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ABSTRACT
NUCLEAR FRAGMENTATION ENERGY AND MOMENTUM TRANSFER 
DISTRIBUTIONS IN RELATIVISTIC HEAVY-ION COLLISIONS

Ferdous Khan 
Old Dominion University, 1989 

Director: Dr. Govind S. Khandelwal

An optical model description of energy and momentum transfer in 

relativistic heavy-ion collisions, based upon composite particle multi

ple scattering theory, is presented. Transverse and longitudinal 

momentum transfers to the projectile are shown to arise from the real 

and absorptive part of the optical potential, respectively. Compari

sons of fragment momentum distribution observables with experiments are 

made and trends outlined based on our knowledge of the underlying 

nucleon-nucleon interaction. Corrections to the above calculations are 

discussed. Finally, use of the model as a tool for estimating colli

sion impact parameters is indicated.

C---------- --------------------------------------------------
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CHAPTER I 
INTRODUCTION

With the advent of relativistic heavy ion beams at Berkeley,

Saclay and Dubna, the experimental situation in high-energy nuclear 

interactions has improved dramatically over the previous era of cosmic- 

ray heavy-ion physics. Sophisticated experiments have challenged 

theorists to come up with new theoretical tools and insights to under

stand the new features apparent in relativistic heavy-ion collisions. 

Traditional nuclear physics has been primarily about the nature of 

nuclear matter at or near equilibrium. With heavy-ion beams, the 

possibility of compressing nuclear matter to two or three times the 

normal density and heating to temperatures - 100 MeV has opened up. It 

is appropriate at this point then to review the salient features of 

high energy heavy-ion collisions beginning with cosmic-ray heavy ion 

physics.

Ever since the discovery of Z > 2 (where Z is the nuclear charge) 

components in the primary cosmic radiation by Freier et al.1•2, which 

fulfilled a prediction by Alfven^, the subject of high energy interac

tions between nuclei has been of fundamental interest. The goal of 

these pioneering studies focussed primarily on interaction mean free 

paths and reaction cross-sections. The production of nuclear fragments 

and determination of their isotopic composition was intensely studied 

in order to infer from these data the conditions of their origin, 

possible acceleration mechanisms and subsequent propagation. These

1
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aspects of cosmic-ray heavy ion physics are thoroughly reviewed by 

Shapiro and Silberberg,^ Waddington^ and in the classic monograph by 

Powell.^

The qualitative classifications of the nuclear interactions in 

cosmic rays were performed first by Bradt and Peters.^ The concepts of 

"Peripheral" (large impact parameter) and "Central" (small impact 

parameter) collisions were introduced by these authors. In a peripher

al collision, part of the nucleus overlapping the target is sheared off 

while the remaining fragment proceeds at near the beam velocity. Both 

projectile and target fragmentation may be described as peripheral 

processes. In a central collision, both the nuclei are destroyed, 

involving high levels of excitation and the emission of large numbers 

of secondary fragments. Nucleons, light fragments and pions are copi

ously produced in central collisions.

Experimental studies of cosmic rays revealed many important fea

tures, in spite of low intensities and uncertainties in charge, mass 

and energy determinations. Bradt and Peters^ analyzed the reaction 

cross sections using a semi-empirical "black sphere" expression

°reac ‘ AT/3' » 2 ^

with Ap, A-p the mass numbers of beam and target, and 5 an overlap 

parameter representing the diffuseness and partial transparency of 

nuclear surfaces. With fixed values of rQ and 6, reaction cross-sec

tions could be reasonably predicted with equation (1.1). These cross- 

sections were assumed to be energy-independent for bombarding energies 

from .1 A GeV to 30 A GeV. The average number of fragments produced by 

the fragmentation of a certain projectile was also found to be nearly
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energy-independent (to within -20%). The Bradt-Peters "black sphere" 

model was later refined and a "grey sphere" model was proposed® to 

account for the reduction of geometric cross-section due to the trans

parency of nuclear surfaces. Optical model calculations of reaction 

cross-sections were also undertaken successfully by various authors® 

and satisfactory agreement was found with experiment.

For cosmic rays, the reaction products studied were mainly mesons 

and nucleonsll'15. The experimental goal was to understand nucleus- 

nucleus interaction as a superposition of independent nucleon-nucleon, 

nucleon-nucleus or alpha-alpha collisions. Although successful in 

achieving a broad understanding of such collisions, precise knowledge 

of high energy interactions of nuclei could not be gained from these 

studies due to low statistics and lack of control over experimental 

conditions.

The first laboratory acceleration of relativistic heavy-ions was 

accomplished in 1971 at the Princeton Particle Accelerator (PPA), 

shortly followed by the Berkeley Bevatron^®. Acceleration of alpha 

particles began in Dubna 1970. Similar proposals were made at CERN for 

heavy-ion experiments^. With the closing of PPA in 1972, Berkeley 

BEVALAC became the only high energy heavy ion accelerator in the U.S.A. 

Proposal for a Relativistic Heavy Ion Collider (RHIC) to be built at 

Brookhaven National Laboratory in the 1990's is underway. Projects 

that are also in progress are GANIL in France, Numatron in Japan, 

Nuklotron in the U.S.S.R. and GSI in Darmstadt, West Germany.

The BEVALAC, proposed by Ghiorsô -®, employs an 8.5 A MeV heavy ion 

linear accelerator, the SUPERHILAC, to inject the ions into the 

Bevatron which continues the acceleration of these ions to a maximum
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energy of 2.6 A GeV. High intensity Uranium beams have recently been 

accelerated at the BEVALAC.

Experimental techniques at high energy heavy ion accelerators 

combine tools from both traditional low energy nuclear physics as well 

as high energy particle physics because of the wide range of charge, 

mass and energy. These techniques range from particle identification 

by AE-E and time of flight over 4ir steradians for target fragmentation 

to high energy techniques such as magnetic spectrometers, measurements 

of dE/dx, rigidity, Time of Flight (TOF) for slow projectile parti

cles. For relativistic particles Cerenkov radiation as well as the use 

of streamer chamber or other multiple track detectors are used. Detec

tion by emulsions, plastics and AgCl monocrystals are also used because 

of their wide range of sensitivities, versatility and small demand for 

beam time. The availability of wide ranges of charge in heavy ion 

experiments pose difficulties for charge identification by dE/dx“Z^ 

f(/?) so that additional capabilities must be incorporated into the 

system. Excellent reviews of these aspects of detector development are 

the Heavy Ion Study Proceedings published by Lawrence Berkeley Labora

tory (and GSI) every two years, where recent information on both exper

imental and theoretical aspects can be found.

In this work, we shall examine one aspect of relativistic heavy- 

ion collisions in detail. We shall formulate a theoretical framework 

to describe how momentum and energy are transferred to relativistic 

heavy ions. An optical model description of momentum and energy trans

fer based on the multiple scattering theory of nucleus-nucleus colli

sions will be presented.
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Aside from the fundamental importance of the topic itself, the 

necessity for understanding these processes (energy'momentum transfer) 

arose due to the increasing sophistication of experiments. Single

particle inclusive experiments of the type Projectile + Target -* Pro

jectile Fragment[+ other products] form the basis of our knowledge on 

heavy ion projectile fragmentation. It was observed experimentally^ 

in the fragmentation of and (2.1 A GeV) beams on targets 

ranging from H through Pb that the isotope production cross-sections 

were factorizable into
F

aFBT " 7B 7T (1.2)

where apBT *-s t̂ e cross-section for producing the fragment; 7^ and 

are two terms that depend on the beam-fragment and target respectively. 

This suggests that the momentum of fragments in the projectile rest 

frame should also exhibit independence of target structure and beam 

energy. Indeed, in the rest frame of the projectile, the longitudinal 

momentum distributions of fragments show a statistical Gaussian depen

dence. Irrespective of projectile, beam energy (> 1.05 A GeV) and 

target nucleus, the longitudinal momentum P|| distributions for all 

fragments from ^ C  and ^ 0  projectiles are characterized by Gaussian 

shape with rms width £r(P|) <=< 50 to 200 HeV/c. These longitudinal 

spectra are also downshifted by <P||> “ -20 to -130 MeV/c from the 

beam, showing that the mean velocities of these fragments are less than 

that of the beam. The rms widths an<* °f the longitudinal

and transverse momentum spectra are found to be equal to within -10%, 

consistent with isotropic production of fragments in a frame moving at
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a velocity less than the beam velocity. The widths an(* >

independent of target mass and beam energy, depend on the masses of the 

beam and the fragment. A parabolic shape reproduces the general trend 

of the data

cr(P.) - 2aQ [x(l - x)]V ? x - ^  (1.3)
 ̂ AP

where Ap, Ap are the beam and fragment masses respectively, and oQ is 

experimentally extracted from the data or predicted by theory.

The parabolic shape of the widths a(P||) has been th® subject of 

considerable attention of theorists^®"^2 who explained this dependence 

using conservation of momentum. According to these theories, the 

Gaussian momentum distributions can be understood by treating the 

fragmenting nucleus as a Fermi gas and assuming (i) Momentum conserva

tion, (ii) No correlation among nucleons in the parent nucleus, and 

(iii) Neglecting anti-symmetrization of the single particle states. 

Within these assumptions, one would predict (1.3) where <x0 is related 

to the Fermi momentum of the projectile (Pp) via

Pp
a° “ 7=

and also that (1.4)

ct(P||) “ <r(P±)

explaining the isotropic production of the fragments. These insights 

form the basis of much of the analyses of experimental data.

The simple Fermi gas picture of projectile fragmentation has been 

questioned by many authors. Nuclear structure and binding-energy
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effects in determining the momentum widths has been pointed out23. 

Neglect of anti-symmetrization of single-particle states has been 

questioned by Bertsch^ who showed that the momentum widths would be 

reduced from the free Fermi gas value due to correlations. M u r p h y 2 5  

has investigated the constraints of phase space on treating the projec

tile as a Fermi gas which emits fragments that are also Fermi gases. 

Recent experimental data^ on the transverse momentum widths of Lantha

num fragments also indicate the inadequacy of the simple Fermi gas 

picture. Indeed, an alternate formulation^? of projectile fragmenta

tion abandons the Fermi gas picture and attempts to explain widths in 

terms of neutron separation energies. It is clear that one needs to 

bring in sophisticated theoretical insights to address structure and 

binding energy effects, correlations, phase space constraints etc.

In this work, we attempt to address important but as yet unre

solved questions, i.e. how are momentum and energy transferred to heavy 

ions at high energies and how does energy-momentum transfer affect the 

fragment momentum and energy spectra, fragmentation cross-sections and 

their angular distributions.

To address the above questions, an optical model description of 

momentum and energy transfer between relativistic heavy ion collisions 

within the multiple scattering theory framework will be presented. The 

inputs into our calculations will be the well-known nuclear ground 

state densities and NN (nucleon-nucleon) two-body transition ampli

tudes . The energy-dependence of the two-body amplitude will enable us 

to addresr. the above questions over the entire energy range from low to 

intermediate and extremely high bombarding energies for anv projectile-
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target combination. New insights gained from this work, it is hoped, 

will unify a host of data on heavy ion (peripheral) fragmentation.

Previously, excitation energy calculations have been undertaken by 

Hufner^® et al. within the Glauber theory framework. Fricke^^ has 

calculated the excitation energy of "anomalons" detected in heavy ion 

experiments using an impulsive excitation picture. Phenomenological®® 

and semi-empirical estimates of the excitation energy in heavy ion 

collisions also exist (these are not based on two-body interaction 

parameters).

The new feature of this work is the introduction of a complex 

momentum transfer vector which results from the use of a complex two- 

body transition amplitude that satisfies unitarity and is used to 

analyze experiments. The real (imaginary) part of the two-body inter

action, folded with the appropriate densities for nucleon-nucleus or 

nucleus-nucleus scattering gives rise to the real (imaginary) part of 

the optical potential. The imaginary part accounts for inelastic 

scatterings as well as true absorption, and as will be shown, gives 

rise to longitudinal momentum transfer. The reaction cross-section in 

Glauber theory, for example, is obtained from the imaginary part of the 

phase shift computed from the imaginary part of the optical potential. 

The real part of the complex momentum transfer vector represents trans

verse momentum transfer due to elastic scattering at high energy. In a 

fragmentation experiment, the projectile (or target) fragments are 

detected. It has been found that these fragments emerge with less than 

the beam velocity i.e. the longitudinal momentum spectra of these 

fragments are "downshifted" by -20 Mev/c to -130 Mev/c depending on the 

fragment. This "momentum downshift" is naturally explained in this
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work as due to longitudinal momentum transfer to the projectile by the 

target. This arises due to inelastic scatterings that occur as the 

projectile traverses the target. The transverse momentum transfer due 

to elastic scatterings, is separately obtained from the real part of 

the interaction. Calculation of momentum transfer allows us to calcu

late the means and widths of transverse (and longitudinal) momentum 

spectra for fragments for any projectile-target combination, using as 

inputs nuclear ground state densities, NN transition amplitude uti

lizing the currently available theories of projectile fragmentation.

Since the two-body interaction that is used is energy dependent, 

the validity of these insights can be tested at extremely relativistic 

energies (> 10 A Gev) as well as at lower (< 1 A GeV) bombarding 

energies, assuming the validity of the underlying model at these two 

extremes. Silicon beams have now been accelerated to energies “14.5 

A GeV (at Brookhaven), Oxygen and Sulphur beams to 60 A Gev and 200 A 

GeV at CERN. The momentum spectra of fragments look remarkably similar 

to those at 2.1 A GeV. Lower (< 1 A GeV) energy data on these same 

fragments is harder to come by; the paucity of available data prevents 

a systematic study of the reaction mechanism and its evolution as a 

function of bombarding energy. With the methods described herein, one 

can now perform a theoretical calculation within this model. Such 

calculations have been included in this work for possible future com

parisons .

Another often studied question in nucleon-nucleus as well as 

nucleus-nucleus collisions is the validity of the constant velocity 

assumption that is frequently made. Within this model,we have a
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computationally tractable scheme for addressing this question. Longi

tudinal momentum transfer to the beam nucleus inherently challenges the 

notion of constant velocity. The magnitude of the momentum transfer is 

responsible for change in velocity. We have developed a scheme that 

takes into account corrections to the constant velocity assumption used 

in our formalism. Another correction we address is the possible Cou

lomb effects as the electromagnetic fields generated at these energies 

are substantial enough to require such an analysis.

We have also derived a theory of energy transfer (based on multi

ple scattering theory) along the lines of our theory of momentum trans

fer. Experiments are seldom able to measure the excitation energy of 

fragments; it is rather inferred or extracted from observed cross- 

sections (using models such as the "Ablation-Abrasion" model). Our 

calculation of excitation energy for projectiles and projectile frag

ments introduces a comprehensive framework for performing these energy 

transfer calculations using NN interaction parameters as inputs. No 

comparisons could be made with experimental data because of the absence 

of the latter. However, sophisticated experiments in the future may 

change this situation.

The remainder of this work is organized as follows: In Chapter

II, the multiple scattering theory of nucleus-nucleus collisions is 

reviewed and the optical model discussed within this context. In 

Chapter III, the formulation of momentum and energy transfer in 

nucleus-nucleus collisions is made within the multiple scattering 

theory framework. Chapter IV contains numerical results on momentum 

transfer (longitudinal and transverse), momentum downshifts and momen

tum widths, preceded by discussions on the theoretical understanding
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and experimental facts on these topics. Corrections are discussed in 

Chapter V. The first is the "deceleration correction" arising from 

the transfer modification of the constant velocity assumption at high, 

intermediate and low bombarding energies. The second is the more 

familiar Coulomb correction. We conclude by discussing the major new 

insights gained in this work as well as indicating possible directions 

for future research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER II
MULTIPLE SCATTERING THEORY OF NUCLEUS-NUCLEUS COLLISIONS 

Multiple scattering theory provides a reliable and fundamentally 

correct description of hadron-nucleus as well as nucleus-nucleus 

collisions at intermediate (- 100 A MeV to 500 A MeV) and high (>500 

A MeV) incident energies.31-39 jn these theories, the complex many- 

body problem of Ap projectile nucleons interacting with A<p target 

constituents is formulated in terms of two-body interactions. The 

success of these theories is well documented and is reviewed quite 

frequently in the literature.

Our goal in this chapter is to review multiple scattering theory 

in order to formulate the problem of momentum transfer and excitation- 

energy deposition in nucleus-nucleus collisions. We shall review the 

main results of the multiple scattering theory of nucleus-nucleus 

collisions. Following Wilson,39,40 a set Qf coupled equations relating 

all entrance channels to all exit channels will be derived. An optical 

potential V0p£ will be extracted under certain approximations.

II.a Review of Multiple Scattering Theory 

We shall review multiple scattering theory of nucleus-nucleus 

collisions to find an expression for the multiple scattering series. 

Collision of a composite projectile (mass number Ap) with a composite 

target (mass number A^) will be considered. The formulation of this 

problem and its solution can be found in references 39-42. The

12
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Hamiltonian for the combined system of N — (Ap + Af) nucleons can be 

written as

AP ^
H - S T ,  + S V..+ S T + S + S V . (2.1)

j-1 * i<j «  o-l ° a<p aP oj
where Roman indices refer to the projectile constituents and Greek

indices to targets. The first two terms in (2.1) are, respectively,

the kinetic energy and potential energy operators for the projectile

and are written as

A
P

H - 2  T. + S V., (2.2)
P j-l 3 l<j 1J
Similarly, the third and fourth terms are the target kinetic and

potential energy operators. The last term is the interaction term

between ath and jth constituents of the target and projectile. One can

decouple the center of mass motion of the projectile as

"p 2 AP —  P —
H - ______ + h with P - S P. (2.3)
P 2M A P P j-l jn p J
where h^ is the internal Hamiltonian of the projectile which depends

neither on nor on its canonically conjugate position variable.

Similar results obtain for the target

P 2 Aj

"l - + »T • T T - T« <2-4>
n “-1

where h^ is the internal Hamiltonian of the target. Then the full

Hamiltonian can be written as

“p2 (A+A.)
H -    +  1__ k2 + h + + V ; H ~ 1 (2.5)

2Mn ( A ^ )  2H, ApAj P

where the overall center of mass momentum operator is

? - T  + ~P„
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and the projectile momentum compared to the overall center of mass is

The first term in (2.5) is the N-body center of mass motion 

energy, decoupled from the other terms. The second is the kinetic 

energy of relative motion of the projectile and the target. The 

projectile relative position variable appears only in the interaction

are coupled to the relative motion through the interaction V̂ .. As the 

separation between the projectile and target becomes larger, tends

to zero. We assume that well defined states are prepared in the 

entering state and observed in the final state. We define these (in 

operator notation) to be eigenstates of the free projectile-target 

Hamiltonian

where if> consists of a superposition of a free state plus a scattered 

state

P.T (2.7)

and the interaction is the sum of two body interactions

(2.8)

term V^. The projectile and target internal Hamiltonians h^ and ĥ . 

(H+Ht) <6 - E* (2.9)

The full wave function satisfies the Schrodinger equation

- E^ (2.10)

with

(2.11)

where the Green's function is defined as

(2.12)
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and the transition operator is defined as

T - V+VGT (2.13)

and the wave operator Q as

* - (2.14)

The wave operator satisfies the Lippman-Schwinger equation 

0 - 1+GVO (2.15)

so that the transition operator is formally given by

T - VO (2.16)

The goal is to find a series for T. For nucleus-nucleus 

collisions this series was derived by Wilson.^® For a single 

projectile, this series reduces to the familiar Watson-^ series. Using 

the Eikonal approximation, Glauber^3 theory is recovered from 

Wilson's.

Wilson^ (40 observed that the transition operator for the 

scattering of a constituent from the jth constituent can be written as

t . - v . + v . G t .  (2.17)
a j « j “ j  “j
which satisfies a Lippman-Schwinger type equation. The wave operator 

which transforms the entering free state up to the collision of a and j 

constituents can be written as

w - 1 + S G t w (2.18)
“J ^  ^

The interpretation of the above equation is as follows. The 

propagation to the time just before a and j constituents collide is the 

sum of an operator which brings the initial free state plus the 

scattered part from the scattering of all other {} and k constituents. 

The full wave operator then consists of the wave operator which
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transforms the system to the a-j collision plus the contribution due to 

scattering of the ath and jth constituents i.e.

O - w . + G t . w .  (2.19)“j “j “j
which can be written as

n - l + Z  G t . w .  (2.20)
“J

Wilson then proves that the series given by equations (2.17)-

(2.20) constitutes an exact representation of the scattering process

defined by these equations. Consider the product

V . f l - v . w . + v . G t . w .  aj aj aj aj aj aj

— ( v . + v . G t  ) w .aj aj aj aj

- t , w . (2.21)aj
Summing over a and j one obtains

T -  S V . n - S t . w .  (2.22)
aj “3 aj ^  “J

This completes the proof. 9̂

The Green's function G are true N-body operators. One neglects 

binding effects at high energy and replaces G by free N-body operators 

Gq which satisfy

(E - S T, - E T ) G - 1 (2.23)
j J a » °

Watson's form of the impulse approximation consists of writing fcaj as

t . - v . + v . G  t. (2.24)aj aj aj o aj
so that the above operator acts as a two-body transition amplitude. By

iteration of the above the multiple scattering series obtains

T - E E t . + S t.. G t . + . . . (2.25)
a J “J («-(=j)
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which constitutes a formal solution to the exact scattering problem.

The replacement G-K3q renders the tQj essentially two-body operators

and the series for T above, equation (2.25) becomes a series of two-

body operators.

The above series reduces to the Watson^l series when the

projectile is a single particle, as previously mentioned. Next we

shall derive an optical potential operator whose Bom series is

equivalent to the multiple scattering series expansion (2.25). Such an

operator is VQpt, defined from

T - V  + V G T „ (2.26)opt opt opt opt
as

V _ - S S t , (2.27)opt 0 j aj

From which we obtain

T — T _ S t . G t . _ . . . (2.28)opt aj aj aj

Retaining the first term in (2.26), the optical model is obtained with

T _ T “ V G V /(A *A_) (2.29)opt opt opt' p T

V
since t . “ _2E__  where A ,A„ are the mass numbers of the

“J <Ap V  P
projectile and the target, respectively.

The approximate Lippman-Schwinger equation for the effective

potential operator is given by

0' - 1 + G V G' (2.30)opt

where the first order correction to the model is 0 (—i— ).
A A t
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II.b Coupled Channel Equations 

Using the multiple scattering theory of nucleus-nucleus collisions 

following Reference 39-42, a set of coupled equations will be derived. 

An equivalent Schrodinger equation will be extracted from the formalism 

developed so far. We shall focus on the Green's function

G - S |SP.m8T,A> * k , (2 31)
P Tk,m,u E - E  - E - c. + in ^ m n k

P Twhere Ê , E^ refer to the projectile and target internal states and

( W * 2 k2c. - P ___  -_____  (2.32)
“ n S S  2"red

with the Green's function G from (2.31) inserted into (2.11) and

projecting onto configuration space yields 

(x,£p,£ T ) gp o (£p) &j. 0 (fT) ^  (x)

! “A * t  „  r j -  j -  , w  « p < % R - y | >
£ &  x r
+A_) m,p J

d"y d-'̂ T m

W  4* |jT-y|

X sp,m^p)gT,u^T)gp,m

x vopt <y.«p.fT> ^'<y-fp-«T> (2-33)
where

 ̂ ik«x̂i  <x) - ------  e * (2.34a)
(2a,̂
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and gp m(£p) and gT ^($T> are the projectile and target internal 

many-body wavefunctions. Now, following Foldy and Walecka^ t we assume 

that the energy transfer is small compared to the incident kinetic 

energy

k - k (2.36)m/i

Using the closure approximation, (2.33) can be written as

n i  r.rT> - E ( 9  h '0 <rT>
r  | X - y |

2M A A_ _ _  _  -  -  —
x ■■ ? . V (y, £ , £_) tf'(y, £ , £„)...T^r+s^T opt p x p t (2 37)

The equivalent Schrodinger equation follows from the above 

equation

<’V  ? > *' <*• fp- <T> - T7T O  Vopt <*• V  «T> *' <*■ V  V
p T  (2.38)

We express the fact that the projectile and target internal wave

functions are not eigenstates of the optical potential operator and the 

initial states are mixed into various modes of final excited states as 

follows

*'<1.7 . - l  W gpim «*> Ex,, <£> (2-39)
r  m  ,/i
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The coupled equations then can be written as42

^2.^-2., r\ 2MnApAT(v* + k ) f (x) - x rm/i (a +At)
Im'p

V , ,(x)tf , ,(x) 
, , mfi.m'n' m'ft' (2.40)

which is the desired equation. Here 

V - V 00 - <*p,m 8T,P lVoptl«p.»’BT,«'> (2.41)

The coupled equations (2.40) for composite particle scattering 

relate all the entrance channels of the system labelled by projectile 

quantum number m and target quantum number fi to all the exit channels. 

In (2.4(1), Ap and Â , are the mass numbers of the projectile and target, 

subscripts m and fx label the eigenstates of the projectile and target; 

Mn is the constituent nucleon mass, k is the projectile momentum 

relative to the center of mass, x is the projectile position vector 

relative to the target and

Vopt(x’ V  V  “ Scrj Vj (V  Xj) (2.42)
-r — »

The internal coordinates £ and have been defined in (2.34) and the 

transition amplitude t^ have been introduced in (2.17).

Next we shall write the coupled equations (2.40) in matrix form. 

Introducing the wave vector

* (x) - *00 (X) 

*01 (X) 
*10 (x) 
*11 <X>

(2.43)
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and the potential matrix

U (x) 2ItnVr
< W

voo,oo(x)
V01,00(x)

V10,00(x) 

vil,00(x)

V00,01(x) 

v01,01<x> 
V10,01(X) 
vil,01(x)

V00,10(x) ■ 

V01,10(x) • 

V l O ^  • 

v i l , 1 0 ( x )  •

(2 M )

The coupled equations (2.40) can be written in matrix form as

P  + ic2 ]*<x) - U (xj ip (x) (2.45)

Using the definition of the potential as given by equation (2.42), 

(2.41) can also be written as

Vm/i,mV(x) “ a j  <gp,m(V  I (xa’xj J I Sp,m'($p)
3 ,3

“j? J 't .m^ V  ‘aj < V Xj> ^p,mm'(rj) d rj d rQ (2*46)

where

W V  ■ J gp.« <V j3 (rr W  6p.»’ (V  *% (2-47)
and

- j 4 . „  {3 < V  «T,«> Sr.,' («I)d3«T <2-48>

This completes our review of multiple scattering theory. We shall 

now discuss the formulation of problems of momentum transfer and 

excitation energy deposition in nucleus-nucleus collisions, guided by
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the multiple scattering approach. Before we proceed, however, a brief 

review of the optical model is in order, since we shall use the optical 

potential in our work.

II.c The Optical Model 

The optical model is defined as the approximation of (2.40) for 

the elastic scattered part as^®»^®

■*o -*o 2M A A_ -*i -t.
<VT + k ) rj> (x) - " JL1  W(x) tf(x) (2.49)

Âp+AT̂
x

where

and

iKx) - *QQ (x) (2.50)

W(x) - (tj,^ 8pfo|voptI ®T, 0 (2.51)

with coupling to various excited internal states neglected. This is 

correct at small momentum transfer or near forward scattering. The 

corresponding approximate wave function is called the coherent 

scattered wave and it dominates the forward scattered component. To 

evaluate the optical potential we calculate the Fourier transform of a 

single term of (2.51)

(&r^o Sp,01 1 ®T,0 gP,(P “ FT,0^  (2.52)

where this term will be recognized as the single scattering term of the

multiple scattering series; q is the momentum transfer and Fp ^(q) and

F _(q) are the Fourier transforms of the single particle density of 11 u
the projectile and target, respectively. The nucleon-nucleon 

interaction will be assumed to be constituent averaged as follows^®
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t - (A^)-! [BpHT + ZpZl tpp + <ZpNT + NpZT) t^] <2.53)

where N , N_ are the neutron numbers and Z , Z_ are the proton numbers p T p T
the projectile and target, respectively. The optical potential is 

obtained by evaluating (2.42) (summing over constituents) as^®

W(x) - J d3f  pT (f) J d3?* (x + € + ?') t (k, f )  (2.54)

where p , p,̂  are the projectile and target single-particle densities

t(k,y) is the energy and space dependent two-body transition amplitude. 
We have arrived at the expression for the optical potential used to

analyze heavy-ion scattering cross sections. The input parameters are

the nuclear ground state densities and the two-body transition

amplitudes which will be discussed in Chapter IV.
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CHAPTER III
MOMENTUM AND ENERGY TRANSFER IN HEAVY-ION COLLISIONS 

In this chapter we shall address the problem of momentum and 

energy transfer in nucleus-nucleus collisions in the framework of 

multiple scattering theory. In the last chapter, we reviewed the 

multiple scattering series, derived the coupled channel equations and 

discussed the optical model. We shall use these tools in the formula

tion of the problems of momentum and energy transfer in nucleus-nucleus 

collisions. Starting with the reduced Schrodinger equation for the 

combined system, an approximate expression for the wave operator will 

be derived. Momentum transfer to the projectile as well as its excita

tion energy due to collision will then be evaluated.

III.a Momentum Transfer 

Our starting point will be the formulation of the problem of Ap 

projectile constituents colliding with A^ target constituents as in 

equation (2.1). Following equations (2.1)-(2.4), the combined 

Hamiltonian has been written in (2.5) as

-p. ( A + V  -*2
H - --- 1-----  + _ _ P _ L  kz + h + h_ + V (2.5)

“n ' W  “nVl
The N-body center of mass motion energy, the first term in (2.5) has 

been decoupled from the other terms. The second term is the relative 

motion kinetic energy, with k as in equation (2.7). The third and 

fourth terms, hp and h^ are the internal Hamiltonians of the projectile 

and target with

24
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where gp m(£p) . &j> are tbe n̂terna  ̂many-body wave functions of

the projectile and the target respectively; ep m and eT ^ are the 

corresponding eigenvalues. The eigenstates are orthonormal and com

plete

I g ( O  g * (£') “ «(£ - £') (3.2a)£ &p,mvV  p,m vsp' vsp V

I gx>M(?T) gr * <£x) “ ‘ (3-2b)

In the overall center of mass frame
— m  —v
P - I P. - k (3.3a)
p j J

P+T - I P ■ -k (3.3b)
1 (X

a

and P + P*, - 0 (3.3c)p T

Then, the Hamiltonian is

mn V tH - —  k2 + h + h_ + VT ; (i "— — x- - reduced mass (3.4)
o P T I  r e d  /A A ^
^red (Ap + V

The Schrodinger equation (in coordinate space) can now be written as

1 ^  + V hT + VI
2n

We seek solutions of the fornA^

i> (x, £pI ^T) - E ( X ,  e p , ?T) (3.5)

£-----------------------------------------------------------
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r - - 1where the bracketed term <f> (x,£p,£,j,) is the desired wave operator. 

Assuming that the source of the beam is along the direction -z, we

expect

lim
Z  -+ -CO ^  (x,ep ,eT) J - i (3.7)

and

lim 
Z -*• -«o | ^ ( X ,  £ p >  l T ) J  -  g p i m ( ^ p >  < £ x ) ^  3 / 2  ( 3 - 8 >

(2x)

Inserting (3.6) into (3.5) yields

1 -*2 1 1 "*'2_  Vz - _  .. ik*V + _±_ k + c + K + £_. + 1C + VT 
^red" 2\ed * 2"red P° "

M x ,  j , { ) - E <f> (x,SpI£T) (3.9)

where (3.1a), (3.1b) have been used. Kp and Kx refer to internal 

motion (Fermi motion) of the projectile and target respectively. We 

now note that

E - i k 2 + c + cT (3.10)
2n P*° T’°

Solving for the wave operator [ <f> (x,^p,^x)] in (3.9) is in gener
al difficult. Considerable simplifications occur at high energy when 

[ (x.^p.lx)] *-s assumed to be slowly varying. Then, the second

derivate in (3.9) can be dropped.^3 Internal Fermi motion Kp and Kx
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can also be neglected. Using (3.10) and the above assumptions, the 

approximate wave operator [ <f> (x,£p,fi)] can be written as

(x, exp -i.fi I Vj (x', f , «T) dz'
k • -co

(3.11)

- exp

where
i  i

k - /iv

. VI <x' V  V  dz'

v - relative velocity

(3.12)

(3.13)

Now (3.6) reads

V> (x, fp, €t) -
(2*)3/2

exp - i  I.I vi <*' • C eT) dz'

X Sp,m(V  ®
ik«x (3.14)

Using (3.14), we shall next evaluate the total momentum of the 

projectile. Total momentum can be defined as the expectation value of 

the sums of single nucleon momentum operators of the projectile between 

(3.14), i.e.

total” ^  (x’ ^p’ ^ (x, £p , ^T )>

” < gp,m (V  8T,p(V l exp exP L  Vl<X ’ V  ^ )dZ)

- i Z  V 
j-l *P,j

exp | - i / v £ V ^ ' V  V dZ) 

exp (ik-x) | gp m,(?p) 8rf/|.«T)> (3.15)
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Equation (3.15) is our expression of interest. Note that the 

single nucleon momentum operators act with respect to the internal 

coordinates of the projectile. Note also that we write the interaction 

term Vj(x,^p, £x) as the sum of two-body interactions between the ath 

and jth constituent. Since the projectile and target internal 

eigenstates gp m and gx,u are not eigenstates of the wave operator, the 

above is still a coupled channel problem.

We shall now make a series of approximations in order to solve 

(3.15). Note that the wave operator in (3.[i|) was obtained from equa

tion (3.9) by integration. This assumes that the interaction Vj 

commutes with itself along different points of a straight line trajec

tory. If they do not commute, however, then a power series^ solution 

is appropriate as

* <*: v  s;> - 1 - Q j  V ' '  v  ?*>*•+ (• l)2 ! > '  J >
Vj (7”, 7  . fT) X Vj (7", 7  . V  + ••• (3-16)

— exp - - I -  V * ’ • V  «T>dZ' (3.17)

where bracket [ ] + implies an ordering in analogy with time ordering,

i.e., the argument with earlier z in Vj occurs to the left of the Vj 

with argument with later z. However, if the interactions Vj at dif

ferent points along a straightline trajectory commute, then (3.12) 

becomes^
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We will assume that the interactions along a straightline trajec

tory commute and replace the wave operator (3.17) by (3.18). A plausi

bility argument will be given to justify the above.

When the collision time is short compared to the period of orbital 

motion of the constituent nucleons, then the interactions Vj at two 

successive positions along a trajectory commute, i . e . 46

Ordering in (3.17) becomes inconsequential, and the upper limit in all 

the integrals can be replaced by infinity to yield (3.18). Using 

(3.18), we can rewrite (3.15) as

w-20)

In the light of equations (2.43), (2.44) and (2.45) it may be 

instructive to look at the following decomposition of the potential

matrix^

(3.19)

Ptotal” % , »  < V  |eKPttk-%>

AP
exp

(3.21)
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where diagonal and off-diagonal elements have been indicated explic

itly. It has been shown that for forward scattering at high 

energies, the diagonal elements in V dominate over the off-diagonal 

elements^®

V,, »  v «diag off-diag (3.22)

OP _ _
<Vd + Vo.d> dz ')

Then (3.20) can be written as

Ptotal-^p.m <V *I,/.(eilK  j
('lA  J_(V„ + v 0i4)di'\«cp(+ik^)|gpil»,<{p) )>

- <sp,m(ygT,„(̂)|exp(1/v V V  dz)<1 + ;

AP-I I V
j-l *P.j

exp

-II V
j“l P.j

exp

(i/V ■ V  «T)dZ'j

( 1/ V l.}d< ? ' V  *T>dZ') | Sp,„ < V  BI. p ( V >

(3.23)

<sp,. (V
P

-II
j-l P.j

(3.24)

+ other terms.

It is now obvious that the other terms in the series will involve 

the off-diagonal elements which are smaller (by (3.22)). The first 

term in the series involves only diagonal elements. In the spirit of
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the coherent approximation^t we shall retain only the first term in

(3.24).

Now, applying the identity^

2

2
eU  B e'1A - B + i [A, B] + L  [A, [A, B] ] + --- (3.25)

leads to

total” <gp,m

A P —
- i Z  V 

j-l *P.j Sp,m h./i

< ® p , m  « p >  S l . / V  I 7 (  f V * 7 ’ V  V  —

j-l P.j "° 

gp,m (̂ pJ sT , p ^ T )> (3.26)

Notice that the first term can be thought of as the momentum of the 

projectile before the collision. It may be taken to the left-hand side

of (3.26) and momentum transfer defined as
— *  -*• -*■

P —  P - Ptotal before transfer

« p> I %  J ; v ' ' V V -
j-l P.j

dz1

Sp,m (V

<gP,o<v ^i0crT>| 1 v,pj j \ Pt("' • v  v  ^

Sp,o ^p* ^ . o ^ T ^

(3.27)

(3.28)

where in the spirit of the optical model discussed in the last chapter,
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if> “ if>Qo has been used in going from (3.27) to (3.28).

Having identified through equation (2.27) the optical potential

(3.29)opt
\  A n
r  zp0-1 j-l “j

we can substitute the above in equation (3.28) and obtain

^transfer “ “ <gp,o (V  ̂ . o ^  ^  J ̂AP -*

Vj (X' - V  ^ 7 (3.30)

Equation (3.30) above is the desired expression for momentum 

transfer in the relativistic heavy ion collisions. Using the multiple 

scattering theory formulation of nucleus nucleus collisions of 

Wilson,39,40 we have seen that the optical potential can be calculated 

in terms of transition amplitudes rather than two-body potentials. We 

obtained above an expression for momentum transfer in relativistic 

heavy ion collisions using these experimentally well determined transi

tion amplitudes. Equation (3.30) has been explicitly evaluated in

the Appendix, with the result expressed as P®̂ . and P -Cidn tjTclTl

E . where Pĵ  is the momentum transfer in the collision
aj tran tran
between oth and jth constituents. Explicitly, these are given by

r . r  -> r  ,  >  -»

Ptran d p J d p~ (^’P j P
dz' 
v

(3.31)
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where a and j refer to the ath and jth constituents of the target and 

projectile, respectively; t ) and Pj(£p) are their single particle 

densities, and the gradient is with respect to projectile coordinates 

only. The total momentum transfer is
-*• j

- - S S P“J tran . tran<* J

dz ‘
O  fP

p  r  V

(3.32)

where p (£p) and p (f-p) are the nuclear densities of the projectile and 

target with mass numbers Ap and A-p, respectively, and the two-body 

transition amplitude has been averaged over constituent type as

t - (Â ) ' 1

with Zp, Zj the projectile and target charge numbers; Np, Np the 

neutron numbers and Ap, Ap the mass numbers, respectively. (The 

notation for the transition amplitudes is tpp for proton-proton, tnn 

for neutron-neutron, and tnp for neutron-proton.)

A unique feature of this work is the use of the two-body transi

tion amplitude (in (3.32)) which is complex. The constituent averaged 

two-body transition amplitude is obtained from the first order t-matrix 

used in previous studies of nucleus-nucleus collisions as

Z L t  + N L  t + p T pp p T nn <NPZT + NTZp> % (3.33)
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-3/2 _*2
t (e, x) - - J  e/m c(e) la(e) + i] [2irB(e7] exp(- — -- )v _i 2B(e)

(3.34)

where e is the two-nucleon kinetic energy in their center of mass 

frame; a(e) is the nucleon-nucleon total cross section; a(e) is the 

ratio of the real to the imaginary part of the forward scattering 

amplitude, and B(e) is the nucleon-nucleon slope parameter. Values for 

these parameters, taken from various compilations, are listed in refer

ences 39-42.

The resulting momentum transfer, equation (3.32), where the tran

sition amplitude (3.34) appears is also complex. The real part of the 

momentum transfer, which comes from the real part of the complex opti

cal potential, is the contribution arising from elastic scattering. It 

is purely transverse. The imaginary component, which comes from the 

absorptive part of the complex optical potential, is the longitudinal 

momentum transfer. To show this, we symbolically rewrite equation

(3.32) as

W f e r  - « R  + 1 V  * (3'35)
A

where i -V^l and b is the unit vector transverse to the beam
A  A

direction. If z denotes the beam direction (with -z the source) then 

we know that

ib - - z (3.36)

since i -V-l is an operator which rotates a unit vector counter 

clockwise through ir/2 radians.^ Therefore (3.35) becomes
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A A

Ptransfer QR b - Ql z (3.37)

which can be relabelled as
A A

Ptransfer - Qj_ b - Qi. z (3.38)

The transverse (QjJ and longitudinal (Q|) components can be immediately 

written as

The above has a close analogy in optics where complex refractive 

index is used to account for absorption. The resulting attenuation of 

the incident wave is then along the direction of incidence. Similarly, 

momentum loss due to inelastic scatterings and absorption as the pro

jectile traverses through the target is in the longitudinal direction, 

while the elastic scattering gives rise to transverse momentum transfer 

(specially true at high energy where forward scattering dominates).

Having developed the formalism for momentum transfer, we shall 

also find an expression for energy transfer (excitation energy) to the 

projectile. Again, our basis will be the multiple scattering theory 

framework discussed previously. We will assume in light of the discus-

(3.40)

Illb. Energy Transfer
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sion in Appendix B that the sudden approximation is valid, i.e., colli

sion time tcon  is short compared with the period of orbital motion of 

nucleons in the nucleus. This is best evaluated by taking the expecta

tion value of the sum of nucleon energy operators (the internal 

Hamiltonian of the projectile Hp) with approximate wave functions given 

by (3.14).

E - <* (x,€ ,£t ) J_ S V 2 + S V..I * (*,€_,)> (3.41) 
2mn j-l «p,j i<j 1JI P

Expanding the above yields

E “ <Sp,m < V  8T,/i(V l exp ('ik*x) exP J VI(x', |p, ?T)dz'j

sxp ^-i/v | Vj. (x', £p, ?T)dz^1 p ~*2
—  s + S Vij2mn j“l *P.j i<j J

exp (ik-x) | gp>m,(£p> (£t)>

- <85,„ <V «I.»«T>| (i/V ̂< V Vo.d>d2') 1 p -*2
—  S 7^
2mn j”1 P,j

+ 2 V.,
i<i 1J

exp (■l/VJ j V Vo.d>dZ)| 8p,»'<V <V>

<gp,o (V  ®T,o^T^ exp (1/v 1.1v'opt <*'' V  {i)dl7 x
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2m j-1 n J

-*2
n  + s v
*P,j i<j 3

exp ( 1/v I.I V  <*'• V  «i>dz')

X J <Sp,o ^ p 3 gT,o^T)> (3.42)

The explicit derivation of the above expressions is detailed in 

Appendix A. The final result for energy transfer is

E* - E - E + 0  (*)
O  A P

-  1 
2m <gp,o (̂ p3 ®T,o^T^
n

> ( z  r . v
i - A  ?p.j " *opt (x'’ V  fr*

dz

with
gp,o «p> 8l.o«T> > + ° V  <3‘43>

Eo “ <gp,o (̂ p3 ^ . o ^ T 3
1 p ~~2- L a  vj + s v 
2mn j-1 *p.J i<j gp,o(̂ p3 ^ . o ^ T ^

(3.44)

Evaluation of the above equation for E yields an expression for energy 

transfer as

2
i r 3-  -  r 3^  ♦
—— Ap^ J d £p Pp(^p) J d £x PT(?T
n

J.J <*’• «p. eT> -{p — v
(3.45)

where the definition of V0pt, equation (3.29) has been used, and we 

neglect terms 0(1/Ap). All the symbols above have been defined in our 

previous derivation in section Ilia.
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CHAPTER IV
NUMERICAL RESULTS ON MOMENTUM AND ENERGY TRANSFER DISTRIBUTIONS

In this chapter, we address specifically the momentum and energy 

transfer distributions in nuclear fragmentation reactions. Having 

studied in Chapter II the multiple scattering theory of nucleus nucleus 

collisions and in Chapter III the formulation of the problem of energy 

and momentum transfer in heavy ion collisions based on the multiple 

scattering theory, we shall discuss a variety of topics in heavy ion 

reactions with these insights. First, we briefly review the experimen

tal situation as it pertains to our topics of interest. We next dis

cuss the currently available theories of heavy ion fragmentation 

reactions. We present calculations on the momentum and energy transfer 

distributions in relativistic heavy ion collisions and indicate how to 

incorporate our results in the existing theoretical framework. Our 

primary focus will be on the momentum spectra of fragments, including 

the effects of momentum transfer on the spectra. Input parameters are 

briefly discussed next. Numerical results on momentum "downshifts" and 

widths are presented for a variety of projectile-target combinations 

and compared with experiment.

IV.a The Experimental and Theoretical Background 

Most of our information on fragmentation reactions comes from 

single particle inclusive reactions of the type^®‘®l

38
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Beam + Target -*■ Fragment + Other Products (4-.1)

Two concepts stand out in describing the projectile (or target) frag

mentation data. They are called "limiting fragmentation" and "factor

ization," respectively. "Limiting fragmentation" implies that 

distribution of fragments approaches a limiting form as the bombarding 

energy is increased. "Factorization" means that the cross section for

production of a particular fragment (written as opBT) a Product of a
pfactor 7x which depends on the target and 73 which depends on the beam 

and fragment, i.e.

ctFBT “ 7T 7B (4.2)

Further a n a l y s i s ^  suggests that another prescription, called "weak 

factorization" could better describe the data

F T  / / o \
ffFBT 7B yB ( • )

Twhere 73 depends both on the beam and the target.

Experimental measurements^ of widths and means of longitudinal 

and transverse momentum spectra of fragments of ^ C  and ^ 0  on targets 

ranging from H through Pb revealed the following features. In the 

projectile rest frame, the longitudinal momentum distributions for all

fragments from ^ C  and 1^0 (with the exception of protons) show, irre

spective of beam energy and target, the following characteristics:

(a) Gaussian shape, with root mean square widths “ ^0 to

200 MeV/c and downshifts - - 20 to - 130 MeV/c. Thus the mean

velocities of the fragments are less than that of the beam.

(b) Rms widths a(̂ ||) ant* a(Pj.) are equal to an accuracy of 10%,

consistent with isotropic production of fragments.
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(c) anc* <P||> are independent of target mass and beam energy

but depend on the beam and fragment.

The general trend of the widths cr(Py) is reproduced by a parabolic 

dependence on the fragment mass where

»<P.) - 2a [x<l.x>]1/2 ; x - _  - «»■ ■»»*« (44)
 ̂ ° Ap Projectile mass number

where aQ is a constant.

The parabolic dependence has been explained by a variety of theo

retical a p p r o a c h e s ^ *22 including the conservation of momentum.

Feshbach and Huang^O and later G o l d h a b e r ^  pointed out that the 

Gaussian momentum distributions could be understood by treating the 

fragmenting nucleus as a Fermi gas and assuming (a) momentum conserva

tion (b) no correlation among nucleons and (c) neglect of anti-

symmetrization of the single particle distributions. Based on this 

model, the parabolic dependence of the widths ff(P||) on fragment mass Ap 

could be reproduced (as in equation (4.4)), as well as the isotropy 

<7(P|| ) “ cr(P±) could be understood. More importantly, G o l d h a b e r ^  

also pointed out that the widths and means of momentum distributions 

could be modified according to

a ' 2 - a2 + ^ Q 2  (4.5a)
X  X  .0 X

A*

pi  <4 -5b)A

where ax is the unmodified Gaussian width, ^  is the modified width,
Qx is the momentum transfer in any direction x; F and A are the frag-
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ment and parent mass numbers respectively and unmodified widths are 

related to Fermi momentum Pp of the parent as

a2 - F(A~F2  o2 (4.6a)
X  A oA

p2F(A-F) F (4.6b)

The longitudinal momentum downshift is given by (4.5b) as

AP„ - P/i - P„ - - Qh (4.7)

where Q| is the magnitude of the longitudinal momentum transfer 

obtained from equation (3.40). Recalling that Q|| is a function of 

impact parameter, an appropriate method for choosing it for each frag

ment is necessary. Before that however, we shall present input parame

ters required in our calculation. (Note the comprehensive list of 

references 53-88 on the experimental and theoretical overview of the 

subject).

IV.c. Input Parameters 

Having derived expressions for momentum and energy transfer, we 

shall use them to calculate quantities of interest.

The NN transition amplitude in coordinate space has been intro

duced in equation (3.34) and the notation explained.

Values of o(e), a(e) and B(e) are discussed in references 62 and 

86, including an estimate of experimental uncertainty. Average values 

are given by
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a(e) - --- ------ [(Zp + ZT) app(e) + (Np + NT)onp(e)] (4.8a)
(Ap + AT)

a(e) - [(Zp + ZT> app(e> ®pp(e) + (Np + NT) anp(e) anp(e)] ^

(Ap + AT) [<7pp(e) + ffnp(e)]

Some representative values are listed in Table 1. In addition, 

the "non-diffractive" slope parameters B(e) from these references will 

be replaced by "diffractive" slope parameters

B(e) - [ 10 + .5 In (S'/S0)] (GeV/c)'2 (4.9)

with SQ » 1 (GeV/c)‘Z and S' - square of the NN center of mass ener

gy. This is because diffractive slope parameters are appropriate for

scattering near forward directions. The single particle densities are 

related to the nuclear wave function by

Ph ( 7 ) - -  f  <S0< y  I s cr • V  I E0( O >  (4.10a)
p Ap o-l

p ( 7) - ± £T <60<&r> I « <8 - s ) | g0(£T)> (A. 10b)
*T AT j-1 J

for the projectile and target, respectively. The above are understood 

as

eA ( O  - -  [»p on< t > + zp pp< ~  )]
P Ap

PA ( s ) - —  [nt p ( s ) + Z p ( s )1 (4.11b)
i AT 1 n 1 P

where Zp, are the proj'ectile proton and neutron numbers and Zx, Nx

are the target proton and neutron numbers, respectively. We assume for
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Table 1. Values of NN input paramer.ters a(e) for NN - np and NN-pp 
for various incident energies. Data from compilations in references 
62,86.

E. (A GeV) inc ' ' o (e) (mb) np a (e) (mb) PP

.025 378.255 130.31

.050 140.38 41.00

.075 98.35 39.63

.100 71.73 27.23

.125 59.15 23.83

.150 52.09 24.13

.175 46.59 23.79

.200 42.80 23.09

.225 40.09 22.45

.250 37.94 22.21

.275 36.29 22.37

.300 35.15 22.78

.400 34.03 25.19

.500 34.82 32.46

.600 36.03 39.28

.700 36.98 43.02

.800 37.84 45.51

.900 38.76 47.01

1.000 39.68 47.65

2.000 42.96 45.18

3.000 43.19 42.50
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light nuclei pn (r) “ pp (r) since Coulomb repulsion by protons plays 

only a small role in light nuclei. Proton densities are taken from 

compilation of charge radii from electron scattering experiments. The 

effect of finite proton radius is taken into account by extracting the 

matter densities according to reference 62. The nuclear charge density 

is taken as

where pp(r') is the proton charge density.

In this work, the densities of nuclei for A > 20 was taken to be 

of the Woods-Saxon type

with R the half density radius and a related to the skin thickness 

as t - 4.4a. For A < 20, Harmonic-well densities were used. The 

parameters are listed in Table 2.

Figures 1-18, momentum transfers to ^0(2.1 A GeV), ^C(2.1 A GeV) and 

(1.05 A GeV) projectiles are plotted as a function of impact param

eter b (fm). Momentum transfer is in units of MeV/c. Longitudinal and 

transverse momentum transfers are shown separately.

(4.12)

(4.13)

IV.c. Numerical Results

A . Momentum Downshifts

Experimental data on momentum downshifts are a v a i l a b l e ^  for the 

fragmentation of and on targets ranging from H through Pb. In
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Table 2: Nuclear charge distribution parameters
from electron scattering data 

(HW - Harmonic-well; WS - Woods-Saxon)

Nucleus Distribution
7 (HW) or 
t, fm (WS)

a, fm (HW) or 
R, fm (WS)

9Be HW .611 1.791

12C HW 1.247 1.649

160 HW 1.544 1.833

27A1 WS 2.501 3.05

64Cu WS 2.504 4.20

108Ag WS 2.354 5.139

139^ WS 2.354 5.71
208pb WS 2.416 6.624

/  /r\2\  /.r2\
Harmonic-well: pc(r) - pQ ̂ 1 + 7 J  6X^ y ~2j

Woods-Saxon: Pc(r) “ Po 1 + exp prjl ' l
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Figure I: Momentum transfer (M eV/c) to K,0  projectile by the 90e target as a

function of impact parameter (fm) in the reaction ,60  (2.1 AGeV) 9De 
I ’rojcclile Fragment + X, where X Is unidentified. Harmonic-well 
densities were used for botii the pro|cclllc and the larpni.
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ligurc 2: Moiucnuuu I muster (M oV/c) (o lr,0  projectile by the ,JC target as a
function of Impact parameter (fm) In the reaction wO (2.1 AGeV) + ,2C -*  
rrojecllle Fragment 4- X. where X Is unidentified. Harmonic-well 
densities were used for both the projectile and the target.
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Figure 3: Momentum transfer (M eV/c) to wO projectile by the At target as a

function of Impact parameter (fm) in the reaction (2.1 AGeV) + Al -♦ 
Projectile Fragment + x, where X Is unidentified. Harmonic-well density 
was used for the projectile and Woods-Saxon density for the target
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Figure 4: Momentum transfer (M eV/c) to ,sO projectile by the Cu target as a

function of impact parameter (fm) in the reaction 1fO (2.1 AGeV) + C u-»  
Projectile Fragment X, where X is unidentified. Harmonic-well density 
was used for the projectile and Woods-Saxon density for the target.
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Fig. 5 Momentum transfer (M eV/c) to 160  projectile by the Ag target as a

function of impact parameter (fm) in the reaction (2.1 AGeV) + Ag -*  
Projectile Fragment * X, where X is unidentified. Harmonic-well density 
was used for the projectile and Woods-Saxon density for the target
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Figure 6: Momentum transfer (M eV/c) to ,sO projectile by the Pb target as a

function of impact parameter (fm) in the reaction !<0  (2.1 AGeV) + Pb -4 
Projectile Fragment + X, where X Is unidentified. Harmonic*weil density 
was used for the projectile and Woods-Saxon density for the target
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Figure 7: Momentum transfer (M eV/c) to ,JC projectile by the Be target as a
function of Impact parameter (fm) In the reaction n C (1.05 AGeV) + ’ Be 
-» Projectile Fragment + X, where X Is unidentified. Harmonic-well 
densities were used for both the projectile and the target.
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Figure 8: Momentum transfer (M eV/c) to ,aC projectile by the WC target as a
function of Impact parameter (fm) In the reaction ,JC (1.05 AGeV) + 
1JC -* Projectile Fragment + X, where X Is unidentified. Harmonic-well 
densities were used for both the projectile and the target.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Mo
me
nt
um
 

tra
nsf

er,
 
Me

V/
c

54

180
Longitudinal160

140

120

100

80

60

40 Transverse

20

6.66.46.26.05.8

Impact parameter, fm
Figure 9: Momentum transfer (M eV/c) to 12C projectile by the **A1 target as a

function of Impact parameter (fm) In the reaction 12C (1.05 AGeV) +
27A1 -> Projectile Fragment 4 X, where X fa unidentified. Harmonic- 
well density was used for the projectile, and Woods-Saxon was used for 
the target.
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Figure 10: Momentum transfer (M eV/c) to MC projectile by the Cm target as a

function of impact parameter (fm) in the reaction ,JC (t.05 AGeV) + Cu 
-♦ Frojectile Fragment + X, where X is unidentified. Harmonic-well 
density was used for the projectile, and Woods-Saxon was used for tire 
target.
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Figure 11: Momentum transfer (M eV/c) to HC projectile by the Ag target as a

function of Impact parameter (fm ) In the reaction 12C (1.05 AGeV) 4- Ag 
• -» Projectile Fragment 4- X, where X Is unidentified. Harmonic-well 

density was used for the projectile, and Woods-Saxon was used for the 
fargpt.
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Fig. 12 Momentum transfer (M eV/c) to WC projectile by the Pb target as a
function of Impact parameter (fm) In the reaction , lC (1.05 AGeV) + Pb 
-» Projectile Fragment + X, where X la unidentified. Harmonic-well 
density was used for the projectile, and Woods-Saxon was used for the 
target.
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Figure 13: Momentum transfer (M eV/c) to WC projectile by the Be target as a I 
function of impact parameter (fm) in the reaction ,JC (2.1 AGeV) *■ 90e 
-» Projectile Fragment 4- X, where X Is unidentified. Harmonlc-well 
densities were used for both the projectile and the target.
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Figure 14: Momentum transfer (M eV/c) to ,JC projectile by the ,2C target as a 
function of Impact parameter (fm) In the reaction ,JC (2.1 AGeV) + 
,JC-* Projectile Fragment 4 X, where X Is unidentified. Harmonic-well 
densities were used for both the projectile and the target.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

180

Longitudinal160
O

80

ft 60
0

1  4 0
s

Transverse

20

6.46.2 6.66.05.8
Impact parameter, fm

Fig. 15 Momentum transfer (M eV/c) to 1JC projectile by the **AI target as a
function of Impact parameter (fm) In the reaction ,2C (2.1 AGeV) + 27A1 
-» Projectile Fragment 4- X, where X Is unidentified. Harmonic-well 
density was used for the projectile, and Woods-Saxon was used for the 
target.
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Figure 16: Momentum transfer (M eV/c) to 12G projectile by the Cu target as a
function of impact parameter (fm) in the reaction **C (2.1 AGeV) + Cu 
-» Projectile Fragment 4- X, where X Is unidentified. Harmonic-well 
density was used for the projectile, and Woods-Saxon was used for the 
target.
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Fig. 17 Momentum transfer (MeV/c) to lJC projectile by the Ag target as a
function of impact parameter (fm) in the reaction 12C (2.1 AGeV) + Ag 
-» Projectile Fragment -t- X, where X is unidentified. Harmonlo-weil 
density was used for the projectile, and Woods-Saxon was used for the 
target.
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Fig. 18 Momentum transfer (M eV/c) to ,JC projectile by the Pb target as a
function of impact parameter (fm) In the reaction 1JC (2.1 AGeV) + Pb -» 
Projectile Fragment + X, where X is unidentified. Harmonic-well 
density was used for the projectile, and Woods-Saxon was used for the 
target.
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From the figures, two features are readily apparent. First the 

longitudinal momentum transfer is larger than the transverse, indi

cating the primarily absorptive nature of nuclear collisions at this 

energy. Second, the predicted momentum transfers decrease rapidly with 

increasing impact parameter.

Another feature that stands out is that momentum transfers are 

only slightly target dependent. The choice of the impact parameters 

was of consequence in this and will be discussed shortly. The longitu

dinal momentum transfer to 1®0 rises from -230 MeV/c for ^Be target to 

-320 MeV/c for 208p^ target at the closest impact parameters (see 

figures 1 and 6). The transverse momentum transfer increase is only 

-90 MeV/c to -120 MeV/c. The projectile dependence is more noticeable, 

however. The longitudinal momentum transfer to (at 1.05 A GeV) is 

-155 MeV/c (figure 7) for ^Be and rises to -180 MeV/c (figure 12) for 

208pb Transverse momentum transfer is -25 MeV/c - 30 MeV/c only for 

all targets. At incident energy of 2.1 A GeV, however, the energy 

dependence of transverse momentum transfer is noticeable. It ranges 

from -60 MeV/c for the ^Be target (figure 13) to -70 MeV/c for 208pb 

(figure 18). Longitudinal momentum transfer hardly changes between 

1.05 A GeV and 2.1 A GeV. The increase in transverse momentum transfer 

is related to a(e) which is the energy-dependent ratid of real to the 

imaginary part of the NN forward scattering amplitude. These trends 

show that while the longitudinal momentum transfer remains fairly 

constant at high energies, the transverse momentum transfer is highly 

energy-dependent.
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In Figures 19-21 and Tables 3-5, our results on momentum down

shifts are reported. Experimental data^ have been averaged over 

isotopes using

ave aF l <P|>F1 + 'F2 <P|^+-
<Pf  Z  “ -----------------------------------------------------( 4 -14 >

ffFl aF2

where opi, op£ are the fragmentation cross sections for isotopes 1 and 

2, respectively, and <P|>F1» <P||>F2 are their corresponding downshifts 

(experimentally observed). These calculations are presented in Figures 

19-21. To translate the calculated longitudinal momentum 

transfers into "Momentum downshifts," we follow the following prescrip

tions .

(1) The semi-empirical fragmentation code N U C F R A G ® ^  developed at 

NASA Langley is used to assign a range of impact parameters b^ - b2, 

b2 - b3, for each fragment Ap - 1,2,3...(Ap-1) where Ap, Ap are the 

fragment and parent mass numbers, respectively. This range is divided 

into - 30 intervals and corresponding longitudinal momentum transfer 

calculated for these values of impact parameters. An arithmetic aver

age is done and the average is multiplied by the Goldhaber factor.

This is the "momentum downshift" for fragment Ap. Standard deviation 

of the mean is computed following standard procedures.

(2) An impact parameter b is uniquely assigned by NUCFRAG for 

each fragment Ap where Ap - 1,2...(Ap-1). The corresponding longitudi

nal momentum transfer is calculated. The average longitudinal momentum 

transfer is taken as the same as the above. This average, multiplied 

by the Goldhaber factor (Eq. (4.7)) is the "momentum downshift" for 

that fragment. The results are compared from the two approaches.
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Figure 19: Momentum downshifts of projectile fragments In the reaction t2C 
(1.05 AGeV) + Target - *  Projectile Pragment + X, where X Is 
unidentified and targets are *Be, l2C, **A1, Cu, Ag and Pb. Harmonic- 
well densities were used for A < 20, Woods-Saxon for A > 20.
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(2.1 AGeV) 4- Target Projectile Fragment 4- X, where X Is unidentified 
and targets are 9Be, ,JC, ^A l, Cu, Ag and Pb. Harmonic-well densities 
were used for A < 20, Woods-Saxon for A > 20.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Mo
me
nt
um
 

do
wn
sh
if
ts
, 

Me
V/

c

68

100 

90 
80 
70 
60 
50 
40 
30 
20 
10 
02 4 6 8 10 12 14 16

Fragment mass number
Figure 21: Momentum downshifts of projectile fragments In the reaction mO

(2.1 AGeV) + Target - *  Projectile Fragment + X, where X Is unidentified 
and targets are 9De, ,2C, »A I. Cu, Ag and Pb. Harmonlc-welt densities 
were used for A < 20, Woods-Saxon for A > 20.

O °  °  O

0  Theory
1 Experim ent

j ■ * »

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3: Momentum downshifts - <Pi. > in MeV/c of projectile fragments in the reaction
12C(1.05 A3eV) + Target -► Projectile Fragment + X where X is not identified.
Last column shows target averaged downshift. Realistic densities (Harmonic-well 
for 12c, 9Be; Woods-Saxon for Al, Cu, Ag, and Eto) were used. Standard deviations 
correspond to inpact parameter averaging for each fragment (see text).

Projectile
Fragment OBe 12c 27a1 64 CU 10®Ag 208a, - <PII > an/e

11
(C,B) 54.24 ± 2.16 45.0 ± 2.04 57.0 ± 2.46 56.3 ± 2.4 62.4 ± 2.8 57.70 ± 2.4 55.4 ± 2.4

10
(C,B,Be) 54.66 ± 2.88 46.2 ± 2.76 58.32 ± 3.12 57.52 ± 3.0 63.96 ± 3.4 59.20 ± 3.0 56.6 ± 3.0

9
(C,Be,Li) 56.8 ± 2.9 48.9 ± 2.88 60.6 ± 3.24 59.6 ± 3.2 66.24 ± 3.5 60.5 ± 3.7 58.77 ± 3.2

8
(B,Li) 56.54 ± 3.24 49.6 ± 3.2 60.7 ± 3.72 59.9 ± 3.6 66.5 ± 4.13 61.7 ± 4.2 59.2 ± 3.7

7
(Be,Li) 55.2 ± 3.6 49.44 ± 3.72 59.9 ± 4.2 58.9 ± 4.2 65.67 ± 4.7 62.1 ± 4.7 58.5 ± 4.2

6
(Li,Ne) 52.64 ± 3.96 47.99 ± 4.2 57.77 ± 4.7 56.76 ± 4.9 63.5 ± 5.3 60.4 ± 5.7 56.5 ± 4.8

4
(He) 41.3 ± 4.3 39.74 ± 5.16 46.8 ± 5.88 46.7 ± 6.24 51.84 ± 7.14 51.0 ± 6.9 46.3 ± 6.0

CT\M3



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission

Table 4: Momentum downshifts - <P(| > in MeV/c of projectile fragments in the reaction
12C(2.l AGeV) + Target ■+ Projectile Fragment + X where X is not identified.
Last column shows target averaged downshift. Realistic densities (Harmonic-well 
for 9Be, 12C; Woods-Saxon for A1, Cu, Ag, Pb) were used. Standard deviations 
correspond to impact parameter averaging for each fragment (see text).

Projectile
fragment 9Be 2?A1 ^CU 108^ 208fb - <P|( >

ave

11 53.44 ± 2.15 44.48 ± 2.1 56.32 ± 2.4 55.7 1 2.4 61.76 ± 2.7 57.1 ± 2.4 54.8 ± 2.35

10 53.92 ± 2.82 45.6 ± 2.72 57.55 ± 3.04 56.9 ± 2.94 63.2 ± 3.3 58.5 ± 3.0 55.99 ± 2.96

9 55.84 ± 2.82 48.31 ± 2.72 59.84 ± 3.2 58.9 ± 3.15 65.44 ± 3.5 59.84 ± 3.6 58.03 ± 3.2

8 55.68 ± 3.2 48.32 ± 3.2 60.0 ± 3.7 59.14 ± 3.52 65.7 ± 4.0 60.96 ± 4.21 58.4 ± 3.7

7 54.38 ± 3.51 48.72 ± 3.68 59.04 ± 4.16 58.24 ± 4.16 64.8 ± 4.64 61.34 ± 4.70 57.76 ± 4.16

6 51.84 ± 3.84 47.36 ± 4.16 56.96 ± 4.6 55.98 ± 4.8 62.65 ± 5.3 59.58 ± 5.6 55.73 ± 4.75

4 40.67 ± 4.16 39.2 ± 5.12 46.08 ± 5.76 46.06 ± 6.08 51.12 ± 7.04 50.38 ± 6.7 45.6 ± 5.9

o
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Extensive numerical work revealed that the second approach, while being 

more efficient yields results comparable to the first approach, not 

differing by more than 7 MeV/c. When accuracy was desired, the first 

approach was always preferred over the second.

It may now be worthwhile to discuss the experimental results and 

theoretical calculations. It is clear from figures 19-21 that the 

momentum downshifts are overpredicted in all cases except for a few.

The source of this discrepancy is the impact parameters obtained from 

the geometrical, semi-empirical code NUCFRAG. The projectile and 

target densities are approximated in the above code as uniform spheres

with R  - 1.26 aV 3 (fm ). This is obviously an oversimplifi
cation. Electron scattering®? from nuclei reveal that nuclei possess

diffuse surfaces. Realistic charge distributions (Woods-Saxon for 

example) take the diffuseness into account through skin thickness 

t(fm), which is a measure of the distance where nuclear density falls 

from 90% to 10% of its value. A sharp cut-off of the density thus 

neglects the extended, diffuse nuclear surface. Since realistic nucle

ar densities were used in the calculations of longitudinal and trans

verse momentum transfer, it is likely that the impact parameters from 

NUCFRAG are not very realistic. An alternate procedure would be to 

make our calculations compatible with uniform density calculations from 

NUCFRAG.

This was accomplished in two steps. Realistic densities were 

replaced by uniform densities £ R- 1.26 A^/3]in the momentum transfer 

calculations. The zero-range of the two-body interaction in NUCFRAG 

was implemented in our calculation by reducing the range arbitrarily by
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n  / g \
a factor of five i.e. B'(e) - . where B(e) was given previously by

5
equation (4.9) all projectile-target combinations. This amounted to 

B'(e) -.08 fm‘2 at 2.1 A GeV, for example. The effect on our calcula

tion can be seen in figures 22-24. In figure 22, the imaginary part of 

the optical potential V0pt(r) for - ^Be collision at 2.1 A GeV is 

plotted using Harmonic-well densities as well as uniform densities with 

variable slope parameter B(e). The first-order optical potential 

follows closely the density distribution of the nuclei (actually ex

tends beyond due to finite range of the interaction). As uniform 

density was substituted and the range of the interaction reduced by a 

factor of 5, the shape of the potential became steeper, thus approxi

mating a sphere with a sharp cutoff. The effect on the longitudinal 

momentum transfer to in the collision of the l^O-^Be pair (E^nc - 

2.1 A GeV) can be seen in figure 23. Compared with the realistic 

density calculations (see also figure 1), the magnitude of the momentum 

transfer is reduced. Setting B(e) - 0 outright involved numerical 

difficulties.

The momentum downshifts of Oxygen fragments are plotted and 

compared with experimental data^ in figure 24. The experimental data 

have been averaged according to (4.14). Notice the significant agree

ment between theory and experiment. Similar results obtain for ^ C  

fragmentation at 2.1 A GeV and 1.05 A GeV.

It may be appropriate to point out that the above procedure can be 

reversed and theoretical calculations utilized as an impact parameter 

"gauge". With experimentally observed downshifts as inputs, one can 

calculate with realistic densities the impact parameters where the same

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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well densities were used for both the projectile and the target and 
compared with uniform density calculations. Slope parameter was 
modified to B’(e)-B(e)/2 and B'(e)-B(e)/5 respectively to simulate a 
zero-range interaction.
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Fig. 24 Momentum downshifts of projectile fragments in the reaction l*0
(2.1 AGeV) 4- Target - *  Projectile Fragment 4- X, where X Is unidentified 
and targets are 9 Be, ,2C  27Al, Cu, Ag and Pb. Uniform densities were 
used for the projectile and the targets. Slope parameter was modified 
(B'(e) -  B(e)/5) to approximate a zero-range Interaction.
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downshifts obtain. The practical advantage of these impact parameters 

is that they can be utilized in localizing a reaction event as well as 

used as guides to other calculations such as those of transverse 

momentum transfer, fragmentation cross-sections, and Coulomb dissocia

tion cross-sections.

The energy dependence of the momentum transfer is a quantity of 

fundamental interest. As noted previously, the NN input parameters are 

energy dependent. Longitudinal and transverse momentum transfers have 

been plotted for - ^Be pair at incident energies Eĵnc - 0.2, 0.4, 

0.6, 0.8, 1.05 and 2.1 A GeV in figures 25 and 26, respectively. Note 

the gradual increase of longitudinal momentum transfer as the bom

barding energy increases, attaining a "limiting" value at E^nc > 1 

A GeV. The transverse momentum transfer can be readily obtained from 

the longitudinal momentum transfer by multiplying the latter by a(e), 

where a(e) is the ratio of the real to the imaginary part of the NN 

forward scattering amplitude. As is well-known, a(e) < 0 at 2.1 A GeV 

which implies a repulsive, real part of the optical potential. The 

corresponding transverse momentum transfer is from a repulsive mean 

field and is positive (according to our sign convention). At lower 

bombarding energies, VQpt(r) - _(VReal + iVimag) holds and the corre

sponding mean field is attractive. Transverse momentum transfer is 

negative indicating that deflection to negative scattering angles is 

feasible. Coulomb effects have been ignored in our calculations. The 

above predictions should be verifiable in sophisticated experiments in 

the future.
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B. Momentum Widths

Equation (4.5a) is Goldhaber's result for the modification of the 

fragment momentum width due to collisional momentum transfer. Specifi

cally, the following equations can be derived from (4.5a)

,2 F(A-F) 2 F2 n  ...

1  “ T -  ao + ~2 q \\ ( A - 1 5 a >A AZ

,2 F(A-F) 2 F2 _2 ,,al -  ----   a + __ Qw (4.15b)
A ° 2A A

where a |̂ , are the modified widths, Q| , Qx are the momentum 

transfers, and F and A are the fragment and parent mass numbers.

The first terms in (4.15a) and (4.15b) are the unmodified widths in the 

longitudinal and transverse directions given in terms of Fermi momentum

as

P.22 F(A-F) 2 2 F ,,11 -  ---  a ; a - --- (4.16a)o o

2 . F(A-F) 2 .. 1CKx
<tj_ “ 2 —:   a (4.16b)

The extra factor of 2 in (4.16b) is due to summing over x and y 

directions.

Moniz et al.90 measured the Fermi momentum of a range of nuclei 

via electron scattering. We have developed in the last chapter the 

theory of longitudinal and transverse momentum transfer. The expres

sions for the longitudinal and transverse momentum transfer in nucleus- 

nucleus collisions are given in equations (3.39) and (3.40).
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Experimental data on the widths of longitudinal momentum distribu

tions of projectile fragments were measured by Greiner et al.̂ -9 The 

widths of the transverse momentum distributions, when resolved onto the 

detector plane were found to be similar to the longitudinal widths 

tf(Pll) “ <7(PX) “ ^(Py) (4.17)

within 10% suggesting isotropy of fragment production in the projectile 

frame.

Brady et al.̂ 6 measured the widths of transverse momentum distri
butions of projectile fragments in the reaction ^j^La (1.2 A GeV) +

-*■ Projectile Fragment + X. These measurements were made at the Bevalac

Heavy Ion Super-conducting Spectrometer (HISS) with the MUSIC detector.

Fragment momentum widths a{Px) were measured in the detector plane and

fit to the expression

*(Px) - *o J  F(A~F) (MeV/c) (4.18)
" (A-l)

with variable oQ. It was found that Goldhaber theory, based on inter

polated value of Fermi momentum Pp “ 250 MeV/c (- tr0) under- 

predicted the widths. Values of oQ <* 169 MeV/c was necessary, im

plying an unreasonable value for the Fermi momentum of 377 MeV/c for 

l^La. Based on our theory of transverse momentum transfer, we show in 

Table 6 and Figure 27 a much improved agreement with the experiment. 

This shows that collisional momentum transfer is substantially respon

sible for increased transverse widths.

These calculations were done using the following steps based on 

our expression for transverse momentum transfer. In Equation (3.39) we 

used a Woods-Saxon density for l^La and Harmonic-well density for

<.
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Table 6: Transverse momentum widths aj[ (Q̂ ) in MeV/c of projectile
fragments in the reaction 139La(1.2 AGeV) + -* Projectile Fragment
+ X, calculated from equations (4.15b and (4.16b). The last column 
lists the modified widths. When squared, the third column yields the 
modifications due to momentum transfer.

Projectile 
Fragment 
(mass no.)

a(Px)
Goldhaber
(MeV/c)

ot(b)
ours
(MeV/c)

<x(Px) 
expt fit 
(MeV/c) 
(ref. 26)

*±(Q_l)
ours
(MeV/c)

138 112.0 15.6 169 159.2

137 157.8 16.5 238 223.8

136 192.6 18.0 290 272.9

135 221.5 19.5 334 313.8

134 246.8 21.0 372 349.6

133 269 22.6 406 381.0

132 289.8 24.36 437 410.5

131 308.6 26.23 465 437.2

130 326 28.2 492 462.0

129 342 30.2 517 484.6

128 357.8 32.6 540 507

127 372 35.05 561 527.2

126 386.8 37.6 582 548.3

125 398.8 40.3 602 565.4

124 411 43.15 620 582.8

123 423 46.16 638 599.9

122 434 49.3 655 615.7

121 445 52.6 671 631.5

120 455 56.04 687 646
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Table 6 (Continued)

Projectile 
Fragment 
(mass no.)

»<*x>Goldhaber
(MeV/c)

at(b)
ours
(MeV/c)

o(Px) 
expt fit 
(MeV/c) 
(ref. 26)

*l(Q±>
ours
(KeV/c)

119 465 59.60 702 660.3

118 475 63.34 716 674.7

117 483.7 67.03 730 687.3

116 492.5 75.7 743 700.3

115 501 79.78 756 713

114 509 84.14 768 724.7

113 517 88.46 780 736.5

112 524.3 92.9 791 747.3

111 531.5 97.3 802 757.6

110 538.5 102 812.5 768.3

109 545 106.4 822 778.0

108 551.6 111 832.4 78"

107 558 115.6 842 797.5

106 564 125.7 851 807.5

105 569.6 119 859.6 814.3

104 575 123.5 868 822.5

103 580 127.9 876 830

102 586 132.2 884 839

101 590.6 136.7 891 846

100 595.4 141 898 854

99 600 145 905 861

98 604.3 149.2 912 867.5

97 608.5 153 918 874

96 612.5 157 924 880.3
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Table 6 (Continued)

Projectile 
Fragment 
(mass no.)

95

94

93

92

91

90

89

88

87

86

85

84

83

82

81

80

79

78

77

76

75

74

73

72

o(Px)
Goldhaber
(MeV/c)

*t(b)
ours"
(MeV/c)

o(Px) 
expt fit 
(MeV/c) 
(ref. 26)

* l(Qi )
ours
(MeV/c)

616 160.5 930 886

620 164.2 • 936 892

623.6 167.5 941 897.6

627 170.9 946 903

630 173.8 951 908

633 176.7 955 912

636 179.5 960 917

638.7 182.0 964 921

641 184.5 968 925

643.6 186.7 971 929

645.9 188.7 974.6 932.7

648 190.6 978 936

650 192.2 980.8 939

651.8 193.6 983.5 942

653.5 195 986 944.5

655 196 988 947

656.4 197 990 949

657.6 197.7 992 951

658.7 198.3 994 952

659.7 198.7 995.5 954

660.5 198.9 996.7 955

661 198.9 997.7 955

661.7 198.8 998.6 956.6

662.2 198.6 999.2 957.3
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Table 6 (Concluded)
Projectile 
Fragment 
(mass no.)

^ x )
Goldhaber
(MeV/c)

*t(b)
ours
(KeV/c)

*(PX) 
expt fit 
(MeV/c) 
(ref. 26)

*l(Q±>
ours
(MeV/c)

71 662.5 198.0 999.6 957.6

70 662.6 197.6 999.8 957.6

69 662.6 196.8 999.8 957.5

68 662.5 196 999.6 957.2

67 662.2 195 999.2 956.6

66 661.8 193.8 998.6 955.8

65 661.2 192.5 997.7 954.7

64 660.5 191.15 996.7 953.4

63 659.7 189.7 995.5 952

62 658.7 188.0 994 950
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Figure 27: Transverse momentum widths of projectile fragments in the reaction 
,39La (1.2 AGeV) 4- ,JC -♦ Projectile Fragment X, where X is 
unidentified. Harmonic-well density was used for 12C, Woods-Saxon 
for Lanthanum.
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where the parameters have been listed before in table 2. Root mean 

square momentum transfer Qj_ and squared rms momentum transfer were 

calculated, and widths were calculated using (4.15b). Since the

experimental widths are in the detector plane and momentum transfer is 

calculated in the reaction plane, information on the azimuth of the 

reaction plane is necessary. Since such information is not available, 

we assumed that the momentum transfer, in the reaction plane and detec

tor plane are identical.
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CHAPTER V 

CORRECTIONS

Modifications to the above formalism will be addressed in this 

chapter. These are called (i) The Deceleration correction and (ii) The 

Coulomb correction. In theoretical calculations, the assumption of 

constant velocity is frequently made. Momentum transfer introduces an 

asymmetry into the problem; the assumption of constant velocity of beam 

nucleons is then strictly not valid. Our evaluation of momentum trans

fer in Chapter IV can only be correct if the corrections to our calcu

lations are small. As will become apparent, this correction, related 

to deceleration of the projectile due to momentum transfer is indeed 

small at high energies (but not necessarily so at lower bombarding 

energies). Modification of the expressions derived previously will be 

made first. Numerical evaluation will be carried out for these cor

rections, labelled collectively as "The Deceleration corrections".

Coulomb repulsion of the charges in heavy-ions will be treated 

next. Ever since the beginning of the science of heavy-ions, the 

interplay of nuclear and Coulomb effects has unveiled new insights.

This is also true for the problem treated here. An analysis of elec

tromagnetic dissociation cross-sections at high energy reveals the 

importance of electromagnetic (EM) fields generated. The Weizsacker- 

Williams method of virtual quanta will be used to show the importance 

of the EM fields. Momentum transfer calculations will be performed and 

compared with the nuclear contribution. Finally, modifications to the

88
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point-Coulomb assumption will be made in favor of a more realistic 

charge distribution.

V.a Deceleration Correction

The assumption of constant velocity (per nucleon) is frequently 

made in intermediate and high energy nucleus-nucleus as well as hadron- 

nucleus collision calculations. The change in velocity is assumed 

small at these energies. Momentum transfer to the projectile, as 

evaluated in this work will enable us to evaluate the change in veloci

ty (per nucleon) thus testing the assumption of constant velocity. We 

shall develop, in addition a self consistent framework for evaluating 

momentum transfer.

Consider a beam with kinetic energy per nucleon of T/A GeV. Then 

the velocity per constituent nucleon is

w i t h  V  -  # o  -  c  < 1  - l/,2> 1 / 2  ( 5 . 1 )

7 - 1 + ; Mn - rest energy of nucleon (5.2)
Mn

M©VMomentum transfer AP --- to the beam implies a change in velocity
c

AP cAv - A/?c - ------  per nucleon. (5.3)
Mn • Ap

We parametrize the changed velocity as follows

v(z) - v + S(z) (5.4)

where S(z) is a path-dependent correction with 5(z) «  v.

Previous expressions for longitudinal and transverse momentum 

transfer read (with APii - Qh , AP|_- Q^)
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API! - -(ApAx) Jd3fp Pp(Sp) Jd3^T PT^T)

and

APX -

_ 00
T  Imt (x'.Cp.CT) —

J -00 V

-(ApAT) | d3£̂> Pp(f^) J d3fx Pt (It)
V f Re t (x'.fp.fx) ^ L

J -0 0 v

(5.5)

(5.6)

The bracketed expressions were z-integrable with a suitable choice

the two-body amplitude t. Now because of (5.4), this is not so.
For 5(z) «  v, the following expansion can be used

dz dz dz
v(z) v + S(z)

1 -
S( z) + /S(z)\2
V  \  V  /

(5.7)

Equation (5.5) now can be written as

AP|| - -(ApAx) Jd3fp Pp(£p) Jd3^T PT(Ct)
m 00P ~ dz'V Im t (x',?p,^x)--

*P -» -«o v

- V | p f Im t (x',fpffT)—  * 6- ^ ~  +••• 1
J -00 V  V  j

(5.8)

Note that we have obtained a series that takes into account corrections 

to our previous expressions, (5.5) and (5.6). The first term in (5.8) 

is'(5.5), as expected. Successive terms are corrections to (5.5) due 

to the asymmetry introduced as a result of momentum transfer. For 5(z)
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«  v, the higher order corrections should be small at high energies, 

and the series should converge rapidly.

A reasonable ansatz for S(z) is

—  5(z) a V(b,z) 
dz

(5.9)

The above equation (5.9) implies

S( z) V(b,z) dz

<* *(b,z) 
_ X(b,z)

X(b)
Av

(5.10)

(5.11)

with Av as in (5.3) and the phase shift operator is

x(b ,z )  “  - -  f
k -oo

V(b,z)dz -
- f
rel

V(b,z)dz (5.12)

Also note that 

S( z) 5 (co) Av , as expected.
V  z -f oo V

Equation (5.8) can now be written as

(5.13)

corrAPn - APm - APn +.. (5.14)

Avwhere the correction, 0(— ) is
v

APcorr ■(ApA-r) f d3!*p Pp(fp) J d3?x p t ((t)

f. r"lm t (J’,rp,rT)
-oo x(b) v v

(5.15)
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Numerical evaluation of the ratio appearing in (5.11), x(b,z)/x(b)

has been carried out for various projectile target combinations for

impact parameters ranging from 0-15 fm. The energy dependence of this

ratio has also been checked. This ratio has been compared for ^ 0  +

^Be (fig. 28) and ^ 0 + 208pb at incident energy of 2.1 A GeV. Two

extreme values of impact parameter (b - 0,7 (fm) for ^Be and b — 0,11

(fm) for 208pb) were chosen. The ratio is almost impact parameter

independent for the Be target whereas differences of 15-20% are

observed for the Pb target. Since the ratio x^>z) - £1̂ 2. , the above
X(b) Av

indicates that the z-dependent change in velocity S(z) is more pro

nounced for a heavier target (208pb) than a lighter one (^Be) at the 

same impact parameter. This is in accord with our physical understand

ing since ^Be matter density is roughly Gaussian so that the ratio is 

independent of b. For a heavy target such as 208pb, matter density is 

more appropriately of the Woods-Saxon type so that the ratio depends on 

the impact parameter. Thus the ansatz (5.9) is physically reasonable. 

The resulting asymmetry APjjorr was evaluated for (2.1 A GeV) + ^Be 

and is plotted in figure 29 (the correction AP|orr has been multiplied 

been multiplied by 10 for display). It can be seen that the correction 

at impact parameters 4.52 - 5.53 fm is merely 3% or less. At smaller 

impact parameters, however, the magnitude of the longitudinal momentum 

transfer as well as the correction to it are slightly greater, indi

cating the impact parameter dependence of these quantities.

Another question that we can investigate is the energy dependence 

of the correction AP^orr. The energy dependence of longitudinal
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100
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60

40
•H

20

Distance along beam z, fm
Figure 28: The ratio of phase-shift parameter x  <b, *)/X  CM at a function of b and z 

(where z is the distance along the beam direction and b Is the impact 
parameter) in the reaction « 0  (2.1 AGeV) -*-’ Be-> Projectile Fragment + X.
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O Impact parameter, fm

Figure 29: First order correction to calculated longitudinal momentum transfer as
a function of impact parameter for **0(2.1 A GeV)+*Be -» Projectile 
Fragment +X. The correction Plta,rT has been multiplied by 10 for 
comparison purposes.
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nucleon (as determined by the Inddent beam energy) for **0  (2.1 A 
GeV)+9Be— >ProJectlle Fragment+X due to momentum transfer as a 
function of Impact parameter.
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momentum transfer has previously been displayed in figure 25. It was 

observed that longitudinal momentum transfer saturates around -1 A GeV. 

At 0.2 A GeV, for example, Longitudinal Momentum Transfer (LMT) is -160 

MeV/c at 4.52 fm for + ®Be. At 3 fm, the correction APjjorr is -100 

MeV/c, which is -27% of the longitudinal momentum transfer of 370 

MeV/c. At 2.1 A GeV, there is only a -10% correction at 3 fm.

AvFinally the ratio __ is plotted as a percentage at 2.1 A GeV for
v

+ ®Be. Note that Av has been defined in (5.3). The ratio is -1.6% 

at these impact parameters and higher at 3-4 fm. At 0.2 A GeV, this 

ratio is higher as expected, again indicating that momentum transfer 

introduces relatively greater change of velocity (per nucleon) at .2 

A GeV than at 2.1 A GeV.

These effects should be experimentally observable at intermediate 

energy heavy ion collisions. Note that the higher order corrections in 

(5.7) have not been evaluated because their magnitude is expected to be 

small at high energies. At intermediate energy, these may not be small 

so that all the higher order terms may need to be taken into account.

V.b Coulomb Corrections

A complete treatment of the problem of momentum and energy trans

fer in relativistic heavy ion collisions must take into account Coulomb 

effects. In low-energy heavy ion collisions, Coulomb effects play a 

significant role. At relativistic energies, the importance of the 

electromagnetic fields generated can be understood by analyzing the 

Coulomb dissociation cross-sections in the fragmentation reactions^!.

It was found that these electromagnetic dissociation cross-sections are
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sometimes comparable to the nuclear contribution and may overwhelm the 

latter for high Z (where Z is the charge number) targets such as Lead 

or Uranium. This is specially true of single-nucleon knockout 

reactions^2 of the type Ap + Target -* (Ap-1) + X for projectiles such 

as 12C(2.1 A GeV), 160(2.1 A GeV) and 12C(1.05 A GeV) on targets 27Al,

6̂ Cu, lO^Ag an(i 208p^ Excitation of the giant r e s o n a n c e s ^  such as 

the Giant Dipole Resonance (GDR) and to some extent the Giant 

Quadrupole Resonance (GQR) and their decay contribute primarily to the 

one-nucleon knockout cross-sections, although the contribution of 

magnetic Ml resonance has also been pointed o u t . 93 T h e  common proce

dure for the analysis of such Electromagnetic Dissociation cross- 

sections is due to Fermi, Weizsacker and Williams; it is known as the 

Weizsacker-Williams method of virtual quanta^. The EM fields gener

ated by a relativistic projectile are equivalent to two plane wave 

pulses of radiation Pi and P2 impinging on the target, Pi along the 

beam direction and P2 transverse to it. The equivalent photon spectrum 

has been derived in many texts including Jackson; it is included in the 

Appendix for completeness. It can be seen that the photon number 

spectrum scales as Z2 where is the charge number of the target; 

hence the overwhelming contribution for high Z targets can be under

stood.

We shall treat Coulomb corrections at various levels beginning 

with the proton-proton interaction. This will be generalized, via the 

Weizsacker-Williams approach to heavy-ion collisions at relativistic 

energies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



98
Consider the two-body transition amplitude of this work for pp 

interaction. This was given by

tpp <e.y> - -V^*pp(e) [<*pp(e) + i] [2*B£e)f3/2exp _Z?__^(5.16)

- - t(o) exp (-Ky2) (5.17)

with K - l/2Bpp(e) and t(o) is understood to be

t(o) - ^/e/m <7pp(e) [app(e) + i] [2wB£e)] 3̂ 2 (5.18)

where CTpp(e), app(e) and Bpp(e) are the pp cross-section, ratio of the 

real to the imaginary part of the forward scattering amplitude and the 

slope parameter respectively; y is the relative separation between the 

charges. With the parameters in Table 1 (with ctpp(e) - -.374), the 

transition amplitude at 2.1 A GeV is

tr)T)(e,Y) = (35 - 94i) exp(-1.19 Y2) MeVUPP'

Momentum transfer to the target proton is semiclassically

(5.19)

AP - f Vtpp(Y2) dz ; dz - vdt, v - j8c

-  - I 2 1  + J . z
3b dz t(o) exp(-1.19 (&■ + z2)) —v

«(143-382i)be-<b2+ z 2)<1-19>b ™ (5.20)

For I b I - 1 fm, z - 1 fm, 

MeVAP = -13.2 MeVb + 35.4 _  i b

- ( -13.2 b - 35.4 z) MeV with ib - -z (5.21)
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MeVAt a separation of -1.4 fm, an incoming proton imparts -13 --  of
c

transverse momentum due to strong interactions. The Coulomb repulsion 

of the protons contributes only

AP - —  « 3 —  (5.22)
bv c

of transverse momentum to the target. However, as the separation grows 

large, the nuclear and Coulomb contributions become comparable. The 

above calculation of the Coulomb effect was performed by evaluating 

the z-integrated force in an impulsive collision. Only the transverse 

electric field contributes, the longitudinal field's contribution 

vanishes due to symmetry.

For heavy-ions, the above method for treating the Coulomb repul

sion can be generalized via the Weizsacker-Williams method.

Consider the collision of heavy-ions with charge numbers Zp.Z-p 

respectively, with relative velocity v - /3c per nucleon. The EM 

fields generated at the projectile by the target (and vice-versa) can 

be found from equation (D.l) of Appendix D with q - Z-pe. The momentum 

transfer in an impulsive collision is

AP - Zp e [ 00 Etran (t) dt - 2 ZpZT e2/bv b (5.23)
* _ m

with the longitudinal contribution vanishing due to symmetry.

The above equation is the basis of our calculations. For -̂2C and 

1^0 projectiles (at 2.1 AGeV) on various targets ranging from Be 

through Pb, we have previously calculated the transverse and longitudi

nal momentum transfer in Chapter IV. Coulomb contribution is now shown 

in Figures 31-33 and compared with the nuclear contribution. As can be
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Figure 31: Transverse momentum transfer (M eV/c) to ** O  Projectile by the *Be
target due to Coulomb Interaction compared with the nuclear 
contribution as a function of Impact parameter (fm) at B,„e-2.1 A GeV.
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contribution as a function of impact parameter (fm) at 0 ,^ -2 .! A GeV.
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Figure 33: Transverse momentum transfer (M eV/c) to 1*0  Projectile by the Pb
target due to Coulomb Interaction compared with the nudeer 
contribution as a function of impact parameter (fm) at Hlne»2.1 A CeV.
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readily seen for heavier targets, Coulomb effects are non-negligible 

and may modify the transverse momentum spectra of fragments substan

tially. Note that an impact parameter cutoff bm£n was included in the 

calculations. This was done to separate the strong interaction effects 

from the Coulomb.

Inherent in the Weizsacker-Williams approach is the point-Coulomb 

assumption for the heavy-ions. For impact parameters b > bm£n this is 

a reasonable assumption. However, for collisions with b < bm£n where 

bmin ” Ro.l (Projectile) + Ro.l (Target) (i.e. the sum of 10% charge 

radii of the projectile and target), the point Coulomb assumption 

becomes questionable. This can be seen in the departure of the poten

tial for a unit charge in a uniform charge distribution from that of 

the point-Coulomb potential^ i.e.

with R the uniform charge radius of the distribution. This departure 

in the potential has been plotted in figure 34. The corresponding 

momentum transfer is reduced in magnitude as the overlap increases.

For heavy ions described as two uniform charge distributions, extension 

of the above argument throws into doubt, for b < bm n̂ , the Weizsacker- 

Williams approach based on the point-Coulomb field.

r < R

Ze2 r > R (5.24)
r
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Figure 34: Departure of the Coulomb potential felt by an Incident charge within a
uniform charge distribution (JMPb, Z-82) of radius R-1.26(A-#(1/3»  
from the point Coulomb field. The constant C In VeBU,(r)-C /r has been 
set to unity.
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CHAPTER VI 

SUMMARY

In this work, an optical model description of momentum (longitudi

nal and transverse) transfer and energy deposition in relativistic 

heavy-ion collisions has been presented within the multiple scattering 

theory framework. Longitudinal and transverse momentum transfer have 

been evaluated and compared with experiment for various projectile- 

target combinations. Momentum "downshifts" of projectile fragments in 

the collision of 12C (2.1 AGeV), 160 (2.1 AGeV) and 12C (1.05 AGeV) 

with targets ranging from ^Be through 2®®Pb have been evaluated using 

the above theory and compared with target-averaged data from experi

ments. Transverse momentum widths of Lanthanum fragments in the reac

tion of l^La (1.2 AGeV) with ^2C have also been calculated. 

Quantitative as well as qualitative agreement has been found with 

experiment. Thus the theory of this work can account for many features 

of heavy ion momentum spectra in a comprehensive fashion.

Energy transfer calculations can also be undertaken using the 

optical model description along the above lines. Such calculations are 

significant because energy transfer determines the various channels 

available for de-excitation (in the two stage Abrasion-Ablation model 

of relativistic heavy ion collisions). Sophisticated experiments in 

the future will hopefully address this question. Theoretical calcula

tions are already in progress in this respect and await comparisons 

with future experimental measurements.

105
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We have provided, through "The Deceleration correction," a method 

for investigating and correcting the oft-used constant velocity assump

tion. Momentum transfer to the projectile could invalidate such an 

assumption. Based on our calculations, we find at relativistic speeds, 

that this change is minor. Specifically, we found that the first-order 

correction to our calculations were small at high energies (v « c). 

These corrections, however, were found to be substantial at lower 

bombarding energies, provided the impulse approximation remains valid 

at these energies.

The very important question of Coulomb effects has also been 

addressed. This has been done within the Weizsacker-Williams method of 

virtual quanta. We find a substantial momentum transfer (transverse) 

due to repulsion of the charges. Use of more realistic charge distri

butions in place of the point-Coulomb assumption made in the 

Weizsacker-Williams approach resulted in reduction of the magnitude of 

momentum transfer as the collision impact parameters grew smaller.

The future directions for research in this area remain open. Only 

the single scattering term of the multiple scattering series has been 

utilized so far. The importance of the double-scattering term and its 

physical meaning within the context of our work remains to be explored 

in detail. A comprehensive theory of energy-momentum transfer within 

the framework of energy-momentum conservation requires the relativistic 

theory of nucleus-nucleus interactions. Although a satisfactory theory 

of proton-nucleus multiple scattering formalism (Dirac phenomenology) 

already exists, similar approaches have had limited success for heavy- 

ions. An alternate approach may be the theory currently known as 

"Quantum Hadrodynamics"^ which is a relativistic field theory of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



107

strongly interacting mesons and baryons. Semi-classical solutions for 

energy-momentum transfer can be obtained from the above theory for the 

collision of heavy-ions. Such approaches already show substantial 

promise. Future work should definitely proceed along these lines.
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APPENDIX A

DERIVATIONS (OF MOMENTUM AND ENERGY TRANSFER FORMULAE)

In this Appendix, we shall go through the derivation of the final 

result for momentum transfer p^tran between the ath target constituent 

and jth projectile constituent (equation (3.31)),

-tran -I d %  Pj(Sp) J d3?T pa(?T) I t (i',5p .iT ) i
‘P J -00 J V

(A.l)

and the total momentum transfer (equation (3.32)),

-» A'p Ap ,
P - I I P 3 tot trano-l j-1

— "(ApAj) j*d3̂ p pp(?p) Jd3?T pt(̂ t) I. t(x,|p,|T) —
GO V

(A.2)

where the symbols have been explained in the text in Chapter 3. 

Equation (A.l) was derived from the expression

aT Ap
\  J. Ptran " ^Sp.o^p) ST.o^t) o-l J-1

I Aj Ap
.. i i ttt1 <;.«p.It> —

j - 1  0 - 1  J V
Sp.o(lp)ST,o(^T)> (A. 3)

where the projectile and target many-body wave functions lgpi0> and 

lgT,0> a^e written in terms of single particle states in a Slater 

determinant as follows
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gp O ^ p ^  “ —

\Ap!
£1i<£pi)
&)l(fP2>

^j2(̂ Pl)
^j2(Cp2>

« l « p  A> ^2(CP A)

£)Ap(£Pl> 
^Ap(fP2>

^Ap(£p A) ̂
(A.4)

and where the single particle states have been orthonormalized. The 

ground state single-particle densities are defined as

Ap _
p(£p) ” ‘̂Sp.oCtp) j Z 5(|p ‘ £pj) j Sp,o(£p)>

—  Jd3Spl* • -d3£P,Ap f  5<fp - Ipj)
Ap!

X XP e r m | V (V

j-1 

2
*jAp (̂ P,A)

Pi — i 9

' E, Wj-ll J P I
(A.5)

where J means all permutations of have to be taken. For a - 
Perm J

l,2...Af target and j - l,2...Ap projectile nucleons, momentum transfer
due to collision of ai pair is P°^ and the total momentum is obtainedJ r tran
by svunming over all such pairs.

Explicitly, we can write
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PSan " ' 7 7  7 7  Jd3^l---d^P'Ati %Ap ! AT! Perm I W  W  f

Jd3iTi-. ,d3|T.AT XPerm ^kl (̂ T1) .. . ^  (?tV

“P -

A  V j
Ap AT
I Ij-1 a-1 J-

/ - • ? e N dz'
oj P /  Teo J rj a V

(A.6)

P J -tran
1 1 
Ap! At!

A1 
I
j-1 a-1

p aT
X I } J «»*

? i  d 3 f T «

“P
I
i-1 (̂ pj)

at _ a CO .zi rm-l 1 1
• J j ) *{•«>-;

(A.7)

- - J  d 3 | p  P j ( | p )  J  d3fx p o (|T ) V?p J  tQj (x,|p,|T) £5 (A.l)

. P =_ yp j PaJ 
■■ tot ,A, ^  tranj-1 a-1

(ApAT) J  d3fp pp(|p) J  d3fT pT(|T) J  t(x',tp,|T) —
(A.2)

as claimed.

The derivation of the energy transfer in relativistic heavy-ion 

collisions is analogous to the above derivation for momentum transfer.
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We assume that the energy of the projectile can be evaluated by taking 

the expectation value of the sum of projectile energy operators between 

the full state vector (i.e. equation (3.14))

E - < i  (») | H„ | (<*>) > (A.8)

where Hp - Internal Hamiltonian of the projectile 

Ar
H f  v2

2mn j-1
Z vij (A. 9)i<j

Explicitly, the above (A.8) can be written as

Ap AT
E - <gp,o(£p) gT,o(tx) e -1̂ ’Xexp/i/v £

\  J-1
I [ t„j(i',|p,iT) dz')j-1 a-1 J /

—  Z *c2 + Z Vij
2mn j-1 *Pj i<j

Ap a,

exp(-I/v £ £ f t„j(x',^p ,̂ T) dz'\
\ j-1 a-1 J-« )

ik«xi .z. . .e gp,o(^p>STIo(^T> (A.10)

Using the identity

elABe_iA - B + i [A.B] + —  [A,[A,B]] +...
2 !

(A. 11)
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yields

Ap
exp[ iS] 1 Z

2mn j-1

1
2mn

Ap
Z
j-1

_2
ve + P̂j Z

i<j

+ Z vij*Pj i<l
exp [-iS ]

1
2mn

S, I V 
j-1 Cpj

i2
2

^ -2 s, Z v
j-1 *pj

Af A.
- Z Z Ja-1 j-1 J-

Using

[A.BC] - [A,B]C + B[A,C]

One obtains the operator expression

1__
AP

s, Z K  .j-i $pj
s, Z vj-i h i % j

Similarly,

AP
+ z 4j-1 «PJ

S, V
?Pj

S, s, Z v2j-1 Spj
can be evaluated using (A.15),

(A.12)

(A. 13)

(A.14)

(A. 15)
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Combining all the terms, one obtains

E - <gp,o(£p)gT,o(£T) I Hp I gp,o(tp)gT,o(tT)>

+ —  <gp,o(tp)gT,o(?T) I Z 4 * S I 8p,o(^p)ST,o(tT>>
2mn I j“l ?pJ 1

+ --  <'gp,o^p)6T,o(^) I ^ £ 4 1  I ®P>o^p^ST,o^T)^
2mn I j PJ / '

+ _ L  <gp,0(|p)gT,0(|T)| f  V ^ S  • | gpio(fp)gT,o(^T)>

The first term in (A.16) will be recognized as the initial energy

of the projectile E0(proj. This can be taken to the left hand side and

energy transfer defined as

E. - E - E (A.17)tran o

The second and the fourth terms can be combined. The first term 

in the resulting expression can be converted into a surface integral by 

use of the divergence theorem. This will vanish if the single particle 

states vanish sufficiently fast at infinity. The remaining expression 

can be shown to contribute nothing to the excitation energy for even- 

even nuclei such as l̂ C, 1^0 considered in this work. For odd-even

nuclei, this contribution is 0(1_), therefore this has been ignored.
Ap

The final result for energy transfer is then
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The rest of the calculation is analogous to the momentum transfer 

calculations i.e. one obtains

tot _ r  y
tran .L. L.j-1 o-l tran (A.19)

where

fi'tran - Energy transfer in the collision of the a -j pair

- —  p a a j
2m J F‘P j P I (fT)
n

dz'
-

(A. 20)

and

Etran” ~  (ApAT>|d3^P Pp(?p) Jd3fr PT<£t >
V

(A.21)

where pj(£p) and pa(£T) are the single particle density of the jth 

projectile and target nucleon and Pp(lfp), Pt (?t ) are the nuclear 

densities of the projectile and the target, as before-
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APPENDIX B 

V . , and P , ,

We want to discuss how our expression for momentum, equation 

(3.20) relates to Wilson's expression for potential, equation (2.41). 

We expect an analogy on physical grounds because momentum transfer in a 

collision is directly related to the gradient of the interaction in a 

one to one fashion. The coupled equations in (2.40)

define a potential matrix V with matrix elements

Vm/i,mV(x) ~ <Sp,n/V Sr./Zfr5! Vopt(x’ V  I 6p,m'(̂ p)gT,/i'
(B. 2)

with

% t (x ' v  v =  x = 9  (B-3)

so that the matrix looks like (2.44) with

V(x) -
V00,00(x)
V01,00(x)

V10,00(x)

V00,01(x)

V01,01(x)
V10,01(x)

V00,10(x)'
V01,10(x)

V10,10(x)

(B.4)
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We introduced in (3.20) similar expressions for the momentum of 

the projectile and its matrix elements were defined in (3.20).

Equation (3.20) defines a coupled problem because the approximate wave 

operator

tf(x, $p , £t) “ exp -  G i  <**■ v  ?T> dz'IT *
(B.5)

induces transition in the internal eigenstates g and g_ of theP,m °T,/i
projectile and target, respectively. Equation (3.20) defines a matrix 
P(x).

P(x) -
P00,00(x)

P01,00(x)
P10,00(x)

P00,01(x)

P01,01(X)
P10,01(x)

P00,10(x)'
P01,10(x)
P10,10(x)'

(B.6)

This expression for momentum

‘f - , -
V  «T>d2' P -»

-i I V 
j-1 S.J

- J ! v t <*■. r„. fT)^'
x e V P I ®p,m' ̂ p^

(B, 7)

can be compared to Wilson's expression, (B.2) above.
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One can recognize that there is a close connection between the two 

expressions. This connection should be one to one, since for each 

channel defined by the eigenstates m,m' of the projectile and p,n' of 

the target, an interaction V , , induces a momentum transfer

The Sudden Approximation 

The connection between our derivation and the more familiar 

formalism of time-dependent Schrodinger theory will be discussed 

briefly.

Consider
a A a a

i J. I * <t)> - H U(t)> - (H +H ) I tfc(t)> h - 1 (B.8)at I s I o i | s

where \j> (t)> is the time dependent Schrodinger state vector and where
A  A  S
H0 and are the unperturbed Hamiltonian and the interaction, 
respectively. In the "Interaction Representation" the above
reads^, 46,47

l —
at

i H t -i H t
tfs(t)> - e 0 (-H+Hq+H^ e ° I *x(t)>

- Hx(t) ^(t)> (B.9)

with

iH t
^(t)> - e ° I tfs(t)> (B. 10a)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The time evolution operator is defined as

*T(t)> - U(t,tQ) *j(t0)>

Specifically,

(B.12)

where U must satisfy

i J L  U (t, t ) - H (t) u (t, t ) 
at 0 1 °

U (t , t ) - 1 ' o o (B.13)

Writing the above as an integral equation, one obtains

U (t, tQ) - 1 - - Jt Hj(t') U (t', tQ) dt' + (B. 14)

On iteration, the above yields

U(t, t i / iV
n-0 \ ft I Jt J1

'n-1
H^tp. (B.15)

The above is a formal solution to the time-development of the 

state vector from initial time tQ to final time t. It is a power
A

series in the strength of the interaction Hj(t) and it is time-ordered, 
i.e., earlier times occur to the left of later times. Explicitly,

U(t dt- Hx(t2) + ..

(B.16)
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Consider adiabatic switching of the interaction. Define^®

H^t) - e"£ I tlH1 (B.17)

which implies that instead of turning on the interaction at T - (t-t0), 

turn it on and off slowly. As t -* ± <*>
A  A

H-^t) -► 0 and H " H„ (B.18)

and the solutions to the Schrodinger equation take the form

-iH t -iE t
|^(t)> - e ° | ^ > - e  ° |^> (B.19)

A
with Hq > - Eq |̂  > for stationary states*

Then in this limit
A
iH t

^j(t) - e ° |^(t)> - |̂ > (B.20)

which is independent of time. Therefore,

l̂ jC00) | - | ^f>

I | - | 4>̂ >

Next, the sudden approximation will be discussed to justify 

(3.19). We can write^®

(B.21)
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A

|̂ x(®)> “ U (®, -oo) | ^ (-«)>

dt, Jt m
• n-1 - £

e
- CO 2 e

-0 0
n

(B.22)

It has been shown in reference [47] that a necessary condition for 

the sudden approximation to be valid is that the interactions at two 

different times commute

so that time-ordering is unimportant in (B.22). Following reference 

[47]

which is the desired result.

Having derived (B.24) it is necessary to relate these equations 

(B.22)-(B.24) to our previous discussion in equations in Chapter III. 

Essential to the derivation of equation (3.19) was the commutativity of 

interaction matrices at different points along a straight line 

trajectory

A
H ^ ) ,  HI(t2) - 0 (B.23)

CO
(B.24)

(B.25)
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In the Interaction Representation, this is entirely equivalent

to*?

A
H^t'), Hj(t'') 0 (B.26)

provided one identifies iiz: - vdt' and dz" - vdt" assuming constant 

velocity per nucleon. The latter can be justified on the basis of a 

high energy assumption.

The physical basis for the sudden approximation in the high energy 

context is as follows; the collision time tcon  «  tnuc where tnuc is 

the period associated with orbital motion of the nucleons in the 

nucleus. This condition

t «  t (B. 27)coll nuc

is met in relativistic heavy ion collisions. We shall argue this by

t q11
calculating the ratio ___  . For incident beam energies above 1

tnuc
GeV/N the nucleon velocity « /9c - c. For the distance we shall 

take typical nuclear diameter “ 6 fin. Then tco^  “ — For

tnUc we wi H  consider the period of nucleons in a Fermi gas i.e.
c

nuc Cnuc' *r°r a typical nucleus with Fermi energy «
v

40 MeV, the ratio is

tcoll 6 fm x 40 MeV 1 he “ 197.3 MeV.fm (B.28)
t 2n(hc) 5nuc
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which is small enough to justify the Sudden Approximation. Although 

details of the nuclear diameter and Fermi energy may vary, at 

relativistic energies the ratio will be small. We have omitted the 

Lorentz factor in the above argument, but the conclusions remain 

unchanged because we have overestimated the Fermi energy (not all 

nucleons are at the surface) and have considered the diameter of the 

nucleus and not of the nucleons themselves.
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APPENDIX C

ANALYTICAL RESULTS USING GAUSSIAN DENSITIES 

Analytical results are useful in getting physical insights as well 

as establishing the validity of numerical calculations. We present in 

this section analytical calculations of momentum and energy transfer 

using Gaussian densities. We know from Chapter III that momentum 

transfer between ath constituent of the projectile and jth constituent 

of the target is

' I  d3«P  ' 4 « p >  I  d 3 « T  fi « T >  | V  J _ _ dz ‘
+ ‘ fx) —v

(C.l)
where the notation was explained following equation (3.32). The total 

momentum transfer is obtained by summing over a and j as

trans I I P,aj“ j

  ApAT J  d 3|^ ^p(l^) J  d 3|r
(C.2)

f tC^.fp.fT) —J-co V

A A A  A  A
Define a vector G - Gb b + Gĵ  £ with (X, Y, Z) - (b, -1-, Z) (C.3)

with

t(x' + ep - eT)
V

(C.4)

129
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so that equation (C.l) be rewritten as

PQj - - J  d3fp J  d% Pa(£) < ? + 5 . 5 ) ]  <c -5 >
and with

t - - t(o) . - < *  + &  - W 2 (C.6)

where t(o) is assumed to be real.

The components of G can be written with Cp,b (£p j_) as t*ie
■ —^ A A

components of £p along b (and perpendicular to b) and £x,b (?TJ_ )
A  A

the components of £x along b (and perpendicular to b) .

Gb “ —  i P  (2k) (b + €P.b • *T,b>v u

• 't(b + «p,b ’ «I,b>2 -«T.1>2 (C.7)

and

-  ^  f- « * >  « p , X  • «T.X >V  * K r

-K(b + £_ b - iT b)2 -K(f -I )2 
e p’ ’ P’ ’ (C.8)

Define the thickness function

Ft (£t) - J pT (fx,b + ZT ) dzT (C.9)
J -CO

where

r  3 i  3/2 r  3%  l“ aT- I  I exP I"  j (C.10)L  2jt a^ J *- 2 a^ -*
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(C.ll)

Similarly

Fp(^p) “ Ap. [2* apJ exp *2
3?p (C.12)

where ap, ax are the root mean square radii of projectile and target, 

respectively. Therefore,

P _ . |  d2fT Ft(|^.) J  d 2ip Fp(|^) (x' +  fp - lx) J  (c -l3)
or

P
where

- - J  d2fp Fp(fp) Q (b + Cpb) (C.14)

Q - J  d2£x Ft(Ct) ĵ G + ' *T>] “ Q|j b + Qj. ■*" (C.15)

with

Qb - J  d2£x Fx(^x) Gb + £p,b ’ £l,b) (C.16)

or

q - 2kAT c<iLJL J —  Kb + ePtb; «Pl >
v 1 K 2k a| 

where we have used (C.7), and
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1<b+ Sp.b i £px  ) "  |  |  d^ x ,b  d^TX b̂ +  ^p ,b  + ^T ,b5

Y T  [4 + 4] ■“ (b + «pb • «ib

- K
e [< pa- f i j (C

On evaluation this yields (with a - 3/2â ,)

i(b+ ?p,b; > “P-1- 2(a+x)
l b ^ P . b |

exp ax
(a+x) {{b ♦ «p,b}2 + £ x } ]

substituting (C.18) into (C.16) yields

Qb “ (2k) AT
ir * v

i _  * * <b + €r
v  ’ k  _ 2 . . ,.22wa^ (a+x)

exp (b + « b)2 4. ^<a«)U P.bf + P■4]
Similarly, using the same method as in (C.16)-(C.19), we obtain

Qj. - (2K) AT P.JL
v ' Ac „ 2 , , .22xaT (a+x)

exp [ • ^  + V bf + 4x}]
which yields the two components in (C.15).

• 17)

(C.18)

(C.19)

(C.20)
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Now we need to evaluate (C.14) 

Ap AT
?trans -  f  I 7  j -  - j  4 %  FpCfp) Q(b + {p,b) - Pb £ * P

a J

Pb b + P± 1

On evaluation this yields (a' - 3/2a^),

Pb b - b ApAT (2K) J ?
V  » K

r^aa' b

2.4 2.4 + K<*+a'»

exp aa'Kb^
(aa' + K(a+a'))

or,

A  A
(aa'b) x exP

where x
aa' k

aa' + tc(a+a')

Thus, finally,

P- - I P 4 - P b b + Pl trans " aj D x“J

- Pb b and Pi - 0 due to symmetry

- b ApAT aa'bx exp xb2J

which is the analytical result for momentum transfer.

1

(C.21)

(C.22)

(C.23)

(C.27)
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The above result holds for only real two-body amplitudes t(o). For 

complex t(o), there is a longitudinal component of momentum transfer as 

we have shown in Chapter III. The above result can be generalized to 

the latter case.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX D 

THE EQUIVALENT PHOTON SPECTRUM

In this Appendix, we shall derive via the Weizsacker-Williams 

method of virtual quanta the equivalent photon spectrum generated by 

the target at the projectile.

For an incident particle of charge q, velocity V - /?(c) passing 

a system S at an impact parameter b, the spectrum of equivalent 

radiation is obtained from the electromagnetic fields®^

E2(t) - ---- 52^-------- b
(b2 + 72V2t2)3//2

EL(t) - ---152^------  z (D.l)
(b2 + 72V2t2)3/2

B3(t) - /3E2(t); (1,2,3) - (z,b, -̂b)

where Ei(t), E2<t) are the electric fields along the beam direction and 

transverse to it and B3(t) is the accompanying magnetic field. For V 

= c, the fields E^(t), E2(t) and B3(t) are completely equivalent to 

plane wave pulses of radiation P]̂ and P2 incident on S, along beam 

direction, P2 transverse to it. The equivalency is not exact for P2, 

since there is no magnetic field accompanying E^Ct). If the

motion is nonrelativistic in the frame S, then the particles in this 

frame respond to electric forces only so that one can add an extra 

magnetic term to the fields without affecting the results. This field, 

Bl(t) “ P E^(t) will be shown to be of minor importance in calcula

tions .

135
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The equivalent frequency spectrum (energy per unit area per unit 

frequency interval) of the pulses Pj_, P2 are given by 

dli(w,b)

dw lit

dl2<w,b)

c „ . N 2 “ —  |E2(w)

(D.2)

dw 2ir
—  IEi(w)|2

with
. 00

E2(w) - —  \ E2(t)eiWt dt
&  J ~

(D.3)

and similarly for Ei(w). Explicitly, these Fourier integrals are 

, P ® iwt
e 2(») - s *  f — ;— * —

>/7« " (b2 + 72v2t2)3/2

-  —  - i  r
sll* bV J-

 ̂ « gi wbx/yV dx

bV (t + x2) 3/2

x yVt

(D.4)

(D.5)

_q
bV

2

7T
! *
7V I 7V )

(D.6)

and Ei(w) — - i _5L_ £
7bV it

—  ̂ 0 I — \
7V \ 7V J

(D.7)

where Kq (Ki) are the modified Bessel functions of zeroth (first) or

der.

The frequency spectra are

dll(w.b)  ̂ q2 , c .. 2  ̂ ^ 2 * »wb\
(D.8)

dw
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and

dl2(w,b)

dw
- L E  ii\ 4  f - t
w2 c 72b2 '7V' I7V/

(D.9)

These have been plotted in reference 94 (Figure 15.7). The

intensity of pulse P2 involves a factor of _2 and is of minor
2

7
importance for V =* c. To obtain the energy incident per unit fre

quency interval, one sums the frequency spectra over all impact parame

ters. This is

" £ > - 2 ,  f
dw bmin

dl^(w) dl2(w) 
  + _____

dw dw
bdb (D.10)

where bm n̂ is a minimum impact parameter beyond which other interac

tions take over (strong interactions in heavy ion collisions, for 

example). The result is

dl(w)

dw ^min
£2 (O + 2 €2 K& ( O

J2

bdb; i -
7V

- I s !  j£l
JT C lv/

x Ko(x)Ki(x) - - ^2x2(K?(x) - K2(x)) 
2

(D.11)

where x -
w^min
7V

•vVFor low frequencies w «  — 1—  , equation (p. 11) reduces to
kmin
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dl(w) 2 q2 tc

dw
2 q* fc| 
it c IV J

In - i />2 (D.12)

For high frequencies (w »  7V/bmin), the result is an exponential fall- 

off

dl(w)
dw

w^min
yV

The number spectrum of virtual quanta is

dI(w) dw - N(ftw) d (fiw) (*w) - E N(E)dE 
dw

(D.13)

(D.14)

so that

N(B) -  -
IT

q (c i  i_
(fie)vv/ (ftw)

x Kq (x)Ki(x ) - 1.2 2 / v 2, , 
- f i x  (K, (x)
2

- K 2 (x ))

(D-15)

2 -72—  Z • a 
jtE

x Ko(x)K!(x) - I /32x2 (K2(x) - K2(x» 
2

(D.16)

wb
For q - Z e, a - min (D.17)

(ftc) yV

From (D.9), the equivalent frequency spectrum for pulse P£ is

shown to contain a factor . At relativistic speeds, this pulse ?2
27

is, therefore, of negligible importance. This was the justification 

for adding a magnetic field B^(t) - £ Ei(t). The time integral of the
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field Ei(t) was shown to yield zero by symmetry, so that this did not 

contribute to momentum transfer. The frequency spectrum confirms the 

above and justifies our retaining the transverse component in (5.21).
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