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ABSTRACT

TWO-PHOTON QUANTUM INTERFERENCE POLARIZATION SPECTROSCOPY: 
MEASUREMENTS OF TRANSITION MATRIX ELEMENTS IN  ATOMIC RUBIDIUM

Alexander I. Beger 
Old Dominion University 

Director: Dr. Mark D. Havey

The estimation of the adequacy of theoretical calculations on the atomic structure 

requires availability of the precise experimental data on radiative properties of the atoms. 

Such data is also required in astronomy and some important areas of technology. The lack 

of precision of traditional spectroscopic studies of atom presents a fundamental obstacle 

for progress in these areas. For example, in atomic rubidium, the best precision of the 

traditional spectroscopic results is on the order of about 1 - 5%, which does not allow for 

clear assessment of the latest sophisticated theoretical calculations on atomic rubidium 

structure, with emphasis on different, in nature, effects. This situation is typical for atomic 

physics in general.

The purpose of present study is obtaining the experimental data on the radiative 

properties of atomic rubidium with precision considerably higher than that of the tradi

tional spectroscopic methods. This is accomplished by means of the two-photon quantum 

interference polarization spectroscopy. A two-photon polarization spectrum of the 

rubidium atom is obtained in the range of detunings -417 cm'1 to +99 cm'1 from atomic 

5s2S1/2-5p P3/2-*8s Sj/2 resonance. From analysis of the spectra the relativistic and many
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body effects on the wavefiinctions are revealed in the form of a uniquely defined parame

ter q = 2* 10"6 (5) cm and an exact relation between parameters R and p which quantita

tively describes the process:

R = 1.01756 (57) + 81.466 (15) p 

where R is dimensionless and p is in cm. The obtained results can be thought of as specific 

experimentally established two-photon sum rules and can be used for testing the accuracy 

of the theoretical wavefiinctions. The experimental technique has important advantages 

comparing to some traditional spectroscopic methods and is essentially free of systematic 

effects.
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I. Introduction

LI. Preliminary remarks

The study of radiative properties of atoms is part of a general problem in physics; 

study of the interaction of light with matter. This relatively old problem continues to 

be under active research for several important reasons. These on one hand, are related 

to technical and theoretical problems, and on the other, to the importance of knowl

edge obtained in different areas of physics and technology. The complexity of the 

subject of investigation and of the corresponding rich variety of studies is, however, 

one of the primary reasons. Atoms, molecules and solids, as well as light itself and the 

phenomena of interaction, are represented by practically treatable and, therefore, 

approximate theoretical models. With the increasing precision of empirical data those 

models are revised from time to time. Continuing invention of new methods of analysis 

leads sometimes not merely to better agreement with experiment, but to better under

standing of phenomena under consideration. Another reason for continuing research is 

that the technical problems are overcome slowly. One of the biggest technical problems 

is the availability of the necessary light sources. Invention of the laser, and especially 

those that can be frequency controlled, has revolutionized the field and stimulated
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development of new experimental techniques, which continues until present time, 

particularly in the field of multiphoton processes. The most important, perhaps, among 

many reasons for continued study in the field of matter-radiation interaction is the 

search for new phenomena. One of the latest examples is lasing without population 

inversion [1]. Another challenge is more precise observation of parity nonconserving 

interactions in heavy atoms [2], Spectroscopic study of such atoms, in attempts to 

identify and investigate parity nonconserving interactions, can prove to be an alterna

tive to some of the usual high energy physics methods. We conclude this overview of 

motivating ideas by mentioning the important applications in astronomy [3] (such as 

determination of abundances of elements in the stars), as well as in the technology of 

laser isotope separation, and development of more efficient discharge lamps and 

plasma diagnostics.

This dissertation describes the precise measurement of some radiative properties of 

atomic rubidium (Rb) obtained from two-photon polarization spectra of this atom. 

Two-photon polarization spectra were obtained by the following procedure: atoms of 

Rb were promoted from their ground to the fixed excited state of the same parity by 

simultaneous absorption of two photons from two different tunable continuous wave 

lasers. The relative intensity of the subsequent fluorescence was measured as a 

function of the polarizations and frequencies of the absorbed photons. In this process, 

the sum of the frequencies of the two light sources was kept constant, thus fixing the 

states involved. As will be seen, a main result of the work is experimentally established 

two-photon matrix elements sum rules. They can serve as as a benchmark for testing
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Rb atomic structure theory.

1.2. Review of the literature

In order to understand the place of the present work among the large variety of other 

experiments in this area, and the motivations behind some of our choices for experi

mental procedure, let us make a brief review of the literature on this subject. We will 

consider only phenomena related to the "simplest", and in many cases most important 

kind of radiative transitions - electric dipole (E l). In such transitions all properties of 

atoms are defined by the magnitudes of electric dipole transition matrix elements, and 

by separation of the various atomic terms. In traditional spectroscopy the radiative 

properties are expressed in terms of radiative lifetimes, transition probabilities, 

oscillator strengths, or line strengths. These are related to one another and, under some 

circumstances, can be calculated from each other. Different authors often give 

somewhat different definitions of those quantities and in numerical comparisons special 

care is always required. Again, most important is that all these quantities can be 

expressed as some function of the electric dipole transition matrix elements. Therefore 

the matrix elements and relations among them can be considered as fundamental in 

defining radiative properties of atoms.
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1.2.1. Definition of the terms.

We start with the definition of the lifetime of an excited state of the atom. When an 

atom is in an excited state at some initial moment of time to, it will not stay in this 

state forever; eventually it will undergo a transition to a lower stable state, or to 

another excited state of lower energy, which will subsequently decay in a similar 

manner. The probability of finding the atom in the original excited state decreases 

exponentially with time

—  (1)P ~ e x U;

with the time constant t  being called the lifetime of the excited state. The simplicity of 

this concept is deceptive. The idea of spontaneous decay - as well as stimulated 

emission and absorption - was introduced by Einstein in 1916 [4] in an attempt to 

explain the Planck black body radiation law. According to B.L. Van der Waerden’s 

characteristics [5], “All subsequent research on absorption, emission and dispersion of 

radiation was based on Einstein’s paper (one where the idea was introduced - A.B.)”. 

Today, eighty years later, after all the great successes of the quantum electrodynamics, 

the question of the physical mechanism of the spontaneous decay does not have a 

unique and commonly accepted answer [6].

Another quantity, related to the lifetime, is a spontaneous transition probability (so-
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called Einstein A-coefficient). The quantum-mechanical expression for the spontaneous 

transition rate from initial |i) to the final |f) state is given, in a vacuum, by [7]:

A - 4?2(0V p  m
« 3 (2)

where q is charge of the electron, g> is the energy difference between the |i) and |f) 

states in units of frequency, h is Planck’s constant, c is the speed of the light and |r if|2 

is a square of the electric dipole transition matrix element

* if = • (3)

The vector operator r represents the electron’s position. Note, that if | r^ 2 is equal to 

zero (this corresponding to a so-called forbidden transition) the Einstein A-coefficient is 

not necessarily equal to zero. The definition must be modified in this case to describe 

the first nonvanishing multipole transition, for example, electric quadrupole [8]. From 

definitions of Aif and t  one can see, that [9]

1
T .  =

E - V  (4>

Thus, if a given excited state has more than one channel of decay, the measurement of 

its lifetime does not yield any particular transition probability, only their sum [10].

The other important quantity of the light - matter interaction is the so-called oscillator 

strength. The concept of oscillator strength was introduced in spectroscopy in the late
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19th century [11]. At that time the electron in an atom was thought of as being 

elastically bound to its equilibrium position, and any sample therefore could be 

represented by a collection of harmonic oscillators. The electrons are also influenced by 

the electromagnetic field of the radiation of frequency o>, which forces the atom to 

oscillate with the same frequency [12], inducing thereby the oscillating electric dipole 

moment d(t) in the sample [12]. Using this idea, the behavior of the sample can be very 

precisely modeled if, instead of one natural frequency of the oscillator, the number of 

frequencies are assumed with a fraction of oscillators f* having frequency to* . This 

fraction was called the oscillator strength. Comparison of the classical induced dipole 

moment, with the quantum-mechanical induced dipole moment shows that they are 

identical in form and the f* value is given by

U  = \<Kmk\qr\i,m>\2 (5)
yhq rnr,mk

where “i" and "k” indicate different levels and "mi" and “mk“ indicate (degenerate) 

substates of corresponding levels (usually magnetic substates).

For this reason the concept of the oscillator strength was so successful in pre-quantum 

spectroscopy and continues to be a useful quantity at present time. From the classical 

definition of the oscillator strength, it is clear that these quantities, summed over all 

oscillators, must yield a total number of the oscillators. In quantum mechanics the 

corresponding so-called sum rules were derived independently by Thomas and Kuhn in 

1925 [13], and are called Thomas-Reiche-Kuhn sum rules. They are useful in many
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practical calculations [14]. The last quantity we will define here is the so-called line 

strength. This is simply a square of electric dipole transition matrix elements, summed 

over all initial and final states, assuming they are degenerate. The name of this quantity 

reflects the fact that intensities of the spectroscopic lines, originating at a common 

level, are proportional to the corresponding lines strengths.

1.2.2. Experimental methods

Experimental methods can be classified in several different ways; according to the 

measured quantity (lifetimes, transition probabilities, oscillator strength, line strengths), 

according to the process on which measurement based ( absorption, emission, anoma

lous dispersion, light shifts, level crossing, harmonic generation), or according to the 

method of excitation of the atoms and sample or light source characterization 

(beam-foil techniques, beam-laser techniques). During the past thirty years, nearly 

thirty original experimental studies on radiative properties of Rb have been reported. 

Review articles by C.E.Huber and R.J.Sandeman [10] and by J.Carlsson [15] have 

been published in 1980 and 1989 respectively.

A review of the published experimental studies, grouped according to the measured 

quantity, with a brief description of the method used, follows.
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1.2.2A. Lifetimes measurements

8

1.2.2.1.1 Phase-Shift method

In the phase-shift method [16] the state being studied is optically excited with 

intensity modulated light. The period of modulation is on the order of ten times the 

lifetime x of the state under consideration. If  the exciting light intensity is

J e x c =  1o ( 1 + a sin Q i  ) (6)

where 1Q is a base amplitude of light intensity, Î fl is the amplitude of the modulation, 

Q is the angular frequency of modulation, then the intensity of the fluorescence light 

is [17]

T , T r, a sin( Qf + d> ) ,
= 1+  ;  — -] (7)

where b is a proportionality constant and

tan <]) = Qx (8)

Measurement of I fl allows extraction of x. This method does not require knowledge of 

the sample density. Precision achieved in [16] was on the order of 2%.
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1.2.2.1.2. Level crossing

If  resonance scattering takes place incoherently at two frequencies to, and o>2 with 

intensities | f, |2 and | f212 then the signal is proportional to

In the case when <Oj and w2 become equal each other - for example, under the 

influence of an external electric or magnetic field - the scattering becomes coherent, 

and the signal proportional to

Observation of the signal in the transition from incoherent to coherent scattering is 

the basis for the level crossing method of lifetime measurement. The level crossing 

effect at zero magnetic field was first observed by W.Hanle in 1924 [18] and is 

referred to as the Hanle effect. A classical explanation was given at that time. In 1958 

Colegrove et al. [19] discovered a similar effect at high magnetic field. Quantum - 

mechanical theory of the effect was developed by Breit in 1933 [20]. This method was 

used for Rb lifetime measurements in [21 - 26]. Precision achieved was on the order 

of 2%.

I/, I2 + I/ 2 I2 (9)

(10)
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1 .2 .2 .1 .3 . Pulsed excitation and photon counting

In the pulsed excitation and photon counting method, a short ( on the order of 

nanoseconds) laser pulse is used to excite the atom, and subsequent fluorescent photons 

are detected by a photomultiplier tube. The signal exhibits exponential decay in time, 

which defines the lifetime of the level under consideration. This kind of the time - 

resolved spectroscopy gives typically 5% uncertainty [15]. The Rb excited state 

lifetimes obtained in [27] and [28] by this technique are in good agreement with each 

other except for the Rb lls 2S1/2 level. No explanation for the discrepancy is known.

This technique is associated with serious experimental problems [15] . First of all, in 

the case of short lifetimes - on the same order as pulse duration - the shape of the pulse 

must be included in the analysis, or, alternatively, tails of the signal should be used, 

thus wasting most of the signal. Several problems are density related: if  the atomic 

density must be increased ( for example, to increase the signal) then the absorption of 

photons from one atom by another and subsequent reemission (radiation trapping) can 

artificially increase the lifetime. Also, at high densities, collisional deexcitation 

shortens the lifetime or changes the intensity of fluorescence in the direction of 

observation by depolarization of excited atoms. Therefore extreme precautions to avoid 

density effects must be taken and special arrangements made, such as observation at the 

magic angle [29] which suppresses the effects of collisional depolarization of the
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fluorescence.

1.2.2.2. Oscillator strength measurements

Out of the number of lifetime measurements discussed in the previous section, only 

those of the 5p2Pjy2 3/2 levels can be converted directly into transition probabilities or 

oscillator strengths. This is because, in the case of an excited state which has more then 

one channel of decay, the lifetime must be accompanied by branching ratio measure

ments in order to yield transition probabilities, or oscillator strengths [15]. In this 

section we will consider several methods of oscillator strength measurements for 

general excited states.

1 .2 .2 .2 .1 . The Hook method

The hook method was developed by D.S. Rozhdestvenskii in 1912 [30]. The method 

is based on the change of the refractive index n in the spectral region of anomalous 

dispersion - near an isolated absorption line. The sample, normally a metal vapor, is 

placed in one of the arms of a Mach-Zehnder interferometer [31]. The reference and 

signal beams are recombined and sent into a spectrograph. At the output, the character

istic interference picture is created in the form of "hooks", which can be photographed, 

or imaged electronically. By measuring the hock separation one obtains a product of 

the density of atoms and the oscillator strength [9]. In [32] a posteriori processing of
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interferograms was used to enhance sensitivity and accuracy of this method. Precision 

ranges from 1% to 10% depending on the level considered. For normalization of the 

results additional information is required either in form of independently measured 

oscillator strengths [33] or the density of atoms [9]. Together with the lifetime of first 

excited state , measured by one of the methods described in the previous section, the 

hook method provide transition probabilities for higher excited states.

1 .2 .2 .2 .2 . Emission technique

The measured quantity in the emission technique [10,34] is the radiative energy 

emitted at a given frequency from a unit source volume into unit solid angle. The 

biggest concern is design of an "ideal" emission source: a homogeneous and stable 

volume of plasma. There are three direction of development in this field, these being 

absolute measurements, relative measurements and branching ratios. In absolute 

measurements the density of atoms in the excited state must be known. This constitutes 

a major problem for the design of sources, mainly because of the requirement of local 

thermodynamic equilibrium of the plasma. Typically precision is on the order of 20%.

For relative measurements the knowledge of the temperature is sufficient and 

therefore they are technically less difficult. They have typically precision of 10%. The 

results can be combined with the lifetime measurements of the first excited level to give 

absolute oscillator strength values. Example of this approach are found in [34], where
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lifetimes from [27] where used.

Similar to this approach are experiments on branching ratios, where the "photon 

intensity" ratios can be measured and then combined with the lifetime of the excited 

states to yield absolute transition probabilities.

1.2.2.2.3. Absorption techniques

The absorption technique is similar to the emission method, except that absorption 

spectra are measured. Problems of density determination required for absolute 

measurements are present. An important feature is that when the initial state is the 

ground state, the temperature determination is sufficient for absolute oscillator strength 

measurement ( providing that reliable vapor pressure data is available). By this 

technique in [34,35,36] precision of -10% was achieved.

1.2.2.2.4. Third harmonic generation

The third harmonic generation method was developed by H. Puel and C.R. Vidal in 

1976 [37]. Their result is often quoted but the method itself has not become commonly 

used. Description of the experimental procedure in [37] is rather incomplete. The 

method of third harmonic generation is related to the hook method because the phase- 

matching conditions [38] are achieved by the use of anomalous dispersion. In the 

quoted experiment the sample consisted of a Rb-Xe mixture with controllable partial
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pressure of the components. Partial pressure was adjusted to provide the phase- 

matching conditions. The authors state that their experimental result for the total 

oscillator strength for the ground-first excited p-doublet (1.07±.02) is in agreement 

with the lifetime measurement result by R.W. Schmieder at al. [26]. Note that in [26] 

only the lifetime of the 5P3/2 level was measured (25.5±.5ns) from which only the 

oscillator strength (.715 +  .014) for the 5S]/2-5P3/2 transition follows . Apparently the 

authors assumed an oscillator strength ratio for the components of the doublet to be 

exactly in proportion 1:2 ( whereupon the total oscillator strength is 1.073 ). In Rb, 

taking this ratio as 1:2 is an approximation.

I.2 .2 .2 .5 . Inverse Hook Method

The inverse hook method was developed in 1986 by W.A.van Wijngaarden et al. 

[39,40] and is based on a light shift effect combined with polarized fluorescence 

measurements. It yields absolute oscillator strength between excited states of the atoms. 

In the experiment two pulsed lasers are used. Initially anisotropic population of the 

excited state sublevels is produced by absorption of two same-frequency photons . This 

is followed by a second light pulse of slightly different frequency than the transition 

under investigation. As the second pulse propagates through the metal vapor sample it 

does not cause any real transitions to different energy states. However, because of the 

so-called virtual transitions to light shifted levels, the population of excited state
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sublevels changes. This is observed in the change of the polarization characteristics of 

the monitored fluorescence. The effect depends on the fluence of the second pulse 

(measured in the experiment), detuning from resonance (which is also measured) and 

the oscillator strength, which is a parameter of the fitting procedure.

The name "inverse hook" reflects the fact that the idea of the experiment is analogous 

to the one in the hook method, but the roles of atoms and radiation are inverted. In the 

hook method the phase of the electromagnetic wave changes as it travels through the 

dispersive media, while in inverse hook method, the phase of the wave function of the 

atom changes as it interacts with the second pulse.

The estimated uncertainty in [39,40] was 20%. This method can be applied to any 

excited states but it must be modified when the energy difference between the states is 

comparable with the half bandwidth of the interference filters used in detection of the 

fluorescence.

In conclusion of this rewiev one clear observation should be made: the typical 

precision of the considered experimental methods is currently on the order of several 

percent. None of them has a precision better than 1 %.

1.2.3. Theoretical methods

Detailed review of the theoretical methods in the field of radiative properties of atoms 

is beyond the scope of the present dissertation, which is an experimental study. A review
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of earlier work can be found in [9]. Generally, many techniques to calculate atomic 

radiative transition properties have been developed. For example, more than 20 theoreti

cal articles on the subject, related to Rb alone, have been published during last 20 years. 

The theoretical methods can be divided into groups based either on ab initio calculations 

or on effective Hamiltonian or model potential methods with adjustable semiempirical 

parameters. Further classification can be made based on the emphasized effect: relativistic, 

core polarization , core - valence electron correlation, and on approximations made and 

method of calculation used , such as the Hartree - Fock approach or adiabatic approxima

tion.

The various methods provide results of varied validity, which seem best assessed by 

comparison with experimental compilations. The latest sophisticated calculations agree 

well with experiment on the level of precision 1% to 5%. To discriminate among 

theoretical models and methods more precise experimental data is required.

1.3. Formulation of the problem

From the presented review of the literature it is evident, that the experimental data on 

radiative properties of atomic rubidium has, in the best case, the precision of about 1 %. 

On the other hand, the estimation of the adequacy of the theoretical calculations on the 

atomic structure and the related radiative properties requires experimental data of 

considerably higher precision. Thus a gap between the need of theory and available 

experimental data exists.
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The present work is an attempt to fill this gap. The goal of the study is to obtain more 

precise experimental data on atomic rubidium than that currently available from 

traditional spectroscopic methods, and which can be used for testing the atomic 

structure theory. The method used is two-photon polarization spectroscopy. As will be 

seen, the emphasis is made on the possibility of detection of the fine effect of the 

dependence of the radial wavefunction of the valence electron on its total angular 

momentum.

II. Theory

The rigorous theory of two-photon absorption, as any other specific kind of radiation 

- matter interaction, requires application of quantum electrodynamics. Alternatively, 

in the semiclassical approximation [41], the radiation is considered classically and the 

atoms are treated quantum-mechanically. For the problem at hand the semiclassical 

approach provides a simpler way to account for the essential features of the process 

[42]. Based on this approach, the time-dependent perturbation theory was first applied 

to two-photon absorption by Goppert - Mayer in 1929 [43]. Certain properties of the 

process, particularly related to higher-order correlation functions for the two-photon 

excitation, require proper application of quantum electrodynamics. We will not 

consider them and will use the semiclassical approach. In the first part of this section 

the general steps in the derivation of the intensity of the two-photon absorption will be
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outlined. Subsequently some features of the Rb atom, which define the process and 

which constitute the subject of the experimental investigation, will be considered.

II .l. Atom - radiation interaction

The classical Hamiltonian of an atom, placed in an external electromagnetic field 

defined by its vector (A) and scalar (<J>) potentials [44] can be represented as [41,45]

H  = — (P -  1  A)2 + V + q<$> (1 1 )
2m c

where P is the linear momentum operator of the electron, V is the potential energy due 

to nucleus and closed shell electrons, q and m are the charge and mass of the electron,

and c is speed of the light. In the Coulomb gauge [44,46]

V • A = 0 . (12)

The Hamiltonian can be expressed as 

H  = H0+ W , (13)

where H0 is Hamiltonian of the free atom
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and W describes the interaction of the atom with the external electromagnetic wave:

w  =  -3 - p  • A +  A 2 (15)
me 2 me

It can be shown [47], that in the electric dipole approximation [41] the interaction term 

is equivalent to

where E is the electric field of the electromagnetic wave. This form is convenient for 

calculations and was originally used by Goppert - Mayer [43]. The electric field in the 

case under consideration is a superposition of traveling wave fields from two different 

laser sources with frequencies w, and w2 :

where E01 and E^ are corresponding vector amplitudes of the electric fields and the 

relative phase angle is a.

In the following sections the transitions of the atom between stationary states caused 

by the time-dependent perturbation W will be considered. Some features of the 

unperturbed atom, which can affect the transitions and, thereby studied by two-photon 

polarization spectroscopy, will be described.

W = q r- E (16)

E = E0l cos a y  + E02 cos (w2f + a) (17)
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The two-photon absorption can be described in second-order time-dependent 

perturbation theory, as is done in several reviews on the subject and also in many 

nonlinear optics textbooks [9,38,42,48], or analyzed from first principles by deriving 

and solving the density matrix equations for the multipoles of the excited level [49]. 

In any case, the weak radiation field and rotating wave approximations [38] make 

practical calculations possible. The results can be expressed as :

•V, - ? V ‘Ts;.L|£,),I2|£J!

< j \ r  • e 2 \ n > < n \ r  • e , | g >   ̂ < f \ r  ■ e x \ n > < n \ r  ■ e 2 \g > 2

n

where q is the electron charge, fi is Planck constant, (4rg f ) _1 is density of final states 

at resonance, o)„g is energy difference between the ground |g> and intermediate state 

|n>, and ef is a unit vector of polarization of the light from laser “ i From this 

expression it is evident that the spectra of two-photon absorption is defined by the 

magnitude of the electric dipole matrix elements. As we will see in the next section, 

the matrix elements corresponding to two different intermediate states of the atom with 

the same principal quantum number but different total angular momentum of the 

electron will be different. This is not expected within the usual L-S coupling in a 

hydrogenic atom. Experimental observation of this difference will be described later.
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II.3. Free - atom wavefunctions

The nonrelativistic Schrodinger equation in atomic physics

(19)

can be solved exactly only in the simplest case of hydrogen. In spherical coordinates 

(r,0,<p) the solution is [47] :

where n is the principal, i is the orbital and m is the magnetic quantum number [47]. 

The function Rnl (r) can be expressed in terms of Laguerre polynomials [7,47], and the 

yta(0,<p) are spherical harmonics [7,44,50]. If  the spin of electron is heuristically 

included [47], the degeneracy of each level is 2n2. The degenerate wave functions can 

be combined in linear combinations to yield the eigenstates of the complete set of 

operators - energy H0, orbital angular momentum L2, spin angular momentum S2, total 

angular momentum J2 and one of its projections Jz . The general form of such a linear 

combination can be written as

Y mJ/-,0,(p) = Rnl(r) yj0,<p) (20)

(21)
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where Y'bjmj are linear combinations of the products of the spherical harmonics and the 

spin wavefunctions only with proper Clebsch-Gordon coefficients [51,52]. The spin- 

orbit interaction [47] partially removes the degeneracy and in a higher order approxi

mation changes the radial part of the wavefunctions by mixing those with different n, 

but the same j. In fact, in a relativistic calculations, starting with the Dirac equation, 

the radial part of the wavefunction becomes explicitly dependent on the total electronic 

angular momentum due to the spin-orbit interaction [53]:

\E + R j R ^ r ) ^  + R,)Rnlf r )  (22)

where E is the energy, R, is the usual operator for the radial part of the nonrelativistic 

hydrogen wavefunction,

and R3 represents other relativistic corrections [53]:

3 3o + 36

4  - ^ 4  m
2 (24)

(E *3 l)

For an alkali atom like Rb, the wavefunction of the valence electron is modified by
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the many-body effects, theoretically accounted for by the polarization of the core 

[54,55], and by correlation effects [56,57]. These effects depend on the total angular 

momentum of the valence electron. Therefore, in general, some dependence of the 

radial wavefunction on the total angular momentum is expected and according to this 

the total wavefunction can be written in the form

' t '& f r A v )  = W )  (25)

Although the effect of the j-dependence of the radial part of the wavefunction is weak 

for low-lying levels, it can be detected in high precision experiments. These effects 

can become larger for large principal quantum numbers [34].

II.4. Transition probability

Equation (18) assumes, that the atoms are at rest. In the normal experimental 

situation atoms are moving and, according to their velocities, they "see” Doppler 

shifted laser frequencies. This leads to corresponding corrections to the energy 

denominators in (18) and to modification of the density of the final states, which takes 

the form of a Lorentzian distribution for a fixed velocity group of atoms [58]. The
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resulting transition probability must be integrated over the Gaussian distribution of the 

thermal velocities of atoms. Further complications are related to the “scanning" of one 

of the laser’s frequency, described in section (III.4 .1), and to the finite width of the 

frequency profile of the lasers. We will at this point make an approximation, that all 

mentioned effects can be taken into account by introducing the effective line shape 

function $(s) such that the transition probability can be written in the form:

$(s) x
<J]re2\n><n\re]\g> + < f\re l \n><n\re2\g>

n 0) “ (0 , (O ~~ (l)«n ng 1 ng 2
(26)

where “s” stands for all variables describing Doppler broadening, laser lineshapes and 

“scanning" effects. Equation (26) particularly applies to two-photon transitions and it 

requires careful examination. Obviously, if all transition matrix elements and frequen

cies are known, then, in principle, for any resonant combination of to, and <o2> the 

series in (26) can be explicitly evaluated yielding the transition probability. Usually the 

frequencies are known experimentally to a high precision [59], or can be accurately 

calculated using quantum-defect theory [60]. In contrarast to this, the wavefunctions, 

and thus the matrix elements, are not very well known [10]. One then faces a 

question: is it possible to perform a high precision experimental measurement of a 

transition probability, or some related quantity, such that precise values of the matrix 

elements (or some simple functions of them) can be extracted. If  possible, such an 

experiment can serve as a benchmark for testing atomic structure theory. The present 

research is an attempt to answer this question. As will be shown later, the answer is
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positive.

A quick solution, which equation (26) suggests, is to make a particular denominator 

so small that the corresponding term will dominate all other contributions and, in an 

appropriate limit, make them negligible. Then the transition probability will become a 

direct measure of the corresponding product of matrix elements. This way, also 

possible in principle, is not an appropriate one for high precision measurements. First 

of all, the lineshape function <E>(s) is difficult to precisely estimate. Secondly, one will 

necessary run into the problem of light shifts [61], and possibly, real population of the 

intermediate level(s) and the associated problems of single photon spectroscopy (see 

Introduction).

I f  the number of the terms in (26) was finite (N), then with appropriate choice of 

polarization one could measure the transition probability at ~ 2N different combina

tions of frequencies and obtain values of the products of matrix elements. Note that the 

“2" is related to the fact, that (26) is a quadratic form. This approach, however, is not 

practical, because the number of terms in (26), is infinite. Alternatively, one can try to 

determine experimentally such combinations of the frequencies and w2 that the 

transition probability (26) is zero. The structure of (26) suggests, that there will be ~N 

such roots, corresponding to total destructive interference among contributions from 

intermediate levels, which in general correspond to fine, or even hyperfine, structure of 

the atom. If  such roots are found experimentally with high precision, they represent 

exact information about atomic structure and can be used to test atomic structure 

theory. For finite N they can give a system of linear equations to yield all N products
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of matrix elements. For infinite N some practical approximations can be made. In the 

following sections we will consider a specific example of this approach in the case of 

Rb, where one root is located between the frequencies of the 5s2S1/2->5p2P1/2and 

5s2S1/2->5p2P3/2 transitions. It is important to note that because the multiplet separations, 

fine structure splitting and natural lifetime of each intermediate p-level has a scaling on 

effective principal quantum number of (n* ) ' 3 [60], a similar description is expected to 

be repeated at each value of n*.

II.5. Application to Rubidium.

I f  now the states |g > , |n> and |f>  are taken in the form (25), the angular part of 

the matrix elements can be simply evaluated, providing that all operators are presented 

in irreducible tensor form, and the Wigner-Eckart theorem is used [51]. Specifically, 

for an experimental geometry with two laser beams traveling in the same direction 

and having the same direction of polarization and for the 5s2S1/2 -  8 s2S1/2 two-photon 

transition in Rb the only contributing intermediate states are np2Pj levels 

(j =  l/2;3/2) with n=5,6 ,... . The result is
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2<85,/2| r |MJ3/2></?P3/2 l| r \\5SV2> 

wr  “ ss)

<8SXJ  r \\nPm><nPm\ r  j|551/2>

wr  K P|n-  W5S)
(27)

2<851/2« r r |5S,/2>

W2 " H p w-  W5S>

<851/21 r 1hP1/2x>iP 1/2| r |5^1/2> | 2 

U2 -  K p 1/2" “ ss)

But if the direction of polarization of one of the beams is rotated from its direction in 

the previous configuration by n/2 about the axis of propagation, and all other 

conditions kept the same, the result for two-photon absorption becomes:

< * S in \  r  l ftPv2> < ,tP mW r  H5 ‘5' i / 2 >

“ r  ( t V r  w 5s )

<8Sm\\ r \\nPm><nPmW r l5Sia>

Wl" K p w-  W5s)

<85,/2 r ||w/>3/2X h />3/2|| r ||5S1/2>

W2 " (% M- WSS)

<8 ^\/2l r \\nPm><nPV2\\ r  ||5S1/2>

W2 _ (Wnp]/2 ^ss)

The so-called reduced matrix elements in equations (27) and (28) are defined by the 

following radial integrals:
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<nlj\\ r \\n'l'j'> = fR ^ R ^  r*dr (29)

The dependence of the Rnlj on the total angular momentum j is seen now as one of the 

factors defining intensities of two-photon absorptions. In the following sections the 

possibility of the experimental observation of this dependence will be considered. But 

first let us consider possible effects of the hyperfine structure of rubidium.

II.6. Hyperfine structure and isotope shifts effects.

The sample in the experiment consisted of the naturally occurring Rubidium isotopes: 

8SRb and 87Rb. The isotope 85Rb has nuclear spin of 5/2 and is stable. The isotope 87Rb 

has nuclear spin of 3/2 and is slightly radioactive with a half - life on the order of 10“ 

years. The relative abundance of this isotope is 27.85% [62]. The electronic properties 

of different isotopes are different, because of the electromagnetic interaction of the 

electrons with nuclear moments [63,64]. The detailed analysis of the effects involved in 

the hyperfine interactions is outside the scope of the present work and can be found 

elsewhere [64]. We will consider only the effects most directly related to our study: 

the hyperfine splitting of the levels participating in the transitions, their isotope shifts 

and the two-photon transition probabilities between hyperfine structure components.
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The location of the hyperfine energy levels is given by the following expression [64]:

^-K(K+1) -21(1+1 )J(J+1)
WF = —hAK + h B - ------------------------------  (30)

F 2  2/(27-1)27(27-1)

where A is the magnetic dipole coupling constant, B is the electric quadrupole coupling 

constant, I is the nuclear spin, J is the total angular momentum of the electron and K is 

defined by [64]:

K = F(F+l)-I(I+\)-J(J+\) (31)

where F is the quantum number representing the total angular momentum of the atom:

F = J  + I  (32)

Note that the quadrupole interaction is present only for I,J £ 1 and that in the s-states 

the magnetic dipole interaction is determined only by the contact interaction [64]. The 

hyperfine splittings obtained with numerical data from [64] are summarized in F ig .l. 

The isotope shift for the 5s2S1/2-8s2St/2 transition (145±40MHz) was quoted in [65].

We have calculated expressions for the two-photon transition probabilities between any 

pair of the ground and excited level’s hyperfine components. The results of simple, but 

tedious calculations can be conveniently summarized in the form of diagrams, similar 

to the Kastler diagrams [6 6 ], Fig.2. The diagrams have the following meaning: the 

arrows indicate allowed transitions (under the given conditions of direction of polariza

tion and resonance), while the numbers indicate the relative intensity of the given
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Figure 1. Hyperfine structure of rubidium.
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87Rb , I = 3/2

| Configuration

8S,F=1

5S,F=1

8S,F=2

5S,F=2

j. Configuration

8S,F=28S,F=1
5/2

5/21/2

5S,F=25S,F=1

Figure 2. Transitions between hyperfine structure components. Isotope 87Rb.
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transition. Thus, in the case of mutually perpendicular directions of polarization of two 

laser beams, the transitions 5s2S1/2(F=2) -  8s2S1/2(F=2) and 5s2S1/2(F=2) -  

8s2Si/2(F=1) are possible with the same relative intensity 5/2. We point out, that the 

part of the general selection rules A F= ±1 , is not always realized [67].

The averaging over the hyperfine structure of the intermediate states makes calculations 

much more concise [6 6 ,b] and yields the same result. This approach was used to 

calculate effects of hyperfine interactions in 85Rb (1=5/2) [6 6 ,b]. The results are 

represented in Fig. 3.

The obtained results indicate that the hyperfine interactions, under excitation with 

completely resolved hyperfine structure, would considerably modify the polarization 

spectra. Experimental verification will require lasers much more narrow than those we 

are presently using. Averaging over all hyperfine components has zero net result on the 

electronic polarization spectrum obtained earlier, as expected.

II.7. Numerical estimations

From equations (27) and (28) one can see that by appropriate choice of to, and co2 

some terms in the sums can be enhanced and others suppressed. For example, if  to, is 

chosen within several hundred cm' 1 from the one-photon transition 5s2S1/2 -  5p2P1/2 or 

5s2S1/2 -  5p2P3/2 ( the so-called D, or D2 lines respectively), then the contributions
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85Rb, 1=5/2

| Configuration

8S,F=2
A

5S,F=2

8S,F=3

5S,F=3

i  Configuration

8S,F=3
35/9

28/910/9

5S,F=35S,F=2

Figure 3. Transitions between hyperfine structure components. Isotope Rb
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from intermediate 5p2P1/2 and 5p2P3/2 states will dominate all other contributions (see 

energy level diagram of Rb, Fig.(8 ) ) .  In such case the equations (27) and (28) can be 

rewritten as

/,=$(*)*
2<8SI/2| r 115^x5/̂ 11 r |5 ^  + <85̂ 1 r I|5P1/2x 5/>1/2|| r ||5S1/2>

“ f  W5s) “ r  (% I/2- “ ss)

+ 2<8̂ 1/2|| /• 115^x5^1 r \\5Sm> + <8S1/2|| r ||5/>1/2x5P1/2fl /• ||5Sm>
G).'2 S>

(33)

<8S,J| r ||5/>3/2x5/> || r ||55' > <8S. J r ||5/> x5/> || r |5S|/2>
“ r  (‘‘W  “ ss) “ r  (“W  “ 55)

<8S!/2|| r \5Pmx 5 P m\ r ||5S1/2> + <851/2|| r jS P ^xS P ^  r ||5S1/2>
w2 -  “ 5S) “V  ( % .-  “ ss)

(34)

where p'and q' include contributions of all intermediate states np2Pj with n >5 , with the 

corresponding intensities. The normalized difference of I± and I,, , called a linear 

polarization degree

can be conveniently measured in experiment (this will be discussed later). In the 

expressions for the intensities IA and I, used for theoretical evaluation of PL, the line- 

shape function <&(s) does not, under appropriate circumstances, effect PL, and can be 

dropped. Also, it is convenient to denote the ratio of the combinations of the reduced
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R = <85*1/211 r  H^3/2><^3/2ll r 
<8 S ,J  r  \\5PV2x 5PV2\\ r \\5Sm>

(36)

the difference of the frequency of laser 1 and the resonance 5s2S1/2^5p2P3/2 frequency 

by A, where

(37)

and the auxiliary frequency differences as

df — 0)rp CO*p J
P  3/2 1/2

D  = o)R« -  -  2 <o,5A|/2 3A,/2 J.
(38)

With these notations the intensities (33) and (34) can be rewritten as follows:

2 R 1 2R

dfs + A D  -  A D + df s -  A
(39)

I. = R
A

R
dfs + A D  -  A D  + dfi -  A

(40)

where

<8S1/2|| r [|5P1/2X 5 P 1/2|| r ||5A’1/2> ’ (41)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36

q = <8 Jla| r  l5Ptax 5 P ml r  I5S1/2> ' (42)

and the use of the two-photon resonance condition

< *V  w2 = W8S1/2-  W5s1/2 (43)

have been made. Note that numerically [59,62] 

dfs = 237.60 ( 1 ) cm ,
(44)

D = 3413.72 ( 3 ) c/w' 1 .

I f  now the variable A, called detuning, is varied in the range -500 cm' 1 , the magni

tudes of p and q remain to a good approximation independent of A. The variation of 

PL as a function of A will depend parametrically on R, p and q and, as we will see, 

will define q and establish a functional relationship between R and p. This experimen

tally established relation, combined with relatively low precision estimation of p, can 

yield a value of r with precision on the order of 0.1 %. Thus the fine effect of j-  

dependence of the radial wave function can by this procedure be measured with 

unusually high precision (when compared to the precision quoted in the review of 

experimental methods).
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This section describes the experimental part of the research, starting with preparing 

the sample and assembling the experimental device components and concluding with 

acquiring the data and storing the information.

III. 1. General characteristics of the experiment

The essence of the experiment is illustrated in Fig.4. Two nearly parallel laser 

beams, traveling in the y-direction of the coordinate system, enter the Pyrex 

cylindrical cell containing rubidium vapor. The beams are tightly focused at the 

approximate geometrical center of the cell, point O, chosen to be the center of the 

coordinate system. The two-photon absorption takes place predominantly in a small 

volume around point O, called the interaction region. The subsequent fluorescence 

from rubidium atoms in the interaction region is detected by a photomultiplier tube, 

positioned on the x- axis, through a system of windows. The polarization direction of 

one of the beams is permanently fixed in the direction of the z-axis. The polarization 

direction of the other beam is changed periodically from the z direction to the x 

direction and back ( for ~ 100 times in a typical experimental run). The fluorescence 

photons, detected by the photomultiplier tube, are counted by a computerized photon 

counting system. These numbers, one for the configuration with parallel relative beam
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Photon counting 
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Figure 4. General experimental setup for polarization degree measurements.
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polarization (N ,) and one for the perpendicular relative beam polarization (N J are 

combined to yield a polarization degree:

N. -  N
P, = - ! -------   . (45)

L N. + N

This expression, of course, is just an experimental counterpart to the theoretical 

polarization degree, defined by equation (35).

The two-photon absorption process can be represented by a convenient mnemonic 

picture based on the energy diagram of the atom, as shown in the following discus

sion. Consider again the two-photon transition probability, eq.(26). The general term 

of the infinite summation over the set of the intermediate states |n) consist of two parts. 

One of them, namely

</]re2\ti><n\rel \g>

0 ) -  w,ng 1

represent the amplitude of the following process: a photon from laser 1 promotes the 

atom from the ground state |g> to an intermediate state |n>, then a photon from laser 2  

promotes the atom from |n) to the final state |f). Note, that this process is not a real one 

in the sense that no atom actually appears in the intermediate state, as it would 

contradict the conservation of the energy principle. These sorts of process, called 

virtual processes, are however, elements of the reality of the quantum world, where 

they contribute the interfering probability amplitudes to the “actual" process of the
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transition of the atom from the initial (ground) to the final (excited) state. In the case 

under consideration, the only contributing intermediate states are |nPj> (n=5,6,...; 

j  =  1/2, 3/2) and the virtual process can be depicted schematically on the energy 

diagram of rubidium as shown on Fig.5.

Alternatively, the infinite set of the virtual process can be represented by one two-step 

transition via a virtual level of the atom, the position of which is higher than the 

energy of the ground level by the energy of the first photon, as shown in Fig.6 .

The analogous consideration of the other general term in eq.(26),

<f\r-ex\ rt><n | re2 \g>
---------------------------  (47)

° V  °>2

where the roles of the photons 1 and 2 are interchanged, in comparing to (46), leads 

to a pictorial representation, shown in Fig.7. Combining pictures from Fig. 6  and 

Fig.7, the final picture of the two-photon process features two virtual intermediate 

levels of the atom, as shown in Fig.8 .

III.2. Geometry of the experiment

The geometry of the experiment is shown in Fig.9. The following is a short overview 

of the arrangement of experimental components. These are individually described in 

more detail in the following sections. A Coherent Ar+ ion laser, Model Innova 70-4,
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photon from the source 1; second - by the photon from the source 2 .
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having an all-lines output on the order of 4.7 W, is used to pump a Titanium - Sapphire 

ring laser. The output of this laser (typically 400-500mW) is directed by a system of 

mirrors M ,, M 2, M3 and M4 into the sample cell, which is located in a temperature - 

controlled oven. The beam is focussed by lenses L, (f~ 150 cm) and Lj (f=20 cm). The 

polarization direction of this laser light is defined by a Glan-Thompson polarizer LP,. 

Another A r+ ion laser, Holobeam Inc., Model 554A with all lines output power on the 

order of 3W is used to pump a standing-wave dye-laser. The output of this laser (500- 

700mW ) is directed into the sample cell by the mirrors M 5 and M 6 and it is focussed 

by the lenses 1  ̂(f~ 150 cm) and L3. The initial direction of polarization of this laser is 

defined by a Spindler & Hoyer polarizer LP2 and can be rotated by 90° or preserved 

by the liquid crystal retarder LCR. A small portion of the intensity of this beam (-4% ) 

is directed by the beam splitter (BS) and the mirror M 7 into a Fizeau wavemeter, Laser 

Technics Corporation, Model 100F (FWM), for precise wavelength measurement. The 

beams are focused and overlapped in the interaction region of the cell. The radius of 

the interaction region is approximately 35/im. The divergence of each beam, as well as 

the divergence between axes of the beams is estimated to be 25 mrad (-1 .4 °).

The two-photon absorption intensity is proportional to the intensity of the subsequent 

cascade fluorescence, which is detected by the photomultiplier tube (PMT), THORN - 

EMI, Model # 9235B, with a bialkali Rb-Cs photocathode. The appropriate spectral 

range of the fluorescence (36Q± 10 r.m) is filtered out by the Color Glass Filter UG1 

(1mm) and an interference filter Oriel, Model # 53410 (Optical filters) installed in front 

of the photomultiplier tube. The individual photon signals from the photomultiplier
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tube are directly counted by the photon counter, Stanford Research System, model 

SRS400, and the corresponding total numbers of counts per specified time intervals 

(one second) are stored in the main computer memory. During one experimental run 

this procedure is repeated two hundred times, as the frequency of the dye laser is 

scanned. This scanning is accomplished also by the main computer, which controls the 

frequency of the dye laser by changing, through a digital-to-analog converter, the 

voltage applied to the electromagnet, defining the angular position of the etalon 

(VIRGO optics, Inc, 1.00" diameterx 1mm thick.) and the birefringent filter in the dye 

laser. It also controls the direction of polarization of the beam 2 by issuing correspond

ing commands to the auxiliary computer, which contains a card installed for liquid 

crystal retarder control. The readout of the Fizeau wavemeter at each of 200 steps of 

the ~ 2  cm' 1 dye laser frequency scan, typical of each experimental run, is also stored in 

the main computer.

III.3. Sample preparation

The objective of the sample preparation procedure is to place an atomic rubidium 

sample into a Pyrex cell (see Fig. 10) and to have it sealed with minimal contamina

tion of rubidium and minimal degradation of the optical quality of two flat cell 

windows. Rubidium metal, in natural isotopic abundance was supplied by Alfa 

Products Inc.
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III. 3.1. Vacuum system

A capsule with rubidium metal, and the Pyrex cell were attached to the vacuum 

system by glass blowing. The schematic diagram of the vacuum system is shown in 

Fig. 11. It consist of the fore vacuum pump, GCA/Precision Scientific, Model VAC 

TORR 150, the vacuum ion pump, Varian, Model 911-5034, and a system of pipes and 

valves. The vacuum measurement is accomplished by a Hastings Vacuum Gauge,

Model SV-4, with Gauge Tube, Model DV-6M, two Capacitor Gauges, MKS 

Instruments, Model 221A, and, at the final stages of the vacuum preparation, by the 

control unit of the ion pump, Varian, model 921-0062. Ultimate vacuum achievable by 

this system is 10'8 Torr.

III.3.2. Sample preparation technology

The initial check for leaks is performed using a High frequency spark generator 

(Tesla coil), Electro Technic Product company, Model BD10. If  found, the leaks are 

removed. After this the system is evacuated to ~ 10'5 Torr. I f  this level of vacuum can 

not be reached, microleaks causing this must be found and removed. Then a heating 

oven of heat resistant bricks is built around the rubidium capsule and cell, and a 

heating tape placed around all components of the vacuum system. The system is 

“baked” for ~ 48 hours at ~200°C. The temperature is controlled using a Cole - Palmer 

Instrument company Temperature Controller, Model 2186-10. When the system has 

cooled to room temperature, the vacuum level is typically ~ 10'8 Torr. At this point the
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glass seal on the rubidium capsule is broken off using a “magnetic hammer" inside the 

vacuum pipe. The Argon buffer gas is then evacuated and the vacuum is restored to 

~ 10'8 Torr. Using a Bunsen burner, the rubidium is evaporated in small portions and 

forced to migrate along the pipes to the cell, until a considerable amount, on the order 

of 0.01cm3, is accumulated in the cell. Then the cell is sealed off by glass blowing. 

During the whole procedure, special precautions are taken to prevent thermal stress on 

the cell windows. The absence of birefrigence in the cell windows was checked before 

and after this procedure by means of two crossed polarizers. No visible change was 

observed. The rigorous systematic check of the cell windows birefringence is described 

in section IV .

III.4. Experimental device components

In this section we give a detailed description of the equipment, used in the experi

ment. Some of the early versions of equipment, replaced at the later stages of experi

ment, as well as some modification of equipment will be discussed.

III.4.1. Lasers

The two photon transition 5s2S)/2-,8s2S]/2 in Rb can be achieved by use of two tunable 

light sources, one in the vicinity of 790 nm, and another in the vicinity of 610 nm (see 

Fig. 12). Tunable lasers, as the most convenient light sources, were used in the
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experiment, namely a Titanium-Sapphire ring laser and a standing wave dye laser. The 

principles of laser operation are covered in many textbooks and articles, and w ill not be 

discussed here. As a short general reminder we mention that any laser contains two 

necessary components. First, it needs to have an active medium for amplification of 

the light and an optical resonator, which consists of a system of mirrors and stores the 

light energy in a specific (narrow) frequency region. The energy source, such as 

electric discharge,flash lamp or another laser, is necessary for laser light production. 

The tunable lasers additionally include tuning elements, such as birefringent plates or 

an etalon. In the following we will restrict our attention to the specific details of the 

lasers used in the experiment.

The coverage of the spectral range in the vicinity of 790 nm (infrared) represented a 

large obstacle at the initial stages of the experiment. In our first attempts, a Coherent 

Model 599 dye laser was used with LDS751 dye, the most appropriate for this spectral 

range (710 to 850 nm). This dye, however, is not very efficient and requires a 

relatively high lasing threshold pump power (broad band Ar+ ion laser) [68]. The 

maximum power from the Ar+ ion lasers available to us was close to 4.5W. With 

careful adjustment of the dye concentration, dye pump pressure, dye jet position and 

optical system of the dye laser the best results obtained were as follows: ~ 150 mW 

output power without birefringent filter, -100 mW output power with birefringent filter 

at wavelength 765 nm, ~ 40 mW output power with birefringent filter at wavelength 

780 nm. Although this power is low, it is sufficient to perform the experiment at a not- 

very-high level of precision. In fact, the first two-photon absorption signals were
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obtained with this laser. But a much more significant problem, which made using this 

laser virtually impossible, was its frequency and intensity instability. The low pump 

power caused the operation of the dye laser to be near the threshold of the lasing, 

making it highly sensitive to small changes of environment temperature, dye solution 

pressure and small fluctuations of pump laser power. Therefore finally this laser was 

replaced by a Titanium-Sapphire ring laser, which normally operates with the available 

4.5W pump laser power. The base configuration of the Coherent model 899-01 

Titanium-Sapphire laser (shown in Fig. 13) with three plate birefringent tuning element 

and a 1mm etalon, produces infrared light in the range 710 -840 nm with an output 

power 400 to 500 mW and a bandwidth close to 3 GHz. The bandwidth was measured 

by the Spectra-Physics spectrum analyzer, Model 476 (free spectral range 8 GHz).

Data was taken using a digital-to-analog converter, Metrabyte Corporation, Model 

DAS-20, as an analog photodiode signal and stored in the computer. The data, along 

with the fitting curve, is shown in Fig. 14. The full width at half maximum of the 

fitting curve is equal to 3.04 GHz. Fitting was performed using the graphic computer 

package Sigma-Plot 5.0. Without the 1mm etalon the estimated bandwidth is in the 

range from 8 GHz to 15 GHz. This estimation follows from the fact that no interfer

ence fringes were observed using the 8 GHz free-spectral-range analyzer, but they are 

visually observed using a 0.5 cm'1 (15 GHz) free-spectral-range etalon. The former 

configuration of the Titanium-Sapphire laser was used at initial stages of the experiment
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and for some systematic tests, the latter configuration was used in all actual data taking 

procedures. Explanation for this choice is given in section IV .

The second spectral range, around 610 nm, is conveniently covered by dye lasers 

with the highly efficient dye Rhodamin 590. We used a Coherent, Model 599 dye laser 

in a standing wave configuration. A schematic of this laser is shown in Fig. 15. Dye 

solution molar concentration is 2 .1-10'3 (solvent is ethylene-glycol and methanol). The 

concentration was adjusted to optimize the lasing in the required spectral region. A 

pump Ar+ ion laser (Holobeam inc.,Model 554A) power on the order of 3 W was 

used, sufficient to produce dye laser output beam power from 500 to 700 mW. The 

bandwidth of about 5.58 GHz was obtained with a three-plate birefringent tuning 

element and a 1mm etalon. The change of angular position of the etalon, with appropri

ate adjustment of birefringent filter position, provides the change of the central 

frequency in a range of -2cm'1 in each experiment (the purpose of this so-called 

scanning procedure will be explained later). The bandwidth was measured by the 

spectral analyzer, described earlier. Data from the bandwidth measurement is presented 

in Fig. 16. The fitting procedure was similar to the one used for the Titanium-Sapphire 

laser.
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III.4.2. Polarization of the light

Both light beams produced by lasers are nearly linearly polarized in the vertical 

plane. The polarization of the light is altered to some extent as it passes through several 

devices to the sample cell (see Fig.9). In order to define the linear polarization of the 

light with high precision, very high quality polarizers were used. Polarization of the 

light produced by the dye laser (this light beam will be referred to in the following as 

beam 2) was defined by a Spindler & Hoyer, Model 10K, polarizer, with a quoted 

extinction ratio 1:10000 (LP2 in Fig.9). This polarization direction was kept unchanged 

during all experiments and at each run was used as a reference for setting the direction 

of polarization of the light produced by the Titanium-Sapphire laser (hereinafter 

referred to as beam 1), and for alignment of an analyzing device, as described in the 

following section. The precise polarization direction of beam 1 was defined by a 

Newport Research Corporation Glan-Thompson polarizer, Model 10GTO 4ar. 14, with 

an extinction ratio 1:10000 (LPj in Fig.9). Angular position of this polarizer was 

controlled by means of a high quality positioning device with precision better than 1.8 

mrad (0.1 °). Alignment of this polarizer with the direction of propagation of beam 1 

for nearly normal incidence was achieved by means of retroreflection at the start of 

each experiment. This was one of the necessary conditions for reliable ±45° tests (see 

next section). The satisfactory ±45° tests allowed proper setting of the direction of
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polarization of beam 1 for an entire set of experimental runs at a given detuning (3-5 

runs). For analyzing the quality of the beam polarizations, an Oriel Corporation 

Wollaston Polarizer, Model 25697 with extinction ratio 1:10000 was used (not shown 

in Fig. 9). This polarizer was aligned for nearly normal incidence of the beams by 

means of retroreflection. Its proper angular position was established using beam 2 as a 

reference by minimizing the power of one of the Wollaston Polarizer output beams. In 

the experiment, the direction of polarization of the beam 1 does not change, but the 

direction of polarization of the beam 2 is changed once per second from vertical to 

horizontal and back. This rotation of polarization direction is accomplished by a 

Meadowlark Optics liquid crystal retarder, Model LVR-0.7-700 (LCR in Fig.9). The 

proper installation of this device in the path of beam 2, its physical positioning and 

adjustment of its electronic settings (via computer interface, Meadowlark Optics,

Model D1040) is one of the most critical and technically difficult parts of each 

experimental procedure. The difficulty is due to the fact, that the quoted accuracy of 

the retardance of 0.3% was actually considerably improved in every experimental run 

by fine adjustments to yield a typical contrast ratio for both directions of polarization 

on the order of 1:4000. This contrast ratio was measured by the Newport Research 

power meter, Model 815, as a ratio of the powers of the output beams of the Wollaston 

polarizer. Monitoring of the weak output beam of the Wollaston polarizer, at its 

installation as well as at the installation of the Glan-Thompson polarizer is conveniently
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accomplished by use of the power meter head with an oscilloscope. The fluctuations of 

the digital readout of the power meter control unit at powers close to the lower limit of 

sensitivity of this device were thus avoided.

III.4.2.1. Optical polarizers

In this section we give a short description of the principles of operation of the optical 

polarizers used in the experiment. The Spindler & Hoya polarizer, model 10K, belongs 

to the family of polarizers in which the polarization selective transmittance is achieved 

by means of oriented polymer chains with imbedded crystals. The unpolarized light 

loses its component polarized parallel to the direction of the polymer chains because of 

high absorption. As a result, the transmitted light is linearly polarized, as shown in 

Fig. 17. The quality of the device is quantitatively characterized by an extinction ratio: 

the ratio of the minimum of the transmission coefficient, when incident light is linearly 

polarized in direction parallel to the direction of the polymer chains, to the maximum 

of the transmission coefficient, when polarization of the incident light is perpendicular 

to the direction of the polymer chains. In other words, it is a ratio of the mutually 

perpendicular linearly polarized weakest and strongest components of the transmitted 

light, when the incident light is unpolarized, or when it is circularly polarized. The
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Figure 17. Principle of the Spindler & Hoyer polarizer.
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quoted extinction ratio in our case was 1:10000. The operation of the two other 

polarizers, used in the experiment, the Wollaston polarizer and the Glan-Thompson 

polarizer, is based on the property of uniaxial crystals to exhibit a different index of 

refraction depending on the polarization of the light. Accordingly, a beam of light with 

proper direction of propagation and with an arbitrary polarization will be physically 

split in such a crystal into two beams, one with polarization direction perpendicular to 

the crystal axis (called an ordinary beam), and the other with direction of polarization 

perpendicular to the first (called extraordinary). Both polarizers are designed as a 

combination of two prisms (see Fig. 18 and Fig. 19). In the Glan-Thompson polarizer, 

which is a modification of the Nicol prism, the ordinary beam experiences total internal 

reflection at the interface of the prisms and is subsequently absorbed. The output 

extraordinary beam is linearly polarized. The Wollaston polarizer is designed to 

provide large angular separation of the ordinary and the extraordinary beams, which as 

the two output beams, are linearly polarized in mutually perpendicular planes. The 

quoted extinction ratio for both devices is 1:10000.

As already described, for the 90° rotation of the direction of polarization of beam 2, 

the liquid crystal retarder was used. In the liquid crystal, a medium with an orderly 

arrangement of long, rod shaped molecules in a liquid phase, the mutual orientation of 

the molecules is defined by the properties of the specially prepared optical windows of 

the container and by the applied control voltages. These, in turn, define the polarization
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direction of the transmitted light. By proper positioning of the device and fine adjust

ments of the control voltages, we were able to achieve a typical contrast ratio of 1:4000 

for both directions of polarization of the output beam.

III.4.3. Frequency control of the dye laser

During each experimental run the frequency of the Titanium-Sapphire laser was 

fixed, and the frequency of the dye laser was changed in two hundred small steps over 

an interval of ~2.0 cm'1 . The purpose of this “scanning" procedure was two-fold. First 

of all, it allowed reliable definition of the background level as the number of 

photocounts in the first and the last approximate quarters of the scan (see Fig.20). 

Secondly, it effectively averaged the signal over all hyperfine structure components of 

the levels involved in the two-photon transition. By doing this a null effect of hyperfine 

structure was assured (see section II .6).

It seems natural to have scanned the Titanium-Sapphire laser frequency, because the 

dye-laser light polarization is being rotated and the effect of the liquid crystal retarder, 

used for rotation,generally speaking, is frequency dependent. However, scanning the 

Titanium-Sapphire laser was found to be impossible. Our method of scanning requires
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an etalon in the laser cavity, which also narrows the laser bandwidth. Installation of the 

etalon in the Titanium-Sapphire laser caused so much narrowing, that the partial 

resolution of the hyperfine structure had a pronounced effect on the results of the 

polarization degree measurements. On the other hand, we found that scanning had no 

effect on the performance of the liquid crystal retarder at our experimental precision. 

Therefore the etalon was removed from the Titanium-Sapphire laser and the frequency 

of the dye laser was scanned.

The frequency was scanned by changing the angular position of the etalon in the laser 

cavity. The etalon is mounted on the arm of a galvanometer and rotated when an 

applied voltage changes. This change is controlled by the main computer as follows.

The output analog voltage of the digital to analog converter, Metrabyte Corp., Model 

DAS-20, is set by the main computer, combined with the voltage from a precision 

source, Sorensen Power Supplies, Model QHS 40-.5 and applied to the galvanometer, 

as shown in Fig.21. During the scan the wavelength is measured by a Fizeau wave- 

meter. This high precision device under certain conditions showed a repeatable 

malfunction: the readout wavenumber increased by 5.0 cm'1 without actual change of 

the laser frequency. This caused an irrecoverable interruption of the experimental run 

routine. We speculate that this was caused by partial failure of some electronic 

component of the devise. The simple and reliable way around this problem was 

achieved by a small rotation of the birefringent filter by an electromagnet when
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approximately 7/8 of a run was completed. This small rotation brought the central 

frequency of the laser, defined by the position of the birefringent filter, closer to the 

actual output frequency, defined by the etalon, without changing the latter. This caused 

the mentioned malfunction to disappear. The schematic diagram of the circuit control

ling the electromagnet is shown in Fig.22. The command from the main computer 

issued to the digital to analog converter, activates the electromagnet, which through the 

lever, adjust the position of the birefringent filter.

III.4.4. The Fizeau wavemeter

The Fizeau wavemeter is a device used for precise measurement of the wavelength of 

the dye laser light. The quoted accuracy is one part in 106 . The wavemeter consists of 

the Optical Component Package, Controller, and the Display Unit. A schematic of the 

Optical Component Package is shown in Fig.23. The laser beam whose wavelength is 

to be measured, is shone into the wavemeter by the external Far Mirror and Near 

Mirror. The laser beam enters the wavemeter through the Input Aperture (IA ). The 

intensity of the beam is adjusted by a Variable Attenuator (VA). Then the beam is 

directed by the two Turning Mirrors (TM1 and TM2) into a Microscope Objective 

(MO), and focused into a Pinhole (PH). This spatially filters the beam. The expanding 

beam is collimated by the Off-Axis Parabolic Mirror (OAPM) and directed onto a
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Figure 22. Circuit for controlling the electromagnet, rotating the birefringent filter of the 

scanned laser.
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Figure 23. Schematic of the Fizeau wavemeter.
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Fizeau wedge. The Fizeau wedge consists of two optical plates and a small spacer and 

is mounted in the Vacuum Can (VC). A beam reflected from its inner surfaces creates 

an interference pattern, in the form of parallel straight lines, which is focused by a 

Cylindrical Lens (CL) onto a linear 1024 element CCD Array. The interference pattern 

recorded in the CCD is used to determine the wavelength by the Controller unit and 

sent through the RS-232 digital interface to the Main Computer.

III.5. Signal detection

The intensity of the cascade fluorescence 7p2Pj-5s2S1/2 at -359 nm is used as a 

measure of the two-photon 5s2SI/2~8s2S1/2 absorption rate (see Fig.24). For detection of 

this fluorescence a THORN-EMI Electron Tubes, Model 9235B, photomultiplier tube 

with a bialkali photocathode (Rb,Cs) was used. In front of the photomultiplier tube a 

color glass filter UG1 (1mm) and an interference filter, Oriel, Model #53410 were 

installed to filter out the spectral region of interest. The number of the photoevents 

was counted by the photon counter SR400 and sent into the main computer throught the 

RS-232 digital interface.
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Figure 24. The wavelength of the signal observation.
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Each daily experimental procedure included the following preparation steps:

#1 Tume the lasers and the electronic equipment on and wait for temperature stabiliza 

tion.

#2 Tune the lasers for maximum power and TEMqq mode.

#3 Align the probe beam pickup with the Fizeau wavemeter.

#4 Tune the probe laser to the target wavelength.

#5 Adjust the direction and size of the laser beams to achieve nearly colinear (-25  

mrad) beams, low divergence (-25 mrad) and intersection in a narrow (-35 /xm 

radius) interaction region.

#6 Install the Glan-Thompson polarizer in the pump beam and the Spindler&Hoyer 

polarizer in the probe beam at normal incidence.

#'7 Install and align the analyzer (Wollaston prism) with polarization of the probe 

beam ( minimum light intensity monitored using the power meter head and the 

oscilloscope).

#8 Angularly align the Glan-Thompson polarizer with the analyzer ( minimum light 

intensity monitored using the power meter head and oscilloscope ; this yields the
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initial direction of pump polarization corresponding to parallel pump and probe 

polarization ).

#9 Install the Liquid Crystal Retarder (LCR) in the probe beam and coarsely align the 

optical axis with the probe beam initial polarization at A/2 retardance by manually 

rotating the LCR and visually observing the minimum intensity of the correspond 

ing analyzer output.

#10 Performe fine angular adjustment of the LCR ( minimum light intensity monitored 

using power meter).

#11 Electronicaly adjust the LCR A/2 retardance at target wavelength (Fizeau 

readout).

#12 Same for zero retardance.

#13 Start the computer program controlling the LCR with settings for retardancies 

obtained in #11 and #12.

#14 Remove the analyzer, install the cell with the Rb sample at the intersection of the 

beams and set the temperature of the sample.

#15 Observe the two-photon signal by the photomultiplier tube and maximize it by 

adjusting the photomultiplier tube position, cell axial position and micrometer 

controls of the probe beam.

#16 Perform the polarization measurements at angular positions of the Glan-Thompson 

polarizer +45° from the original position ( pump polarization direction +45°
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Note that a result of step #16 equal to +  .2 (.2) % is considered as satisfactory. In 

this case the device is ready for routine measurement of the polarization degree at the 

set detuning. Otherwise steps #6 to #16 are repeated until step #16 yield a satisfactory 

result.

III.7. Measurement process

After the devices have been prepared, the process of data collection is controlled by a 

computer program, coded in Quick Basic, running on the main computer. At the early 

stages of the experiment, the sequence of steps in the data collection was following. 

First, the initial wavelength was set by proper positioning of the etalon. Then the 

polarization of the probe was set in parallel configuration. The fluorescence photons 

were counted during one second. Then polarization of the probe was set in perpendicu

lar configuration and fluorescence photons were counted during one second. This was 

repeated 200 times at all increments of the frequency of the probe laser. It was realized 

in course of the experiment, that in such mode of the data collection, the slow drift of 

the Titanium-Sapphire laser frequency can cause a considerable effect because of the
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possible distortion of the signal curve shape. To reduce the effect we buffered the 

cooling water for the Titanium-Sapphire laser medium. Also the protocol of the data 

collection procedure was changed. Namely, the order of parallel and perpendicular 

configurations of the polarizations of lasers was inversed at each step of the scan. This 

reduced the effect of the slow drift of the Titanium-Sapphire laser frequency, and 

reduced the number of polarization switches per run by a factor of 2. Thus the time of 

one experimental run was shortened from -20 min to -15 min. The result of a typical 

experimental run is shown in Fig.20.

IV. Systematic tests

The systematic tests are specific experimental procedures, designed to reveal 

systematic errors which must subsequently be removed or properly accounted for. The 

systematic errors inevitably occur as a result of repeatable improper functioning of 

experimental devices or repeatable peculiar experimental conditions, which were not 

understood adequately. Such effects can cause repeatable shifts of the results of 

experiments, and, if not identified, result in erroneous experimental outcomes. In order
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to test the experimental devices against systematic errors, their functions must be 

compared with functions of similar (external) devices. Differences would then indicate 

a problem. To find these errors, the routine experimental conditions must be altered to 

the highest possible degree. I f  such alterations cause changes in the experimental 

results, the mechanism of these changes must be understood and measures taken to 

either avoid them in the routine experiment or to properly account for them. This sort 

of experimental procedures is most effective if a preliminary idea of a possible 

systematic effect is present. But they must be performed even if  no systematic effects 

seem to be likely a priori: systematic tests can sometimes prove the preliminary guess 

to be wrong.

This section discribes the systematic tests we have performed. It starts with a detailed 

consideration of two examples, typical and instructive, and then continues with a brief 

description of the remainder. The first example is concemes the performance of the 

photomultiplier tube and photon counter. Our initial settings of the discriminator level 

and PMT voltage to optimize the signal to noise ratio were 1 lOmV and 950V respec

tively. In the course of the polarization measurements it was observed that the absolute 

value of PL increased if the rate of photon counting was increased. After a helpful 

discussion of this matter with the technical personnel of the manufacturer of the 

photomultiplier tube, THORN-EMI Electron Tubes, it was realized that one possible 

cause of the problem is registration by the PMT of multiphoton events. We performed
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a set of careful tests and found that this was a most likely cause. The problem was 

corrected by lowering the discriminator voltage to 55mV, PMT voltage to 820V, and 

restricting the maximum counting rate to about 15000 s'1. The explanation is as 

follows. If  the counting system registers only single - photon events, then

H, = a' L

n± = a' I ±
(48)

where n, (n j is the number of counted photons per second in the parallel (perpendicu

lar) configuration, I,, (IJ  is the corresponding intensity of the fluorescence from the 

interaction region of the sample, and a' is some proportionality constant. In this case 

the measured polarization degree

«„ -  n /„ -  I,
r L = - — 1 = t — r  (49)

has the correct numerical value and will not change if the intensity changes, for 

example, by changing the sample density or laser(s) power. If  the counting system 

registers only two-photon events, then there will be no change in the measured value of 

PL with changing I ( and I± although in this case the numerical value of PL will be 

wrong. In this case one has :
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where P' is another proportionality constant and

(51)

The quadratic dependence in eq.(50) reflects the fact that the probability of two photons 

arriving at the photomultiplier tube cathode at the same time is taken to be a product of 

the probabilities of two independent single-photon events.

In the case, when the counting system register both kind of events, one (nm,n±1) and 

two photon (n||2,nl2), the measured polarization degree is

(52)

where

(53)

The numerical value of P'L will be close to the correct one if
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«u » «||2

n . » n ,Xl x2

(54)

In this case to a good approximation 

p 'l = Pl + “ 7i p l ( 1 " ) (55)

At a discriminator level of 55 mV the measured PL at fixed detuning and varying 

counting rate ( from 21,000 to 330,000 s'1) yielded a value of a equal to 1.32 x 10'8 

sec/counts. Thus the nonlinearity of the counting system, at the counting rate close to 

15000 sec'1 will produce a shift in the measured PL close to 2 x 10"4 , which is 

approximately 10 times smaller, than the typical statistical uncertainty of PL, and can 

therefore be neglected. At a discriminator level of 1 lOmV the effect of the two photon 

events became severely enhanced. As a result of this systematic test, the a new 

investigation of optimal parameters (photomultiplier tube voltage and discriminator 

level setting) for the best signal/noise ratio was carried out. With new parameters, tube 

voltage -820V and discriminator setting 55mV and maximum counting rate close to 

15000 s"1 the problem was eliminated. The readout of the photon counter SR400 was 

checked against the readout of the Synthesizer / Level Generator, Hewlett Packard, 

Model 3336C ; these were identical.

Another example of a systematic test is the investigation of the effect of the width of
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the two-photon resonance signal on the measured polarization degree. At the initial 

stages of the experiment the two laser beams were counterpropagating and etalons were 

present in both lasers. These conditions are technically most convenient: alignment of 

the laser beams is easier when they are counterpropagating,and the frequency of the 

laser light is reliably controlled by the angular position of the etalon, as described 

earlier. Unfortunately these conditions also lead to the most narrow two-photon signals. 

First of all, the Doppler broadening is almost absent for the counterpropagating 

beams case [58], while in the case of copropagating beams at the typical experimental 

temperatures (80°C) the Doppler broadening is on the order of 4 GHz. Secondly, as 

already discussed, the bandwidth of the Titanium-Sapphire laser with the etalon is 

approximately 3 GHz, but without it is between 8 GHz and 15 GHz. The two photon 

signal shape, in the most narrow case, indicates the partial resolution of the ground 

state hyperfine structure. The clear indication of this can be seen in a following 

argument. In the configuration under discussion (narrow Titanium-Sapphire laser) the 

lasers widths are 0.101 cm'1 and 0.186 cm'1. The corresponding convoluted bandwidth 

is equal to .21cm'1 . Ignoring the excited state hyperfine splitting, one can represent the 

shape of the signal by the sum of four Lorentzian profile functions of halfwidth 

0.21cm'1, centered at -0.0853cm'1, -0.042cm'1 +0.059 cm'1 and + 0 .142cm'1 (isotope 

shift is included) with amplitudes equal to the degeneracy of the corresponding ground 

state hyperfine component weighted by the natural abundance of the isotope, i.e. 1.4;
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(56)

5.04; 3.60; 0.84 respectively:

_ * 0.0853 ̂

p, = 1.40c 2 021 (F=2fRb)

.  1 ^  0.0420

p2 = 5.04c'2 °-21 (F=3fRb)

_ -  0.0590^

p3 = 3.60c 2 021 (F=2fRb)

l ( fc -  0.1420^

p4 = 0.84c 2 021 (F=\?Rb)

The resulting function is shown in Fig.25 and its shape is similar to the shape of the 

real signal, with two pronounced peaks, Fig.26.

The partial resolution of the hyperfine components can result in so-called “optical 

pumping" [66a,69]. In the present experiment, the typical linear dimension of the 

interaction region is on the order of 100pm. The atom with the typical thermal velocity 

of 300m/s will spend approximately 3x 10'7 s in this region, which can be several 

times longer for the atoms, traveling in axial direction (y-axis on Fig.4). This is the 

same order as the decay time for an atom excited to the 8s2S1/2 level [27]. Therefore it 

is likely, that a significant (in a high precision experiment point of view) fraction of the 

atoms will participate in two-photon absorption more than once before leaving the 

interaction region. For such atoms the effect of optical pumping among the ground 

state hyperfine levels will take place with subsequent change of the absolute value of
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the measured polarization degree, an effect we actually observed. An appropriate 

rearrangement of the experiment excluded this effect completely. We achieved the 

broadest possible two-photon signal by using copropagating laser beams and removing 

the etalon from the Titanium-Sapphire laser. The pronounced feature of polarization 

measurement in the narrow case, decreasing polarization degree with increasing laser 

power, was completely eliminated.

The effects of laser power were tested by attenuation of the probe laser by factor of 

10 and by attenuation of the pump laser by factor of 102'4. With the broad two-photon 

signals no statistically significant effects were detected in either case.

Additional tests included the investigation of the possible density effects on the 

measured polarization degree. We changed the density of the sample from 2.5 x 1011 

cm-3 to 7x  1012 cm'3 (the typical experimental density was close to 1 x 1012 cm"3). No 

statistically significant change in the measured PL was detected.

The effect of the finite angle between laser beams was tested by intentional increase 

of this angle by factor of 2 (50 mrad instead of the usual 25 mrad). This produced no 

statistically significant result. The effect of the shift of the observation point with 

respect to the sample cell was investigated by moving the photomultiplier tube off the 

x-axis (Fig.9) by ±45° and by changing the distance from the tube to the cell from 

~5cm to ~20cm. In both cases no effect was detected.

The routine systematic tests of the polarization properties of the device, as a whole,
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were performed before each set of routine runs at a given detuning by measuring the

polarization direction of the probe (see Device Preparation section). No data was taken, 

unless the result of this test was +0.2(0.2)% or better.

The rigorous tests of the Fizeau wavemeter performance were critical for this 

experiment. The measurement of a single line Ar+ ion laser (Coherent, Model Innova- 

70) output yielded value AmMS=488.1110 nm (all numbers correspond to vacuum), 

which is different from the nominal value Anom=488.1225 nm by

The measurement of the He - Ne laser wavelength yielded value Ameas =632.9760 nm 

which is also different from the nominal value Anom =632.9914 nm by

polarization degree with pump polarization direction set at ±45.0°(0 .1) to the nominal

'meas'nom (57)

with the relative error equal to

'nom

(58)

'measnom = 0.154 A (59)

with the relative error
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a  1 HeNe
— -----  -  2.4xl0 '5 /60)

yHeNe  VO U J
nom

These relative errors are considerably larger than the quoted precision of the device 

(+1 in 106), but sufficiently small for a simple standard procedure of re-calibration, 

called a Single Point Calibration. The procedure was carried out against the Ar+ ion 

laser single line (4881.225 A) output. Consequently the measurement of a He - Ne laser 

wavelength (and, of course, the single line Ar+ ion laser wavelength) gave the exact 

nominal values. During the experiment the periodic check of the Fizeau wavemeter 

performance was accomplished by measuring the wavelength of the resonant 5p2P,/2 

8s2S,/2 and 5p2P3/2 -  8s2S1/2 in Rb. The typical results (in vacuum wavenumbers units) 

are summarized in the following table:

Tablel. Comparison of the nominal and the measured resonance transitions 
wavenumbers.

Resonance
transition

n̂om  ̂̂ nom
(cm1)

kmeas 1 ̂ nicB
(cm1)

A k = lw  Korn 
(cm1)

A k/k^

5p2Pi/2"*8s2S1/2 16467.88(1) 16467.89(2) 0.01 6.1 x 10"7

5p2P3/2"*8s2Si/2 16230.28(1) 16230.29(2) 0.01 6.2 X10'7
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The typical uncertainty in polarization degree, due to deviations of the measured 

wavenumbers from the nominal values, is thus smaller, than 2% x 10"6 (see Fig.27), 

this value being totally negligible comparing to the typical statistical uncertainty o f PL 

(±0.23% ).

The birefringence of the sample cell windows was tested by inserting the cell in its 

normal experimental position (see Fig.9) when all polarizers and analyzers were 

properly aligned. A typical contrast ratio of 1/4000 was obtained in parallel and 

perpendicular configurations. Typically the smallest contrast ratio was 1/2000. The 

thermal stress of the windows was routinely reduced by a simple procedure of thermal 

annealing after each experimental run. We summarize the results of the systematic tests 

in the following table:

Table 2. The systematic effects budget.

Parameter Lasers
power

Sample
density

Beams
divergency

Counting
nonlinearity

Observation
geometry

APl (%) 0.02 0.003 0.01 0.02 0.017

The net average uncertainty of the measured PL, due to average counting statistics 

uncertainty (0.23%) and all factors listed in the table, combined in quadrature is

0.233%.
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V. Results

The result of our experiment is a polarization spectrum of the atomic rubidium, 

obtained in the range of detunings from - 417 cm'1 to +99 cm'1. The spectrum is 

represented by 105 experimental points, polarization degree vs. detuning (Fig.27), 

gathered in 23 groups. In each group the detunings, corresponding to individual points, 

are close to each other in detunings (the typical differences are -0.05 cm'1), and 

therefore the experimental points from one group are almost indistinguishable on the 

graph. The average uncertainty of any single measured polarization degree is 

+0.233%, which is almost entirely due to the statistical uncertainty of numbers of 

photons. The average uncertainty of the measured detuning is +0.02 cm'1. Such error 

bars are too small to be seen on the scale of the Fig. 27.

The solid curve on Fig.27 is a fit to the data, using the theoretical polarization shape, 

defined by Eq.(39),(40) and Eq.(35). It corresponds to the following set of parameters: 

R =  1.013, p =  -6x  10'5 cm, and q =  2x  10'6 cm. The plot of the corresponding 

residuals ( defined as a difference of the measured and the theoretical polarization 

degree) is shown in Fig.28. The solid horizontal line at -0.017% shows the average 

residual. Two other horizontal lines indicate a standard deviation of 0.20%. The fitting
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procedure was carried out in a 3 - dimensional free parameter space, { R, p and </}, and 

was based on an algorithm, described in [70]. The minimum of the x2> equal to 

approximately 77, defined the parameter q uniquely. (Recall, that number of the 

experimental points is 105, so the number of the degree of freedom is 102). The two 

other parameters, R and p, can be varied over a wide range of values, without changing 

X2 significantly. The variations of R and p consistent with minimum %2 are not 

independent, as any value of R yields a unique value of p and vice versa. In the 

process of the fitting it became evident that the values of R and p, initially considered 

independent, are strongly correlated. Several attempts to avoid correlation, by forming 

some different then PL functions of the experimental data (N, and ) and fitting to 

them the corresponding theoretical functions, led rapidly to the realization that separate 

determination of R and p requires an experimental precision several orders of magni

tude better than that obtained - a totally unrealistic requirement at the present time. We 

realized that the correlation of R and p, defined at the current level of precision of our 

experiment, represents by itself an extraordinarily exact and valuable piece of informa

tion about atomic rubidium.

The nature of the correlation can be best understood when one considers the global 

features of the theoretical polarization degree curve. For R >  0 in the considered 

region of detunings, the PL(A) curve has one minimum (PL=-100%) at some detuning, 

located between 0 and -237.60 cm'1 (for R close to 1 and p  close to zero this detuning
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is close to -158.4 cm'1 which is 2/3 of the fine structure splitting). We will refer to 

this minima as a critical point cocl. The two other important points, namely A =  0 cm'1 

, Pl (A) =  60 %, and A =-237.60 cm'1, PL(A) =  0 % are to a very high level of 

precision independent of the values of R, p and q, as one can see from Eq.(39),(40), 

and(35). These points we will call the critical points coc2 and toc3 respectively. The 

weak-field radiative properties of the system under consideration define only the 

position of the critical point oocl, but the positions of wc2 and wc3 are independent of 

them. What is affected by these properties, except for the exact position of cocl, are fine 

details of the curvature of the curve PL(A) between and outside the critical points. 

These, however, are so small that it would require an experimental precision, several 

orders of magnitude better than ours to extract R and p separately from the direct 

experimental data. Although such precision is possible in principle, from a practical 

point of view one has to consider the actually obtained information, in the form of the 

correlation of R and p, as an experimental state-of-the-art outcome of this experiment. 

When this was realized, in order to test this point of view, the fitting procedure was 

changed: instead of considering R and p as independent parameters, they were related 

through the equation

PL<Pe) = " 100 0/° (61)

which defines the location of « cl. Then in the fitting procedure the parameters R, o)cl,
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and q were taken as the independent parameters. The fitting procedure yielded a 

unique value of

« C| = -  155.82 cm '1 ± 0.03 cm '1 (62)

where the uncertainty corresponds to an increase of x2 by 1 from its minimum value. 

The value of R again can be varied in a wide range, without changing x2- Substitution 

of Eq.(62) into Eq.(61) yields a linear relation between R and p, almost identical with 

the one deduced from the correlation of R and p when they were treated as independ

ent parameters in the fitting procedure:

R = 1.01756 (57) + 81.466 (15) p (63)

where p is in units of cm and R is dimensionless. We accept this as a confirmation of 

the idea, that the position of the critical point ojc1 dominates the entire experimental 

spectra in the investigated region. Eq.(61) with precisely defined coCI, Eq.(62), presents 

a global characteristic of the radiative properties of the studied system. It relates the 

relative size of the electric dipole matrix elements between initial, final and the main 

intermediate states on one side, to these, contributed to the two-photon absorption 

process, by the higher excited intermediate states, on the other. This kind of a global 

information can be compared to the case, when the lifetime of a highly excited state of 

an atom is known and several channels of decay are possible. What is different in this
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case is that, unlike the lifetime case where the often compatible branching ratios 

completely blend information about separate transition probabilities, the modest 

precision in estimation of the contribution of the higher excited intermediate states, 

when it is small, will yield a high precision result for the main intermediate state.

When the contribution of the higher excited intermediate states is estimated as not too 

small, then the requirements for precision of estimation became more severe.

Let us examine the precision with which R can be obtained from our results. We 

want to obtain an order-of-magnitude estimation of p, so the results of relatively 

simple calculations based on the Coulomb approximation (fine structure is ignored) [71] 

will be sufficiently accurate. The absolute values of the required ratios of the reduced 

matrix elements, obtained from these calculations, are summarized in the following 

table (the contributions of the intermediate nP-levels, with n higher then 10 are 

neglected, which is justified in this estimation):

Table 3. Ratios of the radial matrix elemens products.

Sn =[<8s||r||np> <np||r||5s>] x [<8s||r||5p> <5p||r||5s>]'1 , n=6-10.

S6 S7 $8 S9 Sio

0 .456 1.831 1.750 0 .153 0 .049
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The summation of the corresponding contributions to p, with no possible cancella

tions considered, give p ~ -10'3 cm. Note, that the absolute value of this estimation is

probably too high, as all of the contributions to p will likely not have the same sign.

Let us assume that p is more rigorously estimated to be -10'3cm with the uncertainty of 

10%, i.e.

p = -lx lO '3 ( 10‘4 ) (cm) (64)

Substituting this into eq.(63) yields 

R = 0.9361 ± 0.0088 (65)

Thus the relative precision for R is on the order of 1 % - 10 times better, than that of p. 

If  the value of p, found in a more careful theoretical estimation, would be on the order 

of (-lO^cm), with the same precision of 10%, the precision of r would become 0.1 %.

The obtained spectra also indicates that the parameter R has a positive value. For 

negative R the maximum of PL at +100% would have been observed at some 

detuning between 0 cm'1 and -237.60 cm'1. In other words, there is no detuning in the 

considered spectral region where Ix=0. This fact is manifested in the fitting procedure 

as well: there is no correlation between R and q ; q has a unique value

q = 2 x 10'6 (5) (cm) (66)
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This quantity represents information about the combined effect of the relativistic and 

many particle corrections to the hydrogenic wavefunction of a family of levels of the 

rubidium atom involved in the studied process of the two-photon absorption. The 

relation of R and p and the q value itself, can be considered as a specific, experimen

tally established sum rules and serve as a test for the validity of the theoretical 

wavefunctions.

VI. Conclusions

As a result of the measured two-photon polarization spectra, the precise relation of 

parameters of the rubidium atomic structure, R and p was established (Eq.63) and a 

unique value of the parameter q was obtained (Eq.66). These parameters characterize 

the combined effect of the relativistic and many body corrections to the initial, final, 

and the principal intermediate states wavefunctions of rubidium ( R parameter), and 

those due to the more energetic intermediate states ( p and q parameters) involved in 

the investigated two-photon absorption. The obtained results can be used as a bench

mark for testing the accuracy of theoretical wavefunctions.

From the experimental point of view, this investigation, as well as that carried out 

previously [72], show that the technique of two-photon, two-color polarization
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spectroscopy is a powerful tool for obtaining precise information about the radiative 

properties of the atoms. Some features of this technique, namely the easily achievable 

low background level, insensitivity to drift of the laser power, frequency and naturally 

avoided single photon resonances, make it much better than some traditional spectro

scopic techniques.

This technique can be properly modified for use in Rayleigh scattering experiments, 

and the possibility of this is being considered. In the described experiment the main 

intermediate levels of the process are represented by the fine structure components of 

Rb : 5p2Pm and 5p2P3/2. With the appropriate choice of the sample and laser frequen

cies, different orbital wavefunctions can be selected for this purpose, for example the S 

and D orbitals in P-{S;D }-P  transitions or nP (n ± l)P  in S-{nP;(n±l)P}^{S or D} 

transitions. In such experiments the properties of the involved orbitals can be com

pared with each other in a manner similar to that presented in this work and new useful 

and precise information about the atomic structure can be revealed.
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