued . . .)

103

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

^

15

van Leer
Roe
Shock Fitting

y /h 3

x/h ** 5.0

2.0 2.42.2

y /h

iiajch

(e)

6

4

van Leer
Roe
Shock Fitting

2

x/h = 10.0
0
2.0 2.2 2.4

Mach

(f)

Figure 6.2.22 Comparison Between Roe’s Flux-Differencing and van Leer’s
Flux-Vector Splitting for a Pseudo Two-Dimensional Exhaust Plume.

104

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

33

87

3778

6.3 Laminar and Turbulent Flows Over a Flat Plate

The third test case was laminar and turbulent flow over a flat plate. The purpose

of this case was to demonstrate that the viscous terms had been implemented correctly

and that the Baldwin-Lomax algebraic turbulence model had been employed correctly

for attached turbulent flows.

6.3.1 Laminar Flow

For laminar flow over a flat plate, the Mach and Reynolds numbers were taken to

be Moo = 0.5 and R = l,000 /(un it length), respectively. The normalized height of

the first cell normal to the plate was lxlO-4 units, with one unit being the reference

length of the plate. Good agreement was obtained between the present results and the

Blasius solution. Comparisons with the skin friction coefficient and velocity profile

are shown in Fig. 6.3.2.23. The grid was 65x65x5, with 64 cells in the streamwise

direction, 64 cells normal to the plate, and 4 cells in the span-wise direction, to allow

for three levels of multigrid. Computations were performed incorporating FMG, variable

coefficient residual smoothing, and modified Runge-Kutta time integration. There was a

minimum of 34 grid cells in the fully developed boundary layer (where fully developed

is defined as having self similar velocity profiles). Convergence histories for the laminar

flat plate flow comparing different acceleration techniques are shown in Fig. 6.3.2.24.

As one can see, multigrid acceleration coupled with residual smoothing provided the best

convergence rate.

6.3.2 Turbulent Flow

The turbulent flat plate flow conditions were M 00 = 0.5, R = 1,000,000/(unit length),

and the normalized height of the first cell normal to the plate was l x l O -5 units, with

105

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

one unit being the reference length of the plate. Good agreement was obtained for the

skin friction, velocity profile, and law of the wall plot, as shown in Fig. 6.3.2.25. The

grid was 65x95x5, with 64 cells in the streamwise direction, 94 cells normal to the plate,

and 4 cells in the span-wise direction, to allow for three levels of multigrid. Compu­

tations were performed incorporating FMG, variable coefficient residual smoothing, and

modified Runge-Kutta time integration. A minimum of 42 grid cells were in the fully

developed boundary layer (fully developed meaning self similar velocity profile).

Blasius

□ P re s e n t
6

5

^ 4

0.2 0.4 0.6 0.8 1.0
u/u„

Blosius

□ P re s e n t

104
Re,

Figure 6.3.2.23 Laminar Flat Plate Comparisons with Analytical Calculations

106

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Lo
g(

R
es

id
ua

l)

 e Multigrid & Residual Smoothing
 -i Multigrid

Residual Smoothing
 No Accelerators

- 1

- 3

- 5

—7

- 9

- 1 1

-1 3
0.0 0.5 1.0 1.5 2.0 2.5 3.0 xlO3

WorkUnits

Figure 6.3.2.24 Convergence Histories for the Laminar Flat
Plate Flow Comparing Different Acceleration Techniques.

107

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

0 .010

0.009 Cf=0.0592 Re"-2 O Present Computation0.008
0.007
0.006

o" 0.005
0.004
0.003
0.002

0.001
106

1/7-TH-Power Law
Present Computation0.8

0.4

0.2

0.0 lQ 0 Q'QO
0.0 0.4 0.8

u / u ,

40
35 Law of the Wall
30 O Present Computation
25

Y+

Figure 6.3.2.25 Turbulent Flat Plate Comparisons with Analytical Calculations

108

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

6.4 Turbulent Flow Over an ONERA M6 Wing

The fourth case studied was turbulent flow over the ONERA M6 wing [102] with

193x49x33 grid points in a C -0 mesh topology (schematic shown in Fig. 6.4.26).

This case was chosen for two reasons. First, this case has true three-dimensional

turbulent flow. Second, this flow configuration places special requirements on the block

interface routine, which will be explained in the next section. The first test case was

Moo = 0.699, a = 3.06°, and R = 11.7xl06/(un it length). The wing was normalized

to a semi-span of a unit length. This was a subcritical case shown to valid the computer

code, which is in good agreement with the experimental data [102], as indicated by the

Cp plots in Figs. 6.27a - 6.27f, where rj is the dimension distance from the wing root.

Im ax

W ake C u t

im ln

km ln

W ing Tip

W ing R o o t

km ax

km in.

Figure 6.4.26 Schematic of C-0 Mesh Topology for ONERA M6 Wing.

109

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

= 0.699
a = 3.06°
7) = 0.20

- 1 . 5

-1.0

- 0 . 5

0.0

0 .5

EXP. DATA Lower Surface
EXP. DATA Upper Surface
Present

1.0
0.0 0.2 0 .4 0.6 0.8 1.0

*/o

(a)

= 0.699
- 1 . 5

-1.0

- 0 . 5

0.0

0 .5
EXP. DATA Lower Surface
EXP. DATA Upper Surface
Present

1.0
0 .4 0.6 0.8 1.00.0 0.2

x/c

(b)

Figure 6.27 Comparison of Numerical Results with
Experimental Data for ONERA M6 Wing. (Continued . . .)

110

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Mm = 0.699
a = 3.06°

- 1 . 5

- 1.0

- 0 . 5

0.0

0 .5

EXP. DATA Lower Surface
EXP. DATA Upper Surface
Present

1.0
1.00 .4 0.6 0.80.0 0.2

x/c

(C)

Ifm = 0.699
a = 3.06°
7) = 0.80

- 1 . 5

-1.0

- 0 . 5

0.0

0 .5
EXP. DATA Lower Surface
EXP. DATA Upper Surface
Present

1.0
1.00 .4 0.6 0.80.0 0.2

x/c

(d)

Figure 6.27 Comparison of Numerical Results with
Experimental Data for ONERA M6 Wing. (Continued . . .)

i l l

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

= 0.699
a = 3.06°
7} = 0.90

- 1.5

- 1.0

- 0.5

0.0

0.5
EXP. DATA Lower Surface
EXP. DATA Upper Surface
Present

1.0
0.0 0.2 0.4 0.6 0.8 1.0

x/c

(e)

= 0.699
a = 3.06°
7) = 0.95

- 1.5

- 1.0

- 0.5

0.0

0.5
EXP. DATA Lower Surface
EXP. DATA Upper Surface
Present

1.0
0.0 0.2 0.4 0.6 0.8 1.0

x/c

(f)

Figure 6.27 Comparison of Numerical Results
with Experimental Data for ONERA M6 Wing.

112

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

The second test case has a lambda shock structure on the upper surface, and

is much more demanding numerically, with Moo = 0.84, a = 3.06°, and

R = 11.7xl06/(u n it length). Since the Reynolds number is the same as the previous

case, the same grid was used. Note that a significantly higher Reynolds number would

require smaller vertical spacing between the points in the boundary-layer regions. Com­

parisons of Cp plots with experimental data and other numerical results are shown in

Figs. 6.4.28a - 6.4.28f. TLNS3D is a Jameson type, thin-layer, central difference, modi­

fied Runge-Kutta computer code, developed by Vatsa and Wedan [86], which employed

the Baldwin-Lomax algebraic turbulence model [72]. CFL3D is an implicit approximate

factorization, thin-layer, upwind computer code using Roe’s flux-difference splitting, and

it also utilized the Baldwin-Lomax algebraic turbulence model [72]. This computer code

was developed by Thomas, Krist, and Anderson [103]. The present results used Roe’s

flux-difference splitting, with pure second order upwind extrapolation, which did not

require a flux limiter. As can be seen in these figures, the present results are in good

agreement with the experimental data [102], except at the second shock location at the

7/ = 0.80 station, shown in Fig. 6.4.28d. Here all of the numerical results disagreed

with the experimental data.

The convergence history for this case can be seen in Fig. 6.4.29. Although the

residual, which is the L2 norm of the density, only converges three and a half orders,

the coefficients of lift and drag and the number of normalized supersonic points are

converged in less than two hundred work units.

113

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

-1 .5 = 0.84

a = 3 .06 °

7) = 0 .2 0
- l . o

-0 .5

0.0

0.5 EXP. DATA Lower Surface
EXP. DATA Upper Surface

.. CFL3D

... TLNS3D
_ Present

1.0
0.8 1.00.0 0.2 0.4 0.6

x/c

(a)

-1 .5 = 0.84

a = 3.06°
f) = 0.44

- l . o

-0 .5

st-a

0.0

0.5 EXP. DATA Lower Surface
EXP. DATA Upper Surface

.. CFL3D

... TLNS3D
_ Present

1.0
0.6 0.8 1.00.0 0.2 0.4

x/c

(b)

Figure 6.4.28 Comparison Between the Present Results and Other
Numerical Results for the ONERA M6 Wing. (Continued . . .)

114

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

-1 .5 = 0.84

a = 3.06°
7} = 0.65

- l . o

-0 .5

o.o

0.5 □ EXP. DATA Lower Surface
o EXP. DATA Upper Surface
...... CFL3D
 TLNS3D
 Present

1.0
0.6 0.80.0 0.2 0.4 1.0

x/c

(C)

-1 .5 M„ = 0.84

a = 3.06°
r) = 0.80

-l.o

-0 .5

C,'?

0.0

0.5 EXP. DATA Lower Surface
EXP. DATA Upper Surface

.. CFL3D

... TLNS3D
_ Present

1.0
0.6 0.80.0 0.2 0.4 1.0

x/c

(d)

Figure 6.4.28 Comparison Between the Present Results and Other
Numerical Results for the ONERA M6 Wing. (Continued . . .)

115

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

-1 .5 i tm = 0.84
a = 3.06°
17 = 0.90

-l.o

-0 .5

1
0.0

0.5 EXP. DATA Lower Surface
EXP. DATA Upper Surface

.. CFL3D

... TLNS3D
_ Present

1.0
0.4 0.6 0.8 1.00.20.0

x/c

(e)

-1 .5 = 0.84

7 7 = 0.95
-l.o

-0 .5

0.0

0.5 EXP. DATA Lower Surface
EXP. DATA Upper Surface
CFL3D
TLNS3D
Present

1.0
0.4 0.6 0.8 1.00.0 0.2

x/c

(f)

Figure 6.4.28 Comparison Between the Present Results
and Other Numerical Results for the ONERA M6 Wing.

116

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Lo
g

(R
es

id
ua

l)
2

l

Q—.^gr.Q.... g :Q -Q.----- :Qv;: .■-■■O-'a 1. - - -Q. - - -Q - - - &-Q-----j P-....... -S

0

NSUP- 1

•-A-

- 2 Residual

- 3

- 5
0 2 0 0 600400 800

Work Units
Figure 6.4.29 Convergence History for ONERA M6

Wing at Moo = 0.84, a = 3.06°, R = 11.7 x 106/unit.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

6.5 Requirements for Non-Interface with Interface
Multiple Boundary Conditions

The block interface difficulty comes at the intersection of the trailing edge of the

wing and the wake region. When using one block to solve for the wing flow, the wake

region is treated as an interface. In this case the “j = jmin” face of the block, which is

a constant (surface, has three boundary conditions. Starting at “i = imin”, which is the

lower half of the exit plane, and continuing to the trailing edge of the wing, the “jmin”

surface boundary condition is an interface across the wake cut. Around the wing, the

boundary condition is a turbulent solid wall. Continuing from the upper wing surface

trailing edge to “imax”, which is the upper half of the exit plane boundary, the “jmin”

surface boundary condition is an interface across the wake cut to the first “jmin” interface

boundary condition; therefore across the wake the “jmin” face of the block exchanges

information with itself. The interface conditions used for the comer flow test case, where

the grid was divided into eight blocks, will cause problems at the trailing edge of the

wing. The process of gathering variable information from the extra ghost cells across the

interface becomes fatal in this case because it replaces the solid wall boundary conditions

with interior flow cell values. This occurs at the first two pairs of cells, at the trailing

edge of the wing on both the upper and lower surfaces. This can be seen in Fig. 6.5.30,

where the affected cells are indicated by the octagons and circles. The thick lined region

represents the interior cells, and the thin lined region represents the ghost cells. The

surface between the two regions is part solid wall, which is the wing indicated by the

hash marks, and the dotted lines indicate the wake cut. If the interface conditions were

not adjusted for this particular case, the values for the ghost cells on the lower side of the

wing would be the “y ’s” in the octagons rather than the “sL” values, which are the solid

wall boundary conditions for the lower surface. The same problem exists for the circled

118

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

ghost cells on the upper side of the wing. Obviously these ghost cells need to be set to

their proper values before they are used. This is a problem for this particular situation

Interior Cells

Solid Wall su su
SU

susu su [susu susu
[SU

\ i m i nGhost Cells ^

sL
sL

\W a k e CutsL
sL

sL

Interior Cells

Figure 6.5.30 Interface Condition at Trailing Edge of Wing.

only because a non-interface and an interface boundary condition are both used on the

same block face. This problem can be eliminated by enforcing the solid wall boundary

condition again, after the interface routine has been executed. To identify this problem

requires an evaluation of the types of multiple boundaries prescribed for a block face.

Note that at the “kmax” face, which is at the wing tip and is where the C -0 mesh folds

119

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

or closes onto itself, the interface condition is used again to allow the “kmax” surface to

exchange information with itself. The bottom half of the C mesh, which starts at “imin”

and continues to the leading edge of the wing, exchanges information with the top half

of the wing which starts at the leading edge and continues to “imax”.

6.6 Afterbody with Internal Nozzle

The final test case required a multi-block code to handle internal and external flow

for an afterbody configuration, shown in Figs. 6.6.31 and 6.6.32. This afterbody

was examined in a wind tunnel at various free-stream Mach numbers by Putnam and

Mercer [104], and Compton, Thomas, Abeyounis, and Mason [105]. For certain cases

Cp data were obtained from the center of the top and side of the boat-tail. The external

geometry was relatively easy to grid, except for the boat-tail, which required the use of a

ninth order super elliptic equation, with various offsets to produce the correct curvature

for the boat-tail corner edges. The formulations and geometry of this afterbody are

described in reference [104]. In the present work a polar grid was used to generate the

outer surface geometry of the afterbody. This can be seen in Fig. 6.6.33. A closer

view of the afterbody is shown in Fig. 6.6.34, displaying some its grid structure, where

only everyother point is shown on the afterbody for visual clarity. Using a polar grid

allowed for the direction normal to the external surface to always be in the rj direction.

This in turn provided the necessary direction for the length scale that was needed for the

algebraic turbulence model. The more demanding part of the grid generation process was

the interior nozzle. Air was supplied subsonically at a specified temperature and pressure

into a circular cross sectional area (section FS 40.95 Fig. 6.6.31). The flow passed through

a baffle plate and then continued toward a settling chamber, with the cross sectional area

changing smoothly from circular to rectangular. The width of the internal geometry

120

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

remains constant, as the upper and lower surfaces converge to produce a sonic throat

region. The nozzle re-expands producing a supersonic exit flow of M jete x i t = 1-6. The

nozzle exit is rectangular, which is the type of exit a rectangular thrust vectoring/thrust

reversing nozzle would have.

The grid for the internal nozzle was very demanding. First, the initial cross section

was circular, which was best suited by a polar grid; however, once the cross sectional area

changed to rectangular, a polar grid was no longer appropriate. In fitting a polar grid to a

rectangular cross section, it becomes extremely difficult to force the radial lines, extending

from the polar axis, to be normal to the sides of the rectangular cross section. Also, many

computer codes have difficulty accommodating singular grid lines, such as the polar axis

in this case. The problem generally stems from the fact that at singular grid lines, one

face of the control volume cell has a zero area. This problem is accentuated when the

grid lines are packed in the circumferential direction, creating highly skewed cells. One

way to alleviate both problems is to use an H-H grid topology for the internal geometry.

This eliminates the singular line problem and the grid lines are naturally normal to the

solid surfaces. To capture the turbulence effects at the walls requires a dense packing

of points, which with the H-H topology results in an extremely large number of points

in the corners of the rectangular cross section. Also, at the exit of the nozzle, which is

at the end of the afterbody, the grid lines from the internal grid are required to match

the external grid lines with C1 continuity. This is an obvious problem. For the external

grid to have such a large cluster of points at the corner edges of the afterbody would

have required a tremendous number of grid lines, which is infeasible with the current

memory restrictions on today’s super computers. Furthermore, such a large number of

points would require a large amount of CPU time to achieve converged flow solutions.

The best approach for griding the interior nozzle is to use a polar grid at the solid wall

121

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

surfaces, pack the necessary number of points for the turbulent boundary layer, and then

have the polar grid interface with an H-H grid, which then fills in the remainder of the

interior of the grid and eliminates the singular line. Three x-locations were chosen to

show the interfacing of the H-H topology and the polar topology in Fig. 6.6.35. In this

figure, every third point is shown for the polar topology for visual clarity. This griding

approach provides the best compromise. A schematic of a cross section of the internal

nozzle is shown in Fig. 6.6.36. The band of polar grid properly meets the external grid

with C 1 continuity at the exit of the afterbody, as well as provides the normal distance

from the solid interior walls for the length scale necessary for the algebraic turbulence

model. Plus, having the polar grid interface with the H-H grid reduces the difficulty in

maintaining the polar lines normal to the solid surfaces. The polar grid meshed with

the H-H grid quite easily, with the caveat that the cell sizes across the interface had to

be within 20% of each other. This is the same rate of change that is allowed between

cells in the absence of an interface. If this were not enforced there would be metric

discontinuities across the interface, which would contaminate the solution.

122

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Ssf

Figure 6.6.31 Sketch Of Afterbody Model Showing Internal Details.
All Diraesions are in Inches Unless Otherwise Noted [104].

123

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

- H

r — f

-+ +■

g

Figure 6.6.32 Details of the Nozzle. Linear Dimensions Are in Inches [104].

124

R ep ro d u ced with p erm issio n o f th e cop yrigh t ow ner. Further reproduction prohibited w ithout p erm issio n .

Figure 6.6.33 Afterbody Surface and Exterior Polar Grid Configuration.

125

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

D:D

7

08

Figure 6.6.34 Afterbody Grid Geometry.

126

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

7147

Figure 6.6.35 Internal Nozzle with Combined H-H and Polar Grid Topologies.

127

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

z

Exterior Grid
Region

Polar Grid Region

Interface

Internal Nozzle
Region

H -H Grid Region

A fterbody ,/

Figure 6.6.36 Schematic of H-H Grid and Polar Grid Topologies Interfacing.

The first case tested was for = 0.60, a = 0.0, M jet = 0.33, Pjet/Poo = 3.71,

Tjet/Too = 0.97, and R = 273,000/(unit length), with the afterbody being 63.04 units

long. The grid used in Ref [105] was obtained, which contained only the external

geometry. This grid was used as a preliminary grid only, because it is not well suited

for multigrid applications since locations of geometrical change were not at multigridable

indices. This causes the physical locations to change for different multigrid levels, which

in turn can introduce error. Calculations were performed on this grid, with the assumption

that the plume emanating from the nozzle would remain the same size as the cross

sectional area of the nozzle. This grid configuration assumed the end of the afterbody

had a sharp trailing edge, rather than incorporate the flat surface which separates the

external surface from the internal nozzle. The difference is shown schematically in

Fig. 6.6.37. The grid had 129x33x65 points, with 129 points streamwise, 33 points

distributed circumferentially, and 65 points normal to the exterior surface. The cell

spacing normal to the surface was lxlO-4 units. Only half of the body was grided,

128

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

because the angle of attack and yaw were zero; therefore the flow was symmetric about

the longitudinal axis. The results for this case are shown in Fig. 6.6.38, for the Cp data

on the top of the boat-tail, and Fig. 6.6.39 for the Cp data on the side of the boat-tail.

Good agreement was obtained for both locations in comparison with the experimental

data [105], with the exception of the end of the boat-tail. These results are comparable to

the numerical results of Compton, Thomas, Abeyounis, and Mason [105], for the same

case where they used a Baldwin-Lomax algebraic turbulence model. The same grid was

used for a case at M 00 = 0.80, a = 0.0, M je% = 0.33, pjet/p<x> = 3.71, Tjet/Too = 0.99,

and R = 309,000/ (unit length). The results for the top and side wall Cp data are shown

in Figs. 6.6.40 and 6.6.41, respectively. Again, the agreement with the experimental

data, was good [105], and comparable to the numerical results of Compton et al [105].

Preliminary Configuration
Geom etry

Inviscid Slip Line

Boat-Tail

Actual Configuration
Geom etry

Inviscid Slip Line

—
Boat-Tail

Figure 6.6.37 Comparison of Preliminary Configuration
Geometry and Actual Configuration Geometry.

129

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

0.6

M" = 0.60
a = 0 .0 °0.4

0.2 oo

Of - 0.0

-0.2

-0 .4

EXP. DATA
Prelim. Grid

-0.6
0.80 0.85 0.90 0.95 1.00 1.05

x/o

Figure 6.6.38 Preliminary Afterbody Nozzle Top Wall Pressure Coefficient.

0.6
Mm = 0.60

0.4

0.2

Cp - 0 . 0

-0.2

-0 .4

EXP. DATA
Prelim. Grid

-0.6
0.80 0.90 0.95 1.00 1.050.85

x /o

Figure 6.6.39 Preliminary Afterbody Nozzle Side Wall Pressure Coefficient.

130

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

0.6

= 0 .80

0.4

0.2 o o

Cp -0 .0

-0.2

-0 .4

EXP. DATA
Prelim. Grid

-0.6
0.85 0.90 0.95 1.00 1.050.80

x/c

Figure 6.6.40 Preliminary Afterbody Nozzle Top Wall Pressure Coefficient

0.6

= 0.80

0.4

0.2

Cp -0 .0

-0.2

-0 .4

EXP. DATA
Prelim. Grid

-0.6
0.85 0.90 0.95 1.00 1.050.80

x/c

Figure 6.6.41 Preliminary Afterbody Nozzle Top Wall Pressure Coefficient.

131

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Since the interior grid needed to be computed, along with the concerns about the

external grid being ill suited for multigrid, a new multigrid compatible grid was generated.

This grid had 177 points in the streamwise direction, with 97 points on the body. Since

the flow was to be symmetric about the longitudinal axis, only the quarter plane was

generated, with 33 points in the circumferential direction, and 49 points in the direction

normal to the body. The cell spacing normal to the body on the boat-tail was 5x10-5 units.

The first task after generating the new grid was to make a comparison between it and

the preliminary grid, using only the external grid configurations. The results for the top

and side wall Cp data for the case of = 0.60, a = 0.0, M jet = 0.33, pjet/Poo = 3.71,

Tjet/Too = 0.97, and R = 273,000/(unit length), are shown in Figs. 6.6.42 and 6.6.43,

respectively. As can be seen, the comparison between the two different grids is good.

The new grid was then tested for the case of = 0.80, a = 0.0, M jet = 0.33,

P je t /P o o — 3.71, Tjet/Too = 0.99,and R = 309,000/(unit length). Again the agreement

was good, as can be seen by comparisons of the Cp data for the top and side walls

in Figs. 6.6.44 and 6.6.45, respectively. For these cases the Baldwin-Lomax algebraic

turbulence model was active only over the solid wall surfaces, and the shear line, which

should have been between the plume and the free-steam flow was treated as an inviscid

surface.

132

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

0.6

AC = 0.60

0.4

0.2 oo
c, -0.0

-0.2

-0 .4
EXP. DATA
New Grid
Prelim. Grid

-0.6
0.80 0.85 0.90 0.95 1.00 1.05

x/c

Figure 6.6.42 Comparison of Single-Block
Afterbody Grids for Top Wall Pressure Coefficient.

0.6

AC = 0.60

0.4

0.2

Cp - 0 .0

-0.2

-0 .4
EXP. DATA
New Grid
Prelim. Grid

-0.6
0.85 1.00 1.050.80 0.90 0.95

x/c

Figure 6.6.43 Comparison of Single-Block
Afterbody Grids for Side Wall Pressure Coefficient.

133

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

0.6
= 0.80

a = 0 .0°

0.2 o o

Cp - 0.0

-0.2

- 0 . 4
EXP. DATA
New Grid
Prelim. Grid

-0.6
0 .8 0 0 .9 0 0 .9 5 1.00 1 .050 .8 5

x/c

Figure 6.6.44 Comparison of Single-Block
Afterbody Grids for Top Wall Pressure Coefficient.

0.6

Mm = 0.80

a = 0 .0°0 .4

0.2

-0.2

- 0 . 4
EXP. DATA
New Grid
Prelim. Grid

- 0.6
0 .9 50 .8 0 0 .8 5 0 .9 0 1.00 1 .05

x/c

Figure 6.6.45 Comparison of Single-Block
Afterbody Grids for Side Wall Pressure Coefficient

134

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

After verifying that the newly generated grid performed adequately, the test case

of Moo = 0.60, a — 0.0, M jet = 0.33, Pjet/Poo - 3.71, Tjet/Too = 0.97, and

R = 273,000/(unit length) was tested again, utilizing the grid that included the thickness

between the exterior surface and the internal grid at the end of the afterbody, as shown

in Fig. 6.6.46. As can be seen by the comparison of Cv predictions for the top and

side walls in Fig. 6.6.47 and 6.6.48, the agreement with the experimental data [105] was

very similar to that of the single-block configuration. However, the blunt geometry was

somewhat better in predicting the aft portion of the sidewall pressure coefficient.

Block 1

Exterior Polar Grid

Interface
Boundary

Boat-Tail
Block 2 y *

Inviscid Slip Line

Figure 6.6.46 Schematic of Afterbody for Two Block External Configuration.

135

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

= 0.60

0.4

0.2 o o

c, -o.o

- 0.2

- 0.4
EXP. DATA
Two Block
One Block

- 0.6r . o ■ ■

0.80 0.85 0.90 0.95 1.00 1.05

x/c

Figure 6.6.47 Comparison of Single-Block and Two-Block
Afterbody Nozzle Top Wall Pressure Coefficient

0.6

= 0.60

a = 0 .0°0.4

0.2

Cp -0.0

- 0.2

- 0.4
EXP. DATA
Two Block
One Block

- 0.6
0.80 0.85 0.90 0.95 1.00 1.05

x/c

Figure 6.6.48 Comparison of Single-Block and Two-Block
Afterbody Nozzle Side Wall Pressure Coefficient.

136

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

The same case was examined again employing both the plume grids and the internal

nozzle grids, as shown in Fig. 6.6.49. This gave a total of four blocks. The external

block extended only to the end of the afterbody, as did the interior polar block. The H-H

grid block began in the circular region of the internal nozzle, as did the interior polar

grid, and extended all the way to the exit plane of the numerical domain, which was

approximately 110 units downstream from the end of the afterbody. The fourth block

Interface
Boundary

Block 1

Exterior Polar Grid

Block 4

Boat-Tail

Interface
Boundary

Block 2 Interior Polar Grid

Interface
BoundaryBlock 3 H -H Grid

Figure 6.6.49 Schematic of Four-Block Internal and External Afterbody Configuration

began at the end of the afterbody, where that face of the block incorporated three boundary

conditions. One was to interface with the polar grid block from the interior nozzle. The

second boundary condition was to represent the solid wall thickness between the internal

and external surfaces of the afterbody, and the final condition was to interface with the

external block of the afterbody. Again, the algebraic turbulence model was employed

only on the solid wall surfaces of the afterbody, including both the interior and exterior

surfaces. The results of this case are shown as comparisons of Cp data for the top and

137

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

side walls in Fig. 6.6.50 and 6.6.51, where there is good agreement with the experimental

data [105] and the numerical results of the two-block case, except at the trailing edge of

the boat-tail. One reason the four-block configuration predicted higher pressures on the

surface of the boat-tail maybe because as the flow exits the nozzle, it has a velocity that

is not parallel to the horizontal axis, as was the assumption for the one- and two-block

configurations. There is a w velocity component due to the divergence of the nozzle,

which forces the shear layer to turn upward, and generates a higher pressure upstream,

on the boat-tail. Also, the flow coming out of the nozzle is supersonic, so it is going

to expand if the surrounding pressure regions allow it. This expansion will also cause

the shear line to turn outward. Flow from on the boat-tail definitely expands into the

thickness region at the end of the afterbody, and when subsonic flow expands its velocity

drops and its pressure increases. This higher pressure in the thickness region can influence

the pressures upstream on the boat-tail, and there is no direct pressure correction term

in the Baldwin-Lomax algebraic turbulence model; therefore the higher pressures at the

end of the afterbody, in the thickness region, may erroneously influence the pressures on

the boat-tail. Also in this region, there appears to be a re-circulation bubble which can

add to the higher upstream pressures.

138

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

0.6

= 0.60

0.4

0.2 oo Ooo
C f - 0.0

- 0.2

-0 .4
EXP. DATA
Four Block
Two Block

- 0.6
0.80 0.85 0.90 0.95 1.00 1.05

x/c

Figure 6.6.50 Comparison of Two-Block and Four-Block
Afterbody Nozzle Top Wall Pressure Coefficient.

0.6

= 0.60

0.4

0.2

Cp - 0.0

- 0.2

-0 .4
EXP. DATA
Four Block
Two Block

- 0.6
0.80 0.85 0.90 0.95 1.00 1.05

x/c

Figure 6.6.51 Comparison of Two-Block and Four-Block
Afterbody Nozzle Side Wall Pressure Coefficient.

139

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

The same four-block configuration was tested for the M 00 = 0.80, a = 0.0,

M jet = 0.33, pjet/Poo = 3.71, Tjet/Too = 0.99, and R = 309,000/(unit length)

case. Again, the pressures on the boat-tail were higher than what the single-block

configuration predicted, as is displayed by the Cv data for the top and side walls in

Figs. 6.6.52 and 6.6.53.

0.6

= 0 .8 0

0.4

0.2 o o

C, - 0.0

- 0.2

- 0 .4
EXP. DATA
Four Block
One Block

- 0.6
0.80 0.85 0.90 0.95 1.00 1.05

x /o

Figure 6.6.52 Comparison of Single-Block and Four-Block
Afterbody Nozzle Top Wall Pressure Coefficient.

140

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

0.6

M„ = 0.80

0 .4

0.2

Cp - 0 . 0

- 0.2

- 0 .4
EXP. DATA
Four Block
One Block

- 0.6
0.80 0.85 0.90 0.95 1.00 1.05

x/c

Figure 6.6.53 Comparison of Single-Block and Four-Block
Afterbody Nozzle Side Wall Pressure Coefficient.

141

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Chapter 7 CONCLUSIONS

This work was aimed at developing a state of the art computer code, capable of

evaluating arbitrary, complex geometric configurations. The computer code developed

utilizes upwind solvers, van Leer’s flux-vector splitting and Roe’s flux-difference splitting,

coupled with an explicit modified Runge-Kutta time integration scheme. To accelerate

the rate of convergence the techniques of FAS multigrid, variable coefficient residual

smoothing and constant coefficient corrector smoothing were incorporated. Development

of the computer code was an attempt to capitalize on the benefits of both the upwind

implicit time integration and the central-difference explicit Runge-Kutta time integration

methods. Although the upwind methods require more CPU time for the flux evaluations,

they provide better shock capturing and less smearing of contact discontinuities than

the central-difference methods. However, the multistage central difference methods

are generally more capable of smoothing out the high frequency errors, allowing the

multigrid acceleration techniques to restrict information without causing aliasing. For

the upwind computer codes to provide a sufficient amount of smoothing an implicit

time integration is usually used, which again requires more CPU time. The present

computer code incorporated a modified Runge-Kutta time integration technique, very

similar to what the central-difference codes employ, in an effort to attain the speed

of the central-difference codes, coupled with the accuracy of the upwind codes. The

thrust of this work was to aid in the development of the computer code and provide

the flexibility of multi-block capabilities. It was desired that this computer code be

capable of accommodating any configuration that could be defined by six-sided blocks. To

142

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

incorporate multigrid techniques efficiently requires an understanding of how computers

store data, and operate. The same can be said for incorporating multi-block capabilities.

Many of the qualities a computer program requires for multigrid techniques are the same

for multi-block capabilities, which are mainly grid level, block, and topology independent

subroutines. These attributes allow for having only one subroutine to execute a particular

task, regardless of what grid level, block, or mesh topology is being evaluated. This

leads to having a generic computer program, which allows it will be applicable to any

configuration.

The test cases were chosen based on the criteria of validating the computer code and

displaying its versatility. The comer flow required three-dimensional flow capabilities.

Also, when it was divided into eight blocks, it demanded special interface requirements

allowing the multigrid prolongation calculations to be independent of the interface

locations. This type of interface condition would be common at the back end of an

aircraft engine, where internal and external flows meet, or where flows join from around

different solid wall body parts. Good agreement with other numerical results [98, 99]

were obtained. This case was performed using multigrid acceleration, with and without

variable coefficient residual smoothing. Since this case was supersonic flow, and the grids

were not highly stretched, the residual smoothing did not aid the rate of convergence.

This acceleration technique is best suited for stretched grids, such as viscous grids, and

obviously more compatible with subsonic and transonic flows, than for supersonic flows.

The pseudo two-dimensional jet plume required multiple inlet boundary conditions,

and provided a testing ground for comparing how well different solvers would compute

the slip line and shock surface. Favorable comparisons were made with the validated

shock fitting code of Salas [101]. For the upwind methods, Roe’s flux-difference splitting

and van Leer’s flux-vector splitting, their ability to accurately predict shocks and slip lines

143

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

was dependent on how these structures were aligned with the computational grid. The

flux-difference splitting method should provide better slip line resolution than flux-vector

splitting, because it is an approximate Riemann solver, which by design is capable of

resolving contact surfaces. The flux-vector splitting method resolved the slip line just

as accurately as the flux-difference splitting method, partly because the slip line was not

directly aligned with the grid. If it was better aligned, the flux-difference splitting method

should have provided better resolution. Based on this case, it was determined that both

upwind methods would provide acceptable results for the rest of the cases studied.

The laminar and turbulent flat plate cases were computed with great success. The

laminar results compared well with the Blasius solution, indicating that the viscous terms

had been properly incorporated into the governing equations. The turbulent results

compared well with the analytical velocity profile and skin friction, plus the law of

the wall plot. Thus indicating that the Baldwin-Lomax algebraic turbulence model [72]

was functioning properly for attached turbulent flows. Full multigrid acceleration was

used, with the cell weighted residual smoothing. These two techniques made a large

improvement in the convergence rate for these two cases.

The ONERA M6 wing cases were true three-dimensional attached turbulent flows.

Results for both cases compared well with the experimental data [102] and other numerical

results [86, 103]. These cases were computed using FMG acceleration and variable

coefficient residual smoothing. Again, these acceleration techniques provided improved

convergence rates. This configuration also placed special requirements on the interface

conditions, which are needed when a block face has an interface and a wall boundary

condition next to each other.

The final case studied was the afterbody configuration. This configuration required

a multi-block code in order to accommodate the internal and external geometries. The

144

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

results for this case are preliminary due to the quality of the grid. The resolution on the

solid surfaces was sufficient for the formulation of the boundary layers, but at locations

of large geometrical change many cells became abnormally skewed. Much could be done

to improve the grid, with the proper experience and software. The afterbody grid went

through four revisions before a final selection was made. Three main areas required

improvements: the nose of the afterbody, the sharp compression in the nozzle geometry

(which started just upstream of the throat) and the thickness region at the end of the

afterbody. The nose created numerical difficulty because of the polar axis coupled with

viscous compatible cell spacing. Relaxing the cell spacing normal to the nose and along

the polar axis greatly relieved some of the numerical difficulty, allowing this region

to numerically converge. The thickness region, at the end of the afterbody, required

a smooth continuous variation of cell spacing from the interior nozzle to the exterior

surface. This was a difficult procedure, especially at the corners, because the grid lines

from the interior nozzle had to match the grid lines of the external surface. Also, the

thickness of this region, at the end of the afterbody, changed at the comers of the boat-

tail. The top and bottom thicknesses were 0.0395 units, and the sides were 0.125 units.

This made having smooth variations of cell sizes from the interior nozzle to the exterior

surface more difficult. The start of the compression region for the interior nozzle requires

true three-dimensional grid surfaces to reduce the cell skewness. This region is where

many of the numerical difficulties remained. Much more sophisticated grid generation

techniques would be required to effectively approach this problem.

This case required a multi-block computer program to simultaneously accommodate

the internal and external domains. The computer program performed well based on the

pressure coefficient results obtained for the two flow cases. Further improvements in the

grid quality may not effect these results, but employing a different type of turbulence

145

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

model definitely could, especially if it retains the turbulent kinetic energy term, which

is eliminated in algebraic turbulence models. Note that if the turbulent kinetic energy

term is actively accounted for, then there will be a direct link with the static pressure

through the equation of state [106].

Overall, the computer code performed well. Its design enabled it to handle many dif­

ferent configurations without requiring any alteration of the source code. This flexibility

makes it a very versatile tool in examining many types of flow configurations. Also, it

provided competitive solutions when compared with other numerical results [86, 98, 99,

101, 103] and experimental data [102]. The multigrid acceleration decreased the amount

of work units required to obtain a solution for all cases, except supersonic Euler flow on

an unstretched grid. Since the multigrid process executes averaging that resembles ellip­

tic information propagation, it sent information upstream in the supersonic flow cases,

which can obviously reduce the convergence rate. A typical example of this was the

supersonic corner flow. As for subsonic and transonic flows, and flows on viscous grids,

the multigrid acceleration was a great aid to accelerate the rate of convergence. The vari­

able coefficient residual smoothing had the best impact on the viscous grids as well. This

is due primarily to the fact that the residual smoothing coefficients are generated relative

to a specified value of cell aspect ratios and spectral radii. This smoothing technique did

aid in the rate of convergence for viscous flow cases. The corrector smoothing, which

used constant coefficients, never accelerated the rate of convergence for the cases tested.

It also was intended to aid the viscous flow cases, but for the range of Mach numbers and

grids employed in the work presented, it actually reduced the rate of convergence for test

performances, and therefore was not used in the final analysis of the flow configurations.

If the numerical efficiency of the computer program was measured based on the

amount of work units necessary to obtain global flow values, the computer code did

146

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

well. Generally, it required approximately 150 to 200 work units of FMG, using the pure

second order upwind extrapolation, four stage modified Runge-Kutta time integration,

coupled with variable coefficient residual smoothing, for the afterbody cases. The global

residual, which was based on the change of density, did not converge very well. Is was

case dependent as well as being very grid dependent, which is why four different grids

were generated for the afterbody. The wing cases converged about three orders under

the same execution conditions. Again, the global quantities were obtained with just a

couple hundred work units of FMG. The flat plate cases converged better, based on the

amount the residual dropped, but it did require more work units until the entire boundary

layer was completely developed, because of the high number of cells in the boundary

layer. All of the inviscid cases converged well. Unfortunately the more numerically

demanding cases, such as the viscous cases, require more frequency damping than is

currently being provided by the modified Runge-Kutta time integration scheme. Much

more attention needs to be directed toward modeling the frequencies that are being

produced with this type of numerical approach, so that a more accurate set of modified

Runge-Kutta coefficients can be determined. This problem has been investigated by a

number of scientist with some success, but much still needs to be done. One issue

is the incorporation of such acceleration techniques as multigrid, residual and corrector

smoothing. An other issue is to actually incorporate the van Leer’s flux-vector splitting

and Roe’s flux-difference splitting techniques in the model equations.

True multigrid performance is rarely seen in any of the complicated flow configura­

tions, for any method, but especially for upwind methods. Having a computer program

that is completely independent of cell aspect ratios is still a goal that has not been

achieved by anyone in the CFD community.

147

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

BIBLIOGRAPHY
[1] Hess, J. L. and Smith, A. M. O., “Calculation of Non-Lifting Potential Flow About

Arbitrary Three-Dimensional Bodies,” Technical Report, Douglas Aircraft Report
ES40622, 1962.

[2] Rubbert, P. E. and Saaris, G. R., “A General Three-Dimensional Potential Flow
Method Applied to V/STOL Aerodynamics,” SAE Paper 680304, 1968.

[3] Woodward, F. A., “An Improved Method for the Aerodynamic Analysis of Wing-
Body-Tail Configurations in Subsonic and Supersonic Flow: Part 1 Theory and
Application,” Technical Report, NASA CR 2228 Part 1, May 1973.

[4] Kandil, 0 . A. and Yates Jr., E. C., “Transonic Vortex Flows Past Delta Wings: In­
tegral Equation Approach,” AIAA Journal, 24(11):1729—1736, 1986.

[5] Kandil, 0 . A. and Hong, H., “Full-Potential Integral Solution for Transonic Flows
with and without Embedded Euler Domains,” AIAA Paper 87-1461, 1987.

[6] Murman, E. M. and Cole, J. D., “Calculation of Plane Steady Transonic Flows,
“AIAA Journal, 9(1):114-121, 1970.

[7] Magnus, R. and Yoshihara, H., “Inviscid Transonic Flow Over Airfoils,” AIAA
Journal, 8:2157-2162, 1970.

[8] MacCormack, R. W., “The Effect of Viscosity in Hypervelocity Impact Cratering,”
AIAA Paper 69-352, 1969.

[9] MacCormack, R. W. and Paullay, A. J., “Computational Efficiency Achieved by
Time Splitting of Finite Difference Operators,” AIAA Paper 72-154, 1972.

[10] Beam, R. M. and Warming, R. F., “An Implicit Finite-Difference Algorithm for
Hyperbolic Systems in Conservation-Law Form,”Journal o f Computational Physics,
22:87-110, 1976.

[11] Douglas, J., “On the Numerical Integration of uxx + uyy = ut By Implicit Methods,”
Journal o f the Society o f Industrial and Applied Mathematics, 3:42-65, 1955.

[12] Peaceman, D. W. and Rachford, H. H., “The Solution of Parabolic and Elliptic
Differential Equations,” Journal o f the Society o f Industrial and Applied Mathematics,
3:28-41.

[13] Douglas, J. and Gunn, J. E., “A General Formulation of Alternating Direction
Methods, Part 1. Parabolic and Hyperbolic Problems,"Numerische Mathematik,
6:428-453.

148

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

[14] Gourlay, A. R. and Mitchell, A. R., “A Stable Implicit Difference Method for
Hyperbolic Systems in Two Space Variables,” Numerical Mathematics, 8:367-375,
1966.

[15] Briley, W. R. and McDonald, H., “Solution of the Three-Dimensional Compressible
Navier-Stokes Equations by an Implicit Technique,” Proceedings o f the 4th Interna­
tional Conference on Numerical Methods in Fluid Dynamics, 1974.

[16] Steger, J. L., “Implicit Finite Difference Simulation of Flow About Arbitrary Two-
Dimensional Geometries,” Journal o f Computational Physics, 16:679-686, 1978.

[17] Pulliam, T. H. and Steger, J. L., “On Implicit Finite-Difference Simulations of Three-
Dimensional Flow,” Proceedings o f the 16th Aerospace Sciences Meeting, January
16-18, 1978.

[18] Beam, R. M. and Warming, R. F., “An Implicit Factored Scheme for the Compressible
Navier-Stokes Equations,” AIAA Journal, 16:393-402, April 1978.

[19] Steger, J. L., “Coefficient Matrices for Implicit Finite Difference Solution of the In­
viscid Fluid Conservation Law Equations,” Computer Methods In Applied Mechanics
and Engineering, 13:175-188, 1978.

[20] Steger, J. L. and Warming, R. F., “Flux-Vector Splitting of the Inviscid Gasdynamic
Equations with Applications to Finite-Difference Methods,” Journal o f Computational
Physics, 40:263-293, 1981.

[21] Moretti, G., “The A-Scheme,” Computers and Fluids, 7:191-205, 1979.

[22] Chakravarthy, S. R. and Anderson, D. A. and Salas, M. D., “Split-Coefficient Matrix
Method for Hyperbolic Systems of Gas Dynamic Equations,” AIAA Paper 80-0268,
January 1980.

[23] van Leer, B., “Flux-Vector Splitting for the Euler Equations,” Technical Report,
ICASE Report 82-30, 1982.

[24] Godunov, S. K., “A Difference Method for the Numerical Calculation of Discon­
tinuous Solutions of Hydrodynamic Equations,” Mat. Sbomik, pp. 271-306, 1959.
Translated as JPRS 7225 by U.S. Dept, of Commerce, 1960.

[25] Roe, P. L., “The Use of the Riemann Problem in Finite Difference Schemes,”
Proceedings o f the 7th International Conference on Numerical Methods in Fluid
Dynamics, W. C. Reynolds and R. W. MacCormack, eds., pp. 354-359. Springer,
1981. Stanford, 1980.

[26] Roe, P. L., “Numerical Modeling of Shock Waves and Other Discontinuities,”
Proceedings o f the IMA Conference on Numerical Methods in Aeronautical Fluid
Dynamics, pp. 211-243. Academic Press, New York, 1982. Reading, 1981.

149

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

[27] Lombard, G. K. and Oliger, J. and Yang, J. Y., “A Natural Conservative Flux
Difference Splitting for the Hyperbolic Equations of Gas Dynamics,” AIAA Paper
82-0976, 1982.

[28] Engquist, B. and Osher, S., “One-Sided Difference Approximations for Nonlinear
Conservation Laws,” Mathematics o f Computation, 36:321-351, 1981.

[29] Lax, P. D., “Weak Solutions of Nonlinear Hyperbolic Equations and Their Numerical
Computation,” Communications o f Pure and Applied Mathematics, 7:159-193, 1954.

[30] Lax, P. D. and Richtmyer, R. E., “Survey of the Stability of Linear Finite Difference
Equations,” Communications o f Pure and Applied Mathematics, 9:267-293, 1956.

[31] Lax, P. D. and Wendroff, B., “Systems of Conservation Laws,” Communications o f
Pure and Applied Mathematics, 13:217-237, 1960.

[32] Jameson, A. and Schmidt, W. and Turkel, E., “Numerical Solutions of the Euler
Equations by Finite-Volume Methods Using Runge-Kutta Time-Stepping Schemes,”
AIAA Paper 81-1259, June 1981.

[33] Jameson, A. and Baker, T. J., “Solution of the Euler Equations for Complex Con­
figurations,” AIAA Paper 83-1929, 1983.

[34] Jameson, A., “Multigrid Algorithms for Compressible Flow Calculations,” Technical
Report MAE Report 1743, Princeton University, Department of Mechanical and
Aerospace Engineering, October, 4, 1985. Text of lecture given at 2nd European
Conference on Multigrid Methods, Cologne.

[35] von Lavante, E. and Elmiligui, A. and Cannizzaro, F. E. and Warda, H., “Simple Ex­
plicit Upwind Schemes for Solving Compressible Flows,” Proceedings o f the Eighth
GAMM-Conference on Numerical Methods in Fluid Mechanics, NNFM, volume 29,
pp. 291-301, 1989.

[36] van Leer, B. and Tai, C. H. and Powell, K., “Design of Optimally Smoothing Multi-
Stage Schemes for the Euler Equations,” AIAA Paper 89-1933-CP, 1989.

[37] Blazek, J. and Kroll, J. and Radespiel, R. and Rossow, C. C., “Upwind Implicit
Residual Smoothing Method for Multi-Stage Schemes,” AIAA Paper 91-1533-CP,
1991.

[38] Fedorenko, R. P., “The Speed of Convergence of One Iteration Process,” USSR Comp.
Math, and Math. Physics, 4:227-235, 1964. (In Russian.)

[39] Brandt, A., “Multi-Level Adaptive Solutions to Boundary Value Problems,” Mathe­
matics o f Computations, 31(138):333—390, 1977.

[40] South, Jr., J. C. and Brandt, A., “Application of a Multilevel Grid Method to
Transonic Flow Calculations,” Transonic Flow Calculations in Turbomachinery, T.
C. Adamson and M. C. Platzer, eds., Hemisphere Publications, 1977.

150

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

[41] Ni, R. H., “A Multiple Grid Scheme for Solving the Euler Equations,” AIAA Journal,
20:1565-1571, 1982.

[42] Jameson, A., “Solution of the Euler Equations by a Multigrid Method,” Applied
Mathematics and Computation, 13:327-356, 1983.

[43] NASA Conference Publication 2166. Numerical Grid Generation Technique, October
1980. Workshop held at NASA Langley Research Center, Hampton, VA.

[44] Thompson, J. F. and Warsi, Z. U. A., “Boundary-Fitted Coordinate Systems for
Numerical Solution of Partial Differential Equations: A Review,” Journal o f Com­
putational Physics, 47(1): 1-108, 1982.

[45] Thompson, J. F., ed. Numerical Grid Generation. North-Holland, New York, NY,
1982. Proceedings of a Symposium on the Numerical Generation of Curvilinear
Coordinate Systems and Their Use in the Numerical Solution of Partial Differential
Equations, Apr. 1982.

[46] Ghia, K. N. and Ghia, U., eds. Advances in Grid Generation, Vol. 5. Applied
Mechanics, Bioengineering and Fluids Engineering Conference, sponsored by the
Fluids Engineering Division of ASME, June 1983.

[47] Boppe, J. “Calculation of Transonic Wing Flows by Grid Embedding,” AIAA Paper
77-207, 1977.

[48] Hedman, S. G., “An Application of the Embedded Grid Technique to the Calcula­
tion of Transonic Flow Past Wings,” Technical Report, The Aeronautical Research
Institute of Sweden, Technical Note AU-1600, Stockholm, 1980.

[49] Thompson, D. S., “A Mesh Embedding Approach for Prediction of Transonic
Wing/Body/Store Flow Fields,” Proceedings o f the Symposium on Numerical Bound­
ary Condition Procedures, pp. 15-39. Supplementary Report to NASA Conference
Publication 2201, October 1981.

[50] Atta, E. H. and Vadyak, J., “A Grid Interfacing Zonal Algorithm for Three-
Dimensional Transonic Flows About Aircraft Configurations,” AIAA Paper 82-1017,
June 1982.

[51] Atta, E., “Component-Adaptive Grid Interfacing,” AIAA Paper 81-0382, Jan. 1981.

[52] Benek, J. A., Steger, J. L., and Dougherty, F. C., “A Flexible Grid Embedding
Technique with Application to the Euler Equations,” AIAA Paper 83-1944, July
1983.

[53] Benek, J. A., Buning, P. G., and Steger, J. L., “A 3-D Chimera Grid Embedding
Technique,” AIAA Paper 85-1523-CP, July 1985.

[54] Eberhardt, S. and Baganoff, D., “Overset Grids in Compressible Flow,” AIAA Paper
85-1524, 1985.

151

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

[55] Cambier, L., Ghazzi, W., Veuillot, J. P., and Viviand, H., “Une approche par do-
maines pur le calcul d ’ecoulements compressibles,” Cinquierae Colloque International
sur les Methodes de Calcul Scientifique et Technique, INRIA, Versailles, France,
Dec. 14-18, 1981.

[56] Rai, M. M., Chakravarthy, S. R., and Hessenius, K. A., “Zonal Grid Calcula­
tions Using the Osher Scheme,” International Journal o f Computers and Fluids,
12(3): 161-173, 1984.

[57] Rai, M. M., “A Conservative Treatment of Zonal Boundaries for Euler Equation
Calculations,” AIAA Paper 84-0164, Jan. 1984.

[58] Mastin, C. W. and McConnaughey, H. V., “Computational Problems on Composite
Grids,” AIAA Paper 84-1611, June 25-27, 1984.

[59] Rai, M. M., “A Conservative Treatment of Zonal Boundaries for Euler Equations
Calculations,” Journal o f Computational Physics, 62:472-503, Feb. 1986. 2

[60] Walters, R. W., Thomas, J. L., and Switzer, G. F., “Aspects and Applications of
Patched Grid Calculations,” AIAA Paper 86-1063, May 12-14, 1986.

[61] Kathong, M., Smith, R. E., and Tiwari, S. N., “A Conservative Approach for Flow
Field Calculation on Multiple Grids,” AIAA Paper 88-0224, Jan. 11-14, 1988.

[62] Kathong, M., Smith, R. E., and Tiwari, S. N., “Application of Multiple Grids
Topology to Supersonic Internal/External Flow Interactions,” AIAA Paper 88-0224,
July 25-28, 1988.

[63] Thomas, J. L., Rudy, D. H., Chakravarthy, S. R., and Walters, R. W., “Patched-Grid
Computations of High-Speed Inlet Flows,” Symposium on Advances and Applica­
tions in Computational Fluid Dynamics, Winter Annual Meeting of ASME, Chicago,
IL, Nov. 28-Dec. 2, 1988.

[64] Thomas, J. L., Walters, R. W., Reu, T., and Ghaffari, F. A. “Patched-Grid Algorithm
for Complex Configurations Directed Towards the F/A-18 Aircraft,” AIAA Paper
89-0121, Jan. 9-12, 1989.

[65] Biedron, R. T. and Thomas, J. L., “A Generalized Patched-Grid Algorithm with
Application to the F-18 Forebody with Actuated Control Strake,” Computing Systems
in Engineering, l(2-4):563-576, 1990.

[66] Kassies, A and Tognaccini, R., “Boundary Conditions for Euler Equations at Internal
Block Faces of Multi-Block Domains Using Local Grid Refinement,” AIAA Paper
90-1590, June 18-20, 1990.

[67] Cannizzaro, F. E., Elmiligui, A. Melson, N. D., and von Lavante, E. A., “Multiblock
Multigrid Method for the Solution of the Three-Dimensional Euler Equations,” AIAA
Paper 90-0105, 1990.

152

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

[68] Yadlin, Y. and Caughey, D. A., “Block Multigrid Implicit Solution of the Euler
Equations of Compressible Fluid Flow,” AIAA Journal, 29(5):712—719, Mar. 1990.

[69] Rossow, C. C., “Efficient Computation of Inviscid Flow Fields Around Complex
Configurations Using a Multi-Block Multigrid Method,” Fifth Copper Mountain
Conference on Multigrid Methods, Copper Mountain, CO, Mar. 31-Apr. 5, 1991.

[70] Melson, N. D., Cannizzaro, F. E., and Elmiligui, A., “A Multigrid Multiblock
Programming Strategy,” Fifth Copper Mountain Conference on Multigrid Methods,
Copper Mountain, CO, Mar. 31-Apr. 5, 1991.

[71] Bonhaus, D. L. and Womom, S. F., “Comparison of Two Navier-Stokes Codes for
Attached Transonic Wing Flows,” Journal o f Aircraft, 29(1): 101-107, Jan.-Feb. 1992.

[72] Baldwin, B. S. and Lomax, H., “Thin Layer Approximation and Algebraic Model for
Separated Turbulent Flows,” AIAA Paper 78-257, Jan. 16-18, 1978.

[73] Hirsch, C., Numerical Computation o f Internal and External Flows, Vol. 2. John
Wiley & Sons, 1990. Computational Methods for Inviscid and Viscous Flows.

[74] Hinze, J. O., “Turbulence. McGraw-Hill Book Company, Inc., 1987.

[75] Anderson, D. A., Tannehill, J. C., and Pletcher, R. H., Computational Fluid Mechan­
ics and Heat Transfer. McGraw-Hill Book Company, Inc., 1984.

[76] Rumsey, C. L., Development o f a Grid-Independent Approximate Riemann Solver.
Ph.D. thesis, University of Michigan, 1991.

[77] Anderson, W. K., Implicit Multigrid Algorithms fo r the Three-Dimensional Flux Split
Euler Equations. Ph.D. thesis, Mississippi State, 1986.

[78] Anderson, W. K., Thomas, J. L, and van Leer, B., “A Comparison of Finite Volume
Flux Vector Splittings for the Euler Equations,” AIAA Paper 85-0122, Jan. 14-17,
1985.

[79] von Lavante, E. and Haertl, A., “Numerical Solutions of Euler Equations Using
Simplified Flux Vector Splitting,” AIAA Paper 85-1333, 1985.

[80] Melson, N. D. and von Lavante, E., “Multigrid Acceleration of the Isenthalpic
Form of the Compressible Flow Equations,” Third Copper Mountain Conference
on Multigrid Methods, Apr. 6-10, 1987.

[81] Cannizzaro, F. E., von Lavante, E., and Melson, N. D., “Calculations of Three-
Dimensional Flows Using the Isenthalpic Euler Equations with Implicit Flux-
Vector Splitting,'"Proceedings o f the AIAA 6th Applied Aerodynamics Conference, pp.
593-614. AIAA Paper 88-2516, 1988.

[82] Roe, R. L., “Characteristic Based Schemes for the Euler Equations,” Annual Review
o f Fluid Mechanics, 18:337-365, 1986.

153

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

[83] Vatsa, V. N., Thomas, J. L., and Wedan, B. W., “Navier-Stokes Computations of a
Prolate Spheroid at Angle of Attack,” Journal o f Aircraft, 26(11):986—993, 1989.

[84] Fromm, J. E., “A Method for Reducing Dispersion in Convective Difference
Schemes,” Journal o f Computational Physics, 3:176-198, 1968.

[85] Pulliam, T. H. and Chaussee, D. S., “A Diagonal Form of an Implicit Approximate-
Factorization Algorithm,” Journal o f Computational Physics, 39:347-363, 1981.

[86] Vatsa, V. N. and Wedan, B. W., “Development of a Multigrid Code for 3-D Navier-
Stokes Equations and its Application to a Grid-Refinement Study,” Computers &
Fluids, 18(4):391-403, 1990.

[87] Swanson, R. C. and Turkel, E., “A Multistage Time-Stepping Scheme for the Navier-
Stokes Equations,” Technical Report, ICASE Report 84-62, Feb. 1985.

[88] Swanson, R. C. and Turkel, E., “Artificial Dissipation and Central Difference Schemes
for the Euler and Navier-Stokes Equations, “AIAA Paper 87-1107-CP, June 9-11,
1987.

[89] Swanson, R. C. and Radespiel, R., “Cell Centered and Cell Vertex Multigrid Schemes
for the Navier-Stokes Equations,” AIAA Journal, 29(5):697-703, May 1991.

[90] Elmiligui, A., Ph.D. thesis, Old Dominion University, 1992.

[91] Turkel, E., Swanson, R. C., Vatsa, V. N., and White, J. A., “Multigrid for Hypersonic
Viscous Two- and Three-Dimensional Flows,” AIAA Paper 91-1572, June 24-26,
1991.

[92] Vatsa, V. N., Turkel, E., and Abolhassani, J. S., “Extension of Multigrid Methodology
to Supersonic/Hypersonic 3-D Viscous Flows,” Fifth Copper Mountain Conference
on Multigrid Methods, Copper Mountain, CO, Mar. 31-Apr. 5, 1991.

[93] Swanson, R. C., Turkel, E., and White, J. A., “An Effective Multigrid Method for
High-Speed Flows,” Technical Report, ICASE Report 91-56, July 1991.

[94] Jameson, A., “Acceleration of Transonic Potential Flow Calculations on Arbitrary
Meshes by the Multiple Grid Method,” AIAA Paper 79-1458, July 1979.

[95] Sankar, N. L., “A Multigrid Strongly Implicit Procedure for Two-Dimensional Tran­
sonic Potential Flow Problems,” AIAA Paper 82-0931, 1982.

[96] Thames, F. C., “Multigrid Applications to Three-Dimensional Elliptic Coordinate
Generation,” Applied Mathematics and Computation, 15(4):325-342, 1984.

[97] Melson, N. D., “Vectorizable multigrid algorithms for transonic flow calculations,”
Master’s thesis, The George Washington University, 1985.

[98] Marconi, F., “Internal Corner Flow Fields,” AIAA Paper 79-0014, 1979.

154

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

[99] Kutler, P., “Numerical Solution for the Inviscid Supersonic Flow in the Corner
Formed by Two Intersecting Wedges,” AIAA Paper 73-675, July 16-18, 1973.

[100] West, J. E. and Korkegi, R. H., “Supersonic Interaction in the Corner of Intersecting
Wedges at High Reynolds Numbers,” AIAA Journal, 10(5): 652-656, May 1972.

[101] Salas, M. D., “The Numerical Calculation of Inviscid Plume Flow Fields,” AIAA
Paper 74-523, June 17-19, 1974.

[102] Schmitt, V. and Charpin, F., “Pressure Distributions on the ONERA M6 Wing at
Transonic Mach Numbers,” No. 138, pp. B2-1—B2-61. AGARD, May 1979.

[103] Thomas, J. L., Krist, S. T., and Anderson, W. K., “Navier-Stokes Computations
of Vortical Flows Over Low-Aspect-Ratio Wings,” AIAA Journal, 28(2):205-212,
February 1990.

[104] Putnam, L. E. and Mercer, C. E., “Pitot-Pressure Measurements in Flow Fields Behind
a Rectangular Nozzle with Exhaust Jet for Free-Stream Mach Numbers of 0.00, 0.60,
and 1.20,” Technical Report, NASA, Nov. 1986. NASA Technical Memorandum
88990.

[105] Comptci'., Ill, William B., Thomas, J. L., Abeyounis, W. K., and Mason, M.
L., “Transonic Navier-Stokes Solutions of Three-Dimensional Afterbody Flows,”
Technical Report Technical Memorandum 4111, NASA, July 1989.

[106] Morrison, J., “Flux Difference Split Scheme for Turbulent Transport Equations,”
AIAA Paper 90-5251, Oct. 29-31, 1990.

155

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Appendix A Full Navier-Stokes Equations
in Body-Fitted Coordinates

For the ^-direction

FV{1) = [0.0]

Fv(2) = M refft
R r e f

+ $ + £ *) + + V y t y + V * 6) +

u d j C x £ x + Cy£y + C*6) +

vy{Vx€y ~ ^Vy^x) + vdCx£y ~ jCy&O'F

+ WviVxtz ~ f Vztx) + wc((xZz ~ §G6e) .

Fv(3) = M r e f ft
R r e f

u t ^ f £ x £y + u i}{j]ytx z ^ x i y) + UC (Cy£x 3 C 1 £ y) +

+ U y + £*) + vv(Vxtx + ivy ty + »?*£*) +

VC ((x€x + f C y £ y + C z £ z) +

, w Sl i£ z£y + w v i rl y (z ~ f^/z^y) + w ({ (y £ z ~ z ^ z i y)

Fv(4) =
M ref ft

R r e f

’̂ 1 6 6 + un(vstx - f»7*60 + _ |Cx6)+

v t \ £ y £ z F v y { rl z£y ~ §V y £ z) + uc(Cz£y ~ 3(^6:) +

+ £y + + w v (V x t x + V y t y + f » 7 * k) +

WC (Cx£x + Cy?y + jCz^z)

156

(A .l)

(A.2)

(A.3)

(A.4)

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Fv{5) =
Mrefl>■

R r e f

uc

us K i £ 2 + ^2) + + i u,f*f*]+

+ V y^y "h V z £ z) + v (j ly£x ~~ 3 V x £ y) F

w (y z t , x ~ j V x t z)

u i d x ^ x + Cy£y F Cz£z) + v (Cy£x ~ ^ C x ^ y) ^

w (Cz£X ~ jjCx^z) .

v(+ v (if® + <t>2) + i w6f®]+

u (r i x (y - | i? j , i x) + v { r) x t x + | ? i y i y + t}z £ z) + '

w (v z l y - I V y t z)

u { (x £ y ~ §Cs/fx) + v ((x £ x + fCj/fj/ + Czfz)"h
w {Cz£y ~ fCjl£z) .

+

+

v(

+

+

Wn (i x t z ~ f >/*£*) + v (f y & ~ h z t y) +

w{Vxtx + Vy^y "F sVz£z)

u ((x £z ~ §Cz£z) + v ((y £ z ~ |Cz£jf) +
w (Cx£x + Cy£y "t" 3'Czfz) .

a[T̂ <j>2 + Tv(r]x^x + riyty + !/,&)+

FtiCx^x + Cji£y + Czfz)]

+

+

For the //-direction

Gv(l) = [0.0]

G , (2) -
M r e f P

R r e f

u ^ t x V x + ZyVy + ZzVz) + « * (! > ? * + t f + V 2z) +

U c i ^ (x V x + C y V y + CzVz) +

v d ^ y - U y V x) + Vy^VxVy + « c (C *Vy ~ f CyVx) +

w d i x V z - + W y ^ x V z + WC((xVz - | C zV x) .

157

(A.5)

(A.6)

(A.7)

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

<?„(3) =
M reffl

R r e f

u d t v V * - I Z x l v) + u v h v V x + « c (C yVx ~ I CxV v)+ '

V t i t x V x + 1 ^ 2iVy + 6 ^) + V r j f r l + b l + V2z) +

v d C xV x + iCyVy + CzVx) +

. w d t y V z - U z V y) + w v b y V z + w c (CyVz - §CzVy) .

Gv(4) = Mrefft
R r e f

h (^ V x - f £xVz) + u v I t]z tjx + UC((z V x - I CxVz) +

u e (^ % - I t y V z) + V y b ^ y + UC (C * J7 j ; “ | C » » 7 a) +

w d i x T } x + i t f l y + f £ * » ? *) + WM +vi + b*) +

wd ^ xT!x £yVy "t" sCzVz)

UZ
t (| 6 »?x + i y V y + i z V z) + v i i y V x - I i x %) +

’(izVz ~ §ixVz) .UM +

iv[u (h x + ° 2) + b w x + b ^ z ^ x] ^

H

vz

(b xl7x ^zf]z) + v {CyVx 3 C x 7/ y) +
w ((z V x - I C x V z) .

{ i x Vy ~ % i v V x) + v (i x V x + i i y T l y + £zVz) +

{izVy ~ b y 7!*).it;

+

+

Gv(5) =
M r e/ft
R re f

v n i b w * + v (b y + ° 2) + b W z] +

VC

W£

u {CxTly zCyVx) + ^ (C x t / x + 3 CyVy + C z ?7 z) ' f '
w { (z V y ~ | CyVz)

uiixVz ~ b z1lx) v b>yr!z ~ 3 £zT]y)~̂ ~
{ i x V x + i y V y + b zT1z) .

+

u;
+

Wy i b ^ z V x + b w y + w (b 2 + Q2)] +

IV £ u (CxVz sCzVx) + v (CyVz 3 Cz:7?!/)
w (C xV x + CyVy + j C z ^ s)

+

^ [T ^ i i x V x + i y V y + (z V z) + T v 6 2+

T d C x V x + CyVy + Czr/z)]

158

(A.8)

(A.9)

(A. 10)

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

For the (^-direction

Hv(1) = [0.0]

(̂ĵ xCx F £y^y F £zCz) F F VyCy F VzCz)^~

“ f(fC r + Cy F Cz) +

v t { £ x C y ~ §£j/Cx) F v ri{VxCy ~ f^/yCx) F jjCyCxF

w ^(^xCz ~ § £ z (x) F WqfjJxCz ~ fV z C x) F w (^CzCx

u t (£ y C x ~ §£x(y) F u y{j l yCx ~ s V x C y) F Ŵ jCxCyF

v d U x + & y (y + &C*) F VV (7]X(X + ±Tly(y + 7]z (z) +

uc(Cx + fCj + C*)f

Wd t y (z - f&Cx) + W y (v y (2 - h * S v) + w d t * (v -

U $ (£ z C x ~ f ^ C *) F

v t (£ z C y ~ f £ y (z) F ^ y i V z C y ~~ f l y C z) F j C z C j / F

w d ^ x ^x F tyCy F 3 ^ s C z) F Wy(r}xCx F VyCy F 3 VzCz)-\~

w d (x F Cy F § (?) .

159

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission

H u{ 4) = Mreff*
Rref

Hv(3) =
M rej ft

R r e f

H v(2) =
M r e f f t

R r e f

(A. 11)

(A. 12)

(A.13)

(A. 14)

u

H v (5) =
M re fl^
Rr e f

u (;}£xCx + £3iCy + £zCz) + v {£yCx 3^xCy) +
w (£zCx ~ 3^1 Cz) .

u { % V x (x + T]y(y + T}z(z) + v {VyCx ~ & x (y) + '

w (V z C x ~ | V z (z) .

uc N K * + ^ 2) + f a y t x + JwC*C*] +

u (£ x (y ~ f^yCx) + v (£ x (x + f^yCy + £z(z) +
H ® (f z C , - f o c *) .

f u(j/*Cy - IvyCx) + v(r]xtx + |%c® + »7*C*) + ’
’ L w{vzly - § % C z) .

uc [j “ CyCr + « (jC j + V2) + +

U(£ lCz ~ J^zCx) "I" v (£liCz ~ ll^zCy)"!"
w (£ x (x + £yCy + j £ z C z)

' u (t]x Cz ~ f??zCx) + v (V y t z ~ f»?zCx) + "
w { r j x C x + V y C y + h x Q .

U>f [J«C,C* + fUCzCy + t"(^C* + ^ 2)] +

+

+

+

+

W£

w

+

+

° m x C x + £jiCy + £zCz) + T v (t]xCx + VyCy + VzCz)

+TC<P2}

(A. 15)

160

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Appendix B Multigrid Restriction and
Prolongation Operations

B.l Restriction Operation

The best way to explain the restriction procedure is by showing the operation for a

two-dimensional case. Starting with the fine grid, which is comprised of the small cells

whose average values are designated by the empty circles, the coarse grid is generated

by removing every other fine grid line (see Fig. B.l). Thus, producing the larger cells

which are designated by the thicker borders. The shaded octagons, centered in the larger

cells, represent the coarser grid cells’ centered values. As shown in Fig. B .l, a volume

weighted averaging of the flow values from the fine grid cells is used to provide coarse

grid values, which are to represent the solution of the fine grid on the coarser grid.

Figure B .l Two-Dimensional Restriction Operation.

161

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

In three-dimensional space, the same type of averaging of the fine grid values is

performed on the two fine grid planes that surround each coarse grid plane. To show

this, it is necessary' to indicate where the coarse grid and fine grid cell centers are located

geometrically. This can be seen in Fig. B.2, which represents a three-dimensional

volume. The fine grid is indicated by the thin lines, and the coarse grid by the thicker

lines. The fine grid cell centers are at the centers of all the small cells, and the coarse grid

cell centers are at the centers of the larger cells, indicated by the thicker lines. Cutting

some of the cells away and putting in four planes, two representing fine grid cell centers

and two representing coarse grid cell centers, shows the spacial relation of the coarse

and fine grid cell centers, as can be seen in Fig. B.1.3. This figure identifies the various

planes that are needed for both restriction and prolongation operations. Each coarse grid

cell centered plane has a fine grid cell centered plane on both sides of it. Focusing just

on these three planes, as shown in Fig. B.1.4, this averaging will involve eight fine

grid cells to produce one coarse grid cell value. The volume weighted averaging uses

the actual physical cell’s volumes, and not those of the computational domain, which

are unit volumes.

162

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Figure B.2 Three-Dimensional Fine and Coarse Grid.

163

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Grid Surface

C oarse Grid Cell
C enters

Fine Grid Cell
C enters

C oarse Grid Cell
C enters

Figure B.1.3 Three-Dimensional Fine and Coarse Grid Cell Centers

164

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Figure B.1.4 Three-Dimensional Restriction Operation

B.2 Prolongation Operation

The prolongation operation is done in computational space. For the two-dimensional

case a bilinear interpolation is performed among the coarse grid cells, which are indicated

by the shaded octagons, shown in Fig. B.2.5. Each set of four shaded octagons has four

empty circles within the octagons’ perimeter. These circles represent the fine grid cells.

The octagon that is closest to the circle has the largest weight factor, which gives it the

most influence on the circle’s value. How the prolongation values, for each circle in the

perimeter, are obtained is indicated in the four different patterns shown in Fig. B.2.5.

165

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

Figure B.2.5 Two-Dimensional Prolongation Operation.

In three-dimensional space, the prolongation operation is again done in the computa­

tional domain using a tri-linear interpolation. Referring back to Fig. B.1.3, the five planes

are re-drawn in Fig. B.2.6, with circles added to indicate the cell centers. First a bilinear

interpolation is performed on each coarse grid cell center plane, as shown in Fig. B.2.6.

Then a linear interpolation between the two coarse grid prolongations is performed to

give the value for the specified fine grid cell. As can be seen in Fig. B.2.6, there is a set

of eight coarse grid cells that provide information to produce eight fine grid cells.

166

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

C oarse Grid Ceil
. Centers

Grid Surface

Fine Grid Cell
C enters

Coarse Grid Cell
Centers

Figure B.2.6 Three-Dimensional Prolongation Operation.

167

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

	Old Dominion University
	ODU Digital Commons
	Summer 1992

	Runge-Kutta Upwind Multigrid Multi-Block Three-Dimensional Thin Layer Navier-Stokes Solver
	Frank E. Cannizzaro
	Recommended Citation

	tmp.1569498451.pdf.ll8PO

