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ABSTRACT

INTEGRATED SYSTEM IDENTIFICATION AND 
ADAPTIVE STATE ESTIMATION FOR CONTROL OF 

FLEXIBLE SPACE STRUCTURES 

Chung-Wen Chen

Department of Mechanical Engineering and Mechanics 

Old Dominion University

Accurate state information is crucial for control of flexible space structures in 

which the state feedback strategy is used. The performance of a state estimator 

relies on accurate knowledge about both the system and its disturbances, which 

are represented by system model and noise covariances respectively. For flexible 

space structures, due to their great flexibility, obtaining good models from ground 

testing is not possible. In addition, the characteristics of the systems in operation 

may vary due to  tem perature gradient, reorientation, and deterioration of ma­

terial, etc. Moreover, the disturbances during operation are usually not known. 

Therefore, adaptive methods for system identification and state estimation are 

desirable for control of flexible space structures. This dissertation solves the state 

estimation problem under three situations: having system model and noise co- 

variances, having system model but no noise covariances, having neither system 

model nor noise covariances. Recursive least-squares techniques, which require no
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initial knowledge of the system and noises, are used to identify a m atrix polyno­

mial model of the system, then a state space model and the corresponding optimal 

steady state K alm an filter gain are calculated from the coefficients of the identified 

m atrix polynomial model. The derived methods are suitable for on-board adaptive 

applications. Experimental example is included to  validate the derivations.
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Chapter 1

INTRODUCTION

1.1 Background

During the last several decades, modern control theories have been widely es­

tablished, and the applications of control theories in aerospace, military and civil 

industries have increased tremendously. This can be attributed  to several rea­

sons. Among them  the most im portant is the advent of powerful and inexpensive 

modern digital computers. W ithout the powerful capabilities in calculation, data 

transmission and memory of computers, most modern control theories will be just 

too complicated to  realize in practical applications. W ithout the manufacturing 

techniques which have substantially reduced the price of computers from their orig­

inal astronomical figures, the applications would certainly be greatly restricted. 

Besides, the easy access to personal computers or work stations, which every uni­

versity, research institu te  and laboratory can afford, has greatly helped researchers 

in developing, validating and testing control theories. Indeed, powerful, inexpen­

sive digital computers have made some earlier engineers’ dreams become possible.

1
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The other m ajor reason for the rapid development in  control technology is due to 

necessity. Nowadays many physical plants constructed by human beings are very 

complicated and large-scaled and require high performance, such as huge chemical 

plants, jumbo airliners and large flexible space structures. To make these systems 

function satisfactorily, resorting to modern control techniques becomes inevitable.

The central problem of control is how to determine appropriate control forces 

so tha t the systems can accomplish the prescribed requirements. Mathematically, 

the solution of the problem is represented by a set of equations called “control 

laws” . In practice, the controllers (computers) programmed with control laws 

play the role of determining control forces based on the situation of the systems. 

For controlling linear systems, state feedback strategy is a common technique, 

where state information, which represents the situation of the systems, is used 

for determining control forces. However, in general, state information cannot 

be measured directly and the quantities which can be measured are only some 

functions of states. Therefore, the technique of reconstructing state information 

from measurement d a ta  becomes an indispensable p art of state feedback control.

In reconstructing state information from in p u t/ou tpu t data, one faces some 

inherent difficulties. First, measurement data are almost inevitably contaminated 

by noise due to  imperfect instruments. Second, the number of output sensors 

is usually less than  the number of the states of interest, which implies that the 

output measurement a t a single moment alone is not sufficient to determine the 

state at tha t moment. Previous data, therefore, should somehow be utilized. But 

since systems are usually affected by unpredictable noises, uncertainty is intro­

duced into the relation between previous data and the current state. Because the 

performance of feedback control relies on the accuracy of the reconstructed state, 

an effective state reconstruction method under all these difficulties plays a critical 

role in satisfactory control. State estimation is the technique of reconstructing 

state information from input and noise-corrupted output data, which is, therefore, 

very im portant in realizing feedback control theories to real world applications.

2
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Generally speaking, state estimation belongs to a larger field call “filtering” , 

which is basically a process of extracting signals of interest from some relevant 

data. For several decades researchers in the fields of economics, communication, 

guidance, navigation and control remain highly interested in the problem of fil­

tering because accurate information and signals in useful form always play crucial 

roles in these fields. “Filter” in general is a  generic term representing either a  

substantial hardware or an algorithm programmed in a computer to realize the 

signal extracting process. There are a t least three different situations which re­

quire conducting filtering. First, the signals of interest are contaminated by noise; 

therefore, the  sole objective of filtering is to  clean up the noise. Second, the signal 

at hand is noise-free but not of interest by itself, and the objective is to deduce 

some other information from it. Third, the objective is to  deduce information 

from the available signals which are contam inated by noise—a combination of the 

above two. State estimation problems belong to  the third category.

The idea of estimating unknown quantities from observed data can be traced 

back to Gauss in the early 1800’s. In his astronomical studies, in which planet 

and comet motion was studied using telescopic measurement data, he invented 

the famous least-square technique.1 In more recent times, in order to solve the 

problem of controlling antiaircraft firing systems during World War II, W iener 

developed the  W iener filter.2 This filter is still widely acclaimed today as a cor­

nerstone of modern estimation theory. Kolmogorov (1939) applied mean-square 

theory to  discrete stochastic processes.2 In 1960 Kalman published his famous 

method for sequential state estimation of discrete systems, known as the Kalman 

filter, using state  space formulation.3 This paper is a  landmark in modern control 

history. Two years later, a version of the Kalm an filter for continuous system was 

published.4 After this a large number of papers appeared in the literature con­

cerned w ith the properties, the modifications under some different assumptions, 

and the applications to some specific problems of the filter.5

The great body of literatures reveals the  im portance of the Kalman filter; 

however, at the same time it reveals the existence of some unsatisfactory features

3
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as well. A well-known lim itation in applying the conventional Kalman filter is 

its requirement of a  priori knowledge about the system state space model and 

the covariances of process and measurement noises. This information, in practice, 

is either only partially known or totally unknown. Another lim itation of the 

conventional Kalman filter is th a t it can neither adjust itself to trace a  changing 

environment, nor can it correct the error caused by incorrect a priori information. 

In a sense, the  conventional Kalm an filter works as an open loop system, because 

the filter evolves according to preset formulas during operations and th e  estimation 

error never affects the filter itself. Moreover, after reaching its steady state, the 

filter “sleeps” . T hat is, no m atter how big the estimation error could be due to 

whatever reasons, the filter just remains unchanged. A phenomenon called filter 

divergence could happen.6-9

If a system model is known but its noise statistics are not, one should ei­

ther use a set of guessed values of the noise covariances or conduct a  systematic 

method to estim ate the noise covariances or the Kalman filter gain before using 

the Kalman filter.10-14 To enable the filter to acquire information during opera­

tion to improve upon the a priori assumptions that were made a t the outset leads 

to the topic of adaptive filtering.15-17 Adaptive Kalman filtering uses Kalman 

filter structure and modifies the philosophy of computing the filter gain so tha t 

the filter can monitor estimation error and feed back the information to improve 

its performance.17’18 However, most existing adaptive Kalman filters and methods 

of estimating noise covariances or filter gain are complicated and not suitable for 

on-line application. Furthermore, most adaptive filtering methods are derived un­

der the assumption th a t the system model is accurately known. Adaptive Kalman 

filtering for unknown or uncertain systems is seldom addressed.

The problem of adaptive Kalman filtering for unknown or uncertain systems 

is more complicated. Goodwin introduced some adaptive methods for state es­

timation under uncertain system models,15 where the state  vector is augmented 

to include uncertain system parameters. By this way the system param eters and

4
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state can be estim ated a t the same time. However, nonlinear state estimation 

techniques, such as the extended Kalman filter, have to  be used in the above ap­

proach because the system model becomes nonlinear due to  state augmentation. 

For nonlinear estimation, the system is usually linearized a t each estimated state, 

which is very time-consuming especially for a large order system. Moreover, the 

convergence of the estim ate is not guaranteed.

To solve the problem of state estimation under unknown models and noise 

covariances, in general, system models should be identified before state estimation 

can be carried out. Therefore, it is a compound problem of system identification 

and state estimation. System identification, also called “modeling”, or “time se­

ries analysis”, is a technique of obtaining appropriate m athem atical models for 

dynamical systems from their input/output data.19-23 It is im portant in a diver­

sity of fields such as engineering, economics, statistics, and physical science. In 

controls field, especially in adaptive controls where systems to be controlled are 

uncertain or time-varying, system identification is indispensible.

In conducting system identification, the form at of a mathematical model is 

selected first, and then the parameters of the model are chosen to minimize a 

defined cosc function which indicates the fitness of the model to the input/output 

data. In choosing a model format, the m atrix polynomial model has the advantage 

of having a  linear relation between the param eters and the input/output data; 

thus least-squares and its variations can be used to  identify the model without 

requiring any a priori knowledge about the system. The m atrix polynomial model 

is a system equation whose z-domain expression is a  m atrix polynomial equation. 

On the other hand, system identification using a  s ta te  space model is a nonlinear 

optimization problem, which is more difficult to work with. However, a  state space 

model is desirable for state estimation and control purpose, because most of the 

control theories are developed in state space representation.

5
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1.2 Problem Description and Objective

For active control of large flexible space structures, accurate models and ac­

curate state information of the systems are very im portant. However, because of 

its great flexibility and gravitational load, an accurate system model of a  large 

flexible space structure can not be obtained from ground testing. In addition, the 

characteristics of a large flexible structure in space can vary due to such factors 

as tem perature gradient induced by shadowing, reorientation of a  large antenna 

or deterioration of material. The system model needs to  be updated frequently. 

Moreover, space structures are working under unknown noises. Good performance 

of a state estim ator relies both on an accurate system model and an accurate es­

tim ate of the noise statistics (or the optimal filter gain). Hence, for better control 

performance, strategies of on-line system identification and adaptive state estima­

tion are required.

The objective of this dissertation is to develop effective integrated system 

identification and state estimation algorithm for on-line application in the control 

of linear systems, and in particular for flexible space structures.

1.3 Dissertation Outline

Aiming a t the ultim ate objective, this dissertation poses the problem of state 

estimation by dividing it into three stages according to  the degree of complexity 

and investigates them progressively. These three stages are linear state estimation 

with both system model and noise covariances known, linear state estimation with 

system model known but noise covariances unknown, and linear estimation with 

both system model and noise covariances unknown.

6
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Chapter 2 provides some background material. F irst, a brief review of three 

optimal estim ation methods is given. These basic methods are cornerstones of 

many m odem estim ation methods. Next, a state space model of a  linear system 

and the problem of s ta te  estimation are also described. Then, the Kalman fil­

ter is briefly introduced. The relations between param eter estimation and state 

estimation are also discussed.

Chapter 3 investigates the first stage of the problem, tha t is, state estimation 

under full a  priori information. The projection filter is developed for this purpose 

based on param eter estim ation techniques. This filter provides an alternative to 

the Kalman filter and the derivation process helps in  understanding the charac­

teristics of state estim ation problems. The discussion of the relation between the 

projection filter and the Kalman filter also provides a better understanding of 

the Kalman filter. The relationship between the projection filter and the correla­

tion canceler, which is frequently used in the field of signal processing,24 is also 

discussed.

Chapters 4 and 5 investigate the state estim ation problem under unknown 

noise covariances. Due to  the lack of noise information the state estimation prob­

lem is solved under a  deterministic framework, i.e., without requiring statistical 

information about inpu t/ou tpu t data and noise. Four methods are developed, one 

in Chapter 4 and three in Chapter 5. The approach in  Chapter 4 is fundamentally 

different from all the  others; therefore, it is separated as an independent chapter. 

In Chapter 4 the least-squares and recursive least-squares methods are used. The 

fading memory least-squares technique is also used to  deal w ith the effect of un­

known process noise. The relation between the least-squares filter and the Kalman 

filter is also discussed, which provides a deeper understanding of the Kalman filter 

as well as the estim ation problem.

All three methods introduced in Chapter 5 aim at estimating optimal steady 

state Kalman filter gain directly. The relation between a  state space model and a

7
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m atrix polynomial model is derived through Kalm an filter formulation. The first 

method utilizes the equivalence of optimal linear output predictions made by dif­

ferent models and takes advantage of the inherent properties of models in different 

structures. The AutoRegressive with eXogeneous input (ARX) model22 which is a 

m atrix polynomial model, can yield linear prediction adaptively without requiring 

any initial knowledge about the system, but it can not offer state information. 

On the other hand, Kalman filter can provide state information, but it requires a 

priori information. This first method makes these two filters work together. The 

ARX model is used to  generate one- to r-step-ahead linear predictions as refer­

ences. Then a gain for the Kalman filter is chosen such th a t the Kalman filter will 

generate approximately the same linear output prediction. The second method 

uses the relation between the coefficients of the ARX model and the state space 

param eters and the optimal steady state Kalman filter gain. From the relationship 

the Kalman filter gain can be calculated from the estim ated ARX coefficients, and 

thus the state estimation can be conducted. The th ird  method utilizes the fact 

tha t the optimal Kalman filter residual is white and derives the optimal Kalman 

filter gain from a  whitening filter.

Chapter 6 investigates the most challenging stage of state estimation prob­

lems, tha t is, s ta te  estimation under unknown system models and noise statistics. 

Under this situation, one faces a  compound problem of system identification and 

state estimation. Two methods are developed in this chapter. The first m ethod 

identifies a state space model and the corresponding Kalman filter gain simulta­

neously. The in p u t/ou tpu t data  are first used to identify an ARX model of large 

order, taking advantage of its property of requiring no initial information. Then 

the eigensystem realization algorithm (ERA),25 a  system  identification method, is 

used to decompose the coefficient of the ARX model into state space parameters 

and the corresponding Kalman filter gain. The second m ethod is based on the 

projection filter theory developed in Chapter 3, where an ARX model of relatively 

smaller order is identified based on inpu t/ou tpu t d a ta  first. Using the coefficients 

of the identified ARX model, the system Markov param eters can be calculated.

8
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Again, the ERA is used to decompose the Markov parameters into state space pa­

rameters. After having a system model, the corresponding optim al Kalman filter 

gain can be obtained using methods provided in Chapter 5.

Chapter 7 gives an experimental example to illustrate the  feasibility of the 

methods derived in the previous chapters. A ten-bay structure located in NASA 

Langley Research Center is considered. System identification and state estimation 

are conducted and the reconstructed output is compared to the real output.

Finally, Chapter 8 provides conclusions and prospects for th e  extension of this 

research.

9
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Chapter 2

OPTIMAL LINEAR ESTIMATION

2.1 Introduction

Estimation is a technique of deriving some interested quantities based on rel­

evant data, usually conducted when the interested quantities cannot be measured 

either directly or correctly.26 It is an information extraction process, extracting 

useful information out from available data. From another point of view, esti­

mation theories also provide strategies of combining information obtained from 

several different sources to yield more accurate information.

Optimal estimation requires the estimates, the results of performing estima­

tion, to be optimal under a certain optimality criterion. Therefore, based on dif­

ferent philosophies behind the optimality criteria there are different methods. Ba­

sically, there are m ajor three different optimal estimation methods: least-squares, 

maximum likelihood and Bayesian estimations.26-28 They are briefly introduced 

below.

10
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Some term s which are often used in estimation literature are briefly explained 

here: an unbiased estimate is one in which expected value is the same as that of 

the quantity being estimated; a  minimum variance (unbiased) estimate has the 

property th a t its error variance is less than or equal to  tha t of any other unbiased 

estimate; a  consistent estimate is one which converges to  the  true value as the 

number of measurements increases to  infinity. In general, the desirable result of 

estimation is unbiased, consistent and has minimum variance.

2.2 Some Basic Optimal Estimation Methods

In this section, a general example is used to explain a  few basic concepts in 

optimal estimation methods. Assume that the set of p  measurements, Y ,  can be 

expressed as a linear combination of the columns of H  plus a  random, additive 

measurement error, w. T hat is, the measurement is modeled as

Y  = H x  + w (2.1)

where Y  is a  p x 1 vector, x a n n x l  vector, H  a p x  n  m atrix  and w a  p x 1 

vector. Assume p >  n, i.e., the measurement set contains redundant information.

2.2.1 Least-Squares Estim ation

In least-squares estimation, one chooses the value of estim ate which minimizes 

the sum of squares of the deviations, j/j—j/,-.; i.e., it minimizes a  scalar cost function, 

J , defined by

J  = ( Y  — H x )t {Y  -  H x) .  (2.2)

Hereafter, the symbol “A” denotes the estimated value. The resulting least-squares

11
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estim ate found by setting 6J/Sx  =  0 is

St = (.E t H ) ~ 1H t Y  (2.3)

If, instead, one seeks to minimize a weighted sum of squares of deviation,

J  = ( Y  — H x )t W ( Y  -  H x) ,  (2.4)

where W  is a  p x p  symmetric, positive definite weighting matrix, the weighted- 

least-squares estimate becomes

x  =  {H t W H ) ~ 1H t WY.  (2.5)

The results of least-squares have no direct probabilistic interpretation; they 

were derived through deterministic argument only. Consequently, the least-squares 

estimates may be preferred to other estimates when there is no basis for assigning 

probability density functions to x  and Y .

2.2.2 M a x im u m  L ikelihood  E s tim a tio n

The connotation of “maximum likelihood” is a  setting in which nothing is 

known a  priori about the unknown quantity, x , bu t there is prior information 

on the measurement Y  itself. Thus, x  is deterministic and Y  is stochastic. The 

conditional probability density function (PDF) of Y  given the unknown x,  f ( Y  | 

x), contains information about x. If it can be computed, x  may be estim ated 

according to  the maximum-likelihood estimation criterion, which can be s tated  as 

follows. Given a measurement Y ,  the maximum-likelihood estimate x m l  is the 

value of x  which maximizes f ( Y  \ x),  the likelihood th a t x  resulted in the observed 

Y .

In the above example, the conditional PD F of Y ,  conditioned on a given 

value of x,  is the density for w centered around H x.  Assuming w is a  zero-mean,

12
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Gaussian distributed observation with covariance m atrix R, we have

f ( Y  | *) =
(2tt) 2 | R  |2

exp - ± ( Y  - H x )t R ~ 1{Y - H x ) (2.6)

This is called a  likelihood function. Since ln(‘) is a  monotonically increasing 

function, maximizing f ( Y  | x)  is equivalent to maximizing l n ( f ( Y  \ x)),  which 

in turn is equivalent maximizing the exponent in the bracket of (2.6). This is 

equivalent to  minimizing the cost function in (2.4), with weighting m atrix replaced 

by i?_1. The result, of course, is as given in (2.5) with W  replaced by i?-1 . This 

approach provides a  probabilistic basis for choosing the weighting matrix.

2.2.3 Baysian Estim ation

In Bayesian estimation, statistic models are available for bo th  param eter x  

and measurement Y , and one seeks the a posteriori conditional probability density 

function, f ( x  \ Y ) ,  since it contains all the statistic information of interest. In 

general, / ( x \ Y )  is evaluated as (Bayes’ theorem)

f f r  m  / O ' I  * ) / ( * )  / « 7>/  (® I Y ) =  J f y j —  (2-7)

where / ( x)  is the a  priori probability density function of x, and f ( Y )  is the prob­

ability density function of the measurements Y .  Depending on the criterion of 

optimality, one can compute estimate x  from / ( x  \ F ). If the object is to find 

a generalized minimum variance Bayes’ estimate, tha t is, to minimize the cost 

functional

/OO /'O O  y *0 0

/  ••• I (x — x)T S(x — x ) f ( x  | Y )d x \d x 2  • • • dxn (2.8)
- o o  J— o o  J— OO

where S  is an arbitrary, positive semidefinite matrix, we simply set 6J/6x  =  0 to 

find that

/ OO AOO AOOI  “ ’ I  x f ( x \ Y ) d x i d x 2 ' " d x n = E [ x \ Y ] ,  (2.9)
■ o o  J— OO J— o o

13
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which is the conditional mean estimate, and is independent of S. The symbol E[-] 

denotes the expectation operation. Equation (2.8) has the characteristic structure

/ o o  poo poo
I  " ' I  L ( x ) f ( x  \ Y ) d x i d x 2"  • d x n , (2.10)

•oo J —oo J —oo

where x  =  x — x  is the estimation error and L(x)  is a  scalar loss function of x.

The result given in (2.9) holds for a  wide variety of loss functions in addition 

to tha t used in (2.8). Equation (2.9) appears very simple, bu t the simplicity of 

its appearance belies the difficulty of its use. In fact, the computation of the 

conditional mean E(x  | Y )  may be an intractable problem. Worse than  this, to 

find E ( x  | Y )  we require f ( x  | Y), which may not be known. In some cases, we 

may know only its first and second moments.

For the example as shown in (2.1), assuming gaussian distributions for x  and 

w , the result of evaluating E[x \ Y] in (2.9) is

x = ( P - 1 + H t R ~ 1H ) ~ 1H t R ~ 1Y, (2.11)

where Pq is the a  priori covariance m atrix of x.

Comparing the various estimation just discussed, we note tha t if there is little 

or no a  priori information, P 0-1 is very small and (2.11) becomes (2.5) with W  

replaced by iZ-1 . And if we argue th a t all measurement errors are uncorrelated 

(i.e., R  is a diagonal matrix) and all errors have equal variance (i.e., R  = a 2 x Ip), 

then (2.5) reduces to (2.3).

2.3 A State Space Model and State Estimation

In this section, the general linear state estim ation problem of dynamical sys­

tems is described. Due to the growing im portance of digital computers in practi-

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



cal applications of system identification, state estimation and control theories, the 

problem in this dissertation is confined to discrete-time linear systems.

A finite-dimensional, linear, discrete-time, time-invariant stochastic dynamic 

system can be represented by a  state space model

x k+i = A x k +  B u k +  w k (2.12)

y k  = C x k + vk, (2.13)

where x  is an n x 1 s tate  vector, u a n m x l  input vector, and y a p x 1 measurement 

or output vector. Matrices A, B , and C  are the system m atrix, input m atrix and

output matrix, respectively. The sequence {wk} is the process (input) noise, and

the sequence {u*} is the measurement (output) noise. The integer k is the sample 

indicator. This model is used throughout the dissertation, except in some cases 

where the input term  B u k is omitted for simplicity.

Given a set of input and output data recorded from the beginning to the 

current moment, the state estimation problem involves finding the “best” esti­

mate of the current state under some pre-defined optim ality criterion using all the 

knowledge available about the system and noises.

2.4 Optimal Kalman Filter for State Estimation

The Kalman filter is a  natural extension of the estimation methods discussed 

above. This point will be clearly shown in the la ter chapters. The Kalman filter 

for discrete systems with stationary, white process and measurement noises which 

are not correlated to  each other can be summarized as follows:28

a. Initial Conditions:

E[xo] =  x0, E[(x0 -  x 0)(x0 -  £o)T] =  -Po

15
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b. Prediction (Extrapolation):

a;* =  A x ^ _ x +  B u k -1 (2.14)

P fc-  = A P + _1A t  + Q (2.15)

c. Measi’rement Update:

x+ =  ^  +  ff*(y* -  C®*) =  (J„ -  K kC ) x i  + K kyk (2.16)

P+ =  ( I „ -  I<kC)Pk (2.17)

K k = P ^ C T ( C P ^ C T + R ) - 1 (2.18)

where Q and R  are the covariances of process and measurement noises respectively, 

x the estim ated state  vector, P  the corresponding estimation error covariance 

matrix, I n the n-dimensional identity matrix, K k the Kalman filter gain and the 

superscripts — and +  distinguish the estimates before and after taking account of 

the current measurement data  respectively.

The inner operation of Kalman filtering can be explained as follows. Given 

the state, x k- i , a t time k — 1 and its corresponding error covariance, PkL1, the 

Kalman filter propagates the state and the error covariance to the next moment 

k ((2.14) and (2.15)) using the system model, and the results are and P ^  

respectively. This procedure is called “prediction” or “extrapolation”, because the 

current sta te  is calculated based on previous data. Upon the arrival of the mea­

surement y k at tim e k, there are two sources of information about the state a t time 

k: the propagated state with its error covariance and the new measurement with 

measurement noise covariance. The measurement is related to the state through 

measurement equation (2.13). Using a minimum-mean-square estimation error 

criterion, the Kalman filter provides a method of combining these two sources 

of information into an optimal estimate of state x k- This is done by adding a 

modifying term  to  the predicted value, where the modifying term  is computed by 

pre-multiplying the output prediction error (the difference between the real and 

the predicted measurements) with a weighting matrix. This weighting m atrix is

16
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called the optimal Kalman filter gain, and is given by (2.18). This procedure is 

called “measurement update”. After measurement update, the next prediction can 

be made, and so on. By this way the Kalman filter can use data recursively to 

yield optim al estimated state. There is no need to  keep the record of previous 

data.

2.5 State Estimation and Parameter Estimation

In a sense, state estimation is also a  kind of param eter estimation problem 

because bo th  of them  estimate unknown quantities based on relevant data. How­

ever, sta te  estimation is different from general param eter estimation problems in 

two aspects. First, in general param eter estim ation the objective is to  estimate 

some unknown parameters, which is constant or, in some special cases, slowly 

time-varying. However, for a state estimation problem, the objective is to esti­

m ate the state  vector, which evolves rapidly through time. Second, in general 

param eter estimation, redundant data  directly related to  the param eters under 

estim ating are used to determine the values of the  parameters. However for state 

estim ation problem, only one measurement directly related to  the state under esti­

mating is available. Due to these differences sta te  estimation is essentially a  more 

difficult problem than the general param eter estim ation problems. The difficulty 

is many-fold, which can be briefly stated as follows:

Because of sensor hardware limitations, the number of measurements is usu­

ally less than  the number of state of interest. Mathematically, this means tha t 

the dimension of the measurement' vector is smaller than  tha t of the sta te  vector. 

Hence, for each time step, the measurement vector at tha t moment alone is not 

sufficient to  determine the corresponding state vector uniquely because the num­

ber of unknowns is more than the number of equations. Consequently, previous

17
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measurements are utilized to determine the current state. However, previous data 

are not directly related to  the current state. To relate them the system model 

should be utilized. However, due to  the effect of process noise, previous data are 

less reliable when compared to the current one in terms of bearing the information 

about the current state. Therefore, any effective state estimation method should 

properly weigh the previous and current data  based on the knowledge of process 

and measurement noises.

18
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Chapter 3

LINEAR STATE ESTIMATION WITH 
SUFFICIENT A PRIORI INFORMATION

3.1 Introduction

In this chapter state estimation of linear time-invariant dynamical systems 

with sufficient a priori information (i.e., w ith the knowledge of system model, 

noise covariances and initial conditions) is investigated. This is the first stage of 

the state estimation problem and is the simplest case among all the cases this 

dissertation aims to solve. W ith the above assumptions, the conventional Kalman 

filter is already an optimal solution for state estimation. Although it appears tha t 

there is no need to  investigate this solved problem further, the above problem is 

analyzed from a different point of view and provides new insight.

In this chapter the state estim ation problem is solved from a view point dif­

ferent from the conventional Kalman filter, and, as a result, an alternative method 

called the ■projection filter is developed. W hen compared to  the Kalman filter, this 

alternative m ethod has both  advantages and disadvantages. The derivation of the
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projection filter provides good insight regarding the relation between the classical 

estimation theory and the Kalman filter. The studies also provide the background 

knowledge for the subsequent research; therefore, the effort is worthy.

The state space model of the system studied in this chapter is

®fc+1 =  A x k + w k (3.1)

yjt =  Cxk +  vk, (3.2)

where all the symbols are defined in section 2.4. Both the process noise sequence, 

{u>fc}, and the measurement noise sequence, {w*}, are assumed to  be Gaussian, 

zero-mean, white and stationary with covariance matrices Q and R,  respectively. 

These two sequences are also assumed statistically uncorrelated with each other, 

i.e., E[w{vJ] =  0 for any i and j .

Compared with the model described in (2.12), (3.1) does not have the input 

term , B u k. Because the system param eter set [A , B,  C\ and the input force {uk} 

are known, the effect of the term  B u k on the output is also a known deterministic 

quantity. If the term  B u k is included in the system model, one can always subtract 

its influence out from the output. Therefore, it makes no difference conceptually 

if the input term  is om itted in the beginning.

Some extreme cases of the Kalman filter are briefly discussed in Section 3.2, 

providing a background for comparison with the projection filter derived later. In 

Section 3.3 the projection filters for systems under various conditions are derived 

based on param eter estimation theories. Section 3.4 discusses the relation between 

the projection filter and the correlation canceler, an often used processor in signal 

processing. Section 3.5 addresses the relation between the projection filter and 

the Kalman filter. Numerical examples are provided in Section 3.6 to validate the 

derivation of the projection filter and to compare the projection filter with the 

Kalman filter under various situation.
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3.2 Special Cases of Kalman Filter

This section discusses three special cases of Kalman filtering. Although these 

special cases are either trivial or unlikely to exist in practice, they are of theoretical 

interest and hence are included for completeness.

3.2.1 Kalm an F ilter for N oise Free System s

If the system is noise free (Q =  0 and R  =  0) with non-zero initial error 

covariance (Po ^  0), the Kalman filter gain (see (2.18)) becomes

K k = Pk C T( C P r C T ) - 1. (3.3)

Note tha t CKk = Ip] therefore, Kk  is actually a weighted pseudo-inverse of C  and 

Pk is the weighting matrix. Premultiplying (2.16) by C  gives

C x i  =  C(In -  I<kC )x k +  C K kyk =  y k, (3.4)

which implies th a t the estimate satisfies the measurement equation exactly for 

each time step. Define the a posteriori estim ation error ek by

et  = —x k - (^-®)

By system model (3.1), (3.2) and filter equation (2.16), it easily follows tha t

4 + 1= ( I n - K k C ) A e + .  (3.6)

Matrix (In — K kC)  has p zero eigenvalues and n  — p unit eigenvalues if C  has 

rank p, hence, ( In — K kC)A  is a stable m atrix if A  is stable. Thus, based on the 

dynamics in (3.6), will converge to zero asymptotically. Equivalently, based on 

(2.15) and (2.17) where A  represents a  stable system and Q =  0, it can be seen
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that the Kalman filter s ta te  error covariance will converge to  zero in steady state 

(P+  =  P ^  =  0). W hen Pj7 is approaching zero the m atrix  inversion in (3.3) is 

near singular; therefore, to  prevent numerical difficulty a  threshold value of Pj“ 

should be set so that when P £  is smaller than the threshold, the filter gain is set 

to be zero thereafter.

3.2.2 Kalman Filter for System s without Process Noise

If the system has no process noise but has measurement noise (Q =  0 and 

R  ^  0), again based on (2.15) and (2.17) the Kalman filter has a zero steady state 

error covariance (P *  =  P ^  =  0) and a  zero steady state Kalman gain (K 00 =  0). 

In this case the threshold value of Pj7 is not required since the existence of R  

prevents the singularity in the m atrix inversion. The zero error covariance implies 

tha t the estimate is perfect in the steady state. The optim al steady state estimate 

becomes

=  *k = A * k - n

which indicates that in steady state the Kalman filter ignores the noise-corrupted 

measurement and relies solely on system model to predict state information. In 

this case the prediction is the same as the estimation in steady state.

3.2.3 Kalman Filter for System s without M easurement Noise

If the system has process noise but has no measurement noise (Q ^  0 and 

R  =  0), the Kalman filter is calculated based on (3.3), (2.15) and (2.17) but does 

not vanish in the steady state. Hence the filter gain and the error covariance have 

non-zero steady state values. In other words, the estimation can never be perfect 

except in a trivial case when m atrix C  is square and nonsingular.
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As discussed in Section 2.4, the optimal Kalman estimation of the current 

state is formed by adding a  term  to modify the predicted state (see (2.16)). The 

modifying term  is the residual premultiplied by the Kalm an filter gain, and the 

predicted state is obtained by propagating the optimal estim ate of the last time 

step through system model. Kalman filter gain, in a sense, indicates the weight 

of the residual in the filter. It provides a way to fuse the information about 

the current state comeing from two sources: prediction and  measurement. If the 

process noise is strong bu t the measurement noise is weak, the measurement should 

be more reliable than  the prediction which is made by ignoring process noise. In 

this case the residual bears more significant information which can not be ignored, 

and the filter gain will be relatively large. On the contrary, if the measurement 

noise is strong but the process noise is weak, the residual can be regarded as mainly 

caused by the measurement noise and thus is less im portant. The filter gain will be 

smaller. In the extreme case of no process noise as described in Section 3.2.2, the 

residual in steady state is nothing but measurement noise and should be totally 

ignored. Therefore the filter gain is zero.

3.3 Projection Filters

Projection filter is a  linear operator which projects (or transforms, or maps) 

measurement vector from a finite measurement space to  a  state space such tha t 

the image of the projection is an optimal estimate of the current state under some 

optimality criterion. In other words, by defining a measurement vector Yg,jt as

Y9,k =

yk
Vk-l

(3.7)

■ i  -

the projection filter is the m atrix Fq such that

=  FqYqtk,
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which provides an optimal estim ate x k of the current s ta te  x k. In the above 

equations q denotes the number of successive previous measurements, including 

the current one, contained in the  measurement vector. The transform ation matrix 

Fg is called the projection filter of order q. Here the generic term  “filter” is used 

to represent the data  processing procedure which receives measurement as input 

and produces the information interested as output. In the following subsections, 

projection filters for systems under various conditions are discussed.

3.3.1 Projection Filter for Noise-Free System s

Define an observability-type m atrix H q, called measurement matrix, as

Hg =

C  
C A - 1

(3.9)

.Cb4-9+1,

with dimension pq x  n; here p  is the dimension of output and, again, q denotes 

the number of measurement used. It is obvious tha t

Yq>k= H gx k. (3.10)

This linear equation suggests a least-square solution of sta te  x k, tha t is,

x k = H \ Y q>k, (3.11)

where H |  is the pseudo-inverse of H q. In this noise-free case, (3.10) is an exact 

equation, hence the estimation is perfect. The pseudo-inverse m atrix in this 

case is the projection filter for the system, i.e.,

F , ± B l (3.12)

Note that H q and i j j  are not functions of k. If the rank of H q, denoted by n, is 

smaller than pq (i.e. H q is a long and full-column-ranked m atrix), then

-? '■* 9
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If H q is a  nonsingular square m atrix of dimension n, then

F,  =  H - K (3.14)

M atrix H q requires that q equals or exceeds a minimum number, denoted 

by qmin , to make itself full column-ranked. In other words, the projection fil­

ter requires at least qmin measurements to  operate. If more measurements than 

necessary are used (q > qmin)> the com putational load will increase without im­

provement on the estimation, which suggests the optimal number of measurement 

used is qmin-

Compared to the Kalman filter for the same noise-free case, the projection 

filter does not need the initial values of s tate  and its error covariance to  initiate 

the estimation, while the Kalman filter does. The projection filter can also achieve 

perfect estimation once the required minimum number of measurements becomes 

available, while the Kalman filter takes more steps to converge to zero-error es­

tim ation if the initial values are poorly estimated. However, the projection filter 

can not produce estimation until the m atrix  H q becomes full-column-ranked, while 

the Kalman filter can.

3.3.2 Projection Filter for System s w ithout Process Noise

If a system has measurement noise bu t has no process noise, from (3.1) and 

(3.2) the  following equations can be derived:

(3.15)

' y* ' • C - ' vk '
Vk-i —

C A - 1
Xk +

Vk-l

-Vk-q+l - .C A -5 + 1 . -Vk-q+l-

or in short,

— HqXfc -)- Vq>ki 

25
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where the noise vector V9tk is Gaussain, zero-mean and the entries axe not corre­

lated with each other.

Because the system has no process noise, the state Xk is a  deterministic quan­

tity; therefore, a classical deterministic param eter estimation technique 26,27 can 

be applied in estimating the state Xk from data  vector Yq,k- The technique is 

briefly introduced as follows.

3.3.2.1 Deterministic Parameter Estimation

The assumptions and constraints of a  deterministic param eter estimation 

problem are stated  first. Given an observation model

y =  H x  +  v, (3-17)

where y is a p x 1 measurement vector, H  a p  x n  known constant matrix with 

p > n, x  an n  x 1 deterministic unknown vector and v a p  x 1 Gaussian, zero-mean 

noise vector w ith covariance matrix R v , the problem is to  find an estimate x of x  

such that the mean square estimation error, E[(x — x )T (x — x)], is minimized. We 

impose two constraints: (a) the estimate should be unbiased, and (b) x should be 

a linear transformation of the measurement vector (i.e., x =  Fy).

Using the above two constraints we obtain

x =  E[x\ = E[Fy] = E[FH x  +  Fv] = F H x , (3.18)

where the assumption E[v] =  0 is used. The mean square estimation error is

E[(x -  x )T (x  -  x)] =  jS[(x -  F y)T(x -  Fy)]

= E[(x -  F H x  -  F v ) t { x  -  F H x  -  Fv)]

= E[(x — x — F v ) t ( x  — x — i^u)]

=  E[trace(vT F T Fv)] =  E[tva.ce(FvvT F T)]

= tvace(FRvF).  (3.19)

26
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The problem reduces to finding a m atrix F  which minimizes trace ( F R vF)  sub­

jected to the requirement (3.18). The solution is 27

F  = ( H t R - 1H ) - 1H t R ~ 1, (3.20)

and

x = (H TR ; 1H ) ~ 1H TR ; 1y . (3.21)

The corresponding estim ation error covariance P  is

P  =  E[(x -  x)(x -  x)T] =  F R vF t  

= {Ht R Z 1H ) - 1H t R - 1R vR - 1H ( H t R ; 1H )~ 1 

=  {H t R Z 1H ) - x. (3.22)

Equation (3.20) shows th a t F  is actually a weighted pseudo-inverse of H  with 

weighting m atrix R v, which is identical to the least-squares estimation introduced 

in Section 2.2.1 except th a t the weighting m atrix has a physical meaning. In 

addition, (3.22) gives the error covariance of the estimate while the least-squares 

method doesn’t.

3.3 .2.2 Projection Filter Using Deterministic Parameter Estimation Technique

Since (3.16) takes the same form as (3.17), the technique of deterministic 

parameter estimation ju st shown can be applied directly to the state estimation 

problem. Consequently, the optimal estimate of Xk is

=  { H f R - ' H g r ' H f R - ' Y g , *  (3.23)

where R  =  E[VqtkV^k\ = R ®  I q, and “(E)” denotes the Kronecker product. The

corresponding state error covariance is

Pk = ( H f R - 1H q) - 1, (3.24)

which is a  constant.

27
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If the noise level of every element of the measurement vector is the same and 

can be characterized by its variance <r2, in other words, the covariance matrix of 

the measurement noise can be w ritten as R  =  cr2 x Ip, then (3.23) becomes

x k = ( H j H g) - ' H T Y q,k = H \ Y q>k, (3.25)

which is the same as (3.11) for the noise-free case. The corresponding error co- 

variance becomes

Pk = o 2{ H j H qy \  (3.26)

If the covariance m atrix of the measurement noise is not of the form a 1 x  7p, 

the projection filter is then a weighted pseudo-inverse of the observability matrix 

as shown in (3.23), with J?-1 as its weighting matrix.

Compared to  the Kalman filter under the same situation of no process noise, 

the projection filter w ith a small order q is less accurate because Pk in (3.26) 

is not zero for a  small q, while the Kalman filter can achieve perfect estimation 

( P ^  =  0). It can approach perfect estimation if the order q becomes sufficiently 

large. However, the com putational load increases as the order increases. On the 

other hand, the projection filter does not need the initial values of state and its 

error covariance to s ta rt the estimation.

3.3.3 Projection Filter for System s with both Process and Measurement

Noises

For a linear system with both  process and measurement noises, from (3.1) 

and (3.2), the following equation can be derived:

x k- i  =  A ' 1 x k -  A ^ W k - 1, 

yk-1 =  C A ~ l x k -  C A ~ l wk- \  +  vk-x,

28
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9 -1

Vk-q+l  =  C A ~ q+1Xk -  ^ 2  C A ~ g+tWk- i  +  Vk-q+l .
t=l

The above equations can be expressed in a  m atrix form as

x k

(3.27)

'  V k  ' • C  ■
V k - i C A - 1

V k - q + 2 C A ~ g+2
- V k - q + l - mC A ~g+1.

0 0 0 0
0 C A ' 1 0 0

0 C A ~ g+2 • • C A - 1 0
0 C A ~ g+1 • • C A ~ 2 C At - i

■ Wk ' '  Vk '

i« 
...

3

+

1 
...

■«

Wk-q+2 Vk-q+2
. Wk-q+1 - - Vk—q+1-

, (3.28)

or compactly, 

where

Yq,k =  HqXk — M qWqtk + Vq>k

Wq.k = V l - q + l f

Vq,k = [vTk , - - A - q + l \ T

(3.29)

and M q is the coefficient m atrix of W gtk- Defining = =  —M qW gik +  V?Jjt, 

Equation (3.29) can be further reduced to

Yq,k — HqXk  +  £g,fc. (3.30)

Because the noise vector £qtk is a linear transform ation of some independent 

Gaussian, zero-mean random  vectors, it remains Gaussian and zero-mean. The 

covariance of £gijt is

=  Covltqj]  =  MqQMq +  R  (3.31)

where Q =  Cov\Wq<k] — Q ®  Iq, and R  =  Cov\Vq^] =  R ® I q] Cov[ • ] denotes the 

covariance operation.

29
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From (3.30), one can use the technique of random parameter estimation for 

linear equation to  solve it. The random param eter estimation technique is there­

fore briefly introduced next.

3.3.3.1 Random Parameter Estimation

Consider a  measurement model defined as

y = H x  -|- v , (3.32)

where y  is a  p  x 1 measurement vector, H  a  p  x n  known constant matrix, x  an 

n  x 1 unknown random vector with known autocorrelation matrix E[xxT] =  $ 3, 

and v a  p x  1 Gaussian, zero-mean noise vector w ith covariance matrix R v . The 

cross-correlation of x  and v, E[xvT] =  $ xv, is assumed known. The problem is 

to  find an optim al estim ate x by using the criterion of least mean square error, 

subjected to  the requirement of being a linear and unbiased estimation.

(1) Random Parameter Estimation for Zero-Mean Parameters

Suppose x  is zero-mean, then y  is also zero-mean. The correlation matrices 

<&x and <&xu become covariances matrices f tx and i l xv, respectively. The filtering 

form is assumed to be

x = Fy,  (3.33)

where F  is the desired filter. The estimation error e is defined as

e = x - x  = x -  Fy .  (3.34)

To obtain an “optimal” filter, a scalar cost function J (F )  is defined first, which is 

the 2-norm of the error vector:

J (F )  = E[eTe] = traceE[(x — F y ) ( x  — F y )T]

=  trac q E [ x x t  — xy TF T — F y x T +  F y y TF T], (3.35)

30
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The function is then minimized with respect to m atrix F,  which requires tha t

dJ n 
dF

Taking derivative of (3.35) with respect to  F, we obtain

= -2 E [ xyT] + 2 F E [ y y T] = 0,

FE [yyT] = E[xyT),

FQ,y — f lXy, (3.36)

where t t y and Q,xy are the auto- and cross-correlation matrices of y and between 

x and y, respectively. Assuming Q,y is invertible, then the filter F  becomes

F  = t lxy t ty1 

=  E [ x { x t H t  +  v t ) ] E [ { H x  +  v ) ( x t H t  +  v T )] 1 

=  (SlxH T +  n xv) ( i m xH T +  HSlxv +  a%vH T +  R v ) - 1. (3.37)

The corresponding error covariance of the estim ation is

P  =  E[eeT]

=  E [ x x t  — x y TF T — F yxT +  F y y TF T]

=  E [ x x t ] -  E[xyT]FT -  FE [yxT] +  E[xyT ]E[yyT] - 1 E[yyT]FT 

=  F£lyx

= nx-  (3.38)

Consider a special case when Q,xv — 0, tha t is, x  is not correlated with the 

noise v. The optim al estim ate and its corresponding error covariance then become

x  =  n xH T (HQxH T +  jR„)_ 1y, (3.39)

P  = n x -  SlxH T(HSlxH T +  R v) - 1H t t x. (3.40)
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By using matrix inversion lemma26, the above equations can be further simplified 

as

x =  SlxH T (.R - 1 -  R - ' m n - 1 +  H t R ^ 1H ) - 1H t R - 1) y 

=  (ft" 1 +  H TR ^ 1H ) - 1H TR Z 1y

=  -  ( ^ ( f t j 1 +  h t r ^ 1 h )  -  In)

x (SI-1 +  H TR : 1H ) - 1H TR - 1y 

=  (H TR ~ l H  +  fl - 1)~ 1H T R ; 1y,  (3.41)

p  = six -  (h t r ^ h  + si~1) - 1h t r ; 1h s i x

=  (H t R Z 1H  +  S l-1) - 1( H TR ^ 1H  +  f t - 1 -  ^ R - ' H ) ^

= (H t R ~ 1H  +  J2J1) " 1. (3.42)

From these two equations, it can be clearly seen that when f i” 1 =  0, th a t is, no

a priori information about x  is available, (3.41) and (3.42) reduce to  the form of 

deterministic param eter estim ation as shown in (3.21) and (3.22).

The formulations derived above assumed the filtering form as shown in (3.33). 

Next we check the bias of the estimation. For an unbiased estimate

E[e\ =  E[x - x ] =  E[x -  Fy]

= x -  F E [ H x  +  v] = (In ~  F H )x  =  0, (3.43)

where x=E[x]. To satisfy (3.43), either F H  should be an identity m atrix, or 

matrix I n — F H  should be singular w ith x  in its null space, or x  should be zero. 

In the case x =  0 the requirement of unbiased estimation is satisfied. If x  is not 

zero-mean, then y is not zero-mean also; hence, covariance matrices Q,x and Q,xv 

become correlation matrices <&x and respectively. Writing F H  as

F H  =  ( $ xH t  +  $ xv) ( H $ xH t  + H $ xv +  $ r vH T +  R v T ' H ,  (3.44)

it is clear that in general F H  is not an identity matrix ( if 4?IU =  0 and 4?"1 =  0 

then F H  =  Jn), and it is unlikely tha t x  is always in the null space of matrix
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I n — F H .  This implies the estim ation is biased even though it satisfies the least- 

mean-square criterion. This is because we have imposed the filtering form in 

(3.33). To obtain an unbiased estimation when 5 ^ 0 ,  the  filter form should be 

modified.

(2) Random Parameter Estimation for Non-Zero-Mean Parameters

The optimal linear estimation is the mean of the conditional density function 

of the param eter x  given data  y. 6 The conditional m ean for linear Gaussian 

measurement (3.39) is of the form 26,27

E[x | y] = x + Q.xy£l~1( y - y ) ,  (3.45)

where y = E[y\, £lxy and Q,y are the cross-covaxiance of x  and y  and auto­

covariance of y, respectively. Therefore,

x  =  E[x | y) = x +  F{y -  y) (3.46)

where

F  = SlxySly1

= E[(x -  x ) ( H( x  - x )  + v )t ]E[(H(x -  x)  +  v ) (H(x  - x )  + u) T ] - 1

=  (fi xh t  +  n xv) ( H n xH T +  H n xv + q%vh t  +  r v) - \  (3.47)

and y =  Hx.  The corresponding error covariance is

P  = Cov[{x — 5)] =  Cov[(x — x) — F(y  — y)]

= S2X -  F Q yx -  QxyF T + F Q yF T

=  — F Q yx. (3.48)

Note that (3.47) and (3.48) are identical with (3.36) and (3.37).

Taking expectation of (3.46) yields E[x] =  x , which indicates the  estimate is 

unbiased. Therefore, (3.46) and (3.48) provide an unbiased optim al estimate of 

the random param eter x  and its corresponding error covariance P.
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If param eter x  and noise v are uncorrelated (i.e., Q.xv =  0), (3.46), (3.47) and 

(3.48) reduce to

or alternatively, based on the same m atrix inversion lemma used in the previous 

section we have

If f l ' 1 =  0, i.e., no a  priori information about x is available, then x and y  vanish 

and (3.51) and (3.52) reduce to (3.21) and (3.22), respectively, of the deterministic 

param eter estim ation case.

3.3 .32 Projection Filter Using Random Parameter Estimation Technique

Since (3.30) has the same form as (3.32), the technique of random param eter 

estimation can be applied in the state estimation problem. For this purpose, the 

auto-covariance of a a n d  the cross-covariance of Xk and £g,jt should be calculated 

first. The noise £g,jt is correlated with the state Xk in this case due to the existence 

of process noise. The covariance matrices can be derived as follows. Defining 

~  then

X  =  X  +  £lxH T(HSlxH T +  iZ)- 1 (y -  H x )  

P  = Slx -  £lxH T ( i m xH T +

(3.49)

(3.50)

x = x + (.E t R ~ 1H  +  Q - l ) - 1H TR ~ 1{y -  H x ) (3.51)

(3.52)

=  C ov[xk -  Sfc] =  C o v lA x k -i +  W k-1] 

=  AQ,Xk_1A'r  +  Q k -i (3.53)

=  -  [E [x t wk l  • • • » E lx kwk-g+ll] M g 

=  - [ 0 „ ,  Qfc_ i , - - - , A« -2Q fc_ g+1]M 3T (3.54)
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where 0„ =  0 x and the following relation is used,

(APXk-r +  A ' ) » L ,
i=l

= A ^ 1 Qk- P,

p = 0,1, • • •, q — 1. Note th a t QXk can be com puted recursively using (3.53) from 

the given initial Q,Xq and will converge to a steady state value if the system is 

stable.

Because x k and yk are not necessarily zero-mean processes, based on the 

theory of random  param eter estimation (3.46), the  optimal estimated state for 

(3.30) should be

X/- — Xk  +  F qjk(Yq,k

=  X k + (Q,XkH q +£lXk£k)(HqQ,XkH q 

+ +  S i ) - 1! (Y,.k -  ?,,*) (3.65)

where Xk can be obtained by propagating the initial state

Xk =  Afca;0

The corresponding error covariance is

Pk = n Xk -  Fq,k(SlXkH j  + SlXksk)T . (3.56)

If both the process and measurement noises are stationary with covariance matrices 

Q and R,  respectively, then the noise covariance Sjt and the cross-covariance 

matrix &Xkfk become time-invariant. Furthermore, if the system is stable, the 

state auto-covariance m atrix Q,Xk will converge to  a  steady state value Q,x\ then 

(3.55) and (3.56) become

Xk =  Xk +  + n xt ) ( H gn xH j  + H qsixs +  +  s ) - 1 (y9)fc -  ? qtk), (3.57)

Pk = nx-  Fq( n xH j  +  Slxs)T , (3.58)
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where

f t*  =  E [ x t t l \  =  -  [on, Q, A Q , - - - , A ^ Q ]  M j ,  

S  =  MgQMg + R.

The projection filter Fq in (3.57) becomes time-invariant and is a  function of q 

only.

3.4 The Relation Between Projection Filter and the Correlation Canceler

The concept of correlation cancelation plays a  central role in the development 

of many optimum signal processing algorithms because a correlation canceler is 

also the best linear processor for estimating one signal from another. The concept 

is well-known in the information and data  processing disciplines.24

Consider two zero-mean random vectors x  and y  of dimensions n  and p, 

respectively. If x  and y are correlated w ith each other in the sense tha t Q,xy =  

E[xyT] ^  0, then we would like to  remove such correlations by means of a linear 

transform ation of the form

e =  x  — F y  (3.59)

where the  n x  p  matrix F  must be suitably chosen so that the new pair of vector 

(e,y) are no longer correlated with each other; th a t is, we require

Sley = E[eyT] =  0 (3.60)

Using (3.59), we obtain

ftej, =  E[(x -  Fy )yT] = E[xyT] -  FE[yyT]

= Slxy ~  Ftty (3.61)
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Then the condition Q,ey =  0 immediately implies tha t 

F  =  t ixyQy1 =  E[xyT]E[yyT]~1. (3.62)

Using Q,ey =  0, the covariance m atrix of the resulting vector e is easily found to 

be

Q,e =  E[eeT] =  E[e(xT — y TF T)\ =  9,ex — £leyF T

= £lex — E[(x — F y ) x T] =  Q,x — F€tyx =  £2Z — (3.63)

The vector

x  =  F y  =  Q,XyQ,yl y, (3.64)

obtained by linear processing the vector y through the m atrix F  is called the 

linear regression, or orthogonal projection, of x on the vector y. In a  sense, x 

represents the best “copy” , or estimate, of x th a t can be made on the basis of the 

vector y.  Thus, the vector e =  x — Fy  =  x — x may be treated as the estimation 

error. Actually, it is better to treat x not as an estim ation of x but rather as an 

estimation of the part of x which is correlated with y. To elaborate this point, 

suppose th a t x consists of two parts,

x =  xx +  x2,

such th a t mi is correlated with y, but X2  is not. Then,

ClXy =  E[(x i a?2)y ] =  ^x iy

and therefore,

X — y —— Qxxy^y y ~  ^ 1 *

The vector e =  x — x =  (a:i — x\ )  + X2  consists of the estimation error of the 

a:i-part plus the X2-part. Both of these two terms are uncorrelated with y. The 

corelation cancellation may be summarized as follows: if x has a  part X\ which 

is correlated with y, then this part can be canceled as much as possible by using

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



a linear processor F  to convert y into the best copy X\ of x\  and subtracting it 

from x. The remainder is no longer correlated with y. The part r 2 of x  which is 

uncorrelated with y remains entirely unaffected. It cannot be estimated in terms 

of y.

At this stage one can find (3.62), (3.63) and (3.64) axe the same as the projec­

tion filter, (3.53), (3.52) and (3.51), respectively, if x  and y  are zero-mean. In other 

words, the projection filter is also an optimal correlation canceler. It can extract 

as much as possible the information about the current state from data. However, 

the projection filter additionally provides a  m ethod to deal with the signals which 

are not zero-mean.

3.5 A Relation Between Projection Filter and Kalman Filter

The projection filter and the Kalman filter are closely related. In fact, a 

projection filter of order q (q >  2) can be transformed to have a  Kalman filter 

structure, and the recursive projection filter of order one is identical to  the Kalman 

filter. The identity of the two filters can be proved by re-deriving the Kalman filter 

through the recursive projection filter of order one and will be proved later. But 

first, the transformation of the projection filter to  the Kalman filter structure is 

derived.

The transformation is based on the concept of correlation cancellation intro­

duced in the last section. Taking expectation of both  sides of (3.30) one has

Yq,k = H gx k, (3.65)

because is zero-mean. Subtracting (3.65) from (3.30) on both sides yields

Yg,k - Y k)9 = H x t + t 9,k, (3.66)
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where x k=Xk — Xk- The noise term £9ifc is correlated with x k , and the covariance 

is shown in (3.54). According to the correlation cancellation theory, can be 

divided into correlated and uncorrelated parts, namely,

^ .  =  # ' 4 + a , (3.67)

where H ' x k is the  correlated part. The orthogonal projection, denoted by H',  is

h  — (3.68)

according to (3.62), where ft^x* =  E[£qikXkT] and ClXk =  Cov[x*k\. Introducing 

(3.67) and (3.68) into (3.66) yields

Yq*= Y q,k - ? q,k

= (Hg + H')x*k + <;k, 

= H gx*k +  a . (3.69)

From (3.68) one can derive

(3.70)

and

n .»e. =  (3.71)

The noise (k in (3.69) is uncorrelated with x k, and its covariance is (see (3.63))

Sjt=Cou[Cfc]

=  f y k  ~  H  ^xktk

=  E  k - H ' a gk( H ' f , (3.72)

where (3.31) and (3.71) are used. According to (3.55) the projection filter is

tT i n  , v i r  n  u T
cik .
■>T u T  , \ - i

Xk = X k  + f r XkH ?  + a , k(k) iH qa XkH l

+  HqQ,xk$k +  Q,Xk£kH q +  S k) (Yq,k -  Yg>k).
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and by substituting (3.70) to (3.72) into the corresponding terms in (3.55), one 

obtain

Xk =  Xk +  \(ttXkHq +Q,Xk(H  y) (Hq$lXlcHq 

+  H qQXk(H ')T +  H'SlXkH j  +  H ' n xk(H ')T  +  Sfc)"1] (Yg>k -  Yq,k)

= x k +  a XkH j  ( H qn xkH q +  Sfc) _1 Ygtk. (3.73)

Similarly, the corresponding error covariance (3.56) becomes

Pk =  Q,Xk — Fqik(ClXkH j  +

=  — Fq,k(Hqi lXk +  H'Q,Xk)

= ( I - F g,kH q)SlXk. (3.74)

A close examination of (3.73) and (3.74) shows th a t they have a  Kalman filter 

format, where Fqtk is equivalent to the Kalman filter gain K k, and H q, S* and 

QXk are equivalent to C, R  and Pj7, respectively. Equations (3.73) and (3.74) can 

also be derived from (3.69) using (3.39) and (3.40) directly, because in (3.69) all 

the variables are zero-mean and the noise ( k is uncorrelated with «£. In the above 

fashion, x*k is estim ated first, and the final estimate is given by x k =  x k + x \ .

Based on the above derivation, we can see th a t despite the apparent differ­

ence, the information extraction philosophies of projection and Kalman filters are 

actually the same. Yet there are still some differences.

The a priori values of the estimates (xk) and their corresponding error covari­

ances (fiXk) of the projection filter are either obtained by propagating from their 

initial values or set to be the steady state values. However, the counterparts in the 

Kalman filter (zjT and P/T) are conditional means and covariances, conditioned on 

all previous data. Using conditional means as the a  priori estimates allows the 

Kalman filter to utilize all the data (from the beginning till the current moment) 

recursively in estim ating the current state. On the contrary, a  projection filter of 

order q uses only g’s most recent data to do the same task. As a  result, the Kalman
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filter in general is more accurate than a  projection filter of small order. Besides, 

the Kalman filter treats only one measurement a t each step, while the projection 

filter of order q needs to trea t a batch of q data. Therefore, computationally the 

Kalman filter is more efficient.

One might ask if the projection filter can somehow be modified to have the 

capability of utilizing all the data  available so th a t it may produce the same result 

as the Kalman filter. The answer is yes. Because both  filters are optimal linear 

filters, based on the same given conditions, they should be equivalent.

For a projection filter w ith order q, a number of q's most recent measurements 

should be kept in record a t each step. The estim ate made a t each step does not 

take advantage of previous estimates. In other words, the estimation is totally 

based on the finite da ta  in the current record. In order to  use all measurements, 

one may increase the order as the time step increases. By thus doing, however, the 

computational load will soon become too heavy to  bear in practice. Hence, from a 

computational standpoint, a recursive type of projection filter is preferable. The 

recursive projection filter is derived as follows.

Based on (3.2) and the assumption tha t s ta te  and measurement noise are 

uncorrelated, the projection filter of order one and  its corresponding estimation 

error covariance, according to  (3.57) and (3.58), are

x k = x k +  SlXkC T(CSlXkC T +  R r ^ y k  -  C x k), (3.75)

p +  =  n Sk -  n Xkc T ( c n Xkc T +  (3.76)

where x k is the unconditional mean of x k. In order to  take advantage of previous 

estimations, conditional mean of state and conditional sta te  covariance should 

be used. Suppose the optim al estimate of the s ta te  x k- i  a t time k — 1 and its 

corresponding error covariance Pk- \  have been obtained using the projection filter 

of order k  — 1 based on all the data from yi to  yk- i -  Because the projection 

filter also calculates the conditional mean of th e  param eters under estimating,
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conditional on all the data used, 26 Xk-i  can be w ritten as

Xk-i = | lfc-i]

where Yk- i  =  {yi, • • •, 2/fc-i}.

Using the estim ate at k — 1 and the system model, a  prediction of the state 

at k  and its corresponding error covariance can be made. T hat is,

Xk = E[xk | Tjt-i] =  E[Axk - 1 +  Wk- i  | Tfc-i] 

= E[Axk- i  | Yk- 1]

= A x k- i .  (3.77)

Since Xk is the conditional mean, conditioned on Yk-i,  it is also the a  priori 

estim ate of Xk. Similarly, the conditional s ta te  covariance can be calculated as

flxj. =  |Yjfc_i — Cov^Xk

=  C ov[Axk-i +  Wk-i -  A xk-i]  

=  Cov[Aek-1 +  

=  A P k - \A T +  Q k-i

= P k • (3-78)

Therefore, the recursive projection filter and its corresponding posterior error co- 

variance become

x k =  A x k - i  + P ^ C T { C P ^ C T + R ) ~ \ y k -  C A x k- 1)

=  A x k - i  +  Kk(Vk -  C A x k- 1) (3.79)

where

K k = P k C T( C P ^ C T +  R ) - \  (3.80)

and

P t  =  Pu ~ P k C T(CPk7 C T +  R ) ~ 'C P f

=  (In — K kC)Pj7. (3.81)
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Equations (3.77) to  (3.81) are exactly the same as the Kalman filter formulations. 

This proves that the recursive projection filter of order one is identical to the 

Kalman filter.

Enlightened by the equivalence just derived, immediately we can find a mod­

ified Kalman filter for the situation in which measurement noise is correlated with 

state. For this situation the conventional Kalman filter ceases to  be optimal if ap­

plied directly. The structure of the modified filter is the same as the conventional 

Kalman filter, but the filter gain becomes

K k =  (Pk C T +  PXV){ C P ^ C T +  CPSV + P l C T +  R ) ~ \  (3.82)

where Pxv is the covariance of state error and measurement noise. This modified 

filter is a benefit of deriving the Kalm an filter from the projection filter.

For recursive projection filters of orders greater than  one in which the recur­

sive feature is obtained by using conditional a priori mean and state covariance, 

the formulations are the same as (3.77) to (3.81), except C  and R  should be re­

placed by H q and E, respectively, and I n in (3.81) replaced by the identity matrix 

of proper dimension. In this case, some measurements are used more than one 

time in estimating one single state, th a t is, some measurements are used both in 

calculating the a priori estimate and in calculating the filter part, or the modifying 

part. However, this does not help in improving the results. Since the projection 

filter seeks the conditional mean of the state, it makes no difference whether a 

measurement is conditioned once, twice, or more. Consequently, recursive projec­

tion filter of an order greater than  one is computationally inefficient. Though there 

is no benefit in computation, the concept of recursive projection filter is still valu­

able. The property of equivalence between recursive projection filter and Kalman 

filter helps in the development of an effective system identification m ethod which 

is introduced in Chapter 6.
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3.6 Numerical Examples

Numerical examples are provided to verify the projection filter formulations 

and to compare the projection filter with the Kalman filter. A lumped-mass beam­

like dynamical system as shown in Fig. 3.1 is simulated. The system has three 

modes (six states). The m odal frequency and the damping ratio of each mode are 

listed as follows:

Mode Frequency (rad/sec) Damping (%)

1 1.6369 0.63

2 4.4719 1.01

3 6.1085 1.30

The sampling frequency is 10 Hz. The state space param eters A  and C  are

=  diag | 0.9856 0.1628' 0.8976 0.4305' 0.8127 0.5690'
-0.1628 0.9856 -0.4305 0.8976 -0.5690 0.8127 }

C = 1.5119 0. 2.0000 0. 1.5119 0.
1.3093 0. 0. 0. -1.3093 0.

where A is a  block diagonal m atrix.

The projection filters for noise-free systems and systems without process noise 

are trivial, and hence are exempted from numerical example. Only the case of 

systems with both  process and measurement noise is illustrated. The system 

starts from an initial condition r 0 =  0, and is excited by Gaussian white noise 

with covariance Q =  0.005 x  1$. The two output measurements are contaminated 

by additive Gaussian white noise with covariances R  =  0.3 x / 2* The noise-to-signal 

ratio in variances is about 10%.

The optimal Kalman and  the projection filters of order 2, 10 and 20 are used 

to estimate the state using the  same initial conditions ( r 0 =  0 and Pq =  4.0 x 1$) 

and noise covariances. The results are shown in Figs. 3.2 and 3.3. Figure 3.2
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shows the estimations of the first state, while Fig. 3.3 shows the sixth state, which 

is of higher frequency. In both  figures, the results of the optimal Kalman filter axe 

compared with the results of the projection filters with different order. The solid 

lines represent the true  states, and the dashed lines represent the estim ated values. 

Figure 3.4 shows the error variances of state 1 and state 6 of the projection filter vs. 

filter order. The dashed line represents the error variance of the optimal Kalman 

filter estimation which is shown for comparison. As the order of the projection 

filter increases the results are improved and approach those of the Kalman filter. 

The error variances shown are the values calculated by averaging 200 samples, 

discarding the first 50 samples (not obtained from theory). Similarly, Figs. 3.5,

3.6 and 3.7 show the comparison of the optimal Kalman filter and the constant 

projection filters which use steady state covariance instead of the propagating 

time-varying state covariance. Note tha t in this case the constant projection filter 

is even better than the time-varying one. This is due to the poor estimate of the 

initial state error covariance for the time-varying case.

3.7 Concluding Remarks

The results reported in this chapter are summarized as follows:

(1) State estimation of linear systems can be realized using projection filters, 

which are based on optimal parameter estimation theories.

(2) The projection filter for noise-free systems is a least-squares filter, which is 

simply the pseudo-inverse of the measurement matrix. It does not need initial 

values of state nor its error covariance, but cannot yield estimates until it has 

accumulated a  certain number of data. The estimation is perfect.

(3) The projection filter for systems without process noise is a weighted least- 

squares filter, in which the weighting m atrix is determined by the covariance 

of measurement noise. It also does not need initial values to initiate the
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estimation but cannot yield estimates until it has accumulated a  certain num­

ber of data. The estimation is less accurate when compared to  the Kalman 

filter.

(4) The projection filter for systems w ith both  process and measurement noises 

is a Baysian estimation, which compute the conditional mean of the state 

based on all the measurements used. It needs the same amount of a  priori 

information of system and noises as the Kalman filter does. The projection 

filter of small order is less accurate and requires more computation than the 

Kalman filter.

(5) The projection filter is also an optim al correlation canceler which extracts all 

correlated information associated with the state estimated and the measure­

ment vector.

(6) The recursive projection filter is equivalent to  the Kalman filter. The recursive 

projection filter of order one has exactly the same formulations as the Kalman 

filter does.

(7) The recursive projection filter provides a viable method for state estimation 

when the measurement noise is correlated with state.
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Chapter 4

LINEAR STATE ESTIMATION UNDER  
UNKNOWN NOISE COVARIANCES

 Direct Least-squares Approach

4.1 Introduction

In Chapter 3 system model and noise covariances are assumed known in ad­

vance in estimating state information of a linear time-invariant dynamical system. 

In this chapter the noise covariances are assumed unknown. This situation poses 

the second stage of the state estimation problem: how to conduct state estima­

tion under unknown noise covariances. The conventional Kalman filter under this 

situation cannot be used directly because without noise covariances the filter gain 

needed for operation can not be computed. In order to  conduct state estimation, 

therefore, one should either get something done before really using the Kalman 

filter, or consider some approaches other than the conventional Kalman filter.

The work needed to  be finished before running the Kalm an filter is tuning 

the filter, or estimating either the noise covariances or the Kalman filter gain.
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Tuning the filter basically consists of choosing a  set of guessed noise covariances 

by “engineering judgm ent” . In practice this is a cut-and-try process, which is 

subjective, experience-required and time-consuming. The criterion for adjusting 

parameters is to  make the resulting residual sequence as white as possible, because 

the residual of the optimal Kalman filter is w hite.28 Once the filter can produce 

near white residual, the param eters used can be regarded as proper. The quality 

of the estimation in the above approach relies fully on the  quality of the adjust­

ment, and because many param eters must be adjusted, it is very difficult to attain  

optimality. Therefore, this approach usually results in a  suboptimal filter.

If the ad-hoc filter tuning process described above is not considered for a 

Kalman filter application, estimation of noise covariance or Kalman filter gain 

should be conducted and will be discussed in the next chapter. In this chapter we 

discard the Kalman filter structure and use a direct least-squares approach, which 

is basically different from the other approaches presented in the next chapter.

In this chapter the time-variant state estimation problem is re-phrased into a 

time-invariant linear param eter estimation problem, and least-squares techniques 

are then used to solve it. Since there is no statistical information about in­

pu t/ou tpu t data  and noise, the least-squares technique is used because it does 

not require the noise statistics and the initial values of the state and its error 

covariance as Kalman filter does. It is also simple to  understand and easy to  use. 

However, the trade-off is th a t it can provide only suboptimal results when process 

noise exists. Kalman filter has been used to replace least-squares in param eter es­

timation problem.16 However, to the author’s knowledge, using least-squares filter 

to replace Kalman filter in state estimation has never been addressed.

Section 4.2 is devoted to deriving the least-squares filters for various con­

ditions. A close relationship is found between the least-squares filters and the 

Kalman filter, which is discussed in Sections 4.3 and 4.4; therefore, this chapter
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also provides material for a better understanding of the Kalman filter. Numerical 

examples are given in Section 4.5 to verify the derivations.

4.2 A Least-Squares Approach

In section 4.2.1 filters for linear systems w ithout process noise are derived. 

These include the fixed-ordered filter using a fixed number of previous data to 

make the estimate, the infinite-ordered filter using all the da ta  available, and the 

recursive weighted least-squares filter with different weighting for the measurement 

from each sensor when the measurement noise covariance is known. Section 4.2.2 

derives the fading memory least-squares filter for systems with both  process and 

measurement noises.

4.2.1 Least-squares Filters for Linear System s w ithout Process Noise

First, consider the case of a  system without process noise. This system can 

be represented by the following state space model, in which the input force term 

is not included for simplicity:

x k+i = A x k, (4.1)

yk =  C x k + vk. (4.2)

Based on this model the following equations in m atrix form can be derived:

(4.3)

' Vk - • C - ' v k '
Vk-i

—
C A - 1

Xk +
vk- i

-Vk—q+1 -v k—q+1-

or, in short,

Yq,lt  =  HqXk +  F ? iA, 
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where q denotes the number of the successive d a ta  used in the formulation. This 

equation relates q — 1 previous data and their corresponding noises to the current 

state vector in a  linear form. This linear equation, as can be seen in the next 

sections, is very useful in seeking a solution to  the  current state.

42.1.1 Fixed-ordered Least-squares Filter

Suppose the  number q is fixed; then this situation is the same as in Section

3.3.2 except now the measurement noise covariance is unknown. State vector a;* 

has a  least-squares solution

x k =  ( H j H q)~l H j Y qtk = H \Y q,k , (4.5)

where x k is the optim al estimate of the state vector x k and is the pseudo-inverse 

of the observability-type matrix H q. This result is identical to (3.25).

To study the  statistical properties of the estim ate, define the estimation error 

efc by

ejt=mjfc — x k, (4.6)

and substitute (4.4) into (4.5) for Yqik to  yield

x k = H \H qx k +  H \V q%k = x k + H \V qtk. (4.7)

Because E[H^Vq)k] =  0 by the zero-mean assumption on vk, one has E[xk] = E [xk], 

which indicates tha t the estimate is unbiased. Furtherm ore, comparing (4.7) w ith 

(4.6), apparently ek = —H \V q>k- Hence, the error covariance of the estimation can 

be calculated as

Pk =  E[ekeJ] =  H lE {V ,lkVTk](H l)T , (4.8)

where E[Vq,k V*k] is the covariance of the collective noise vector Vq>k- If all the

measurement noises are uncorrelated and equally strong, which implies th a t the
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noise covariance R  is of the form a 2 x l p, then the error covariance of the estimation 

becomes

Pk = a2H \{ H \)T = c  (4.9)

where H q)~l is constant. Therefore, the quality of the estimate is directly 

proportional to the  variance of the noise of a single measurement. Furthermore, 

because

=  Y ^ ( A - i+1)T CTC A ~ i+1.
i=i

C
C A ~ l

. CA~^+1.

(4.10)

When q approaches infinity, H j H q becomes infinity and thus (H jH q ) -1 becomes 

zero, which in tu rn  means Pk becomes zero. Therefore, the estimate is perfect 

when q approaches infinity. In this case, the m ethod can be viewed as choosing 

a state vector x k to  fit q sets of measurement data  optimally in the least-squares 

output error sense using the relations provided by the system dynamic equation. 

The pseudo-inverse m atrix H* is fixed and only needs to  be calculated once. Hence, 

the filter is actually a  time invariant finite impulse response (FIR) filter, which 

receives yk and its q — 1 delay versions as input and yields estimated state x k as 

output. The filter order q should be sufficiently large to  make matrix H q full- 

column-ranked, yet not so large as to cause very heavy computational load.

42.1.2 Infinite-ordered. Least-squares Filter

If the filter order q is not fixed but increases w ith time index k, a  recur­

sive least-squares filter can be derived from the ordinary least-squares as follows. 

Suppose a t time k the least-squares solution of the s tate  is

x k = (Hk H , ) -1 H k Yk,

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(Yk is used to  replace Yk,k for convenience), then  a t next step & + 1, the estim ated 

state should be

where

and

Hence,

H k+! = '  H k C
C A ~k H kA ~ \

Yk+i = Vk+i
Yk

(4.11)

(4.12)

xk+i =  ^ C T : A  TH l

= [CTC + A ^ H ^ H k A - 1

C
H kA ~ \ J

cT: a- th i Vk+i
Yk

- l c T \ a ~thT Uk+i
Yk (4.13)

At this point the m atrix inversion lemma is used to expand the m atrix inversion 

part of (4.13). This is a crucial step of the derivation. Therefore, for better 

understanding the lemma is briefly stated here.

Matrix Inversion Lemma:

Let D  and H  be two positive-definite, m  x m  matrices related by

D = H  + E F G  (4.14)

where F  is another positive-definite, n x  n  m atrix, and E  an m  x  n, G  an n  x m  

matrix, we may express the inverse of the m atrix  D  as follows:

D ' 1 =  H - 1 -  H ~ 1E (F ~ 1 +  G H - ' E y ' G H - 1. (4.15)

In the m atrix inversion part of (4.13), with H = A TH^HkA x, E  

C T, F  =  Ip, G = C, the equation becomes

xk+i = [ A (H lH k) - 1A T -  A (H jH k )~ 1A TC T (Ip +  C A (H ^ H k) - 1A TC T ) - 1
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x CA(H'j;Hk)-1AT][(fryk+1 + A~TH%Yk]
=[A{Ĥ Hk)~1AT - A(Hk Hk)~1ATCT(Ip + CA(H?Hk)-1ATCT)~1 

x CA(H£Hk)-1AT]CTyk+1 +
[A(H^Hky 1A T -  A{HlHk)~lATCT{Ip + CA(H^Hk) - 1ATCT)~1 

x CA{H%Hk) - 1AT}A-THZYk 

=A(H£Hk) - 1ATCT[(Ip + CA(H'[Hk) - 1ATCT) - 1(Ip + CA{H^Hk)~1ATCT)

- (Ip + CA(Ĥ Hk)-1ATCT)-1CA(HlHk)-1ATCT]yk+i+
[A{Hk Hk)~lHk Yk -  A(HZHky 1Ar CT(Ip + CA(HjHk) - 1ATCT)~1 

x C A i H j H ^ H ^ Y k ]

=A(Ĥ Hk)~1ATCT(Ip + CA(H£Hk)-1ATCT)-1yk+1 +
[A{Hk Hk)-1 Hk Yk -  A(Hk Hk)~1ATCT(Ip + CA(H^Hk) - 1ATCT)~1 

x CA{HlHk)~l H^Yk}. (4.16)

Note tha t Hh)-1 H%Yk =  x k, and if we denote

nfc+1 = A(Ĥ Hk)~1ATCT(Ip + CA{Hk Hk)~1ATCT)~1, (4.17)

then (4.16) reduces to

£k+i = Ilfc+ij/fc+i + Axk — TLk+iCAxk
= Axk +  Rk+1(yk+i -  CAxk). (4.18)

If we further denote 4>fc+i =  A{HjHk)~l AT , then (4.17) becomes

n*+1 = $*+1 CT(IP + c$k+1cTy 1. (4.19)

By defining $ k=(H%Hk) -1 , similar to (4.16), we obtain the following equa­

tion:

«*+i
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=A(H%Hk)~1A T -  A ( H f H k)~1A TC T(Ip +  C A (H ^ H k) - 1A TCT)~1 

x C A {H ^H k) - l A T 

= A V kA T - U k+1C A * kA T

= (J n -  n fc+1C )A $ fcAT =  (In -  Hk+i C ) * k+i. (4.20)

It is interesting to  see th a t (4.18) to (4.20) have exactly the same form, as the 

Kalman filter, where Iljt+i is equivalent to  the Kalman gain and the value in the 

parenthesis is the residual. The value of xl>k can be interpreted as the a posteriori 

error covariance and $it+i the a priori error covariance.

4.2.1.3 Recursive Weighted Least-Squares Filter

The above formulations are derived under the criterion of the least-squares of 

output error, which implies th a t the estimate x k can fit k equations in (4.3) (q — k) 

with a  minimum sum  of the squares of the output deviations. Every element of 

the output deviations is equally weighted, which is equivalent to assuming tha t 

the measurement noises from different sensor channels are equally strong and are 

uncorrelated with each other. If no other information about the properties of the 

output da ta  is available, this is the best result one can obtained. However, if 

the covariance of the measurement noise is known, the  result can be improved. In 

general, the covariance of measurement noise is much easier to  obtain than process 

noise, if the la tter one exists.

In this section we assume tha t the covariance of the measurement noise is 

given, which is the same situation as in Section 3.3.2, and, hence, the weighted 

least-squares should be employed. In this section a solution in recursive form is 

derived, and the results are very similar to  the last section. It is found tha t, even 

though the measurement noises are white, if the noise from different sensors are 

not equally strong and /or are correlated with each other, results can be degraded 

if weighting is not used.
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According to  the theory of the weighted least-squares, the optimal weighting 

m atrix is the inverse of the covariance of the measurement noise (see section 3.3.2). 

Therefore, (4.5) should be modified as

(4.21)

where R k = E \VkVk ]. Denoting the measurement noise covariance by R,  the 

optimal estimate of the state at the next time step is

R - 1 0 c
0 ffl

i
*• 

i
i H kA - 1

R - 1 0 Vk+i
0 R k 1 . Yk .

- l
=  ( j c r : A - TH£]

x [cT : a-thi\

^ l ^ R ^ C  + A ^ H ^ R ^ H k A - 1] - 1^  : A ~ t h £] R~1yk+ 1  

L J

= A ( H £ R k 1H k) - 1A TC T(R  +  C A ( H l R ; 1H k) - 1A TC T)~1yk+1 

+  [A(Hk R~*H k)-1 H f  R ^ Y k  -  A ( H j R ^ 1H k) - 1A TC T 

x (R  + C A ( H £ R ^ 1H k) - 1A TC T) - 1 x C A i H ^ R ^ H ^ H ^ R ^ Y k ]

= A x k +  IIfc+i(j/fc+i -  C A x k) (4.22)

where

n*+i =  A i H f R ^ H k ) - 1 A T C T(R  + C A ( H £ R i 1H k) - 1A T C T) - 1

= $ k+1C T (R  +  C $ k+1CT)~1 (4.23)

and

$*+1 =  A (H ^R ];1H k) - 1A T = A V kA T 

V k = ( H j R ^ H , ) - 1 =  ( I -  UkC ) $ k.

(4.24)

(4.25)

Equations (4.22) to  (4.25) constitute the formulations for the recursive weighted 

least-squares state estimation. Note the criterion of optimality here is in the
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least squares sense for the state estimation error as well as for the measurement 

error.29 In the case of no process noise, this method yields the same results as the  

Kalman filter does. However, the Kalman filter requires a priori knowledge of the 

initial state and its  corresponding error covariance. A poor estimate of the initial 

state and its corresponding error covariance may degrade the filter performance 

during the transient period. This method does not require such initial conditions. 

After Hk becomes full-column-ranked, (4.21) and (4.25) can provide optimal initial 

estimate of the s ta te  and its covariance, the recursive algorithm can then be pu t 

into operation. However, before H k becomes full rank, no estimate can be made.

4.2.2 L e a s t-sq u a re s  F il te r  fo r L in ear S y stem s w ith  B o th  P ro cess  a n d  M ea­

su re m e n t N o ises

When both  process and measurement noises exist, the system dynamics can 

be modeled by th e  first Markov random process as

x k+i = A x k +  (4.26)

where the sequence {lo*} is assumed to be a  zero-mean, stationary, Gaussian white 

noise with constant covariance Q. The relation between the current state and q 

successive measurements, including the current one, can be written as

Xk

0
0

0
CA

'  V k  ' - C  ■
V k - i C A - 1

V k - g + 2 C A ~ 9+2
- V k - g + 1 - _C A ~q+1.

0 0
C A - 1 • 0

C A ~ q+2 • • C A
C A - q+1 ■ • CA1 - 2 -X

+

’  v k  '

V k - 1

W k - g + 2  

. W k - g + l  .

..... 
, 

W 
iH

 

+ 
+

1 
1 

•se£ 
P

 •

, (4.27)
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where the second term  in the right hand side arises because of the existence of 

process noise. Since this noise term is correlated with the current state, which 

violates the “independent noise” assumption of the ordinary least-squares, the 

method does not apply in this case. If we a ttem pt to  cancel the correlation using 

correlation cancelation technique introduced in Section 3.5, the statistics of state 

x k and noise sequence W q (=  [ ■ •, w k_ q+1]T ) should be known in advance,

which is not only impractical but also undesirable for a deterministic approach. 

Therefore, we should approach the problem in a  different way.

4.2.2.1 Fading Memory Least-squares Filter

The degree of uncertainty of the current measurement due to measurement 

noise is indicated by noise covariance R. Because of the influence of process 

noise, the previous da ta  are more uncertain as compared to  the current data  in 

terms of bearing the information about the current state and is therefore less 

reliable. A weighting technique should be used to account for this factor. By 

assigning each one-step-past data a larger noise covariance as compared to  th a t of 

the current data, for instance by multiplying a  factor A-1 to the covariance m atrix 

of the last noise, where A is a  number close to  bu t less than  1, we can make the 

previous data  less im portant during least-squares fitting. Through the recursive 

least-squares m ethod the weighting of the previous data  will be exponentially 

reduced. Therefore, the method has an ability to  gradually “forget” the old data 

and emphasize the new data. The recursive forgetting algorithm is derived as 

follows.

Suppose at tim e step k we have the estim ation equation as (4.21), then at 

time step k +  1, by introducing the forgetting factor A, we have

= (H k+1R kl 1H k+1) 1Hk+iRkl 1Yk+i

101CtJ C
0 A R - 1 H kA ~ \
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10H1•

Vk+i'
0 Ai?*1 . Yfc .

x [CT : A - t H%]

--[Ct R ~ 1C + X A ^ H ^ R ^ H k A - 1] -1^  : A ~ TH f] R * y k + i
[  ' n  J

=A- 1A ( H ^ R ^ 1H k)~1A T C T(R  +  A ~1C A (H ^R ];1H k) - 1A TCT ) - 1yk+1 

+ [ A { H ^ R ^ H k) - l H TR ^ Y k -  A- 1A ( H ? R ? H k) - 1A TC T 

x ( R + \ - 1C A ( H ^ R ^ 1H k) - 1A TC T )~1 x C A i H ^ R ^ H ^ H ^ R ^ Y k ]  

= A x k +  IIfc+i(yfc-t-i — C A x k) (4.28)

where

n fc+:l = \~ iA{H^R-;1Hk) - 1Ar CT{R + \ - xCA{HlRlHk) - lATCT) - 1

= § Jfe+iC r (iJ + C$fc+1C':rr 1 (4.29)

and

$ fc+1 =  A - U ^ T ^ 1^ - ) - 1^  =  \ ~ 1A'5>kA T 

¥ * +1 = (H l+1R ^ 1H k+1)~ 1 =  ( I - I L k+1C )$ k+1.

(4.30)

(4.31)

Equations (4.28) to (4.31) constitute the fading memory least-squares filter 

for state estimation, which are also written in the Kalman filter form.

Param eter A can be used to adjust the memory length. If A =  1, which 

means infinite memory, the filter will rely on all the data equally as th a t in the 

no-process-noise case. Reducing A will reduce the memory length and the filter 

will “forget” old da ta  faster, corresponding to  the case when the process noise is 

significantly large.

The question of how to choose the value of A remains. This problem is similar 

to the problem of determining the process noise covariance Q in the Kalman filter. 

The usual way is to “tune” the filter by observing the whiteness of its residual
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sequence. After all, residual sequence is the only information available for judging 

the performance of the filter. Prom the study of the Kalman filter one knows tha t 

if the filter is optim al the residual sequence should be white and zero-mean, which 

can be interpreted intuitively that no signal is left in the residual and hence the 

residual is totally unpredictable (white). Therefore, in practice we can adjust A 

by monitoring the residual sequences. Although we may not be  able to obtain a 

white residual by adjusting only one variable A, we can expect to  have satisfactory 

results if all the measurement residuals are quite random.

4.3 The Relation Between Fading Memory Least-squares Filter and

Kalman Filter

The optimal Kalm an filter is derived based on the optim ality criterion of least- 

mean-squares of state error, while the fading memory least-squares filter (FMLS) 

is based on the least-squares of measurement error. However, it is interesting to 

see that they produce the same filter forms.

From the formulations, we note tha t t in the FMLS filter is equivalent to 

a priori state error covariance Pj~, and $/,. to a  posteriori error covariance Pjt in 

the Kalman filter. The formula for %  in the Kalman filter is

Pk7+1= A P + A t  + Q. (4.32)

Comparing this to  (4.30) we note that, instead of adding process noise covariance 

Q to the propagation of state error covariance as in the K alm an filter, the FMLS 

simply multiplies a factor A-1 (which is larger than  one) to  account for the effect 

of the process noise. By writing (4.30) as

$*+i =  A V kA T + (A" 1 -  1 ) A V kA T (4.33)
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it can be clearly seen tha t the FMLS implicitly assigns the value of process noise 

covariance as Q' =  (A-1 — l)A'£k-A. Therefore, if the process noise is small or not 

significantly different from Q1, the FMLS can give reasonably good results.

The equivalent process noise covariance Q 1 is obtained by multiplying the 

propagated s ta te  error covariance by a constant (A-1 — 1), and, therefore, the states 

which have larger error variances are assigned stronger process noise automatically 

and have less weighting. This appears to be intuitively correct. Hence, through 

the relation between the Kalman filter and th e  FMLS filter we can justify the use 

of the forgetting factor A.

4.4 Another View of the Relation between Least-squares Filter and the
Kalman Filter

In this section the Kalman filter is re-derived from another least-squares ap­

proach, which provides a  better understanding of the relation between the Kalman 

filter and the least-squares filter.

Assume all the information carried by the  da ta  from the beginning till time 

k — 1 can somehow be “compressed” into an estim ated state and its corresponding 

error covariance by an optimal linear filter which is unknown at this stage. That 

is,

=  H Y k- U (4.34)

where H  is an appropriate matrix and Kfc-i a d a ta  vector stacking up all the data 

from the beginning till k — 1. Denote the a  posteriori prediction error and its 

covariance by e^_1 and respectively (i.e., e^_x=a:*_! — %t-i an<̂  ^ k - i  —

C oufe^ j]). Using in (4.34) we can make an optimal prediction of x \t based
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on the system model:

* =  A x +_J = (4.35)

Denote the a priori prediction error by ek (i.e., ek =£* — x k ); then its covariance

=  Cov[ek ]

= C o v lA e l^  +  rofc_i] 

=  AP+_1At  +  Q, (4.36)

where Q is the covariance of the process noise. Sequence ek should be zero-mean 

if the estimation is unbiased. By definition,

Xk = x k + e k = A H Y k - i  +  ek ;

hence,

Combining (4.37) and (4.2) we have

H Y k- i  = A ~ 1xk - A - 1e7 (4.37)

Vk ‘ C  '
Xk + Vk

HYk- 1 . A " 1

or
Vk '  c '

Xk + Vk
A" 1 - ^ k .

(4.38)

Now seeking a  weighted least-square solution of re* from this equation, we have

x+ =

[CT : A~T\ 

where

' R - 1 0 '  c '

I

O * 
i M

•

A- 1

- l
[CT \ A~T\

ioH!ft? Vk

O * 
1 H-*

•

A 4-
.x k - 1 .

,(4.39)

Pk =  C o o [ - A - l ek ] =  A~1Pk A~T.

Simplifying (4.39) as in the previous sections, we obtain

x i  =  (In -  HkC)Ax'k_ 1 +  n kVk = Ax+_J +  n k(yk -  y ; )  (4.40)
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where

E k = p - C T(R +  C P ^ C T) ~ \  

and yk =  C A x . The state error covariance P t  is

P+ = E[(xk -  x k) (xk -  S*)r ] =  H 'E [ e keTk ](H ')~T

= (H TR k 1H )~ 1H TR k 1R kR k 1H ( H TR k 1H ) - 1 =  ( ^ R ^ H ) - 1 

=  (In -  UkC )A P k- l  A T = (In -  n kC )Pk (4.41)

These equations are exactly the same as the  Kalman filter. This fact tells us th a t 

though the Kalman filter is derived under the criterion of least-mean-squares of  

state error, in fact, it is also a leastsquares filter, which •provides least squares of 

output error.

4.5 Numerical Examples

In the numerical examples the simulated three-mode dynamical system is the 

same as tha t used in Chapter 3. The results are also compared with the Kalman 

filter. Three cases are investigated.

C ase 1: Recursive least-squares filter for systems without process noise

In this case the measurement is the impulse response or free decay data. The 

measurement noise covariance is

„  F 0.5016 0.3742'
[ 0.3742 0.3308 ’

which is intentionally set to  a rather large value to show the effectiveness of the 

filter. To give a  feeling of the intensity of the noise, Fig. 4.1 shows one of the 

measurement data , where (a) is the “clean” da ta  while (b) is its noise-corrupted 

version. Fig. 4.2 shows the estimations of states 1, 2, 4 and 6, where the solid lines
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represent the true states and the dashed lines represent the estimated values. It can 

be seen tha t the estim ation is good after a  transient period and becomes perfect 

as time goes on (the estim ated states virtually coincide with the true states). The 

diagonal term s of the calculated estimation error covariance (calculated from 500 

data points, skipping the transient period in the beginning) are

Px =  [5.6764, 5.8270, 0.2889, 0.3278, 0.0147, 0.0149] x 10-3 . 

Case 2: Recursive weighted least-squares filter for systems without process noise 

but with known measurement covariance

In this case the measurement noise covariance is assumed known. Therefore, 

the recursive weighted least-squares filter is used. The system and settings are the 

same as in case 1. The estimations of states 1, 2, 4 and 6 are shown in Fig. 4.3, 

and the diagonal terms of the corresponding error covariance are

P2 = [4.9945, 5.1256, 0.0556, 0.0535, 0.0034, 0.0031] x 10“5

Compared with Ca&e 1 it can be oeen th a t the results are improved.

Case 3: Fading memory least-squares filter for systems with both process and 

measurement noises

In this case the process noise is set to be about 5% of the initial sta te  and the 

measurement noise is also about 5% of the measurement in variance ratio.

For the optimal Kalman filter, the initial sta te  is set to zero, and the initial 

error covariance is set to  10 x I n. The results of the estim ation of the first state and 

the auto-correlation function of the first output residuals are shown in Fig. 4.4. 

Again, the solid lines in the state estim ation plots represent the true state histories, 

and the dashed lines represent the estim ated ones. For the optimal Kalman filter 

these two lines almost coincide with each other. Theoretically, the residual of the 

optimal Kalman filter is a  white sequence and hence its auto-correlation function
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should be zero everywhere except at r  =  0. However, the auto-correlation function 

shown in Fig. 4.4(b) is obtained from a finite number of samples and not normalized 

(the same for auto- correlation in other figures); therefore, it has ripples at r  ^  0.

For the fading memory least-squares filter (FMLS), the results of simulations 

with three different forgetting factors (A =  1.0, 0.90, 0.50) are shown in Figs. 4.5 

to 4.7. For A =  1.0, which corresponds to an infinite memory case, the estimates 

deteriorate gradually due to the effect of neglecting process noise and finally fail 

to track the states. The auto-correlation function of the residual, Fig. 4.5(b), is 

clearly non-white. For the case of A =  0.90, the state estimation is rather good 

when compared to  the optimal Kalman filter. Auto-correlation of the residual is 

also very close to  tha t of the Kalman filter. For the case of A =  0.50, the memory 

was apparently too short and the estimates relied too heavily on a  short period of 

recent measurements; therefore, the result is sensitive to measurement noise. The 

residual in this case is less white, as shown in Fig. 4.7(b). Therefore, by monitoring 

the whiteness of the residual, a proper forgetting factor can be chosen.

4.3 Concluding Remarks

A few conclusions can be drawn and axe listed below:

(1) For systems without process noise, the fixed-ordered least-squaxes filter is the 

same as the fixed-ordered projection filter when the measurement noise of each 

output sensor is equally strong. The estimation is unbiased and consistent, 

so, for a  sufficiently large order the estimate can approach perfectness.

(2) For systems without process noise, the recursive least-squares can provide 

unbiased and consistent estimations. The filter has the same structure as 

the Kalman filter. If the covariance of the measurement noise is known, the 

recursive weighted least-squares filter should be used. If the intensity of the
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noises of each output sensor is significantly different or highly correlated to 

each other, the recursive weighted least-squares yield better results than the 

non-weighted approach.

(3) For systems having both  process and measurement noises, the fading memory 

least-squares filter can be used. However, in general only suboptimal results 

can be obtained. The forgetting factor allows one to adjust memory length 

so as to cope with system process noise w ith different intensity.

(4) The least-squares filter is closely related to  the  Kalman filter. All the recursive 

least-squares filters in this chapter have structures similar to the Kalman filter. 

In fact, even though the Kalman filter is originally derived under the criterion 

of least-mean-squares of state error, it can also be derived under the criterion 

of weighted least squares of output error.

(5) The advantage of using the least-squares filters is its simplicity. Though it may 

produce suboptimal estimates, in general the results axe reasonably accurate.
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Chapter 5

LINEAR STATE ESTIMATION UNDER 
UNKNOWN NOISE COVARIANCES

 Optimal Filter Gain Approach

5.1 Introduction

This chapter continues the topic of solving the problem of sta te  estimation 

under unknown noise covariances in the last chapter. In C hapter 4, the problem is 

solved by treating previous measurements as of decaying im portance, backwards 

in time, in determining the current state. The method results in a  suboptimal 

filter in general. In this chapter the problem is solved by directly estimating 

the optimal Kalman filter gain utilizing the relation between state space models 

and m atrix polynomial models of linear systems. Here m atrix  polynomial model 

means a system equation whose z-transform is a matrix polynomial equation. The 

approach in this chapter, therefore, is based on fundamentally different philosophy.

Methods for conducting state estimation under unknown noise covariances can 

be classified into two categories; one performs estimation of noise covariances or
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filter gain once and for all and is suitable for off-line application; the other performs 

the same estimation continuously or continually during the filter operation and is 

suitable for on-line application. The la tter one is called adaptive filtering, or 

adaptive Kalman filtering, if the Kalman filter structure is used.

The key point in adaptive Kalman filtering is to  find a proper Kalman fil­

ter gain corresponding to  the current stochastic environment. Usually there axe 

two different approaches. One starts from estimating the  covariances of process 

and measurement noises, and then  uses the estimates to compute the filter gain 

according to the Kalman filter formulations.10-12 The other estimates the opti­

mal Kalman filter gain directly.13’14 The first approach is usually theoretically 

complicated and computationally tedious. Moreover, the estimation of the co- 

variance of process noise results in a non-unique solution, unless some restrictions 

are imposed on the covariance m atrix to reduce the number of unknowns in the 

covariance m atrix.18 Furthermore, the number of param eters needed to be esti­

mated is usually significantly larger than  that in the second approach. For the 

first approach, two square matrices (the covariance matrices of the process and 

measurement noises) need to  be estimated; while for the  second approach, there is 

only one unknown matrix (the optimal Kalman filter gain). The second approach, 

by contrast, is simpler and more direct. After all, for the purpose of state esti­

mation, the information of noises is needed for calculating a proper Kalman filter 

gain only; therefore, it is desirable to achieve the ultim ate goal of obtaining the 

proper filter gain directly w ithout going through the intermediate steps of esti­

mating noise covariances. All the methods developed in this chapter belong to the 

second approach.

The relation between a  s ta te  space model and a  m atrix polynomial model can 

be derived through the K alm an filter formulations. This relation is very useful in 

combining advantages inherent in these two different model structures. Generally 

speaking, a state space model is essential in state estimation. However, estimating
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state space param eters or Kalman filter gain using model in state space format 

directly is a  nonlinear optimization problem and is difficult to  solve. On the other 

hand, although a  matrix polynomial model can not provide state  information, it 

has a  great property of having linear relation between the model param eters and 

inpu t/ou tpu t data. Consequently, the estimation of the param eters is a linear op­

timization problem, which can be solved analytically. For instance, least-squares 

techniques can be easily employed in estimating the system param eters, or per­

forming linear output predictions. The advantage of using least-squares is that 

it does not require a priori knowledge about the system and noise, and so the 

param eter estimation and linear prediction can be performed adaptively. There­

fore, identifying a matrix polynomial model is much easier than  identifying a state 

space model. Moreover, the relation between these two models provides ways to 

extract sta te  space parameters and steady state  Kalman filter gain of the system 

from m atrix polynomial parameters.

In section 5.2 the relation between a state space model and an autoregressive 

with exogeneous input (ARX) model, a special m atrix polynomial model, is de­

rived. The least-squares method for identifying scalar linear equations (equations 

with scalar coefficients) can be easily found in many textbooks.16’21’22 However, 

the least-squares for m atrix equations are not available. Section 5.3 extends the 

scalar case to  derive a least-squares method for estim ating the m atrix coefficients 

of the ARX model. The properties of the estimation are also discussed.

Three methods are developed in this chapter. Section 5.4 describes the first 

m ethod of this chapter, which utilizes the property of equivalent prediction. This 

property says tha t the optimal linear output predictions made by the predictor 

(filter) in a state space structure and the predictor in a m atrix  polynomial structure 

are equivalent.15 Since the noise covariances are unknown, predictors in a state 

space structure cannot be constructed. However, an adaptive transversal predictor 

(ATP), a  predictor based on a m atrix polynomial model, can be used to yield
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optimal one- to  r-step-ahead output predictions adaptively using inpu t/ou tpu t 

data. Taking these predictions as a  reference, the gain of a  Kalman filter can be 

adjusted such th a t the Kalman filter can produce approximately the same output 

prediction. Thus, an estim ate of the optim al steady state Kalman filter gain can 

be obtained. This m ethod is suitable for both off-line and on-line use.

Section 5.5 provides the second m ethod of this chapter, which utilizes the 

relation between the state space parameters and the ARX coefficients. The optimal 

Kalman filter gain is calculated directly from the  estim ated coefficients of the ARX 

model.

Section 5.6 derives the third m ethod of estim ating the optimal Kalman filter 

gain, which utilizes the property of whiteness of the optimal residual. The inversion 

of a  polynomial m atrix  is used to identify a  moving average (MA) model from an 

autoregressive (AR) model.

Section 5.7 discusses the problem of obtaining the covariances of process and 

measurement noises after having an estim ate of the optimal steady state Kalman 

filter gain. Section 5.8 gives a  summary of this chapter.

5.2 A Relation between State Space and Matrix Polynomial Models

The state space model of a finite-dimensional, linear, discrete, time-invariant 

stochastic system is re-written for convenience:

x k+i = Ax  k +  B u k + w k (5.1)

Vk = C x k + V k , (5.2)

where the input term , B u k , is included for generality. The assumptions and the 

meanings of all the notations are the same as those in Sections 2.3 and 3.1.
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The same system can also be represented by a stochastic AutoRegressive 

Moving Average with eXogeneous input model,15’22’23 or ARMAX for short,

■A(Q~1)Vk = B(q~1)uk + C(q~1)ek, (5.3)

where

-4(9 a )  =  Ip +  ’ ' '  +  Anacrna 1 ( 5-4)

B i g - 1) = B 1q - 1 + --- + B nbq - nb, (5.5)

C(q~l ) = Ip +  C\q~l 4 h Cncq~nc, (5.6)

q~l is a  backward shift operator (i.e. q_1yk =  Vk-i)-, and na, nb, nc  are the orders 

of the polynomials A(g_1), B(q~1) and C(g-1 ), respectively. The sequence {ejt} is 

a Gaussian, white noise with zero mean. The term A(q~1)yk is the autoregressive 

(AR) part, C(q~1)ek the moving average (MA), and B(q~1)uk the eXogeneous 

(X) because the control signal in economics literature is known as the exogeneous 

variable.

The state space model provides “inner” messages about the states of the 

system in addition to the input-output information, while the ARMAX model 

gives the relation between the input and the output only. Since these two different 

models describe the same system, they must be related. Indeed, the relation can 

be obtained through the Kalman filter.

One can write the following filter innovation model, which describes the filter 

system as driven by the innovation sequence, and the output is the measurement 

data,

**+1 =  +  A K kSk (5-7)

y k =  C x ^  +  ek (5.8)

where is the a priori estimate of the state x k, and the term  ek is the residual. 

The quantity e k contains the “new” information in the sense th a t it can not be
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obtained from the previous data. Therefore, it is also called “innovation”.30 The 

n  x m  m atrix K k is the Kalman filter gain. Introducing (5.8) into (5.7) yields:

^it+i =  A ( I n ~  K k C ) x k +  B u k  +  AKkVk

=  A x k +  B u k +  A K ky k (5.9)

where

A  =  A ( In -  K kC). (5.10)

This equation provides another system dynamic equation of the filter other than

(5.7), where A  is the system matrix and yk th e  input.

The existence of a steady state Kalman filter gain, K ,  is guaranteed if the

system is detectable and (^4, Q1̂ 2) is stabilizable.26 In the implementation of the

Kalman filter, one can start from an arbitrary guess of the initial state value 

and its corresponding error covariance. For a  stable filter, the Kalman filter gain 

will converge exponentially to its steady s ta te  value independently of the initial 

condition.

Introducing (5.9) into (5.8) iteratively, w ith  K k replaced by the steady state 

gain K , one can obtain the following input-output description:

yk = C x k + ek

+  C B u k-1 +  C A K y k-x  +  e*

= C A K y k-x  +  C A A K y k- 2 +  • • • +  C A * - ' A K y k- q +  C B u k-x

+  C A B u k - 2  +  • • • +  C A q 1Bu,k—M +  C A 9x k_ q +  £k 

9 9
=  Y ,  C A ^ A K y k - i  + Y c A i ~l B u k-i  +  C A qx k_q +  ek (5.11)

i=l i=l

for some integer q. Note that, although the steady state Kalman filter gain might 

not be known at the very beginning, it has already existed. This implies tha t 

(5.11) is a  valid relation even for the very beginning data. In other words, once
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the value of every input-output term  in (5.11) is known, this equation holds. 

Matrix A  in (5.11) is the system m atrix of the filter dynamical equation (5.9), 

where the steady state gain is used instead, and also is the system m atrix of the 

filter error dynamical system.26 For a stable filter the m atrix A  is asymptotically 

stable. Therefore, for a  sufficiently large num ber q the term  next to  the last one 

of (5.11) is negligibly small and can be dropped out from the equation. Moving 

all the term s containing output y  to the left hand side, (5.11) becomes

Vk - j r c A ' - ' A K y u - i  =  ^  C A i~1B u k„i + £{■ (5.12)
i = l  i = l

which is a  special form of an ARMAX model w ith C(q~1) =  Ip, hence called 

ARX because it has no moving average part. All the coefficients of this model are 

expressed in term s of the state space param eters A, B ,  C  and the Kalman gain K .  

Note tha t the noise term  here is the residual of the optimal Kalman filter, which 

is zero-meaned, white and not correlated with previous output data according to 

the orthogonality principal in estimation.

5.3 Estimation of the Coefficients of an ARX Model

Estim ation of the coefficient matrices of an ARX model given in (5.12) can be 

accomplished by using an adaptive transversal predictor16 (ATP) which is shown 

in Fig. 5.1. The name arose due to  the structure of the filter. In fact, it is 

a recursive least-squares filter. This filter sequentially feeds the measurements, 

inputs and their delay versions to its q tap  inputs for a  filter of order q. Each tap  

input signal is multiplied by the tap coefficient m atrix, and the results are summed 

up to yield the filter output, which is a one-step-ahead output prediction. The 

prediction error is then fed back to modify the tap  coefficient matrices in the next 

recursion. The adaptive process can be explained by the following least-squaxes 

method.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Equation (5.12) can be written as

9 9 
Vk =  j 2 c A i ~ lA I { yk- i  + l L , c A i ~l B u k - i + £ k

i=i i=i
=  yfc +  Sfc, (5.13)

which can be interpreted in two different ways. On one hand, it can be regarded as 

a signal generator, where y k  is synthesized by using finite previous input/output 

data {ufc_i, • • • ,U k -q, y k - i, • • • > V k - q } ,  and white noise e*. On the other hand, it 

can also be viewed as a linear predictor, where y k  is a  prediction of y k  and e* is 

the prediction error. The output y k  can be thought as truly coming out from a 

linear transversal process generator driven by the known deterministic input and 

unknown white noise.

Equation (5.13) can also be written in a  compact form:

y k  =  + S k

or

2/jf =  $*00 +  ef) (5-14)

where

0 jf  =  [CAK,  • • •, C A i - ' A K ,  C B , • • •, C A ^ B ] ,  (5.15)

$k  =  bfc-1, • • •, Vk-q, «*_ 1, • • •, u l _ q]. (5.16)

Vector $ , called a  regressor, is composed of q previous inpu t/ou tpu t data. The 

param eter m atrix  ©o is to be estimated from output d a ta  {yk}  and regressors 

{4?fc} {k =  5, • • •, IV, N  is the number of to ta l da ta  used in  the estimation). To 

this end, first we define a  scalar cost function

C «  =  N - 1 + 1  £  (5-17)
?  k - q

then we minimize this with respect to  0 , where 0  denotes the estimated param eter 

m atrix and {A*} is a  sequence of weighting factors. These weighting factors allow
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us to give different weights to measurements of different time, thus providing the 

capability of identifying slowly time-variant systems.

Denoting the measurement vector, yk, by yk =  [yki, ' • •, Vkp]T and the param­

eter matrix, 0 ,  by 0  =  [0i, • • •, 9P], where yki is the i-th  entry of yk and 9j the 

j- th  column of 0 ,  (5.17) can be rewritten as

c «  =  N \ -+ 1 ± t ^ - * A ) 2- («-18)
i = l  k=:q

Note tha t the cost function Cjq is composed of p  summation and each summation 

is a  quadratic function of a  different column vector of 0 .  Therefore, it can be 

minimized analytically.

Minimizing CV w ith respect to  9j gives

\k=l )  k=q

provided the inverse exists. Therefore,

/  N  \  - 1  N

®n  = [9i , - - - , 9p] =  (5-20)
\k=q J  k=q

and this is the basic formulation for the parameter estimation.

To discuss the properties of the parameter estimation, substitute yk in (5.14) 

into (5.20) to give

Q N = Qo + ( e  (5-21)
\k=q J  k=q

where 0o is the true param eter matrix. According to the orthogonal principle of 

optimal estimation, the residual sequence {e*} is uncorrelated with the previous 

measurements. If the input {ujt} is uncorrelated with {e*} also, then

- l

=  0 o +  15
/  N  \  N

\k=q )  k=q
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where E[ek] =  0 is used. This equation indicates th a t the estimation is unbiased. 

Furthermore, the term  in (5.21) can be viewed as calculating the

sample correlation, which will approach its expectation value (zero), as the number 

of data N increases to  infinity. This in turn  means th a t the estimated parameter 

matrix will asymptotically converge to the true value. This property is referred 

to as “p-consistent” 31 in the literature, which means th a t as the number of data 

tends to  infinity the  estimate converges almost surely to  a  m atrix which, in turn, 

converges to the true param eter matrix as the order of the ARX model tends to 

infinity. The order of the ARX model in the original paper 31 is denoted by p and 

hence the name.

In implementing the transversal predictor, its order should be determined in 

advance. It should be sufficiently large in order to  yield satisfactory result. A 

method based on the information-theoretic criterion (AIC) is commonly used.32’33

5.4 Equivalent Prediction Method

Linear optim al prediction can be made by using either a  state space model 

or a m atrix polynomial model.15 In this section, based on the equivalence of the 

predictions made by different models, the Kalman filter gain is chosen so that 

the predictions made by the Kalman filter can m atch th a t made by the adaptive 

transversal predictor optimally in a least-squares sense. The Kalman filter is based 

on a state space model, and the transversal predictor is based on ARX. The reason 

for using the adaptive transversal predictor is to take advantage of its adaptive 

feature which requires no a priori knowledge about the system.
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5.4.1 Linear Prediction by a State Space M odel

If a state space model is chosen for linear prediction, a simple mechanism 

based on the Kalman filter can be used. For one-step-ahead prediction, the Kalman 

filter innovation model shown in (5.7) and (5.8) can provide the answer:

x*+1 =  A x ^  +  B u k +  AKkSk,

V k  =  C x i  + e j t  =  V k + S k ,  

where yk is the optim al prediction of output yk based on all the previous data.

For r-step-ahead prediction (r > 2) the system dynamical equation (5.1), 

omitting the input and noise terms, is used to propagate the state to  the  future, and 

the output equation (5.2), omitting the noise term , is used to  yield the prediction. 

For instance, the predicted r-step-ahead state and output are

£ & . ,  =  (5.23)

= C x g ,- ! ,  (5-24)

where and denote the j-step-ahead predictions of X{ and respectively. 

To avoid confusion, the superscrip t' in y ^  is used to  denote the prediction made 

by the Kalman filter, thus distinguishing it from th a t made by a ARX model.

Unfortunately, to  perform prediction, the optim al Kalm an filter gain should 

be obtained first, which requires the knowledge of the statistics of the process and 

measurement noises. This is the restriction in using state space model for linear 

output prediction.

5.4.2 Linear Prediction  by an AR X  M odel

If an ARX model is chosen in linear prediction, (5.13) is used to have

yk =  £  C A ^ A K y k - i  +  £  C A ^ B u k - i  (5.25)
i=i ;=i
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where yk represents the one-step-ahead output prediction of y*.

Two or more steps-ahead predictions using the ARX model can be made by 

iteratively using (5.25), replacing true measurements with their predicted versions 

and omitting the future input terms, because the future input is not known for the 

current moment. By doing so the model plays a role in propagating the output to 

the future based on the currently available data. For instance, the r-step-ahead 

prediction (r > 2) is

y f t r - 1  = C A K y £ - V  2 +  • • • +  C A r~2AI<yk + C A * ' 1 A K y k- i  

+  • • • +  C A »-1A ify fc_m+r_ 1 +  C A r~1B u k- i  

+  • • • +  C A 9~ 1 B u  k - m+r-i-  (5.26)

To perform prediction using (5.26), the coefficients of the ARX model should be 

known also, which is impossible if the noise covariance is unknown. However, by 

using the adaptive transversal predictor, the optimal one- to  r-step-ahead predic­

tions can be obtained adaptively. The “optim al” prediction here is in the sense 

tha t the current estim ated coefficients of the ARX model, which axe used in mak­

ing the prediction, can fit the inpu t/ou tpu t da ta  with the least stun of the squares 

of the error. The adaptive prediction uses the currently estim ated model instead 

of the true one. As a  result, the prediction might not be accurate in the begin­

ning; however, better predictions can be expected as more in p u t/ou tpu t data  are 

processed.

5.4.3 Equivalence o f Linear Predictions

This section provides a  proof of the equivalence between the predictions made 

by the Kalm an filter and tha t made by the ARX model. For one-step-ahead 

prediction shown in (5.11), the Kalman filter prediction C x ^  can be approximately 

expanded to  a  m atrix polynomial of a finite order q. For a sufficiently large integer

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



q the difference is negligibly small. We can, therefore, say they are equivalent.

For r-step-ahead prediction (r  >  2), from the Kalman filter prediction the 

following equation can be derived:

S & U  =  C A ' - ' x - ;

9  9  -

=  C A r~ 1A i~1 A K y k - i  +  C  A 1"-1 A ' " 1 Buk- i  (5.27)
i = l  t = l

where x  ̂ is expanded as shown in (5.11).

On the other hand, if the prediction is made based on ARX model according 

to (5.26), for r  =  2 we have

3 3

2 /S j = C A K y k +  j ^ c A i- 1A K y k- i+1 +  Y ^ C A i~1Buk- i+1
i= 2  i= 2

= C A K  (  £  C A '~ l A K y k - i  +  £  C A ^ B u ^ A  
V i= l i= l  /

9 9 - 
+ Y^cAi~XAKyk- i+1 + Y / CAi~1Buk. i+1

i = 2  i '= 2

3 - 1

=  ( C A K C A ^ A K  +  C A ' A K )  y k- i
i = i

3-1

+  ( C A K C A ^ B  +  C A {B )  u*_j
i = i

+  +  C A K C A q- l B u k- q, (5.28)

where y* is expanded using (5.25), and the coefficients of the same variables are 

collected together. The coefficients of the first summation can be simplified to be

C A K C A ^ A K  +  CA*AK = C(AI<C + A ) A i~1A K

= C[AI<C +  A ( I n -  K C ^ A ^ A K  

= C A A ^ A K ,  (5.29)

and for the second summation, similarly,

C A K C A ^ B  +  C A {B  =  C A A {~xB.  (5.30)
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Moreover, for a  sufficiently large q, the last two terms in (5.28) can be neglected. 

Therefore, (5.28) becomes

q - 1  ^  ? - i

Vkl  i =  E  C A A ' -1 A K y k - i  +  E  C A t i - ' B u k - i ,  (5.31)
i=i i=i

which is the same as (5.27) for r =  2 except the upper limit of the summation is 

one term less. The difference can be negligibly small by having large q.

Following the  same pattern , the p-step-ahead prediction using the ARX model 

can be written as

1 = 1  i — r
g

+ J2CAi- 1Buk+r-l-i
i —r

q — r + 1  g — r + 1

=  Y ,  C A r- 1A i- 1A K y k- i + E  C A ^ A ^ B u k - i ,  (5.32)
i=i i=i

which is essentially the same as (5.27), provided q is large and q »  r. Therefore, 

it has been proved tha t the prediction made by the Kalman filter according to 

(5.24) and tha t made by the ARX model according to  (5.26) are equivalent.

5.4.4 Obtaining Preliminary State Estim ation

The optim al Kalman filter is derived under the stochastic framework. In other 

words if the initial values and the noise statistics are unchanged, the Kalman filter 

is the same for all realizations of input/output set of a  process. On the other 

hand, the adaptive transversal predictor, a  recursive least-squares filter, is derived 

under the deterministic framework and yields different filter for each realization of 

input/output data. Nevertheless, the recursive least-squares algorithm utilizes all 

the information contained in the input/output data to  update its filter parameters. 

Therefore, although in the beginning the adaptive transversal predictor yields less
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accurate predictions compared to those from the optim al Kalman filter, as more 

data processed, the prediction will gradually converge to  tha t made by the optimal 

Kalman filter. This fact can be stated as follows:

Denote the one-step-ahead prediction made by the ARX model of order q with 

accurate coefficients by yQik (i.e., yqik =  0 ^ o$ 9ifc), and th a t made by adaptive 

transversal predictor of order q with estim ated coefficients by y qk (i.e., y g k =  

0 ^ fc$ 9ifc). The m atrices 0 9io and <3>9ifc are the same as 0o and $*, respectively, 

in (5.15) and (5.16) except the subscript q is used here to explicitly specify the 

order of the ARX model. From (5.21) we have

Q q , N  — > 0g,o as N  — > oo, (5.33)

therefore,

t i q . k  =  $ l k  ~ > ® q , 0 * q , k  =  V q , k  & S  k  >  O O ,  (5.34)

where “— >” means “converges to” . However, from (5.27) and (5.32) it is obvious 

that

yg,k — * y'k as q — >00. (5.35)

Therefore, for a  sufficiently large q and long in p u t/ou tpu t data, the one-step- 

ahead prediction of the adaptive transversal predictor will converge to th a t of the 

optimal Kalman filter. This is also true for r-step-ahead prediction because r-step- 

ahead prediction is based on one-step-ahead prediction. As the coefficient matrices 

converge to  their true values all the one- to r-step-ahead predictions converge to  

the optimal Kalman filter predictions.

W ithout a  priori information about the statistics of the noises the opti­

mal Kalman filter prediction cannot be made. However, based on the theory 

just proved, the adaptive transversal predictor can provide approximate answers. 

Therefore, one can write

a  C A ' - ' x Z ,  (5.36)
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where the subscript q is om itted for simplicity. From (5.36) one can derive the 

following equation:

r  yk  ia(2)
yjt+1

■ C ■
C A

. •

a(r) 
.Vk+t—1.

. C A 1- 1.

' k ’ (5.37)

or in short,

V x 7 (5.38)

where Y r denotes the prediction vector obtained from the adaptive transversal 

predictor and V  the observability-type m atrix. If the system is observable, and 

integer r is sufficiently large to make m atrix V  full-column-ranked, a  least-square 

solution of xjT, can be obtained by

h  =  v ' Y r (5.39)

where V t is the pseudoinverse of V  and x k an  estim ate of the one-step-ahead 

optimal Kalman filter prediction, a-jT.

, A

At this stage an estimation of can be obtained by propagating x k back­

ward as
; +

i = A  1($k - B u k- i ) , (5.40)

where x k- \  denotes an  estim ate of the optimal Kalman filter a posteriori estima-
. /s  ̂ ^  t £  -f-

tion However, since is only an estim ate of x k , the estimated state

could be rather fluctuating. Besides, the com putational load for each estim ate is 

much heavier than  th a t of the Kalman filter if the sta te  estimation works entirely 

by this way. A be tte r alternative is to use the estim ated prediction to “train” the 

Kalman filter gain, and the trained filter gain, after it converges to some extent, is 

used to run constant gain Kalman filter sta te  estimation. By this way a smoother 

state estimation w ith less computation can be obtained.
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5.4.5 Estim ating Optim al Kalman Filter Gain

From (5.7), for steady state, one can have

K e k- 1 =  A - \ x l  -  B u k - i )  -  Xk-x=dk-i-  (5.41)

Replacing x~  by X{, Si by £, (e,- =  y,- — y j ,  and collecting records through time, 

one can have the following equation:

K[£k—l, 21■ ■ ■ j £fc—s] =  [dk—i) dk—2, •••,  dk—a], (5.42)

or in short,

K E S = D s (5.43)

where E a denotes i k - 2 , • ■ •, £*-s], D  denotes [dk-i,  dfc-2, •••,  dk-s], dk

is an approximation of dk defined in (5.41) when the optim al Kalman predictions 

are replaced by their estimates, and s the number of d a ta  point. Matrix E a 

has a  dimension p x s ,  where p is the number of output. The sequence {e;} is 

approximately white; therefore, for s > p, E s is full-row-ranked in general. Then 

from (5.43) a  least-square solution of K  is

K  = D aE\  (5.44)

where E \  = E j ( E 3E j ) ~ 1 denotes the pseudoinverse of E a.

Equation (5.44) can also be solved recursively. By doing so, as more data

processed, the estimated gain K  can be improved, and the state estimation is thus

in turn  improved.

W ith this estimated gain, state estimation can be carried out by using a 

constant gain Kalman filter. The state estimator is as the followings:

x k — A x k_ 1 B u k - 1, (5.45)

= * k  + K ( y k ~ C x k ), (5.46)
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5.4.6 Forgetting Factor

A well-known feature of the adaptive transversal filter is th a t, by properly 

introducing a forgetting factor, the filter can tract a  slow time varying system .21-23 

The forgetting factor has a function to let the filter put less weighting on the older 

data and thus gradually “forget” them. It is actually a recursive weighted least- 

squares m ethod where the importance of the da ta  at a specific point decreases 

exponentially as time increases. The value of the forgetting factor is a number 

very close to but less than 1. As the factor is closer to 1, the filter has less 

forgetting function. It is somewhat subjective to choose the value. The proper 

choice can be obtained by monitoring the output prediction error. For a  suitable 

value, the prediction error should be close to  a white sequence.

If the forgetting factor is used in the recursive process of updating a  Kalman 

filter gain described in section 5.4.5, the proposed method can deal w ith the situ­

ation when the noise statistics are slowly changing. This is a great advantage of 

this approach.

5.4.7 Num erical Examples

In the  numerical examples, the dynamical system is the same as th a t in the 

last two chapters, except input force is added this time. The system is excited by 

random force u a t node 3, while the responses are measured at nodes 1 and 2 (see 

Fig. 5.2). The state space parameters including B  are re-listed here:

=  diag ^ 0.9856 0.1628' 0.8976 0.4305' ' 0.8127 0.5690'
-0.1628 0.9856 -0.4305 0.8976 -0.5690 0.8127

B  =  [0.0011 0.0134 -0.0016 -0.0072 0.0011 0.0034]T

1.5119 0.0000 2.0000 0.0000 1.5119 0.0000^
1.3093 0.0000 0.0000 0.0000 -1.3093 0.0000C =

}
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where A  is a  block diagonal matrix. The sampling frequency is 10 Hz, which is 

sufficient high for estimating the state of the highest frequency (0.97 Hz) of the 

system.

The variance of the random excitation force, cr„, is set to  40. The covariances 

of process noise and measurement noise are

Q = diag[ 0.0024, 0.3593, 0.0053, 0.1035, 0.0023, 0.0228 ] x 10-3 ,

R  =  0.0279 x I2.

The standard deviation of the process noise Wk is about 23% of tha t of the input 

influence Buk', the standard deviation of the measurement noise Vk is about 10% of 

that of the output measurement yk- Under these settings, the theoretical optimal 

steady state  Kalman filter gain is

T
I< =

0.0604 0.0279 0.0471 0.0146 0.0132 0.0055
0.0648 0.0366 -0.0059 0.0143 -0 .0162 -0.0011

The filter order of the adaptive transversal predictor is set to  100. After the 

adaptive transversal predictor has processed 1,000 inpu t/ou tpu t data, its yields 

an estimation of the coefficients of the ARX model as shown in Figs. 5.3 and 5.4. 

Figure 5.3 shows the four elements of m atrix sequence C A x~l A K  while Fig. 5.4 

shows the two elements of C A '~ 1B ,  where i =  1, • • •, 100. The estimated sequences 

are still very “noisy” . To show the estimation is convergent, Figs. 5.5 and 5.6 show 

the results after processing 5,000 data. Apparently the estimation has been greatly 

improved. The estimation error variances of the sequences against the number of 

data processed are shown in Figs. 5.7 and 5.8, where Fig. 5.7 shows the sequences of 

C A l~1A K  and Fig. 5.8 shows tha t of C A X~1B.  The convergence of the estimation 

is clearly shown in this figure. Using the m ethod derived in this section, two cases 

are studied.
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C ase  1 : Off-line Batch Estimation

In the first case a  batch type treatm ent is performed. First, a batch of in­

p u t/o u tp u t data is used to  “train” the adaptive transversal predictor; in other 

words, the data  is processed using the ATP to estimate the ARX model. Then the 

estim ated ARX model is used to perform one- to r-step-ahead output predictions 

using the same set of inpu t/ou tpu t data. The optimal Kalman filter gain is then 

obtained from the output predictions based on the method.

In this simulation, one- to ten-step-ahead predictions are performed. Depend­

ing on the size of the batch, different results are obtained. In general, the bigger 

the size is, the better the result will be. One way to  compare the qualities of the 

estim ated gains is to  compare their “distances” to their theoretical optimal value. 

The distance of two matrices can be represented by the 2-norm of their difference 

matrix. The batch sizes of 1,000 to 5,000 data, with an increment of 1,000 data, 

are examined. The norms of the difference matrices of the results obtained based 

on different batch sizes are plotted against the batch size in Fig. 5.9. As the batch 

size increases, the norm reduces; however, it seems tha t the results saturate after 

3000 data.

Another way of verifying the quality of the estimated gain is to  use it in the 

Kalman filter and check the whiteness of the residual, or, in a simulation case, 

compare the state estimation and the residual with those of the optimal Kalman 

filter. Using the gains obtained from the five different batch sizes in the Kalman 

filter, the trace of the corresponding state  error covariances along w ith tha t of the 

optimal filter are listed below. For comparison’s sake, the same inpu t/ou tpu t data 

are used in each case and the state error covarances are calculated by averaging 

700 samples.
B a tc h  size 1,000 2,000 3,000 4,000 5,000 optimal

S ta te  e r ro r  0.0084 0.0072 0.0068 0.0068 0.0070 0.0070

From the state errors we can see tha t though the estimated gains obtained from
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2000 data  and more are not exactly the same as the theoretical optimal one, the 

s tate  errors are almost the same as th a t of the optimal filter. Prom this fact we can 

say tha t the optimality of state estimation is not sensitive to some small deviations 

in the optimal gain.

For comparison’s sake, the state estimation of the first state, a  part of the 

first residual sequence, and its  corresponding auto- correlation function (calcu­

lated from 500 samples) of the optimal Kalman filter is shown in Fig. 5.10. The 

counterparts of the case which uses the gains estimated from batches of 1,000 and 

5,000 data  are shown in Figs. 5.11 and 5.12. In the residual plots, Figs. 5.11(b) and 

5.12(b), the solid lines represent the optimal residual from the optimal Kalman 

filter (the same as in Fig. 5.10(b)), and the dashed line represents the estimated 

residuals (from the filters using the estimated gains). For these two cases, the 

estim ated states and residuals almost coincide with the real state and the opti­

mal residual respectively, and the auto-correlation functions show the residuals axe 

rather white. Therefore, we can conclude tha t the estimated gains are satisfactory. 

The corresponding estim ated gains in these cases are

-K iooo  =

Ksnoo

C ase  2: On-line Recursive Estimation

In the on-line case, when the inpu t/ou tpu t da ta  are available, the ATP up­

dates its tap param eters and makes one to r-step-ahead output predictions based 

on the current values of the parameters. The predictions are inaccurate in the 

beginning but will keep on improving. Skipping the transient period where the 

predictions could be extremely bad (indicated by the non-stationary part in the 

beginning of the ATP residual), a Kalman gain estimator starts to estimate the 

Kalman filter gain using the predictions. Because the estimation of the ARX
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0.0712 0.0132 0.0402 0.0077 0.0100 0.0033' T

0.0650 0.0280 -0.0073 0.0220 -0.0241 0.0011
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model is convergent, the quality of the current predictions is always better than 

those made earlier. Therefore, a forgetting factor is used in calculating the Kalman 

gain to put emphasis on recent predictions. After converging to a certain degree, 

the estimated gain can be adopted in a Kalman filter and starts  state estimation. 

Before the adoption, the stability of the filter in using the gain should be checked 

to  avoid divergence. Thereafter, the filter gain can be replaced from time to  time 

by a  newer gain provided by the Kalman gain estimator.

This on-line process is simulated using 5,000 data. The Kalman gain estimator 

starts to operate after 500 data has been processed in the ATP. The forgetting 

factor is set to 0.999. The norms of the difference matrices between the optimal 

and estimated gains axe plotted against the number of d a ta  processed in the ATP 

and shown in Fig. 5.13. As expected, the result improves as the number of data 

increases. Compared with the norm in Case 1, the on-line approach needs more 

data  to achieve the same value of norm. This is reasonable because the on-line 

approach estimates the gain adaptively, that is, it cannot re-process previous data. 

Therefore, the predictions made earlier cannot take advantage of the currently 

updated model. Consequently, the predictions from which the gain is estimated 

are less accurate than  tha t in the batch-type approach.

Similarly, the state estimations using estimated gains and the corresponding 

residual comparisons are shown in Figs. 5.14 and 5.15. Figure 5.14 shows the 

result of using a  gain obtained after 2,000 da ta  are processed, while Fig. 5.15 

shows that after 5,000 data are processed. We skip the gain obtained with 1,000 

data  because the filter is not stable with th a t gain. For comparison, we use the 

same set of data  as in case one to  conduct state estimation. In Fig. 5.14, though 

the state estimation of the first state (Fig. 5.14(a)) seems good, the estimated 

residual (dashed line) does not quite agree with the optim al version (solid line) 

in Fig. 5.14(b). This is caused by the estimation errors in some other state. As 

a  result, the residual is not white, which can be seen from its auto-correlation
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function (Fig. 5.14(c)). The estimated gain is not good enough in this case. In 

Fig. 5.15, the results have been greatly improved. The traces of the state error 

covariances of these two cases are 0.0409 and 0.0092, respectively. The gains used 

in these two cases are

• K 2 0 0 0  =  

■ K 5 0 0 0  =

0.0797 0.0314 0.0725 -0.0159 0.0122
0.1590 -0.0324 -0.0767 -0.0378 -0.0332

0.0622 0.0270 0.0613 0.0178 0.0124
0.0983 - 0.0001 -0.0329 0.0007 -0.0265

-0.0159
0.0619

- 0.0100
0.0228

5.5 The ARX Coefficient Method

The ARX coefficient method calculates the optim al steady state Kalman filter 

gain directly from the tap parameters of the adaptive transversal predictor, the 

estimated coefficients of the ARX model, using the relation between the ARX 

model and the state space model. It is simpler th an  the m ethod described in the 

last section.

5.5.1 Obtaining Kalman Gain from the Estim ated AR X  Coefficients

From the adaptive transversal predictor two sets of coefficient matrices are 

obtained:

51 =  {CAK, CAAK, • • • ,  CAr^AK) (5.47)

52 =  {CB, C A B C A ^ ' B } ,  (5.48)

where “A” denotes estimated value. The following relations provide a  method of 

obtaining an estimate of the optimal Kalman filter gain from set Si.
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Denote the true value set corresponding to  Si  by Si.  Prom Si  the elements 

of the m atrix sequence C A lK , i =  1, • • •, q can be calculated recursively. Note the 

first element of Si is C A K , and

j
C A j+1I< = C A j AI< +  C A ^ ' A K C A ' K ,  (5.49)

i=l

where j  =  1, • • •, q — 1. Denoting the j - th  element in Si  by S i j ,  (5.49) can be 

w ritten as

C A ^ I C  = S i j+ i  +  - i C A %  (5.50)
z=i

which clearly shows tha t all the information needed to compute C A 3+1K  can be 

obtained from Si  and previous calculations.

Proof of (5.49): 

j
C A ’A K  + J 2  C A ^ A K C A U C  

1 = 1

=  C A j A K  +  C P - ' A K C A K  +  C A j ~2A K C A 2K  +  • • • +  C A K C A K  

= C ( A j  +  A i - ' A K C  +  A j ~2AI<CA  +  • • • +  A K C A ^ ~ 1) A K  

=  C'(AJ'“ 1A +  A j ~2AI<CA  +  • • • +  A K C A i ~1) A K  

=  C ( A j ~2A 2 +  ■■■ +  A K C A ’- ^ A K

=  C ( A A j ~1 +  A K C  A*~l ) A K

= CA*+1K.  (5-51)

Q.E.D.

Using C A 'K ,  i =  1, • • •, q a m atrix M , can be formed:

C A K
M, =

C A 3I<
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Twhere s < q and H s =  [(CA)T, • • •, {CAS)T'\ is an observability-type m atrix of 

the system. For an observable system, if s is large enough, m atrix  H a will have a 

rank of n  (full-column-ranked).

Replacing all C A t~1A K ’s from (5.49) to  (5.51) by their estim ated values in 

set Si,  { C A {~l A K ,  i =  1, • • •, q}, an estimated M s of M s can be obtained. Then 

the least-squares solution of (5.52) is an estimate of the steady state  Kalman filter 

gain:

I< = H \ M S, (5.53)

where i f ]  is the pseudo-inverse of matrix H s.

Since the estim ated coefficients of the ARX model will converge to their true 

values eventually when the order q is large enough and the num ber of data  goes 

to infinity, we can also expect the estimate of the steady state  Kalman filter gain 

will converge to its optim al value.

5 .5 .2  N u m e ric a l E x a m p le

In this numerical example, the dynamical system, the noises, the inpu t/ou tpu t 

d a ta  and the adaptive transversal predictor (ATP) are all the same as th a t in 

Section 5.4.7. The tap  param eters of the ATP are taken out periodically during 

operation for estimating the Kalman filter gain. In calculating the gain according 

to (5.51), the number of s is set to 20. The norms of the difference matrices 

between the optimal gain and the estimated gains obtained based on different 

number of data  are shown in Fig. 5.16. The first estimate is made after the ATP 

has processed 500 data.

Similar to the numerical example in the last section, the state estimation of 

the first state, the residual comparison, and the residual auto-correlation function 

of using the gain obtained after processing 1,000 and 5,000 d a ta  are shown in
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Figs. 5.17 and 5.18 respectively. The results in both  cases are satisfactory. The

estimated gains in this two cases are 

# 1 0 0 0

0.0565
0.0966

0.0359 0.0513
0.0461 -0.0193

-0.0164
0.0111

#5000 =
0.0579 0.0222 0.0445 0.0142
0.0667 -0.0252 -0.0094 0.0228

0.0046
-0.0250

0.0126
-0.0235

-0.0023
-0.0043

0.0030
0.0025

This method is simpler than  the equivalent prediction m ethod introduced in 

the last section. It is also suitable for on-line application.

5.6 Inverse Filter Method

The inverse filter method utilizes the fact th a t the residual of an optimal 

Kalman filter is white. Through the innovation model the output is formulated as 

the sum of a deterministic part and a stochastic part. The deterministic part is 

driven by known input force, while the stochastic part is driven by the residual. 

The deterministic part can be subtracted out from the output, and the remaining 

signal can be modeled by a  moving average (MA) model whose coefficients axe in 

terms of the state space parameters and the optim al steady state Kalman filter 

gain. Hence the optimal Kalman filter gain can be calculated from the coefficients 

of the MA model. To identify the MA model, we identify a  corresponding autore­

gressive (AR) model first, which is a filter whitening the remaining signal. The 

inverse of the AR model gives the MA model.

5.6.1 Obtaining Kalman Filter Gain from the Inverse Filter

From the Kalman filter formulations, an innovation model can be derived (see

(5.7) and (5.8)), which are re-written here for convenience:

^jt+i =  +  Buk  +  AKk£k  (5-7)
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Vk -  C x k + ek (5.8)

For an optimal Kalman filter, the sequence {e*} is white. In the steady state the 

filter gain becomes constant and thus the subscript can be deleted.

From the innovation model, the Kalman filter can be viewed as driven by 

the deterministic input uk through B  and by the stochastic input ek through AK .  

Hence, the filter state and output can be decomposed into two parts, one caused by 

the deterministic input and the other caused by the stochastic input. Accordingly, 

the innovation model can be divided into two models:

=  A £k,i + B u k (5.54)

Vk, i =  C x k>1 (5.55)

and

£fc+i,2 =  A x k2A K kek (5.56)

Vk, 2 =  C x k2 +  ek (5.57)

where x k =  x k l +  x~^2 and yk =  y kti -f y ki2. Expanding (5.55) and (5.57) based 

on (5.54) and (5.56), respectively, one can derive

k
Vk,i = ' Y j C A ' ~ 1B u k-.i , (5.58)

2 =  1 

k - 1

yk,2 = Y J C A iK e k - i  + ek . (5.59)
i = 1

Combining the above two equations, one obtains 
k fc-i

yk = ^ C A ^ ' B u b - i  +  +  efc. (5.60)
t=i t=i

Equation (5.60) clearly shows the two parts of which the output is composed. 

Since the state space parameters [A, B ,  C] are known, one can subtract the 

deterministic component out from the output. T hat is, by defining

k 
Sk = Vk~

! = 1 
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(5.60) becomes

Jt-i fc-i
s* =  C A 'K e k - i  + £k =  C^ - i -  (5*61)

i=l >=0

where Co =  Ip, and C,- =  C A lK  for i > 1. The signal s* is solely driven by 

sequence {e*}. For a  stable system all the terms C A 'K ,  i > q, are negligibly 

small when q is sufficiently large; therefore, when k  is large, the upper limit of the 

summation in  the right hand side of (5.61) can be replaced by q. Equation (5.61) 

describes the  signal Sk as linear transformation of a  white sequence {e*}; therefore, 

it is called a  Moving Average (MA) model. The matrices C i , • • •, Cg are constants 

called the MA parameters. The term  “moving average” arose because Sk can be 

regarded as a  weighted average of e*, • • •, £*_g. Note tha t the MA param eters are 

expressed in  terms of the state space param eters A, C  and steady state  Kalman 

filter gain K .  Knowing the MA parameters, one can compute the filter gain.

The problem of estimating the MA model in (5.61) is th a t the  white se­

quence {efc} is not readily available; therefore, the ordinary least-squares method 

frequently used to estimate the coefficients of linear equations cannot be used di­

rectly. However, we can estimate the MA model by estim ating a corresponding 

autoregressive (AR) model first, and then seek the inverse of the AR model to  find 

the MA model. To highlight this point, we take the z-transform of both  sides of

(5.61) to become
g

S  = Y ,  ° i z ~iE  =  (5.62)
i=0

where M ( z - 1 ) is a polynomial m atrix in z ~ x (a m atrix whose entries are polyno­

mials in z- 1 ). M atrix M (z-1 ) can be regarded as a  filter which receives e* and its 

delayed versions as inputs and yields Sk as output. If we can find the inverse filter 

N ( z ~ 1) of M ( z -1 ) such that N ( z ~ 1) M ( z ~ 1) = Ip, by pre-multiplying Eq. (5.62) 

with N ( z ~ 1) we have

N i z - ^ S  =  E.  (5.63)

Matrix N ( z -1 ) usually is an infinite-ordered polynomial m atrix in z ~ x. In (5.63)
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N ( z  -1) can be viewed as a whitening filter which receives s* and its delayed 

versions as inputs and yields white sequence {e*} as output.

To obtain a whitening filter for the signal .s*, we can write an AutoRegressive 

model of Sk with order r  in time domain as

Y^NiSk-i =  ek, (5.64)
i= 0

where iV0 =  Ip, and estimate the AR param eters Ni,  • • •, !Vr .16 Comparing (5.63) 

with (5.64) it can be seen that the infinite-ordered polynomial matrix N ( z _1) is 

approximated by a finite-ordered polynomial m atrix  X^i=o NiZ~%. The param eter 

estimation of the AR model can be accomplished by using the ordinary least- 

squares m ethod, which is well developed in the literature for scalar cases. For a 

m atrix AR model, the extension of the m ethod is straightforward.

After obtaining N ( z -1 ), we can inverse it to  find M ( z ~ 1). The operation of 

inversing a  square polynomial m atrix is similar to the inverse of an ordinary square 

m atrix (i.e., a m atrix with scalar entries) and the result is the adjoint matrix 

of the m atrix  divided by its own determ inant of the m atrix. In the operation 

multiplication of two polynomials can be calculated by convoluting the coefficient 

sequences of the two polynomial; division of two polynomials can be calculated by 

deconvoluting the coefficient sequence of the num erator polynomial over tha t of 

the denominator polynomial, expanding to as many terms as desired.

After obtaining the estimated MA model, collecting ql  coefficients one can 

form a m atrix

M  =

C A K
C A 2K

C A qlK

= H K (5.65)

where

H  = [(C A f , (C A 2f , {CAql)T] T .
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Note tha t H  is an observability-like m atrix, which is full column-ranked for an 

observable system and a sufficiently large ql.  The least-squares solution of K  is

K  =  (H t H ) ~ 1H t M  = H *M  (5.67)

where H * is the pseudo-inverse of H  and K  is the estimated optimal steady state 

Kalman filter gain.

5.6.2 Num erical Example

The same dynamical system and input/output data in the last two sections are 

used again in this example. The order of the AR model is set to  100, and the inverse 

of the polynomial m atrix is also expanded to have 100 terms. For calculating the 

filter gain, the number ql  in (5.65) is also set to 100. After processing 5,000 data, 

the four elements of the estim ated m atrix sequence C A 'K ,  (i =  1, • • •, 100) are 

plotted along with their theoretical true values in Fig. 5.19. The variances of 

estimation error of the sequences against the number of d a ta  processed are shown 

in Fig. 5.20, where we can see the estimation is converging. Figure 5.21 shows the 

norms of the difference m atrix between the estimated and the optimal gain against 

the number of data  processed. This figure shows the convergence of the estimation 

of the filter gain. Similar to the last section, the gains estim ated after processing

1.000 and 5,000 data  are used in state estimation, and the results are shown in 

Figs. 5.22 and 5.23 respectively. The results show tha t the gain estimated using

1.000 data  is fairly good already. The estimated gains in these two cases are

R io o o  =

R 5000 =

Figure 5.24 shows the reconstructed sequences CA'Ksoooi i — 1, • - -, 100) using 

the gain AT5000 and their theoretical true values. It indicates how well the MA 

model in (5.61) is estimated.
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0.0691 0.0303 0.0471 0.0184 0.0102 -0.0051
0.0880 0.0447 -0.0107 0.0143 -0.0251 0.0054

0.0604 0.0279 0.0471 0.0146 0.0132 0.0055
0.0648 0.0366 -0.0059 0.0143 -0.0162 - 0.0011
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5.7 Estimation of Measurement and Process Noise Covariances from the 
Kalman Filter Gain

Though a  well-estimated optimal steady state Kalm an filter gain is sufficient 

for state estimation purpose, covariances of process and measurement noises might 

be of interest to those who want to know the stochastic properties of the system 

and the sensor. If we can derive this information from the estimated filter gain, 

it will be useful in practice. Indeed, we can easily derive the measurement noise 

covariance, bu t for process noise, the solution is not unique. However, one of the 

possible covariances has been derived.

5.7.1 E stim ation of Measurement Noise Covariance

From Kalman filter formulations, the steady state  filter gain is

K  =  P ~ C T( C P - C T + R ) ~ \  (5.68)

where P~  is the a priori state error covariance. W ithout confusion, the superscript 

is om itted for simplicity. The covariance of the optim al residual sequence is

$k=Cov[yk -  yk]

=  Cov[Ce* +  Ufc]

=  CPkCT +  R,  (5.69)

where ejT is the a  priori state error. In steady state the subscript k  can be dropped. 

From (5.68) and (5.69), it is obvious that

P C T =  (5.70)

therefore,

R  =  $  -  C K $  = (IP -  CI<)$.  (5.71)
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The optimal residual can be estim ated by running a Kalm an filter using the es­

tim ated filter gain. For a  well-estimated gain, the covariance of the estimated 

residual <1 calculated by sample averaging should be very close to  the true one. 

Replacing all the true values on the right hand side of (6.71) by the estimated 

versions, an estimate of measurement noise covariance, R , is obtained.

5.7.2 Estim ation of Process Noise Covariance

From Kalman filter formulations in steady state, we have

P  =  A P +A t  +  Q (5.72)

P +  =  (In -  KC)P,  (5.73)

where P +  is the a  posteriori s ta te  error covariance. Combining the above two 

equations yields

P  =  A ( In -  K C ) P A t  + Q = A P A t  -  A K C P A t  +  Q. (5.74)

According to (5.74), suppose K  is known, by assigning any value to  P , Q is

uniquely determined, and vice versa. However, P  and Q cannot be chosen arbi­

trarily. First, both covariance matrices should be symmetric and positive definite. 

In addition, since the covariance of the optimal residual is fixed for a  fixed gain, 

the value P C T is fixed from (5.70). Let

P C T = X ,  (5.75)

where X  is a  fixed m atrix. Any symmetric positive definite m atrix P 1 which 

satisfies (5.75) and produces a  symmetric positive definite m atrix Q' by (5.74) is 

a  qualified candidate solution of P , and so is Q' a qualified candidate of Q. Using 

Q' thus found and R  back to  the Kalman filter will result in an identical steady 

state filter gain K .
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Solving P  and Q from (5.74) and (5.75) under the constraints of being both 

symmetric and positive definite is not a trivial task. Moreover, the solution in 

general is not unique, which can be proved by a simple numerical example.

5.7.3 Num erical Exam ples

For estimating measurement noise covariance, the  example in Section 5.6.2 

is used. Using the estim ated optimal Kalman filter gain obtained after process­

ing 5,000 data, the Kalm an filter yields a residual having a covariance m atrix 

(calculated by averaging 700 samples)

$  = 0.0349 0.0031 
0.0031 0.0306

According to (5.71), the estim ated measurement noise covariance is

R  = 0.0278 0.0010 
0.0006 0.0279

while the theoretical true value is

'0.0279
R  = 0

0
0.0279

We can see th a t the estim ation is very accurate. If calculated from the optimal 

Kalman filter residual, the residual covariance and estim ated measurement noise 

covariance are

^ o p t  —

0.0333 0.0024 
0.0024 0.0312 R 0p t  —

0.0263 0.0000 
0.0001 0.0278

therefore, even from the optimal Kalman filter, we cannot estimate the covariance 

exactly. This is caused by finite length of data  processed.

To prove the solution of process noise covariance is not unique, we use a 

simple numerical example. The state space param eters of a  single-input single­

output dynamical system with just one mode are

A  = 0.9801 0.1772
-0.1772 0.9801

B  = 0.0049
0.0434 C  = [0.8163, -0 .0183].
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The noise covariances are

Q  = 0.0050
0.0000

0.0000
0.0050 R  = 0.0162.

The optimal steady state Kalman filter gain and a  priori s tate  error covariance 

under this situation are
'0.5248'

0.2594Kopt —

P  = 0.0183 0.0098 
0.0098 0.0369

We can find two sets of P  and Q (denoted by Pi, Qi  and P2 , Q2) which can 

satisfy

P C T = 0.0148
0.0073

and (5.74), and be symmetric and positive definite:

[0.0183 0.0104] Q
1 _  [0.0104 0.0648 J ’

[0.0183 0.0091] n
2 n nnm n ono/t > ^2

0.0183 0.0104 
0.0104 0.0648

0.0061 0.0047 
0.0047 0.0037

Using Qi or Q2 along with R  in the Kalman filter, we can obtain the same gain 

K 0pt• In other words, with the same measurement covariance, there is more than 

one process noise covariance which can result in the same Kalman filter gain. This 

example proves th a t, given an optimal Kalman filter gain, the  solution of process 

noise covariance is not unique.

5.8 Concluding Remarks

This chapter presents three methods of estimating Kalman filter gain to solve 

the problem of s ta te  estimation under unknown noise covariances. The m ain points 

can be summarized as follows:
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(1) A linear stochastic system can be represented by a state space model or a 

m atrix polynomial model. An autoregressive with exogeneous input (ARX) 

model of a  linear system whose param eters are expressed in terms of state 

space param eters and optimal steady state Kalman filter gain can be derived 

through the Kalman filter formulations. The param eters of the ARX model 

can be estim ated using a recursive least-squares filter called adaptive transver­

sal predictor (ATP), which requires no initial information about the system 

and noise. The estimation of the ARX param eters is p-consistent.

(2) The first m ethod of estimating optimal Kalman filter gain uses the equivalence 

in output predictions based on a state space model and on the ARX model. 

The ARX model obtained by the ATP is used to generate multiple steps-ahead 

output predictions and from which the optim al steady state Kalman filter gain 

is calculated. The method is suitable for on-line adaptive applications as well 

as off-line batch-type analyses.

(3) The second m ethod utilizes the relation between the state space model and 

the ARX model and calculates the optimal Kalman filter gain directly from 

the ARX param eters. The method also uses the ATP to estimate the ARX 

parameters. This method is simpler than the  first m ethod, yet more effective. 

It is also suitable for both on-line and off-line applications.

(4) The th ird  m ethod uses the concepts of decomposing output measurement 

into deterministic and stochastic parts, and estimates a  moving average (MA) 

model through inversing a whitening filter. It subtracts the deterministic part 

out from the output first, and uses the ATP to whiten the remaining signal. 

The optim al filter gain is calculated from the inverse filter of the ATP. The 

estimation of filter gain is p-consistent. The m ethod is also suitable for both 

on-line and off-line applications.

(5) The covariance of measurement noise can be obtained after the optimal
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Kalman filter gain is estimated. However, the covariance of process noise 

cannot be uniquely determined.
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Fig. 5.22 Estimation results using the inverse filter method with 1,000 data samples.
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Chapter 6

LINEAR STATE ESTIMATION UNDER UNKNOWN 
SYSTEM MODEL AND NOISE COVARIANCES

6.1 Introduction

In Chapters 4 and 5 state estimation under unknown noise covariances was 

studied, where state space models of the linear systems are assumed known. Going 

one step further, in this chapter state estimation under unknown system models 

and unknown noise covariances is investigated. In other words, the problem is 

posed as follows: assuming the system is linear and the process and measurement 

noises are stationary, zero-mean and white with unknown covariances, given a set 

of inpu t/ou tpu t data, how can state estimation be conducted?

The usual way of approaching the problem is to divide it into two separate 

steps. First, system identification is conducted and a set of state space param eters 

[A, B , C] is identified. Second, the identified system parameters are used in 

estimating either noise covariances or filter gain as described in the last chapter, 

and then the results are used in estimating states; or alternatively, after the first
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step the least-squares approach introduced in Chapter 4 is used to  estimate state 

directly, by-passing the estimation of noise covariances or filter gain.

Regardless of what approache one might take, the step of identifying a state 

space model is inevitable because without a state space model it is impossible 

to extract sta te  information from inpu t/ou tpu t data. However, the above two 

steps can be combined together. In other words, the sta te  space parameters 

and the corresponding optimal steady state Kalman filter gain can be identified 

simultaneously.45 In fact, the steady state Kalman filter gain can be regarded as 

a param eter which characterizes the stochastic properties of the system. This 

point can be seen clearly from (5.7), (5.8) and (5.60), where the system can be 

viewed as driven by a  deterministic force {ujt} through input m atrix  B  and by a 

stochastic force {e*,} through an equivalent input m atrix A K .  For deterministic 

systems, the state space param eters [A, B ,  C ] are sufficient for characterizing 

the system; however, for stochastic systems one needs param eters [A, B,  C, K ] 

to characterize the system. Therefore, conducting stochastic system identification 

one should have a quadruplet [A, B ,  C, K] as a  result. Having this quadruplet, 

a state estim ator can be readily constructed.

This chapter develops two methods for state estimation under unknown sys­

tem model and noise covariances. The first one, called simultaneous method, 

identifies a  sta te  space model of the system and the corresponding optimal steady 

state Kalman filter gain simultaneously, using the adaptive transversal predictor 

(ATP). The second, called sequential method, identifies a sta te  space model using 

the ATP with shorter order first, and then uses the methods developed in Chapter 

5 to  estim ate the filter gain. A m ethod for state estimation under uncertain system 

models was introduced in Ref. 15, where the state vector is augmented to include 

the uncertain system parameters. In this way the system param eters and state 

can be estim ated at the same time. However, the formulations are complicated 

and rather difficult to implement, especially for high-order systems. Nonlinear
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state estim ation techniques, such as extended Kalm an filter and its varieties, have 

to be used in this approach because the system model becomes nonlinear due to 

state augmentation. For nonlinear estimation, a  system is usually linearized at 

each estim ated state, which is very time-consuming especially for large order sys­

tems. Moreover, the convergence of the estim ate is not guaranteed. The approach 

has inherent problems of bias and divergence. The methods introduced in this 

chapter can overcome these difficulties. On the other hand, least-squares lattice 

filter has been used in identifying structural dynam ics;34 however, deriving a  state 

space model and a  Kalman filter gain from a least-squares filter has never been 

addressed.

Section 6.2 briefly introduces the meaning, classification and applications of 

system identification. A system identification m ethod, the eigensystem realization 

algorithm (ERA), is especially introduced because it is frequently used in the m eth­

ods derived later in this chapter. Section 6.3 describes the method which can iden­

tify a  state space model and the corresponding optim al steady state Kalm an filter 

gain of a linear system simultaneously from inpu t/ output data. Modal transform a­

tion which transforms the identified param eters to  modal coordinates is also dis­

cussed. In Section 6.4, another m ethod of system identification is derived through 

the projection filter theory.

6.2 System Identification

System identification, sometimes called modelling or time series analysis, is 

im portant in many fields, e.g. economics, biology, physiology, ecology and process 

control. System identification deals with the problem of building m athem atical 

models of dynamical systems based on observed data. In a  sense, inferring models 

from observations and studying their properties is really what science is about;
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therefore, system identification is actually part of basic scientific methodology.

Model building is an im portant method to understand the dynamic behavior 

of the system under study, and a mathematical model enables mathematical trea t­

ments of the system. Especially in technical application, system identification is 

the most im portant step for making use of control theory. W ithout an adequate 

model of the system to be controlled, the synthesis of a control algorithm is not 

possible.

The construction of a model from data involves three basic entities: the data, 

a set of candidate models, and a rule by which candidate models can be assessed 

using the data. The requirement of the data is th a t they should be “rich” , in other 

words, they should contain sufficient information about the characteristics of the 

system under investigation.21’22 In choosing a  model type one should consider 

subsequent application, and the difficulty inherent to different model types. The 

rule for assessing a candidate model is usually to  check how well the model can 

predict the output, given the input/output da ta  of the system. Mathematically, 

for a least-squares m ethod, the model param eters are chosen to  minimize the sum 

of the squares of all the prediction errors.

There are several ways to  classify system identification methods.19’20’35’36 For 

example, from the type of the resulting model, there are Parametric models and 

Nonparametric models. Parametric models are such as algebraic equations, dif­

ferential equations, a system of differential equations, and transfer functions. A 

nonparametric model is the response obtained directly or indirectly from an ex­

perimental analysis of a system, such as the recorded step response of a  system 

is a nonparametric model. O ther examples are the results from frequency domain 

analysis. From the signals used, there are continuous-time and discrete-time mod­

els. Continuous-time models are identified using continuous measurement, while 

discrete time models use sampled data. From the property of linearity of the  sys­

tems under study, there are linear and non-linear system identifications. From
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whether the disturbance from environment is considered, there are deterministic 

and stochastic system identifications. Besides, there are frequency-domain and 

time-domain system identifications. Erequency-domain methods use Fast Fourier 

Transform (FFT ) technique to  analyze the frequency property of the data and de­

rive a  model from it, while time-domain methods derive a  model from input/output 

data directly, and are easier to  formulate an adaptive method. For the purpose of 

subsequent applications in control design, a  system identification method which 

can give a linear, parametric, stochastic and discrete-time model is preferable.

The Eigensystem Realization Algorithm (ERA) is a simple and powerful algo­

rithm  for identification of linear deterministic systems from impulse responses. It 

has been proved valuable for modal param eter identification from test d a ta .37-41 

The algorithm uses the impulse responses (i.e., the Markov parameters for discrete 

systems) to form a large block da ta  m atrix which is referred to as the general 

Hankel m atrix. Then the technique of singular value decomposition is used to 

decompose the Hankel matrix. The system order is determined by counting the 

number of singular values retained. The small singular values are attributed to 

noises and are truncated. The state space model can be computed from the de­

composed matrices. Identifying a state space model from input/output data is also 

called “realization” , because after having the state space model the system can be 

simulated, or “realized” , using electric circuits. The realized model is not unique, 

or is unique only under equivalent transformation; but the Markov parameters are 

unique. For further details, readers are referred to Ref. 25.

In the methods developed later in this chapter, ERA is used as a standard tool 

for decomposing a Markov-parameter-type matrix sequence C A XB,  i =  0, !.,••• 

into a triplet [A', B',  C'], where A is a  square m atrix and the superscript ' 

denotes a  version under equivalent transformation. Matrices A, B,  C  are not 

necessarily the state space param eters of a  system. They can have or have not 

physical meanings.
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6.3 The Simultaneous Method

This section introduces a  method which can simultaneously identify a  sta te  

space model and the corresponding optimal steady state  Kalman filter gain of a 

linear system from inpu t/ou tpu t data. The simultaneous identification provides 

great advantages for the purpose of state estimation, for a state estimator can be 

readily constructed. The m ethod is capable of updating the identified model and 

filter gain continually, which is desirable for on-line applications.

6.3.1 Coefficients o f an A R X  M odel Estim ated by ATP

In section 5.2 an autoregressive with exogeneous input (ARX) model whose 

coefficients are expressed in terms of sta te  space param eters and the steady sta te  

Kalman filter gain is derived through the Kalman filter formulations. Section

5.3 introduced the adaptive transversal predictor (ATP), a recursive least-squaxes 

filter, to estimate the coefficients of the ARX model. The ATP requires no a  priori 

information about the system and noises, except the assumptions tha t the system 

is linear and noises are stationary, zero-mean and white. The estimation is proved 

to be “p-consistent” . After processing a num ber of N  inpu t/ou tpu t data, the ATP 

gives a m atrix 0 n  containing the estim ated coefficient matrices,

e j j  = [CAK,  • • •, C A ^ A K ,  C B , • • •, C A p ' B ] ,  (6.1)

where q is the order of the ATP, and ”A” denotes estim ated value.

Matrix 0/y can be divided into two sets of coefficient matrices, i.e.,

51 =  { O A K ,  C A A K ,  • • •, C A ^ A K }  (6.2)

52 =  {CB,  C A B ,  • • •, C A p ' B }  (6.3)

where

A  =  A ( I n -  K C ). (6.4)
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Note tha t sets Si  and § 2  contain estimated coefficient matrices. Now denote the 

two sets which contain the corresponding true values by Si and S 2 , respectively. 

The m atrix sequences in S\  and S 2  have the same form as Markov parameters. 

In fact, Si is the Markov param eters of the filter system described by (5.9) when 

driven by yk only; while S 2  is the Markov param eters when driven by it* only. 

Since the elements of the two sets are all represented in term s of the state space 

parameters and the Kalman filter gain, we can obtain these parameters from the 

two sets.

6.3.2 Identification of a State Space M odel and Steady State Kalman

Filter Gain V ia  ERA

Though there are several methods of realizing the state space parameters 

A, B ,  C  and the steady state Kalman filter gain K  from Si and S 2 , they can be 

classified into two different m ajor approaches. One approach processes on Si  and 

S 2 individually and sequentially, while the other combines them together to form 

another sequence. They are introduced as follows.

6.32.1 Method 1

In the first m ethod, the Eigensystem Realization Algorithm (ERA) is applied 

to decompose Si or S 2  directly. Since Si and S2 are Markov-parameter-type 

m atrix sequences, the ERA can be used to decompose them into triplets containing 

equivalent system m atrix, output matrix and input matrix. However, since the 

Markov parameters belong to the filter system rather than  the original system, 

further treatm ent on the the identified triplets is needed to obtain the parameters 

of the original system.
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The ERA is used to  decompose Si into a  triplet [A', (A K )', C'], which is re­

lated to [A, A K ,  C] v ia some unknown equivalent transformation P.  Specifically,

A' =  P ^ A P  

(A K ) '  =  P ~ \ A K )  

C' = CP.

(6.5)

(6.6) 

(6.7)

Note that with respect to the equivalent transformation P , a  realized output ma­

trix C' is readily available as given in (6.6). The corresponding realized system 

matrix A' =  P -1A P  can be obtained from (6.4) to (6.7) as

A! =  A' +  (AK)'C ' . (6.8)

To obtain the realized input m atrix under the same transformation, namely B'  =  

P ~ l B,  first note tha t

C B  = C P P - ' B  = C 'B '  

C A ' B  = C P P - ' A ' P P - ' B  =  C ' i A ^ ' B '  

= C ' (A 'y B ' ,

hence, from the set S 2  one can write

B'

• C B  ■ C'B'  ’ r c '  1
C A B = C'A'B ' C'A'

c A ^ b . . C"(A')9- 1B '. . c ' i A y - 1 .

= H B ' , (6.9)

where V  denotes the observability-like matrix. Thus B '  can then be calculated as

(6 .10)

C B
C A B

B '  =  f f t  

.C A i - ' B

where denotes the pseudo-inverse of H.
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An alternative way to obtain m atrix B  is to  apply ERA to the second set S 2 . 

However, the realized matrix B  is not necessary in the same coordinates as the 

realized system m atrix  A'  and output m atrix C'  obtained using the first set S\.

A coordinate transformation is needed to  bring the two sets of identified matrices 

to the same coordinates. The coordinate transformation will be discussed in the 

next section.

Under different coordinates for the state variable, the steady state Kalman 

gain should be transformed accordingly. If the state is transformed by a  non­

singular m atrix P,  i.e. x J  =  P(x^) ' ,  then (5.7) becomes

(z*+1)' =  P - ' A P ^ ) '  +  P ~ l B u k +  P ~ l A P P ~ l K e k

= A \ x l ) '  + B 'u k + A 'K '£ k 

where K '  =  P ~ 1K .  Note that K  is transformed exactly the same way as B.

Since (A K ) '  =  A 'K ' ,  K '  can be calculated as

K'  = (A ')~l ( A K ) ' . (6.11)

Having these relations between parameters, we can substitute the true values, 

Si  and S 2 , by their estimated versions, Si and § 2 , to  obtain a quadruplet 

[A!, B \  C', K'].

6.32.2 Method 2

In the second method, the two sets Si  and S 2  are combined to yield the 

Markov param eters of the original system. After decomposing the combined se­

quence, the s ta te  space parameters of the original system are derived.

The first element in S2, CB,  is also the first element of the Markov parame­

ters. Starting from this point, we can calculate the Markov parameters recursively 

according to the following equation
k

C A kB  =  C A kB  +  53  C A ^ A K C A ^ B ,  (6.12)
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where k = 1, • • •, q — 1. Denoting the j- th  element in Si and S 2 by S i tj  and S 2 J,  

respectively, ( 6 .1 2 )  can be w ritten as

k
C A kB  =  S 2)fc+ i +  J 2  ( 6 .1 3 )

i =  1

which clearly shows tha t all the inform ation needed to compute C A kB  can be 

obtained from S i , S 2  and the previous calculation of C A lB , I = k — 1, k — 2, • • •, 1.

Proof of ( 6 .1 2 )  :

k
C A kB  + J 2 C ^ k~i A K C A i~1B

i =  1

=  C A kB  +  C A k~ l A K C B  +  C A k~2AI<CAB  +  • • • +  CAI<CAk~1B  

= C (A k +  A ^ A K C  +  A k~2AI<CA  +  • • • +  A K C A ^ B  

= C  [A*-1 (A +  A K C )  +  A k~2A K C A  +  • • • +  A K C A *-1 ] B  

= C [Ak~2(A  +  A K C ) A  +  • • • +  A K C A * - 1] B

= C [A(A +  AI<C)Ak~2 +  A K C A fc_1] B  

= C ( A  + A JfC )A fc" 1 +  A K C A * - 1] B

=  C A kB.  ( 6 .1 4 )

Q.E.D.

After identifying a number of the Markov parameters, ERA can be used to 

realize a state space model. To obtain the corresponding filter gain, the method 

presented in Section 5.5 can be used.

6.3.3 M odal State Estim ation

For a given realized quadruplet [A', B',  C", K %  a state estimator for the 

original system can be constructed using this quadruplet. Because the sets S\

1 2 9
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and § 2  can be adaptively improved when more d a ta  are processed, ERA must be 

used from tim e to  time to update the quadruplet. However, the quadruplet may 

not necessarily belong to  the same coordinates each time . Therefore, in order to 

compare the realized quadruplet and estim ated states successively , they should be 

transformed to  the same coordinates. The modal coordinate, in which the system 

m atrix A  is block diagonal and the matrices C  and B  axe normalized in some 

sense, is an appropriate choice.

A model in modal form and modal state estimation are of interest among 

researchers in structural d y n a m i c s , 25 ,42>43 because modal state bears good physical 

meanings. For a  state space model in modal form, system matrix A  gives the 

information of modal frequencies and dampings; m atrix C  gives mode shapes 

at the locations of output sensors.25 If the mode shapes have been normalized, 

the m agnitude of each state indicates the am ount of mechanical energy allocated 

in tha t mode. Modal frequencies, dampings and mode shapes are called modal 

parameters, which are the main interests of conducting modal analysis. However, 

one should remember tha t, for control purpose, a  state space model in modal form 

is not necessary. All tha t a  controller design requires is a  state space model of 

the system, no m atter what coordinate it might refer to. Therefore, the modal 

transformation discussed in the followings is of interest in modal analysis.

Consider the case when all eigenvalues of the system m atrix A  are distinct. 

Then the normalized eigenvector m atrix V  =  [iq, V2 ,• • • ,vn] can be used to di- 

agonalize A,  i.e. V -1 AV =  A =  diag( \ i ,  X2, • ■ •, An) where A j (e =  1,2, 

denotes the i-th  eigenvalues of A. Since a  scalar multiple of an eigenvector is 

still an eigenvector, any T  =  V K C can also diagonalize A, where K c is any (non­

singular) diagonal m atrix. Furthermore, any m atrix  T  th a t diagonalizes A  can 

be w ritten as T  = V K C for some K c. A three-step procedure is presented in the 

following to  transform a  realized triplet [A, B,  C] to  its modal coordinates.
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Step 1: Diagonalization

Let the system m atrix A  be diagonalized by a m atrix  T  such that

A* = T ~ XA T  =  A. (6.15)

Correspondingly, B  and C  are transformed according to

B * = T - ' B ,  C* = CT.  (6.16)

Given two sets of realized [A, B ,  C] that are equivalent, i.e., they are related by 

some equivalent transformation, the above transform ation will uniquely recover 

A* = A but not necessarily B* and C* because of the freedom in T. In order 

to uniquely recover B* and C*, they must be normalized in a  certain way. The 

following describes such a  normalization procedure.

Step 2: Normalization

The normalization is defined so that each column of the normalized matrix 

has unit length, and the first element of the column is a positive real num­

ber. Noting tha t the elements could be complex numbers, this procedure can 

be accomplished by the following steps. First, find a  constant diagonal ma­

trix M , M  = diag[mi,  m 2, • • •, rnn], such th a t C *M  = [cjm i, • • • ,cnm„] and

rn\cfC{ =  1, where c,- denotes the i-th column of C*. Next, find a constant 

diagonal m atrix  R,  R  =  diag[ri, • • • , r n], where r,- is a  pure complex number 

or ±1 which rotates a  complex number without changing its length, such that 

Cn = C * M R  = diag[cim\Ti , • • • , cnm nrn] and the first element of vector CimiTi 

is a positive real number. Then C* is normalized such tha t

Cn =  C*MR.  (6.17)

Accordingly, B* is transformed to B n so that

B n = R -1 M ~ l B * . (6.18)
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Step 3: M odal Transformation

For vibratory systems such as flexible space structures, the eigenvalues often 

appear as complex conjugate pairs. After the above transformation the states are 

complex numbers, and so are the elements of B n and C„. Another transformation 

can be used to further transform [A, B n, Cn] to their modal forms, [Am, B m, Cm], 

where A m is block diagonal and all the matrices are real. The realized steady state 

Kalman filter gain K  is transformed in the same way as B.

It can be shown that the above transformation procedure will recover a unique 

set of [Am, B m, Cm, K m\ from any equivalent sets of [A, B,  C, K ] (see Appendix 

for proof). W ith the quadruplet in modal form, the modal space state estimation 

can be carried out by using a  constant gain Kalman filter. The modal state 

estim ator is described by the following two equations,

Xf. =  A mXj._2 B mUk-i,  (6.19)

X +  =  * *  + K m { y k - C m & k ) ,  (6.20)

where x~£ is the estimated state. Note that A m is a  block diagonal m atrix which 

makes this state estimator easier for implementation. To this end, the integrated 

system identification and state estimation scheme has been accomplished.

6.3.4 Num erical Examples

To study the numerical properties of the method, two sample problems are 

presented. In the  first example the system is a beam-like structure (the same 

one used in the previous chapters) characterized by non-repeated low frequencies 

and low dampings. In the second example the system is a  simulated Mini-Mast 

structure, characterized by repeated low frequencies and low dampings.
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Example 1: A Beam-Like Structure

In the first example the lumped-mass beam-like simulated system with three 

masses (see Fig. 5.2) is considered again. The settings of the system and the envi­

ronment are re-stated here for convenience. The m odal frequencies and damping 

factors are shown in Table 6.1. The variance of the random  excitation force, c l ,  is 

set to 40. The standard deviation of the process noise Wk is about 23% of tha t of 

the input influence Buk,  and the standard deviation of the measurement noise Vk 

is about 10% of th a t of the output measurement y*. The sampling frequency is 10 

Hz. The filter order of the adaptive transversal filter is set to  100. The identified 

modal frequencies and damping factors after processing 1,000 to 5,000 data (with 

an increment of 1,000 data), using both m ethod 1 and m ethod 2, respectively, 

are listed in Table 6.1 and compared with the true values. From the results, we 

can see tha t m ethod 2 is more effective in identifying modal parameters. The 

true quadruplet [Am, B m, Cm, K m] and its identified versions using the second 

method with 1,000 and 5,000 data are shown here for comparison. Note th a t the 

Kalman filter gains are obtained using the m ethod described in Section 5.5 after 

obtaining the s ta te  space modal models, and 20 term s are used for pseudoinverse 

(s =  20, see (5.52)).

=  diag ^ 0.9856 0.1628' 0.8976 0.4305' 0.8127 0.5690'
-0.1628 0.9856 -0.4305 0.8976 -0.5690 0.8127 }

Bm =  [0.0011 0.0134 -0.0016 -0.0072 0.0011 0.0034] 

CL, ='-'m
1.5119 0.0000 2.0000 0.0000 
1.3093 0.0000 0.0000 0.0000

1.5119 0.0000
-1.3093 0.0000

K m = 0.0604 0.0279 0.0471
0.0648 0.0366 -0.0059

0.0146 0.0132 0.0055
0.0143 -0 .0162  -0.0011

where m  denotes modal form and A m is a block diagonal matrix.

l-m.lOOO =  diag {
0.9851 0.1630' 0.8976 0.4313' 0.8115 0.5686'

-0.1630 0.9851 -0.4313 0.8976 -0.5686 0.8115 }
B m,iooo =  [0.0013 0.0137 -0.0016 -0.0071 0.0010 0.0033 ]J
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'777,1000

K;771,1000

1.5131 0.0000 1.9986 0.0000 1.5219 0.0000
1.3078 -0.0173 -0.0746 -0 .0004 -1.2976 0.0050

0.0567 0.0358 0.0520 0.0165 0.0050 -0.0039
0.0972 0.0460 -0.0196 0.0109 -0 .0254 -0.0049

and

*■777,5000 =  diag ^ 0.9852 0.1631' 0.8966 0.4306' 0.8121 0.5689'
-0.1631 0.9852 -0.4306 0.8966 -0.5689 0.8121

■Bm ,50oo =  [ 0 .0 0 1 1  0 .0 1 3 4  - 0 . 0 0 1 6  - 0 . 0 0 7 4  0 .0 0 1 0  0 . 0 0 3 4 ] T  

£ 777,5000 :
1.5113 0.0000 2.0000 0.0000 1.4999 0.0000
1.3099 -0.0030 -0.0107 -0 .0056 -1.3227 -0.0244

K;777,5000 ---
0.0578 0.0224 0.0449 0.0144 0.0124 0.0029
0.0669 0.0254 -0.0093 0.0230 -0.0235 0.0021

Note the true and the  identified quadruplet are in fairly good agreement. Theoret­

ically, as more da ta  are processed these param eters converge to  their true values 

if the filter order is sufficiently large.

Using the identified quadruplet, a modal s ta te  estim ator is constructed as 

shown in (6.19) and (6.20). The estimated modal states are then compared with 

their true values. Figures 6.1 to  6.3 show the state estimations and the correspond­

ing residuals of three cases: after 500, 1,000, and 5,000 da ta  processed (using the 

second method). In state estimation figures, the solid lines represent the true val­

ues and the dashed lines represent the estim ated m odal sta te  using the identified 

quadruplet. Three modal states are shown in the figure and demonstrate tha t 

as more da ta  are used the state estimations are improved. In the residual plots, 

the solid lines represent the optimal Kalman filter residuals and the dashed lines 

represent the estim ated ones, and in Figs. 6.2(d) and 6.3(d), they are in good 

agreement. The auto-correlation functions of the residual show that the state es­

timation using the model and filter gain obtained w ith 1,000 data  is satisfactory 

already.
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Example 2: Mini-Mast

In the second example a  simulated Mini-Mast model is considered. Mini-Mast 

is a 20-meter-long generic space truss built in NASA Langley Research Center for 

control experiments of flexible structures44 (see Fig. 6.4). It is deployed vertically 

and cantilevered from its base on a rigid foundation. A five-mode (ten states) 

model of Mini-Mast which includes two repeated frequencies is used to generate 

simulated data. The modal frequencies and dam ping factors of the model are 

listed in Table 6.2. The first two modes are closely-spaced representing the first 

bending mode in x  and y axes (see Fig. 6.4) with the same mode shapes in different 

phases, and similar are the last two closely-spaced modes, which are the second 

bending mode. The third mode represents the first Mini-Mast torsion mode. The 

simulated system has two inputs (torque wheels) and two outputs (Kaman sen­

sors). The inputs are random  forces with unit strength. The process noise is set 

at approximately 23 % of the input influence and the measurement noise about 

10 % of the output, bo th  in the standard deviation ratio. The sampling time 

is 33.3 Hz (0.03 sec). The order of the adaptive transversal filter is set at 100. 

Method 2 is used in identifying a system model, and the corresponding Kalman 

filter gain is obtained according to Section 5.5. Again the number of terms used 

in pseudoinverse is 20. The identified modal frequencies and damping factors with 

the corresponding number of da ta  processed are listed in Table 6.2. The results 

are fairly accurate even in the presence of repeated modes.

W hen a system has repeated eigenvalues, the mode shapes of the repeated 

frequency are not unique even though they are normalized as described in the above 

section. For a specific repeated frequency any linear combination of the identified 

mode shapes may be used as a mode shape. This does not impose any problem if 

the system identification and state estimation are conducted for control purpose 

because a state feedback controller design only requires a set of state space model 

and filter gain, regardless of what coordinate the model might refer to. However,
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the Markov param eters of the system axe unique because they axe independent of 

the state cooxdinate. Hence, the quality of the identified model can be evaluated 

by comparing the reconstxucted Maxkov paxametexs (CM.,-1 i?) with tha t of the 

original system ( C A l~xB).  Figures 6.5 and 6.6 show the comparison of the four 

elements of the Markov param eter matrices after 1,000 and 5,000 data processed, 

respectively. They are in good agreement even in  the 1,000 data case. Note th a t 

the scales in Figs. 6.5(d) and 6.6(d) are different from others. Another alternative 

for evaluating the quality of the identified model is to compare the singular values 

of the corresponding transfer function m atrix over an interested frequency range 

with th a t of the original system. Figures 6.7 and  6.8 show such comparison, in 

which the identified model is obtained with 1,000 and 5,000 data, respectively. 

Because there are two inputs and two outputs, the  transfer function m atrix has 

two singular values for each frequency; therefore, there are two figures for each 

case. A good agreement is obtained with some deviation caused by noise-induced 

errors in the identified frequencies, dampings and mode shapes. The improvement 

in 5,000 d a ta  case is apparent. To examine the quality of the identified filter gain, 

the elements of the reconstructed filter Markov param eter matrices (CA}~l A K , 

i =  1, • • •, 100) is compared to  the true one, which is shown in Figs. 6.9 and 6.10 

for the above two cases, respectively. They are in good agreement but not totally 

converged yet. Figures 6.11 and 6.12 show the estim ated first, fifth and ninth states 

of the above two cases. They represent the modal states of the first bending, the 

first torsion and the second bending modes, respectively. Because the coordinates 

of the identified models are different from tha t used in simulation, the estim ated 

states do not have true version for comparison. Note tha t the corresponding 

modal states of these two cases are also different, because they axe in different 

modal coordinates. However, because the modal models have been normalized, 

the amplitudes of the modal states are the same. From this we can see the energy 

allocated in each mode. Though we can not compare the estimated state with its 

true value, we can compare the estimated output (calculated from the estimated 

state) w ith the true output, and the corresponding residual. Figures 6.13 and 6.14
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show such comparison for the above two cases. The true and estim ated output 

coincide together in both  cases, however, the auto-correlation functions of residual 

show the estimation of the second case is better. From Figs. 6.5 to 6.14, it is fair 

to say tha t the identified model including an optimal filter in this example is very 

good after 5,000 data processed.

6.4 The Sequential Method

The simultaneous system identification and state estimation m ethod devel­

oped in the last section is effective, yet there is a drawback. The m ethod relies on 

identifying an ARX model of the system using the adaptive transversal predictor 

(ATP). The ARX model is derived from Kalman filter formulations. If the system 

is flexible (low-damped) and the process noise is not strong (thus the Kalman filter 

gain K  is small), according to the derivation in (5.11) the ARX model should have 

a  large order q to make the truncation insignificant. However, as the  order of ARX 

model increases, the com putational load in identifying the model using the ATP 

also increases rapidly. The ra te  of increase is about in the order of q2.16 This is 

not desirable for practical application.

One question arises: if the order of ATP is assigned much shorter than  needed 

to  make the truncation insignificant, what values will the param eters converge to 

and what is the relation between these parameters and the system state  space 

model. Fortunately, through the projection filter derived in Chapter 3, we found 

the answer to the question and derived a  system identification m ethod similar to 

tha t in the last section. This m ethod can derive a  state space model of the system 

using an ARX model of smaller order, but it cannot derive the corresponding 

Kalman filter gain at the same time. To estimate the Kalman filter gain, methods 

introduced in Chapter 5 can be used after obtaining a system model.
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6.4.1 A  Relation Betw een the Projection Filter and M atrix Polynom ial 

M odels o f a Linear System

The projection filter was developed in Chapter 3; however, because the input 

term  B u k is added to the model in this section, the formulations are a  little 

different. Therefore, they are briefly listed here for clarity. To derive the relation 

between the projection filter and m atrix polynomial models of a  linear system, we 

start from a  simple case and gradually move to more general ones.

Consider a noise-free dynamic system, which can be represented by a  model:

Zfc+i =  A x k + B u k  

yk =  C x k.

From Eqs. (6.21) and (6.22) it is easy to  follow that

(6.21)

(6 .22)

' Vk ‘ • C -
Vk-i C A - 1

Vk-q+2 C A ~ q+2
-yk—q+1- , C A ~q+1.

x k

0 0 0 '
C A ~ XB  • 0 0

u k- i

C A ~ q+2B  ■ • C A ~ XB 0 Uk-q+2

_CA~g+1B  • • C A ~ 2B C A - ' B . -Uk-q+1 -

(6.23)

or in short,

Yq>k = H qx k -  GqUk, (6.24)

or in a  normal form

H qx k = Yqik + GqUk, (6.25)

where q denotes the number of data  stacked up to form the  equation, and the 

meanings of the matrices are self-evident. For a sufficiently large q which can
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makes H q full-column-ranked, the unique least-squares solution of xk is

=  F,(Yg,k +  G qUk), (6.26)

where

F,  =  ( 6 . 2 7 )

is the pseudo-inverse of H q and also the projection filter in this case. The solution 

&k is identical w ith the true value x k for this noise-free case. The number q can 

be any integer bigger than a  integer qmin, which is the minimum number required 

to make H q full-column-ranked.

To write a  m atrix  polynomial model of the system which expresses the current 

output as a linear transformation of finite previous inpu t/ou tpu t data, one can 

use (6.21), (6.22) and (6.26):

yk =  C x k 

=  C A x k- \  +  C B u k~i 

=  C A  [Fq(Yqtk- 1  +  GqUk- 1 ) ]  +  C B u k- r
i ?

=  C A F qiyk- i  +  C B u k—i  +  C  AFqG  g(t-i)^fc-«, (6.28)
i=l i=2

where Fq, and G qi are the i-th  partitions of Fq and G q, respectively, defined as

Fq — [ ^ g l j  Fq2 ,  • • ■ ,F qq] 

Gq =  [Gql, Gq2, * • * , G g( g _ i ) ]  , 

matrix Fqi has a  dimension of n x  p,  and G qi of ( p x g ) x  m.

(6.29)

(6.30)

Next, consider a  system without process noise but with additive, white, Gaus­

sian, and zero-mean measurement noise which is not correlated with the state 

variable. Then we can derive a matrix equation

' Vk ' ■ C -
Vk-i C A - 1

yk-q+2 C A ~ q+2
- yk—gt+i ■ _CA~q+1_

x k
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0 0 0  ' ‘ vk '
C A ~ XB  • 0 0

U k - 1

+
V k - 1

C A ~ ^ 2B  ■ • C A - ' B 0 Wfc-g+2
V k -q + 2

_CA~q+1B  ■ • C A~2B C A - ' B . ■u k —q+1 •
■v k —g + 1 -

, ( 6 .3 1 )

or in short,

Yg,k = H qx k -  GqUk +  Vq,k, (6.32)

or in a normal form

H qx k = Yq,k +  GqUk -  Vq,k. (6.33)

Here the unknown variable x k is a deterministic variable. By the theory of pa­

rameter estim ation for deterministic parameters from a  linear equation with inde­

pendent white noise, one can write the optimal estim ate of x k as

£k = Fq(Yqik + GqUk), (6.34)

where

Fq =  ( H f R - ' H J - ' H f R - 1 (6.35)

is a weighted pseudo-inverse of H q and the projection filter for this case; R  =  R ® Iq,

® is the Kronecker product, R  the covariance of the measurement noise. Note the 

optimality is defined by the minimum variance of s ta te  estimation error.

To derive a  model in m atrix polynomial format using the projection filter, we 

can form a one-step-ahead output prediction using the last estimated state,

yk =  CAzfc-i +  C B u k-x  (6.36)

and define

Vk =  Vk +  Vk (6.37)

where r]k is prediction error. Therefore,

yk =  C A x k-1 +  C B u k-1 -f Vk 

= C A  [Fq(Yq>k-1 +  GqUk-i)] +  C B u k- \  +  r\k
Q 9

=  C A F qiy k- i  +  CBiik-i  +  Y 2  C A F qG q̂ - i )U k^i  +  yk, (6.38)

1 4 0
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where Fqi and G qi are defined in the same way as in Eqs. (6.29) and (6.30), but 

Fq is defined by Eq. (6.35) in this case.

Next, consider a general case of a system w ith both  process and measurement 

noises. By writing the previous output in terms of the current state, one can derive

'  V k  ' - C  ■
V k - i C A - 1

V k - q + 2 C A ~ 9+2
- V k — f f + 1  •

. C A ~ 9 + 1 .

Xk

0
C A ^ B

C A ~ 9+2B
C A ~ 9+1B

0
C A - 1

C A ~ 9+2
C A ~ 9+1

0
0

0
0

C A ~ XB  0 
C A ~ 2B  C A ~ XB

U k - l

V k - q + 2  

- u k —q+ 1

0 0  ’ ' vk '

0 0
6

. 
IP I i—i

V k - 1

• • • C A - 1
• • • C A ~ 2

0
C A - 1 .

W fc-g + 2  
- w k —g+1 ■

+

V k -q + 2
■ Vk -q +1 -

(6.39)

or in short,

(6.40)Yq,k =  H g X k  -  GgUk -  MgWgtk +  Vg,k,

where the process noise vector is denoted by W q<k and its coefficient m atrix by 

M g. Equation (6.40) can be further simplified to

where

HqXk -  Vqik +

Y l k = Yq,k + G qUk,

£ q , k  = ~ M g W g tk + V q , k -

(6.41)

(6.42)

(6.43)

The unknown variable x k is a random variable in this case. The overall noise 

vector is Gaussian and zero-mean because W q>k and Vqik are Gaussian and 

zero-mean. It is also correlated with the unknown variable x k because W q>k is
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correlated with x k. By denoting the covariance between Xk and by the 

optimal estimate of x k can be obtained by

i t  =  x t  +  F,(yt'it -  ?lt), (6.44)

where the overbar -  denotes the expectation value, and

Fq =  (£lxH T  +  £lx(i) (H gSlxH T  +  H qSlxi + +  i ^ ) ” 1 (6.45)

is the projection filter in this case, where denotes the covariance of £g)*. The 

optimality is defined by the minimum variance of state estimation error.

Similarly, to write a  m atrix polynomial model using the relation provided by 

the projection filter, we can use one-step-ahead output prediction of the current 

output as (6.36) and have

Vk =  C A £ k - i  +  C B u k - i

=  C A  [»*_! +  Fq(Y ' ik_  1 -  Y ' ^ ) ]  +  C B u k - i  

=  C A F qYg>k_! +  C B u k +  C A F qG qUq<k- X +  C A ( I n -  FqH q) x k- X
9 9

= ^2,  C A F qi y k-.i +  C B u k- 1 +  ^ 2  C A F qG q(i - i )U k- i  +  C A L x k- X, (6.46)
»=1 i=2

where

L  =  In -  FgH q,

?9i and G gi are again defined in the same way as in (6.29) and (6.30) bu t Fg is 

defined by (6.45) instead.

Equation (6.46) represents the best prediction of y k one can make using q 

previous inpu t/ou tpu t data. If the prediction is made once and for all, namely, 

no prediction of previous state is made, the best value assigned to x k is zero. 

However, if previous state estim ation has been made out, the best choice for x k is 

the a priori Kalman filter estimate. Note tha t for the Kalman filter

*fc_i =  -4*fc_2 +  A K ( y k - 2  -  C x ^ _ 2) +  B u k- 2
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q - 1  ^  q - l

=  J 2  A '” 1 A K y k - \ - i  +  Y ,  A '-1 B u u - i - i  +  A«xk- q, (6.47)
i = l  1=1

where

A  =  A(I„ -  K C ) .

Based on the argument above, we can replace 5fc-i in (6.46) by (6.47) and obtain 

Vk - V k  +  Vk
q

=  C A F qi y k- i  +  Y C A  (F<H +  L A {~2A K )  y k- i  +  C B u k - i  
i=2

+  Y C A  (FqG q(i- i)  +  LA'~2B )  +  Vk. (6.48)
:=2

Equations (6.28), (6.38) and (6.48) represent the AutoRegressive with eXogeneous 

input (ARX) models of linear systems in various different noise situations. The 

equation in each case provides a  best prediction of the  output measurement at tim e 

k in the sense of minimum state error at time k — 1 using q previous inpu t/ou tpu t 

data.

6.4.2 Least-squares Identification for an A R X  M odel

A general ARX model of a linear system can be w ritten as

q l  q2

y k =  Y A iVk-i +  +  efc, (6.49)
i = l  i= l

where (ql,  q2) is the order of the model. Given a  set of input/output data  

{yjt, • • •, ?/0) u k, • ■ •, uo) of the system, we can use the least-squares m ethod to 

find a  set of m atrix coefficients {A \ , • • •, A qi , B \ , • • •, B q 2  } which fits the equation 

optimally in the least-squares error of output prediction sense. The least-squares 

method for single-input single-output ARX model (a scalar equation) can be found 

in many text books;16 for a  multi-input m ulti-output ARX model, one can refer
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to Section 5.3. The ARX models derived in the last section have order (q, q), or 

ju s t q in short, which are special cases of the general ARX model.

We claim that if we do least-squares inpu t/o u tp u t data  fitting using an ARX 

model as (6.49) with ql  =  q2 =  q, the ARX model will converge to that derived 

from a  projection filter of the same order (q) if the  number of the data sample 

is sufficiently large. In other words, though the projection filter is derived based 

on the criterion of resulting least-mean-square s ta te  error, it also provides least- 

squares output error, which can be proved as follows.

The a priori output estimation by a projection filter of order q is

y k £  C x k =  C A x k- i  +  C B u k- !  (6.50)

where aijt-i is the estimate of Xfc-i made by the projection filter based on q previous 

input/output data including the output a t time k — 1. The output prediction error 

e is

et =  Vk ~  Vk =  [ C A x k-1 +  C B u k- i  +  C w k-1  +  u*] -  [ C A x k- i  +  C B u k- 1]

=  C A ek- 1 +  C w k- i  +  vk (6.51)

where ek- i  is the sta te  estimation error. Since w k and vk are zero-mean, uncor­

related sequences by assumption and are also independent of e ^ - i , we have

E[ekel] =  CAE[ek. 1e l_ 1]AT C T . (6.52)

Therefore, minimizing the mean-square of the s ta te  estimation error is equivalent 

to minimizing the mean-square of the output estim ation error. Since the steady 

state output estimation error is a stationary sequence, by the assumption of ergod- 

icity, minimizing the mean-square of it is equivalent to  minimizing the sum of the 

squares of all the error, provided the number of the  samples is large enough. On 

the other hand, since (6.49) is a linear equation, the solution of the least-squares 

output prediction is unique. Therefore, we conclude tha t the ARX model derived
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from the projection filter also gives least-squares output predictions, and the ARX 

model identified using the least-squares m ethod converges to tha t derived from the 

projection filter.

6.4.3 Obtaining System  Markov Param eters from an AR X  M odel

There are some special relations between the Markov parameters of the system 

and the coefficient matrices of the ARX models derived in the previous section. 

Based on these relations we can obtain the Markov parameters from the ARX 

models.

For noise-free systems, from (6.28) if we denote the coefficient matrices of 

yic-j  and u^- j  by A j  and Bj ,  respectively, we can have

j
C A j B  =  B j+1 +  A i C A i - 'B .  (6.53)

i=1

This equation can be used iteratively to  calculate the system Markov param eters 

C A ^B  (j  =  1, • • •, q — 1) from the coefficient matrices of an ARX model of order 

q (note B \  =  CB).

Proof:

By definition

0 ’ C  ' ‘CA>-1'

Q
.. 

! 
..

.

ba =
C A - j+ i
CA~i+2

1cqi■—i C
0

C A - i + i B ' C A - i +\ 0
=  H g A ^ B  + D j - i B  (6.54)

where

D j - X = [(CAi~1)T , • • . ,  C T , 0, •••0]T .
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Therefore,

B j+ 1 =  CAFqGqj = C A F qH qA j ~1B  +  C A F qD H1 
j

= C A j B  -  C A F g iC A i - 'B
i = l

i
= C A ^ B - ' ^ 2 A iC A ^ 1B ,  (6.55)

Z=1

because

FqH q =  JB; (6.56)

hence, (6.53) follows.

Q.E.D.

We can also iteratively calculate C A ^ B  ( j  =  q, q +  1, ...) by 

C A j B  = C A(FqH q)A j ~1 B
i

= Y ^ A iC A j ~iB.  (6.57)
i = 1

Though derived from noise-free systems, the above equations ((6.53) to  (6.57)) 

also hold for systems with additive white measurement noise. Because for systems 

with white measurement noise the projection filter Fq is a  weighted pseudo-inverse 

of H q (see (6.35)), hence (6.56) also holds. f-

It is interesting to  see th a t (6.53) also holds for systems with both  process 

and measurement noise even though (6.56) does not hold in this case. This can 

be proved as follows.

proof:

Using the expressions of the terms defined in (6.48), we have 

B j ^  + f ^ A i C A ^ B
i=1

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



=  CA(FqG qj +  L A ’ - l B )  +• C A F qlC A j ~1B +

• • • +  CA(Fj  +  L A j ~2A K ) C B
j

=  C AFqG qj  +  C A L A ’ - ' B  +  Y  C A F ^ C A ^ B
i=i

j - 1
+ Y ^ C A L A i~1A K C A j - i~1B

i=1
J - 1

=  C A F q H q A i - 'B  +  CALA*~XB  +  ^ C A L A ^ A - K C A ^ " 1#
i=1

=  C A F q H g A i - 'B  +  C A L A ’- ' B  +  C A L A j ~2A K C B  
j - i

+ CALA'- 2AKCA*~'~l B
i= 1

=  C A F q H q A i - 'B  +  CALA*~2(A  +  A K C ) B  
j - l

+ c a l A ^ a k c a ^ - ' b  
1=1

3-2
=  CAFgHgA’ - ' B  +  C A L A j ~2A B  +  Y  C A L A '~ X A K  CA*- ' " 1 B

i= 1

=  C A F q H q A i - 'B  +  C A L A j ~xB  

=  CA(FqH q +  L )A * -XB

=  CA>B (6.58)

where the relations A  +  A K C  = A  and FqH q + L  = I n are used.

Q.E.D.

However, (6.57) does not hold for systems w ith process noise. Hence, for an 

ARX model of order g, only q term s of the Markov param eters can be obtained.

Therefore, from the identified ARX model one can identified a  set of Markov 

parameters of the system. To decompose the Markov param eters into state space 

parameters [A, B,  C ], the Eigensystem Realization Algorithm (ERA) can be used.
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6.4 .4  N u m e ric a l E x am p le

In the numerical example, the simulated Mini-Mast model of the last section is 

used again. The order of the ATP is reduced from 100 to 50. The identified modal 

frequencies and damping factors with the corresponding number of data processed 

are listed in Table 6.3. The results are fairly accurate. The Kalman filter gain is 

calculated according to the inverse filter m ethod introduced in Section 5.6 using 

the identified state space parameters, where ql  in (5.65) is set to  20.

The results of two cases are shown, th a t is, the cases of using 1,000 and 

5,000 data. The results are arranged in the same way as in the Mini-Mast case of 

the last section, except the figures of estim ated states are skipped. Figures 6.15 

and 6.16 show the comparison of the true and the reconstructed system Markov 

parameters. Figures 6.17 and 6.18 show the comparison of singular value responses 

of the transfer functions. A good agreement is obtained. Figures 6.19 and 6.20 

show the comparison of the true and the reconstructed filter Markov parameters 

(C A  A K  and C A l~1A K ,  i =  1, • • •, 100), which can indicate the quality of the 

estimated Kalm an filter gain. The comparison of the true and estimated outputs, 

the optimal and the estimated residual are shown in (a) and (b) parts of Figs. 6.21 

and 6.22, and the auto-correlation functions of the residuals are in (c) parts. From 

all these results we can see the m ethod works very well.

6.5 Concluding Remarks

This chapter presented two methods for state estimation under unknown sys­

tem  model and noise covariances. The main results are summarized as follows:

(1) The simultaneous method obtains simultaneously the state space parameters
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and the corresponding optimal steady state Kalman filter gain of the system 

from the coefficients of an ARX model of large order identified through the 

adaptive transversal predictor. The ARX model is derived based on Kalman 

filter formulations. There are two different ways to calculate a state space 

model and the corresponding Kalm an filter gain from the coefficients of the 

ARX model. One uses the eigensystem realization algorithm (ERA) to  de­

compose the coefficient sequences directly and from which identifies all the 

parameters; the other combines the  coefficients to form the Markov param­

eters of the system first, then uses ERA to realize a state space model, and 

finally the Kalman filter gain is obtained using the ARX coefficient method 

described in Section 5.5. The numerical example shows the la tte r is more 

effective in identifying system modal parameters.

(2) The sequential method also obtains state space parameters from the coef­

ficients of an ARX model which is derived based on the projection filter; 

however, the order of the ARX model is smaller than tha t of the simultane­

ous method, and the residual might not be white. Similar to the second way 

of the previous method, the coefficients of the ARX model are combined to 

form the Markov param eters of the system first, and then ERA is used to 

obtain a state space model from it; the corresponding Kalman filter gain is 

obtained using the inverse filter m ethod described in Section 5.6.

(3) In practical applications, because the information about process and measure­

ment noises is usually not available, it is difficult to judge how large the order 

of the ARX model should be in order to  apply the first method. In addition, 

if process noise is small, the order of the ARX model of the first method will 

be very large, and the computaional load can be excessive. Since the second 

m ethod does not have such difficulty, it is more suitable for practical applica­

tions from this point of view. However, the second method cannot obtain a 

state space model and the corresponding Kalman filter gain a t the same time.
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Therefore, additional efforts are required to obtain the filter gain.

(4) If a system  has no repeated eigenvalues, the state space model can be normal­

ized to  have a  unique solution; however, having repeated eigenvalues, it does 

not have a  unique solution even normalized as described in Section 6.3.3.

(5) The numerical examples show that bo th  methods are very effective in system 

identification and modal state estimation for flexible structures such as Mini- 

Mast, even in the presence of closely-spaced or repeated modes.
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Table 6.1 Identified modal parameters of the beam-like structure.

Mode 1 Mode 2 Mode 3
#of
data Freq. Damp Freq. Damp Freq. Damp
processed (rad/sec) (%) (rad/sec) (%) (rad/sec) (%)

1,000 * + 3.0230 19.11 10.7293 2.43

7? 2,000 1.6711 16.06 4.5988 5.14 10.6371 4.15
■5 3,000 1.6920 6.59 4.5118 3.79 7.0251 11.29
£ 4,000 1.6405 5.22 4.4252 1.69 6.5016 5.73

5,000 1.6245 4.73 4.4139 0.89 6.3176 4.75

1,000 1.6397 0.93 4.4794 0.93 6.1116 1.49
2,000 1.6347 0.87 4.4798 1.15 6.1063 1.47

'8
•s 3,000 1.6371 0.95 4.4829 1.15 6.1080 1.42
o
S 4,000 1.6414 0.89 4.4806 1.16 6.1080 1.41

5,000 1.6407 0.86 4.4776 1.21 6.1112 1.39

0 a 1.6369 0.63 4.4719 1.01 6.1085 1.30

* Cannot be identified 
a True values



Table 6.2 Identified modal parameters of Mini-Mast using the simultaneous method.

# o f
data

processed

Model

Freq. Damp 
(rad/sec) (%)

Mode 2

Freq. Damp 
(rad/sec) (%)

Mode 3

Freq. Damp 
(rad/sec) (%)

Mode 4

Freq. Damp 
(rad/sec) (%)

Mode 5

Freq. Damp 
(rad/sec) (%)

1,000 4.9863 2.81 5.0891 1.11 27.0820 1.11 37.5743 3.04 38.6144 1.13
2,000 5.0213 1.91 5.0609 1.94 27.4867 0.87 38.1814 1.45 38.7552 122
3,000 5.0246 1.97 5.0610 1.83 27.4548 1.02 38.2935 1.26 38.7079 1.15
4,000 5.0366 1.92 5.0459 1.60 27.5389 0.95 38.2625 1.27 38.7368 1.12
5,000 5.0263 1.97 5.0405 1.50 27.4746 1.13 38.3041 m o 38.7314 1.09

0* 5.0318 1.80 . 5.0356 1.80 27.4201 120 38.3511 1.00 38.6823 1.00

*Troe values

Table 6.3 Identified modal parameters of Mini-Mast using the sequential method.

# o f
data

processed

Model

Freq. Damp 
(rad/sec) (%)

Mode 2

Freq. Damp 
(rad/sec) (%)

Mode 3

Freq. Damp 
(tad/sec) (%)

Mode 4

Freq. Damp 
(rad/sec) (%)

ModeS

Freq. Damp 
(rad/sec) (%)

1,000 4.9840 0.53 5.1264 1.01 26.6878 1.12 38.3373 2.49 38.6320 1.84
2,000 5.0364 1.17 5.0511 1.69 272379 0.49 38.2784 0.91 38.7403 200
3,000 5.0195 1.45 5.0659 1.14 272445 0.98 38.3330 125 38.6660 137
4,000 5.0342 1.09 5.0519 1.42 272904 0.89 382720 123 38.6566 1.13
5,000 5.0328 1.66 5.0328 0.90 27.3454 0.79 38.1475 1.61 38.6544 1.03

0* 5.0318 1.80 5.0356 1.80 27.4201 120 38.3511 1.00 38.6823 1.00

* True values
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Fig. 6.1 State estimation results of the beam-like structure using 500 data samples.
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Fig. 6.2 State estimation results of the beam-like structure using 1,000 data samples.
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Fig. 6.3 State estimation results of the beam-like structure using 5,000 data samples.

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



x ,y
Torque
Wheels

Tip Plate

Kaman
Sensors

Top View of 
Tip Plate

y  Torque Wheel

4 f
5 Torque W heel

Location of Kaman 
Displacement Sensors

20.16 M
y

Fig. 6.4 Mini-Mast structure.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



xlO< (a) The (1.1) element.

I
s

— — — — Reconstructed

50
Power index (i)

xlO-* (b) T h e O e l e m e n t .

100
Power index (i)

xlO^ (cl The (2.1) element.

0 ■aa
1  
£

100

xlO'7 (d) The (4,4) element.

u•a

100
Power index (i) Power index (i)

Fig. 6.5 Comparison of true and reconstructed system Markov parameters CA'^B 
using the simultaneous method with 1,000 data samples.
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Fig. 6.6 Comparison of true and reconstructed system Markov parameters CA'^B 
using the simultaneous method with 5,000 data samples.
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Fig. 6.8 Comparison of singular value responses of true and estimated transfer 
functions using the simultaneous method with 5,000 data samples.
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Fig. 6.9 Comparison of true and reconstructed filter Markov parameters CAI'1AK 
using the simultaneous method with 1,000 data samples.
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Fig. 6.10 Comparison of true and reconstructed filter Markov parameters CA,'1AK 
using the simultaneous method with 5,000 data samples.
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Fig. 6.12 Estimated states using the parameters obtained with 5,000 data samples 
using the simultaneous method.
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Fig. 6.14 Estimation of the first output using the simultaneous method with
5,000 data samples.
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using the sequential method with 5,000 data samples.
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Chapter 7

EXPERIMENTAL VALIDATION

7.1 Introduction

This chapter uses an experimental example to  demonstrate the feasibility of 

the integrated system identification and sta te  estimation method developed in 

the previous chapters. A ten-bay structure as shown in Fig. 7.1 is considered. 

The truss is one of the structures built in NASA Langley Research Center for 

experiments in studies of control and structure interaction (CSI). It is 100 inches 

long, with a  square cross section of 10 in x 10 in. All the tubing (longerons, 

battens, and diagonals) and ball joints are made of aluminum. The structure is 

in a  vertical configuration attached from the top using an L-shaped fixture to  a 

backstop. Two cold air thrusters acting in the  same direction are placed a t the tip. 

The thrusters which are used for excitation and control have a maximum thrust 

of 2.2 lb. each. A mass of approximately 20 lb. is attached at the beam tip  to 

lower the fundamental frequency of the truss. Two servo accelerometers located 

at a corner of the square cross section provide the in-plan tip acceleration.
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7.2 Modification for Using Acceleration Measurement

Since the outputs axe acceleration signals in this experiment, the formulations 

derived in the previous chapters should be modified to accommodate this situation. 

The state space model used in the previous chapters assumes no direct influence 

from input force on output measurement. However, if the ou tpu t measurement is 

acceleration instead of displacement, there is direct influence from input. Under 

this situation, the sta te  space model should be modified to

Xjt+i =  A x k +  B u k +  v>k (6.1)

■yk = C x k + Duk + vk, (6.2)

where D uk represents the direct influence on output from input. The correspond­

ing steady state Kalman filter innovation model becomes

®it+i =  A x ;  + Buk  +  AK eu  (7.3)

y k =  C x ;  + D uk + e k. (7.4)

Introducing (7.4) into (7.3) yields:

x ;+1 =  A (In -  K C )x * +  (B  -  A K D )u k +  AI<yk

=  A x '; + ( B -  A K D )u k +  A K y k (7.5)

where

A  = A (In -  K C ).

Similar to  the derivation in Section 5.2 we can obtain the following input-output 

description:

yk = C x ;  +  ek

= C A xk_1 +  C (B  — A K  D )u k - 1  +  C A K yk- i  +  D u k +  e k
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—C A K Vk - \  +  C A A K y k - 2  +  • • • +  C A 9~l A K y k- q +  D u k

+  C{B -  A K D )«*_! +  C A (B  -  A K D ) u k- 2 +  • • •

+  C A 9~ \ B  -  A K ) u k- M + C A 9x ^ _ g + ek 

9 9 -
Y ,  C A '~ l A K y k- i  + D u k + J 2  C A i~1(B  -  A K D ) u k- i  + ek
:=1 i=1

9 9

= ^ ^ A i y k- i  +  ^  BjUk- i  +  ek (7.6)
i=l i=0

for a large integer q, where

9

A i = ^ 2 C A i~1A K  (7.7)
i= 1

B i = C A i- 1( B - A K D ) ,  B 0 = D. (7.8)

Equation (7.6) is also an autoregressive with exogeneous input (ARX) model.

Compared to (5.12), (7.6) has an additional term  D uk, and B  in (5.12) is 

replaced by B  — A K D .  However, these changes do not cause any difficulty in 

identifying the model param eter using the adaptive transversal predictor (ATP). 

Nevertheless, some of the identified param eters have different meanings; the pa­

rameters A j’s are the  same as before, but B ,’s are changed. However, since

C A '- 'B  = C A T 'B  -  C A ^ A K D  +  C A N A R D  

=  CA i_1(B -  A K D )  +  C A i-1 A K D  

= Bi + A iB 0, (* =  1, •••,<?), (7.9)

we can obtain an estim ate of the m atrix sequence C A t~1B  by combining the 

estimated parameters. After this procedure, all the  methods developed in the 

previous chapters can be readily used.
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7.3 Experimental Results

The structure was excited using random  inputs to both thrusters for 30 sec­

onds. The input signals were filtered to concentrate the energy in the low frequency 

range. A to tal of 7499 data points at sampling rate 250 Hz is taken. The two out­

put acceleration signals were filtered using a  three-pole Bessel filter with a break 

frequency of 20 Hz.

From the output we can tell the dominant mode is about 5 to  6 Hz. In order 

not to use too large an order in the adaptive transversal predictor (ATP), we 

reduced the sampling rate to 1/2 of the original one by choosing one out of every 

two samples. Hence, the sampling rate becomes 125 Hz and totals 3750 data. The 

order of the ATP is set to 100. The m ethod introduced in Section 6.4 is used 

to identify a  state space model. Figure 7.2 shows the system Markov parameters 

C A i-1 B  (i =  1, • • •, 100) identified from ATP. By ERA three modes axe identified. 

The identified modal frequencies and dampings are listed as follows:

Mode Frequency (rad/sec) Damping (%)

1 37.0988 0.27

2 46.1175 2.87

3 304.4817 0.40

The corresponding state space parameters in normalized modal format axe

=  diag ^
0.9555 0.2922' 0.9229 0.3568' ’-0.7538 0.6423 '

-0.2922 0.9555 -0.3568 0.9229 -0.6423 -0.7538 }
B  = 0.1725

-0.1789
-0.1117
0.1267

0.1122
-0.1522

-0.0321
0.0556

<7 =
1.7754 0.0000 1.0023 0.0000
0.9201 0.0362 -1.6909 -0.3692

0.3241 -0.1871 
0.3309 -0.2725

1.3946 0.0000
-1.4287 0.1185

After obtaining state space parameters, the m ethod introduced in Section 5.6 is 

used to estimate the corresponding Kalm an filter gain. The identified stochastic
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K  =

Markov parameters C A iK  (i =  1, • • •, 100) are shown in Fig. 7.3. The estimated

Kalman filter gains are

'0.2787 0.1807 0.3437 0.1072 0.0065 0.0357
0.2277 -0.0685 0.1236 -0.0884 -0.0874 -0 .0182

To show the results of state estim ation, the first state of each mode is shown in 

Fig. 7.4. The shapes of higher frequency modes are not smooth, for the sampling 

rate is not high enough to give a  good appearance. Since the m odal model has been 

normalized, the amplitude of each modal state indicates the energy allocated in 

that mode. To evaluate the quality of the system identification and state estima­

tion, the estimated outputs calculated based on the estim ated state are compared 

to the true outputs. Because the true state  is not available, the  output comparison 

is the only way to validate the results. The output comparison, the residual and 

its corresponding auto-correlation functions are shown in Figs 7.5. The estimated 

and true outputs are in good agreement. The covariance of the  difference between 

them (the residual) is less th an  1.5 % of the covariance of the output. However, 

the auto-correlation function shows th a t the residual is not quite white. Given 

more data, the results can be improved.

Figure 7.6 is a frequency response diagram (Bode gain plot) of the structure 

obtained from frequency-domain modal analysis conducted in  NASA. It is attached 

here for reference. The dashed lines represents those after curve fitting. The figure 

shows only a frequency range from 2 to  10 Hz, hence misses the th ird  mode (48.4598 

Hz) of the system. However, for the  two modes shown, the frequencies are in good 

agreement with the identified frequencies (5.9045 Hz and 7.3398 Hz).

7.4 Concluding Remarks

Integrated system identification and state estimation has been successfully 

conducted for a ten-bay truss. The good agreement between the  estimated and
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the true output shows the identified model along with the filter gain are fairly 

good. The identified frequencies also agree with those obtained from frequency- 

domain analysis. This experimental example shows th a t the m ethod is correct and 

has high potential in practical application.
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T hrus te r

Accelerometer
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: Fig. 7.1 Ten-bay truss structure test configuration.
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Chapter 8

CONCLUSIONS

8.1 Review

We have systematically presented here some effective methods for estimating 

state information of linear, discrete-time, dynamical systems under three different 

situations. The situations are classified according to the amount of a  priori knowl­

edge one has about the systems, ranging from knowing both  system state space 

model and noise covariances to  having only input/output data. Areas covered 

include param eter estimation, signal processing, recursive estimation, adaptive 

Kalman filtering and system identification. Through all the methods, least-squaxes 

and its variations are the heart of the techniques.

For state estimation with sufficient a  priori knowledge, we write the current 

state and the da ta  used for estim ation in linear equations and use linear param eter 

estimation theories to solve them. As a  result, we derive the projection filter, which 

is useful in the later studies. The derivation of the projection filter also serves as
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background material for understanding the link between Kalman filter and classic 

estimation theories.

For sta te  estimation under unknown noise covariances, we have two different 

approaches; one is based on the same linear equations as the previous case but 

uses recursive least-squares to  solve sta te  information directly; the other estim ated 

the optimal steady state Kalman filter gain first, and used the Kalman filter along 

with the estim ated gain to perform state  estimation. One method is derived for 

the former approach and three for the la tter. The la tter approach is also referred 

to as adaptive Kalman filtering. It turns out tha t estimating Kalman filter gain 

is an effective way of performing adaptive Kalman filtering.

For sta te  estimation under unknown system model and unknown noise co- 

variances, we are involved in a compound problem of system identification and 

state estimation. Two methods were derived to  solve the problem: one identifies 

a state space model and the corresponding Kalman filter gain simultaneously; the 

other identifies a  state space model first, and then use this identified model to  esti­

m ate the Kalman filter gain. The former m ethod utilizes the relation between the 

Kalman filter and a m atrix polynomial model, while the la tter uses the relation 

between the projection filter and a  m atrix polynomial model. For identification 

of a system model and the corresponding Kalman filter gain, the Markov param ­

eters of the system and of the Kalm an filter play im portant roles because they 

are unique with respect to the locations of input actuators and output sensors 

regardless of the dimension of the system. Obtaining Markov parameters is equiv­

alent to obtaining system model, because they can be decomposed into state space 

param eters through the eigensystem realization algorithm.

W ith the objective of applying the derived methods for control of flexible 

space structures in mind, the derivations have been focusing on time-domain, re­

cursive approaches, which are suitable for on-board adaptive applications. As 

a result, ordinary least-squares, recursive least-squares, and recursive weighting
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least-squares are used as the fundam ental techniques in most of the methods de­

rived. The great advantage of using least-squares techniques is their capability of 

recursive operation in time-domain and their adaptability. In this dissertation we 

highly exploit this advantage and successfully derive a sta te  space model and the 

corresponding Kalman filter gain from a  m atrix polynomial model. The la tte r is 

the natural model for using least-squares techniques to identify a m athem atical 

model for a linear system, while the former is required for designing controller 

based on modern control theories. The success of deriving a  state space model 

and the corresponding Kalm an filter gain from a m atrix polynomial model has 

provided effective integrated methods for adaptive state estim ation and adaptive 

system identification. Moreover, it also provides a promising way towards adaptive 

control. This is the main contribution of this dissertation.

8.2 Further Extension of the Research

The theories derived in this dissertation can be extended further. One n a t­

ural extension is to investigate its application in adaptive control, because it is 

well-known tha t control and observation are dual problems. The theory useful in 

state estimation (observation) should be useful in control also. Another possible 

extension is to look for computationally more effective ways in least-squares sys­

tem identification by investigating the relation between a sta te  space model and 

some fast least-squares filters, such as fast transversal filter and lattice filter,16 

because the com putational load of the ordinary least-squares m ethod increases 

rapidly as the order of the m atrix polynomial model and/or the numbers of input 

and output increase. This drawback restricts on-line applications of the methods 

derived in this dissertation. Nevertheless, the ordinary least-squares m ethod has 

been modified for faster operation in the field of adaptive filtering16. The relation 

between these fast filters and a  state space model has not been clearly established
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yet. Because both  of them  can provide optimal output predictions of a system, 

they must be somehow related to each other. A m ethod which can obtain a  state 

space model from those fast filters will be very useful in practice because of the 

fast operation feature. It is promising and worthwhile to  explore this problem.
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APPENDIX

Any two equivalent systems, [Ai, B i, Ci] and [A2, B 2, C2\, where both 

A \ and A 2 have distinct eigenvectors, can be transformed to  the same triplet 

[A„, B n, Cn] by a certain equivalent transformation. The proof is given in the 

following:

Proof:

After diagonalizing the system matrix and normalizing the output or input 

matrix respectively, [Ai, B i, Ci] and [A2, B 2, C2] become [Ai, B ni,  Cn 1] and 

[A2, B n2, Cn2], where

A 1 = D f 1A 1D 1, B n l = D ? B u  Cnl = C1D 1 (A I)

A2 =  D 2 1A 2D 2, B n2 =  D 2 l B 2, Cn2 =  C2D2 (A2)

with D \ and D 2 being the equivalent transformation matrices for the correspond­

ing set.

Since [Ai, B i ,  C\\ and [A2, B 2, C2] are equivalent, there also exists a  non­

singular m atrix P  such tha t

Aj =  P ~ l A 2P , B l = P ~ l B 2, Cx = C2P. (A3)

The similarity transformation will not change the eigenvalues; therefore, Ai 

and A2 have the same eigenvalues. This means th a t Ai and A2 are identical,
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assuming tha t the eigenvalues have been sorted in the same order. Hence, from 

(Al)-(A3) one can have

A x =  D ^ A XD  i =  D ^ 1P ~ 1A 2P D 1

= A.2 =  D2 1A 2D 2 =  A n. (A4)

From Eq. (A4), because both  P D X and D 2 diagonalize A 2, the following relation 

must hold:

P D X = D 2K c (A5)

where K c is some non-singular constant diagonal matrix. Therefore, from 

Eqs. (A1)-(A5) one obtains

Cn i =  CXD X =  CxP ~ xD2K c = C2P P ~ xD 2K c

= Cn2D ? P P - xD2K c =  Cn2K c. (A6)

Since K c is a constant diagonal matrix, Cni and Cn2 are scaled versions to each 

other. However, since both  matrices have been normalized in the same way, the 

only possible solution for K  is the identity m atrix, which means Cn\ =  Cn2. 

Similarly, B nX and B n2 can be proved to be identical. As a result, the unique set 

[An,B n,C n] is obtained.
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