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ABSTRACT

This dissertation is concerned with finding the values for the nuclear 

cross sections used in the Boltzmann equation for space radiation transport 

and dose estimates. An extraordinary number of cross sections are required 

because of the large number of ion types and their extensive energy range, The 

Lippmann-Schwinger equation is numerically solved in momentum space for 

a first order optical potential (free space case) and calculations are made for 

the total and absorption cross sections for nudeus-nucleus scattering. 

Absorption cross sections are also calculated using a medium modified first- 

order optical potential in the Lippmann-Schwinger equation and are compared 

with experimental values. Results are presented for the absorption cross 

sections for 4He-Nucleus and 12C-Nucleus scattering systems and are compared 

with experimental values below 100 A MeV. The use of the in-medium nucleon- 

nucleon cross sections is found to result in a significant reduction of the free 

space absorption cross sections, in agreement with experiment. We have also 

reformulated the Glaubermodel of heavy-ion fragmentation to treat the cluster 

abrasion of alpha particles from a-cluster nuclei such as 12C, 160 , 20Ne, ^Mg, 

^Si, ^Ar, and "“Ca. Comparison of the calculated values is made with recent 

experimental data and good agreement is found. The energy dependence and 

the target mass dependence of cluster knockout cross sections for the 160  

projectile are discussed. The inclusion of clusters knockouts is shown to 

significantly modify transport properties of space radiations.
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Chapter 1

Introduction

The study of radiation hazards to the crew of manned space flights 

beyond the Earth's magnetosphere has been of great interest for many 

researchers for the last four decades. There are three main sources of radiation 

hazards present in the atmosphere: trapped particle radiation (Van Allen 

Belts), solar particle events (SPE), and galactic cosmic rays (GCR). The trapped 

radiation consists mostly of electrons and protons trapped in closed orbits by 

the earth's magnetic field. The galactic radiation consists mostly of protons, 

with a small admixture of helium ions and an even smaller component of 

heavier ions. The solar particle radiation consists mostly of protons, with a 

small contribution from helium ions and heavier particles. The differences 

between the last two categories are mainly in the vastly different distributions 

of particle energies involved and in the sporadic nature of the solar 

disturbances producing the solar particles as compared with the more slowly 

varying nature of galactic particle intensities. The effects resulting from large 

radiation doses acquired in a short period are of major concerns in the study 

of SPE transport. SPE's are characterized by their intensity, duration, and 

spectra of energetic particles. The primary particles in SPE's are protons in an 

energy range of 10 A MeV ( 10 MeV /  nucleon) to several hundred A MeV.

The high energy particles such as protons, deuteron, triton, alpha, and 

other heavier ions present beyond the Earth's magnetosphere are the main

14
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constituents of the GCR. These particles deposit a large quantity of energy per 

unit distance traveled in tissue or shielding materials. Therefore, they are 

much more hazardous to body tissues than are the X-rays. Nuclear reactions 

modify the composition of the galactic cosmic rays (GCR) in free space and in 

absorbers such as space craft and tissue. Due to this, the internal radiation 

environment within the spacecraft may change. This alteration in the 

environment depends on the geometry, thickness, and the type of materials 

used in the spacecraft. A transport model should express the transm itted flux 

as a function of spatial location, kinetic energy, and the direction of particle 

motions. There are three major areas of concern in the study of the processes 

involved in the transport of these radiation fields through the space shielding 

materials. These are: the ionized energy loss through collisions with atomic 

electrons; the nuclear elastic and inelastic collisions; and the nuclear reactions, 

such as fragmentation. Since fragmentation may result in light ion production, 

which may alter the transmitted radiation field, it becomes the leading area 

of concern.

The propagation of radiation fields is described by Wilson et. al. [1] 

using the Boltzmann equation, which can be derived by considering mass and 

energy conservation. The solution of the Boltzmann equation gives the particle 

flux and energy everywhere within the boundary of the target medium. In the 

straight-ahead approximation, we neglect the changes in the particle directions 

after collisions, since the kinetic energy of the SPE or GCR particles is very
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high. One therefore considers the one dimensional Boltzmann equation [1] 

given by,

E) = £  fo^ E , E 1) * /* , E 1) dE' (1)

In equation (1), 4>; is the flux (number of particles crossing a unit area per unit 

time) of type i ions at position x and E is the energy. The quantity Cj(E) is the 

corresponding macroscopic nuclear absorption cross section (per unit length). 

Here the stopping power S;(E) is the change in energy per unit distance and 

CTg(E, E1) is the cross section (per unit length) for producing ion i from a 

collision by ion j. Equation (1) can be written as [2]:

ox oh
(2)

00

= E  £ l) dE'
J 0

where V; denotes the range-scaling parameter and is equal to Z^/Aj, Z is the 

charge and A is the mass number. The quantity i~ is the differential energy 

cross section and it obeys the relation,

00

E) dE = mv (3)
0

where m  ̂is the multiplicity of producing ion i from a collision by ion j, and aabs
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is the corresponding macroscopic absorption cross section.

The method of calculation used in determining the stopping power has 

been described in reference [1]. The dominant contribution in a shielding 

calculation is associated with energy loss through ionization [3] due to a 

collision between an incoming charged particle and an orbital electron of the 

shielding material. These interactions involve many small energy exchanges 

along the path. A great deal of research has been devoted to the study of 

stopping power [4-12], Bethe [4] derived an expression for the stopping power 

using the Bom approximation. A detailed derivation of the Bethe expression 

for stopping power was fully reviewed by T .amkin [10]. Lam kin [10] and Chun 

[12], in their Ph. D. dissertations at Old Dominion University have considered 

the transport of energetic nucleons through extended bulk matter. They have 

developed an analytical approach to the nucleon transport problem called 

BRYNTRN th a t helps for numerical implementation. The BRYNTRN (Baryon 

Transport) code [13-17] represents one of the products of a collaboration 

between the NASA Langley Center and the Radiation Physics Group at Old 

Dominion University during the past 25 years, the BRYNTRN code provides 

the transport methodology for the typical radiation case using a varying 

thickness of aluminum slab shielding followed by the tissue media.

It is essential that the concepts of radiation physics that refer to the 

properties of the radiation field be augmented by quantities that relate to the 

interaction between the radiation field and matter. Among these radiological
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quantities perhaps the most fundamental and important are the absorbed dose 

(D) and the dose equivalent (H). The absorbed dose is the amount of energy 

imparted by ionizing particles per unit mass of the material a t the place of 

interest. Its unit is the RAD (100 erg per gm). The dose equivalent is defined 

as the product of the absorbed dose D, and the quality factor (Q) of a given 

radiation. The unit of dose equivalent is called the REM. The quantity Q is a 

dimension-less quantity as determined by International Commission on 

Radiation Protection (ICRP-60) [18].

The absorbed dose D due to energy deposition at a given location x by 

all particles is calculated according to [1] as

00

O to  = E  / s , ®  4>/AT, E) dE C4>
J 0

where <t>j(x,E) is the flux calculated from equation (2), and the quantity Sj(E) is 

the stopping power.

The value of the dose equivalent H is computed as [1]

00

m  = E  /< ? /* ) S/ Q  */*> £>dE (6)
J 0

The values of the dose equivalent H are used to specify radiation exposer 

limits.

This thesis is concerned with finding the values for the nuclear cross
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sections used in equation (2) and applying the results to the area of radiation 

protection. The nuclear cross sections and the differential energy cross sections 

used in  equation (2) are the major areas of concern in this thesis. The nuclear 

cross sections are calculated under the Kikonsl model [19, 20]. We have also 

calculated the nuclear cross sections by numerical solutions of the Lippmann- 

Schwinger equation (exact solutions) and have compared them with the 

Eikonal model cross sections [21,22]. Thus, we provide a major improvement 

to the nuclear data base. The differential energy cross sections are calculated 

using the abrasion-ablatian model [23].

In this thesis, we are going to focus on the importance of nuclear 

interactions of light and heavy ions with materials and the production of light 

ions from the heavier elements in the GCR and in the shielding materials. The 

need for a sound theoretical basis for high-energy elastic and inelastic 

scattering calculations is becoming very important in the analysis of high 

energy experimental data. It is therefore necessary to review the basic 

assumptions of multiple scattering theory and compare the results based on it 

with experimental data wherever possible. In the multiple scattering approach, 

information for the two-nucleon system is introduced via the t-matrix. In the 

past, many authors [24-27] have used the forward angle and on-shell 

assumptions to calculate the t-matrix. The on-shell approach follows from the 

neglect of nuclear binding in the Green's function (impulse approximation), and 

means that only the particular form of the nucleon-nucleon (NN) t-matrix
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which arises from the conservation of energy and momentum, needs to be used 

in the many-body problem. The second important assumption is the use of only 

the first order term of the optical potential in elastic and inelastic scattering 

calculations. In the first order optical potential, excitation of the projectile or 

target in intermediate states is neglected in the elastic scattering. The higher 

order terms of the optical potential correspond to correlation effects such as 

Pauli blocking [28]. The main approach in the study of high-energy scattering 

is the use of a microscopic optical potential that involves the formulation of 

scattering processes through a study of the interaction of each nucleon of the 

projectile with each target nucleon. Since the microscopic approach is more 

fundamental, and more information can be obtained about the scattering 

process, it is the microscopic approach that we will take in the study of heavy- 

ion collisions in this thesis. In the construction of the optical potential for 

heavy-ion collisions, a variety of approximations are discussed in chapter 3.

It is the purpose of this thesis to address nucleus-nucleus collisions 

through the microscopic first order optical potential based an the multiple 

scattering theory developed by Kerman, McManus, and Thaler [29], from now 

on referred as KMT. The KMT multiple scattering theory for proton-nucleus 

scattering has been studied extensively in relation to the Watson multiple 

scattering theory [30] by several authors [31-34]. The Watson multiple 

scattering theory rearranges the Bom series, using the two-body amplitude for 

scattering of a projectile by a target. In the KMT multiple scattering theory,
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the target nucleons are considered to be in ground states, i.e. excitation of the 

target nucleons is neglected in describing the first order optical potential. The 

advantage of the KMT approach is that the many body interactions can be 

approximated by two-body interactions.

Calculations of the reaction and absorption cross sections for a heavy ion 

projectile were well developed by Wilson and Townsend [19, 20] using an 

Eikonal approximation and a first order optical model. They used multiple 

scattering theory for scattering of two composite nuclei (neglecting three body 

interactions) developed by Wilson [35,36]. The Eikonal approximation is based 

on a forward scattering assumption, and on considerations of the strength of 

the potential [37]. A second order solution (i.e. using a second order optical 

potential) to the Eikonal coupled-channels (ECC) model was developed by 

Cucinotta, Khandelwal, Maung, Townsend, and Wilson [35-36,38-39] and was 

found to give improved accuracy over the first order solutions in limited studies 

for several collision pairs and energies.

In recent years, the validity of various approximations used frequently 

in multiple scattering theory have been investigated and this is another point 

of focus in our study presented here. There has recently been a systematic 

study of the Eikonal approximation using the microscopic optical potential by 

Wilson, Townsend, Cucinotta, and Khandelwal [35-36, 38-39]. The 

attractiveness of this study lies in the use of the two-body scattering amplitude 

in the optical potential, which involves two-body NN (nucleon-nucleon)
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parameters. To test the reliability of the HSkonal approximation, in this 

dissertation, we compare the Eikonal model calculations for heavy-ion 

scattering with the results obtained from exact numerical solutions of the 

Lippmann-Schwinger equation.

Another purpose of this thesis is to accurately predict a-knockouts in 

heavy-ion collisions a t high energy [40]. Much of this progress has been based 

on scattering experiments in which a proton is incident on a target. Analysis 

of these experiments reveals information about nuclear structure and the 

momentum distribution of nucleons in the nucleus. The large multiplicity of 

secondary a-particle in reactions suggests that the alpha knockout cross 

sections will have a wide range of uses in nuclear astrophysics and space 

radiation protection studies.

In a nuclear fragmentation reaction, in an inclusive measurement where 

light-ions are detected, the fragment momentum distribution is expected to be 

of Gaussian shape at small angles. The peak occurs at a velocity near th a t of 

the projectile. The reaction is usually described in a particle-spectator model. 

The spectator is assumed not to have interacted with the target, while the 

projectile fragments called participants collide elastically or inelastically with 

the target. The application of the Glauber theory [41] to these types of 

reactions has been made with reasonable success. The accuracy of the Glauber 

model for studying these reactions should be strongly questioned, since the 

energy conservation is ignored in this model. We expect thin to be a serious
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problem, because for reactions with three or more particles in the final state, 

validity of a small angle approximation in the Glauber model is not clear. We 

will trea t this problem in Chapter 5.

The remaining chapters of this work are divided as follows. In Chapter 

2, we discuss the multiple-scattering formalism for nucleus-nucleus collisions 

and the Eikonal approximation used in this dissertation. Using the Glauber 

model approach as discussed by Cucinotta, the Eikonal coupled channel (ECC) 

model is described. In Chapter 3, a first order optical potential for heavy-ion 

collisions based on the KMT model for multiple scattering is derived. The 

medium-modification of the optical potential is considered. In Chapter 4, we 

discuss one of the techniques used in solving the Lippmann-Schwinger 

equation in momentum space. We have extended the technique for the complex 

potential. In Chapter 5, a two step, participant-spectator model (abrasion- 

ablation) for fragmentation of the projectile or target is developed in terms of 

the Glauber profile function. The clustering effects in the heavy-ion 

fragmentation at the abrasion stage are discussed. We have extended the 

Glauber formulation of nuclear abrasion by considering energy conservation to 

generate response functions for exciting discrete levels of the pre-fragment. 

Finally, in Chapter 6, results of our calculations and future considerations are 

discussed.
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Chapter 2

Review of Multiple Scattering Theory and the Eikonal Approximation

2.1 Introduction

In this chapter we will review multiple scattering theory and the 

Eikonal approximation useful in the solution of the problems of this 

dissertation. Our starting point is the non-relativistic Hamiltonian. The 

separation of the Hamiltonian into relative and overall center of mass (CM) 

coordinates is made. Next, we will discuss the approximation methods which 

are widely used in scattering theory. Approximate treatm ents are obviously 

necessary in complicated physical situations where exact solutions are not 

available. It is convenient, however, to consider these approximations whenever 

possible in the simple case of potential scattering where their interpretation 

is simpler and their range of validity can be checked accurately. The Glauber 

model approach [41] and the Eikonal coupled channel (ECC) model [38] are 

discussed.

2.2 Kinematics

The Hamiltonian for a projectile nucleus of mass number AP and a 

target nucleus of mass number Ap interacting through a two-body potential is:

H  = H p + H T + V  (6)

24
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where the projectile and target Hamiltonians are given by

i4p ^p

h p = E r<+ E  W r 9
i=1 i<j

CO

and

h t = Y ; t* + E
0=1 0<P

(8)

respectively. Roman subscripts refer to the projectile and Greek subscripts to 

the target. The interaction potential is given by

v  = E  ©)

where Vaj is the two-nucleon potential. The kinetic energy operator is written 

in terms of the constituent momenta for the target as

2

T  = —  0 ° )
“  2m

where m is the mass of the nucleon and

P a  = -»Wr (U)

We will assume ft = 1.
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The target center of mass (cm) coordinate is given by

* r  = E f <. 02)
a

with the relative vectors defined as

S .  - S t - ? .  (1 3 )

The target momentum is given by

PT = E # <  (14)
a

and the constituent momenta relative to the target center of mass are

K  = 7  PT -  Pa (1®

Equations (11) to (15) can also be written for the projectile nucleus. The 

projectile and the target Hamiltonians are now written as

= 2 ^ '  +  (1 6 )

and

H j  =  2 L f *  +  Ht  (1 7 )

where the internal Hamiltonians, hP and hT, do not depend on Pp and PT,
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respectively, nor do they depend upon their canonical position variables. The 

overall center of mass position is

g  = A p R p  + A jR t  a ©cm

and the relative coordinate between the projectile and the target is given by 

(Figure 1)

r  = R p  -  R t  (19)

The overall center of mass momentum relative to the overall center of 

mass is

P  = P p  + P T (20)

and the projectile momentum relative to the overall center of mass is

—. —► n —.
k  = P p -   — P  (21)

Ap+AT

The total Hamiltonian is now written as,

H  = -------- 1--------P 2 + —1—k 2 + hp  + h r  + V  (22)
2m(Ap*AT) 2 \is  p T
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Projectile

Target

Figure 1. A schematic drawing of a nucleus-nucleus collision. A 
projectile with radius Rp strikes a target with radius Rj. at the 
relative distance r.
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with the reduced mass

m  A pA
(23)

and

(24)

In equation (22), the over all center of mass energy is completely decoupled 

from the relative and internal energies as it appears only in the first term. The 

relative and internal energies are coupled through V. Denoting the complete 

set of projectile and target internal coordinates by £P and £T, respectively, the 

internal projectile and target wave functions gp( £P) and g^ £T) satisfy

We assume that these states are orthogonal and complete such that

(25)

and

(26)

(27)
n
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The relative motion eigenfunctions are given as continuum eigenstates by

with

<j>f  = (2 it)‘3/2 e "  (» )

The corresponding closure relation is

fb j f f )  4 )^ 0  dk = 6 (f- r0  (30)

Similarly, for the center of mass motion we have

2m(Ap+Aj)

where

p l  = e«

(3 2 )cm

The interaction potential is assumed to be short-range. We assume that 

well-defined states of momenta are prepared in the entering state such that 

outside the interaction range these states are eigenstates of the free projectile 

target Hamiltonian given by

(Hp + Ht) <& = E (33)
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with

* (? , Rm, l„  V  -  <fr*(r) S'lUp) g^r)  cw

and

£  = e * + e «  + EP + S T  (35>

Since the center of mass energy is decoupled, the quantity E - will be 

conserved. The relative energy may change if the projectile or target 

eigenstates are altered in the collision.

2.3 Multiple Scattering Theory

In high-energy nucleus-nucleus scattering, many nucleons can interact 

mutually and the structure of multiple scattering is richer than nucleon- 

nucleus scattering. A simple picture of nucleus-nucleus scattering is to view 

the scattering in terms of each constituent of the projectile nucleus interacting 

with each constituent of the target nucleus. There may be other terms 

contributing to the scattering, such as a projectile constituent interacting 

consecutively with two different constituents of the target, i.e., double 

scattering. Similarly, there may be contributions to the scattering from 

interactions with other constituents of the target. The formalism describing 

this picture is called multiple scattering theory.

The nucleus-nucleus scattering processes are conveniently analyzed by
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employing optical potential theory. Once the optical potential is determined, 

the original many-body scattering problem reduces to a two-body scattering 

problem. However, the price of reducing a many-body problem to a two-body 

situation is that the optical potential will be a complicated non-local, complex 

operator. Thus, for practical applications we shall require an approximation to 

determine the optical potential. An early exploitation of the optical model ideas 

in nuclear physics was made by Ostrofsky, Breit, and Johnson [42] in the study 

of alpha-decay of nuclei. Bethe [43] introduced the idea of an optical potential 

to describe low energy nuclear reactions within the compound nucleus model. 

The description of high energy nuclear collisions by means of the optical model 

formalism was initiated by Femback, Serber, and Taylor [44] who first tried 

to describe elastic nucleon-nucleus scattering in terms of nucleon-nucleon 

collisions. They argued that, at high energies, a nuclear collision should 

proceed by way of collisions with individual target nucleons thus allowing the 

use of the known nucleon-nucleon cross sections. This multiple scattering 

analysis led to the conclusion that particles should move almost freely through 

nuclear m atter at high energies. The fact that the optical potential is complex 

is worth noting. The imaginary part of the optical potential corresponds to 

absorption of the incident beam by target nuclei, and the real part of the 

optical potential corresponds to refraction of the beam without any disturbance 

to the target nuclei. Watson [30], and Kerman, McManus, and Thaler (KMT) 

[29] developed the formal theory of scattering of high energy nucleons by nuclei
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in terms of the nucleon-nucleon scattering amplitude.

The full wave function satisfies

H  Y  = E  Y  (3®

As we see from equation (6), equation (36) is an inhomogeneous equation. The 

solution of equation (36) can be written as a sum of the general solution of the 

homogeneous part and its particular solution. So, by making potential V = 0 

we can make the projectile free and the resulting solution from the 

homogeneous equation will be given by equation (34).

Next, the particular solution of the inhomogeneous equation (36) can be 

written in terms of the Green's function G0. The Green's function connects the 

incoming wave to the outgoing wave. The total solution of the inhomogeneous 

equation (36) can be written as

¥  = $  + VGqV  (37)

where the Green's function G0 is given by,

(E  -  H p - H t  + ir\) G q = 1 (38)

The above equation (37) is known as the Lippmann-Schwinger equation. The 

first term ( a plane wave ) corresponds to zero potential, which implies no 

scattering. The second term describes the scattering of the projectile 

constituents by the target constituents. The transition operator T, which
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transforms the plane wave into a scattered wave, is defined as

F |Y >  = r | $ >  (39)

The reaction matrix R, which transforms the plane wave into a standing 

wave, is defined as

K |Y *> = R \® >  (4°)

where Ts denotes the standing wave. The relation between reaction matrix R 

and transition operator T is given by the Heitler integral equation [37]

R  = T  + i i z T  b (E  -  H p -  H t ) R  (41)

The transition probability for the system is given by the matrix element

Tf i = <®|K|V> (42)

We can write the Lippmann-Schwinger equation for a transition operator as

T  = V  + VG 0T  (43)

The many-body Lippmann-Schwinger equation (43) for the nucleus-nucleus 

scattering can be written as

r  = I X -  + £  W  (44)
«»/ «*y
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From which we define

(45)

Systematic iteration yields

(46)
P ,7

The first term in the above equation (46) pertains to single scattering. The 

second term contains the multiple scattering terms. Separating the higher 

order terms, we can write

where taj is defined as

t  - = V  - + V - G r t  - (49)<y oy aj u <y

We see that taj describes the interaction between the projectile nucleon 

j and the target nucleon a. We see from equation (49) that if a projectile 

nucleon is scattered after one collision, it will miss all the other target 

nucleons. This approximation is called the single scattering approximation to 

the transition amplitude.

(48)
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The KMT method of obtaining the optical potential is described in the 

next section. This method takes advantage of equation (49) to describe the 

optical potential in terms of the free nucleon-nucleon t-matrix tpaj. The 

quantity tFaj has the following form:

t F. = V  . + V  . e n t F- C50)V  aj <V oO aj

where g0 is the two-body Green's function

(e 0n -  h * *n) s 0 = i  <51>

and h  is the unperturbed hamiltonian (kinetic energy) of the nucleon-nucleon 

system. One can see fi*om equation (49) that

V  ■ = ----------   (52)
v  1 * G „ t  ■0 aj

From equations (50) and (52), we can derive the following relation between 

taj and tFaj:

*aj *aj + taj (^o  8 q) *aj

We see that taj given by equation (49) does not have a two-body form 

since HPand HT are present in the propagator G0. Thus, the motion of target 

and projectile nucleons is governed by their interactions with other projectile 

and target nucleons. Let us assume the energy of the projectile to be very large 

compared to hPand hT. Thus, in this approximation, we can replace the
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operator ta s by the free two-body transition amplitude tFaj. This approximation 

is known as the impulse approximation. In the impulse approximation the 

target and projectile nucleons interact as if they were free particles. In this 

approximation we neglect the effect of the nuclear medium on the heavy-ion 

collision. The correlation effects come from the Pauli principle and the nuclear 

binding energy [28]. These corrections are important if the projectile energy is 

less then about 200 MeV. We will return to these effects in section 3.4 when 

we discuss the in-medium optical potential. Thus, from the above equation (53) 

we see that the impulse approximation is accurate if the difference between G„ 

and g0 is small. Thus, we can write taj» tFaj.

2.4 Eikonal Approximation

To describe the Eikonal approximation, it is useful to say a few words 

about the two other approximation methods that are widely used in 

applications to high energy problems. The first method we will mention is the 

Bom series, which is simply the perturbative expansion of the scattering 

amplitude in powers of the scattering potential. That is, for a potential V(r) 

which is not too strong, the Lippmann-Schwinger equation may be solved by 

iteration, starting with a plane wave as the zero order approximation. The 

Bom series for the wave function may then be substituted in the expression 

for scattering amplitude to obtain the Bom series expression for the scattering 

amplitude. Very wide applications to scattering problems have been made of
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the first term of the expansion. Its simplicity is often felt to compensate for all 

it may lack in accuracy. Unfortunately, the error retaining only the first term 

is substantial in nuclear collisions and it may be difficult to calculate the 

second and higher terms in the Bom series. The rate at which the Bom series 

converges depends on the strength of the potential V and the length of time 

the particle spends within the potential. Thus, for rapid convergence of the 

series the particle should spend less time within the interaction region. That 

is a weak potential or very high projectile energy is needed for rapid 

convergence. Unfortunately, these conditions are rarely fulfilled in nuclear 

collisions.

Another approximation, the W. K. B. method, corresponds to the 

classical limit of quantum mechanics. We assume the potential to be smooth 

enough that the distance over which it changes its value appreciably is large 

compared to the wave length ( ka » 1  where k is wave number and a is the 

range of the potential). Now, if the kinetic energy of the particle is large 

enough, the scattering will be heavily concentrated at a small angle. This 

implies from the Heisenberg uncertainty principle that the scattering through 

a sufficiently small angle is never classical. We note that for classical 

scattering strong coupling is required. This is in contrast to the Bom 

approximation, which requires the potential to be weak. Thus, the region of 

applicability of the W. K. B. method does not overlap with that of the Bom 

approximation at all.
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Semi-classical methods are useful approximation techniques when the 

variation of potential is not very large over a distance of the order of the de 

Broglie wavelength (A. = h/p) of the incident particle. This wave length is 

assumed to be small such that ka »  1, where a is the range of the potential 

(short wave length condition). Furthermore, in contrast to the Bom 

approximation, the strength V0 of the scattering potential V does not have to 

be very weak if the inequality E/V0 »  1 is satisfied. These approximations 

embody what is known as the Eikonal approximation.

The Eikonal approximation [37] was originally introduced in quantum 

scattering theory by Moliere [45] and was considerably developed by Glauber 

[41] who proposed a many body generalization of the method. Let us consider 

high energy scattering (i.e., projectile scattered by a force center) such that 

k a » l  and | V0 | /E « l ,  where V0 is the strength of the potential. We start 

from the Lippmann-Schwinger equation

T t (r) = ^ (r )  * fG 0(r, r )  u(r) W ^r1) dr1 (54)

where u (r1) is the reduced potential is defined as

u(f) - 2m V(F) (55)
*
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the Green's function G0 is given by the equation

G 0( r ,  f )  =  ~(2 tC P (  (56)

J k a  -  k f  -  ill

and kj is the incident wave vector.

We next write the wave function lFki(r) as a product of a plane wave and 

another unknown function 0(r)

The function <I>(r) used here is not to be confused with O used in equation (34). 

Substituting the above equation (57) into the Lippmann-Schwinger equation 

(54), we find tha t the function <tKr) satisfies

Q(r) = 1 -  (2ic)~3fd R  f e ^  *** u(F— (58) 
J J k*1 -  k f  -  iti

where

R = r -  r f (59)

The above equation (58) is still exact in the sense that no 

approximations are yet made. The momentum transfer is

q  = £ ' -  («9

and the wave vector k* defines the final wave vector after scattering has
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taken place. If k1 is close to the initial wave vector k̂ , q is a very small 

quantity. It would be convenient to apply the approximation which we have 

previously discussed. Basically, we will assume that q /k j« l. We choose the Z - 

axis in the direction of the incident wave vector kj. The integral over qz is 

done in the complex qz plane, where the integrand has a pole at qz = iq. For 

Z > 0 we choose the integration contour in the upper half plane and then apply 

Cauchy's theorem. In the lower half plane the integration value is zero since 

the value of the residue is zero. Thus, we can write equation (58) as

$(■*, y , z) = 1 -  - p  f  u(x> y , z-Z) $(* , y , z-Z) dZ (61)

from which one obtains

Z

-J -Ju (x ,y ,z)  dz' (62)
y> z )  = e i0

One can see from equation (62) that d>(x, y, z) is a negligibly varying 

function over distances of order 1/kj because q/kj2 is very small. Using equation 

(62), we get from (57) the so called Eikonal wave function:

Z

- zrrf»(* y, z') * 1  (63)
y, z) = (2ic)"3/2 e
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We notice that only in the region where the potential is non zero does 

the modulating function <Kr) modify the incident plane wave. Next, since the 

Eikonal wave function was obtained by performing the integration along the 

direction of incident wave vector i.e. Z-axis, we can say that the Eikonal 

method is used for small angle collisions. This makes sense because a t high 

incident energy forward scattering dominates.

The scattering amplitude in the integral representation is

Thus, we can write the Eikonal scattering amplitude from equations (63) and 

(64) as

where q is the wave vector transfer. To evaluate the Eikonal scattering 

amplitude, we adopt a cylindrical coordinate system and decompose the r  

vector. A further small-angle approximation is now made by assuming the 

longitudinal momentum to be small such that

where b is the impact parameter and 0 is the scattering angle. We can now

/  =  i}r ( r  0  d7 '
471 J 1

(64)

q.r = q.b + O(02) (66)
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integrate (65) over z' yielding

f/g)= jd 2b e*£ (e ̂  ® -  1) (67)

where the Eikonal phase shift is defined by

00

X(kp b) = J u(b, z) dz (68)
2k.I -oo

Equation (67) gives the scattering amplitude for the system and is the 

main result of the Eikonal model. The scattering amplitude fE(q) is expressed 

in terms of an exponential function of phase shift. In deriving equation (67), 

we had assumed that the incident direction is along the Z-axis. We have also 

assumed for our convenience a cylindrical coordinate system. The scattering 

angle of the projectile is assumed to be small and incident energy E » V 0 under 

the Eikonal approximation.

The generalization of the Eikonal approximation to a many body 

scattering problem is given by Glauber [46,47] who applied it extensively to 

high-energy hadron-nucleus scattering. Wilson [35] has discussed the Eikonal 

approximation for a nucleus-nucleus optical model using a coupled channels 

formalism. In the Eikonal coupled channel (ECC) model [35,38], the scattering 

amplitude is written in matrix form. The scattering amplitude matrix for all
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possible projectile-target transitions is given by [35, 38]

/@ = — Z f e * *  l e m  ~  I] d 2 b  (6 9 )
2 lt J

The matrix elements of x are written as

<nm\x(b)\n'm'> = - l - £ f d 2q e** Fm{-q) Gm {q) f^q) m

where nm and n'm' are the initial and final states of the target and the 

projectile, F and G are the projectile and target form factors, f ^  is the two- 

body scattering amplitude, and is the relative momenta between the target

and the projectile in the NN frame. The quantity is defined as

^NN~  ̂ ^  ^A j

where k is given in equation (21).

A first order approximation to the elastic amplitude is obtained by 

neglecting all transitions between the ground and excited states. The % is then 

diagonal and elastic scattering determined by [35, 38]

X© = / d 2 q  t * *  F p ( ~ q )  G & )  f ^ q )  (7 2 )

where FP and FT are the projectile and target form factors respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



45

The Eikonal approximation satisfies the optical theorem in the high 

energy limit. The total cross section given by the optical theorem for the 

forward scattering amplitude is:

o m = Y I m  % ( 0 = O ) )  m

Let us consider a complex potential having azimuthal symmetry. Then, 

using equations (67) and (73) the total cross section can be written as

00

°tot = b db ** cos(2te x)] ^
o

where Im and Re are imaginary and real quantities, respectively. The total 

elastic cross section can be found to be

00

o£  = 4nfbdb  [ l-e -"*<*> cos(fie(x))]
0

(75)
00

-  2it j b d b
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The total absorption cross section is found by subtracting the total 

elastic scattering cross section equation (75) from equation (74) as

<3̂  = 2%fbdb [l-e~2 ,mW] C76>
0

We use equation (72) to calculate the quantity x in the optical limit. The total 

and absorption cross sections under the Eikonal approximation can be 

calculated using equations (74) and (76).
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Chapter 3

Generalized KMT Model and First Order Optical Potential for Multiple

Scattering

3.1 Introduction

Heavy-ion elastic and inelastic scattering calculations represent an 

important subject in cosmic ray studies. In the optical potential approach, the 

many-body problem for scattering of a projectile by a target can be reduced to 

a two-body problem through an effective interaction potential called the optical 

potential. Therefore, the main task of microscopic calculations is to describe 

the two-body nucleon interactions in terms of the fundamental information 

about the two nucleon system. As discussed previously, in the multiple 

scattering approach, the two-body interaction is introduced via the t-matrix 

which is the solution to the problem of scattering of two nucleons. The optical 

potential is a complex potential in which the imaginary part describes the 

absorption in nuclear reactions. The systematic study of the first order optical 

potential has been done by several authors [31-34,48-52]. The purpose of this 

chapter is to develop a first order optical potential for heavy-ion collisions 

based on multiple scattering theory.

The optical potential is a useful theoretical tool in the analysis of heavy- 

ion collisions. Usually for a nucleus, it is parameterized by a complex Woods- 

Saxon or harmonic oscillator potential. The elastic scattering is often found to

47
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be fairly insensitive to the detailed interior shape. The theoretical derivation 

of the optical potential for a nucleon-nucleus system has been attempted in 

several ways by various authors [31-34,48-52]. The simplest way may be the 

double folding model, where the effective nucleon-nucleon (NN) interactions are 

folded over the density distributions of projectile and target [31-34]. In order 

to reproduce the energy dependence of the optical potential, however, the 

strength of the effective interaction has to be renormalized. This suggests that 

for a many-body problem the Pauli principle has to be considered [53-56]. In 

the case of nucleon-nucleus scattering, modification of the effective interaction 

by the presence of the nuclear medium has been taken into account explicitly 

by solving the Bethe-Goldstone equation in nuclear matter, by several authors 

[57-59]. Many-body effects may be expected to be even more important in 

heavy-ion collisions. We will also treat the medium modified optical potential 

in this chapter. For high energy collisions, anti-symmeterization between 

projectile and target constituents is neglected.

3.2 First order Optical Potential

To define the optical potential, the projection operator technique of 

Feshbach [60] may be used. The projection operators P  and Q project on and 

off channels of interest. To define our optical potential for heavy-ion collision, 

we first define a projection operator P0Pfor the projectile, which projects on the 

projectile ground state and Pot for the target which projects on the target
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ground states. Let Qopbe a projection operator, which projects onto the 

complimentary space of the projectile excited states. Let Q^-be a projection 

operator, which projects onto the complementary space of the target excited 

states. Thus, we can write

P op + Q q p  =

and

Por + Qqt = 1

Let (j>0p and <j)OT be the projectile and target ground state wave 

functions. For elastic scattering, both the initial and final states for target and 

projectile are ground states. Thus, we can write

< V |r |® >  = < 1r I w  T  p o A r \^ >  fW

Now we can express G0 using equations (77) and (78) as

<?o ~  ( p o p  P o t  +  ^ o p  Q q t  +  ^ o p  Q q t  +  Q op

Using the above result we can write equation (43) as

T -  V + V (PqpPot+QqpQot+PqpQqt+PqtQqp) ^ o P
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which can be rewritten as

a - V  (QqpQq̂ P opQor+QopPor> Go) T =v  + VP<aP<aG(f SS>

or

T = U + U P,,, P<yr G0T m

We have used the fact that P0Pand POT commute with G0 and we have defined 

the optical potential operator U as

V  = (1 -  V «?0P Qot+PopQqt+QqpP07) Go)’1!' (84)

To get the microscopic content of the optical potential, we rearrange 

equation (84), and get

U = V + V G0 «?0P Qot * P0P <?or H- QopPot) U (85)

where the presence of QoP and QOT in the above equation (85) indicates the 

excitation ( of the projectile or target or of both ) in the reaction processes 

describing U. We can write U as S Uaj and rewrite equation (85) as

U«j = ^aj  + V(zfio (Q qpQqt+P opQ oT+Q qpP \ j  (86)
P , j
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Following Watson [30], we define an operator xaj as

Zaj = Vaj + Vafio^QopQoT^OpQoT^QopPoT)'* cy

and write equation (86) as

Uaj  = Zaj + ZapQ  (■QqpQ qt+P qpQ qT+Q qpPqi)  E  / C88) 
P+a,j

Thus, we can obtain the Watson multiple scattering series for the optical 

potential as

^  = E  Tcy+ E  Tp/*o (Qop^br+^>oi*Qor+Qop^>or) Tp/ +*̂ 89^
o »j P **,j

In the first order approximation to the optical potential, we take the first term 

of equation (89). Using equations (49) and (87), the relation between taj and

T0 j can be written as

Z aj ~  t a j ~  t a p ( f >OP^OTX a j

We will also employ the anti-symmetry in the target and projectile, so 

we can write

< < M > J E  Tey l^0P^07^ = < 4)op4)o r l^ P ^ rT 1 ^0 ^0 7 ^  (91)
a j
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Thus, we get the transition amplitude due to first order optical potential

as

T  = * P0PP01G0T) (92)

Substituting t in terms of t  we get

T -  ApAjt (1 -  PQPPQ7GqZ) (1 + PqpPqjGqT) (93)

or

T = + (ApAj. -  1) tP0PP01G0T ©4)

We can write equation (94) as

T' = U' + U 'P ^ jG J '  @5)

where

T1 = —^ ------ T (9©

and

U' = (ApAr -  1) t  (97)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



53

where

t = £  hj (98)

Equation (97) is the result for the first order optical potential for 

nucleus-nucleus scattering. Equation (97) is known as the scaled optical 

potential. In deriving the above relation, we took the approach of KMT. The 

advantage of the KMT approach is that the many-body operator T is 

approximated by the two-body transition amplitude t. On the other hand, the 

Watson multiple scattering quantity x given in equation (87) has terms QoP and 

Qot, which allow only intermediate states in which the target and projectile 

nucleons are excited. Thus, in nuclear matter one requires the intermediate 

momenta of the target and the projectile to be greater than the fermi 

momentum. This raises the difficulty of handling the anti-symmetry.

3.3 Model Calculation for the First Order Optical Potential

In the first-order optical model in the impulse approximation, the optical 

potential is the matrix element of the free two-body amplitude over target and 

projectile ground states. Thus

<f\u\i> -  ApA/ ~  1<or,oT\ Y , t J o po 7> (99)
A f A j  0,7
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At this point, we digress to discuss taj and recall that the optical 

potential has a spin dependence that arises from the spin dependence of the 

t  - matrix. Prom symmetry principles, one can write the non-relativistic t- 

matrix for nucleon-nucleon scattering in terms of Pauli spin operators as [61]

t  =  A  +  C{ol +d^).n +  M av md2.m +  G av nd2.n
(1°0)

+  H av Td2.r  +  D (av ma2.l + o v la 2.m)

where a  is the Pauli spin operator and 1, m, and n  define a right-hand 

coordinate system. The quantities A, M, G, H, and D are functions of q and 

beam energy.

If we consider only spin zero nuclei, and the spin projection of the target 

and projectile nucleus is integrated out, the terms of t  that are linear in the 

projectile and target nucleon spin vanish. Thus, only the first term A is left in 

equation (100). Therefore, we write

m  <1 0 1 >

We fold the optical potential [31-34] over initial and final states and write it 

in terms of target and projectile form factors. Thus, we get the optical potential
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in equation (99) for spin-zero spin-zero, nucleus-nucleus scattering as

</] U\i> = 1 jd q e ^  A(q) Fp(q) G/q) (102)

where FP is the projectile form factor and GT is the target form factor. The two- 

body scattering amplitude in equation (101) is parameterized as

/*< «>  = e *

where a  is the nucleon-nucleon total cross section, a  the ratio of the real part 

to the imaginary part of the forward two-body amplitude and B the slope 

parameter. The quantity k^, is the relative momentum between particles a  

and] in the NN frame. The values of o, a  and B are taken as iso-spin averaged 

values:

o  = ZpZr  1- n ^ t  o  + z ^ t  *  Z ^ T o  (104) 
Ar At pp Ap At v

(1 0 5 )

A„A„ » A- A, v
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and

(Zp + ZT)o  a + (Np + Nr) a„„ a_  v P  PP PP K P T ' np rip (1 0 ®

Wj> + ^ r )  ( V  + % )

where np indicates the neutron-proton and pp indicates the proton-proton 

quantities. There are substantial differences between pp and np total cross 

sections. This implies that one should carefully distinguish between pp and np 

scattering when applying NN cross sections in heavy-ion collisions. The one 

body form factor is written in terms of the charge form factor (q) as

where Fp(q) is the proton form factor. For light nuclei (A < 16), we used the 

harmonic well distribution

where values of the parameters s and a are given in reference [20]. For 

medium and heavy mass nuclei (A t  17) where the Woods-Saxon density is

m  = (107)

Fa  = ( 1 -  *72) ^ (108)
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P c s (r )  (109)
1 -  e  c

where p0 is the normalization constant. The Fourier transform of equation 

(109) gives the charge form factor as

F c M  = —  P o  ♦ ( « )  0 1 0 )

where

<b(a) = icRc r ~c o s^  + *c s in C ^g) co tfa(iccg) 
s in h (u c ^ )  R s in h ( ic c ^ )

- ( — )
_  2 C y v  /  mCq € -i 

kR m=i [(Cq)2 + m2]2

The series in equation (111) converges rapidly, and the first three or four 

terms are accurate for most applications. Values for the parameters c and R 

are taken from reference [20].

We use equation (107) to calculate the projectile and target form factors. 

The two-body scattering amplitude is calculated from equation (103). Once we 

know the two-body scattering amplitude and form factors, the desired optical 

potential is calculated using equation (102).
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3.4 Medium-Modified Optical Potential

For many years various authors have studied the microscopic optical 

potential for the nucleon-nucleus scattering system [31-34]. There are several 

correlation effects to be taken into account for the medium modified optical 

potential [28]. It is well known that in-medium nucleon-nucleon (NN) 

scattering differs from bare NN (i.e. when the effect of the nuclear medium is 

neglected) scattering at intermediate energies. This is mainly due to 

correlation effects such as Pauli blocking of the intermediate and final states 

and nuclear binding effects [53-56]. In conjunction with the nucleus-nucleus 

collision, Faessler and co-workers have studied in-medium NN scattering based 

on a non-relativistic Brueckner calculation and the Reid soft-core potential. 

The bare NN cross sections and the in-medium NN cross-sections have been 

calculated using relativistic [63-68], as well as non-relativistic [69] Brueckner 

theory. Recently Li and Machleidt [70,71] have obtained the in-medium elastic 

NN cross sections using a microscopic nuclear matter model in an energy range 

from 50 to 300 A MeV. They found that the in-medium NN scattering angular 

distributions are very different from those of free space (i.e. the bare NN cross 

sections). This suggests that the in-medium NN scattering cross section must 

be used in the optical model nucleus-nucleus scattering for energy below 300 

A MeV.

Our aim in this thesis is to calculate the total cross sections for the 

nucleus-nucleus collisions in which the NN cross sections are important inputs.
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The aim of the present section is to assess the manifestation of many-body 

effects in the total cross section calculations for heavy-ion collisions. As 

discussed above, there are several ways of introducing the in-medium effects 

in the case of heavy-ion collisions. We adopt a simple method where, to 

calculate the medium modified two-body scattering amplitude, we make use of 

the medium modified energy dependent two-body NN cross sections given in 

reference [70,71]. The medium modified two-body scattering amplitude is used 

as an input for the optical potential. We use the resulting optical potential to 

solve the Lippmann-Schwinger equation in momentum space. We will 

investigate the effects that the use of the in-medium NN cross sections will 

have on the absorption cross sections in the energy range of 18-83 A MeV in 

a later chapter.

Several authors have calculated the medium modified optical potential 

[53-56]. Usually, one introduces the Pauli blocked final momentum k > Kp 

(Fermi momentum) in the two-body Green's function g0. This method requires 

a lot of computational time and many partial waves in the case of heavy-ion 

collisions. Therefore, in our calculations, we introduced a simple method in 

which we incorporated the in-medium NN cross sections given in reference [70, 

71] in the two-body scattering amplitude.
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3.5 Model Calculations for Medium Modified Optical Potential

From equation (103) we see that in the calculation of the medium 

modified optical potential, the effect of the quantity a  on the reaction cross 

sections is small, since the major contribution comes from the imaginary part 

of the optical potential. We also note that in the Eikonal approximation, the 

reaction cross sections are independent of the parameter a  (in equation 103). 

The slope parameter B (in equation 103) has been calculated by taking into 

account the medium effects for low energies (<200 MeV/nucleon), where the 

interaction is nearly isotropic [70]. Our analysis shows that the values of B do 

not significantly differ from the free space values (values based on the first 

order optical potential). As a test, using these two sets of values did not have 

an appreciable effect in the calculations performed as part of this thesis. Since 

reference [70] does not have values of B for the energies of our interest, we 

have used free space values for these energies.

As discussed earlier Li and Machleidt [70, 71] have derived the in­

medium elastic NN cross sections using a microscopic nuclear m atter model in 

the energy range from 50 to 300 MeV/nucleon. They found that there is strong 

density dependence in the in-medium cross sections. With increase of density, 

the cross sections decrease. This indicates that proper treatment of the density 

dependence of the in-medium NN cross sections is important. They also found 

tha t the in-medium total NN cross sections and the in-medium np-scattering 

angular distribution are very different from those of free space. This suggests
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that in-medium NN scattering cross sections must be used in the microscopic 

calculations. The two-body, medium-modified, energy-dependent, proton-proton 

and proton-neutron total cross sections given by Li and Machleidt [70,71] can 

be written as

app(E, p) = [23.5 + 0.00256(18.2 -  E035)40]

. 1.0 + 0.1667 e105p3. (112)
1.0 + 9.704 pu  

a( E,  p) = [31.5 + 0.092 abs(20.2 -  E033)2-9]ny

1.0 + 0.0034 EU1 p2, (U3)*[ —]
1.0 + 21.55 p1-34

where E is the beam energy in MeV /  nucleon and p is the m atter density in 

fm 3. To accommodate the density dependence of equations (112) and (113) in 

the optical potential, one has to consider the density dependence of both the 

projectile and target in the folding of the NN scattering amplitude with the 

projectile and target densities (102). This requires excessive computational 

time and will be treated in future calculations. Here, we use the value of the 

saturation density of normal nuclear matter which from Reference [70] is 0.18 

fm3. We have used this value for the quantity p0 in the calculation of matter 

density. We will use the in-medium quantities app and cr^ of equations (112) 

and (113) in our calculations.
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Chapter 4

Momentum Space Method and Nucleon-Nudeon Scattering

4.1 Introduction

There are several techniques for solving the Lippmann-Schwinger 

equation. In this part of our work, we are going to describe one of the 

techniques to solve the Lippmann-Schwinger equation in momentum space. In 

doing the calculations in co-ordinate space, the numerical solution of the 

Lippmann-Schwinger equation becomes complicated. The second point to note 

is that, in momentum space, we can do the relativistic calculations just by 

changing the Green's function. However, it is difficult to obtain an optical 

potential for solving the Lippmann-Schwinger equation [68]. In the non- 

relativistic case, the Lippmann-Schwinger equation can easily be solved in 

momentum space [27]. Hence, we take the momentum space calculation 

approach. The following approach was used by several authors [72, 73] for a 

real potential. We have extended it for the case of a complex potential. The 

basic equations are more or less the same as in the case of a real potential. 

However, modifications were made to incorporate the complex nature of the 

potential.

4.2 Nucleon-Nucleon Scattering

The Lippmann-Schwinger equation for the free two body transition

62
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operator t  (t -matrix) in operator form is given by equation (50) and can be 

rewritten as

t  = U  + U  g t f  (114)

where U is the two-body interaction potential defined by equation (97) and g0 

is the free two body propagator defined by

(E -  h + iii) g0 = 1 (H5)

where h is the unperturbed Hamiltonian (kinetic energy) of the nucleon- 

nucleon system. We want to work in the center of mass (CM) momentum 

space. If kj and are the wave vector's of the two nucleons in the lab system, 

we define the relative wave vector k as

k  -  kg  = ___ 22 (116)
2

and the relative energy Ek as

%2 k2
Eh = * ■ (117)

* 2 n

where

li = - ± - L -
m 1 + m 2

is the reduced mass. If we now take the on-shell matrix

(118)

element of t  in
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equation (114) we get

<k'\t\k> = <Z‘\u\k> * (m )
J Ek -  e " * it,

where we have taken k  as the on-shell wave vector. Next, we define the R- 

matrix which satisfies

<fc'|«[£>  = <k'\u\£> * p f <kl\U\k"><k"\R\k> dk"(-m)
Ek -  E l

where P  denotes the principle value of the integral. The R- matrix is related 

to the t-matrix by the Heitler equation (41). Next we do the partial wave 

decomposition of equation (120) and write the above equation as

where we have used the following expression for the partial wave 

decomposition

=  y ;  -2 ^  Rik', k) pfjc', k) ( 122)I 4%

and the P, are the Legendre polynomials.
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The on-shell t, is related to the on-shell R, via the Heitler equation by

R f h k )

1 + ^  k RXk, k) 
i ?  ‘

(123)

The scattering amplitude for nucleus-nucleus scattering is related to the 

T-matrix through

where EP and Ej. are the projectile and target total energies. We can calculate 

T(q) from

Thus, once t| is found from equation (123) (by matrix inversion as described 

below), the scattering amplitude can be obtained by using equations (124) and

(125). The expression for the scattering amplitude given by equation (124) 

requires an infinite number of partial waves for the t-matrix as seen from 

equation (125). However, in practice, it is usually necessary to truncate the 

sum to a finite number of partial waves. The result obtained is very reasonable 

for low energies. It is well known that, for higher partial waves and for higher 

energies, the Bom approximation becomes accurate when T(q) = U(q). We will

M  = - ( 2*)2 (124)

fz PfcosQ) (125)
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utilize this fact to our advantage in order to estimate the contribution of higher 

partial waves. First, we rewrite equation (125) as

m  = p ,(cose) + £  ^  + 1  P ((cos0 )ci26)
1=0 U+1 4it

where 1̂ .  ̂+ 1 is the partial wave beyond which the Bom approximation is 

valid. This can be easily done by comparing the quantity U, and the calculated 

t, for each partial wave while solving equation (123). From the Bom 

approximation for the second term of equation (126) we obtain

m  = £  ~ t t p/cos0) + f ;  ^ ~ v ,  iycose)
U  4ic L i l

(127)

+ E <̂**0) - E fiCcos9)/= 4H /=o 4n

where we have added and subtracted a term. Now, the second and the third 

terms can combine to give us the three dimensional U(q) since it is a sum of 

all partial waves for U. Therefore, we finally get

m  » £ + £%)(128)H  4n w  4it ‘ ‘
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Equation (128) is the final result which tells us that in order to obtain 

the contributions from higher partial waves, we have to calculate t, only up to 

a certain 1 ^  at which the Bom approximation is valid. The quantity T(q) is 

then obtained by summing t, from 1 values varying from 0 to bn„r. The quantity 

U(q) given by equation (102) is to be added. In the end, the second term  in 

equation (128) has to be subtracted to avoid the double counting.

The phase shift 5, is introduced through

The total elastic cross section and the absorption cross section can be 

calculated from

(129)

00
—  T  (21 + l ) ^ ,  -  1 |2 030)
k 2 i=o

where

il i = e (131)

and

00

(132)
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The total cross section is given as

- !  E  (2* -  ! )  [ !  -  n , cos(2R e(6;))] (133)^ 2  # A

In order to obtain the cross sections given in equations (130), (132), and (133) 

one must calculate 5, from equation (129). The quantity t, should be calculated 

from equation (123), once one knows the values of Rj. In the next section we 

describe the method used to calculate the quantity R].

4.3 Technique for Momentum Space Calculation

In this section, we describe the technique used in the calculation of the 

t  matrix in momentum space. We decompose the integral equation (121) into 

two parts in such a way that the first part will have the pole at the mid point 

between the limits. Thus,

Note that the second integral in the above equation (134) does not have 

a pole. Since the pole is now at the mid point between the limits, we can use
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the even number point Gaussian quadrature rule [74]. The Gaussian 

quadrature rule is

[ M  dx = w, C13©
i=1

where Xj and Wj are standard Gaussian points and weights. Therefore, we need 

to transform the limits of integration of (134) from -1 to +1. For the first 

integral with limits from 0 to 2k, we use the transformation

S = mx + c

S = 0 ; x  = -1  0 = -m  + c (136)

S = 2k ; x=+l 2k = m + c

Thus, c = k and m = k, and dS = mdx = dS = kdx. Therefore,

f M  dS = k wt (137)
2k N

E
*=1

Now, if we define a new weight w'; by

w! = k W; (138)
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then equation (137) becomes

2k N

f m  d s  = ' E m w  w /  <i39)

For the second integral in equation (134), with limits from 2k to oo, we choose 

the transformation

S = d + b tan(—(x + 1)) (140)
4

so that when S -  2k and x = -1 one gets 2k = d. When S = ® and x = +1, we 

choose b = 2k. Actually the choice of b = 2k is arbitrary. From equation (140) 

we get

dS = b sec?(—(x * 1)) — dx (141)
4 4

therefore

M M (142)
ffi.S) dS = E M ty )  b s e c ^ + l ) ) ^  w. = wj
2k i ' 1 4 4  j =1

where w'j is the modified weight and is defined as

w- = 2k sec^—(r. + 1)) — w, (143)
 ̂ A * A. J
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Now, the integral equation for the second term in (134) can be written 

as a single sum

80 N+M

[AS) dS = 'E A S fr J )  w '  (144)
0 «=i

Here, for the case n * N, the quantities SCxJ and Wn are to be calculated from 

equations (136) and (138). For the case n i  N+l, they have to be calculated 

from (140) and (143). Let us define in equation (134)

, «. 2 u  UXk‘, k") k ‘a
Z J k , k")  = — t   (145)

A k 2 -  k ,a

Then equation (134) becomes

00

R f k \  k) = U fi1, k) + [Z fk ' ,  k " )  R/ik", k) d k "  (14©
0

Now, if we write the integral in (146) as a sum according to equation 

(144) it becomes

N+M

s j  =  u p , s j  * e  s „ )  Rt(sn, s j  v
n=1

where the indices i and n run as i, n = 1, 2, 3, -, N, N+l, -, -, (M+N). Here,

R, and U, are one dimensional column matrices with (M+N) components and
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Z,(Si, S J is a  (N+M) X (N+M) square matrix. Since we are interested in the on- 

shell value of R, i.e. RjCŜ , S0D), we increase the dimension of R, and U, by one 

component. Then the (Nl = M+N+l)01 component represents the on-shell value. 

That is, i and n run as i, n = 1, 2, 3, (M+N+l), where SN+M+1 represents

the on-shell grid point.

Now, we have to increase the square matrix Zj(S;, SJ by one row and one 

column. When n = N l, it will blow up. In order to avoid the singularity, we 

simply put Z,(Sj, SNl) = 0. Thus, we can write equation (147) as

N l

« A )  -  u p ) * £ ZA -  s„) n p j  (148)
n=1

or

N l

W  - E ZA> s„) R,(S„) w ' = u/ls)  049)
n=1

i.e.,

N l

£  [  K  -  Z A  s » )  h - ' ]  * A )  =  u m  (1 5 0 )
B=1

where we left the second index Son for R, and U|. Now, we define

A A >  sn) = a to -  z a ,  s„) OSD

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



73

and rewrite equation (150) as

N l
£  A ,(S„ Sn) * ,(S „ ) = U fo )  (15?)
n=1

or

R, = A,*1 17, <153>

Therefore, our task is to form a column matrix U^Sj) and the N l X N l 

square matrix A,(S;, S J and solve the matrix equation (153) using a matrix 

inversion technique. Once the column solution R,(Si) is obtained, the last 

component R,(SNl) is our desired on-shell R, value.
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Chapter 5 

Alpha-Cluster Model

5.1 Introduction

If we consider the effect of high energy nuclei on a physical system a 

large nuclear cross section data base is required as an input. An accurate data 

base is essential in order to assess the effects of space radiations. The accuracy 

and importance of such a data base for radiation transport calculations has 

been discussed by Wilson, Townsend, and Cucinotta in their several papers 

[35-36,38-39]. The high energy optical potential described in previous chapters, 

has been applied in the Eikonal approximation giving reliable prediction for 

both the total and absorption cross sections. The resulting model is closely 

related to the Glauber approximation for heavy-ion collisions [35, 38]. The 

Glauber model has been used by several authors in the study of inclusive 

heavy-ion inelastic scattering [75-80]. We will use the Glauber model for heavy- 

ions of interest to us in this chapter.

In the last four decades, the production of heavy-ion fragments has been 

studied by several authors [75-80]. During these years, a wealth of data has 

been accumulated about the production of heavy fragments especially from 

nucleon-nucleus collisions. The introduction of heavier projectiles introduces 

an important experimental advantage: one can study the heavy-ion fragments 

which are produced by the break-ups of the projectile or of the target nucleus.

74
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The heavier fragments from a target nucleus have low velocities, while the 

projectile fragments are produced near the beam velocities. A reach variety of 

phenomenon occur in heavy-ion collisions including the production of many 

fragments with masses smaller than the colliding nuclei. At large energies the 

target and projectile can decompose into their constituents. This leads to final 

states with many particles.

High energy fragmentation reactions proceed in two steps. In the first 

abrasion stage of the reaction, the projectile and target constituents 

(participant) interact, forming a fireball (overlap region) and two relatively cold 

spectator pieces called the pre-fragments. The nucleons which take part in 

interactions in the overlap of the participating nuclei are called the 

participants. The nucleons that are outside the overlap zone are called 

spectators (Figure 2). In the overlap zone, part of the beam energy is converted 

into heat. In the process called abrasion, most participant nucleons have left 

and the nuclei remain with odd shapes. The target and projectile spectator 

pieces, called pre-fragments are left in excited states. In the second stage, the 

pre-fragments left over after abrasion, decay into stable fragment nuclei by 

particle emission as well as gamma rays. This two-step model was first 

proposed by Serber [75] and was called 'cascade-evaporation' model. Later, the 

name 'abrasion-ablation' model has come into use with Bowman, Swiatecki, 

and Tsang [76].
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Projectile

Target

Figure 2. A systematic drawing of the abrasion-ablation model. 
A systematic drawing of a nucleus-nucleus collision. A 
projectile with radius Rp strikes a target with radius Rp at 
impact parameter b. The nucleons in the overlap (shaded) 
area are called participants. The remaining portion of the 
target and projectile represents the spectator.
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There are several phenomena of nuclear behavior that suggest the 

clustering of nucleons into groups within a nucleus. The earliest and perhaps 

simplest nuclear model to consider such characteristics is the alpha-particle 

model. Heavy nuclei that spontaneously decay by alpha-particle emission have 

decay rates suggesting at least a tendency for preformation of alpha-particle 

clusters in nuclear matter. In the simplified theory of nuclear matter, the fact 

th a t four nucleons in their ground states could strongly interact played an 

important role in accounting for the binding energy of nuclei. The nuclei with 

N = Z and the so called alpha-particle like nuclei, have large binding energies. 

This suggests viewing such nuclei as consisting of alpha-particle clusters with 

weak inter-cluster bond energy. The presence of well known clustering effects 

may manifest themselves in the abrasion step of heavy-ion fragment which we 

shall investigate herein.

The projectile energies higher than about 500 A MeV fall in the 

relativistic energy region. These energies are large compared to nucleon 

separation energy or fermi energy. Nuclear clustering has been ignored in the 

description of relativistic heavy-ion collision where the abrasion-ablation 

models [77-80] are typically used for peripheral reactions. For 4n nuclei such 

as 12C and 160 , we should expect a significant contribution from direct alpha 

knockout in the production of fragments in the abrasion stage. Early work in 

the study of clustering effects in nuclear fragmentation included the use of the 

Glauber model for evaluating the knockout cross section [81], the diffractive
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excitation model [82], and inclusion of cluster effects in the intem udear 

cascade model [83]. The alpha cluster model is a convenient method for 

representing deformed ground states and rotational bands in the 4n nuclei [84, 

85]. We should expect the pre-fragment levels formed after the abrasion of 

alpha particles to be selective of rotational bands and somewhat distinct from 

the levels occurring after nucleon abrasion. In this chapter, we will consider 

the energy transfer spectrum of the proj ectile fragments f or 4n nuclei using the 

Glauber model.

The excitation energy transferred to the projectile nucleus in the 

collisional overlap with the target has often been treated in an ad hoc manner 

in the abrasion-ablation model, using an average excitation energy which is 

introduced through assumptions largely independent of the collisional 

dynamics. In the work of Bowman, Swiatecki, and Tsang [76], the excitation 

energy is determined by the excess surface energy after abrasion in a liquid 

drop model. The first paper on the Glauber formulation of abrasion by Hufner, 

Schafer, and Schurmann [77] used a Thomas-Reiche-Khun sum rule with 

center of mass corrections to estimate an average pre-fragment excitation 

energy. The frictional spectator interaction which accounts for final state 

interactions of the abraded projectile nucleons with the pre-fragments was 

introduced by Oliveira, Donangelo, and Rasmussen [79] using some simplified 

assumptions on the average energy deposited and trajectories of the out going 

particles. More recently, Gaimard and Schmidt [80] introduced a diabetic
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model which relates the excitation energy to the vacancies created in the 

single-particle levels in the nucleus from abrasion. The large number of 

methods for estimating excitation energies in the abrasion-ablation models lead 

us to identify an explicit calculation of the energy transfer spectrum as an 

important step in the understanding of these models.

In this chapter, we extend the Glauber formulation of nuclear abrasion 

in two ways. First, we introduce abrasion response functions which are 

analogous to the response functions used to describe the quasielastic peak in 

electron or proton scattering, however generalized to collision dynamics of 

heavy-ion fragmentation. In this way, we are able to reformulate the abrasion 

cross section as a differential spectrum in the energy transfer to the projectile 

nucleus averaged over the energy of the abraded particles. Our second 

extension of the abrasion model is to consider the abrasion of the nuclear 

clusters which we specialize to the example of alpha cluster knockout, 

including the multiple-alpha knockout process. The rigid alpha-particle 

expansion of the Glauber scattering series [86] is used in our calculations. The 

cluster abrasion model is developed for the general case of an arbitrary number 

of cluster knockouts using a factorized form for the alpha-cluster wave-function 

of the projectile nucleus.
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5.2 Glauber Model for a  Clusters

In the Glauber model, the scattering operator for a nucleus-nucleus 

collision is written as

where k is the projectile-target relative wave number, b is the impact 

parameter, and q is the momentum transfer. The interaction of the projectile 

nucleon with the target nucleon is represented by the profile function

where P and j label the target and projectile constituents, respectively. In 

equation (155), ^ is the projection of the projectile nucleon on the plane 

perpendicular to the impact parameter b, and sp is the projection of the target 

nucleon on the plane perpendicular to the impact parameter b. The quantity 

Tp> j is the two-body profile function with the internal nuclear coordinates 

having components r  = (s, z). The geometry is shown in Figure 3.

ik (154)

T(b) = i  -  n  [ i  -  i y i T  -  ip -  a s®
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Projectile

Target

Figure 3. The geometry of Tpj, the two-body profile function 
with internal nuclear coordinates having component r = (s, z).
The subscripts j and 3 label the projectile and target constituents.
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For a projectile nucleus with a number Nc of a  clusters we introduce

(15©

such that the profile function becomes

m  = i - n  n
yc=i p= i JcP

(157)

The cluster model wave function is an anti-symmetrized product of the 

intrinsic wave functions of a core nucleus (for 160  core is l2C) and an alpha 

particle and their wave function <|>(r) of the relative motion such that

= A[<bc(rc) * .( ? ,)  <)>(r)] (158)

Similarly, the core wave function <pc (r j (for 12C core is 8B) can be written as

*C = A\Xc<?cd ®a(f a) ijx(r)] (159)

where vj/(r) is the wave function of relative motion between two alpha particles 

for the core. The quantity %c is the wave function for the 8B core. The Glauber 

model is formulated within a frozen nucleus approximation. This means that 

the relative motion wave functions <|>(r) and vj/(r) should be taken to be the same 

in the calculations. However, they will be treated as distinct herein. In order 

to consider the coupling to the excited states of the core nucleus in the 

fragmentation, specific internal states of relative motion must be included.
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In describing the fragmentation of the target into a-clusters, we will 

neglect multi-step contributions where alpha particles are dissolved and 

reformed in intermediate states. The profile function is then averaged over the 

intrinsic alpha-particle wave function in equation (157) in a rigid alpha-particle 

model by defining

< ? « # - $ -  a y  -  < ® « | n [ i  -  r ^ b - s  - s ; - % ) ] [ *  > (1 6 0 )
j =1

where we have introduced projectile coordinates r  ̂ relative to the nuclear 

coordinates R|C with SjC the transverse component of RjC. Only the relative part 

of the projectile wave function is then employed in the remainder of this 

chapter.

5.3 Cluster Abrasion Response Function

We now consider the evaluation of the energy transfer spectra of the 

projectile fragments from the knockout of a  particles. We can write

< O f O r [ / ® |X F * >  = —  fd2b <OpOT\V(b)\XF'> e^s  (1 6 1 )

where 0 P and 0 T are the projectile and target initial states respectively, and 

we have denoted target final states by |X >. The quantity F* refers to 

projectile fragment states (relative motion part only).
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If we sum over all final states of the target, we can write

do = L / d 2? d2b d2b ' 8 (Er Ejj
dEp* x (2it)2

V 7 (162)

.  nc dk-[ n [— ]̂<opo7.|r*(r) \xF%xkJcF'x\m \ op?
Jc=1 (2it) c c

where are the wave vectors of the abraded clusters and n,. is the number of 

abraded a  clusters. We have introduced the delta function to ensure energy 

conservation.

The closure relation for the target final states can be written as

£  |X><X|=1 (163)

In the energy conservation term, which is included in equation (162), the 

change in energy of the target can be written as

Et  -  Ex = Er -  sj(PT -  q f * M.2 (164)
X

We see from equations (163) and (164), that the state dependence of the target 

final state energy prevents the use of closure on the target states in equation 

(162). However, when energy conservation is not considered closure can be 

made in equation (162) [78].
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If we consider

Et -  Ex = Et -  J(PT -  q f  * M

= Et [ 1 -
\

(165)

1 +
q2 + M l -  M l

we expect that performing the closure on | X > will be valid for a sufficiently 

large Ef. Proceeding with closure on the final target states, we write

da
dEF, (2te)

—  fd2q d2b d2b' o„ (b, S', q, Ep.) (166)
J C

where we have defined

-* -*/ /• * dk-
o„(6, b', q, Er ) = <Or |{ /H [— £-] HE, -  E)

Jjc=1 (2 it)3 (167)

<Op\T\S') lf \ > < ^ / ‘ lr (*) |Op>> l < V

In order to consider the energy conserving delta function in equation 

(167), we introduce the Fourier transform pair

o „ (t) = [ d E e - M  a „ (£ )  06®
c c
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and

o (E) = f —  e m  a ,  ({) (169)V  7 J I t  V '2 71

In the projectile rest frame, we have

k f
E i ~ E f = S n + (Et  -  Ex) -  Tf . -  cF. -  (170)

Jc ^

where Sn is the separation energy, TF. is the recoil energy of the prefragments, 

and sF. is the excitation energy of the prefragments. Fourier transforming into 

temporal space with respect to the energy E = TF. + eF. - Sn - (Ep - E*), we find

kft
d k ,  -£ (-£ >  

o „ ( t )  = < O J ( n [ — e J’ *
jW  (2 * )3 (171>

<Op\T*(S')\F’kj><F'kJc\nb) |Op> }|0 ,>

We consider an alpha cluster participant-spectator factorization of profile 

functions as

ne
m  = 1 -  n  Qt n  q

t  , i  e . J>
(172)

*c=«c+1 Jc=1
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where

Qj = n  Q, ( 1 7 3 )■ aN
P=1

If we neglect the anti-symmetrization between the alpha knockouts and 

the core (prefragments), we can approximate the projectile wave function of 

equation (158) by

\o P> = \f  > n  <(.(«) (1 7 4 )

Using equations (173) and (174) in equation (171), we find

(N .\
= <0T|( c < F \U Q $  -  S ,)\F ‘>

\  n c ^

<F* n  <?,(£ -  s ) | F > n [ f — ^  <iR. e~u~Jc
nc+i ‘ Jc-I j  (2tc)3 *  *

; ■'C
e  2“ <3j*(o -  Sj) Qj(b -  $ .) <K(^) 4.(*y)]} |0 1>

where xjc = R,c - R'jc.
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Using the coherent approximation for the target wave function leads to

'A n
= n,

\  c J

PN'’\ S ,  b )  A„ (S, S', t) (176)

where

P N'~\B, S') = <Ot F |H  Q ^b' -  S,')|F*>■ r '  ^
(177)

* <F*| n  -  S,e) |F

describes the projectile prefragments (spectators). The response function

\ ( 0  = < o r l /  n  [J jc=1 ^(27C)‘

-
* e 2|*

(178)

< < #  W  ^  -  #  <?A<* -  ^  W
describes the abrasion dynamics. Evaluating the integrals over kjc in equation 

(178) leads to

, + ,r/ -J

I
V- \ 2  „  TitA„ (r) = <Or | f n  [dR , dRf (-K - ) 2 e

J /=l Jc Jc 2 T il t
J C

(179)

< $ )  W  -  SD  QjSb -  S j ) \ ° f
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and in energy space the result is

V 5  f t  [ 4 : ^ .  * * , , « >

<>;$' -  ? )  Q,<f -  s, j  1

(180)

35m3n, c 2
J^JLyr *!!_ jrg 
2 2iu 3"c , 35s-i *  v 1 r

— ■—  “ i  1

- 2  2

where p(r, r') = <|>(r) 4)+(rl) and J m is the cylindrical Bessel function of the first 

kind of order m and we define

W. = + 6f. - V  C*r - £x)] (181)

and

X_  =
A </|

V c=l

(182)

The Bessel functions appearing in equation (180) provide a distribution 

in Tp. resulting from the production spectra of abraded clusters. If we assume 

forward peak density matrices, a small argument expansion of the Bessel
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90

\ ( S  S', Ef .) -  CATf .  + eF, -  s. -  (ET -  E j p - 1
(183)

nc ,C  C t  ne \  ,

’c - c

where A, is found after evaluating the profile functions in the optical limit

Aj(fc, S', Ef J  = — J d R  dR' p ( £  R )  70« ,  jc)
(2 lt) (184)

* ( e ° a7<̂  ^ " ^ -1 )

with

Q = d2ql emi-s> g-MP-fi
(185)

* f j s )  Km ')

where Fx is the form factor of the target nucleon and faN is the alpha nucleon 

elastic scattering amplitude. The iteration of the f^T-function in equation (184) 

represents the multiple scattering of the abraded a-particle with the target.
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The coefficients C,* in equation (183) are found in reference [88] where 

Cx = 1, C2 = V4, C3 = V105, C4 = 7 /̂240. Let us assume in equation (157) that

q1 * M \ - M\<. El 0s6)

It then follows that

The formalism we have described can be used to consider the abrasion of 

several alpha clusters in heavy-ion reactions.

5.4 Wave Functions in the a- Cluster Model

The formalism for the abrasion of a  clusters described above can be 

generalized for the projectile or the target. We use the model of Coelho [89] 

which considers virtual states of relative motion of an a  particle with a core in 

the projectile or target ground state. For the case of 12C, the ground state wave 

function can be written using Jacobi coordinates as [89]

Y(«. -„(v)<00|I, L, m , -M>om
L, M
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where

B  ■ * >  -  +

? = * 1 -

(189)

Only L = 0, 2 ,4  virtual states are allowed if the dissociation of a  particles in 

intermediate states is neglected. The allowed angular momentum values 

correspond to the 8Be ground state (L = 0), first excited state at 2.9 MeV (L = 

2), and second excited state at 11.4 MeV (L = 4). Coelho finds [89], using a 

harmonic oscillator basis, that the spectroscopic constants obey the relation

For <J)U M we use an Eckart wave function which has the correct long range 

behavior [89-91]

with n = 4. The value of R (2.6 fin) is found by fitting to the 12C ground state 

form factor by the method described by Noble [91], and the quantity a L is 

defined as

(190)
L = 0 , 2 , 4

(192)
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For the 8Be core we use [90]

v2

* 0 ,0w  = N i l -  V ) 2 + - ^ ( - ) 4] e 202 ^ 0(V) (193) 
3 a 15 a

and

t *  -«(v) = N -  | - e  202 ^  . ^ )  (194)

where N represents a normalization constant and from reference [87] we use 

a = 1.03 fin. Usingthemodelwavefunction(equationsl88-191),theexcitation 

cross section for the abrasion of a single a  cluster becomes (considering the 

ground state wave function for the core)

da
•> «  ‘  w r J d2b E E c ,  c ;(2 it) £ ,« t '  M' 0 * 0

:00|L, L, M, -M><00 |L', L', M', -M'>* L,M{b)

where

“  ld u d u 'ja(\'L < ^ |i T  -  *F'|)
Uc (196)

2 C 2

< M “ ) W * ' )  (e  * *
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and

p lm, l'mW ’ “> = fd v d v '  p u /v ) p1/Jf<v')

(1.97)£

v' . u \  * , r  v / . ff/-
*T *«. (» + j  * f )  -  X» <t> ~ f  + f )  1

£

where PjM is the transition density of the core. The total knockout cross 

sections can be written as

a = f  d 2h £  £  CL c ; ,  <0011, L, M, -M>
**M L'> M'  (198)

< 0 0 |i', L', M', -W >  l,m{E)

where

l 'M $ )  fd**  *1*LM®

- 2 - 2 (199) 
° . r  »  - T? * ‘ ^

(e 3“ -  1) P L,u{b, a, S')

where PUM> L.>M. is given by equation (197). We have used the optical limit for
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the profile function with

-  T ~ r  f  d 2q  • * *  F + q ) f j ®  (200)
Z1ZKaN

and we use the two-body scattering amplitude

M  -  JW  ^  (201)4it

Equation (195) is simplified through introduction of the vectors

g  = U -  U f  K  = — (u  + (202)

which allows for factorization of many of the integrals in equation (195) which 

are evaluated numerically. For the evaluation of the double alpha abrasion 

contribution we consider only the 8Be ground state in our calculations. The 

alpha-particle form factor is assumed as Gaussian with a radius parameter of 

1.33 fm. The elastic alpha-nucleon scattering amplitude is evaluated in the 

Glauber model as described in Reference [86].
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Chapter 6 

Results and Discussion

6.1 Calculations Using the Lippmann-Schwinger Equation

Many authors have solved the Lippman-Schwinger equation for a real 

potential in momentum space. We have numerically solved the Lippman- 

Schwinger equation for the optical potential in momentum space (see chapter 

4). Using the technique described in previous chapters, the total and 

absorption cross sections are calculated using equations (132) and (133). The 

proton-nucleus, alpha-nucleus, and carbon-nucleus total and absorption cross 

sections are calculated. The total and absorption cross sections under the 

Eikonal model are calculated using equations (74) and (76). By comparing the 

results based on exact solutions of the Lippmann-Schwinger equation and 

Eikonal model solutions, we provide an important validation of data bases used 

in cosmic-ray studies. The absorption cross sections are calculated by using the 

medium modified optical potential in the Lippmann-Schwinger equation. The 

Eikonal model is unable to account for nuclear medium corrections, although 

such studies may be done in the future using momentum space methods. The 

inclusion of medium corrections provides improvements in nuclear data bases.

The total and absorption cross sections for nucleon, 4He, and 12C 

projectiles colliding with different target nuclei have been calculated in an 

energy ra n g e  from 25 A to 1000 A MeV. By using the Lippmann-Schwinger

96
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calculation and the Eikonal model, theoretical predictions for total and 

absorption cross sections are compared in Figures 4 through 9 with 

representative experimental data [92-96]. All physical inputs (form factors and 

two-body amplitudes) are kept identical in the Lippmanxi-Schwinger and in the 

Eikonal model calculations. The agreement is excellent between the Lippmann- 

Schwinger calculation, the Eikonal model, and the experimental data a t higher 

energy for total and absozption cross sections.

Results of calculations of the total cross sections for the nucleon-nucleus, 

4He-nucleus, and 12C- nucleus systems are shown in Figure 4, 5, and 6 

respectively. We observe from our calculations that, a t a lower energy the 

percentage differences between the Eikonal model values and the exact 

(Lippmann-Schwinger) values are higher when compared with those at a 

higher energy. This is an indication that the Eikonal model prediction for 

scattering cross sections is fairly accurate at higher energies. The Eikonal 

model results are consistently lower than the exact results because of the 

forward scattering assumption of the Eikonal approximation. Although the 

scattering is dominated by forward angles at high energies, some contribution 

from large-angle scattering is always present and is not included in the 

Eikonal model. We also observe that both the Eikonal model and the exact 

results are well within the range of experimental data. At low energies, an 

improvement in the calculations will most likely be obtained by considering the 

corrections to the impulse approximation; correlation effects [53-56,97-98], or
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Figure 4. Comparison of the total cross section calculation using the 
Eikonal approximation with the exact solution for a nucleon-nucleus 
system in the energy range from 25 A to 1000 A MeV. Available 
experimental data are shown by error bars.
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Figure 5. Comparison of the total cross section calculation using the 
Eikonal approximation with the exact solution for a helium-nucleus 
system in the energy range 25 A to 1000 A MeV.
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Figure 5, continued
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Figure 6. Comparison of the total cross section calculation using the 
Eikonal approximation with the exact solution for the 12C-12C 
system in the energy range 25 A to 1000 A MeV.
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perhaps relativistic effects [63-68].

In. Figures 7, 8, and 9 we present comparisons of the exact calculation 

of the absorption cross section to the Eikonal model solution for the nucleon- 

nucleus, 4He-nucleus, and 12C-nucleus systems, respectively. Experimental data 

are shown in these comparisons if available. The Eikonal model is seen to 

represent the exact solution quite well for projectile energies greater than 200 

A MeV, but below 200 A MeV, the differences are large. In some cases, the 

Eikonal model represents the experimental data better than does the exact 

solution. This is a definite indication that the first order optical potential is not 

completely adequate. Table 1 presents a comparison of the experimental data 

from Reference [94] with the results of Eikonal and Lippmann-Schwinger 

calculations for 12C-nucleus absorption cross sections at an energy of 83 A MeV. 

Although the calculated values agree satisfactorily with the experimental 

values, further investigations of optical potential theory, including nuclear 

medium effects, will be required for the theoretical evaluation of absorption 

cross sections with high precision at lower energies.

Figure 10 shows the number of partial waves required to calculate the 

total, absorption, and elastic cross sections at energies of 100 A and 1000 A 

MeV for the nucleon-12C and 12C-12C systems. We observe that if we increase 

the energy of the projectile, we will need more partial waves for cross section 

calculations. Figure 11 shows the total and absorption cross sections as 

functions of the slope parameter at energies of 100 A and 1000 A MeV for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



105

Table 1. Absorption cross sections for x2C-nadeus systems.

EUb = 83AMeV

System ar (mb) 
(experimental)

ar (mb) 
(Lippmann)

OrCmb)
(Eikonal)

UC + UC 960 ±30 874 849

^C + ^Al 1400 ±40 1419 1477
12C + "Ca 1550 ±60 1737 1750

12C + “Fe 1810 ± 100 1997 2123

*For 12C-nucleus, the experimental data is from S. Kox et al. [94].
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Figure 7. Comparison of the absorption cross section calculation using 
the Eikonal approximation with the exact solution for a nucleon- 
nucleus system in the energy range 25 A to 1000 A MeV. Available 
experimental data are shown by error bars.
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Figure 8. Comparison of the absorption cross section calculation using 
the Eikonal approximation with the exact solution for a helium- 
nucleus system in the energy range 25 A to 1000 A MeV. Available 
experimental data are shown by error bars.
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Figure 9. Comparison of the absorption cross section calculation using 
the Eikonal approximation with the exact solution for the 12C-12C 
system in the energy range 25 A to 1000 A MeV. Available 
experimental data are shown by error bars.
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Figure 10. The total, absorption, and elastic cross sections as a function 
of number of partial waves.
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Figure 11. The total and absorption cross sections for the exact and the 
Eikonal calculations as a function of slope parameter.
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nucleon-160  system. We observe from our calculations that because the total 

and absorption cross sections saturate at large values of the slope parameter, 

limiting values of the cross sections are reached.

We next use the medium modified optical potential for theoretical 

predictions of the absorption cross section and the results are compared with 

the representative experimental data [99] in Figure 12 for alpha-nucleus 

collisions. Using the formalism described in previous chapters, absorption cross 

sections for the projectiles 4He and 12C colliding with different target nuclei 

have been calculated in an energy range of 18-83 A MeV. The agreement 

between calculated values of absorption cross sections using the medium 

modified optical potential and experimental data is excellent. We see in Figure 

12 that, at lower energies the absorption cross sections using the medium 

modified optical potential are much different from the values obtained using 

the free space optical potential. This suggests that correlation effects such as 

Pauli blocking are dominant at lower energies. The experimental and the 

theoretical absorption cross sections using the medium modified optical 

potential are in good agreement. We also see that the medium modified 

calculation reduces the values about 15% at all energies in the alpha-nucleus 

collision.

The 12C- nucleus data for absorption cross sections for 83 MeV per 

nucleon are shown in Table 2. Experimental data are taken from reference 

[94], We observe from Table 2 that, as the mass of the target increases, the use
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Table 2. Absorption cross sections (medium modified) for 

^C-nudeus systems. = 83 A Mev

System ar (mb) 
(Experimental)

ar (mb) 
(in-medium)

ar (mb) 
(free space)

12C + 12c 960 ± 30 816 874

^ t ^ A l 1400 ±40 1369 1419
“C + ̂ Ca 1550 ±60 1580 1737

“C + “ Fe 1810 ± 100 1970 1997

•For 12C-nucleus, the experimental data is from S. Kox et al. [94].
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Figure 12. Comparison of theoretical absorption cross sections 
calculations using the Lippmann-Schwinger equation to the 
experimental data. The dash line using the free space and the 
solid line the in-medium nucleon-nucleon total cross sections.
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of in-medium NN cross sections gives improved agreement with the 

experimental data.

Experimental data showed that using in-medium NN cross sections 

rather than free space NN cross sections provides improved absorption cross 

sections values. We therefore conclude that in-medium total NN cross sections 

should be used in optical model calculations below 200 MeV/nucleon.

The Eikonal approximation is computationally efficient since it requires 

only a few numerical integrations. The exact solution using the Lippmann 

Schwinger equation requires many partial waves even for nucleon-nucleus 

scattering. Therefore, one prefers the Eikonal approximation for heavy-ion 

collisions.

6.2 Calculations Using the Abrasion-Ablation Model

Next, in this chapter we are going to discuss the results obtained from 

theoretical calculations of knockout spectra and we will compare them with the 

available experimental data. The knockout spectra and knockout cross sections 

are calculated from equations (195) and (198). The relation between wave 

functions and the spectroscopic factors is given by Coelho [89]. The ground 

state wave function is given by equation (193). For obtaining the transition 

densities, Woods-Saxon and harmonic oscillator potentials are used. The 

quantity % is calculated under the optical limit from equations (200) and (201). 

The inclusion of knockout of alpha clusters gives good agreement between
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theory and experiment.

In Figure 13, we show results for a single a-particle abrasion from a 12C 

projectile interacting with a 12C target at a projectile energy of 2.1 A GeV. 

Contributions to the energy transfer cross section from the transitions L = 0 

and 2 to L' = 0 and 2 states in the case of a 8Be core are shown. The 0 -> 0 

transition (ie., where 8Be is a spectator), is seen to dominate with a broad 

distribution in energy transfers. The diagonal transition 2->2, also contributes. 

However, the off-diagonal transition (0 -» 2) of the core contributes very little 

indicating th a t8Be acts as a true spectator.

Engelage et. al. [100] have measured the excitation spectrum for l2C 

- > 3 a  using the Heavy-Ion Super-conducting Spectrometer (HISS) for a 2.1 A 

GeV beam. Excitation energy is the invariant mass of the projectile fragments 

minus the 12C rest mass. In Figure 14, we compare the measurements with 

our calculated values for the energy transfer spectrum of the projectile 

spectators. The contributions from the abrasion of two a  particles, where we 

have included only the L = 0 state of 8Be in the initial and intermediate states, 

are allowed for the calculation. The HISS detector had insufficient granularity 

at low energy values due to poor resolution in resolving a  pairs with relative 

momenta of less than 75 MeV/c [100]. Figure 14 shows their corrected and 

uncorrected data [100]. We find that the cluster abrasion model is in good 

agreement with the data that includes the granularity correction. Our 

calculations show that the peak in the energy distribution lies below that of
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Figure 13. Theoretical excitation spectra for 12C (12C, 8Be+a )X 
reactions at 2.1 A GeV. Shown are contributions of several 8Be+a 
states of relative motion in initial and final states.
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the experimental data. We have also done calculations with a wave function 

of the form <j>u M = -fN u4 exp (-u^a2) Yu M. However, the results of this 

procedure greatly overestimated the experimental values above 50 MeV. 

Although we expect that improved agreement with experiment could be 

achieved by using cluster wave functions from a microscopic formulation, some 

effect from the use of a target closure approximation and final state 

interactions may modify our comparison.

The excitation of several low lying levels of 12C may lead to 3 a  final 

states [101]. Several of these states have been investigated previously at high 

energies using a proton [102] and a-particles [103] beams. The experiments of 

Blanpiad et. al. [102] resolved the excited states at 7.7,9.6,10.8, and 14.1 MeV 

using 800 MeV protons. The gross features of these measurements are 

adequately described in the distorted wave Bom approximation (DWBA) or 

coupled-channel model [102,104], To estimate the contribution of these states 

to the experiment described above, we have used the DWBA with the closure 

approximation [105] for an unobserved l2C target in an inclusive reaction. For 

the 0+ state at 7.7 MeV, we find a narrow peak below 10 MeV in the excitation 

cross section and we expect similar peaks for the other low lying states. These 

states are not resolved by the HISS detector. The integrated cross section for 

these states has been estimated previously [104], and is found to give only a 

small contribution to the 12C absorption cross section.

The model developed in Chapter 5 describes the excitation spectrum of
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a projectile that fragments into a  particles. This description is based on 

multiple quasielastic a-nucleon scattering with a broad distribution in energy 

transfers due to the kinetic energy distribution of the alpha particles or core 

intermediate states. The abrasion response functions will also describe the 

excitation spectrum following nucleon abrasion through multiple quasielastic 

nucleon-nucleon scattering. In the future, these response functions will be used 

[106] to describe the measurements of Webb et. al. [107] using the HISS 

detector for the excitation energy in the fragmentation channel.

The cluster effects, for 160  projectiles of 2.1 A GeV energy bombarded on 

several targets are shown in Figure 15. The dashed line shows the nucleon 

knockout cross sections with ablation. We see that the calculations based on 

just the assumption of the nucleon knockouts can not give results to agree with 

the experiment. The thick dashed line represents the alpha knockout cross 

sections. The solid line shows the total (nucleon + alpha) knockout cross 

sections. The resultant database is an improvement over our initial assumption 

of only nucleon knockouts. Thus, we can say that the effect of alpha clustering 

is most apparent in a - 160  collisions. The addition of the alpha knockout cross 

section (leaving l2C in the ground state) to the non-elastic cross section (solid 

line) brings good agreement with the LBL oxygen beam data of Olson et. al. 

[108]. The inclusion of the alpha cluster effect is important in filling the gap 

between experiment and theory.

Figure 16 shows the results for several projectiles with 600 A MeV beam
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Model Predictions For a-cluster Projectiles 

Ap + ,2C to (Ap-4He) + X at 0.6 A GeV
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Figure 16. Model predictions for alpha-cluster projectiles with 600 
A MeV beam energy on a 12C target.
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energy incident on a 12C target. The dashed line shows the nucleon knockout 

cross section. The solid curve shows the total (nucleon + alpha) knockout cross 

section. The experimental data is taken from Webber et. al. [109]. The 

theoretical total knockout cross section is in good agreement with experiment. 

The sharp dip in the solid curve may be due to the uncertainty in the 

spectroscopic factors (Table 3). The unsystematic behavior suggests structure 

dependent effects and perhaps results from the fact that nuclei with large 

atomic masses consist of integral numbers of highly stable alpha particles.

Further development of the cluster model will be helpful in resolving 

discrepancies in these cross sections and we hope that such results will be 

available in the future. Most important in this respect is the strong energy 

dependence in the cluster knockout cross sections as seen in Figure 17. This 

Figure represents the alpha knockout cross section as a function of energy (for 

160  projectile on several targets). We observe from the figure that the knockout 

cross section increases with energy. We see that as the target mass number 

becomes large, the knockout cross section increases sharply. The systematic 

behavior indicates that cluster knockout is dominant in the nuclei with large 

mass numbers at higher energies (500 A MeV - 10 A GeV).

One expects a large alpha knockout cross section for 4n nuclei such as 

20Ne, “ Mg, and “ Si that are important contributors to GCR exposure. Also, 

knockout of other light clusters will be important in heavy-ion fragmentation 

for all nuclei that have large spectroscopic constants for clusters outside the
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Table 3. Spectroscopic Factors

System 1=0 1=2 1=4

value range value range value range

“ C -®Be .558 59 - .70 1.74 5 9 -1 .7 503 —

160  - UC .244 53 - .98 156 .78 - 15 505 —

20Ne - 160 .202 .15- 1.3 .18 — .4 —

24M g-20Ne .23 5 3 -1 .0 5 5 -  5 5 —

“ Si-^M g 5 4 5 4 -1 .0 .4 .4 - 1.5 .17 —

^Ca -^Ar .5 .5 - 2.1 .18 .18 - 1.0 .33 —
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Figure 17. The energy dependence of the cluster knockout cross 
sections is presented as a function of energy for several targets.
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closed sub shells in the ground state of the projectile or the target. There is a 

strong energy dependence associated with the nuclear form factors and the 

effects of pion production as clearly shown in the few hundred MeV to one GeV 

region in Figure 17. Fortunately the energy dependence is less severe for light 

targets and low projectile energy, which is helpful in developing medical 

therapy beams. Therefore, it is clear from the present study that a final 

database generator will require cluster models for light ions.

6.3 BRYNTRN Code and Mono-energetic Proton Beam

In Figure 18, we show the secondary charged particle spectra <j> at 

several depths in an aluminum shield for a 200 MeV proton beam. The dashed 

line corresponds to the evaporation part of the spectrum. The inclusion of the 

knockout cross sections (solid line) is clearly seen to increase the flux <J>. We see 

th a t for greater depths the secondaries produced from the targets fall off as the 

beam energy is degraded. In alpha and helion particle emission, we see a sharp 

drop in the flux at higher depths.

In Figure 19, we show the results of calculations of the absorbed dose 

as a function of depth in water shields for a 200 MeV proton beam. In Figure 

19, we also show the contributions from the knockout cross sections. This 

Figure provides the break down of the contributions from the primary proton 

(dotted line), secondary proton (dash-dot line), and all the other secondaries 

(dashed line). The increase in the secondary contributions to the absorbed dose
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Figure 18. Theoretical light ion spectrum per primary proton in 
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Figure 19. Depth-dose curves for a proton beam at 200 MeV in water.
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is apparent when we indude the knockout cross sections. We also observe an 

increase in the total (solid line) absorbed dose.

In Figure 20, we show the results of calculations of the dose equivalent 

as a function of depth in water shields for a 200 MeV proton beam. Features 

similar to the absorbed dose as discussed in the previous paragraph are 

observed.

6.4 Trapped Proton Energy Spectrum

The trapped protons surrounding the earth can be conveniently 

described as existing in two partially distinct regions. In each region, protons 

spiral around the geomagnetic field lines moving towards and away from the 

magnetic poles. In addition, the trapped protons drift westward. Since these 

trapped protons occupy a limited volume in space, they are important in low 

earth-orbiting missions. The most intense region is located between Africa and 

South America, where the spiraling protons dip closer than usual to the earth. 

Extensive information on the energy spectra of the trapped protons has been 

accumulated from orbiting spacecrafts over the past three decades. In this 

section, we describe the energy spectra for the trapped protons and compare 

them with the observations made by a solid-state charged particle telescope in 

the mid-deck of a Space Shuttle during the period of solar maximum. The 

telescope was flown in high altitude flights a t 57° inclination. These 

observations show the presence of the secondary deuterons, tritons as well as
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helions and alpha particles.

In Figure 21, we show the energy spectra of secondary (trapped) helion 

and alpha particles assuming that the angular distribution of the particles 

incident on the telescope is isotropic. The solid line corresponds to the helion 

and the dashed line corresponds to the alpha particles. The calculations are 

based on the BRYNTRN transport code. Figure 22 shows the energy spectra 

for the trapped deuteron and triton particles. A comparison of the results of 

calculations is made with the STS-48 observations [110]. Clearly, the model 

calculations and observations are in good agreement. A discrepancy can be 

seen for the low energy case. The discrepancy may be due to the fact that the 

angular distribution of these particles may not be isotropic at low energy. It is 

not quite clear at present how these effects can be separated. Care should be 

taken in including the contributions of these particles in model calculations.
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