
Old Dominion University
ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Spring 1993

Fast Fourier Transforms on Distributed Memory
Parallel Machines
Anshu Dubey
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds
Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Recommended Citation
Dubey, Anshu. "Fast Fourier Transforms on Distributed Memory Parallel Machines" (1993). Doctor of Philosophy (PhD),
dissertation, Computer Science, Old Dominion University, DOI: 10.25777/jkyf-4c89
https://digitalcommons.odu.edu/computerscience_etds/105

https://digitalcommons.odu.edu/?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/105?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

FAST FOURIER TRANSFORMS ON DISTRIBUTED

MEMORY PARALLEL MACHINES

by

Anshu Dubey
B.Tech, Indian Institute o f Technology, New Delhi, India

M.S. Auburn University, Auburn, Alabama

A Dissertation submitted to the Faculty o f Old Dominion University in
Partial Fulfillm ent of the Requirement for the Degree of

DOCTOR OF PHILOSOPHY
in

COM PUTER SCIENCE

OLD DOM INION UNIVERSITY

May, 1993

Dr. Chester E. Grosch (Advisor)

Dr.-Mjahammad Zutyair (Advisor)

Dr. L s t f / ' W. W ilson

Dr. T om L .Jackson

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

FAST FOURIER TRANSFORMS ON DISTRIBUTED MEMORY

PARALLEL MACHINES

Anshu Dubey

Old Dominion University, 1993

One issue which is cen tral in developing a general purpose sub rou tine on a dis­

trib u ted m em ory parallel m achine is the da ta distribution. It is possible th a t users

would like to use th e subrou tine w ith different da ta d istribu tions. T hus there is

a need to design algorithm s on d istribu ted m em ory parallel m achines which can

support a varie ty of d a ta d istribu tions. In this dissertation we have addressed the

problem of developing such algorithm s to com pute the D iscrete Fourier Transform

(D FT) of real and com plex data . The im plem entations given in th is dissertation

work for a class of d a ta d istribu tions commonly encountered in scientific appli­

cations, known as the block scattered da ta distributions. T he im plem entations

are ta rge ted a t d is tr ib u ted m em ory parallel machines. We have also addressed

*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

th e problem of rearranging th e d a ta afte r com puting the F F T . For com puting th e

I)F T of com plex d a ta , we use a s tan d a rd Radix-2 F F T algorithm which has been

studied extensively in parallel environm ent. T here are two ways of com puting th e

D FT of real d a ta th a t are known to be efficient in serial environm ents: nam ely

(i) the real fast Fourier transform (R F F T) algorithm , and (ii) the fast H artley

transform (F H T) a lgorithm . However, in d istribu ted m em ory environm ents they

have excessive com m unication overhead. We restructu re the R F F T and F H T algo­

rithm s to reduce th is overhead. T he restructu red R F F T and FH T algorithm s are

then used in th e generalized im plem entations which work for block sca tte red d a ta

d istribu tions. E xperim ental resu lts a re given for the restructu red R F F T and the

F H T algorithm s ou two parallel m achines; NCUBE-7 which is a H ypercube M IM D

m achine and A M T DAP-510 which is a Mesh SIMD m achine. T he perform ances

of the F F T , R F F T and F H T algorithm s w ith block scattered d a ta d is tribu tion

were evaluated on Intel iPSG /860, a H ypercube MIMD m achine.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

I would like to take this opportun ity to express m y g ra titude to a num ber of people.

F irst and forem ost, m y thanks are due to Dr. Grosch and Dr. Zubair for super­

vising th is work, and their unfailing help and encouragem ent. Dr. Jackson and

Dr. W ilson, w ith their incisive com m ents, have helped in im proving the quality

of th is dissertation considerably. I would also like to thank In stitu te for Com ­

p u ter A pplications in Science and Engineering, NASA Langley Research C enter,

H am pton, VA for providing access to 32 node Intel iPSC /860 m achine. Thanks are

also due to the System s Group at Old Dominion University for keeping th e “very

quirky” parallel m achines running m ost of the tim e. I have no words to express

m y g ra titude to m y parents, whose vision and dedication inspired m e to reach th is

goal, and to m y husband whose sunny outlook on life has helped m e through th e

som etim es storm y w aters of g raduate school.

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C ontents

L is t o f T a b le s v i

L is t o f F ig u re s v ii

1 I n t r o d u c t i o n 1

1.1 Parallel C om putation I s s u e s ... 1

1.2 Fast Fourier T ra n s fo rm ... 3

1.3 D a ta D is t r ib u t io n s ... 5

1.4 O verv iew .. 6

2 B a c k g r o u n d 10

‘2.1 D e fin itio n s ... 10

‘2.1.1 Discrete Fourier T ra n sfo rm .. 10

‘2.1.2 H artley T ra n s fo rm .. 15

2.2 Previous Work ... 16

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Computing Fourier Transform of Real Data on Distributed M em­

ory Parallel Machines 22

3.1 In tro d u c tio n ... 22

3.2 Simple FFT -like Im plem entation ... 24

3.3 R estructu red FH T A lg o r i th m .. 26

3.3.1 N otations and Grouping D e fin itio n s ... 28

3.4 A lg o r i th m .. 32

3.5 M ach in es ... 36

3.5.1 N C U B E .. 36

3.5.2 D A P -510 .. 37

3.6 Im plem entations .. 39

3.6.1 H ypercube Im plem entation .. 39

3.6.2 DAP Im p le m e n ta tio n .. 43

3.7 Results and D isc u ss io n ... 48

4 An FFT Implementation for Block Scattered Data Distributions 59

4.1 In tro d u c tio n ... 59

4.2 Parallel I m p le m e n ta t io n .. 60

4.3 A lg o r i th m .. 63

4.4 R e a r ra n g e m e n t .. 69

4.5 Experim ental r e s u l t s .. 76

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6 S u m m a r y .. 81

5 Fourier Transform of Block Scattered Real Data Distribution 83

5.1 In tro d u c tio n ... 83

5.2 Parallel I m p le m e n ta t io n .. 84

5.3 A lg o rith m s... 89

5.4 R e a r r a n g e m e n t .. . ' 94

5.5 Experim ental R e s u l ts ...102

5.6 S u m m a r y ..113

6 Summary and Future Studies 115

6.1 S u m m a r y ..115

6.2 Suggestions for F urther S t u d y ...119

Bibliography 120

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Tables

3.1 Speed-Up of the R estructured FH T A lgorithm .. 52

3.2 Parallelism Efficiency of the restruc tu red FH T A lgorithm53

3.3 R atio of Execution Tim es of F F T and R estructu red FH T A lgorithm s. 54

3.4 Speed-Up of the R estructured R F F T A lgorithm 55

3.5 Parallelism Efficiency of the R estructu red R F F T A lgorithm 56

3.6 R atio of Execution Tim es of F F T and R estructu red R F F T A lgorithm s. 57

3.7 Com parison of the perform ances of FH T and R F F T im plem enta­

tions w ith the F F T im plem entation on DAP-510..................................... 58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Figures

1.1 Block scattered d a ta distributions for two block sizes............................ 7

2.1 Flow G raphs of 8-point D1T and D IF F F T algorithm s...................... ' . 13

2.2 Butterflies for th e F F T algorithm s.. 14

2.3 Flow G raphs for the R F F T and FH T algorithm s.................................... 17

3.1 Im plem entations of 8-point FFT , R F F T and FH T algorithm s on a

3-c.ube... 25

3.2 Im plem entations of 8-point FFT , R F F T and FH T algorithm s on

4 x 2 m esh.. 27

3.3 Basic com putation units of the restructured R F F T and FH T algo­

r ith m s... 33

3.4 Flow Graph of the restructu red FH T algorithm 35

3.5 H ypercube im plem entation of the res tru c tu re d FH T algorithm 44

3.6 Mesh im plem entation of the restructured FH T algo rithm 47

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1 Two approaches for com puting butterflies in para lle l.............................. 62

4.2 Form ation of different sets of butterflies . 66

4.3 T hree phases of the F F T algorithm with block scattered d a ta dis­

tr ib u tio n ... 70

4.4 T he variation in perform ance per node as datasize is increased. . . . 78

4.5 T he variation in perform ance as block size is increased........................... 80

4.6 T he d istribu tion of work in the th ree phases w ith different block

sizes... 80

4.7 T he relative contributions of com putation and com m unication in

the com putational section as the datasize is varied.................................. 81

5.1 Two ways of com puting groups in paralle l.. 87

5.2 Form ation of different groups.. 93

5.3 Steps in the com putation of R F F T /F H T algorithm s...........................95

5.4 Variation in perform ance with data size for the FH T algorithm . . . 104

5.5 Variation in perform ance with data size for the R F F T algorithm . . 105

5.6 Variation in FH T Perform ance with block size.....................................105

5.7 Variation in R F F T Perform ance with block size..................................106

5.8 Relative, contribution of th e three phases of th e FH T section with

different block sizes... 106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.9 R elative con tribu tion of the th ree phases of th e R F F T section w ith

different block sizes...107

5.10 Relative contribution of com m unication in the com putational sec­

tion of th e FH T algorithm ... 107

5.11 Relative contribution of com m unication in the com putational sec­

tion of th e R F F T algorithm .. 108

5.12 Com parison of the best perform ances of the F F T , the R F F T and

the F H T a lgorithm s... 110

5.13 Com parison of the worst perform ances of th e th ree algorithm s. . . I l l

5.14 Com parison of execution tim es in the com putational section. . . . I l l

5.15 Com parison of the contribution of in ternode com m unication in the

com puta tional phase... 112

5.16 Com parison of variation in perform ance w ith block size....................112

5.17 Com parison of the tim e taken in the rearrangem ent section............ 113

6.1 V ariation in tim ing for different samples w ith 16 d a ta points per node. 117

6.2 V ariation in tim ing for different samples w ith 32,678 d a ta points

per node..118

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Parallel C om putation Issues

In developing parallel algorithm s for a problem , there are various arch itectu ral

issues th a t confront us. The arch itec tu re of th e m achine m ay be. coarse, grain (a

few powerful processors), or fine grain (a large num ber of very sim ple processors).

T he m achine m ay be SIM I), where every processor in the m achine works in lock

step w ith all o ther processors, or it may be MIMD, where every processor does

its own share of work by executing its local code. T he m em ory m ay be shared by

all processors, or each processor m ay have its own local memory, or there m ay be

a com bination of local and shared memory. The interconnection netw orks differ

am ongst m achines and the interprocessor com m unication m ay also be brought

abou t in different ways. All of these factors play an im p o rtan t role in developing

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm s for a parallel machine.

Parallel algorithm s usually have m ore overhead th an their sequential counter­

parts. T he overhead may be due to several reasons. If the work is not evenly

d istribu ted to all the processors, then th e overhead is due to some processors

rem aining idle for periods of tim e. Som etim es th e overhead m ay be caused by pro­

cessors duplicating their com putations. In SIMD m achines some of the overhead

m ay be due to steps which require different operations a t various processors. In

M IM D m achines it may be caused by th e synchronization problem . In d istribu ted

m em ory m achines one factor which contribu tes significantly to the overhead is the

interprocessor com m unication. These are ju s t som e o f th e causes of overhead and

they are not unconnected. Reducing one type of overhead m ay cause another type

to increase. For instance a good load d istribu tion am ong processors m ay cause

r
much m ore in ternode com m unication and vice versa. O r m inim izing replication

of com putations in different processors m ay cause som e processors to rem ain idle.

A good parallel algorithm m ust take in to account th e trade-offs in overhead and

find a good balance between them . It should be aim ed a t decreasing th e overall

com putation tim e rather than full processor u tilization or equal load d istribu tion

or o ther such issues.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 Fast Fourier Transform

Fourier transform s are an im portan t ingredient of m athem atica l analysis. The

discrete version of the Fourier transform , known as th e D F T , plays an im portan t

role in num erical analysis, with applications such as: digital filtering, calculation

of auto- and cross-correlation, the solution of partia l differential equations etc.

T he com putation of the D FT from its definition takes 0(ra2) tim e for an input

sequence of length n. T he fast Fourier transform (F F T) algorithm com putes the

transform of an n-com ponent sequence in O (n lo g n) tim e. It was first introduced

by Cooley and Tukey in 1965 [21]. T he F F T algorithm m ade techniques based on

Fourier transform attrac tive for m any applications. A large num ber of variants of

the original Cooley and Tukey algorithm have been proposed since 1965 [24].

T he standard F F T algorithm com putes the D FT of a sequence of complex data .

In m any applications, such as the solution of P D E ’s, we need to com pute D FT

of real d a ta only. For such applications one can use th e stan d ard F F T algorithm

by tak ing the im aginary p a rt of the input to be zero. However, such an approach

leads to a lot of redundant com putation, since the D F T of real d a ta can be di­

vided into two halves which are complex conjugates of each o ther. The real fast

Fourier Transform algorithm (R F F T) uses this p roperty to reduce com putation

[T, 44]. A lternatively, one can use the fast H artley transform (FH T) algorithm

[12] for com puting the Fourier transform of real da ta . T he FH T algorithm pro-

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vides advantage over th e F F T algorithm by elim inating all com plex arithm etic .

A com parative s tudy of algorithm s for com puting D F T of real d a ta can be found

in [42]. In m ost applications the R F F T algorithm is slightly faster th an the FH T

algorithm . However, where both forward and reverse transform s are needed, the

FH T algorithm is the more a ttrac tiv e one since it involves identical com putation

for bo th forw ard and inverse transform s.

Even with the F F T algorithm only very lim ited real life problem s can be solved

on conventional m achines. To solve even th e m oderately sized problem s, one has

to use the so called “high perform ance com puters.” T here are two classes of such

high perform ance m achines. T he machines in the first class use higher clock rates

and o ther technological advances along with carefully designed arch itec tu re and

software support to achieve high com putation speeds. T he second class of high

perform ance m achines achieve high speeds through parallelism . A parallel m achine

typically has a num ber of identical processing un its. T he to ta l work is divided into

sm aller tasks and these tasks are d istribu ted am ong the processing un its which

execute them in parallel. The parallel m achines can also use some of the features

of the first class of high perform ance m achines to achieve higher speeds. T he m ain

advantage of the high com putation speed m achines over parallel m achines is th a t

achieving good perform ance is tran sparen t to th e user. P a rt of th is advantage

comes from optim izing compilers while the o ther p a rt comes through th e use of

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

highly optim ized subroutine libraries. In order to get good perform ance out of a

parallel m achine the users have to be aware of th e arch itec tu re of the machine.

Further, there are very few parallel subroutine libraries available to the users.

Considering the po ten tia l of parallel m achines for high perform ance com puting, it

is desirable to look into the issues related to program m ing them and providing the

kind of software support th a t is available on other high perform ance m achines.

1.3 D ata D istributions

To develop a general purpose subroutine on a d istribu ted m em ory parallel m achine

one has to address the issue of da ta d istribution in addition to all th e issues m en­

tioned earlier in th is section [36]. It is possible th a t different users m ay wish to use

the routine w ith different d a ta d istributions. Typically, users determ ine their d a ta

d istribu tion based on the over all application requirem ents, which could vary from

user to user. T hus, it is extrem ely im portan t to design schem es on d istribu ted

m em ory parallel m achines which can support a variety of d a ta d istribu tions.

T here are two possible approaches to th is problem . T he first one is to design

a schem e for a specific d a ta d istribution which gives op tim al perform ance, along

w ith a set of basic com m unication subroutines to convert a user supplied d a ta

d istribu tion to the specific d a ta distribution. T his approach has the problem of

rearranging the user d a ta initially which is quite costly on d istribu ted m em ory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

parallel m achines. T he second approach is to design a scheme which works well for

a rb itra ry d a ta distributions. T he second approach is obviously extrem ely difficult

to achieve. A com prom ise between these two extrem es is to design algorithm s th a t

support a class of d a ta d istributions. A comm on set of d a ta d istribu tions, referred

to as block scattered distribu tions, has been identified by W alker and D ongarra

[49] as very useful for d istribu ted m em ory parallel m achines. Block scattered

d istribu tions encom pass the two m ost common d a ta distributions; th e linear d a ta

d istribu tion and the scattered d a ta d istribu tion . For a one dim ensional d a ta set,

a block scattered distribu tion is specified by th e block size. The d a ta are divided

in to a set of equal sized blocks. A block j is m apped to node (j m od p), where p

is th e num ber of nodes. For exam ple, two d a ta d istributions for a one dim ensional

array of 16 d a ta values on a 4 node machine, w ith two different block sizes are

shown in Figure 1.1.

1.4 O verview

In th is d issertation we present algorithm s for com puting D FT of real and complex

d a ta th a t work for block scattered d a ta distributions. These algorithm s work for

all block sizes w ithout requiring any initial redistribution of da ta . For com puting

D F T of com plex d a ta the F F T algorithm is used. The F F T algorithm is well

su ited for m ost parallel environm ents. It is possible to d istribu te work am ong

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

p 0 Pi

(a). Block size = 2

(b). Block size = 1

F igure 1.1: Block scattered d a ta d istribu tions for two block sizes.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

processors such th a t the load is balanced and no processor is idle. T he in ternode

com m unication p a tte rn is also very regular and does not cause excessive overhead

[14, 18, 26, 29, 34, 47]. However, the R F F T and FH T algorithm s do not work

very well on d istribu ted m em ory parallel m achines. Their com m unication p a tte rn s

result in excessive com m unication overhead, which m ay even offset their com pu­

tational advantage on d istribu ted m em ory parallel m achines [37, 39]. We present

a restruc tu ring of the R F F T and FH T algorithm s which elim inates their excessive

com m unication overhead, while reta in ing their com putational advantage. T he al­

gorithm s for com puting D FT of real d a ta w ith block scattered d istribu tion are

based upon the restructu red R F F T and FH T algorithm s. We have also addressed

the issue of rearranging d a ta after com putation such th a t the o u tp u t d a ta have

the sam e d istribu tion as the inpu t. T he m otivation for rearrangem ent comes from

problem s such as solution of partia l differential equations using spectral techniques

which require the final d a ta d istribu tion to be identical to the in itial one.

T he dissertation is organized in six chapters including th is one. C hap ter 2

includes a discussion of the previous work in th e area of parallel F F T algorithm s.

It also gives the definitions relevant to th is work. T he restructu ring of R F F T and

FH T algorithm s is described in C hap ter 3. T he restructu red FH T and R F F T

algorithm s, along with the F F T algorithm were im plem ented on two d istribu ted

m em ory parallel m achines with different arch itectures. All th ree im plem entations

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

work only for a specific d a ta d istribu tion . C hap ter 3 also describes th e results of

th e experim ents w ith these im plem entations to verify the superiority of the FH T

and R F F T algorithm over the F F T algorithm for com puting D FT of real data .

An F F T im plem entation on a d istribu ted m em ory parallel m achine for block

scattered d a ta d istribu tions with different block sizes is given in C hap ter 4. C hap­

te r 5 gives the R F F T and FH T im plem entations for block scattered d a ta d istri­

butions using th e restructu red algorithm s from C hap ter 3. As with the F F T algo­

rith m , these im plem entations support different block sizes. However, a m inim um

of 4 blocks are required per node irrespective of the block size. This requirem ent

comes from th e grouping form ed in the restructu red algorithm s. All the algorithm s

are independent of the num ber of processors in the m achine as long as the d a ta

size is g rea ter th an the num ber of processors. T he perform ances of all th ree im ple­

m entations were evaluated on the Intel iPSC /860. T he conclusions and the scope

for fu rth e r s tudy in th is area are discussed in chap ter 6.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 2

Background

2.1 D efinitions

In th is chap ter we give th e definitions and history of the F F T algorithm s. A num ber

of variants of the F F T algorithm s exist in litera tu re . We give the definitions

relevant to th is work only since it is not possible to include all definitions here. A

discussion of th e previous work by o ther researchers is also included in th is chapter.

2.1.1 D iscrete Fourier Transform

T he D FT, X (k), of an N-point sequence x(r) is defined as,

N - l

X (k) = 1 /A] T x(v) e - j2*rk/N, 0 < k < A , (2.1)
r = 0

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where j = y / — 1, and N is a power of 2.

F F T A lg o r i th m

T here are two m ajor classes of the F F T algorithm s, namely; d e c im a t io n in t im e

(D I T - F F T) and d e c im a t io n in f r e q u e n c y (D I F -F F T . T he two classes of the

F F T algorithm are described here briefly. (For details one can refer to [24]). For

the D IT -F F T algorithm the N-point sequence x(r) is divided into two (A /2)-po in t

sequences :ci(r) and x 2(r) as the odd and even elem ents of x(r) respectively; i.e.

x \ (r) = x (2 r) , r = 0 ,1 ,2 , . . . N / 2 — 1, (2.2)

x 2(r) = x(2r + 1), r = 0 ,1 ,2 , . . .N/ 2 — 1. (2.3)

We then recursively com pute X \ (k) and X 2(k), th e D F T ’s of x i(r) and x 2(r)

respectively. T he recursion stops when the D FT of a 1-point sequence, which is

the elem ent itself, is required. The two sequences X\ (k) and X 2(k) are then m erged

to generate X (k) using the following expressions

X { k) = X \ (k) + u j ^ X 2(k), 0 < k < N / ‘2, (2.4)

X { k) = X] (k - N / 2) - u ^ X 2(k - A /2) , N / 2 < k < N. (2.5)

where = e~i'2irk/N .

II

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For the D IF -F F T algorithm the N-point sequence x(r) is divided into two

halves, ;ci(r) and x-z(r) so th a t the the transform ed sequence can be w ritten as

(N /2 —1)

X{2k) = £ [x , (7-)+x2(i-)]uN2kr (2.6)
r=0

(N /2 —1)

X { 2 k + 1) =] T [* i (r) - * 2 (r)] w N W N 2*r , k = 0 ,1. .N/2 - 1. (2.7)
r= 0

These equations represent two N /2 point D F T ’s of sequences [;ci (?•) + ^ (r)] and

[aii (7*) — a?2(»*)]u ,Jv. T he process is then repeatedly applied to the two subsequences.

T he flow graphs for the D IT F F T and D IF -F F T for inpu t sequence of length 8

are shown in F igure 2.1. Notice th a t the D IT -FFT algorithm requires the input

sequence to be in bit-reversed order (ordering obtained by reversing th e b its in the

binary representation of th e d a ta item indices) and re tu rns the o u tp u t in sequential

order. T he D IF -F F T algorithm requires the inpu t in sequential o rder and returns

th e o u tp u t in a b it reversed order. T he basic units of com putation for the F F T

algorithm s are butterflies shown in Figure 2.2.

RFFT Algorithm

T he R F F T algorithm described here is derived from th e D IT -FFT algorithm . It

is different from th e F F T algorithm a t th e m erge step. In the R F F T algorithm

th e N -poin t sequence X (k) is obtained from two N /2 -po in t sequences x i (k) and

xz(k) as follows

X { k) = Ni(fc) + cokN X 2(k), 0 < fc < N /2 , (2.8)

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) D IT-FFT Flowgraph. (b) D IF-FFT Flowgraph.

Figure ‘2.1: Flow G raphs of 8-point D IT and D IF F F T algorithm s.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ao

a l = a0 + (orNa1

a\ = a0 - a)rNa1
a i

(a) Butterfly for DIT FFT

ao

ax

o)rN

flj = a0 + a x

a\ = (a0 - a^o)' N

(b) Butterfly for DIF FFT

Figure 2.2: B utterflies for the F F T algorithm s.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X (k) = X * (N — k) N / ‘2 < k < N

where X * (N — k) is the complex conjugate of X (N — k).

(2.9)

2.1.2 H artley Transform

The discrete H artley transform , X (k) , of an N -point sequence x(r) is defined as

[12]

N - 1

X (k) = l / N ^ x (r) {cos(2 in 'k /N) + sin(27r7-&/AQ}, 0 < k < N (2.10)
r= 0

T he even and odd parts of the DH T are given by

E (k) = (X { k) + X { N - k)) / 2 , (2.11)

0(A) = {X (k) - X { N - k)) / 2. (2.12)

The even and odd])arts of the D H T can be com bined to give real and im aginary

parts of th e D FT [12].

X (k) = E (k) - j O { k) . (2.13)

FHT Algorithm

The fast H artley transform (FH T) differs from th e F F T algorithm only a t the

merge step. For the FH T algorithm th e m erging of two sequences X i (k) and

X-2(k)of length N / 2 each to give a sequence of length N is given by,

X (k) = X i (k) + X 2(k)ca&(2irk/N)

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

+ X 2{ N / ‘2 - k) sm{2irk/N) , 0 < k < N / 2 , (2.14)

X (k) = X ^ k - N /2) + X 2{k - N / 2) cos(27rfc/jV)

+ X 2(N - k) s 'm(2irk/N), N / 2 < k < N . (2.15)

The flow graph for the R F F T and FH T algorithm s are given in Figure 2.3. It

can be seen from this figure th a t it is very difficult to identify a basic unit of

com putation for these algorithm s.

2.2 Previous Work

T hree d istinct phases can be identified in the history of parallelization of the F F T

algorithm . T he first phase s ta rted in the late 60’s and continued up to the m id 70’s.

M ajority of the im plem entations reported in th is phase were based on hypothetical

or “paper and pen” m achines [8, 9, 38]. One work even tried to m atch th e F F T

algorithm to the concept of associativity derived from m em ory design [50]. These

early works were alm ost always targeted a t special purpose and highly constrained

architectures. D espite the lack of m achines on which to te s t these ideas, they still

m ade a significant contribution towards understanding th e parallelism inherent in

the F F T algorithm .

The second m ajor phase s ta rted with the arrival of com m ercial vector proces­

sors. Korn and Lam biotte [35] discussed an im plem entation on CDC S tar 100.

T hey identified a m ajor draw back of the F F T algorithm in relation to vector pro-

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) RFFT Flowgraph (b) FHT Flowgraph

Figure ‘2.3: Flow G raphs for th e R F F T and FH T algorithm s.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cessing. The size of vector in a single F F T com putation is not uniform and can

be very small in some stages. Hence it was not possible to exploit the vector

processing capabilities th roughout the algorithm . T hey suggested com putation of

m ultiple independent transform s as a way of countering th is problem . M ultiple

independent transform s arise in a num ber of application for exam ple com puting

m ulti-dim ensional transform s. The corresponding elem ents of each d a ta sequence

to be transform ed are processed as vectors in such a situa tion . Fornberg [23] im­

proved upon th is work and suggested evaluation and sto ring of the m ultiplication

coefficients before com puting the D FT. T he coefficients were ex trac ted from the

tab le when they were needed for com putations. T h is approach proved to be very

useful when a num ber of D F T ’s of sam e size were to be com puted a t different

tim es. Sw arztrauber [43] divided the single transform in to m ultip le transform s to

exploit th e capabilities of th e vector processor. Agarwal and Cooley [1] identified a

second m ajor problem w ith efficient im plem entations of th e F F T algorithm on vec­

tor m achines, namely, cache use. As long as the d a ta size for the F F T was sm aller

than the size of cache m em ory, the perform ance of th e algorithm was very good.

However, for d a ta sizes bigger than th e cache size, th e perform ance deteriorated

rapidly. This is because in m ost variants of th e F F T algorithm , in every stage a

d a ta item is required for a few com putations. By th e tim e it is required in th e next

stage it would have been throw n out of the cache. Hence th e ratio of cache miss

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to cache h it is fairly high. T here are several o ther vector F F T im plem entations in

the lite ra tu re using different approaches [2, 4, 6, 17, 48].

T he th ird phase in the developm ent of parallel F F T algorithm s has overlapped

with the second phase. Some of th e challenges faced in th is phase are sim ilar to

those in the second phase while some others are quite different. This phase cam e

with the advent of m ultiprocessor m achines in the m arket. These m achines come

in a wide variety of arch itectures including SIMI) array processors to M IM I) hyper­

cubes to m assively parallel connection m achines. F F T im plem entations reported

on these m achines are necessarily different from each o ther. Some of th e earliest

work in th is phase has been on array processors [27, 25] and tow ards developing

F F T processors [19, 20]. T he early work on m ultiprocessor m achines addressed

the issues involved in m apping the d a ta onto the processors. Some of these issues

are: the relation between th e num ber of d a ta points and the num ber of processors,

overheads of d a ta organization when the num ber of d a ta points is m ore than the

num ber of processors and the degree of parallelization achievable w ith different

d a ta d istribu tions [27, 25, 26]. These issues continue to be relevant for all the

m achines available com m ercially today.

Since the m id 80’s, a great deal of a tten tion has been given to F F T im ple­

m entations on m achines w ith hypercube architectures for two reasons. One of the

reasons is the ease w ith which the F F T algorithm m aps onto a hypercube when the

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

size of the input sequence is a power of ‘2. T he second reason is th a t a significant

num ber of com m ercially available m achines have hypercube based interconnection

networks. On these m achines the d a ta com m unication costs are an im portan t

factor in the overall cost of com putation. Johnson e t.a l [‘29, 31] discussed the com­

pu tation of F F T on boolean cubes and o ther sim ilar interconnection networks.

Johnson et.al [30, 33] and Kam in and A dam s [34] gave im plem entations on a con­

nection m achine. Sw arztrauber [45] used index-digit perm utations to address the

issue of com puting ordered transform s (where both the initial and final d a ta d istri­

bution are in sam e order). In a la ter work w ith Tong [47], he pointed out a cyclic

order d a ta d istribu tion which results in less com m unication cost than the natural

order on connection m achine for ordered F F T . He also gave an im plem entation

for an a rb itra ry size d a ta (not power o f ‘2) on a hypercube [46]. Cham berlain [18]

discussed com puting F F T of an in itial d a ta d istribu tion which is in a Gray code

ordering ra ther than natu ral ordering. He proved it would require com m unication

between nodes a t m ost a distance two ap art.

R elatively less a tten tion has been given to shared m em ory m achines. Swarz­

trauber [45] discussed im plem entations on Cray-X M P and A lliaut FX-8 which are

shared m em ory vector processors. Briggs e t.a l [14] discussed F F T m ethods on HEP

com puter which is an MIME) shared m em ory m achine. M ore recently Averbuch

e t.a l [3] reported the results of their im plem entation on an experim ental shared

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m em ory m achine MMX.

O ne can arrive a t two conclusions by looking a t the existing lite ra tu re for the

F F T algorithm s. Even though a lot of a tten tion has been given by the researchers

to the parallelization of the complex F F T algorithm , the R F F T algorithm has been

largely ignored. Also, there has been very little effort tow ards finding parallel

im plem entations th a t can com pute the Fourier transform of the variety of da ta

d istribu tions useful to the scientific com m unity.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

C om puting Fourier Transform of
R eal D ata on D istributed
M em ory Parallel M achines

3.1 Introduction

On a sequential com puter it has been shown th a t bo th th e R F F T and the FH T

algorithm s are faster than the F F T algorithm [7, 1‘2, 42, 44]. However, it is not

obvious th a t the same is true on parallel m achines. T he com m unication pa tte rn s

of the R F F T and the FH T algorithm s, which are critical to the cost of im ple­

m entations on d istribu ted m em ory parallel m achines, a re different from those of

the F F T algorithm (see Figures 2.1 and 2.3). We assum e th a t in a parallel envi­

ronm ent a processor is assigned to each node of the flow-graph. A link between

two nodes of the flow-graph represents com m unication betw een th e corresponding

processors. A careful observation of Figure 2.3 also indicates th a t for an identical

d a ta d istribu tion , the com m unication p a tte rn of the R F F T algorithm is a subset

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the com m unication p a tte rn of the FH T algorithm . It can be easily verified

th a t th is is in general true . T he com m unication pa tte rn s of these algorithm s are

unsuitab le for M IM D and SIMD m achines [39, 37]. For M IM D m achines these

p a tte rn s require additional com m unication overhead. For SIMD m achines there is

an added disadvantage of different d a ta m ovem ents a t different processors. Hence

a sim ple m apping of d a ta item s to processors is not likely to be efficient.

In th is chapter we present a restructu ring of the R F F T and FH T algorithm s

such th a t their com m unication p a tte rn s become sim ilar to th a t of th e F F T al­

gorithm . T he restructu ring is such th a t the com putational advantage of these

algorithm s is also retained. T he restructu red algorithm s are based on the observa­

tion th a t a t any stage of th e R F F T and the FH T algorithm s, a group of four d a ta

points uniquely determ ine four d a ta points of the next stage (a sim ilar grouping

of d a ta has been suggested before [4, 12, 15, 42] in the context of m inim izing the

num ber of arithm etic operations). This restructu ring makes these algorithm s su it­

able for m ost of the contem porary d istribu ted m em ory parallel arch itectures. We

tested the su itab ility of the restruc tu red algorithm s by im plem enting them on two

different parallel m achines. One is an MIMD d istribu ted m em ory m achine with

a hypercube interconnection network, the NOIJBE. T he second one is the AM T-

DAP which is an SIMD d istribu ted m em ory m achine with a mesh arch itecture .

O ur results indicate th a t im plem entations of the FH T and R F F T algorithm s run

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

about 25 — 40% faster than the F F T algorithm on these machines.

3.2 Sim ple FFT-like Im plem entation

We have seen th a t the com m unication p a tte rn s of the FH T and the R F F T algo­

rithm s are different from those of the F F T algorithm . This necessitates a different

approach for the ir im plem entation on parallel m achines. We illu stra te this by con­

sidering the im plem entations of 8-point D IT -FFT , R F F T and FH T algorithm s on

a 3-cube and a 4 x 2 mesh. T he com m unication p a tte rn of the F F T algorithm

im plem entation on the cube is shown in Figure 3.1(a) and it follows directly from

Figure 2.1(a). Sim ilarly the com m unication p a tte rn s of the R F F T and FH T algo­

rithm s on a cube, im plem ented from the flow graphs in Figure 2.3 are shown in

Figures 3.1(b) and 3.1(c) respectively. (An arrow between two nodes indicates a

corresponding d a ta transfer.) It can be seen from Figure 3.1 th a t for the R F FT

and FH T algorithm s, Stage 2 (com puting a sequence of length 8) requires com m u­

nication between two nodes which are a distance two apart (the diagonal transfer

on the face of the cube shown in Figure 3.1(b) and 3.1(c)). It is easy to prove that

in geueral if a stage is com puting a sequence of length 2m, where, m > 2, then it

requires com m unication between two nodes which are a distance m — 1 apart.

For the mesh im plem entation of the algorithm s, the inpu t sequence is dis­

trib u ted linearly along the processors. T he com m unication p a tte rn s generated by

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f f (i r

-r(4) j

IS
42) x(6)

stage 0

4=71
! !

stage 2

4—

147)1

V /
t : ______ 34

/

- J j I

stage 1

/ r * r c w
/ - \ ______ /
\ m

1_%6)_ l*(7J

V - VxJT) x(y)

/ f 4H x(Sp\
f r \ • { I
| Jt(°J Jr(4)| I

1
I U(3) | 4 g

V
x(Z) x(6)

stage 0

y

4

/
f ----------------- a

4 ________

/
V.________V/

stage 2

stage 1

/ p w 7

“ *(1)^(7
I

' ^--------- 1“' LI___>
(2), (6) X(3),X(5)

! ! I

(a) FFT Implementation (b) RFFT Implementation

li
/

40)

4 i) x(5y'j

44?f]

43) j XI
/

4 2) 4 6)
stage 0

4

/ f — “/ »
/ ________

4 /
\l ________y

stage 1

4 — 1______ /
M m r \

' ! 1J i 5 6) | / / (7 j

stage 2

V
7/(2) 7/(3)

(c) FHT Implementation

Figure 3.1: Im plem entations of 8-point F F T , R F F T and FH T algorithm s on

3-cube.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

th is d istribu tion are shown in Figure 3/2. T t is obvious from Figures 3.1 and 3/2

th a t the im plem entations with sim ple d a ta m apping are not efficient for th e R F F T

and FH T algorithm s. Since the com m unication p a tte rn of th e R F F T algorithm

is a subset of th a t of the FH T algorithm , an efficient m apping of the FH T al­

gorithm would also be efficient for the R F F T algorithm . T he two restruc tu red

algorithm s differ only in the com putation. Hence we discuss only the restruc tu red

FH T algorithm in the next two sections.

3.3 R estructured FH T A lgorithm

T he restruc tu red FH T algorithm consists of an in itialization step followed by a

num ber of stages (in general for an Appoint sequence there are log(/V) — 2 stages)

where inpu t to a stage is a set of groups consisting of four d a ta points each. A

stage in the restructu red FH T algorithm , like the F F T algorithm , m erges two n-

po in t sequences X \ and X 2 to form a 2n-point sequence X . T he o u tp u t of the final

stage is the DH T of the input da ta . T he initialization step partitions the inpu t

in to groups of four d a ta points each and com putes 4-point D H T for each of them ,

which becom es th e input for stage 1. A stage consists of two phases.

Exchange Phase

Form s a new set of four d a ta point groups by exchanging d a ta between two groups

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

*(2) *(3)

x(6) x(7)

-Y f m 2 p X(6)
I I I I I
I I I I I

-J. I_______ L______ I______ J
X (l) X(5) X(3) X(T)

(a) FFT Implementation

x{2) .r(3)
— ------------- T ,

m -

I_______ L_______I______ J
X(\),X(1) X(3),X(5)

(b) RFFT Implementation

x{2) x{3)

X (l) * (5) X(3) X(7)

(c) FHT Implementation

Figure 3/2: Im plem entations of 8-point F F T , R F F T and FH T algorithm s on 4 x 2

mesh.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of th e original set.

Computation Phase

Processes the four d a ta points in each group obtained after the exchange phase to

generate four new d a ta points. These four new d a ta points form a group for the

next stage.

Before giving the details of the restructu red FH T algorithm we in troduce some

necessary notations and define sets of four d a ta point groups, henceforth referred

to as groupings.

3.3.1 N otation s and G rouping D efin itions

Notations

T he two n-point sequences to be merged in a stage i are denoted by X \ and X.];

and the resulting 2n-point sequence by / / t+1, where n = 2t+1. For brevity we also

in troduce the following notations.

q\(k) = k m od n /4 ,

q2(k) = n /2 - k,

q:i(k) = n /2 + k m od n /4 ,

qi{k) = n — k ,

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

qs{k) = k m od n /2 .

For convenience, the argum ent k will be dropped in all th e subsequent references

to <jrj(fc)’s.

Grouping Definitions

Grouping Gl

A grouping, Gx is com posed of groups G l(k) , 1 < k < n j 4 consisting of four

elem ents from Hl defined by

G>(k) = [/ / '(„) , / / ‘(ft), H’(ft), / / ‘(ft)] (3.1)

Grouping G\

A grouping G\ is com posed of groups G \(k) , 1 < k < n / 4 consisting of four

elem ents from X{ , given by

<?,(*) = |A -;(„), X\(q2)X[(qx) , X \ (qi)}. (3.2)

Grouping G \

A grouping G\ is com posed of groups G \(k) , 1 < k < n /4 consisting of four

elem ents from X%, given by

f 4 W = [*.)(?,) ,x j(f t) ,A :‘(f t) ,x ;(f t)] . (3.3)

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

G ro u p in g G \ 2

A grouping, G \2, is defined as the result of an exchange operation, ‘< = > ’, between

G\ and G’?2. The exchange operation < = > is such th a t G\(k) < = > G\{k) implies

an exchange of two elem ents of G\(k) with two elem ents of G\{k) . T he elem ents

exchanged depend 011 the value of k. For 1 < k < n /4 , X \{q 2) and X\(q%) of G\

are exchanged with X](c/i) and X](</4) of G2; and for k = n /4 , X\{q \) and X\{q%)

of G\ are exchanged w ith X \ (q 2) and X ^ q ^) of G\. As a resu lt the following four

sets define the grouping G,l12.

This can be verified by observing th a t th e above equation can be w ritten as

[*,'(?,),•V jM .-tfM .-’Cjfo)], 1 < * < » / 4

1 < * < n /4

[* { (« ,) ,X j f a) , * { (* ,) , ^ (* 0) , * = n /4

[-v;(®), k = n /4 .

T he new groups defined by G\-2(k) can also be w ritten as

G \2(k) = [Xl (q5) , X , (q 5) , X , (q 4) , X 2(q4)}, 1 < k < n /2 . (3.4)

[* j M , X i (q2), X {(H), X i M l , k = n /4

K W , X f a) , X U ®) , X ‘(<K)], 1 < k < n /4

(3.5)

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where:

[*{(«), XHto), X ’(q,), *•(„)], k = n/4

is identical to

Mte), x i M , x;M, xiMl, * = »/4,

and

[x; M , x ‘m , x ; m , 1 < * < »/4

is identical to

[X U te),X .i(V 5),X i(q4) ,X '(q 4)] ,n /4 < k < n /2 .

The groupings G\ and G\ define the sequences X \ and X \ respectively. These

sequences form th e inpu t for stage i of th e restruc tu red algorithm . T he grouping

G \2 is the set of new groups form ed in the exchange phase of the algorithm where

four elem ents of every group uniquely determ ine four new d a ta points. It should

be noted here th a t th is property of grouping G\2 fo rm s the basis of restructuring .

T he new d a ta points are com puted in the com putation phase and they form the

grouping Gn+1, which is also the ou tpu t of stage i.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 A lgorithm

Initialization

(i) R earrange the d a ta in a b it reversed order.

(ii) P artition the iV-point sequence, x(n) , in to N / 4 groups given by,

+ i) , x (N / 4 + i),a:(3Af/4 + *)], 0 < i < N / 4

(iii) C om pute (4-point) H artley transform s for each of these groups. The resu ltan t

groups are the inpu t for Stage 1.

T he exchange and com putation phases of a Stage i are given below.

Exchange Phase

Form G\-2th roughG \(k) < = > Gl2(k).

Computation Phase

C om pute Gn+1 from G \2 using Eq. ‘2.14-2.15.

Example.

T h e basic com putation units of the restructured FH T and R F F T algorithm s are

shown in Figure 3.3.

We illu s tra te th e com m unication pa tte rn of the restructu red algorithm with

th e help of an exam ple of 16-point FHT (Figure 3.4). For Stage 1 we assum e

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) FHT Algorithm

x’(n/2)x'{n/ 2)

x2{n/4) 0 ------------------- 0 x/(nfA)
-1

- c

- s

-s'

(b) RFFT Algorithm

Figure 3.3: Basic com putation units of the restruc tu red R F F T and F H T algo­

rithm s.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

th a t all steps necessary to generate sequences of length 4 have been executed and

the two such sequences are to be com bined. It is seen from Figure 3.4 th a t the

com m unication requirem ents of the restructu red FH T algorithm s are very sim ilar

to those of the F F T algorithm (see F igure 2.1).

Computing DFT from the restructured FHT.

T he groupings suggested for the restruc tu red FH T algorithm have ano ther nice

property. The four points of DHT in a group, after th e final stage, a re sufficient

to generate the four corresponding points of th e D FT . To see th is consider the

grouping Gk(k), k = log N — I, of d a ta points a fter th e final stage.

G * (t) - [# * (*) , /» * (*)! , l < k < N / 4 (3.6)

It is observed from Eq. 2.11-2.13 th a t such a group of four D H T po in ts directly

gives the four corresponding points of D FT.

x m = { / / (? ,) + h m - m < h) - h m d /%

V-Ji
V

!

X M = H M , k = N / 4

X M = { H M + H M - j \ H M - H M D / 2 , 1 < k < N/4

X(qi) = { H M + H M - j [H M - H M D / % k = N/4

X M = { H M + h m - i [H M - H M D / %

V

-wV
I

x m = H M , k = N/ 4

X M = { H M + H M - i l H M - H M D / %

VV
I

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Computation
Phase \

Exchange
Phase

4 0),4 8), « ! (!) =

4 4), 412)
► 4(0),4(i).

4(2).4(3),

G\2(2) =
M (0),4 (0) .

4 (2) ,4 (2)

Gf(2) =
----------->

G?2(4) =

4(0),4(4), ?̂(0),-t|(0), >

4(2)>4(6)> 4(4)*4(4)>

m . m ,
(4),(12)

4 2),4 1 0),

4 6),4 1 4)

<4(1) = Gh(i) = <4(0 = \ 1 GU1) = m * (i5) ,

* (7),* (9)
> 4(°)>4(i),

4(2),4(3), — >
4(i), 4(i),

4P). 4(3)
► 4(1)>4(7)>

4(3),4(5)

\l “

\ A J

4(i),4(0,
4(7),4(7)

>

4 1). 4"),

4 5),4 1 3)
4(o)>4(0>
4(2). * (3) ,

G\2(2) =

4(°)>4<°)>
4 (2) ,4 (2)

G\{ 2) = G\2{2) = X(2),W(14),

4 (0) ,4 (4) ,
A

4 (2) ,4 (2) , > A'(6),W(10)
4 (2) ,4 (6) 11 4 (6),^1(6)

43),4 1 1),
4(i) = 0'{2(1) = <4(0 = / ^ G?2(3) =

4 7),4 1 5)
> 4 (0) ,4 (i) , 4 (1) ,4 (1) , ► 4(i),4 (7), L ? (3) ,4 (3) , >

4(2)>4(3)> 4 (3) ,4 (3) ^|(3),a:|(5) |4(5)>4(s)

(3),(13),

(5),(11)

Figure 3.4: Flow Graph of the restruc tu red FH T algorithm .

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 M achines

3.5.1 N C U B E

NCUBE-7 is a coarse grain MIMD distributed m em ory m achine with a hyper­

cube arch itec tu re . A A:-dimensional hypercube is an interconnection network of 2k

nodes, each node being a processor. The nodes of a hypercube can be labeled by

an integer (represented as a binary num ber) in the range 0 to 2k — 1 such th a t

there is a d irect com m unication link between any two processors if and only if the

binary representations of their labels differ in precisely one bit. On NCUBE-7 the

m axim um allowable dim ension is 5. However, a sm aller dim ension can be used

depending upon the problem size. T he processors in NCUBE-7 com m unicate with

each o ther in message passing m ode. Hence the larger the distance between the

two processors com m unicating, the more is the tim e taken. There is a host pro­

cessor which invokes a cube of the given dimension, and loads the program on to

the corresponding nodes.

NCUBE-7 supports the regular FORTRAN and C languages for program m ing

w ith a set of parallel constructs in the form of subroutine library. Some of the

m ost im portan t routines are :

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n o p e n : for host only, to open a cube of given dim ension,

n lo a d m : for host only, to load the program s on the nodes,

n r e a d : for host and node, to receive a message,

n w r i te : for host and node, to send a message.

3.5 .2 D A P -510

T he DAP-510 is a fine grain m assively parallel com puter. It is an S I M D m achine

w ith 1024 one-bit processors, arranged in a 32 x 32 m atrix . Each processor is

connected to its four nearest neighbors. T he processors on the edge of the m atrix

have w rap around connections to the processors on the opposite edge. In addition

to nearest neighbor connections, a bus system connects all the processors in each

row and all th e processors in each colum n. Each processor has its local m em ory of

64K bits. T he whole m em ory can be viewed as a th ree dim ensional array of bits,

consisting of 64K bit-planes. A bit-p lane has 1024 b its , one from each processor’s

local m em ory. Similarly, a word-plane has 1024 words, one from each processors

local m em ory.

T he higher level language available on the DAP is extended Fortran Plus, a

parallel extension of Fortran , which also supports v irtual array sizes. T he m ost

im p o rtan t featu re of Fortran Plus is the ability to m an ipu la te m atrices and vectors

as single objects. For exam ple, two m atrices can be added w ith a siugle s ta tem en t,

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as done for scalars. The m asking and selection operations are available for per­

form ing com putation on selected processors. As an exam ple, consider th e Fortran

code:

DO 10 I = 1,32

DO 10 J = 1,32

IF (A (I,J) .GE. 0) GO TO 10

A (I,J) = A (I,J) + 5

10 C O N TIN U E

This is very inefficient on a serial m achine partly due to the IF construct. In the

corresponding Fortran Plus sta tem en t,

A(A.LT.O) = A + 5,

the boolean m atrix A.LT.O is used as a m ask so th a t only those values of A

corresponding to a TR U E value are changed. T he contrast w ith the sequential

m achines on conditional operations is im portan t: th e sequential m achine perform s

a conditional ju m p , whereas the DAP will typically use ac tiv ity control to perform a

m asked assignm ent. In addition to the basic functions which have been extended to

take vector and m atrix argum ents, a large num ber of o ther functions are provided

as standard . For details on these functions one can refer to th e A M T DAP 510

extended Fortran-P lus Language M anual. The functions which we have used in

our im plem entation are described below.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sh ec : right shifts m atrix columns by a given distance,

shw c: left shifts m atrix colum ns by a given distance,

sh n c : shifts m atrix rows upward by a given distance,

sh sc : shifts m atrix rows downward by a given distance.

All the shifts are carried out in w rap-around m anner.

3.6 Im plem entations

3.6.1 H yp ercu be Im plem en tation

T he hypercube im plem entation of the restruc tu red algorithm follows from Figure

3.4. For reasons of clarity we restric t our discussion to the com putation of 4n-

poin t DHT where n is th e num ber of nodes in the hypercube (however, th e actual

code for th e NCIJBE m achine has been w ritten for th e general case). We use the

following variables and constructs in describing our im plem entation.

V a r ia b le s

x() : A real array for storing the input.

h() : A real array to store the ou tpu t.

h 1() and h2() : Real arrays used for exchanging data .

h'i() : A real tem porary array.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T he arrays x() and hQ are of dimension four; and /il() , /i‘2(), and h'i() are of

dimension two.

node : node num ber.

negh : neighbor node num ber.

dimension : dim ension of th e cube.

temp : a real tem porary storage.

Constructs

receive (negh,buffer): receives da ta from the node negh in to the buffer,

sendfnegh,buffer): sends buffer d a ta to the node negh.

f ind.negh(i,negh): finds the neighboring node negh for the xth iteration

combine(arrayl,array2,arrayS): merges d a ta of array 1 and array2 using Eq. 2.14

and Eq. 2.15 and stores the result in array 1 and arrayS.

Algorithm: H artley Transform

Input: A sequence of real d a ta of length AN.

Output: A transform ed sequence of real d a ta of length A N .

(* the following code is executed at all nodes *)

(* two po in t m erge for x (l) ,x (2) and x(3),x(4) *)

h (l) = x (l) + x(2);

h(2) = x (l) - x(2);

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

h(3) = x(3) + x(4);

k(4) = x(3) - x(4);

(* four poin t M erge for h (l:4) *)

tem p = h (l) -f- h(3);

b (3) = h (l) - h (3) ;

k (l) = tem p ;

tem p = h(2) + h(4);

h(4) = h(2) - h(4);

h(2) = tem p ;

(* all m erge w ithin the node clone *)

(* p repare for exchange *)

h 1 (1) = h(l) ;

h i (2) = h(4);

h2(1) = h(2);

h2(2) = h(3);

(* com m unication betw een nodes for m erging *)

fo r i = 1 to dim ension d o

(* find the node num ber of the Neighbor to exchange data*)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

find_negh(i ,negh);

i f (node < negli) t h e n

b e g in

receive(negh,li3);

(* receive h‘2 for com putation from the neighbor and

store it in 1)3 *)

send (negh,h‘2) ;

(* and send h2 to the neighbor, com pleting the exchange*)

com bine(h 1 ,h3,h‘2);

(* merge h i and h3 and return values in h i and h‘2,

such th a t they are in the correct place for exchange

in the next stage *)

e n d

e lse

b e g in

(* corresponding actions of the neighboring node *)

send(negh ,h l);

receive (negh ,h i)

combine(l) 1 ,h2,h2)

e n d

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end if

end for

Figure 3.5 illustrates the im plem entation of the restruc tu red FH T algorithm

on a 2-c.ube.

3.6.2 D A P Im plem entation

T he m apping on the DAP requires a t least 4 x N 2 d a ta points, where N x N is

th e size of the m esh. The general SIMD Mesh im plem entation of the FH T algo­

rithm follows from Figure 3.4. For reasons of clarity we restric t our discussion to

the com putation of 4 x N x A -point DHT, even though the algorithm has been

im plem ented for larger sized DHTs.

We use the following variables in describing our im plem entation.

Variables

A (,) in the argument o f array represents N x N , the size o f the DAF) array

hart(, ,4) '■ A real array for FH T data.

ndist : A real scalar variable to indicate the d istance between colum ns or rows

being exchanged.

f ac tor !(,) and factor2(,) : Real arrays to keep in term ediate results.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.5: H ypercube im plem entation of the restructu red FH T algorithm .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm: Hartley Transform

Input: A sequence of real d a ta of length 4 * N 2, d istribu ted such th a t any da ta

item h (k), w ith k m od N 2 = N (i — 1) x (j — 1) is m apped to th e processor Ptj.

(T he four d a ta item s on a processor are referenced by h (i , j , 1 : 4))

Output: A H artley sequence of real d a ta of length 4 * N 2, such th a t if a processor

Pij has d a ta item h(k) , it also has h (N /2 — k), h (N /2 + k) and h (N — k),

begin

fourdh t(h); { carry ou t four point D H T on all nodes }

for i = 1 to log i(N) do

begin

ndist = log2 (A f)/‘2l mod(lo&2(N)/2) { d istance betw een colum ns exchanging d a ta }

for j = 1 and 3 do

begin { d a ta exchange w ith appropriate m asks. }

if (i < log2 (/V)/2) then { com m unication am ong columns}

begin

tem p = shw c(hart(„ j),nd ist);

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

h a rt(„ j) = sh e c (h a rt(„ j+ l) ,n d is t);

end;

else { com m unication among rows }

begin

tem p = shnc(hart(„ j),nd ist);

h a rt(,,j) = sh sc (h a rt(,,j+ l),n d is t) ;

end;

h a r t (, , j+ l) = tem p;

end;

fac to rl = hart(,,2)*cos 0 + hart(,,4)*sin 0; { 0 com puted according to Eq. ‘2.14-2.15

fac.tor2 = h a r t (,,4)*cos 0 - hart(„2)*sin 0;

h a r t(,,‘2) = hart(,,3) - factor2;

h art(,,4) = h a rt(„3) + factor2;

h a rt(,,3) = h a r t (, , l) - factorl;

h a r t (, , l) = h a r t(, , l) + factorl;

end;

T h e im plem entation based on th is m apping in shown in Figure 3.6. w ith 3‘2-point

d a ta sequence on a 4 x 2 mesh.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(2),(18),
x(10),x(26)

*K0),*f(4),
x\(2),xl(6)

 I____

!̂(3),Jcf(5)

x’(0),x?(4),

j(2),?(<>)

* i (1) ,* i(7 }

x\{3),x](5)

x 22(Q),x\(4r),

x p) ,x \(6)

x \Q),xW \
*5(3),*1(5)

N . '

*;<«),*1(4),
*K2),*2(6)

 1____
^2(1)>^2(7)
*1(3),*K5)

*3(15) *1(1),*32(15)
*i(7)»*i(9) *1(7), *2(9)

I

*i(3)>*i(1 3 k— * *2(3)>*2(13)
?(5),?(ii; *i(5),*1(11)

^(0),X(16)
X(8),X(24)

X(l),X(31)
X(15),X(17

(4),(28)
X(\2),X(2Q

X(7),X(2S)
X(9),X(23)

_ _ X (6) ,X (2 6)
X(10),X(22;

(3),(29)
X(13),X(19]

Figure 3.6: Mesh im plem entation of the restruc tu red FH T algorithm .

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.7 R esu lts and D iscussion

On the NCUBE-7 we conducted a set of experim ents to determ ine the effect of

th e varying the d a ta size and the num ber of nodes on the overall execution tim e

of th e algorithm s. The num ber of nodes was varied from one to th irty two and

th e num ber of d a ta points from 128 to 32K. T he results of these experim ents are

sum m arized in Tables 3.1, 3.2, 3.4 and 3.5. For ease of presentation the com pletion

tim e, which is m easured as the num ber of clock ticks, is averaged over the individual

nodes. One clock tick equals 1024/(c.loc.k ra te), so for a 6 MHz system , one tick is

approxim ately 0.17msec. The first colum n in all these tables gives the execution

tim e on a single node in term s of clock ticks. These num bers are used as a reference

for com puting the speed-up as shown in the rem aining columns. We define speedup

as the ra tio of the algorithm ’s execution tim e on one processor to the execution

tim e on P processors. The efficiency of execution (Table 3.4,3.6) is defined as the

ra tio of the speedup to P, the ideal speedup.

The cost of executing these algorithm s on the MIMD hypercube NCUBE-7

consists of two parts (indeed, th is is true for any algorithm). T he first is the cost

of doing the com putation and the second is the cost of com m unication between

processors. For a given problem size, increasing the num ber of processors will de­

crease the am ount and cost of com putations per processor bu t m ay increase the

com m unication cost. Depending on the relative cost of com putation and communi-

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cation , increasing th e num ber of processors for a fixed problem size m ay result in a

decrease in efficiency. Increasing the problem size for a fixed num ber of processors

will certain ly increase th e com putation cost in proportion. It m ay not, however

result in a p roportionate increase in com m unication cost. Thus there m ay be an

increase in both the speedup and the efficiency.

B oth these effects are apparen t in the results presented in Tables 3.1, 3.2, 3.4

and 3.5. In all the four tables the problem size is constan t along a row and the

num ber of processors is constan t along a colum n. From Tables 3.1 and 3.4 one can

see th a t, proceeding along a row, the speedup is not linear with the increase in the

num ber of processors. In fact, for the case of 128 d a ta poin ts, the speedup actually

decreases as th e num ber of processors is increased from 8 to 16 and from 16 to 32. It

is also clear from Tables 3.1 and 3.4 th a t as th e num ber of d a ta points is increased

w ith a fixed num ber of processors the speedup increases tends to sa tu ra te around

a certain value. (N ote th a t th is trend will be th ere irrespective of the relative cost

of com putation to com m unication. If com putation is very efficient com pared to

com m unication, then the sa tu ra tion will occur a t a lower value of speed up and

vice-versa). S im ilar behavior is also seen in th e results shown in Tables 3.2 and

3.5. For a fixed problem size, increasing the num ber of processors nearly always

results in a decrease in the efficiency. Finally, one can see from the results of Tables

3.2 and 3.5 th a t there is a threshold value of num ber of d a ta points per processor

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

below which there is a d rastic fall in efficiency. T his th reshold is clearly algorithm

and m achine dependent and thus is not a universal constan t.

We also im plem ented a s tandard F F T algorithm to com pare its perform ance

w ith those of the restructu red FH T and the R F F T algorithm s. O n th e NCUBE-7,

a set of experim ents were conducted to m easure th e execution tim es of th e th ree

im plem entations for different cube sizes and different d a ta sizes. Tables 3.3 and

3.6 sum m arize the results of com parison betw een th e perform ances of th e standard

F F T algorithm and the restruc tu red FH T and th e R F F T algorithm s respectively.

T he tim e taken for the execution of these program s can be a ttr ib u te d to two

con tribu ting factors; com putation tim e and com m unication tim e. O ne can m ake

two observations from Tables 3.3 and 3.6, nam ely;

1. T he ratios of execution tim es of F F T and FH T algorithm s and F F T and

R F F T algorithm s are uniform for m ost d a ta and cube sizes. T h e ratios

are lower when the num ber of d a ta po in ts m apped per node is below the

threshold.

2. T he R F F T algorithm perform s slightly b e tte r than th e F H T algorithm . T he

reason is th a t the com putation un it of th e R F F T algorithm has fewer com ­

p u ta tio n than th a t of the FH T algorithm (see F igure 3.3).

On DAP-510 experim ents were conducted for real inpu t sequences of lengths

4K to 256K. For the sake of com parison we also im plem ented th e F F T algorithm

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for the sam e d a ta sizes, T he results of these experim ents are sum m arized in Table

3.7. T he first colum n is the num ber of d a ta points to be transform ed. The second,

th ird and fourth colum ns give the execution tim e in seconds for the FH T, R F F T ,

and F F T im plem entations respectively. T he final two colum ns show the ratio of

execution tim es of F F T algorithm s over those of th e FH T and R F F T algo­

rithm s. Note th a t the ratios are essentially independent of the size of the da ta

array as w ith the NCUBE-7. However, on DAP-510, the FH T algorithm perform s

b e tte r than the R F F T algorithm . T he reason is the less regularity in the com pu­

tation un it of the R F F T algorithm . DAP-510, being an SIMD m achine, requires

m ore instructions for irregularities.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.1: Speed-Up of the Restructured FHT Algorithm.

No of

Points

1 Node

Tim e

2 Nodes

Speed-Up

4 Nodes

Speed-Up

8 Nodes

Speed-Up

16 Nodes

Speed-Up

32 Nodes

Speed-Up

128 519 1 .8 8 3.33 5.14 5.70 4.51

256 1223 1.93 3.64 6.37 8.93 8 .8 6

512 2822 1.96 3.78 7.11 11.81 14.85

1024 6400 1.97 3.86 7.45 13.65 20.98

2048 14321 1.98 3.89 7.63 14.66 25.57

4096 31689 1.98 3.92 7.72 15.13 28.37

8192 69460 1.98 3.93 7.77 15.34 29.82

16384 151150 1.98 3.94 7.80 15.45 30.48

32768 326724 1.99 3.94 7.83 15.52 30.75

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.2: Parallelism Efficiency of the restructured FHT Algorithm.

No of 1 Node 2 Nodes 4 Nodes 8 Nodes 16 Nodes 32 Nodes

Points T im e Efficiency Efficiency Efficiency Efficiency Efficiency

128 519 94.0% 83.3% 64.3% 35.6% 14.1%

256 1223 96.5% 91.0% 79.6% 55.8% 27.7%

512 2822 98.0% 94.5% 88.9% 73.8% 46.4%

1024 6400 98.5% 96.5% 93.1% 85.3% 65.6%

2048 14321 99.0% 97.3% 95.4% 91.6% 79.9%

4096 31689 99.0% 98.0% 96.5% 94.6% 88.7%

8192 69460 99.0% 98.3% 97.1% 95.9% 93.2%

16384 151150 99.0% 98.5% 97.5% 96.6% 95.3%

32768 326724 99.5% 98.5% 97.9% 97.0% 96.1%

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.3: Ratio of Execution Times of FFT and Restructured FHT Algorithms.

Points 1 Node 2 Nodes 4 Nodes 8 Nodes 16 Nodes 32 Nodes

128 1.185 1.207 1.205 1 .2 0 2 1.109 1.035

256 1.180 1 .2 0 2 1 .2 0 2 1.208 1.153 1.079

512 1.176 1.197 1 .2 0 1 1.227 1.197 1.132

1024 1.172 1.192 1 .2 1 0 1.224 1 .2 2 0 1.184

2048 1.169 1.187 1.205 1 .2 2 1 1.228 1.213

4096 1.166 1.184 1 .2 0 0 1.216 1.226 1.224

8192 1.165 1.180 1.195 1 .2 1 0 1.219 1.230

16384 1.163 1.177 1.191 1.205 1 .2 1 2 1.230

32768 1.162 1.172 1.188 1 .2 0 0 1.213 1 .2 2 0

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.4: Speed-Up of the Restructured R FFT Algorithm.

No of

Points

1 Node

T im e

2 Nodes

Speed-up

4 Nodes

Speed-Up

8 Nodes

Speed-Up

16 Nodes

Speed-Up

32 Nodes

Speed-Up

128 478 1.84 3.21 4.83 5.25 4.16

256 1 1 2 2 1.90 3.52 6 .1 0 8.37 8.19

512 2579 1.93 3.68 6.82 1 1 .1 2 13.79

1024 5840 1.95 3.77 7.23 13.04 19.66

2048 13043 1.96 3.82 7.40 14.07 24.29

4096 28824 1.96 3.84 7.51 14.59 27.06

8192 63111 1.96 3.86 7.58 14.84 28.58

16384 137191 1.97 3.87 7.67 14.98 29.33

32768 296342 1.97 3.92 7.68 15.09 29.68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.5: Parallelism Efficiency of the Restructured R FFT Algorithm.

No of 1 Node 2 Nodes 4 Nodes 8 Nodes 16 Nodes 32 Nodes

Points Tim e Efficiency Efficiency Efficiency Efficiency Efficiency

128 478 92.0% 80.3% 60.4% 32.8% 13.0%

256 1 1 2 2 95.0% 8 8 .0 % 76.3% 52.3% 25.6%

512 2579 96.5% 92.0% 85.3% 69.5% 43.1%

1024 5840 97.5% 94.3% 90.4% 81.5% 61.4%

2048 13043 98.0% 95.5% 92.5% 87.9% 75.9%

4096 28824 98.0% 96.0% 93.9% 91.2% 84.6%

8192 63111 98.0% 96.5% 94.8% 92.8% 89.3%

16384 137191 98.5% 96.8% 95.9% 93.6% 91.7%

32768 296342 98.5% 98.0% 96.0% 94.3% 92.8%

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.6: Ratio of Execution Times of FFT and Restructured R FFT Algorithms.

Points 1 Node 2 Nodes 4 Nodes 8 Nodes 16 Nodes 32 Nodes

128 1.290 1.280 1.262 1 .2 0 2 1.109 1.035

256 1.286 1.290 1.266 1.260 1.179 1.088

512 1.286 1.292 1.280 1.288 1.233 1.150

1024 1.284 1.292 1.295 1.300 1.277 1 .2 1 2

2048 1.283 1.290 1.296 1.299 1.294 1.260

4096 1.282 1.289 1.295 1.300 1.299 1.283

8192 1.282 1.288 1.293 1.299 1.297 1.298

16384 1.281 1.287 1.292 1.304 1.295 1.303

32768 1.281 1.282 1.302 1.299 1.300 1.299

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.7: Com parison of the perform ances of FH T and R F F T im plem entations

with th e F F T im plem entation on DAP-510.

No of

Points

FH T T im e

(Sec)

R F F T T im e

(Sec)

F F T T im e

(Sec)

F F T /F H T F F T /R F F T

4K 0.026 0.027 0.042 1.62 1.56

8 K 0.063 0.066 0.104 1.65 1.58

16K 0.133 0.138 0.215 1.62 1.56

32K 0.282 0.292 0.450 1.60 1.54

64K 0.598 0.619 0.949 1.59 1.53

128K 1.269 1.324 2.028 1.60 1.53

256K 2.685 2.790 4.261 1.59 1.53

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

A n FFT Im plem entation for
Block Scattered D ata
D istributions

4.1 Introduction

In a num ber of applications the F F T algorithm is only a p a rt of the overall com­

pu tational scheme. In such cases, the ordering of th e d a ta elem ents m ay be de­

term ined by considerations o ther than the requirem ents of the F F T algorithm .

W hile this is not a big concern 011 sequential m achines, it can pose a m ajo r prob­

lem on d istribu ted m em ory parallel m achines. T he ordering of d a ta d ic ta ted by

an application m ay result in a d a ta d istribu tion which is not ideally su ited for

the F F T algorithm . The users in such a situation have three options. O ne is to

design different F F T subroutines to m atch the d a ta d istribu tions for different ap­

plications. T he second option is to m atch the d a ta d istribu tion of the application

as closely as possible to the requirem ents of the F F T subroutine. And the th ird

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

option is to red istribu te d a ta before a call to the F F T subroutine. Clearly none of

the these options are very suitable and hence there is a need for a subroutine th a t

can support different user d a ta distributions.

This chapter presents an adaptation of the F F T algorithm for d istribu ted m em ­

ory m achines which works for block scattered d a ta d istribu tions w ith different block

sizes. Block scattered distributions have been identified as being extrem ely useful

for scientific com putations [49]. They have already been described in detail in

C hap ter 1. T he im plem entation also makes the final d a ta d istribu tion identical

to the in itial one. This is im portan t in a large num ber of practical engineering

and scientific applications. F F T algorithm s generally change the ordering of data.

As a result m aking input and output da ta d istribu tions identical involves in tern­

ode com m unication. T he perform ance of th is schem e has been evaluated by an

im plem entation on Intel iF*SC/860.

4.2 Parallel Im plem entation

A typical im plem entation of the FFT algorithm on a d istribu ted m em ory m a­

chine results in a sequence of butterflies a t each node interspersed w ith internode

com m unication. Depending upon the initial d istribu tion , d a ta for some of the

butterflies are available locally and for o thers, off-node d a ta are required. There

are two approaches for com puting butterflies which need off-node data . The first

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

approach splits a bu tterfly between two nodes, and in the second approach a com­

plete bu tterfly is com puted on a node. T he parallelism in the la ter case is achieved

by d is tribu ting different butterflies on different nodes. For exam ple, consider a

sim ple case of com puting two butterflies on a two node m achine as shown in Fig­

ure 4.1(a). (These butterflies are from the D IF -F F T algorithm , which is used for

th is im plem entation .) N otice th a t both butterflies need off-node da ta . T he two

approaches are illu stra ted in Figure 4.1(b) and Figure 4.1(c), respectively. It is

obvious from these figures th a t the first approach has certain disadvantages. These

are:

H ig h c o m m u n ic a t io n v o lu m e T he first approach requires twice the inter-node

com m unication volum e when com pared w ith the second approach.

U n b a la n c e d c o m p u ta t io n a l lo a d T he first approach results in additional com­

p u ta tio n on som e of the nodes. For exam ple, th e m ultiplication by u> in the com­

pu ta tio n of bo th th e butterflies of F igure 4.1(b) is done on node P i, unlike the

second approach (See Figure 4.1(c).)

E x t r a s to r a g e . T he first approach requires twice the storage of th e second ap­

proach.

For these reasons our parallel im plem entation of the F F T algorithm is based on

the second approach.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x 0 O x 2 0

* 1 0 * 3 0

(a). Distribution o f data on two nodes and the butterflies to be computed.

Po P 0 Po

0 x

P i

O x,

O x . O x,

Exchange data

Po Po

* o O

oo

x ' (\ x - l p

i* 2 O ' x ? 0

* 3 0 * 3 0

Po

P i

Exchange data Compute butterfly

(b). First approach (c) Second approach

Figure 4.1: Two approaches for com puting butterflies in parallel.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 A lgorithm

As sta ted earlier, th e m ain fea tu re of our F F T scheme is th a t it works for block

scattered d a ta d istribu tion with variable block sizes. T h a t is, th e sam e algorithm

can be used for different d a ta d istribu tions w ithout any initial rearrangem ent of

the data . The algorithm consists of th ree phases: the first and th e th ird phase

com pute butterflies for which the d a ta are locally available, and the second phase

com putes butterflies for which off-node d a ta are required. As a resu lt, in ternode

com m unication occurs only during the second phase. D epending upon the block

size the work d istribu tion for the first and th ird phases will differ. In extrem e

cases one of these two phases will not be executed. For a block size of 1 we need

to execute only the first two phases, while for a block consisting of all th e d a ta on

a node only the last two phases are executed. For all o ther block sizes all three

phases of the algorithm are executed. Given the num ber of processors, the am ount

of work in the second phase rem ains constan t for all block sizes. W hen a single

block is m apped on a node, it m ust be trea ted as a special case. This is because in

phase 2 of the algorithm , where off-node d a ta are needed, the block gets divided

into two sub-blocks, which is not true for o ther block sizes.

An F F T algorithm with d a ta size N has log2 (A) d istinct stages of com putation.

Each stage com putes N /2 butterflies. In our F F T scheme, as in m ost o ther parallel

F F T schemes, all the nodes partic ipa te in com puting a stage by operating on

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

different d a ta points. The. algorithm is described here by considering an N point

F F T on a p-node m achine, with n = N / p as the num ber of d a ta points m apped

per node and b as the block size. The d istribution of work in the three phases is

as follows

1. T he first \og2(n/b) stages are com puted in the first phase. T he butterflies in

these stages require da ta available locally from different blocks.

2. T he next log2 (p) stages are com puted in the second phase. T he butterflies

need off-node data, hence internode com m unication takes place.

3. T he last log2(&) stages constitu te phase three. T he butterflies in phase three

are com puted with local d a ta from within a block.

T he algorithm has a com putational kernel d f t s t e p which is common to all the

th ree phases. T he kernel is common to all nodes and com putes all th e butterflies

of a stage m apped onto a node. It assumes th a t the u> values (see Eq. 2.6 and 2.7)

have been precom puted and arranged so th a t they are available in the right order

as needed. A FORTRAN call to the kernel can be m ade as follows:

call d f ts tep (a , to, o f f set,, groups, (list, w incr)

where the argum ents are:

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a A rray of inpu t sequence,

w A rray of coefficients oj.

o ffse t T he distance between the two elem ents of a butterfly.

g ro u p s T he num ber of sim ilar sets of butterflies.

d i s t T he d istance between two groups.

w in c r T he stride for w.

T he kernel d f t s t e p essentially com putes n /2 butterflies. T he form ation of

these butterflies is determ ined by the th ree argum ents o f fse t, g ro u p s and d is t .

F igure 4.2 shows th e difference in the form ation of the sets of butterflies depending

on th e values of these th ree argum ents.

T he pseudo code given below describes the F F T algorithm using ’d fts tep ’.

{ This code is executed on each node }

begin{phase 1}

offset = n /2 {distance between two points of a bu tterfly }

groups = 1 {only one subgroup in the first stage }

wincr = 1 { stride for u> }

fo r i = 1 to \og2(n/b) d o

dftstep(a ,w , offset, groups, offset*2 , wincr)

offset = offset/ 2

groups = groups* 2

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x0 x l x2 x3 X4 x5 x6 x2

Data in a Processor

x2

x7

Butterflies with
offset = 2
groups = 2
dist = 4

Butterflies with
offset = 4
groups = 2
dist = 2

Butterflies with
offset = 4
groups =1
dist = 8

Figure 4.2: Form ation of different sets of butterflies.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end for

end {phase 1 }

begin {phase 2 }

offset = n /2

groups = offset /b

for i = 1 to log2 (p) do

{negh is node with d — i tk b it differing}

{exchange half the d a ta w ith negh }

negh = m ynode © 2 rf-t+ 1

exchange(a(k),uegh) {k = n * j / ‘2 + 1 , where j is the value of (d — i) th b it }

dftstep(a,w ,offset,groups,b,w incr)

if(6 = n) then {special case}

negh = m ynode © 2d

exc.hange(a(k),negh)

end if

end for

end {phase 2 }

begin {phase 3 }

for i = 1 to log2 (t) do

groups = groups* 2

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dftstep(a,w ,offset,groups,offset*2 ,wincr)

offset = offset/ ‘2

wincr = 2 *wincr

e n d fo r

e n d {phase 3 }

For the im plem entation 011 Intel iPSC /860 the call to procedure e x c h a n g e first

in itia tes a send and then posts a receive for incoming data . This protocol is followed

due to the peculiarity of the iPSC /860 com m unication characteristics [41]. The

com m unication between two nodes s ta r ts with the source node sending a probe to

the destination node. The d a ta is sent to the destination node only after it has

acknowledged the probe. If both nodes want to exchange d a ta with each other

and they send out the probe a t the sam e tim e, the d a ta can be transferred to both

nodes concurrently. However, if the nodes are out of step and one node sta rts

sending its d a ta before the o ther one sent its probe, then the transfer of da ta

proceeds in only one direction. This is because each connection betw een nodes has

only two channels, one for receiving and one for transm itting . Once a node s ta rts

sending out d a ta it has no channel available to acknowledge the probe. Hence the

second node is forced to wait until th e first one finishes sending its data .

T he working of the three phases is shown in Figure 4.3 with the initial da ta

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

d istribu tion of Figure 2.1(a). In th is exam ple a to ta l of 4 stages are required. The

first phase is com puted in stage 1 of the algorithm . T he butterflies in th is stage

are form ed by the corresponding elem ents of the two blocks. T he second phase

is com puted in stages 2 and 3 which require exchanges of data . T he th ird phase

includes stage 4, which is com puted by com bining the d a ta w ithin a block.

4.4 R earrangem ent

In general, F F T algorithm s generate th e resu ltan t sequence in an order different

from th a t of the inpu t sequence. T he decim ation in tim e algorithm s have the in­

p u t sequence in b it reversed order (index of a d a ta item is obtained by reversing

the b inary representation of the original index) and o u tp u t in na tu ra l order. The

decim ation in frequency algorithm , used in this im plem entation , has the input

sequence in natu ral o rder and the ou tp u t sequence in b it reversed order. T he com­

p u ta tio n of a bu tterfly w ithin a node also scram bles th e o u tp u t d a ta d istribu tion .

As a consequence, th e resu ltan t d a ta are in the wrong node a t th e wrong indices

and m ust be red istribu ted . In a parallel environm ent red istribu tion alm ost always

involves in ternode com m unication in addition to reordering w ithin the node. T he

difficulties in red istribu ting the d a ta can be fully appreciated by following th e d a ta

m ovem ents using the b inary representation of the th e ir indices (sim ilar to index

digit perm u ta tions used in [44]). Consider a d a ta sequence of length 2n . T he index

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10 11

12 13

14 15

Stage 2

Po

0
4 1

4
4 5

Pi

2
4

3
44

6

4
7

P i

8
4

9
44

12 13

P i

10
f

11
44

14
4

75

Stage 3

Po

0 7
4 4

1
I

0 — 7

4 4
2 3

1

1
2 — 3

P i 1 P i
4 5
A A 1 4 — 5

4 1
6 7

1

1

• 6 — 7

P i | Pi
8 9
1 i

1 8 — 9
4 4
10 11 1

1

70— 77

P i | Pi

72 13
4 4 1 1 2 * ^ 1 3

4 4
14 15 1

1

1 4 * * 15

Phase 1 Phase 2

Stage 4

Po

Phase 3

Figure 4.3: T hree phases of the F F T algorithm w ith block scattered d a ta d istri­

bution.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of each d a ta item in th is sequence can be uniquely represented by n b its. Let this

be represented by

Here it is assum ed th a t th is d a ta is divided am idst 2d nodes using a block scattered

d istribu tion w ith a block size b. In th is d istribu tion , b its 1*6—2 ---*o represent the

offset of a d a ta item w ithin a block, b its (ib+d-i--ib) represent the node num ber on

which a d a ta item is m apped and b its (in-i..ib+d) represent the block num ber of a

d a ta item .

We will now see the change in the d a ta d istribu tion during F F T com putation.

To ensure the com putation of a butterfly w ithin a node, the following strategy is

used for d a ta exchange. Consider two nodes p\ and p2 th a t m ust exchange da ta

w ith each o ther. Between a node pair exchanging d a ta a t a stage j in phase 2 of

the algorithm , p\ is the node with ib+d-j — 0 and p2 is the node w ith ib+d-j = 1-

Let each node have k blocks of data . Then p\ keeps the first k /2 blocks and sends

the last k /2 blocks to p2. W hereas p2 keeps the last k /2 blocks and sends the first

k /2 blocks to p\. In term s of binary representation of the indices th is m ovem ent

tran sla tes in to an exchange between th e m ost significant and b + d — j t h bits. A

sequence of a few such exchanges is shown below;

original di stribution i i Z b + d — ' i i b + d —3'•• 6̂̂ 6—i

after first exchange . i b d - d —\ ^ n —2 - - - ^ b - \ - d ^ n —i*6+rf—2*6+rf—

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a f t e r s e c o n d e x c h a n g e t m.ib+d—2 1̂1—2 ...*6-t-rf*7i—i*6+rf—i*6+d—3 "**6*6—i ” -*07

a f t e r t h i r d e x c h a n g e • .ib^-ii~3 ^n—2 "-^b+d^n—i*6+fi—i*6+<i—2 "-*6*6—i • ••io*

At the end of the second phase (when all the d a ta m ovem ent for com putation is

over after d exchanges) the binary representation of the da ta d istribution is

* 6 * 71—2 , , , * 6 + d * ? i —l * 6 +r f — 2 • • • * 6 + 1 * 6 —1 • ••*£)• (^ ‘^)

In th is d istribu tion the block num ber is given by ibhi-2 hi-zH+d, th e node num ber

by in_iib+d-2 ---H+\ and the offset w ithin a block by 4-i---*o- This d istribution

rem ains und istu rbed in the th ird phase. T he binary representation required of the

final d a ta indices is

* 0*1 • • • * 71—2*71 — 1 • (^ • ' ^)

T he red istribu tion process changes the d a ta d istribu tion of Eq. 4.2 to th a t of Eq.

4.3.

Eq. 4.2 and 4.3 also help in determ ining the num ber of nodes th a t each node

m ust send d a ta to and receive d a ta from. T he num ber of nodes is determ ined by

com paring the b its corresponding to the node num ber in the two equations. This

is illu stra ted w ith the help of an exam ple of 1024 d a ta points d istribu ted over 16

nodes with two different block sizes, 8 and 4. For both block sizes the initial da ta

d istribu tion is

*9*8 *7*6*5*4 *3 *2*1*07 (4.4)

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and the final required d a ta d istribu tion is

*0*1 *2*3 *4 *5*6*7 *8*9 - (4.5)

For block size of 8 d istribu tion after all th ree phases of F F T com putation is

*3 *8 *7*9*6 *5*4*2 *1*0 - (4-6)

T he node num ber in Eq. 4.5 is given by 23*4*5*6 and in Eq. 4.6 by 19*6*5*4 - Notice

th a t b its *3 , i4 and *5 are comm on to both the node num bers. Given a node

num ber, th e values of these bits are fixed. T he only bit th a t can be varied in the

destination node num ber is b it *3 . Hence each node will be sending d a ta to a t most

two nodes. A careful consideration of th e two equations also gives the fixed bits

in th e representation of source node num bers th a t a node will receive d a ta from.

In th is exam ple it is ***4*5*6 , where ix can be any b it o ther than the ones included

in the expression. This expression reveals th a t each node will receive da ta from at

m ost two o ther nodes. For exam ple node 6 will be sending d a ta to nodes 3 and 11

and receiving d a ta from the sam e two nodes. Node 5 011 th e o ther hand will send

d a ta to and receive d a ta from only node 13.

For a block size of 4 the d istribu tion after com putation is

*2*8 *7*6*9 *5*4 *3 *1*0 - (4.7)

H ere th e node num bers from E quations 4.5 and 4.6 are given by *g*s*4*3 and *4*s*6*7 ,

respectively. The fixed bits are *4 and *5 , and the b its th a t can be varied in

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

th e destination node num bers are i6 and i7. The binary expression for the node

num bers th a t a node will receive d a ta from is ixi^igix, where the first and the

last b its in the expression are changeable. Each node therefore sends d a ta to

and receives d a ta from at m ost 4 nodes. However, a com parison between the

expressions for source and destination node num bers indicates th a t they may not

be identical. Indeed, node 6 sends d a ta to nodes 12, 13, 14 and 15 and receives

d a ta from nodes 4, 5, 12 and 13. Sim ilarly it can be easily verified th a t with

block sizes of 1 and 16, each node will be sending d a ta to and receiving d a ta from

m axim um 8 nodes and for all o ther block sizes all nodes will be sending d a ta to

each other. T he last type of d a ta exchange is known as the com plete exchange.

T he exam ple given above highlights a num ber of problem s th a t arise in deciding

a stra tegy for red istribu tion of d a ta after the com putation is over. The m ost

im p o rtan t of these are sum m arized here.

1. For a given d a ta size and th e num ber of processors the na tu re of the redis­

tribu tion problem varies w ith block size (it m ay or m ay not be a com plete

exchange problem .)

2. For th e block sizes where red istribu tion is not a com plete exchange problem ,

all nodes m ay not send d a ta to an equal num ber of nodes. More precisely,

som e nodes will them selves be a destination and hence will send d a ta to one

less node.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. T he bits comm on to the binary representation of source and destination node

num bers appear in different order and in different places. The order and

placing are dependent on the block size, d a ta size and the dimension of the

cube. T here is no easily noticeable p a tte rn to generalize the red istribu tion

process.

On Intel iPSC /860 m achine the situation is som ew hat sim pler when the red istri­

bution problem is a com plete exchange. T here are several algorithm s available for

the com plete exchange problem which carry out d a ta transfer w ithout contention

[10, 11]. However, when the redistribution problem is not a com plete exchange, it

is obvious th a t these algorithm s will result in some redundan t work. Each node

will be try ing to send d a ta to some nodes for which it has no data . T he sim plest

way to counter th is problem is to elim inate th e redundan t d a ta “sends” . In addi­

tion to redundancy there may also be the problem of contention on the network.

We consider an exam ple with ‘2048 d a ta poin ts, a 5-c.ube and a block size of 8. T he

b inary representations for source and destination nodes num bers are *10*7*6*5*4 and

*3*4*5*6*7 , respectively. From these representations, node ‘2 m ust send da ta to nodes

4 and 20 and node 3 m ust send da ta to nodes 12 and ‘28. T he routing in iPSC /860

follows the e-cube algorithm , where the next node in the rou te is determ ined by

com plim enting the least significant b it th a t does not m atch w ith the corresponding

bit in the destination . In th is exam ple the respective routes for d a ta transfer from

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

node 2 to both of its destinations are

2 - 0 - 4 , (4.8)

2 - 0 - 4 - 20. (4.9)

Sim ilarly for node 3 they are

3 - 2 - 0 - 4 - 1 2 , (4.10)

3 - 2 - 0 - 4 - 1 2 - 2 8 . (4.11)

It is obvious from Eq. 4.8-4.11 th a t, irrespective of the way these transfers are

scheduled, there will be contention. For these reasons one of the com plete exchange

algorithm s from [10] has been used in the redistribution section of the code.

4.5 Experim ental results

We evaluated the perform ance of our im plem entation on Intel iPSC /860 for dif­

ferent block sizes and for different d a ta sizes. The Intel iPSC /860 is a d istribu ted

m em ory m achine which can have up to 128 nodes. In ternode com m unication is

done through a hypercube interconnection network. T he experim ents reported

here were carried out using all nodes of a 32 node m achine. T he results of these

experim ents are sum m arized in Figures 4.4 through 4.7. In all th e figures, the

quan tity along the x axis is represented by its logarithm to the base 2.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.4 sum m arizes the results for variation in perform ance in term s of

Mflops pe r node as the d a ta size is increased. The two lowest curves in the figure

are for th e two extrem e block sizes. T he th ird curve gives perform ance when the

block size is approxim ately equal to the num ber of blocks and the top m ost curve

gives th e best perform ance of any block size for a given d a ta size. T he curves

corresponding to the best perform ance, and the two ex trem e block sizes show a

sim ilar trend . T here is a rapid increase in the perform ance with increase in da ta

size in th e beginning, which tends to sa tu ra te w ith sufficiently large data . To

explain the reason for this behavior we consider the com m unication characteristics

of the m achine Intel iPSC /860 the cost of com m unication is determ ined by the

equation

tcomm = 164 + 0.398a + 29.9/3 (4.12)

w here a is the num ber of bytes in the message and f) is the distance between two

nodes [10]. T he first term in the equation is the setup overhead. As « increases for

fixed (3, the fraction of to ta l tim e used in the setup decreases. For small d a ta sizes

th e overheads are a significant fraction of the overall execution tim e and bring down

th e perform ance. As the d a ta size increases, the overheads become a sm aller and

sm aller fraction until they becom e insignificant, and the perform ance curve reaches

sa tu ra tion . T he curve for the m id sized blocks shows a m uch m ore curious trend.

For these block sizes a node sends d a ta to only a subset of nodes, thus saving

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

on setup overheads, bu t there is contention in the rearrangem ent process. For

sm aller d a ta sizes, the volume of d a ta com m unicated is low enough for overheads

to be a greater factor in determ ining the perform ance, hence it is close to the best

perform ance. However, for large da ta sizes, the volume of da ta com m unication

being high, contention plays a m ore im portan t role and brings the perform ance

down.

M flo p s
per

N o d e

6 8 10 12 14 16
log2(n)

Figure 4.4: T he variation in perform ance per node as datasize is increased.

T he best perform ance for a given d a ta size occurs when there is no contention

in th e redistribution and the num ber of blocks are as close as possible to the block

size. This can be observed from Figure 4.5 which plots the perform ance per node as

a function of block size for a fixed d a ta size. T he top curve in Figure 4.5 gives the

perform ance of the F F T com putation w ithout rearrangem ent and the second curve

78

.5 B e st P e r fo rm a n c e

2

1.5

0.5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gives the overall perform ance. These results indicate th a t while th e perform ance

of com putational section varies by sm all am ounts, th e overall perform ance shows

m ore noticeable differences. T he variation in the overall perform ance is due to

th e d a ta rearrangem ent. T he curve for the F F T perform ance tend to peak in the

m iddle. T he reason for the slight variation in the F F T section perform ance lies

in the relative d istribution of work between th e th ree phases of the algorithm . In

Figure 4.6 we have p lo tted the effect of block size on relative d istribu tion of work

in the th ree phases of the com putational section. As expected, the fraction of

tim e taken by the first phase is m axim um for the sm allest block size and steadily

decreases as the block size increases. T he th ird phase exhibits a reverse trend . T he

region where both these phases have approxim ately equal work is also the region

which shows higher perform ance in the com putational section curve of Figure 4.5.

Also notice from Figure 4.6 th a t th e fraction of tim e used in the second phase

rem ains alm ost constant for all block sizes. T he second phase takes m ore tim e

th an the o ther two since it also involves internode com m unication.

The effect of d a ta size on the com m unication and com putation tim e of the

com putational section of the code is shown in Figure 4.7. To p lo t th is we chose the

best perform ance for every d a ta size. W ith very small d a ta sizes alm ost the en tire

tim e is taken up by th e com m unication. As the d a ta sizes increase, com putation

s ta r ts tak ing larger fractions of the execution tim e. T he com putation fraction

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5

C o m p u ta t io n a l sec tio n -

2.5
M F lo p s

p e r
N o d e

F u ll co d e '

0 2 4 6 128 10 14 16
log 2{B locksize)

Figure. 4.5: The variation in perform ance as block size is increased.

100
P h a se 3

P h a se 2
T im e %

P h a se 1

0 62 4 10 12 14 16

Figure 4.6: T he d istribu tion of work in th e th ree phases w ith different block sizes.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tends to sa tu ra te when the d a ta sizes become sufficiently large. To explain the

reason we consider Eq. 4 .1‘2 again. Notice from Figure 4.7 th a t th e satu ration

occurs for a = ‘211. T he value of ft for the en tire curve is 1. For th is d a ta size the

contribu tion from th e overhead term in the expression is abou t 5%.

100

80

60
C o m m u n ic a t io n

T im e %

" S a tu ra tio n p o in t40

20

0
4 6 10 12 14 168

l°g2(«)

Figure 4.7: T he relative contributions of com putation and com m unication in the

com putational section as the datasize is varied.

4.6 Sum m ary

In th is chapter an F F T im plem entation was given on a d istribu ted m em ory parallel

m achine which works for a num ber of d a ta d istribu tions com m only encountered

in scientific applications. We evaluated the perform ance of our im plem entation

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ou the Intel iPSC /860. The results of our experim ents ind ica te th a t th e variation

in block sizes has m ore effect on the perform ance of th e rearrangem ent section

than on the com putational section. In the com putational section, th e variation in

perform ance is no t significant enough to m ake the choice of block size a critical

issue. On a 32 node m achine we obtained a peak perform ance of 124 Mfiops, th a t is

3.875 Mfiops per node (This Figure does not include th e in itia lization costs which

are incurred only once for a given size F F T .) If we include th e d a ta rearrangem ent,

the perform ance decreases to 2.69 Mfiops per node.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Fourier Transform o f B lock
Scattered Real D ata D istribution

5.1 Introduction

In the previous chapter we discussed an im plem entation of the F F T algorithm for

block scattered d a ta d istributions. T he im plem entation tac itly assum ed the input

d a ta to be complex. In C hapter 3 efficient parallel im plem entations of th e FH T

and the R F F T algorithm s for transform ing real d a ta were given. However, those

im plem entations are efficient only for a specific d a ta d istribu tion . T he use of these

im plem entations w ithout modification for o ther d a ta d istribu tions may require

internode com m unication in the beginning. The in ternode com m unication, being

very expensive on d istribu ted m em ory m achines, m ay e lim inate the com putational

advantage of the FH T and R F F T algorithm s. It m ay even m ake the use of these

algorithm s m ore expensive than the F F T algorithm . An alternative is to adapt the

restructu ring to the given d a ta distribution such th a t no rearrangem ent involving

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in ternode com m unication is required in the beginning.

A stra tegy for adapting the restructu ring of da ta to block scattered d istribu ­

tions is suggested in this chapter. We give im plem entations for the restruc tu red

R F F T and FH T algorithm s on a d istribu ted m em ory parallel m achine for block

scattered d a ta distributions with different block sizes. The issue of d a ta rear­

rangem ent after the com putation is also addressed, as with the com plex F F T

im plem entation. The perform ances of these im plem entations were evaluated on

th e Intel iPSC /860 and were also com pared with the perform ance of the F F T

algorithm given in C hapter 4.

5.2 Parallel Im plem entation

T he im plem entations presented in th is chapter have certain features in comm on

w ith the im plem entation of the F F T algorithm from C hapter 4. Some of these

features are :

1. T he algorithm s work for block scattered d a ta d istribu tion w ith variable block

sizes.

2. T he algorithm s have three phases. T he d a ta required for the first and the

th ird phase are available locally, and the second phase needs off node data .

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. T he am ount of work in the first and the th ird phase varies w ith the block

size, bu t rem ains constant for the second phase.

4. T he d istribu tion of work in the three phases is similar.

5. Each algorithm has a com putational kernel which is common to all th ree

phases. T he kernels are different for different algorithm s.

T he m ain differences between them are :

1. T he basic unit of com putation for the complex F F T algorithm is a butterfly,

while for R F F T and FH T algorithm s it consists of four d a ta points as shown

in Figure 3.3. (We refer to it as a g ro u p .) Also a group with index 0 is

com puted differently from the o ther groups.

2. T he first stage of these algorithm s, where sequences of size 1 are combined,

m ust be trea ted as a special case, since no group can be form ed.

3. Unlike the F F T algorithm , these two algorithm s need a t least four blocks

per node to be efficient. Less than four blocks per node would require initial

d a ta rearrangem ent with internode com m unication.

4. A block is not m aintained as an en tity throughout th e com putation in the

FH T and R F F T algorithm s.

5. Some d a ta rearrangem ent within the node is required in all th ree phases of

the two algorithm s discussed here.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. T he d a ta rearrangem ents after the com putation are vastly different.

A com putational group of Figure 3.3 can be com puted in parallel in two ways

sim ilar to th e butterfly in C hapter 4. This is illu stra ted in F igure 5.1. using a

com putational group with a non-zero index from the FH T algorithm . T he com pu­

ta tion shown in Figure 5.1(b) has the disadvantages of twice the storage area and

tw ice the com m unication volume requirem ents of the one in Figure 5.1(c). The

com putational load is identical in both approaches, unlike the butterfly . However,

th e approach shown in Figure 5.1(b) divides a group between two processors. This

results in an unsuitab le da ta distribution for the next stage. Hence, we m ust use

the approach shown in Figure 5.1(c).

T he restructu red FH T and R F F T algorithm s require inpu t d a ta to be in bit

reversed order. This could be avoided in the F F T im plem entation by using the

decim ation in frequency FFT algorithm which shifts the process of b it reversal to

the end. This is not possible with the restructu red FH T and R F F T algorithm s

since the form ation of the grouping m entioned in C hap ter 3 requires the d a ta to

be in bit reversed order. However, arranging the entire d a ta in b it reversed order

requires in ternode com m unication. A com prom ise can be reached by arranging

th e d a ta w ithin the node in a b it reversed order. Recall from C hap ter 3 th a t

the initial grouping is formed by pu tting four consecutive d a ta item s of the bit

reversed sequence in one group. In term s of binary representation of the indices,

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Po p 1

jc, (v) 0

x M / 2 - v) 0

Xi (n /2 + v) 0

X,(rt - v) 0

x 2(v) 0

x 2(n /2 ~ v) 0

x 2(n /2 + V)
0

x 2(n - V) 0

x,(v)

x M !2 - v) o

* , (« / 2 + v) O

*i(« - v) O

x2(n/2 - v)

x 2{n /2 + v)

^ (« ~ v) O '

(a). Distribtuion of data on two nodes and the groups to be computed.

jc, (v) 0

x, (n/2 - V)0
jc,(rt/2 + v)0

x,(n - v)0

x2(v) 0

x2(n / l - v) 0
x2(n /2 + v) 0

x 2(n - v) 0

y,(n /? — vYV—.

/ a

x 2(v)q A

x 2(n f2 - v)q A

x 2(n /2 +

x 2(n - v) (f

V ' o

0

0

0

ti(vXX
X\(n/2 ~ v) q \

x,(n/2 +
JC, (« - v)i

x 2 { v) q ,

x 2(n /2 - v)
x 2(n /2 + vX>

x 2(n ~ v) < y £ -

Exchange Compute

(b) A group between two nodes.

*i(v)0
X\(n/2 - v)0
jc,(n/2 + v)0

xAn - v)0

■*1 Vv/

x2(n /2 - v)0
x 2(n - v)0

x 2(n /2 + v)®

JC, (n/2 - v)CX
Jt,(n/2 + v)0*
x 2(n /2 - v)Q g

x 2(n /2 + v)0<

(c) A group within a node

Figure 5.1: Two ways of com puting groups in parallel.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a bit reversed sequence of 2n data points is represented as

(5.1)

T he in itial grouping is form ed by p u ttin g all d a ta item s which have identical values

for b its *o---*n- 3 in one group. To verify th a t the bit reversal of the d a ta w ithin a

node allows the in itial grouping to be form ed, we consider a m apping of 2” length

d a ta on 2d nodes, w ith a block size of 2b and the num ber of blocks on a node equal

to 2k. T he da ta d istribu tion is

®7i—l *6+<i—1 ..**6) *6—1 ■•*0) ('^ • ^)

where b its give the block num ber, bits it,+d-\—ib represent the node

num ber and bits ib-i..io give the offset w ithin a block. T he d istribu tion w ith b it

reversal w ithin a node is

* 0 .” *6—l* 6 + rf .” *ji—6—1) *6+rf—1 •••*6) *»i—6*” *7i—2*7j—1 j k 6 , (*5.3)

*0-"-*6—1 7 *6+rf—1 • ” *6) *6+rf--.*7 i—1 j k — 6 , ('•^■^')

? *6+rf—1 ••*6) *fc...*6—l*6+(/>,,*7i—1! k <C b (5.5)

T he com m as in all th e equations separate the b its representing the th ree different

quantities, nam ely the block num ber, the node num ber and the offset w ithin the

block. It can be easily seen from Eq. 5.3-5.5 th a t the conditions for form ing a

grouping are m et as long as b its in_i and i n - 2 are not a p a rt of the node num ber

which is tru e for k > 2. Following the argum ent from Section 3.3, one can see th a t

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

th e d a ta for the first stage and the groups for the next k — 1 stages are available

w ithin the node, when k > 2. T he next d stages require off node d a ta and the

last b stages are again com puted w ithin the node. The internode com m unication

during com putation is carried out along decreasing order of dimension. T h a t is, in

the first stage of phase 2 nodes differing in bit ib+d- 1 exchange data . In the next

stage the nodes exchanging d a ta w ith each o ther differ in b it ib+d- 2 and in the last

stage they differ in bit

5.3 A lgorithm s

As m entioned earlier, th e algorithm s have a com putational kernel f h t s t e p which

is common to all the th ree phases. T he only difference between the kernels of the

two algorithm s is the set of equations for com puting the groups, hence we discuss

only the FH T kernel. T he kernel is comm on to all nodes and com putes all th e

groups of a stage m apped onto a node. It assum es th a t the cosine and sine values

have been precom puted and arranged so th a t they are available in the right order

as needed. A FO RTRAN call to the kernel can be m ade as follows:

call fht,st,ep(a, w, len, groups, o f f s e t , d ist, s tr id e)

where the argum ents are:

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a array containing the input sequence.

w array of coefficients.

le n length of the inpu t sequence.

g ro u p s num ber of groups differing in the values of coefficients.

o ffse t d istance between the elem ents of a group.

d i s t d istance between two successive identical groups.

s t r i d e d istance between two successive elem ents of w to be used.

T he kernel d f t s t e p essentially com putes n j 4 groups. T he four d a ta elem ents

th a t m ake a group are always available in two sets. T he elem ents in each set are

consecutive to each other. Each group can be represented as consisting of elem ents

x (i + 1), x (j) , x (j + 1) . T he values of i and j are determ ined by the argum ents

o ffse t, g ro u p s and d is t . Figure 5.2 illustrates th is w ith 8 d a ta points m apped

on a processor and two different sets of values for i and j . In Figure 5.2(b) the

values of i and j are 0 and 2 respectively, while in Figure 5.2(c) they are 0 and

4 respectively. T he pseudo code given below describes the F F T algorithm using

’d fts tep ’. { This code is executed on each node }

b e g in {phase 1}

bitreverse {rearrange d a ta on a node in b it reverse order }

tw opoint(a) {first stage of the flit algorithm }

offset = 2 {distance between the elem ents of a group }

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dist = 4 {distance between two successive identical groups }

groups = 1 {num ber of d istinct groups }

stride = 6/2 { stride for w }

for i = 1 to log2(n /6) — 1 do

fh tstep(a ,w , leu, groups, offset, d ist, stride)

offset = offset*2

dist = dist*2

groups = groups*2

stride = s trid e /2

end for

end {phase 1}

begin {phase 2 }

shuffle(a) {break each block into two subblocks shuffle them }

offset = n /2

dist = 6/2

groups = d is t/2

stride = 2

for i = 0 to log2(p) — 1 do

{negh is node w ith d — i lh b it differing}

{exchange half th e d a ta with negh }

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

negh = m ynode 0 2d' 1

exchauge(a(k),negh) {k = n * j /2 + l , j is the value of (d — i) ih b it }

fh tstep(a,w , len, groups, offset, d ist, stride)

end for

end {phase 2 }

begin {phase 3 }

inverse_shuffle(a) {recom bine sub blocks from phase 2 }

offset = b

d ist = offset*‘2

for i = 1 to log2 (6) do

groups = groups*2

fh tstep(a,w , len, groups, offset, d ist, stride)

offset = offset*2

dist = dist*2

end for

end {phase 3 }

T he working of the algorithm is shown in F igure 5.3, w ith an exam ple of 32

d a ta points d istribu ted over 4 nodes with a block size of 2. T he num bers represent

the indices of the da ta . Step (a) in Figure 5.3 shows th e initial d a ta d istribu tion

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P 0

(a) Processor with 8 data points.

L0

X r

(b) Set of groups with
offset = 2,
dist = 4,
groups = 1.

(c) Set of groups with
offset = 4,
dist = any value,
groups = 2.

Figure 5.2: Form ation of different groups.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and step (b) shows the. d a ta after b it reversal w ithin a node has been carried out.

The first stage is com puted w ithout the form ation of groups and is therefore not

shown in the figure. The d a ta movement of stage 2 is shown in step (c.). step (d)

shows th e d a ta rearrangem ent prior to phase 2. T his step accum ulates the d a ta

to be sent out from a node. It is a much less expensive m ethod than sending d a ta

in various packets because of the com m unication overheads. T he da ta exchange

betw een th e nodes in the two stages of phase 2 is shown in steps (e) and (g). T he

d a ta m ovem ent with com putation in the sam e two stages is shown in steps (f) and

(h). S tep(i) shows d a ta rearrangem ent w ithin a node prior to phase 3. This step

ensures the sim plicity and generality of the kernel. T he final com putational stage

is shown in step (i). Notice th a t a block ceases to exist in step (a) of the algorithm

and rem ains so until the end. It is restored only in the rearrangem ent section.

None of the steps involving da ta rearrangem ent w ithin the node are expensive

relative to the overall cost.

5.4 Rearrangem ent

T he FH T and R F F T algorithm s give the o u tp u t d a ta in an ordering different from

th a t of the inpu t in general. A careful look at Figure 3.3 reveals th a t the d a ta are

displaced from their original position in com puting a group. Internode com m uni­

cation in the second phase of the two algorithm s also displaces the data . Hence,

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0
1
8
9
16
17
24
25

2
3
10
1 1
18
19
26
27

4
5
12
13
20
21
28
29

0
16
8

24
1

17
9

25

2
18
10
26
3

19
11
27

4 4
20 12
12 20
28 28
5 5
21 13
13 21
29 29

6 6
7 22
14 14
15 30
22 7
23 23
30 15
31 31

» (b)
Phase 1

2 8
6 12
3 9
7 13
10 10
14 14
11 11
15 15

0
2
4
6
1
3
5
7

8 8
14 14
9 12
15 10
12 9
10 15
13 13
11 11

0
1

4
7
2
3
6
5

8
15
12
11
14
9

10
13

(e) (f)

Phase 2

16 16 16 16
28 30 30 31
17 17 28 28
29 31 18 19
18 28 17 30
30 18 31 17
19 29 29 18
31 19 19 29

24 24 24 24
20 77 22 23
25 75 20 20
21 23 26 27
26 20 25 22
22 26 23 25
27 21 21 26
23 27 27 21

(g) (h) (i) G)
Phase 3

Figure 5.3: Steps in the com putation of R F F T /F H T algorithm s.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as w ith th e F F T algorithm , the d a ta m ust be rearranged to re tu rn the o u tp u t

sequence in th e sam e d istribu tion as the inpu t sequence. T he d a ta m ovem ent d u r­

ing th e com putational section of the algorithm can be followed using th e b inary

represen ta tion of their indices as w ith the F F T algorithm discussed in C hap ter 4.

U nlike th e F F T algorithm , the d a ta m ovem ent in the F H T and R F F T algorithm

takes place in all th ree phases. T he in itia l d istribu tion and the d istribu tion w ith

b it reversal w ithin the node have been discussed in the previous section (see Eq.

5.1, 5.3, 5.4, 5.5. Here the d a ta m ovem ent of the d istribu tion of Eq.5.4 only will

be discussed in detail since the o ther two are very sim ilar.

T he first stage in the two algorithm s does not have any d a ta m ovem ent. In

th e subsequent k — 1 stages which are com puted w ith in a node the d a ta m ovem ent

consists of two steps. In a stage m two sequences and x 2(r) of length 2m~1

are com bined to form a sequence of length 2m (see Eq. 2.8,2.9 and 2.14,2.15). T he

first step involves d a ta m ovem ent in r 2(r) . T he d a ta item s with even indices o ther

th an zero exchange places w ith the next d a ta item . For exam ple d a ta item s with

indices 2 and 4 exchange places w ith d a ta item s w ith indices 3 and 5 respectively.

All th e elem ents of X i (r) and the first two elem ents of x 2(r) rem ain in place. T he

least significant b it in the binary representation after th is step is determ ined by

^ n —m (* n —m + 2 4" *n—m + 3 - ■ ■^n—l) © &n—ro+1

Let th is expression be represented as ■ In the second step the d a ta item s

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

w ith even num bered indices in x 2(r) exchange places w ith th e odd num bered d a ta

item s in £ i(r) . Hence the d a ta item s with indices 1 , 3 and so on from X \ (r) ex­

change place w ith data, item s w ith indices 0, 2 on so on respectively from x 2(r).

In b inary representation th is is equivalent to exchanging b it in- m w ith b it j n- m+i

determ ined in the first step. T he da ta m ovem ent in th e stages 2-4 w ith the d istri­

bu tion of Eq. 5.4 is shown below:

Stage 2:

J n — 1 — ^n—X

i , 2£>4-c/...Zn _ l ^ n —2

Stage 3:

J n — 2 — ^n —3 ^ n —] $ I n —'I

%Q. . . l b— 1 5 ^ b + d —1 ■■ '1>bi ^ b + d ‘ " J n —2 ^n —l ^ n —3

Stage 4:

J n - 3 = b i - < l (i n - 2 + b i - 1) © i / i - 3

= *«—<l(*n—3*n—1 © *n—2 © *n—1) © *7 1 —3

— *n—4 (*n—2 © *n— l) © *n—3

*0- • •1b—J i *6+d—1 • ■ -*6i *()+</• • • J n - 3 j n - 2 * 7 i -] *7i—*1

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

At th e end of stage k th e d istribu tion will be

ib+d—1 • -^6) jb+d+1 • •■jn—2^n—1 ^b+d

This is the d a ta d istribu tion a t the end of pha.se L

T he shuffle s tep ju st before th e beginning of th e second phase breaks th e already

com puted sequences of length 2k in to two subsequences. (N ote th a t th e num ber

of such already com puted sequences is exactly equal to th e block size and the ir

length is equal to the num ber of blocks.) T he subsequences thus c rea ted a re then

forw ard shuffled once. This results in the following d istribu tion

J b + d + 1 to* • -tfc— l b+d . — l ■■•Ibi l'b—l J b + d + 2 - - - J n ~ 2 l n — 11b + d -

This step is necessary since one half of each of th e 2k length sequences m ust be

exchanged with a corresponding subsequence in ano ther node. Shuffling of su b ­

sequences ensures th a t all th e d a ta to be exchanged w ith an o th e r node a re con­

tiguous. The d a ta then can be sent in one step , thus encountering com m unication

overheads only once.

T he d a ta m ovem ent in the second phase involves th ree steps. T h e first step

exchanges d a ta between the nodes and th e next two steps m ove d a ta for com p u ta ­

tion. T he first step is identical to data, m ovem ent in th e second phase o f th e F F T

algorithm discussed in the Section 3.4. In step 2, a t a stage r th e d a ta m ovem ent

in nodes having a value 0 in r m ost significant bits differs from th a t in th e rem ain­

ing nodes. In nodes where r m ost significant bits are ft, th e even num bered d a ta

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

item s w ith a value 1 in a t least one of b its in the offset and the m ost significant

b it exchange place w ith th e ir next odd num bered neighbor. In nodes where at

least one of th e r m ost significant b its in the node num ber has a value 1, all even

num bered d a ta item s w ith a value 1 in their m ost significant b it exchange places

w ith th e next odd num bered da ta item . In the th ird step, the least significant

and th e m ost significant b its exchange places. T he first two stages of phase 2 are

shown here to illu stra te these steps.

S tage 1

^ b + d ~ i ^ o * - - ^ 6 — J b + d + 1 • • • ^ 6 ? ^ b ~ \ 3 b + d + 2 " ' J n ~ 2 ^ n — l '^b+d

j b + d = H + d - 1 - { j b + d + 1 + j b + d + 2 --- + * n - 1) © H + d

— H + d - l - { H + d + l + i b + d + 2 • • • + * n - l) © H + d

2i J b + d + 1 t b —l j b + d + 2 ' " j n ~ 2 ^ n ~ l ^ b + d ~ 1

Stage 2

^ b + d —2 ^ 0 - " ^ b ~ 2 ; J b + d + l J b + d ' ^ b + d —3 • • ^ 6 — l J b + d + 2 ** ' j n — 2^n — 1 ^ b + d — I

j b + d - 1 = h + d - 2 - i h + d . + H + d + 1 + j b + d + 2 + ••• + i - n - l) © H + d - 1

j b + d —1 ^0* *^6—2? J b + d + 1 J b + d ^ b + d —3 • *^6? *̂6—1,76+d-f 2 • • *,/n—2^?i— 1 ^ b + d —2

Following these steps the d istribu tion a t the end of phase 2 will be

J b + 1 ^ 0 - - ^ b —2 i] b + d + \ 3 b + d - - - 3 b + 2 i *6—l J b +d +2 - - J n —2*n— (b- 9)

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A t th is po in t one inverse shuffle is carried out on the subsequences form ed in the

beginning of phase 2. T he purpose of th is step is only to m ain ta in th e sim plicity

of th e com putational kernel. W ith th is step th e d a ta d istribu tion a t th e end of

phase 2 is

*()•• -tb—1) jb+d+1 jb+d.-- -Jb+2i jb+ljb+d+2 • • -in—l^b (5.10)

T he d a ta m ovem ent in phase 3 of th e algorithm s is an extension of th e d a ta move­

m en t in phase 1. Hence a t the end of th e com putational section of th e algorithm s

th e d a ta d istribu tion will be

j 1 • • -jb-, jb+d+1 jb+d. • • •jb+2, jb+ljb+d+2 • • .in-l«0 (5.11)

W hen k > b the final d a ta d istribu tion is

jl---jbi jb+ljb+d+2---jn—bi jb+d+1 jb+d---jb+2i Jn—6+1 •■■jn—2^n—l *01 (5.12)

and w ith k < b th e final d a ta d istribu tion is

J l • • ■ Jk"i Jb+d+1 j b + d " 'Jb+2i j k + 1 • *J6+1 Jb+d+2 • • * J n —2 ^ n —1 ̂ 0 (5.13)

In all th ree equations 5.11-5.13, the expression for node num ber is

jb+d+1 jb+d-■■jb+2- (5.14)

T he d a ta d istribu tion required a t th e end of th e rearrangem ent section of the

a lgorithm s is

Zô l • • • in—2^n—l (5.15)

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It is obvious from Eq. 5.14 and 5.15 th a t a com parison betw een b its appearing in

source and destination node num bers does not determ ine the n a tu re of rearrange­

m ent problem . Here the num ber of source and destination nodes is not fixed. To

illu s tra te th is we again consider the exam ple w ith d a ta size 1024 and block size 8

d istribu ted over 4 nodes. The four b its in th e node num ber a t the end of phase 3

are

j s = 'iT-ig © is

j l — *6-(*8 + *9) 0 *7

j§ — *5-(*7 + *8 + *9) 0 *6

jh — 'hi.(Z6 + i- + is + *9) © *5

T he destination node num ber is given by If we consider destina tion node

13 , then is = 1, *5 = 0, hi = 1, 23 = 1 . This fixes the values of b its je and j 5 in

th e source node num ber. Hence node 13 will receive d a ta from nodes 3, 7, 11 and

15. However if consider node 12, we can fix the value of only js in th e source node

num ber. Hence this node will receive da ta from nodes 0, 1, 3, 4, 5, 8 , 9, 1 2 and 13.

For node 14 it is not possible to fix the value of any bit in the source node num ber,

hence it will receive d a ta from all the other nodes. Here due to th e difference in

the num ber of source nodes, contention is likely to occur. However, when none

of b its can be fixed for any node num ber, it is possible th a t the exchanges are

scheduled w ithout contention. This is likely to occur for the ex trem e block sizes

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

w here there are no com m on bits in the source and destination node num bers. It

m ust be noted here th a t even w ith all nodes exchanging d a ta w ith all o ther nodes,

th e rearrangem ent problem m ay not be exact equivalent of th e com plete exchange

problem of [11], since the am ount of d a ta being exchanged m ay not be th e sam e

for all nodes.

5.5 Experim ental R esu lts

T he FH T and the R F F T algorithm s w ith block scattered d a ta d istribu tions were

im plem ented on the Intel iPSC /860 m achine to evaluate their perform ance. We

conducted two sets of experim ents w ith these im plem entations. T he first set ol

experim ents evaluated th e perform ance of the various sections of th e codes and

th e variation in perform ance w ith the change in block size and d a ta size. The

second set of experim ents com pared the perform ance of the FH T and the R F F T

algorithm s w ith the F F T algorithm described in C hapter 4. T he experim ents were

conducted on all nodes of a 32 node machine.

The results of the experim ents to evaluate the perform ance of FH T and R F F T

algorithm s are sum m arized in Figures 5.4 through 5.11. Figures 5.4 and 5.5 show

th e execution tim es for th e FH T and the R F F T algorithm s respectively. Each

figure has two curves showing the best and the worst tim e of any block size for a

given da ta size. T he curves for bo th the algorithm s are alm ost identical in trend ,

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bu t the FH T algorithm shows slightly b e tte r perform ance. T he slight difference

in the perform ance of the two algorithm s is clue to the rearrangem ent section of

th e code. T he volum e of d a ta com m unication is higher in the R F F T algorithm

since it involves com plex num bers. Figures 5.6 and 5.7 show the variation in the

execution tim e for a fixed d a ta size as the block size is increased. T he lower curves

in bo th the figures show th e tim e taken by the com putational section alone. The

top curves include the tim e taken by the rearrangem ent of data . T he top curves

show the reason for a difference betw een the best and the worst perform ances of

th e two algorithm s. The tim e taken by th e com putational section does not vary

w ith the block size, but th e rearrangem ent section is affected by th is variation.

T he rearrangem ent section takes a longer tim e when the num ber of block sizes

is approxim ately equal to the num ber of blocks. Recall th a t a sim ilar trend was

observed in the F F T algorithm , where contention was responsible for deterioration

in the perform ance. C ontention is also likely to occur in the rearrangem ent section

of the FH T and R F F T algorithm s when the num ber of blocks is of the same

order as the block size. T his is because different nodes have a different num ber of

destinations for their da ta . Figures 5.8 and 5.9 show the relative contribu tion of the

th ree phases in the overall execution tim e. T he relative con tribu tion of the second

phase is alm ost constant for bo th the algorithm s. It is also the largest since this

is th e only phase involving in ternode com m unication. Figures 5.10 and 5.11 show

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

th e relative contribu tion of the in ternode com m unication and com puta tion in all

th ree phases com bined. For sm all d a ta sizes a very large fraction of tim e is taken

by com m unication because the setup overheads constitu te a significant fraction

of to ta l execution tim e. As the d a ta sizes grow, the fraction con tribu ted by the

overheads reduces, thus reducing th e relative contribu tion of th e com m unication

tim e. W hen the overheads becom e insignificant, th e relative con tribu tion due to

com m unication sa tu ra tes. All of these trends are identical for th e two algorithm s

presented in th is chap ter and sim ilar in to those of the F F T algorithm presented

in th e C hap ter 4.

1.2

1

0.8

0.6 W o rs t p e rfo rm a n c e -
B e s t p e rfo rm a n c e -

0.4

0.2

0
4 6 8 10 12 14 16

log2(n)

Figure 5.4: V ariation in perform ance w ith d a ta size for th e FH T algorithm .

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2

0.8
T im e

& °-6
0.4

W o rs t p e r fo rm a n c i

B e s t p e r fo rm a n c i

0.2

4 6 8 10 12 14 16
log2(n)

Figure 5.5: V ariation in perform ance w ith d a ta size for th e R F F T algorithm .

■Full c o d e

T im e n Q
in

Sec 0.6

0.4
F I I T se c tio n

0.2

0 2 6 8 10 124 14
log2 W

Figure 5.6: Variation in F H T Perform ance w ith block size.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■Full c o d e

T im e « q
in

Sec Q g

0.4
■ R FFT se c tio n

0.2

6 8 100 2 124 1 4
log2(k)

Figure 5.7: Variation in R F F T Perform ance w ith block size.

100
P h a s e 3

P h a s e 2
T im e %

P h a s e 1

2 6 80 104 12 1 4
log2(&)

Figure 5.8: R elative contribution of the three phases of the F H T section with

different block sizes.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100
P h a s e 3

80

60
P h a s e 2

T im e %

40

20

P h a s e 1
0

20 64 S 10 12 1 4
l o g 2 (6)

Figure 5.9: Relative contribu tion of the th ree phases of the R F F T section with

different block sizes.

100
C o m p u ta t io n

80

60
T im e %

C o m m u n ic a t io n
4 0

20

0
6 8 9 1 0 11 1 2

log2(™)
7 1 3 1 4 1 5

Figure 5.10: R elative contribution of com m unication in the com putational section

of the F H T algorithm .

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100
C o m p u ta t io n

T im e %
C o m m u n ic a t io n

6 98 10 11 12 13 14 15
l°g 2(n)

F igure 5.11: R elative con tribu tion of com m unication in the com puta tional section

of th e R F F T algorithm .

T he results of com parison betw een th e FH T , R F F T and F F T algorithm s are

shown in Figures 5.12-5.17. F igure 5.12 shows the best execution tim e of any

block size for a given d a ta size for all th e th ree algorithm s. F igure 5.13 shows

sim ilar curves for the worst execution tim es. In bo th the figures, F F T algorithm

is th e slowest and F H T algorithm is the fastest. T he reason for th e F F T being

th e slowest is th a t it uses com plex a rith m etic and has twice th e com m unication

volum e of th e o ther two algorithm s in the com puta tional section. This can be

verified by observing Figure 5.14. F igure 5.14 shows the tim e taken by the three

algorithm s w ithout including the rearrangem ent section. Here th e F H T and R F F T

algorithm s have identical tim e, while the F F T a lgorithm takes longer. Sam e is true

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the tim e taken by internode com m unication in the th ree algorithm s as shown in

Figure 5.15. The difference betw een the F H T and R F F T algorithm perform ance

in Figures 5.12 and 5.13 can be a ttr ib u ted to the difference in the com m unication

volum e of the two algorithm s in the rearrangem ent section. T he variation in the

perform ance of the three algorithm s w ith block size is shown in F igure 5.16. All

th ree curves peak in the m iddle, where th e block sizes and the num ber of blocks

are of the same order. The F F T algorithm also takes m ore tim e for a block size

of 1, because the rearrangem ent for th a t block size is not a com plete exchange

and involves contention. T here is also a difference in the general tren d of the

effect of block size on the rearrangem ent section of th e F F T algorithm from those

of th e R F F T and FH T algorithm s (see F igure 5.17. T he curves for the R F F T

and FH T algorithm s have sim ilar shape which differs from the curve for the F F T

algorithm . The difference in the actual tim e taken by the rearrangem ent section

of the F H T and R F F T algorithm s is because of the com m unication volume. The

d a ta being rearranged in the FH T algorithm consist of real num bers while they

are com plex num bers for the R F F T algorithm . T he curve for the F F T algorithm

lies betw een the curves for the R F F T and FH T algorithm s. T he reason for this

curious behavior can be a ttr ib u ted to the difference in the d a ta d istribu tion a t the

end of the com putational section. A t ex trem e block sizes, the F F T and the R F F T

algorithm s take approxim ately the same tim e in rearrangem ent. This indicates th a t

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for those block sizes th e rearrangem ent problem for R F F T and F H T algorithm s is

sam e as the com plete exchange. However, when the order of block size is th e same

as th e num ber of blocks, the F F T algorithm curve is closer to th e F H T algorithm

curve. This indicates th a t for these block sizes, the d a ta d istribu tion of the F F T

algorithm is m ore suitable for rearrangem ent th an the o ther two algorithm s. The

FH T algorithm is close in its perform ance to the F F T algorithm because it deals

w ith real num bers and therefore has less com m unication volume.

1.2

1

0.8
F F T -

R F F T0.6
F H T

0.4

0.2

0
6 7 8 9 10 11 12 1.3 14 15

log2{n)

Figure 5.12: Com parison of the best perform ances of th e F F T , th e R F F T and the

F H T algorithm s.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.6

T im e
in

Sec
0.8

0.6
0.4

0.2

F F T -
R F F T

F H T -

6 7 8 9 10 11 12 13 14 15
log2{n)

Figure 5.13: Com parison of the worst perform ances of the three algorithm s.

0.8
F F T \

T im e ° ' 6
in

Sec 0 .4

R F F T

F H T '

0.2

6 7 8 9 10 11 12 13 14 15
log2(n)

Figure 5.14: Com parison of execution tim es in the com putational section.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.5
0.45

0.4
0.35

0.3
0.25

0.2
0.15

F F T -T im e
in

S ec
F H T -

R F F T -

0.05
Q ------------- 1 I ■ 1 ^ --- -- -- - I I I_ _ _ _ _ _ _ I_ _ _ _ _ _ _ _ _ I________

6 7 8 9 10 11 12 13 14 15
log2{n)

F igure 5.15: C om parison of the contribu tion of in ternode com m unication in the

com puta tional phase.

1.6

1.4 F F T -

1.2
R F F T -

1

0.8
F H T

0.6

0 2 4 6 8 10 12 14
log2(b)

Figure 5.16: Com parison of variation in perform ance w ith block size.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.7

0.6
R F F T -

0 .5 'F F T

T im e 0 .4
in

0.2 F H T '

0 9 6 8 104 12 14
l og2(b)

Figure 5.17: Com parison of th e tim e taken in the rearrangem ent section.

5.6 Sum m ary

In th is chap ter, im plem entations were given for the F H T and th e R F F T algorithm s

which work for block scattered d a ta d istribu tions w ith different block sizes on

d istribu ted m em ory machine. A 32 node Intel iPSC /860 m achine was used to

evaluate these im plem entations. T he perform ance of these im plem entations was

com pared w ith th a t of the F F T algorithm which also works for block scattered

d a ta d istribu tions with different block sizes. O ur experim ents ind ica te th a t the

use of F H T and R F F T algorithm s is m ore efficient for com puting th e D F T of real

d a ta . T he FH T algorithm gives the best perform ance of th e th ree algorithm s.

Unless th e transform ed d a ta are required in the com plex form the F H T algorithm

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is th e best choice. However, if th e block size is such th a t less th an 4 blocks are

m apped on a node, the F F T algorithm m ust be used. T he variation in perform ance

w ith the block size is very sim ilar in all th e th ree algorithm s and th e F H T and

R F F T algorithm s consistently outperform the F F T algorithm . T here is very little

variation in the perform ance of the com putational section of th e algorithm s with

the block size.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Sum m ary and Future Studies

6.1 Sum m ary

In th is d issertation we presented parallel im plem entations for com puting discrete

Fourier transform s on d istribu ted m em ory m achines. Efficient im plem entations

were also given for com puting the D FT of real data . T he im plem entations pre­

sented here com pute D F T for block scattered d a ta d istribu tions w ith different

block sizes. T he block scattered d a ta d istribu tions are ex trem ely useful for sci­

entific com putations and encom pass the linear and scattered d a ta d istribu tions.

These algorithm s can be used w ithout an in itial d a ta rearrangem ent in applica­

tions having block scattered d a ta d istribu tions. T he only constra in t is th a t for

com puting the D FT of real d a ta , a t least four blocks m ust be m apped on a node.

The algorithm s also re tu rn the o u tpu t d a ta in the same d istribu tion as the input.

Each algorithm consists of two sections; one com putes the transform and the o ther

rearranges d a ta in the same order as the inpu t.

1 1 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T here is a th reshold in the size of d a ta below which these im plem entations do

not give a sufficiently good perform ance. T he thresho ld is m ainly due to th e com ­

m unication overheads which are very significant for sm all d a ta sizes in d istribu ted

m em ory parallel m achines. T he rela tive con tribu tion of th e com m unication over­

heads decreases as th e d a ta size is increased. T he overall perform ances of all th ree

a lgorithm s have sim ilar trends. T heir perform ance is worst w hen th e num ber of

blocks and block sizes are of the sam e order. T he block size has very little effect

on the perform ance of the com putational section of th e algorithm s. However, the

perform ance of the rearrangem ent section vary g reatly with the block size, and

account for the variation in the overall perform ance.

T he very slight variation in the perform ance of the com puta tional section is

likely to be because of the variation in the execution tim es of different runs. The

execution tim e for the sam e block and d a ta size varies from one run to ano ther

as can be observed from Figures 6.1 and 6.2. In F igure 6.1 execution tim es are

shown for 50 different runs of the F F T algorithm on 32 nodes w ith 16 d a ta points

per node and th e block size of 4. F igure 6.2 is sim ilar to F igure 6.1 except th a t

there are 64k d a ta poin ts per node and the block size is 256. It can be observed

from th e two figures th a t th e relative variation is larger for sm aller d a ta size, when

the con tribu tion from the com m unication overheads is significant. T he R F F T

and th e F H T algorithm s give alm ost identical perform ance in the com puta tion

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

section, which is about 1.3 tim es faster th an the F F T algorithm . T he R F F T

algorithm shows the worst perform ance in the rearrangem ent section while the

F H T algorithm gives the best perform ance, even though the two have identical

d a ta d istribu tions. The difference is because of th e difference in the volum e of

d a ta being moved by the two algorithm s. T he difference betw een the R F F T and

F F T perform ances is due to th e different d a ta d istributions even though they have

identical volum e of data. For all block sizes, the R F F T and F H T algorithm s

outperform the F F T algorithm .

0.003

T im e
in

Sec

0.00285

0 5 10 15 20 25 30 35 40 45 50
S a m p le N u m b e r

Figure 6.1: V ariation in tim ing for different samples w ith 16 d a ta points per node.

T he im plem entations given in this work can be easily transported to other

d istribu ted m em ory m achines w ith different architectures. This is especially true

of the com putation section because of th e kernel. T he com putational kernels for all

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.12

1.11

1 .0 9

T im e 1 .0 8
in

Sec 1 .0 7

1 .0 6

1 .0 5

1 .0 4

1 .0 3
0 5 10 15 20 25 30 35 40 45 50

S a m p le N u m b e r

Figure 6.2: Variation in tim ing for different sam ples w ith 32,678 d a ta points per

node.

th ree algorithm s are very sim ple and regular in their s tru c tu re and this m akes the

task of tran spo rting them easy. However, the rearrangem ent problem is specific to a

m achine, especially where the d a ta are exchanged betw een a subset of nodes. Much

b e tte r perform ances can be obtained by optim izing (exploiting the arch itectu ral

features such as cache, num ber of registers, p ipelining etc. of a processor) the

kernels and internode com m unication for a specific m achine (abou t 25% expected

for iPSC /860).

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Suggestions for Further Study

T he im plem entations suggested in th is dissertation use the F F T , R F F T and the

FH T algorithm s when d a ta size and block size are a power of 2. T here are several

variants of the F F T algorithm which work for arb itrary size data . It would be use­

ful to find their im plem entations on d istribu ted m em ory parallel m achines which

can suppo rt block scattered d a ta d istribu tions w ith arb itrary block sizes. I t would

also be in teresting to see how the rearrangem ent problem varies w ith different

arch itectures and different rou ting algorithm s. Here the rearrangem ent problem

was studied only on an M IM D hypercube based machine. T he perform ance of

the rearrangem ent section is likely to be affected by the in terconnection network,

the stra tegy for sending and receiving messages and the routing of messages. In

addition , w hether a m achine is SIMD or MIMD is also likely to play a role in the

rearrangem ent of data . It could be useful to find routing algorithm s specific to

th e applications sim ilar to th e ones described in th is work. A com parative study

of the perform ance of these algorithm s on different d istribu ted m em ory architec­

tures can also help to determ ine the type of m achines m ost su ited for applications

involving extensive use of Fourier transform s. I t would also be in te resting to see

the perform ance of m ultidim ensional transform s on d istribu ted m em ory m achines.

Also, there is need to study sim ilar general im plem entations for the shared m em ory

architectures.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] R .C . Agarwal and J .W . Cooley, “Fourier T ransform and Convolution

Subroutines for IBM 3090 Vector Facility,” IB M Journal o f Research

and. D evelopm ent, vol. 30, No. 2, M arch 1986, pp. 145-162.

[2] M. A shw orth and A.G. Lyne, “A Segm ented F F T algorithm for Vector

C om puters ,” Parallel Com puting , vol. 6, 1988, p p .217-224.

[3] A. A verbuch, E. G abber, B. Gordissky and Y. M edan, “ A Parallel F F T

on an M IM D M achine,” Parallel Com puting , vol. 15, 1990, pp. 61-74.

[4] D.H. Bailey, “A H igh-Perform ance Fast Fourier Transform A lgorithm for

th e CRAY-2” , The Journal o f Supercomputing, vo l.l, 1987, pp .43-60.

[5] D.H. Bailey, “A High-Perform ance F F T Algorithm for Vector Super­

com pu ters ,” International Journal o f Supercom puting , vol. 2, 1988, pp.

82-S7.

[6] D.H. Bailey, and P.O. Frederickson, ”Perform ance R esults for Two of the

NAS Parallel B enchm arks,” in Supercom puting ’91. (p p .166-173).

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[7] G. D. Bergland, “A Fast Fourier Transform A lgorithm for Real-valued

Series,” Comm. A C M , vol. 11, No. 10, O ctober 1968, pp. 703-710.

[8] G .D . Bergland and D .E. W ilson, “A Fast Fourier T ransform A lgorithm

for a global highly parallel processor,” IE E E Transactions on Audio and

Electroacoustics, vol. AU-17, No. 2, June 1969, pp. 125-127.

[9] G.D. Bergland, “A Parallel Im plem entation of the Fast Fourier Trans-

form A lgorithm ,” IE E E Transactions on Computers, vol. C-21, No. 4,

A pril 1972, pp. 366-370.

[10] Shahid H. Bokhari, “C om plete Exchange on the iP S C /860 ,” IC A S E R e­

port No. 91-4.

[11] Shahid H. Bokhari, “M ultiphase C om plete Exchange on a C ircuit

Switched Iiypercube,” IC A S E Report No. 91-5.

[12] R .N . Bracewell, The Hartley Transform , Oxford U niversity Press, 19S6.

[13] A. Brass and G.S. Pawley, “Two and Three D im ensional F F T s on Highly

Parallel C om puters,” Parallel. Com puting , vol. 3, 1986, pp. 167-184.

[14] W .L. Briggs, L.B. H art, R .A . Sweet and A. O ’G allagher, “M ultiprocessor

F F T M ethods,” , S IA M Journal o f Scientific and Statistical Com puting ,

vol. 8. No. 1, January 1978, pp. 10-42.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[15] 0 . B unem an, “Conversion of F F T s to Fast H artley Transform s,” S IA M

J. Sci. Stat. Com put., vol.7, No.2, April 1986.

[16] D. A. Carlson, “Using Local M em ory to Boost Perform ance of F F T al­

gorithm s on the CRAY-2 Supercom puters,” Journal o f Supercomputing,

vol. 4, 1991, pp. 345-356.

[17] D. A. Carlson, “U ltrahigh-Perform ance F F T s for the CRAY-2 and CRAY

Y -M P Supercom puters,” The Journal o f Supercomputing, vol. 6, 1992,

pp. 107-116

[18] R .M . C ham berlain, “Gray Codes, Fast Fourier Transform s and H yper­

cubes,” Parallel Computing 6 (1988), p p .225-233.

[19] R .A . Collesidis, T .A . D utton and J .R . Fisher, “ An U ltra High Speed

F F T Processor,” IE E E International Conference on Acoustics, Speech

and Signal Processing, April 1980, pp. 784-787.

[20] M .J. Corinthios, “T he Design of a Class of Fast Fourier Transform Com ­

p u ters ,” IE E E Transactions on Com puters, vol. C-20, 1971, pp. 617-623.

[21] J .W . Cooley and J.W . Tukey, “An A lgorithm for the Calculation of C om ­

plex Fourier Series,” M athem atics o f Com putation, vol. 19, 1965, pp.

297-301.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[22] J .W . Cooley, P .A .W Lewis and P.D. W elch, “The Fast Fourier Transform

Algorithm : Program m ing Considerations in the C alculation of Sine, Co­

sine and Laplace Transform s,” J. Sound Vibration 12, 1970, 315-337.

[23] B. Fornberg, “A Vector Im plem entation of the Fast Fourier Transform

A lgorithm ,” M athem atics o f Com putation j vol. 36, 1981, pp. 189-191.

[24] L.R. R abiner and B. Gold, Theory and Application o f D igital Signal

Processing, P rentice-H all, 1975.

[25] R .W . Hockney and C.R. .Jesshope, Parallel Computers, A dam Higler,

1981.

[26] L.H. Jam ieson ,P .T . Mueller, and H .J. Siegel, “F F T A lgorithm for SIMD

Parallel Processing System s,” Journal o f Parallel and Distributed Com ­

puting , vol.3, 1986, pp.48-71.

[27] C.R. Jesshope, “The im plem entation of the Fast Radix 2 Transform on

Array Processor,” IE E E Transactions on Computers, vol. C-29, No. 1,

January 1980, pp. 20-27.

[28] J. Johnson, R .W . Johnson, D. Rodriguez and R. Tolim ieri, “A M ethod­

ology for Designing, M odifying and Im plem enting Fourier Transform Al­

gorithm s on Various A rchitectures,” Circuits, System s and Signal Pro­

cessing, vol. 9, 1990, pp. 449-500

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[29] S.L. Johnsson, C .T . Ho, M. Jacquem in and A. R u ttenburg , “C om puting

Fast Fourier Transform on Boolean Cubes and R elated N etw orks,” In

S P IE Advanced Algorithm s and Architectures fo r Signal Processing II,

vol. 826, 1987, pp. 223-231

[30] L. Johnsson, R.L. K raw itz, D. M acD onald and R. Frye, “A Radix 2

F F T on th e Connection M achine,” Proceedings o f Supercom puting 89,

N ovem ber 1989, pp. 809-819.

[31] S. L. Johnsson. M. Jacquem in and C .T . Ho, “High Radix F F T on

Boolean C ube N etw orks,” Technical Report N A S 9-7, T hinking M achines

C orporation , 1989.

[32] S.L. Johnsson and R.L. K raw itz, “C om m unication Efficient M ultipro­

cessor F F T ,” D ivision o f Applied Sciences Report TR-25-91, H arvard

University, 1991.

[33] S.L. Johnsson and R.L. K raw itz, “Coolev-Tukev F F T on the Connection

M achine,” Parallel Computing, vol. 18, 1992, pp. 1201-1221.

[34] R .A . K am in III and G.B. A dam s III, “Fast Fourier T ransform A lgorithm

Design and Tradeoffs on the CM -2,” in Proceedings o f the Conference on

Scientific Applications on The Connection M achine , Septem ber 1988,

pp. 134-160.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[35] D .G . K orn and J .J . L am biotte J r., “C om puting the Fast Fourier T rans­

form on a Vector C om puter,” M athem atics o f Com putation, vol. 33, 1979,

p p . 979-992.

[36] C.L. Lawson, R .J. Iianson, and D .R . K incaid, and F .T . K rogh, “Basic

linear algebra subprogram for FO RTR A N usage,” A C M Trans. M ath.

Soft. 5, 3, 1979, pp30S-323.

[37] O.A. M cbryan, “C onnection m achine application perform ance,” Proceed­

ings o f the N A S A -A m es Sci. Appl. o f Connection M achine, 1989.

[38] M .C. Pease, “An adap ta tion of the Fast Fourier T ransform for Parallel

P rocessing,” Journal o f the ACM , vol. 15, No. 2, A pril 1968, pp. 252-264.

[39] R .B . Pelz, “The parallel Fourier pseudospectral m eth o d ,” Journal o f

Com putational Physics , to appear.

[40] T hom as Schm iermund and Steven R. Seidel, “A C om m unication Model

for the Intel iP S C /2 ,” Com puter Science Technical Report C S-TR 90-02,

M ichigan Tech, Univ, A pril 1990.

[41] Steven R. Seidel, M ing-Horng Lee and Shivi Fotedar “C oncurrent B idi­

rectional C om m unication on the Intel iPSC /860 and iP S C /2 ,” Com puter

Science Technical Report CS-TR 90-06, M ichigan Tech, Univ, Novem ber

1990.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[42] H.V. Sorensen, D .G . Jones, M .T. H eidem an and C. S. B urrus, “Real-

Valued Fast Fourier Transform A lgorithm s,” IE E E Trans. A SSP , vol.

ASSP-35, No. 6, June 1987, pp. 849-863.

[43] P.N. Sw arztrauber, “F F T A lgorithm s for Vector C om puters,” Parallel

Computing, vol. 1, 1984, pp. 45-63.

[44] P.N . Sw arztrauber, “Sym m etric F F T s ,” M athem atics o f Com putation

vol. 47, 1986, p p .323-346.

[45] P.N. Sw arztrauber, “M ultiprocessor F F T s,” Parallel Com puting vol. 5

1987, pp. 197-210.

[46] , “ B luestein’s F F T for A rbitrary N on the H ypercube,” Parallel Com ­

puting, vol. 17, 1991, pp. 607-617.

[47] C. Tong and P.N. Sw arztrauber, “O rdered Fast Fou rier Transform on a

M assively Parallel H ypercube M ultiprocessor,” Journal o f Parallel and

Distributed Computing, vol. 12, 1991, pp. 50-59.

[48] C. T em perton, “Im plem entation of a P rim e Factor F F T A lgorithm on

Cray-1,” Parallel Com puting, vol. 6, 19S8, pp. 99-108.

[49] D. W. W alker and J. D ongarra, “Design Issues for a Scalable Library

A lgebra Subroutines,” D raft Preprint, Oak Ridge N ational Laboratory

O ctober 1991.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[50] M.A. Wesley, “Associative Parallel Processing for the Fast Fourier T rans­

form ,” IE E E Transactions on Audio and Electroacoustics, vol. AU-17,

No. 2, June 1969, pp. 162-165.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AUTOBIOGRAPHCAL STATEMENT

A nshu D ubey was born on Jan u ary 14, 1964, a t A gra in India. She received her

B .Tech degree in E lectrical Engineering in D ecem ber 1985, from th e Ind ian In sti­

tu te of Technology (I.I .T), New Delhi. She was aw arded M.S. degree in E lectrical

Engineering in M arch 1990, by A uburn U niversity a t A uburn, A labam a. She held

the position of Engineer a t B h ara t E lectronics L td. in G haziabad, Ind ia from July

1985 to N ovem ber 1985. In Novem ber 1985, she joined th e C en ter for Applied

Research in E lectronics, I.I.T ., New Delhi, as a Senior Research A ssistant. She

was em ployed there until May 1986. In A ugust 1986, she jo ined the D epartm en t

of C om puter Science and Engineering, I .I .T ., New Delhi, as Senior R esearch As­

sistan t. She was em ployed there until D ecem ber 1987, when she left for A uburn

U niversity to join the M.S. program .

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Old Dominion University
	ODU Digital Commons
	Spring 1993

	Fast Fourier Transforms on Distributed Memory Parallel Machines
	Anshu Dubey
	Recommended Citation

	tmp.1569414646.pdf.m8yvy

