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ABSTRACT

FINITE ELEMENT METHODOLOGY FOR NONLINEAR FREE AND
HARMONIC FORCED VIBRATIONS OF BEAM AND PLATE STRUCTURES

Kamolphan Decha-Umphai
01d Dominion University, 1987
Director: Dr. Chuh Mei

The literature and experiments have shown that nonlinear vibrations
produce significant effects in structural analysis, especially the
frequency-amplitude-force relation and the analysis of strain. An
analysis was developed to predict both the frequency-amplitude-force
relation and strains of beam and plate structures. The analysis was
based on the use of finite element methodology for beam and plate
structures. Two finite element methods were developed, namely, the
iterative single-mode method (method I) and the multiple-mode method
(method 1I). The harmonic force matrix was developed to analyze
nonlinear forced vibrations. Nonlinear free vibration was a special
case of the general forced vibration by setting the harmonic force
matrix equal to zero. The harmonic force matrix represents the external
applied force in matrix form, instead of a vector form, so that the
analysis of nonlinear force vibrations can be performed as an eigenvalue'
proeblem, By solving an eigenvalue problem, the analysis can be
performed efficiently to get a converged solution. The analysis was

also based on the Tlinearized nonlinear stiffrness matrix and the
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iterative procedures. Both inplane (longitudinal) displacement and
lateral deflection are included in the formulation.

The study showed that the effect of midplane stretching due to
large deflection is to increase the nonlinearity. However, the effects
of inplane displacements and inertia (IDI) are to reduce nonlinearity.
The concentrated force case yields a more severe response than the
uniform distributed force case. For beams and plates with end supports
restrained from axial movement (immovable case) only the hardening type
nonlinearity is observed. For beams with 1large slenderness ratio
(L/R<100) with movable end supports, the increase in nonlinearity due to
large deflection is partially compensated by a reduction in nonlinearity
due to inplane displacement and inertia. This leads to a negligible
hardening type nonlinearity, therefore, the small deflection Tlinear
solution can be employed. However, for beams with a small slenderness
ratio (L/R = 20) and movable end supports, the softening type
nonlinearity is found. The effect of the higher modes 1is more
pronounced for the clamped supported beam than the simply supported
one. The beam without inplane displacement and inertia (IDI) yields
more effect of the higher modes than the one with inplane displacement
and inertia. For beams, the iterative single-mode method (method I) and
the multiple-mode method (method II) converge into a true deflection
shape, provided the number of modes for the multiple-mode method {method
II) is high enough. Similarly, both the iterative single-mode method
(method I) and the multiple-mode method (method II) yield accurate
strains provided the number of modes for the multiple-mode method

(method II) is high envugh.
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Chapter 1
INTRODUCTION
1.1 Motivation

In modern engineering, with its continuous refinement of instrumen-
tation, its improved computational capabilities, and the high precision
tolerances, the theory of nonlinear vibrations is gaining more and more
practical meaning. Although it is known that linear vibrations provide
no more than a first order approximation of an actual situation, they
are sufficient for some practical and engineering purposes. However,
the linear theory is inadequate, if the vibration of an elastic body
involves amplitudes that are not very small as assumed in the linear
theory. A nonlinear vibration approach Tleads to completely new
phenomena which are not possible in linear systems; for example, the
dependence of frequency, or period of vibration, on amplitude which
cannot be handled by using linear analyses. In such cases, nonlinear
theory must be used to obtain more accurate results and to explain new
phenomena. Figure 1 shows the experimental result! of a square clamped
panel subjected to normal incidence acoustic impingement. In this
figure, the fundamental mode frequency shifts from about 175 Hz to
somewhere between 230 and 290 Hz., The increase of the fundamental and
higher modal frequencies clearly indicates the presence of inplane
forces in the panel due to large deflections., This type of behavior was

also cbserved experimentally by Holehouse? and White3.
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The steadily increasing demand for more realistic models of
structural response has resulted in research for solution techniques to
deal with nonlinear structural problems. Apart from some very few
exceptions, it is generally not possible to provide analytical closed-
form solutions for the differential equations occurring in nonlinear
vibrations of structures. Naturally, a numerical solution may be
obtained when the motion corresponding to certain initial and boundary
conditions is to be determined., Because of advances in electronics,
modern digital computers have been of great value in solving nonlinear
problems.

In general, nonlinearities in structural mechanics problems can
arise 1in several ways. When material behavior is nonlinear, a
generalized Hooke's law is no longer valid. This type of nonlinearity
is called "material" or ‘“physical" nonlinearity. Alternatively,
material behavior can be assumed to be 1linear, but structural
deformation can become large and cause nonlinear strain-displacement
relations. Deformation of a structural member can also reach a
magnitude that does not overstrain the material; in such a case,
curvature of the deformed median line can no longer be expressed by a
linear equation. Problems involving large structural deformation are
called "geometrically" nonlinear problems. Combination of material

nonlinearity and geometric nonlinearity is also possible.

1.2 Literature Review

Any Tlarge-amplitude deflection of a beam which is restrained
axially at its two ends results in some midplane stretching. This

stretching must be considered in the formulation which can be
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accomplished by using a nonlinear strain-displacement relationship
(geometric nonlinearity). The nonlinear equation of motion describing
this situation has been the basis of a number of investigations. Most
of these works are based on a single-mode approach. WOinowsky-Krieger4
considered the effect of an axial force on the vibration of hinged
bars. The vibration of an extensible bar, carrying no transverse load
and having the ends fixed at the supports, caused an axial tensile force
with a period equal to the half-period of the transverse vibration of
the bar. The Jacobian elliptic function was used to produce the
relation of frequency and amplitude of vibration. Eringen5 studied the
nonlinear free vibrations of elastic bars having immovable hinged
ends. The solution was accomplished by the use of a perturbation
method. The ratio of a nonlinear period over a linear period of
vibration and axial stress was shown against initial deflection. Only
the hardening type nonlinearity was found. Burgreen6 studied the
nonlinear free vibrations of a pin-ended column whose ends were pinned
to points fixed in space. This imposed the condition of a constant end
distance instead of the usual theoretical assumption that the axial load
in the column remained constant along the beam length., The exact
solution was obtained by using the Jacobian elliptic function. He also
found thaa the frequency was dependent upon the amplitude of vibration,
the effect of the amplitude of vibration becoming more pronounced as the
Euler load was approached in which the classical linear theory yielded
the frequency of vibration as zero. WOoda117 considerecd the nonlinear
free vibrations of a thin elastic beam. In his formulation, a fixed
inertial reference frame and a Lagrangian description of the motion were

employed. By assuming the motion to be inextensional and, at the same
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time, admitting the existence of a resultant normal force acting on each
cross-section of the beam, a system of governing equations was
obtained. The solutions of the simply-supported beam were obtained by
using three methods: the finite difference method, a perturbation
technique and the Galerkin weighted residual method. For the particular
example considered in his paper, the finite difference solution appeared
to be stable, even for oscillations involving angular rotations at the
ends of the beam which reached the order of magnitude of 80°.
Furthermore, he found that the Galerkin approximate solution was in
closer agreement with the finite difference solution than the
perturbation solution. Raju et a1.8 studied free flexural vibrations of
a simply-supported beam when a compatible longitudinal or inplane mode
was coupled with the fundamental flexural mode. The Rayleigh-Ritz
method was employed. The results showed that the effects of
Tongitudinal displacement and inertia were to reduce the nonlinearity in
the flexural frequency-amplitude relationship. Tseng and Dugundji9
investigated a straight beam with fixed ends excited by a periodic
motion at its supporting base in a direction normal to the beam span.
By using Galerkin's method, the governing partial differential equation
was reduced to the well-known Duffing equation. The harmonic balance
method was applied to solve the Duffing equation. Panda]ai10
investigated the case of straight beams, irrespective of the boundary
conditions, the nonlinearity was found to be of the hardening type. He
further concluded that only the hardening type existed. Later, At]urill
showed that there were some cases for which the softening type

nonlinearity is possible. He investigated the large amplitude

transverse vibration of a hinged bar with one end of the beam free to
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move longitudinally. The equation was solved by the perturbation
procedure of multiple-time scales. The calculated results showed that
the predominant nonlinear effect was due to longitudinal inertia which
was of the softening Duffing type. This result was in contrast to the
earlier analyses where a hardening nonlinearity had been predicted when
the only nonlinearity considered was the effect of average midplane
stretching due to the out-of-plane deflection,

Through the foregoing studies, the general features of the
nonlinear response of beams under harmonic excitation seem to have been
clarified. However, most of the actual calculations are based on a one-
term approximation for the spatial function while the interactions
between the modes with amplitude are not addressed. Corresponding to
this phenomena, the effect of multiple modes on the beam response is
needed. Because of the complexity in the formulation, there are very
few investigations on multiple-mode analysis in the literature.

McDona]d12 apparently was the first to consider modal
interactions. The considered investigation was the vibration of a
uniform beam with hinged ends which were restrained. The beam was
subjected to a concentrated lateral force at the mid-span and then
released from rest at the deflected position. The nonlinear effect in
this investigation was produced by the axial stretching of the beam. By
assuming a multiple-mode expansion corresponding to the deflected
position, the elliptic function procedure was performed to evaluate the
coefficients related to the participation of each mode. Bennett and

Eis1ey13

investigated the steady-state free and forced responses and
stability for large amplitude nonlinear vibration of a beam with clamped

ends. The general equations for response and stability were derived.
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By applying Galerkin's method, a set of nonlinear ordinary differential
equations was obtained. The solution of forced vibration was evaluated

¢14

by the method of harmonic balance. Later, Bennet considered the

problem involving the ultraharmonic response of a simply supported

beam, Tseng and Dugundji15

also used a multiple-mode expansion in
considering the forced response of a clamped beam about its buckled
configuration., The buckled beam was excited by the harmonic motion at
its supporting base. By using Galerkin's method, the governing partial
differential equation was reduced to a modified Duffing equation which

16 solved free and

was solved by the harmonic balance method. Srinivasan
forced responses of beams undergoing moderately large amplitude steady-
state oscillations by the averaging method of Ritz. The application of
Ritz's method to solve the governing nonlinear partial differential
equation yielded nonlinear algebraic equations instead of nonlinear
ordinary differential equations. To solve these nonlinear algebraic
equations, the Newton's method or bigradient matrix method had to be
employed. The method was shown by assuming the first two symmetric
modes of the linear system for the deflection of beam. It was clear
that the method yielded as many simultaneous nonlinear algebraic
equations as the number of modes included. Nayfeh et a1.17 proposed a

numerical-perturbation method for the determination of nonlinear forced

response of beams. The deflection curve of the beam was represented

with a multiple-mode expansion in terms of the linear modes. Then the

temporal problem was solved by the method of multiple scales, and
internal resonances were also considered, Van Dooren and Bouc18
considered the nonlinear transverse vibrations of a uniform beam with

ends restrained and forced transversely by a two-mode function which was
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harmonic in time. A simply supported beam was considered by the two-
mode approach. Approximate solutions were found by using Urabe's
numerical method applied to Galerkin's procedure and by an analytical
harmonic balance-perturbation method. The existence of a sub-harmonic
response of the order 1/3 and a harmonic response in the sub-harmonic
region of the forcing function was proved. Takahashi19 analyzed the
inextensible clamped-free and free-free beams by using Galerkin's method

20 investigated

and the harmonic balance method. Yamaki and Mori
nonlinear forced vibrations of a clamped beam under uniformly
distributed periodic lateral loading with the effects of both initial
deflection and initial axial displacement taken into consideration. The
problem was first reduced to that of a finite degree-of-freedom system
with the Galerkin procedure, the steady-state solutions of which were
obtained by applying the harmonic balance method. Actual calculation
was carried out for the three degree-of-freedom system with symmetric
modes. Yamaki et a1.21 also performed experiments to compare to the
analytic results. The test results were reported in the root-mean-
square of deflection instead of the actual deflection of beam.

Generally, the classical approach to solve nonlinear vibrations of
a beam is to start with the so-called assumed mode shape. By employing
the Galerkin's method, the governing nonlinear partial differential
equation of motion is reduced to a system of nonlinear ordinary
differential equations. The elliptic function, perturbation method or
numerical methods can then be employed to solve the problem,

Following von Karman's large deflection plate theory, the basic
governing equations for the nonlinear vibration of plates were

22,23

established by Herrmann, Nonlinear forced vibrations of circular
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and rectangular plates with various boundary conditions had also been
investigated by using the Galerkin or Ritz method16’24'28, the
Kantorovich averaging method29'30, various perturbation methods31'34,
and an incremental harmonic balance method.3®  Studies based on the
simplified Berger's hypotheses36 had also been investigated by using the
Galerkin method,37+38

In practice, many optimum or minimum-weight designed structures are
complex., Because of the versatility of the finite element method, it is
more suitable to use this method to analyze complex structures. Mei39
investigated nonlinear vibration of beams by a matrix displacement
method. Nonlinear free vibrations of various boundary conditions were
investigated and good agreements were obtained between the finite
element method and other numerical methods. Rao et al.0 studied the
large amplitude free oscillations of beams and orthotropic circular
plates. Their finite element formulation was based on an appropriate
linearization c¢f the nonlinear strain-displacement relations. Simply
supported and clamped beams were investigated. Comparison of their
results with the earlier work confirmed the reliability and
effectiveness of the 1linearization of the strain-displacement
relations. Reddy and Singh41 investigated the large-deflection analysis
of thin elastic curved beams by conventional and mixed finite element
methods. The conventional finite element method was based on the total
potential energy expression, whereas the mixed method was based on a
Reissner-type variational statement and involved the bending moments and
deflections as primary dependent variables. From their result, it
appeared that, in general, the mixed method yielded more accurate

results. Recently, Mei and Decha-Umphai"*z"44 developed the harmonic
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force matrix for solving nonlinear forced vibrations of beams and plates
by the finite element method. By employing the linearizing method45 and
so~called "single-mode" approach, the  frequency-amplitude-force
relations were obtained. There are very few attempts to solve nonlinear
vibrations of beam using the finite element method with multiple-mode

46 investigated beams of simply

expansion. Busby and Weingarten
supported and clamped boundary conditions. Their finite element
technique was performed only to obtain the nonlinear differential
equations of the straight beam and the method of averaging was then used

to obtain an approximate solution. Cheung and Lau®

investigated the
two-mode nonlinear vibration of beams. The essence of their method
could be regarded as an incremental harmonic balance method associated
with a finite strip procedure in the time-space domain., Unfortunately,
the works reported in Refs. 46 and 47 could not be exactly classified as
finite element method.

The accuracy of the theoretical predictions would not be completed
unless the experimental studies had been compared. Bennett and Eis]eyl3
performed the experiment of a clamped beam to compare with their

theoretical results, Tseng and Dugundji9

conducted the experiment of a
straight beam with fixed ends which was excited by the periodic motion
of its supporting base in a direction normal to the beam span, These
two experiments were found to compare favorably with the corresponding
theoretical predictions. However, these experiments were carried out
with special kinds of excitations, e.g. supporting base excitation.
Yamaki et al.2l performed the experimental studies of a clamped beam
under a uniformly distributed periodic load., Besides the reasonable

20

agreement with the theoretical predictions,®” their experimental results
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seem to provide effective data facilitating further theoretical
analyses.

Applications of the finite element method to large amplitude free
vibration of rectangular plates was first presented by Mei. 48 The
inplane tensile force induced by the transverse deflection alone was
assumed to be constant for each individual plate element. Nonlinear
frequencies of rectangular plates with various boundary conditions
agreed well with the approximate continuum solutions of Chu and

Herrmann23, and Yamaki2®. 1.40

Rao et a proposed a novel scheme of
linearizing the nonlinear strain-displacement relations in formulating
the nonlinear stiffness matrix. They studied nonlinear free vibrations

49 and rectangular p]ates.50’51 Shear deformation and

of circular plates
rotary inertia were also included in the formulation.>2»93 Reddy and
Stricklin%4 presented a linear and a quadratic isoparametric rectangular
element using the linearized Reissner-type variational formulation to
study large amplitude free plate vibrations. Inplane displacements were
considered in their formulation. Two triangular elements have also been
developed for nonlinear free vibrations of plates of arbitrary shape.

55

The first one is consistent with the higher-order bending element

TRPLT150 4n NASTRAN, and the second one’ is consistent with the high-

1.58 The solutions obtained for

precision plate element of Cowper et a
numerical examples include rectangular, circular, rhombic and isosceles
triangular plates. Reddy and Chao®9s60 extended the earlier
isoparametric rectangular elements to include transverse shear and

laminated composite materials. Mei et a1.%! also extended the earlier

triangular element to include laminated composite materials.
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62 63,64

Bhashyan and Prathap”“ and Sarma and VYaradan also presented a
Galerkin and a Lagrange-type finite element formulation for nonlinear
free vibrations of beams with ends restrained from Jlongitudinal
movement. They obtained frequency values at the instant of maximum
amplitude which was based on a new criterion for defining nonlinear
frequency presented in Refs., 65 and 66. However, the results (Refs. 62
to 65) do not agree with those classic continuum solutions (Refs., 4 and
67). What they actually solved is a linear beam vibration problem
subjected to an initial axial tensile force as commented on in reference
68.

It is clear that a substantial amount of literature exists on

nonlinear vibrations of beams and plates. Eis]ey69

published a review
on nonlinear analyses of beams concerning the classical methods.
Sathyamoor"thym'71 published two excellent survey articles on nonlinear
analyses of beams, one of which dealt with 1literature concerning
classical nonlinear methods and another one dealt with the finite

element method. Chia72 and Sathyamoorthy73 had presented their

comprehensive reviews on free and forced nonlinear vibrations of plates.
1.3 Scope of Dissertation

Through the foregoing studies, the general features of the
nonlinear free and forced vibrations of beams and plates have been
largely clarified. However, modern structures are complex and the more
accurate theoretical predictions are preferred, therefore, the multiple-
mode approach has to be considered in the formulation of nonlinear
vibration problems. Since the evolution of digital computers, the

finite element method has become widely used to solve many types of
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complex structures. It is the purpose of this research to present the
finite element methodology using single and multiple-mode approaches for
analysis of nonlinear vibrations of structures.

In this dissertation, the finite element methodology for nonlinear
free and harmonic force vibrations of beam and plate structures are
studied. Both out-of-plane deflection and inplane displacements are
included in the formulation. The concepts of the finite element method
for nonlinear free vibrations and the methodology for solving the
harmonic forced nonlinear vibrations are provided in Chap. 2. In
Chap. 3, the solution procedures for the iterative single-mode method
(method I) and the multiple-mode approach (method II) are presented. In
Chap. 4, the classical method is provided to review the concepts of
nonlinear forced vibrations of beams. By using the concepts of the
classical method, the derivation of the harmonic force matrix is given
in this chapter. Also, the finite element formulation for nonlinear
forced vibration of beam, and the nonlinear stiffness matrices using the

linearizing method45

are derived in this chapter, In Chap. 5, the
finite element formulation for nonlinear forced vibration of plates is
presented. In Chap. 6, beams and plates with various out-of-plane and
inplane boundary conditions are investigated. The definition of the
inplane boundary condition 1is also explained. The relations of
frequency and amplitude for various boundary conditions and loads are
tabulated and plotted. Results are also compared to other classical or

experimental results whenever available. The convergence criteria are

also studied. Chapter 7 gives the concluding remarks.
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Chapter 2

FINITE ELEMENT METHOD

2.1 Basic Concepts

The finite element method is a numerical analysis technique for
obtaining approximate solutions to problems by idealizing the continuum
model as a finite number of discrete regions called elements. These
elements are connected at points called nodes where normally the
dependent variables such as displacements and mode shapes are
determined. Numerical computations for each individual element generate
element matrices which are then assembled to form system matrices to
represent the entire problem. In the case of nonlinear vibration, these
system matrices are the set of characteristic equations. Generally, the
more elements used, the greater the accuracy of the results. Accuracy,
however, can be affected by factors such as the type of element selected
to represent the continuum, and the sophistication of element

interpolation functions.

2.2 Finite Element Nonlinear Vibration Analysis

Once the type of elements and their interpolation functions
(polynomial expansions) have been selected, the matrix equations of the
individual element (element matrices) are evaluated. In nonlinear
vibration analysis, the conservation of energy is employed to evaluate

the element matrices.

14
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In general, the kinetic energy T for an element can be represented

in a quadratic form as

T =L 8 m1ed) (2.1)

]
N e

where [m] denotes an element mass matrix and {8} denotes an element
nodal displacements vector. A dot denotes differentiation with respect
to time.
The strain energy U for an element can be separated into two parts
as
Us=1u

+ U (2.2)

NL

where UL denotes the linear strain energy and Uy, denotes the nonlinear
strain energy. The linear strain energy U can be represented into a

quadratic form as

{6}T[kL]{6} (2.3)

ot =

UL =

where [kL] is an element 1linear stiffness matrix. Similarly, the
nonlinear strain energy Uy using the Tlinearizing method?® can be

represented into a quadratic form as

T
{8} [kNL]{G} (2.4)

N =

Uy =

where [KNL] is an element nonlinear stiffness matrix.
The application of Lagrange's equation to the kinetic energy T and
the strain energy U leads to the element nonlinear free vibration

equation of motion as

[m1(8) + [[k 1 + [ky, 116} = 0. (2.5)
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For the nonlinear forced vibration, the methodology is to relate
the force to the potential energy. This potential energy, V, due to a

uniform harmonic forcing function can be represented as

v =L 6y mn1s) (2.6)

N =

where [h] denotes an element harmonic force matrix. The derivation of
Eq. (2.6) is presented in detail in Chap. 4.

The application of Lagrange's equation to the kinetic energy T, the
strain energy U and the potential energy V leads to the element
nonlinear force vibration equation of motion as

[m{8} + [[k 1 + [ky 1 - [n1]{8} = o. (2.7)

The essence of this methodology is to solve the nonlinear forced
vibration problem 1in the same way as solving the nonlinear free
vibration problem. The frequency-amplitude-force relationships can be
solved from Eq. (2.7) as an eigenvalue problem. The expressions of the
element mass matrix [m], the linear stiffness matrix [k ] and the
nonlinear stiffness matrix [kNL] for beam and plate structures are shown

in Chaps. 4 and 5, respectively.
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Chapter 3

SOLUTION PROCEDURES

In this chapter, the solution procedures of the finite element
methodology are explained in detail. There are two methods, namely, the
iterative single-mode method (method I) which is the iterative process
of a single mode, and the multiple-mode method (method II) which is the
combination of the 1linear mode shapes. Fach method employs the
iterative process to get a converged solution. The solution
procedures for each method are divided into two major parts, namely,
the small deflection part which is the linear solution, and the large
amplitude part which is the nonlinear solution. FEach part consists of
minor steps which evaluate the element and system matrices. The
jterative process for the large amplitude part is also explained., The
convergence criteria are provided and convergence characteristics are
shown 1in figures. Finally, the computer flow-charts of the solution

procedures for both methods are provided.

3.1 Method I: Iterative Single-Mode Method

3.1.1 Small Deflection Linear Solution

A linear solution is performed to evaluate the linear eigenvalues

(frequencies) and linear eigenvectors (mode shapes).

17
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The application of Lagrange's equation to the kinetic energy,
Eq. (2.1), and the linear strain energy, Eq. (2.3), leads to the element
equation of motion for linear free vibrations as
[ml{6} + [k 1{8} =0 (3.1)
where [m] and [k ] are the element mass and linear stiffness matrices,
respectively, These matrices are shown in Chaps. 4 and 5 for the beam
and plate elements, respectively. After all element mass and stiffness
matrices of a given structure are computed, the equation of motion for
the system can be assembled as
[MI{A} + [K 1{a} = 0 (3.2)
where [M] and [K ] denote the system mass and linear stiffness matrices,
respectively, {A} is the eigenvector which consists of contributions
from the lateral deflection terms and the inplane displacement terms.

This eigenvector {A} can be expressed as

_ e}
{aA} = {{I;}} (3.3)

where {4} is the eigenvector related to the lateral deflection terms
which are w and w, for a beam structure, and w, W,x, W,y and w,, for a
plate structure. The eigenvector {t} is related to the inplane
displacement terms which are u and Usy for a beam structure, and u and v
for a plate structure.

The equation of motion for the system, Eq. (3.2), can be rewritten

as

b 0 {4} . K O |Je} o (3.4)

o m | & 0o K|l

where [My1, [Mg1, [K p] and [K (] are the bending system mass matrix,

the inplane system mass matrix, the linear bending system stiffness
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matrix and the linear inplane system stiffness matrix, respectively. In
the linear system, the bending and inplane parts are uncoupled. By
using the bending part of Eq. (3.4), the system equation of motion for

bending only can be expressed as

[M €0} + [K 1(e} = 0 . (3.5)
Equation (3.5) can be rewritten in the eigenvalue problem as

2 -

where o is the linear frequency (eigenvalue) and {¢L} is the
corresponding Tlinear mode shape. The 1linear mode shape {¢L} is
normalized with the transverse deflection at the middle of beam (or

center of plate) to be unity.

3.1.2 Large Amplitude Nonlinear Solution

In this section, the nonlinear free and forced vibrations are
presented. The iterative procedure for nonlinear solution is explained.
After the linear mode shape has been determined (see Section 3.1.1,
Small Deflection Linear Solution), the nonlinear solution can be
performed. By using the corresponding normalized linear mode shape, Eq.
(3.6), the deflection shape {A} for the first iteration is expressed as
{9}

{8y = A {8} = A ° (3.7)

(@,

where A is the known amplitude (maximum deflection) and {¢}o is the
corresponding normalized linear mode shape. {C}o is the zero vector.

Because of the simplicity for understanding the iterative process, the

i
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subscript o is used for the linear mode shape. It should be noted
that {¢}0 is exactly the same as {¢L} in Eq. (3.6).

By using Eq. (3.7), the deflection shape of each element {6} can be
found. The linearizing function, f, for each beam element ({f} for each
plate element) is determined. The linearizing function is expressed in
Chaps. 4 and 5 for the beam and plate elements, respectively. After the
Tinearizing function has been determined, the element nonlinear
stiffness matrix [ky ]l for each element can be evaluated. The
expression of [kNL] is expressed 1in Chap. 4 for a beam element and
Chap. 5 for a plate element. The harmonic force matrix [h] can be
determined as expressed in Chaps. 4 and 5 for a beam and plate element,
respectively.

The application of Lagrange's equation to the kinetic energy,
Eq. (2.1), the linear strain energy, Eq. (2.3), the nonlinear strain
energy, Eq. (2.4), and the potential energy due to the uniform harmonic
forcing function, Eq. (2.6), leads to the element equation for nonlinear
forced vibrations as

[ml{e} + [[k 1 + [ky 1 - [h1]{6} = 0 . (3.8)

Once the element mass, stiffness and harmonic force matrices have
been determined for each element, the equations of motion for the system

can be expressed as
[M1{a} + [IK 1 + [Ky T - [H1]{a} = 0 (3.9)

where [Ky; ] and [H] are the system nonlinear stiffness and system

harmonic force matrices, respectively. Equation (3.9) can be written as
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N fwees| [P O[T
N ' - =0 (3.10)
KyLsp O o oflley

where [Ky, ] is the nonlinear bending system stiffness matrix. [Ky pql
and [Ky sp] are the nonlinear system matrices which are coupled between
bending and stretching. Equation (3.9) is in the form of an eigenvalue

problem which can be expressed as

W IMI{a}, = [IK 1 + Ky, ] - [HI]Ga) (3.11)

where o is the nonlinear frequency and {A}1 is the corresponding
normalized mode shape of the first iteration, By using {A}l, the

improved deflection shape for the second iteration can be expressed as
{4} = A {A}1 . (3.12)

By using Eq. (3.12) instead of Eq. (3.7), the second iteration is
performed from that point onward to obtain the improved nonlinear
frequency Wy and deflection shape. This iterative process can be
repeated until a convergence criterion (Section 3.3) is satisfied. Then
the last converged deflection shape can be used to evaluate the maximum
strain (or stress). It should be noted that the nonlinear stiffness
matrix [ky ] and the harmonic force matrix [h] are updated at each
jteration. The flow-chart of this solution procedure is shown in

Fig. 2.
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Fig. 2 Computer flow-chart (solution procedures) of
the iterative single~mode method (method I)
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3.2 Method II: Multiple-Mode Method

3.2.1 Small Deflection Linear Solution

The procedure for the linear solution of the multiple-mode method
is exactly the same as the one for the linear solution of the iterative
single-mode method (Section 3.1.1). By performing the calculations from
Eq. (3.1) to Eq. (3.6), the 1linear frequency (eigenvalue) and the
corresponding linear mode shape normalized to unity at the middle of
beam are evaluated. However, it should be pointed out that for each
linear frequency, there 1is a corresponding linear mode shape. For
example, the first 1linear frequency 4 corresponds to {¢L1}, w5
corresponds to {¢L2},---, and o corresponds to {¢Ln}.

Through the foregoing procedure, the Tlinear solution for free
vibration of beam is obtained. The 1linear frequencies, Wqs Wops 0t

w, and the corresponding 1linear mode shapes, {¢Ll}, {¢L2},°°°, {¢Ln},

Ln
have been evaluated. These 1linear mode shapes will be used for

multiple-mode approach discussed in the next section.

3.2.2 Large Amplitude Nonlinear Solution

In this section, the multiple-mode nonlinear free and forced
vibrations of a beam, determined by the finite element method, are
presented. The iterative procedure is explained. The convergence
criteria are discussed in Section 3.3.

After the 1linear mode shapes have been determined (see Section
3.2.1, Small Deflection Linear Solution), the nonlinear solution is

performed as follows. By wusing the first linear mode shape and the
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total amplitude A at the middle of the beam, the deflection shape for

the first iteration is expressed as
{6} = A {¢L1} . (3.13)

By using Eq. (3.13) the deflection shape of each element {8} can be
found. By using {8}, the linearizing function, f, for each element is
determined. After the 1linearizing function has been determined, the
element nonlinear stiffness matrix [kNL] for each element can be
evaluated. The integration for obtaining [kNL] is carried out by the
extended Simpson's rule with 20 interva]s74.

Next, the element harmonic force matrix [h] is determined. The
expressions of the Tlinearizing function and the element matrices are
shown in Chap. 4.

The application of Lagrange's equation to the kinetic energy, Eq.
(2.1), the linear strain energy, Eq. (2.3), the nonlinear strain energy,
Eq. (2.4), and the potential energy due to the uniform harmonic forcing
function, Eq. (2.6), leads to the element nonlinear forced vibration

equation of a beam under a harmonic forcing function. This element

equation of motion is expressed as
[m] €8} + [[k 1+ [ky 1 - [h1] {6} =0 . (3.14)

After the element mass, stiffness and harmonic force matrices have
been determined for each element, the equations of motion for the system

can be assembled as and expressed as

[M] {a} + [IK 1+ [Ky 1 - [HI] &} = 0 (3.15)
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where [KNL] and [H] are the system nonlinear stiffness and system
harmonic force matrices, respectively. The system equations of motion,
Eq. (3.15) can be reduced into displacements containing w and w,,.
This is accomplished by using Guyan's reduction technique75. The
definition of {A} is defined 1in Eq. (3.3). This reduced system

equations of motion has the form
[RM] {6} + [RK] {6} = C (3.16)

where [RM] denotes the reduced system mass matrix, and [RK] denotes the
reduced system stiffness matrix. It should be noted that [RK] consists
of not only the reduced system linear and nonlinear stiffness matrices
but also the reduced system harmonic force matrix.

In the process of transforming Eq. (3.15) into Egq. (3.16) there
exists the relation between the system deflection shape {A} and the

reduced system deflection shape as 75

{a} = [TRF] {¢} (3.17)

where [TRF] is the transformation matrix.

By the definition of the multiple-mode approach, the reduced system
deflection shape {¢} is the combination of the Tlinear mode shapes
{¢L} in Eq. (3.6) and their amplitudes. This reduced system deflection

shape {¢} can be expressed as
{¢} = Ay {¢L1} + A, {¢L2} toeeee + A {¢Ln} (3.18)

where A; is the amplitude of the i-th linear mode {¢Li}, and n is the
total number of modes. Equation (3.18) can be rewritten in a matrix

form as
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Ay
(o} = [lo} Lo =oee (0302 (3.19)
A
or
{0} = [9,] 1A (3.20)
where
[6,1 = [{o,1} {0} +veeelt ] (3.21)
[ )
Ay
)
(A =<Q:p - (3.22)
LA"

By using Eq. (3.20), Eq. (3.16) can be transformed to the normal
coordinates, {Ao}, and is expressed as

T - T _
or [¢o] [RM] [¢o] {Ao} + [¢0] [RK] [¢o] {Ao} =0 (3.23)

[RM T (A} + [RKT{A} = 0 (3.24)

Equation (3.24) is in the form of an eigenvalue problem which can be

expressed as

oy [RMT (A} = [RK D €A} (3.25)

where OnL is the nonlinear frequency. By solving the eigenvalue
problem, Eq. (3.25), the nonlinear frequency YLl and the eigenvector
{Ao} can be determined. After the eigenvector {Ao} has been obtained

the amplitude ratios Kl; i=1,2,*++, n can be determined.
1
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By the definition of multiple-mode approach, Eq. (3.18), the
maximum deflection (amplitude) is the summation of amplitudes of all the
modes. This can be expressed as

A = % A (3.26)

or

Ai
—_ (3.27)
A

A
A = 3.28
1 " ( )

n i
1+ % —
i=2 A
A; 1
The ratio Kl is from Eq. (3.25) as mentioned earlier, The value of
1

amplitude for i-th mode, A;, can be solved by
A
Ai = (KI) A 1= 2,3,°°°, n, (3.29)

Through the foregoing procedure, the first iteration has been

completed. The next iteration starts by using
n
{6} = A {¢o .} . (3.30)
i=1 i Li

By using Eq. (3.30) dinstead of Eq. (3.13), the next iteration is
performed from that point onward to obtain the improved nonlinear
frequency WNL1 and i-th amplitude A;. This iterative process can now be
repeated until a convergence criterion (Section 3.3) is satisfied. It
should be noted that the nonlinear stiffness matrix [kNL] and the
harmonic matrix [h] are updated at each iteration because of the
changing values of A;. The flow-chart of this solution procedure is

shown in Fig., 3.
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or

[RM J{A )} + [RK J{A} = 0

[o 17 [RMICe I{A} + [o 1TCRKILe, 1(A} = 0
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:

2 -
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Fig. 3 Computer flow-chart (solution procedures) of
the multiple-mode method (method II)
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3.3 Convergence Criteria

Three displacement convergencé criteria proposed by Bergan and
C]ough76 and a frequency convergence criterion are employed in the
present study. The three displacement norms (criteria) are the modified
absolute norm, the modified Euclidean norm and the maximum norm. The
definitions of the three norms are given in the Appendix A. The
frequency norm is defined as I(AwNL)j/(wNL)jI, where (Awy ); is  the
change in nonlinear frequency during the j-th iterative cycle. Figure 4
shows a plot of the four norms versus number of iterations for a three-
mode clamped beam (L/R = 1010) with inplane displacement and inertia
(IDI) when both ends are immovable (u = 0 at x = 0 and L). The beam is
subjected to a uniformly distributed harmonic force Fo = 0.002 N/mm at
A/R = 4,0, Figure 5 shows the convergence characteristics of a simply
supported square plate of length-to-thickness ratio a/h = 240 with
immovable inplane edges (u=0 at x=0 and a, v=0 at y=0 and b) subjected
to a wuniform harmonic force of forcing parameter P: = 0,2 at
wmax/h = 1,0, For all the results presented in this dissertation,
convergence is considered to be achieved whenever any one of the norms

reaches a value of 1072,
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Chapter 4

BEAM STRUCTURES

In this chapter, the mathematical formulations of the classical and
finite element methods are presented. In the first section, the
formulation of the <lassical method is presented. The equation of
motion for an isotropic beam is given. The characteristic equations are
provided using the Galerkin's method. For the single-mode approach, the
frequency-amplitude~force relation is shown in a simple closed-form
solution which is not possible for the multiple-mode approach, For the
multiple-mode approach, the general formulation is shown to provide
better understanding in the multiple-mode formulation. All of these
formulations are performed in detail. The classical method provides the
concept which later is utilized in the finite element method.

In the second section, the formulation of the development of the
finite element method 1is presented. The expressions for the strain-
displacement relation, kinetic energy and potential energy are
provided. The 1linearizing function for deriving nonlinear stiffness
matrices is defined. The inplane displacement and lateral deflection
are expanded in the cubic order. Furthermore, the derivation of the
harmonic force matrix for nonlinear forced vibration analysis is

presented.

32
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4,1 Classical Method

In general, the nonlinear forced vibration of a beam is solved by
the assumed mode method. By employing the Galerkin's method, the
assumed mode shape is substituted into the governing equation of motion,
then the integration is performed over the spatial domain. The
characteristic equations are then obtained. Numerical time integration
or other numerical method 1is employed for solving the frequency-
amplitude relations. Formulation for both single and multiple-mode

approaches are shown,

4,1.1 Single-Mode Approach

The classical method for the single-mode approach 1is straight
forward. The frequency-amplitude-force relation exists in a simple
closed-form relation. The formulation for the single-mode approach is
as follows,

Assume that a uniform beam with cross sectional area K, moment of
inertia I and length L is subjected to a uniformly distributed periodic
lateral load F(t) as shown in Fig. 6. In this figure, a clamped beam is
shown. The deflection is denoted by w(x,t). With the assumption that
axial displacements at both ends are zero (immovable inplane
displacement), the basic governing equation of motion for the nonlinear
bending forced vibration of a beam is

o Aw+Elw, - N
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where

- L
EA 2
N = Z-L . (W,x) dx (4.2)

where 5 and E are mass density and Young's modulus, respectively. The
subscript x following a comma denotes differentiation with respect to x
and a dot denotes differentiation with respect to time t.
For the single-mode approach, the deflection is assumed as
wix,t) = o(x) g(t) (4.3)
where ¢(x) represents the normal mode of linear free vibration which
satisfies the boundary conditions for the case in consideration, and the
modal amplitude g(t) is an unknown function of time.
Using the foregoing expression for w, the Galerkin's method can be
applied to Eq. (4.1) which leads to
L
J [Eq. (4.1)] ¢(x) dx = Residual = 0 (4.4)
0

Equation (4.4) can be expressed as

L L

- - 2 .

oA o dxI g+ [EL [ ., ¢dlg
0 (0]
L L

-IN[ o, 0dx]g-F(t) /] ¢dx =0 (4.5)
0 0

Equation (4.5) can be rewritten in the form as
. L L,
PRGHIEL] bnyx ¢ A1 o/] ¢ dx

L L, L L,
-INS 6, 0dx]g/f ¢%dx - F(t) [ ¢dx/[ ¢"dx=0. (4.6)
Y 0 0 o

<
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By substituting Eq. (4.3) with Eq. (4.2),

the inplane force N can be
expressed as

- L
_ _EA 2 2

By using this value of N, Eq. (4.7), in conjunction with Eq. (4.6), the
characteristic equation is obtained in the form as

mg+kg +k g3 -cF(t) =0

(4.8)

where m, k and k are the mass, linear stiffness and nonlinear stiffness
terms, respectively.

The values of m, k and k can be expressed as

m=opA (4.9)
L L,
k = EI J s ypxx O dx/[ ¢° dx (4.10)
0 0
- L L L
- EA 2 2
k == fo (6, ) dx fo bsy O dx/fo ¢ dx . (4.11)

The value of the constant ¢ is expressed as

L L 2
c =/ ¢dx/f ¢° dx

(4.12)
0 0
The characteristic equation, Eq. (4.8), can be written as

mg+kg +k g3 - P(t) =0

(4.13)
where P(t) is the force term which is expressed as

P(t) = c F(t) . (4.14)

-
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For harmonic loading, the force term, P(t), is written as

P(t) = P, cos (ut) (4.15)
and by Eq. (4.14),
P =cF (4.16)
and ° 0
F(t) = Fo cos (wt) (4.17)

where F, is the force intensity which has the dimension of force per

unit length. Equation (4.13) can be written as

g+« g+Bg =Rt (4.18)
and 2
o= k/m (4.19)
B = k/m (4.20)
_ _ Po
P(t) = Po cos{wt) == cos(wt) (4.21)

where W is the linear frequency which has the dimension of radians per
second,

The characteristic equation, Eq. (4.18), can be solved for the
frequency-amplitude-force relation in a closed-form solution by various
approximate methods. It should be pointed out that many of these
approximate methods yield the same closed-form solution which can be
classified as a standard form. Because of the simplicity of the
following method, the derivation of the closed-form solution will be
shown in detail. This method is based on omitting the higher harmonic
term.

To obtain the frequency-amplitude-force relation in closed-form

solution, Eq. (4.15) is rewritten as
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- 2 _=3.5
g =-uwg-Bg +P, cos(ut) . (4.22)

By adding «’g to the left and right sides of Eq. (4.22), the

characteristic equation is written as

g + w g = (w - mL) g - 93 + P cos(wt) . (4.23)

By assuming, w = W B << 1, and 50 << 1, then Eq. (4.23) is approxi-
mated as

g+dg=0. (4.24)
The solution of Eq. (4.24) is

g(t) = A cos(ut) . (4.25)

By using Eq. (4.25), g3(t) is expressed as

A3

g3(t) cos3(ut)

A3 L% cos(ut) +.% cos(3wt)] . (4.26)

Since A cos(wt) is an approximate solution to Eq. (4.23), the estima-
tion of the right-hand side of Eq. (4.23) can be evaluated by
substituting Eqs. (4.25) and (4.26) with Eq. (4.23) as,

3 cos(ut) + < cos(3wt) ]

2 2 = 43
{(w -wL) A cos(wt) - B A [4 7

.. 2
g+tuwg

+

-150 cos(wt) }

[(w2 - wf) A - 73[ B A3 + F-’o] cos(wt)

B A cos(3ut) . (4.27)

) =
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To obtain a periodic solution, the coefficient of cos(wt) must equal

zZero as
2 2 3=,3.85 _
(w™ - wL) A Z-B AT + Po =0

2 2 3= 2
= + - -
w wL 7 B A

>| O'Ul

. (4.28)

Equation (4.28) is the standard closed-form relation between frequency,
amplitude and force. It should be noted that Eq. (4.27) is then

expressed as,
5 + wzg ~ - % B A3 cos(3wt) (4.29)
which yields the solution as

_- l 3
g(t) = A1 cos(wt) +-§§ B cos(3wt) (4.30)

€r°'110

where Zl is arbitrary.

4.1.2 Multiple-Mode Approach

The classical multiple~mode approach follows the same path as the
single-mode approach. But the multiple-mode approach cannot give a
simple closed-form frequency-amplitude-force relation, thus, a numerical
integration or other approximate method is employed.

The general formulation of the multiple-mode approach is as

follows,

3

wix,t) = g 1 ¢i(X) gi(t) (4.31)
i=
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where ¢i(X) is the i-th normalized linear mode shape with a maximum of
unity at the center of the beam, and g;(t) is the time function. Only
symmetrical modes are considered in Eq. (4.31) due to the fact that the
loading is uniform. The total number of modes in consideration is n.

The time function g;(t) can be expressed as
gi(t) = A cos(wt) (4.32)

where A; is the amplitude of i-th mode shape. By using the assumed
expression of w, Eq. (4.31), the Galerkin's method is applied to Eq.

(4.1) as follows:

L
J [Eq. (4.1)7 ¢, (x) dx = Residual =0 (4.33)
0

i = 1,2000’ n.

By substituting Eq. (4.31) with Eq. (4.2), the axial force N is

expressed as

L

_EA n 2
N =or fo [§=1 b x 9717 dx . (4.34)

By substituting Eq. (4.34) with Eq. (4.33), the following set of

nonlinear ordinary differential equations are obtained:

n n n _
m; g: +k; g. +Z I I ki. 9.9.9
i 9 i i j=1 r=l s=1 ijrs “j7rs
= Pi(t) i1 =1,2,°°*, n (4.35)
where
m, =p A (4.36)
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L L
- 2
k; = EI J 97 xxxx o5 dx/ [ 95 dx (4.37)
(o] o}
L L
- I ¢j,x ¢r,x I 4’s,xx ¢1 dx
k., =-HA 0 0 (4.38)
ijrs 2L L *
J o, dx
0

L L,
P, (t) = ] Fix,t) o, dx/ [ o5

0 o

dx . (4.39)

The set of nonlinear ordinary differential equations shown by Eq. (4.35)
is the set of characteristic equations for nonlinear forced
vibrations. In general, the number of characteristic equations is the
same as the number of mode shapes included in the assumed deflection
shape, Eq. (4.31). These characteristic equations are highly nonlinear
and coupled, thus, it is very tedious to solve for the steady-state
solution. One way to obtain the frequency-amplitude-force relation is
by performing numerical integration, e.g., the Runge-Kutta method.
To clarify the method, a two-mode approach is performed as follows:
2
wix,t) = ?_ ¢i(x) gi(t) . (4.40)
i=1
The deflection shape w(x,t) 1is assumed as the combination of two

modes. In this case, n is equal two. The value of N, Eq. (4.34), can be

expressed as

= L L
N = %é [(Io ¢1fx dx) gf + (fo ¢§’x dx) gg

L
(2] e 0, dx) g105] . (4.41)
0 ’ ?
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By using Egs. (4.40) and (4.41), the set of characteristic equations,

Eq. (4.35), is expanded as

3 . (K

.o - - 2
mogy tkp 9tk 9 112 ¥ *1121 PR 91 9
+ (K + K +k...) g 92+E g3=P(t) (4.42)
1122 © 1212 T “12217 1 %2 1222 2 1 .
m, g, + K + K 34 (k + k +K,00) 6.2 g
292 %K 9 " K1 9 2112 T %2121 T %2211’ 91 92
+ (k +k +k....) g 92+E g3=P(t) (4.43)
2122 © "2212 T T2221' C1 Y2 2222 72 2 .
where
m1 =pA
L
k1 = EI I ¢1 XXXX ¢1 dX/fo q’l dx
- L L L
- EA 2 2
T A R TR B2 A
0 0
- L L L

2 2
5 4x fo ¢2,xx oy dx/fo ¢, dx

A ‘- L L,
K121 =~ 7T fo P f2,x 0S4 odx/] 4" ox

T L L
K1122 = " 7T fo 91,x %2,x 9% fo %.xx %1 d"/fo 0 dx

p—
(
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=1
"

gA L L L,
1211 "zr.'f ¢2x¢1deI % wx %1 dx/ [ ¢ dx
o t] E] 0 rY 0

=
]

ER L L L 2
1212 =30 S Ok 0 x IX T 6y 0 AX/] " dx
O » } ] 0 E ] o

>~
"

TR L L 2
1220 = " 0k Ax T 0y, oydx/[ 9% dx
0 ’ 0 ’ 0

- L L L
- EA 2 2
kogp = " 30 0y X T 0y 0 /[ e dx
0 0 0
L Lo,
Pl(t) = [ F(x,t) 4 dx/ [ 6, dx
0 0
m2 =pA
L Lo,
k, = EI J b xxxx 02 dx/ [ 0,° dx
(o] 0
- L L L
- EA 2 2
kopar =T a0 o XS oy 4 XS ey dx
0 0 (o}
- L L L
- EA 2
ko112 = " 3T fo ¢),x 94X fo % xx %2 d"/fo 6, dx

—
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C EA L L L 2
K11 = = 3T fo 0 x 92,x 4% jo 4. xx b2 dx/f0 9," dx

_ El-\ L L L 2
ko122 = 3T fo ®.x %2,x fo % xx % d"/fo o, dx

EA L L L 2
k2211 == '2'[ Io ¢2,x ¢1’x dx Io ¢1’xx ¢2 dX/fo ¢2 dx

R L L,
Kos1o = = 3T jo ¢2’x ¢1’x dx fo ¢2’xx % dx/J'0 ¢, dx

A L 2 L L
Kooo1 = ~ 7T fo 9 x X fo %1,xx 92 d"/fo ¢, dx

_— L L
- EA 2 2
Kpgoo = " T by X T 0y o 0 WX/ 4, dx
0 0 o]
L L,
P (t) = ] F(x,t) 0, dx/ [ 6," dx . (4.44)
0 0

The steady-state response for a two-mode nonlinear vibration
problem can be obtained by employing Runge-Kutta numerical integration
for solving the nonlinear coupled characteristic equations, Eqgs. (4.42)
and (4.43). Results are obtained for comparison with the finite element

solutions shown in Chap. 6.

p—
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4.2 Finite Element Formulation

In this section, the formulation of the finite element method for a
beam element is developed. The expressions for the strain-displacement
relation, kinetic energy and potential energy are provided. The
linearizing function for deriving nonlinear stiffness matrices is
defined. The inplane displacement and lateral deflection are expanded
in the cubic order polynomials. Furthermore, the derivation of the

harmonic force matrix is presented.

4.2,1 Strain-and Curvature-Displacement Relations

The strain-displacement relation for a beam under large deflection

is given by
2

1
= + =
ex u,x > W, « (4.45)

where €y is the strain in the x-direction of the beam, u is the inplane

displacement and w dis the 1lateral deflection, The curvature-

displacement relation is defined as

by = Wy (4.46)
where ¢x is the curvature. The total strain, e, is
€=u, + l-w, 2 _, Wy . (4.47)
X 2 °x XX

4,2,2 Kinetic and Strain Energies

The kinetic energy of a beam element shown in Fig. 7 is given by

L
T=%pf W2+ w ?) dx (4.48)
0
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where p is the mass per unit length, and & is the element length. The

kinetic energy can be separated into two parts as

T=T,+Ty . (4.49)
The kinetic energy due to mid-plane displacement Ty is defined as
2
1 2
T =50 fo u dx (4.50)

and the kinetic energy due to lateral deflection T, is defined as

NI

L,
T < o [ w dx . (4.51)
(o]

The total strain energy of a beam element is given by
1 - 2 2
U—éf(EAex+EI¢x)dx (4.52)

where E is Young's modulus, A is the cross-sectional area of the beam,
and I is the moment of inertia. By substituting Eqs. (4.45) and (4.46)

with Eq. (4.52) the strain energy in terms of the displacements can be

written as . )
1 - 2 1 2 1 2
U= 3 fo EA [u,x + 2u,x (5 w,x) + (5 w’x) 1 dx
L
1 2
*3 fo Elw, dx. (4.53)

The strain energy U can be separated into two parts, namely, linear

strain energy U and nonlinear strain energy Uy, so that
U= UL + UNL . (4.54)

The linear strain energy for Eq. (4.54) is expressed as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

2
1 = 2
UL=§foEAu,

2

XX dx . (4.55)

1).
xdx+-2j°EIw,

Similarly, the nonlinear strain energy for Eq. (4.54) is expressed as

2 2
1 - 1 2 1 2
Uy =3 Io EAL2u, (5w, )+ (5w ) ]dx. (4.56)

4,2,3 Displacement Functions

The displacement functions are chosen to be the cubic-order
polynomials as follows:

Wo=ag tax+ a3x2 + a4x3 (4.57)

and

u=ag+agx+ a7x2 + a8x3 . (4.58)

The generalized coordinates ay, *°c*e, ag can be written in vector form
as

T _ .
{a}’ = [a; a5 a3 3, a; a5 3y ag] (4.59)
and the element nodal displacements, Fig. 6, are defined as
{6}T = [w, 6, w, 6, U, a, u, a,l (4.60)
17172 "°2"1 71 "2 ™ *

where 8; and a; are the differentiation with respect to x of w; and u;j
at node i, respectively. The generalized coordinates in Eq. (4.59) can

be written as
{a} = [T] {8} (4.61)

where [T] is a transformation matrix which is given in Appendix B.
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The displacements u and w, including their derivatives, can be

expressed in terms of the element nodal displacements as
u=[00001x x% x°1 fa}
= [B] [T] {8} (4.62)

u,, =[00000 1 2x 3x%] {a}

= [Cc] [T] {8} (4.63)
w=I1xx%x30000] {a)
= [D] [T] {8} (4.64)
W, =01 2x 3x% 00001 a)
= [E] [T] {8} (4.65)
W, =00026x0000] fa}

= [6] [T] {8} (4.66)

4.2.4 Linearizing Function

A Vinearizing function is defined as®»45

21
f =5 Wy o (4.67)

By substituting Eq. (4.65) with (4.67), the linearizing function can be
expressed as

f == [E] [T] {&} . (4.68)

N =

—

8
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This 1linearizing function f 1is assumed to be constant for each
element. The main advantage of using a linearizing function is shown in

the following sections.

4.2.5 Element Equations of Motion for Nonlinear Free Vibration

The nonlinear free vibration is the backbone of the investigation
of steady-state response. The equations of motion can be derived by
applying Lagrange's equations as follows.

From Eqs. (4.50) and (4.62), the expression of kinetic energy due
to inplane motion mid-plane stretching T4 can be written in matrix form

as

L
% 1" o 1817 [B1 dx [T1 (5}
o}

-
n

1 [ T .
3 {8} [mS] {6} (4.69)

where [ms] is the element mass matrix due to inplane displacement and

expressed as
T & T
[m 1 =071 [ p[B] [B] dx [T]. (4.70)
o
Similarly, from Egs. (4.51) and (4.64), the expression of kinetic energy

due to bending Ty can be written as

T =

o T .
b {8} [mb] {8} (4.71)

M|

where fmb] is the element mass matrix due to bending and expressed as

T & T
[m 1 = [T] [ e D] [D] dx [T] . (4.72)
(8]
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The kinetic energy T, Eq. (4.49) can be expressed in matrix form as

T =Ly 1 8 (4.73)

NI

where [m] is the element mass matrix and expressed as
[m] = [mSJ + [mb] . (4.74)

The linear strain energy U, Eq. (4.55), can be expressed in matrix
form as

U [k, 1 {6) (4.75)

NI

UL =

where [kL] is the element linear stiffness matrix. The element linear

stiffness matrix [kL] can be separated into u-part [kLS] and w-part

[kLb] as
k] = [kLS] + [kLb] (4.76)
where
T g et
[kLs] =[T] [ EALC] [c] dx [T] (4.77)
(o}
T A T
[kLb] = [T [ EI [G)' [G] dx [T] . (4.78)
0

The nonlinear strain energy Uy , Eq. (4.56), can be written by
using the linearizing function f, Eq. (4.67), as

2

1 - 2 2
Uy, = E.jo E A [2f u, W W, 1dx . (4.79)

By substituting Egs. (4.63) and (4.65) with Eq. (4.79), the nonlinear

strain energy can be expressed in matrix form as
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Uy =

N -

T
{6} [kNL] {8} (4.80)
where [kNL] is the element nonlinear stiffness matrix and expressed as

T A g T T
[ky 1= 013" [ {E A [[c] [ED + [E] [CI].
0

+ £ A [E] [E]} dx [T] . (4.81)

The element nonlinear stiffness matrix can be expressed as

Ty 3 = Ckypd *+ Dhyepd * D] (4.82)
where
2
[kypd = (117 S €& £ [EITLED ax [T] (4.83)
0
Cky, .1 = [T]Y jl ERfLCIVLE] dx [T] (4.84)
NLbs® ~ o X .
[ky, 1 = [T1T f2 EAfLEITLCT dx [T] (4.85)
NLsb” o X . .

The linearizing function f which is constant for each element linearized
the nonlinear strain energy Uy, as quadratic in the nodal displacements
as shown in Eq. (4.80). The strain energy U, Eq. (4.54), can be written
as

=18y k1 (8) (4.86)

NI

where [k] is the element stiffness matrix and is expressed as

[k] = [k ] + [ky] (4.87)
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The application of Lagrange's equation to the kinetic energy T, Eq.
(4.73), and the strain energy, Eq. (4.86), leads to the element

nonlinear free vibration equation of motion as
[m] {8} + [[k 1 + [ky 1] {8} = 0 (4.88)
which can be rewritten as

ml o] |kl o Ckyp]  Dhyyps]
{8} + + {6} =0

0 Il 0 Dkl | Dkyspd O

(4.89)

4.2.6 Element Harmonic Force Matrix

In Section 4.1.1, the equation of motion for nonlinear forced

vibration in the classical approach is expressed in Eq. (4.13) as

3

mg+kg +Kk g =P(t), (4.90)

and Eq. (4.90) is rewritten in Eq. (4.15) as

2

g+ulg+Bg’ =B, (4.91)

when the forcing function P(t) is a simple harmonic P, cos (wt). An
approximate solution of Eq.(4.90) is in the form of Eq. (4.28) as

2 2 + 2 =

3-
w = w 2 B A PO/A (4.92)
and 50 is expressed in Eq. (4.18) as
P, = Po/m . (4.93)
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When the forcing function P(t) is a simple elliptic function and
expressed as

P(t) =B A cn (AL, m)

L]

*

B g (4.94)

where g is the Jacobian elliptic function and expressed as

g =Acn (At,n) (4.95)
and U
A= (g?+ B A% 2 (4.96)
1/2
n =8 A2/2 (w2 +5 M) (4.97)

where B* is forcing amplitude factor, A is circular frequency of the
Jacobian elliptic function and n is modulus of the Jacobian elliptic
function.

By expanding the elliptic forcing function into Fourier series and
comparing the order of the magnitude of the various components, Hsu’7
concluded that the harmonic forcing function P0 cos (wt) is the first
order approximation of the elliptic forcing function B*A cn (At, n).
Further, the first order approximation of the elliptic response of Eq.
(4.90) yields the same frequency-amplitude-force relation of Eq. (4.92)
which is the perturbation solution (standard form, Eq. (4.28)). To
obtain the exact elliptic response of Eq. (4.90), the forcing
function P(t) in Eq. (4.94) is treated as a linear spring in the Duffing

equation, Eq. (4.90). This is expressed as
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*

m 5 + kg + E 93 =B g

mg+(k-B)g+kg=0. (4.98)

*
This Tlinear spring force B*g possesses a potential energy as B 92/2.
Similarly, the potential energy of a beam due to the uniform harmonic
forcing function F0 cos wt can thus be approximated by
* 2
B 2
V=z5 [ w dx (4.99)
0
where the summation denotes the sum of all elements.
*
To relate the value of B , to the actual force applied to the beam

Fos the conclusion by Hsu!7 s employed (Eq. (4.94)) as follows:

*
P(t) =B g
*
=B A cn (At,n) (4.100)
so,
P, cos(ut) = B"A cn (At,n) . (4.101)

By using Hsu's conclusion, the harmonic function cos (wt) is the first

order approximation of the elliptic function cn (At,nm), thus,

~

cos (wt) = cn (At,n) (4.102)

2

when n2 is small in comparison with unity. When 1-\" is restricted to

the order of n2, the first harmonic in Eq. (4.100) will be the order

2 which yields the relation in Eq. (4.101). Hsuw//  further proved

of n
that the approximation relation in Eqs. (4.101) and (4.102) yielded the

same frequency-amplitude-force relation, Eq. (4.92), as the perturbation
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solution. By using the relation of Eq. (4.102), the value of B* in Eq.

(4.101) can be expressed as

*

B = PO/A . (4.103)
From Eq. (4.16), the relation of P, is expressed as follows

P =c¢cF (4.104)

where the constant ¢ is expressed in Eq. (4.12). The constant c¢ is
equal to the ratio of the area under mode shape and square of mode
shape. And the nonlinear mode shape in a multiple-mode approach is
assumed to be the sum of the linear modes, thus, the deflection w(x,t)

can be written as
* *
w (x,t) = ¢ (x) g (t) (4.105)

*
where ¢*(x) is the normalized nonlinear mode and g (t) is the time

function, thus,

*
o (x) =

- M 3

. A; o (x) (4.106)

o b

where A; and ¢i(x) are the amplitude of i-th mode shape and the i-th
normalized linear mode shape, respectively. By using Eq. (4.106), and
the definition of ¢ in Eq. (4.12), the expression of ¢ for simple

harmonic loading is expressed as

(Load elements)

*
¢ =d 6 dx (4.107)
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The term "Load elements" is defined as those elements subjected to
distributed harmonic force. Thus, for the uniformly distributed force

over the entire beam, the value of ¢ is expressed as

L *
[ ¢ dx
0

Comm (4.108)
L *

[ (¢ 12 dx
0

In the finite element method, the concentrated force can be simulated by
a distributed force over a very small length, thus, the value of ¢ for

the concentrated force case can be expressed as

b
0*
[ ¢ dx

0
C -—I:_T (4.109)

[ (6 dx

0
where a, and b, are coordinates of a beam under that distributed force.
It should be noted that the nonlinear mode shape in the single-mode
approach is defined as ¢(x), thus, the deflection w(x,t) can be written
as

wix,t) = o(x) g (t) . (4.110)

Thus, the values of the constant c¢ for the uniformly distributed force
over the entire beam and the concentrated force case can be evaluated by
substituting ¢(x) for ¢*(x) in Eqs. (4.108) and (4.109), respectively.

By using the Eq. (4.99), the element harmonic force matrix can be
derived from « g

J w2 dx (4.111)
o}

<
"
r\:| w
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where B* is expressed in Eq. (4.103). By substituting Eq. (3.64) with
(4.111), the potential energy due to the uniform harmonic force can be

expressed as

* R
v=% @' my (01" [D] dx [T {8}
0
- % ()7 h (6} (4.112)

where [h] is the element harmonic force matrix and expressed as

« 71X o1
[h] =8 [T] [ (D] (D] dx [T]. (4.113)
0

By comparing Eq. (4.113) with Eq. (4.72) and using the expression of B*
and P,, Egs. (4.103) and (4.104), the harmonic force matrix can be

written as
cF
0

[h] = o

[mb] (4.114)

where ¢ is a constant expressed in Eqs. (4.107), (4.108) or (4.109).

4,2.7 Element Equations of Motion for Nonlinear Forced Vibration

The application of Lagrange's equation to the kinetic energy T, the
strain energy U and the potential energy V, due to the uniform harmonic
forcing function, leads to the equations of motion for nonlinear forced
vibration of a beam element. By using Egs. (4.73), (4.86) and (4.112),

the equation of motion is expressed as

[m] {8} + [[k 1+ [ky, 1 = [h1] €8} = 0 (4.115)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



59

where [m] is the element mass matrix in Eq. (4.74), [k ] is the element
linear stiffness matrix in Eq. (4.76), [ky ] is the element nonlinear

stiffness matrix in Eq. (4.81), and [h] is the element harmonic force

matrix in Eq. (4.114). It should be noted that all these matrices are

symmetric. Therefore, Eq. (4.115) can be rewritten as

[mb] 0 ) [kLb] 0 [kNLb] [kNLbs] [h]l 0
{8} + + - {6} =0

0 Im] 0 [k I} Tkyepd O 00

(4.116)

where [mb], [ms], [kLb]’ [kLS]’ [kNLb]’ [kNLSb]’ [kNLbS] and {h] are
expressed in Eqs. (4.72), (4.70), (4.78), (4.77), (4.83), (4.85), (4.84)
and (4.114), respectively.

-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



—

Chapter 5
FINITE ELEMENT FORMULATION FOR PLATE STRUCTURES

In this chapter, the mathematical formulation of the development of
the finite element method is presented. The classical equations of
motion and the characteristic equations are also provided using the
Galerkin's method. This brief derivation of the classical method
provides the concept which later is utilized in the finite method. The
formulation of the finite element method for nonlinear free and harmonic
forced vibrations is presented. The expressions for the strain-
displacement relations, kinetic energy and potential energy are
provided. The 1linearizing functions for deriving nonlinear stiffness
matrices are defined. The inplane displacements and lateral deflection
are included in the formulation. Furthermore, the derivation of the
harmonic force matrix for nonlinear forced vibration analysis is

presented.
5.1 Strain and Curvature - Displacement Relations

Following von Karman's 1large deflection plate theoryzz, the

nonlinear strain displacement relations are defined as
{e} = {e} + z{k} . (5.1)

The total strain vector {e} , the membrane or midsurface strains

{e}, and curvatures {x} are given by

60
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X
{e} = sy (5.2)
Ty
2
du 1 oW
> V7 &%
=42 4 1 (am? L (5.3)
oy 72 oy :
W, o, W w
dy X X Oy
7/
( )
_ azw
2
ax
|
a .
() =ﬁ _ _\; (5.4)
oy
- 22w
L oxoy |

where €y and € are the normal strains in x and y directions, respec-

y
tively, and ny is the shearing strain. The displacements of the plate
midsurface in the x, y, z - directions are u, v and w, respectively.

The membrane or inplane resultant forces {No}, and bending and
twisting moments {Mo} are related to the strains and curvatures by

N} [c,] {e} (5.5)

1]

= =
<

WV

it

M}

"'
I

[0,] {x} (5.6)

o
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where [C,] and [D,] are the extensional and bending material stiffness
matrices, respectively. For plates of isotropic material and a uniform

thickness h, the material stiffness matrices are

1 v O
Ic,1 = En [, 1 0 (5.7)
1-v 1 -v
0 0 >
i J
1 v O
D] =——2-E'13 v 10 (5.8)
o L ]
12(1-v%) 1 -v
00 ==

where E and v are the Young's modulus and Poisson's ratio, respectively.
5.2 Kinetic and Strain Energies

The kinetic energy of a plate element executing harmonic oscilla-

tions is

2

b a
1 - 2
T = ph f f (u
Z 0o o0

+vZ + wd) dx dy (5.9)

where B and h are the mass density and the plate thickness,
respectively. The length and width of a plate element shown in Fig. 8
are a and b, respectively. A dot denotes differentiation with respect

to time t. The kinetic energy can be separated into two parts as

T = TS + T (5.10)

b [

The kinetic energy due to membrane (inplane) stretching T, is defined as

_ b a .
T, =3 oh jo fo (G2 + v2) dx , (5.11)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62



63

and the kinetic energy due to bending T, is defined as
. B,
Tb=—2-phf [ w dx . (5.12)
0o o

The strain energy U for a plate element is given by

U= Ub + Us (5.13)

and

p ba g
U, = ?.jojo M} {c} dx dy

1 b a T
= ?-j [ {x} [Do] {x} dx dy (5.14)
00

p pa g
U =5 fojo (N} {e} dx dy

1 ba T
=5 [ [ {e} [c0] {e} dx dy (5.15)
00

where Uy, and Ug denote the strain energies due to the bending and

membrane components, respectively.
5.3 Displacement Functions

The displacement functions of the conforming rectangular plate with

78

24 degrees-of-freedom’® shown in Fig. 8 is expanded as

2 2
w=a1+a2x+a3y+a4x +a5xy+a6y

+ a7x3 + aexzy + agxyz + a10y3

r—
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PLATE ELEMENT TO UNIFORM
HARMONIC LOADING

¥,

Fig. 8 Rectangular plate finite element.

——
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Papxy FappXy toagxy

3.2 2.3 33
Xy Xyt X7y (5.
u = Bl + BZX + B3y + B4xy (5.
vV = BS + 36x + B7y + Bsxy . (5.
The twenty four generalized coordinates TR Bl,---, BS
be written in vector form as
{a}T = [a,, 0,00, a,.] (5
12 72* * 716 y
{B}T = [B B Xy B ] (5
1’ 2! ] 8 .
and the element nodal displacements are defined as
(8} = 187, (871 (5.
where
T = [ X N}
(8,1 = THy, Wy, W3y Wy Wyqs ooy
wyl’ LELN wxyl’ cee wxy4] (5.
(6.3 = LU, Uyy Uy, Upy Yoy Vou Vau V.1 (5
S 1° 72° T3 4° "1* "2* '3 "4- ¢ :

65

16)

17)

18)

can

19)

20)

21)

22)

23)

The relationship between the generalized coordinates and the element

nodal displacements can be written as

o
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{a} = [T,3 {5} (5.24)

(g}

[Ts] {8} . (5.25)

The transformation matrices [Tb] and [Ts] are given in Appendix C.
By performing the differentiations to Eq. (5.16), the curvatures

can be expressed as

2
W _ _ 2
;2- = (2a4 + (*)xcr7 + 2_yoc8 + 6 xya,, + 2y %9
2
+ bXy %, * 2y3a15 + 6xy3a16) (5.26)
62w 2
- 52- = - (Zaz6 + 2xoz9 + 6ya10 + 2X %5
¥ bXya L + 20, + 6xOya . + 6x0ya ) (5.27)
Y%13 14 Y%s Y16 .
2

_ 2
2 m = 2((!5 + 2X(18 + 2ya9 + 3x (lll

+ 4xya12 + 3y2a13 + 6x2ya14

+ 6xy2a15 + 9x2y2a16) . (5.28)

By using Eqs. (5.4), (5.26), (5.27), (5.28) and (5.24), the curvatures

can be expressed in a matrix form as
{} = [H] {a} (5.29)

Matrix [H] is given in Appendix C.

-
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5.4 Linearizing Functions

The linearizing functions are defined in a vector form as

£, o
(f} = =-% ox . (5.30)
f, o
By

By performing the differentiation to Eq. (5.16), the 1linearizing

functions can be expressed as

(ft =5 (Ao . (5.31)

Matrix [Q] is given in Appendix C.
By substituting Eq. (5.24) into Eq. (5.31), the 1linearizing

functions can be expressed as
- 1081 (5
{f} = 7-[0] [Tb]{éb} . (5.32)
The linearizing functions are assumed to be constant in each element.
5.5 Element Equations of Motion for Nonlinear Free Vibration

The displacements u, v and w from Egs. (5.16), (5.17) and (5.18)

can be expressed in matrix forms as

u=1[1xyxy0O00O00O0] {g}
= [B1{g} (5.33)
v=[00001xy xy] {B}

[C] {B} (5.34)

u.
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[1xy x2 Xy y2 x3 x2y xy2 y3

£ 3
it

x3y x2y2 xy3 x3y2 x2y3 x3y3] {a}

[D] {a} . (5.35)

By substituting Eq. (5.25) with Eqs. (5.33) and (5.34), and Eq. (5.24)

with Eq. (5.35), the displacements can be expressed as

u = [EJ[TSJ{GS} (5.36)
v = [E][Tsl{as} (5.37)
W= [BJETb]{ab} . (5.38)

From Eqs. (5.11), (5.36) and (5.37), the expression of the kinetic

energy due to membrane (inplane) stretching Ts can be written as

Ts

1 8 }T [T_] fs fg oh[[B] + [E]]T [[B) + [C1]dx dy [T 148}
7 %% s 0 ehL X dy L1gd19g

3 137 [n 38} (5.39)

where [ms] is the element mass matrix due to membrane (inplane)

displacements and expressed as

I R -
ImJ =0T [ [ oh [E]" [E]dx dy [T] (5.40)
0o 0
where

[E] = [B] + [C] . (5.41)

Similarly, the expression of kinetic energy due to bending Tb can be
derived from Egs. (5.12) and (5.38) as

T =

o T .
b {bb} [mb]{éb} (5.42)

N =

o
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where [m,] is the element mass matrix due to bending and expressed as

= T ba_ _ 1 -
[m.J =(T.2 [ [ oh [D]" [D] dx dy [T.]. (5.43)
b b o o b
The kinetic energy T, Eq. (5.10), can be expressed as
T=2 (&) m1ed) (5.44)
where [m] is the element mass matrix and expressed as
[m] = [mb] + [ms] . (5.45)

By substituting Eq. (5.29) with Eq. (5.14), the bending strain

energy Uy is expressed as
v, =3 (5 1Tk 3¢5 ) (5.46)
b =7 & Lk, I14 .

where [kb] is the element linear bending stiffness matrix and expressed

as

o BE i
[k,1 = [T,] fo Io [A1'[D JCH] dx dy [T,] . (5.47)

By using the linearizing functions, Eqs. (5.30), (5.31) and (5.32),

Eq. (5.3) can be expressed as

ou
w X
. |® 3
{e} = [F] + <-al >
o Y
oy ou ov
¥y O

[FI(Q] {«} + [E] (B}

[[FI0Q1  C81] {ﬁgi} (5.48)
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and [F] is expressed as

[F] = 9 (5.49)

-+ o -h
)

2

and matrix [G] is given in Appendix C.
By substituting Eq. (5.48) with Eq. (5.15), the linearized membrane
strain energy Ug can be expressed as

21 T T
U =5 ({6} 5,}']

0 0 {6b}
+ (5.50)
0 [ks] {65}
where [ks] is the element linear membrane stiffness matrix, and [Eb],
[Ebs] and [Esb] are the nonlinear stiffness matrices due to bending and

coupling between bending and membrane stretching, respectively. These

matrices are expressed as

o ba B} )
[kJ = [T.] fo fo [81" [C, (8] dx dy [T ] (5.51)
- B - = -
[kb] = [Tb] [ [ [Q1 [F] [col [F] [Q] dx dy [Tb] (5.52)
0 0
k.1 =717 IB I5 (a1’ tF17 [c 1 [81 dx dy [F.] (5.53)
bs® ~ “'b o "o Q “0 X ay tig .
[k, ] = [kl (5.54)

r
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The application of Lagrange's equation to the kinetic energy T and
the strain energy U 1leads to the element nonlinear free vibration

equation of motion as

[m I 0 o ||kpT 0 k1 [kpl
{8} + + {8} = 0.

[m_] =
0 s 0 [kl [kl 0

(5.55)

5.6 Element Harmonic Force Matrix

In the classic continuum approach, the dynamic von Karman plate
equations of motion are given by

4 2

V¢-E(w,x

- W, ) (5.56)

y xx "oyy

- —.. 4 _
L (w,¢) = ph w,,, +DV'w = h (¢’yy Wass

*
bs e x Wayy ~ 2¢,xy w,xy) -F(t)=0. (5.57)
For the single mode approximate solutions, the deflection function is

assumed in the form

w = h q(t) o(x,y) (5.58)

where mode shape ¢ satisfies the related boundary conditions.
Substitution of Eq. (5.58) with Eq. (5.56) yields a solution to the
stress function ¢(x,y) from the compatibility equation (5.56).
Application of the Galerkin's method [/ L (w,d) ¢(x,y) dx dy = 0 yields

a modal equation in the Duffing forml0s 24-27 54

3

mspy + kq + Kk Q= Frt) , (5.59)
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or in nondimensional time < n
+ 3. F* 5
1/2 - * * .
where © = t (k/m) ‘¢, By = k/k and F () = F (t)/m. When  forcing

* *
function F (z) is a simple harmonic Po cos wt, an approximate solution

of Eq. (5.60), using the perturbation method, 1is the well-known

resul t24725,77
*
w 2 3 2 Po
(w—) =1+ 7 BOAO el (5.61)
L 0

*
With a simple elliptic forcing function F (1) = B Ao cn (Aor, no) = Boq

as the external excitation to the Duffing system, an elliptic

response16’24'27’77
q=A,cn (A7, n) (5.62)
where
_2 Y
Ko = {1+ Bo Ao )
_2 _2 #@
n, = [B, A, /2 (1 + A )] (5.62a)

is obtained as an exact solution of Eq. (5.60), where Bo is the
nondimensional forcing amplitude factor, Ab and n, are the circular
frequency and the modulus of the Jacobian elliptic function, and
ﬁo = Wpax/h is the amplitude. By expanding the elliptic forcing
function into Fourier series and comparing the orders of magnitude of

the various harmonic components, Hsu71

showed that the single harmonic
*

forcing function Po cos wt is the first order approximate of the

elliptic forcing function B, Zo cn (Abt,no). Also, the first order

approximation of the elliptic response of Eq. (5.60) yields the same
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frequency-amplitude relations of Eq. (5.61) as the perturbation
solution. In obtaining the exact elliptic response of Eq. (5.60), the
excitation force F(<) = Boq is treated as a linear spring in the Duffing

equation
3
QG+ (1-B)) g+ Bq =0 (5.63)

This linear spring force Boq possesses a potential energy of
V = Boq2/2. The potential energy of a plate element subjected to a

uniform harmonic forcing function can thus be approximated by

B, b a )
v=§-f [ w dx dy . (5.64)
0 o
An examination of Eqs. (5.12), (5.42) and (5.64) indicates that the

harmonic force matrix [h] for a plate element under uniform loading F,

cos (wt) is
[h] = ——25 [n,] . (5.65)
The actual applied distributed force intensity F, (N/mzor psi) is

*
related to the dimension less forcing parameter Po and the

dimensionless forcing amplitude factor B8, by

P cF
B =2 = 0 (5.66)
° 3 A B h2 2
0 0 “
where
(Load elements)
I ¢ dx dy
C = —— . (5.67)
b a 9
/] 0 dx dy
o o

-
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For plates under uniformly distributed force over an entire plate

[ ] ¢ dxdy
c = =2 . (5.68)
b a 2
[ ] ¢ dxdy
o O

The constant ¢ for plates is simply the ratio of volumes under a plate
mode shape and the square of a mode shape. The harmonic force matrix of
Eq. (5.65) depends on the plate amplitude Ko = wmax/h and Po* (or Fo).
It should be noted that the derivation of the harmonic force matrix
for plates is the same as for beams. The only difference is that the
nondimensional form is employed to derive the harmonic force matrix for

plates.
5.7 Element Equations of Motion for Nonlinear Forced Vibration

The application of the Lagrange's equation to the kinetic energy,
the strain energy and the potential energy due to a uniformly
distributed force, Egs. (5.9), (5.13) and (5.64), leads to the equations
of motion for the present rectangular plate under the influences of
inertia, elastic, large deflection and uniform harmonic excitation force

as

(m1 o ) k0
{8} +
0 [ms] i 0 [ks]
[k, ] [k ] I
b bs
. ) (6} = 0 (5.69)
[ksb] 0 0 0
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and Eq. (5.69) can be rewritten as
[m] €8} + [[k 1+ [ky 1 - [1] {8} =0 . (5.70)

It should be noted that the ejuations of motion for a plate element

is exactly the same form as for a beam element.

P
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Chapter 6
RESULTS AND DISCUSSION

The fundamental frequency ratio of nonlinear free and forced
vibrations at various amplitudes for simply supported and clamped
supported conditions are reported in this chapter. The fundamental
frequency ratio is defined as the ratio between the first nonlinear
frequency and the first linear frequency. The fundamental frequency
ratio of beams 1is specified by “NLll“ll‘ Similarly, the fundamental
frequency ratio of plates is w/w . Both immovable and movable inplane
edges conditions are considered. Finite element results with and
without inplane displacement and inertia (IDI) are given. The meaning
of "without inplane displacement and inertia" is to neglect inplane
displacements, completely from the formulations. For beams, the

harmonic balance so]utionzo, Runge-Kutta solution and experimental

resu1t521

are also given for comparison with the finite element
results. The iterative single-mode method (method I) and the multiple-
mode method (method II) are performed. Because of symmetry, only a half
of a beam divided into twenty elements 1is considered herein. For

plates, the elliptic function so]ution24, the perturbation so]ution77,

and the Rayleigh-Ritz solution®

are also given for comparison with the
finite element results. The study of gridwork refinement is

investigated. The iterative single-mode method (method I) is performed.

76
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6.1 Boundary Conditions

The transverse deflection boundary condition for a simply supported
condition is defined by 1letting the deflection equal zero at the
boundary. For a clamped supported condition, the transverse deflection
boundary conditions are the deflection and its associated slope equal to
zero at the boundary., The inplane boundary conditions are divided into
two categories, namely, immovable and movable inplane edge. The
definition of an immovable inplane edge is defined as the inplane
displacements u and v at the boundary equal to zero. For a movable
inplane edge, the inplane displacements u and v are set free at the

boundary.

6.2 Beams

Most of the finite element results are calculated by the multiple-
mode method (method II) unless otherwise specified. The multiple-mode
method (method II) and the iterative single-mode method (method I) are

explained in Chap. 3.

6.2.1 Material Properties

A1l the beam results presented here are based on the following

material (steel) properties:

mass density p = 26.6832 E-10 N - sec2/mm4
thickness h = 0,514 mm

width B =26.0 mm

Young's modulus E= 6.98 E+04 N/mm 2

pe)
]

radius of gyration 0.148379 mm .
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For nonlinear vibrations, the effect of the slenderness ratio (L/R)
has some influence in the solutions. In this dissertation, there are
many slenderness ratios in use as shown in Table 1. These slenderness
ratios are calculated by changing the beam length and keeping the radius
of gyration constant. Most of the results reported herein, are based on
a 150 mm beam length (L/R = 1010) unless otherwise specified. This 150
mm long beam (L/R = 1010) has the same dimensions as the beam for which

1.21

Yamaki et a performed the experiment.

6.2.2 Improved Nonlinear Free Vibration

The fundamental frequency ratios (“NLI/le) of free vibration at
various amplitudes (A/R) without inplane displacement and inertia (IDI)
for clamped and simply supported beams (L/R = 1010) are shown in Table 2
for the cases of single, two and three-mode method, respectively. The
amplitude ratio for these beams are also provided in Table 3. Table 2
shows that the more numbers of modes are used in the analysis the Tless
the frequency ratio will be, e.g., at A/R = 5.0, the three-mode solution
yields a smaller frequency ratio than the two-mode solution., Table 3
shows the influence of the amplitudes of the higher modes, especially
the amplitude of the second mode. Table 4 shows the comparison of a
two-mode response between the finite element method and Runge-Kutta
method for clamped and simply supported beams (L/R = 1010) withou®
inplane displacement and inertia (IDI). This clearly demonstrates the
remarkable agreement between the finite element and Runge-Kutta
solutions. These results are also shown in Figs. 9 and 10 for the

clamped and simply supported cases, respectively.
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Table 1 Relations Between Slenderness
Ratio (L/R) and Beam Length

Slenderness Beam
Ratio Length
L/R L (mm)
1010 150.000
100 14,840
50 7.420
20 2.968

A
&£
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Table 2 Frequency Ratios for Nonlinear Free Vibration of
Clamped and Simply Supported Beams (L/R = 1010)
without Inplane Displacement and Inertia (IDI)

80

Frequency Ratio, /ull
A/R
1 mode 2 modes 3 modes
Finite E1liptic Finite Finite
Element Solution Element Element
Clamped Beam
1.0 1.0218 1.0222 1.0218 (2)2 1.0217 (3)
2.0 1.0845 1.0857 1.0844 (3) 1.0831 (4)
3.0 1.1817 1.1831 1,1814 (5) 1.1757 (4)
4.0 1.3056 1.3064 1.3051 (6) 1.2900 (6)
5.0 1.4495 1.4488 1.4490 (8) 1.4188 (9)
Simply Supported Beam

1.0 1.0897 1.0892 1.0888 (3) 1.0888 (3)
2.0 1.3229 1.3178 1.3120 (5) 1.3119 (5)
3.0 1.6394 1.6257 1.6030 (7) 1.6022 (7)
4.0 2.0000 1.9760 1.9248 (11) 1.9218 (11)
5.0 2.3848 2.3501 2.2624 (17) 2.2549 (18)
a.

Number in brackets denotes the number of

converged solution 1075,

iterations to get a
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Table 3 Amplitude Ratios for Nonlinear Free Vibration of Clamped

and Simply Supported Beams (L/R = 1010) without Inplane
Displacement and Inertia (IDI)

Amplitude Ratio

A/R 2 modes 3 modes

Al/A2 Al/A2 A]_/A3

Clamped Beam
1.0 - 1054 - 1056 2164
2.0 - 280 - 282 559
3.0 - 137 - 139 261
4.0 - 87 - 89 157
5.0 - 64 - 66 109
Simply Supported Beam

1.0 446 446 *
2.0 125 125 7652
3.0 66 66 1972
4.0 45 44 848
5.0 35 34 480

* Number is larger than |104

e
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Table 4 Comparison Between Runge-Kutta Method and Finite

Element Method for Two-Mode Nonlinear Free Vibration
of Clamped and Simply Supported Beams (L/R = 1010)
without Inplane Displacement and Inertia (IDI).

Frequency Ratio, “NLI/“LI

A/R % Difference’
Finite Element Runge-Kutta
Clamped Beam
1.0 1.0218 1.0222 0.04
2.0 1,0845 1,0852 0.07
3.0 1.1817 1.1810 0.03
4.0 1.3056 1.3009 0.32
5.0 1.4495 1,4373 0.81
Simply Supported Beam
1.0 1.0888 1.0888 0.00
2.0 1.3120 1,3135 0.11
3.0 1.6030 1.6115 0.53
4,0 1.9248 1.9467 1.13
5.0 2,2624 2,3023 1.73
t o Difference = (Runge-Kutta) -~ (Finite Element) % 100 2.

r—

(Runge-Kutta)
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Fig. 9 Comparison between the finite element method (method II) and Runge-Kutta method
for a two-mode clamped beam (L/R = 1010).
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Fig. 10 Comparison between the finite element method (method II) and Runge-Kutta
method for a two-mode simply supported beam (L/R = 1010).
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The clamped and simply supported free vibration results
(L/R = 1010) with inplane displacement and inertia (IDI) for both ends
restrained from longitudinal movement (immovable case) are shown in
Table 5, and the amplitude ratios for this clamped beam are also shown
in Table 6. Table 5 shows the good agreement between the results using
the iterative single-mode method (method I) and the results of three-
mode responses using the multiple-mode method (method II). It can be
interpreted that the iterative single-mode method (method I) and the
multiple-mode method (method II) will yield the same beam deflection
provided a large number of modes is used for the multiple-mode method
(method II). The evidence of this effect can also be seen in Section
6.2.3 (Table 11) and Section 6.2.5 (Table 17). The frequency-amplitude
relationships for three-mode responses of these clamped and simply
supported beams are also shown in Fig. 11, This figure clearly shows
that the simply supported beam yields the higher nonlinearity than the
clamped beam,

The responses for both ends free to move longitudinally (movable
case) are shown in Tables 7 and 8. Table 7 shows the frequency-
amplitude relations for a three-mode solution of clamped and simply
supported beams with inplane deformation and inertia for the slenderness
ratios of 100, 50 and 20, The result for the clamped case is also shown in
Fig. 12. From this figure, the high slenderness ratio beam (L/R = 100) yields
almost none of nonlinearity. Conversely, the less slenderness ratio case
(L/R = 20) leads to a situation that eventually exhibits a slightly softening
type of nonlinearity. The softened type exists when the nonlinear frequency is
less than the 1linear frequency (“NLI/“LI<1'0)‘ Atlurill also obtained the

similar softening type in his investigation.
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Table 5 Frequency Ratios for Nonlinear Free Vibration of

Clamped and Simply Supported Immovable Beams

(L/R = 1010) with Inplane Displacement and Inertia

(IDI)
Frequency Ratio, “’NLI/“’LI
A/R 1 mode 2 modes 3 modes
Finite Finite Rayleigh Finite Finite
Element Element Ritz8 Element Element
(method I) (method II) (method II) (method II)
Clamped Beam
1.0 1.0149 (2)@ 1.0149 - 1.0149 (2)3 1.0149 (2)
2.0 1.0580 (3) 1.0582 - 1.0581 (3) 1.0581 (3)
3.0 1.1259 (4) 1.1268 - 1.1264 (4) 1.1259 (4)
4,0 1.2139 (5) 1.2164 - 1.2151 (5) 1.2140 (2)
5.0 1.3174 (6) 1,3226 - 1.3202 (6) 1.3176 (6)
Simply Supported Beam
1.0 1.0607 (2) 1.0607 1.0607° 1.0607 (2) 1.0607 (2)
2.0 1.2247 (2) 1.2247 1.2246 1.2247 (2) 1.2247 (2)
3.0 1.4577 (2) 1.4577 1.4573 1.4577 (2) 1.4577 (2)
4.0 1.7320 (2) 1.7320 1.7309 1.7320 (2) 1.7320 (2)
5.0 2.0310 (2) 2.0310 2.0289 2.0310 (2) 2.0310 (2)

a. Number in
converged

b. L/rR = 100.

brackets denotes the number of iterations to get a
solution 107°.
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Table 6 Amplitude Ratios for Nonlinear Free Vibration of
Clamped Immovable Beams (L/R = 1010) with Inplane

Displacement and Inertia (IDI)

AmpTitude Ratio

A/R 2 modes 3 modes

Al/AZ A]_/A2 Al/A3
1.0 - 1354 - 1354 *
2.0 - 346 - 346 2690
3.0 - 159 - 159 1202
4.0 - 94 - 95 678
5.0 - 64 ~- 64 442

* Number is larger than |10

—
¢

4|.
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Fig. 11 Amplitude versus frequency for three-mode clamped and simply supported
beams (L/R = 1010) with immovable ends.
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Table 7 Frequency Ratios (wNL

1/le) for Three-Mode Nonlinear

Free Vibration of Clamped and Simply Supported Movable

Beams with Inplane Displacement and Inertia (IDI) for

Different Slenderness Ratio (L/R)

Slenderness Ratio, L/R

A/R
100 50 20
Clamped Beam
1.0 .9999 (2)2 .9997 (2) .9983 (2)
2.0 .9997 (2) .9989 (2) .9933 (2)
3.0 .9994 (2) L9976 (2) .9850 (3)
4,0 .9989 (2) .9957 (2) 9737 (3)
5.0 .9983 (2) .9933 (2) .9596 (3)
Simply Supported Beam

1.0 1.0000 (2) .9999 (2) .9993 (2)
2.0 .9999 (2) .9996 (2) 9973 (2)
3.0 .9998 (2) .9990 (2) .9938 (2)
4,0 .9996 (2) .9982 (2) .9891 (2)
5.0 .9993 (2) .9973 (2) .9832 (2)

3+ Number in brackets denotes the number of iterations to get a

converged solution 107>,
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Table 8 Amplitude Ratios for Three-Mode Nonlinear Free
Vibration of Clamped and Simply Supported Mov
able Beams (L/R = 20) with Inplane Displacement
and Inertia (IDI)

Amp1litude Ratio

A/R
Clamped beam
1.0 6410 *
2.0 1613 *
3.0 724 - 8914
4,0 414 - 5152
5.0 270 - 3413
Simply Supported Beam

1.0 * *
2.0 * *
3.0 5178 *
4.0 2936 *
5.0 1898 *

* Number is larger than |104|.

o
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The simply supported case as shown in Table 7, exhibits less influence
of the softening type than the clamped case. Table 8 shows the
amplitude ratios for the three-mode solutions of clamped and simply
supported movable beams (L/R = 20) with IDI. The comparison of the
amplitude ratio of the movable clamped case (Table 8) to the immovable
clamped case (Table 6) shows that the higher modes have more influence

on the immovable case than the movable case.

6.2.3 Nonlinear Response to Distributed Harmonic Force

The responses of clamped and simply supported beams (L/R = 1010)
without IDI are shown in Tables 9 and 10. Table 9 shows the frequency
ratios for the cases of single, two and three-mode approaches. It
should be noted that as the amplitude is increased, the more iteration
is needed. The amplitude ratios for these beams are shown in Table 10.
The frequency-amplitude relations for these clamped and simply supported
beams with various force intensity (FO) are also plotted in Figs. 13 and
14 for the three-mode solution, respectively.

The responses of clamped and simply supported immovable beams
(L/R = 1010) with IDI are shown in Tables 11 and 12. Table 11 shows the
frequency ratios for the cases of single, two and three-mode approaches
(method II), and the iterative single-mode method (method I). Table 11
shows the good agreement between the results using the iterative single-
mode method (method I) and the results of three-mode responses using the
multiple-mode method (method II). It can be interpreted that the
iterative single-mode method (method I) and the multiple-mode method
(method II) will yield the same beam deflection provided a large number

of modes is used for the multiple-mode method (method II). The evidence
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Table 9 Frequency Ratios for Nonlinear Forced Vibration of
Clamped and Simply Supported Beams (L/R = 1010) without
Inplane Displacement and Inertia (IDI) under Uniform
Harmonic Distributed Force

Frequency Ratio, “NLII“Ll

A/R
1 mode 2 modes 3 modes
Clamped Beam: F, = 0,002 N/mm
+ 1.0 .4101 .4105 (3)3 .4097 (3)
1.3856 1.3855 (3) 1.3856 (2)
+ 2,0 .8592 .8595 (4) .8573 (3)
1.2705 1.2701 (3) 1.2694 (4)
+ 3.0 1.0509 1.0511 (5) 1.0440 (5)
1.,2994 1.2987 (4) 1.2940 (4)
+ 4,0 1.2189 1.2189 (6) 1.2019 (7)
1.3869 1,3860 (6) 1.3725 (6)
+ 5,0 1,3877 1,3878 (8) 1.3554 (9)
1.5087 1.5078 (8) 1.4794 (8)
Simply Supported Beam: F, = 0.001 N/mm
- 1.0 1.8328 1.8331 (3) 1.8331 (3)
+ 2.0 .8150 7937 (5) 7934 (5)
1.6840 1.6771 (5) 1.,6771 (5)
+ 3.0 1.4013 1.3560 (7) 1,3549 (7)
1.8470 1.8168 (7) 1.8162 (7)
+ 4,0 1.8593 1,7760 (11) 1,7725 (11)
2.1314 2.0629 (11) 2.0603 (11)
+ 5,0 2.2920 2.1625 (17) 2.1543 (18)
2.4742 2.3581 (17) 2.3511 (18)

<4

* Number in brackets denotes the number of iterations to get a
converged solution 1075,

P~
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Table 10 Amplitude Ratios for Nonlinear Forced Vibra-
tion of Clamped and Simply Supported Beams
(L/R = 1010) without Inplane Displacement
and Inertia (IDI) under Uniform Harmonic
Distributed Force

Amp1itude Ratio

A/R 2 modes 3 modes

A]_/Az AI/AZ AI/A3

Clamped Beam: F, = 0.002 N/mm

£ 1.0 - 1054 - 1056 2164
t 2.0 - 280 - 282 559
+ 3.0 - 137 - 139 261
t 4.0 - 87 - 89 157
£ 5,0 - 64 - 66 109

Simply Supported Beam: F, = 0,001 N/mm

- 1.0 446 446 *

£ 2,0 125 125 7652
+ 3.0 66 66 1972
£ 4.0 45 44 848
£ 5.0 35 34 480

* Number 1is larger than ,104,.

P
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Table 11 Frequency Ratios for Nonlinear Forced Vibration
of Clamped and Simply Supported Immovable Beams
(L/R = 1010) with Inplane Displacement and Inertia
(IDI) under Uniform Harmonic Distributed Force

Frequency Ratio, “’NLI/“’Ll

A/R
Iterative 1 mode 2 modes 3 modes
Single~Mode (method II) (method II) (method 1I)
(method I)
Clamped Beam: F, = 0.002 N/mm
+ 1.0 .3928 (3)3 .3925 .3929 (2) .3928 (3)
1.3804 (3) 1,3805 1.3804 (3) 1,3804 (3)
+ 2.0 .8258 (4) .8258 .8260 (4) .8258 (4)
1.2478 (3) 1.2481 1,2478 (3) 1.2478 (3)
+ 3.0 .9881 (4) .9888 .9888 (4) .9881 (4)
1.2486 (3) 1,2497 1.2489 (3) 1.2486 (4)
+ 4.0 1.1204 (5) 1.1227 1.1220 (5) 1.1205 (5)
1,3006 (4) 1.3033 1.3017 (4) 1,3007 (4)
+ 5.0 1.,2495 (6) 1.2546 1.2527 (6) 1.2497 (6)
1,3819 (6) 1,3872 1.3845 (6) 1.3821 (6)
Simply Supported Beam F, = 0.001 N/mm
- 1.0 1.8156 (2) 1.8156 1.8156 (2) 1.8156 (2)
+ 2,0 .6436 (2) .6436 .6436 (2) .6436 (2)
1.6080 (2) 1.6080 1.6080 (2) 1.6080 (2)
+ 3.0 1.1837 (2) 1.1837 1.1837 (2) 1,1837 (2)
1,6879 (2) 1.6879 1.687¢9 (2) 1.6879 (2)
+ 4,0 1.5675 (2) 1.5675 1.5675 (2) 1.5675 (2)
1.8823 (2) 1,8823 1.8823 (2) 1.8823 (2)
+ 5.0 1.9211 (2) 1.,9211 1.9211 (2) 1.9211 (2)
2.1352 (2) 2.1352 2.1352 (2) 2.1352 (2)

a. Number in brackets denotes the number of iterations to
get a converged solution 1075,
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Table 12 Amplitude Ratios for Nonlinear Forced Vibration of

Clamped Immovable Beam (L/R = 1010) with Inplane

Displacement and Inertia (IDI) under Uniform Harmonic

Distributed Force; Fo = 0,002 N/mm,

Amplitude Ratio

A/R 2 modes 3 modes

Ay/Ay A1/A2 Al/A3
+ 1.0 - 1354 - 1354 *
£ 2.0 - 346 - 346 2689
+ 3.0 - 159 - 159 1202
t 4,0 - 94 - 94 682
+ 5.0 - 64 - 64 442

* Number is larger than l104|.

-
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of this effect can also be seen in Section 6.2.2 (Table 5) and Section
6.2.5 (Table 17). Table 11 also shows that the higher modes are more
important for the clamped beam than the simply supported beam. This can
be observed by looking at one of the amplitudes, e.g., A/R = + 5,0, the
frequency ratio for the clamped beam is changed for the different
numbers of modes used in the formulation, but the frequency ratio for
the simply supported beam apparently remains the same no matter how many
modes are used in the formulation. Figure 15 shows the frequency-
amplitude relation for the three-mode clamped immovable beam under the
uniform harmonic force intensity of F, = 0 (free-vibration case), 0.002
and 0,004 N/mm. It should be noted that all curves in this figure show
the hardening type nonlinearity. Figure 16 shows the comparison of the
harmonic balance methodzo, exper‘imen‘c21 and the finite element method
for a clamped immovable beam under the uniform harmonic distributed
force intensity F, = 0.004170277 N/mm. It clearly demonstrates the
remarkable agreement between the experiment and the finite element (with
IDI) solution.

The responses for the movable cases are shown in Table 13 and 14.
Table 13 shows the frequency ratios and amplitude ratios for a three-
mode clamped movable beam with IDI under a uniform harmonic force.
Similarly, the results of the simply supported beam are shown in Table
14, Figure 17 shows the frequency-amplitude relation for a three-mode
clamped movable beam of slenderness ratio L/R = 20. A1l of the curves
in this figure shows that the beam eventually exhibits slightly the

softening type nonlinearity. Figure 18 shows the comparison of the

immovable case to the movable case for a three-mode clamped beam

(L/R 100) with IDI under the force intensity F, = 20 N/mm. This
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Fig. 15 Amplitude versus frequency for three-mode clamped and simply supported beams
(L/R = 1010) with immovable ends under uniform harmonic force intensity F.
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Fig. 16 Comparison of the harmonic balance method,
experiment and the finite element method for a
three-mode clamped beam (L/R = 1010) with
immovable ends under a uniform distributed
force intensity F, = 0.004170277 N/mm.
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Table 13 Frequency Ratios and Amplitude Ratios for
Three-Mode Nonlinear Forced Vibration of
Clamped Movable Beam with Inplane Displace-
ment and Inertia (IDI) under Uniform Harmonic
Distributed Force

Frequency AmpTlitude Ratio
A/R Ratio,
oyLa/9p A/A Ay/A3

L/R = 100; Fo = 20 N/mm

+ 1.0 .4011 (2)2 * *
1.3560 (2) * *
+ 2.0 7617 (2) * *
1.1911 (2) * *
+ 3.0 .8482 (2) * *
1.1306 (2) * *
4.0 .8880 (2) * *
1.0987 (2) 8271 *
+ 5.0 .9107 (2) 7704 *
1.0788 (2) 5488 *

L/R = 20; Fo = 5000 N/mm

t 1.0 .8137 (3) 9653 *
1.1538 (2) 4797 *
£ 2.0 9061 (3) 1940 *
1,0734 (3) 1380 *
t 3.0 .9282 (3) 817 *
1.0387 (2) 651 - 8020
t 4.0 9319 (3) 452 - 5620
1.0137 (3) 381 - 4757
£ 5.0 .9268 (3) 290 - 3655
.9913 (3) 252 - 3202

a. Number in brackets denotes the number of iterations
to get a converged solution 1073,

P
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Table 14 Frequency Ratios and Amplitude Ratios for Three-
Mode Nonlinear Forced Vibration of Simply Supported
Movable Beam with Inplane Displacement and Inertia
(IDI) under Uniform Harmonic Distributed Force

Frequency Amplitude Ratio
A/R Ratio

L/R = 100; Fy = 3 N/mm

+ 1.0 .6131 (2) * *
1.2744 (2) * *
£ 2.0 .8293 (2) * *
1.1453 (2) * *
£+ 3.0 .8897 (2) * *
1.0988 (2) * *
+ 4.0 .9183 (2) * *
1.0747 (2) * *
+ 5.0 .9349 (2) * *
1.0598 (2) * *

L/R = 20; F, = 1000 N/mm

£ 1.0 8162 (2) * *
1.1537 (2) * *
+ 2.0 .9105 (2) * *
1.0770 (2) 9929 *
+ 3.0 .9371 (2) 5825 *
1.0475 (2) 4660 *
+ 4.0 .9471 (3) 3203 *
1.0295 (2) 2709 *
+ 5.0 .9499 (3) 2034 *
1.0154 (2) 1779 *

3. Number in brackets denotes the number of iterations to
get a converged solution 107°,

—
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Fig. 17 Amplitude versus frequency for a three-mode clamped beam (L/R = 20) with
movable ends under a uniform harmonic force intensity Fo = 5000 N/mm,
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Fig. 18 Comparison between immovable and movable case for a three-mode clamped
beam (L/R = 1010) under a uniform harmonic force intensity F, = 20 N/mm.
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clearly shows that the movable case reduces beam nonlinearity when

compared to the immovable case.

6.2.4 Nonlinear Response to Concentrated Harmonic Force

The application of the finite element method to simulate the case
of a concentrated force is to Tlet the length of the 1loaded element
become smaller and smaller. By letting xo be the length of the loaded
element from coordinate x=a to x=b, the constant ¢ which provides the
harmonic force matrix [h] can be evaluated. The effect of the length of
the loaded element, 20, is studied and shown in Table 15 for a three-
mode clamped immovable beam (L/R = 1010) with inplane displacement and
inertia (IDI) for the total force P of 0.3 N at the middle of beam. The
simulated distributed force intensity over the loaded element is
calculated by Fo = P/xo. Similarly, the effect of xo is shown in
Table 16 for a two-mode simply supported immovable beam (L/R = 1010)
with inplane displacement and inertia (IDI). The comparison of the beam
under the same amount of the total force P = 0.3 N to the different
kinds of loading is shown in Fig. 19. In this figure, a three-mode
clamped immovable beam (L/R = 1010) with dinplane displacement and
inertia (IDI) under a concentrated force at the middle (1°/L=2%) is
plotted against the similar beam under uniformly distributed force over
the entire beam (F, = 0.002 N/mm). Similarly, the two-mode simply
supported solutions for the total force P = 0.15N, F, = 0,001 N/mm for
uniform distributed force over entire beam case, are plotted in Fig.
20. It shows that the concentrated force cases are much more severe

than the uniform distributed force for the cases studied.
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Table 15 Frequency Ratios for Three-Mode Forced Vibration
of Clamped Immovable Beam (L/R = 1010) with Inplane
Displacement and Inertia (IDI) under Concentrated
Harmonic Force: Total Force P = 0,3 N

Frequency Ratio, wy ,/u

A/R (lO/L) percent
5 2 1
- 1.0 1.6425 (3)3 1.6436 (3) 1.6437 (3)
2.0 5372 (4) .5357 (4) .5354 (4)
1.3965 (4) 1.3971 (4) 1.3972 (4)
+ 3.0 .8468 (5) .8462 (5) .8461 (5)
1.3485 (4) 1,3489 (4) 1.3490 (4)
£ 4.0 1.0314 (6) 1.0310 (6) 1.0310 (6)
1.3724 (5) 1.3727 (5) 1.3728 (5)
£ 5,0 1.1879 (7) 1.1876 (7) 1.1876 (7)
1.4356 (5) 1.4359 (5) 1.4359 (5)

a. Number in brackets denotes the number of iterations to
get a converged solution 1073,

r—
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Table 16 Frequency Ratios for Two-Mode Nonlinear Forced
Vibration of Simply Supported Immovable Beam
(L/R = 1010) with Inplane Displacement and Inertia
(IDI) under Concentrated Harmonic Force: Total Force

P=0.,15N
Frequency Ratio, wNLI/le
A/R (RO/L) percent
5 2 1
- 1.0 2.1286 (2)2 2.1296 (2) 2.1297 (2)
- 2.0 1.7897 (2) 1.7903 (2) 1.7904 (2)
+ 3.0 .9949 (2) .9941 (2) .9940 (2)
1.8056 (2) 1.8060 (2) .8061 (2)
4.0 1.4658 (2) 1.4654 (2) 1.4654 (2)
1.9625 (2) 1.9628 (2) 1.9628 (2)
£ 5.0 1.8558 (2) 1.8555 (2) 1.8555 (2)
2.1923 (2) 2.1925 (2) 2.1925 (2)

3+ Number in brackets denotes the number of iteratives to get
a converged solution 1075,

-
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Fig. 19 Comparison of a three-mode clamped beam (L/R = 1010) with immovable ends under
the same total force P = 0.3 N for concentrated and uniform distributed loading.
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6.2.5 Strains

Table 17 shows the maximum strain-amplitude relations for a clamped
immovable beam (L/R = 1010) with inplane displacement and inertia (IDI)
for the cases of single, two and three-mode approaches (method II), and
the iterative single~-mode method (method I). It also shows the good
agreement between the results using the iterative single-mode method
(method I) and the results of three-mode responses using the multiple-
mode method (method II). It can be interpreted that the iterative
single-mode method (method I) and the multiple-mode method (method II)
will yield the same beam deflection, provided a large number of modes is
used for the multiple-mode method (method II). The evidence of this
effect can also be seen in Section 6.2.2 (Table 5) and Section 6.2.3

(Table 11).
6.3 Plates

A1l of the finite element results are calculated by the iterative

single mode (method I) which is explained in Chap. 3.

6.3.1 Improved Nonlinear Free Vibration

The fundamental frequency ratios uVul of free vibration at various

240) and

it

amplitude Ro = wmax/h for simply supported square (a/h
rectangular (a/b = 2 and a/h = 480) plates with immovable inplane edges
(u=0atx=0anda, v=0aty=0and b) are shown in Table 18. Due
to symmetry, only one quarter of the plate modelled with 9 (or 3 x 3
gridwork) elements of equal sizes is used. Both finite element results

with and without inplane displacements and inertia (IDI) are given. It
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Table 17 Maximum Strain for Nonlinear Vibration of

a Clamped Immovable Beam (L/R = 1010) with
Inplane Displacement and Inertia (IDI)
- -5
A/R Strain (x 107°)
Iterative
Single-Mode 1 mode 2 modes 3 modes
(Method 1)
1.0 5.0527 5.0138 5.0389 5.0451
2.0 10.8118 10,5044 10,7019 10.7503
3.0 17 .4908 16.4712 17,1185 17 .2793
4.0 25.2769 22,9136 24,3890 24,7624
5.0 34.3251 29.8309 32.5780 33.2904
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Table 18 Free Vibration Frequency Ratios w/wL for a Simply
Supported Plate with Immovable Inplane Edges

Wi thout With Inplane With IDI
D) Deforma tion
(No Inertia)

max Finite Elliptic Perturba- Rayleigh Present
-+ Element Function tion Ritz Finite
Result Resu]t24’77 Solution Result8 Element
Result

Square Plate (a/h = 240)

0.2
0.4
0.6
0.8
1.0

1.0185(3)P 11,0195 1.0196 1.0149 1.0134(3)
1.0716(3) 1.0757 1.0761 1.0583 1.0528(3)
1.1533(4) 1.1625 1.1642 1.1270 1.1154(4)
1.2565(6) 1,2734 1.2774 1.2166 1.1979(5)
1.3752(7) 1.4024 1.4097 1.3230 1.2967(6)

Rectangular Plate (a/b = 2, a/h = 480)

0.2
0.4
0.6
0.8
1.0

1.0238(3) 1.0241 1.0241 1.0177 1.0168(3)
1.0918(4) 1.0927 1.0933 1.0690 1.0658(4)
1.1957(6) 1.1975 1.1998 1.1493 1.1439(5)
1.3264(8) 1.3293 1.3347 1.2533 1.2467(6)
1.4762(11)  1.4808 1.4903 1.3753 1.3701(8)

@« Inplane displacement and inertia.

be Number inside parenthesis denotes the number of iterations to get

a converged solution,
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shows that the improved finite element results by including IDI in the
formulation are to reduce the nonlinearity. The elliptic function
solution and perturbation solution (with inplane deformation on1y77’24)
are also given to demonstrate the closeness of the earlier finite
element results without IDI. Raju et al.8 used the Rayleigh-Ritz method
in their investigation of the effects of IDI on large amplitude free
flexural vibration of thin plates. The linear mode shape is very close
to the nonlinear mode shape for the simply supported case. Therefore,

the Rayleigh-Ritz solution demonstrates a good result compared to the

presently improved finite element solution.

6.3.2 Convergence with Gridwork Refinement

Table 19 shows the frequency ratios for a simply supported square
plate (a/h = 240) with immovable inplane edges subjected to a uniform
harmonic force of P*0 = 0.2 with three finite element grid refine~
ments. Only one quarter of the plate was used in the analysis due to
symmetry. Examination of the results shows that the present finite
element formulation exhibits excellent convergence characteristics.
Therefore, a 3 x 3 (or 9 elements) in a quarter of plate was used in
modelling the plates in the remainder of the nonlinear forced responses

presented unless otherwise specified.

6.3.3 Nonlinear Forced Response of Plates with Immovable Inplane Edges

Table 20 shows the frequency ratios w/wL for simply supported and
clamped square plates (a/h = 240) subjected to a uniform harmonic force

*
of P 0= 0.2. It demonstrates the closeness between the earlier finite
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Table 19 Convergence of Frequency Ratio with Grid
Refinement for a Simply Supported Square Plate
(a/h = 140) with Immovable Inplane Edge
Subjected to Po = 0.2
Gridwork
W
A, ';,‘a" 2 x 2 3x3 4 x 4
(4 Elements) (9 Elements) (16 Elements)
0.2 0.1645(3)* 0.1643(3) 0.1636(3)
1.4248(3) 1.4238(3) 1.4237(3)
0.4 0.7815(3) 0.7800(3) 0.7792(3)
1.2697(3) 1.2682(3) 1.2677(3)
0.6 0.9576(4) 0.9544(4) 0.9530(4)
1.2588(4) 1.2560(4) 1.2550(4)
0.8 1.0937(5) 1.0886(5) 1.0865(5)
1.3026(5) 1.2981(5) 1.2963(5)
t 1.0 1.2242(5) 1.2171(6) 1.2143(5)
1.3781(5) 1.3717(6) 1.3691(5)

* Number in parenthesis denotes the number of iterations to get a
converged solution,
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Table 20 Forced Vibration Frequency Ratios w/w, for a Square Plate
(g/h = 240) with Immovable Inplane Edges Subjected to
P0 = 0,2
i e Simple Finite Element
A = 5 Elliptic Perturbation
° Response Solution Without With
1012 IDI
Simply Supported
£ 0.2 0.1944 0.1987 0.1932(3)b 0.1643(3)
1.4281 1.4281 1.4274(3) 1.4238(3)
+ 0.4 0.8102 0.8111 0.8052(3) 0.7800(3)
1.2874 1.2876 1.2839(3) 1.2682(3)
+ 0.6 1.0084 1.0110 0.9984(4) 0.9544(4)
1,2983 1.2995 1.2898(4) 1.2560(4)
+ 0.8 1.1703 1.1755 1.1528(6) 1.0886(5)
1.3686 1.3718 1.3524(6) 1.2981(5)
£ 1.0 1.3283 1.3369 1.3004(7) 1,2171(6)
1.4726 1.4789 1.4460(7) 1.3717(6)
Clamped
£ 0.2 0.1200 0.1227 0.1180(2) 0.1033(3)
1,4195 1.4195 1.4195(2) 1.4183(3)
¢+ 0.4 0.7483 0.7438 0.7459(3) 0.7372(4)
1.2490 1.2491 1.2477(3) 1.2426(4)
£ 0.6 0.8951 0.8956 0.8905(4) 0.8746(4)
1.2117 1.2119 1.2083(4) 1.1966(4)
+ 0.8 0.9941 0.9954 0.9863(5) 0.9617(5)
1.2203 1.2210 1.2137(5) 1.1938(5)
£ 1.0 1.0822 1.0845 1.0700(6) 1.0362(5)
1.2540 1.2555 1.2429(6) 1.2140(5)

a. Inplane displacement and inertia.
be Number inside parenthesis denotes the number of iterations to get a

converged solution,
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element formulation without IDI, the simple elliptic response 24,77 and

the perturbation solution (with inplane deformation only). The present
improved finite element results indicate clearly that the effects of IDI
are to reduce the nonlinearity. The present finite element results of a
square plate (a/h = 240) to uniform harmonic excitation of P*o= 0, 0.1
and 0.2 are given in Figs. 21 and 22 for simply supported and clamped

boundary conditions, respectively.

6.3.4 Nonlinear Forced Response of Plates with Movable Inplane Edges

The dimensionless amplitude io versus the fundamental frequency
ratio w/wL for a simply supported square plate (a/h = 240) with movable
inplane edges subjected to uniform harmonic load P*o = 0, 0.1 and 0.2 is
shown in Fig. 23. The nonlinearity is greatly reduced with the inplane
edges no longer restrained as compared to the case of immovable inplane

edges in Fig. 21,

6.3.5 Concentrated Harmonic Force

Application of the present finite element to the case of a
concentrated force is to let the area of the loaded element become
smaller and smaller. This is demonstrated by a concentrated force at
the center of a simply supported square plate (a/h = 240) with immovable
inplane edges. The magnitude of the concentrated force is equal to the
same plate under a uniformly distributed harmonic loading of P: = 0.1

(F. = 45.74 N/m® or 0.6634x10"2psi) over the total plate area.

0
Therefore, the uniform 1loading of the 1loaded element for the
concentrated case is Fy = 45.74 (a/d)2 N/m? where d is the length of the

loaded square element. Table 21 gives the fundamental frequency ratios
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Fig. 22 Amplitude versus frequency for a clamped square plate (a/h = 240)
with immovable inplane edges at Po = 0, 0.1 and 0.2.
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Fig. 23 Amplitude versus frequency for a simply suppgrted square plate
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Table 21 Convergence of Frequency Ratio w/
Simply Supported Square Plate (a/h = 240) with Immovable

with Loaded Area for a

Inplane Edges Subjected to a Concentrated Force Corresponds
to F, = 45,74 (a/d)2 N/n at the Center.

Finite Element Result at (d/a)2 %

Elliptic
7 - max i i I With IDI
Ao- - Function Without ID it
Result 1 16 4 1 0.25
- 0.2 1.5078 1.4097 1,4402 1.4692 1.4866 1,4967
+ 0.4 0.7342 0.7445 0.7652 0.7380 0.7218 0.7129
1,3320 1,.3202 1,2772 1.2940 1.3041 1,3093
+ 0,6 0.9688 0.9649 0.9467 0.9330 0.9254 0.9212
1.3280 1.3148 1.2618 1.2738 1.2811 1.2849
+ 0.8 1.1449 1.1299 1.,0839 1.,0757 1.0719 1.0698
1.3898 1.3711 1,3021 1.3115 1.3177 1.3209
+ 1.0 1,3103 1.2831 1.,2142 1,2090 1.2076 1.2068
1,4885 1,4606 1,3747 1.3824 1.3881 1.3910

121

* Inplane displacement and inertia.

o
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w/mL at (d/a)? = 16.0, 4.0, 1.0 and 0.25%. It indicates that the
convergence is rapid and (d/a)2 = 1.0% would yield an accurate frequency
response. Results obtained using earlier finite element without IDI and
elliptic function (with inplane deformation but no inplane inertia) are
also given. A nonlinear response of concentrated force obtained with
(d/a)2 = 1,0% is plotted in Fig. 24. Frequency ratios of the same plate
to uniform harmonic force P: = 0.2 are also given. It shows that the
concentrated force is approximately two to three times as severe as the

uniformly distributed force for the case studied.
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Chapter 7
CONCLUSIONS

Finite element methodology has been developed for the nonlinear
free and forced vibrations to predict both the frequency-amplitude-force
relation and strains of beam and plate structures. Two finite element
methods were developed, namely, the iterative single-mode method (method
I) and the multiple-mode method (method II). The harmonic force matrix
was developed to analyze nonlinear forced vibrations. Nonlinear free
vibration can be simply treated as a special case of the general forced
vibration by setting the harmonic force matrix equal to zero. The
harmonic force matrix represents the external applied force in a matrix
form instead of a vector form, therefore, the nonlinear forced vibration
analysis can be performed as an eigenvalue problem, By solving an
eigenvalue problem, the analysis can be performed efficiently to get a
converged solution. The analysis is also based on the 1linearized
nonlinear stiffness matrix and the iterative procedures. Both inplane
(Tongitudinal) displacements and lateral deflection are included in the
formulation.

The study showed that the effect of midplane stretching due to
large deflection is to increase nonlinearity. However, the effects of
inplane displacements and inertia (IDI) are to reduce nonlinearity. The
concentrated force case yields a more severe response than the uniform

distributed force case. For beams and plates with end supports
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restrained from axial movement (immovable case), only the hardening type
nonlinearity is observed. For beams with a 1large slenderness ratio
(L/R < 100) with movable end supports, the increase in nonlinearity due
to Tlarge deflection 1is partially compensated by the reduction in
nonlinearity due to inplane displacement and inertia. This leads to a
negligible hardening type nonlinearity, therefore, the small deflection
linear solution can be employed. However, for beams with a small
slenderness ratio (L/R = 20) with movable end supports, the softening
type nonlinearity is found. The effect of the higher modes is more
pronounced for the clamped supported beam than the simply supported
one. The beam without inplane displacement and inertia (IDI) yields
more effect from the higher modes than the beam with inplane
displacement and inertia., For beams, the iterative single-mode method
(method I) and the multiple-mode method (method II) converge to a true
deflection shape provided the number of modes for the multiple-mode
method (method II) 1is high enough. Similarly, both the d{terative
single-mode method (method I) and the multiple-mode method (method II)
yields accurate strains provided the number of modes for the multiple-
mode method (method II} is high enough.

The finite element method, in practice, is very suitable for
analyzing modern complex structures. Nonlinear theory can be employed
to obtain more accurate solutions and explain new phenomena. By
combining the finite element method and nonlinear theory together, more
realistic models of structural response can be analyzed easily and
quickly. The nonlinear finite element method which is studied herein,
may be extended to study more advanced topics, for example, the service
1ife of a structure (S-N curve), the study of nonlinear random

vibrations and the effects of sub-or super-harmonic excitations.

— .
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APPENDIX A
CONVERGENCE CRITERIA

Three displacement convergence criteria (norms) used by Bergan and
C]ough76 for multiple-mode nonlinear free and forced vibrations by the
finite element method are employed. These three norms are the maximum
norm, the modified absolute norm and the modified Euclidean norm.

The maximum norm is defined as

Av,
J

. (A.1)
Vi ref

|1e] |y = max
M

The modified absolute norm is defined as

Av.
J

. (A.2)
Vi, ref

N
1
Helly = 2

The modified Euclidean norm is defined as

2 1/2
) . (A.3)

==

J
Vi, ref

1
||E'|E = (N

z
j=1

In these expressions, Avj is the change in displacement component j

during iterative cycle n, and Vj,ref

is the largest displacement component of the corresponding "type". For

is the reference displacement which

instance in a nonlinear vibration problem involving deflections w and
rotations Wsys the reference displacements are the largest deflection

and the largest rotation of the corresponding type.

p—
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APPENDIX B

TRANSFORMATION MATRIX FOR A BEAM ELEMENT

The transformation matrix for a beam element is expressed as

|
|
|

1 0 0 0 0 0 0 0
o 1 0 0 0 0 0 0
-3 -2 3 -l
2 0 0 0 0
2 2 7
2 1 -2 1
mr= | = 0 0 0 0 |(B1)
S 2 82
0o o0 0 0 1 0 0 0
0 o0 0 0 0 1 0 0
-3 =2 3 -l
0 o 0 0 Z 1
Z T 2 7
2 -2 1
o 0 0 0
2 2 B 2

—

3
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APPENDIX C
TRANSFORMATION MATRIX FOR A PLATE ELEMENT

The inverse of matrix [Tyl in Eq. (5.24) is expressed as

R

1 4 8
1 0 0 0 0 0 0
1 a o al 0 0 as
1 i b a® ® B 2 %
1 0o b 0 0 B2 0 0
0 10 0 0 0 0 0
0 1 o 2 0 0 332 0
0 1 o o2 b 0 332 b
0 1 0 0 b 0 0 0

(7,17t = |o 0 1 0 0 0 0 0
0 0 1 0 a 0 0 32
0 0 1 0 a2 0 32
0 0 1 0 0 2b 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 2a
0 0 0 0 1 0 0 2a
0 0 0 0 1 0 0 0

F"
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



136

%9 %12 %16
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
W B 2% a%® I a%e  a%e  ad%d
0 5B o 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
52 0 3% 26> b 3% 2B 3a%°
b2 0 0 0o B 0 0 0
0 0 0 0 0 0 0 0
0 o a3 0 0 0 0 0
236 32 i 2% 3B 2295 3362 33352
0 B2 0 0 0 0 0 0
0 0o 0 0 0 0 0 0
0 0 3% 0 0 0 0
25 0 332 43 3% 6% 63> 93%p°
25 0 0 o 3} 0 0 0
(c1)

where a and b are the length and width of rectangular plate element.

~—
1
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Matrix [Tg] in Eq. (5.25) is expressed as

where a* = 1/3 and b*

* O O O

= 1/b.

Matrix [H] in Eq. (5.29) is expressed as

[H]

2X

4y

%12
2
0 6xy 2y° 0
6y O 2x°  6xy
0 6x2 8xy 6y2

1
0
1 0
* *
-a a
*
-b 0
* % * %
ab -ab a
0 6x
2 0
0 0
6xy2 2y3
2x3 6x2y
12x2y 12xy2
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(c2)

2y
0
4x

%16

6xy3

6x3y

18x2y2

(C3)
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Matrix [Q] in Eq. (5.31) is expressed as

[Ql

% *12
y2 0 3x2y 2xy2 y3
2Xxy 3y2 x3 2x"y 3xy2

Matrix [G] in Eq. (5.48) is expressed as

By By
-
- Y 1 0 y 0 0 0
[G] = 0 0 0 0 0 © 1
0 0 1 X 0 1 0

r

3x

2x7y
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%
2Xy
x2
%6

2xy3 3x2y3

(ca)
3x2y2 3x3y2

(C5)
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