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ABSTRACT

FAST FOURIER TRANSFORMS ON DISTRIBUTED MEMORY 

PARALLEL MACHINES

Anshu Dubey 

Old Dominion University, 1993

One issue which is cen tral in developing a general purpose sub rou tine  on a  dis­

trib u ted  m em ory  parallel m achine is the  da ta  distribution. It is possible th a t  users 

would like to  use th e  subrou tine w ith different da ta  d istribu tions. T hus there  is 

a  need to  design algorithm s on d istribu ted  m em ory parallel m achines which can 

support a  varie ty  of d a ta  d istribu tions. In this dissertation we have addressed the 

problem  of developing such algorithm s to  com pute the D iscrete Fourier Transform  

(D FT ) of real and  com plex data . The im plem entations given in th is  dissertation 

work for a class of d a ta  d istribu tions commonly encountered in scientific appli­

cations, known as the  block scattered  da ta  distributions. T he  im plem entations 

are ta rge ted  a t  d is tr ib u ted  m em ory parallel machines. We have also addressed

*
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th e  problem  of rearranging  th e  d a ta  afte r com puting the  F F T . For com puting  th e  

I)F T  of com plex d a ta , we use a  s tan d a rd  Radix-2 F F T  algorithm  which has been 

studied  extensively in parallel environm ent. T here  are two ways of com puting  th e  

D FT  of real d a ta  th a t  are known to  be  efficient in serial environm ents: nam ely  

(i) the  real fast Fourier transform  (R F F T ) algorithm , and (ii) the fast H artley  

transform  (F H T ) a lgorithm . However, in d istribu ted  m em ory environm ents they  

have excessive com m unication overhead. We restructu re  the  R F F T  and F H T  algo­

rithm s to  reduce th is  overhead. T he restructu red  R F F T  and FH T algorithm s are  

then  used in th e  generalized im plem entations which work for block sca tte red  d a ta  

d istribu tions. E xperim ental resu lts  a re  given for the  restructu red  R F F T  and the  

F H T  algorithm s ou two parallel m achines; NCUBE-7 which is a  H ypercube M IM D 

m achine and A M T DAP-510 which is a  Mesh SIMD m achine. T he perform ances 

of the  F F T , R F F T  and  F H T  algorithm s w ith block scattered  d a ta  d is tribu tion  

were evaluated on Intel iPSG /860, a H ypercube MIMD m achine.
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Chapter 1

Introduction

1.1 Parallel C om putation Issues

In developing parallel algorithm s for a problem , there  are various arch itectu ral 

issues th a t  confront us. The arch itec tu re  of th e  m achine m ay be. coarse, grain ( a  

few powerful processors), or fine grain (a large num ber of very sim ple processors). 

T he m achine m ay be SIM I), where every processor in the  m achine works in lock 

step  w ith all o ther processors, or it may be MIMD, where every processor does 

its own share of work by executing its local code. T he m em ory m ay be shared by 

all processors, or each processor m ay have its own local memory, or there  m ay be 

a  com bination of local and shared memory. The interconnection netw orks differ 

am ongst m achines and the  interprocessor com m unication m ay also be brought 

abou t in different ways. All of these factors play an im p o rtan t role in developing

1
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algorithm s for a  parallel machine.

Parallel algorithm s usually have m ore overhead th an  their sequential counter­

parts. T he overhead may be due to  several reasons. If the  work is not evenly 

d istribu ted  to  all the  processors, then th e  overhead is due to  some processors 

rem aining idle for periods of tim e. Som etim es th e  overhead m ay be caused by pro­

cessors duplicating  their com putations. In SIMD m achines some of the  overhead 

m ay be due to  steps which require different operations a t various processors. In 

M IM D m achines it may be caused by th e  synchronization problem . In d istribu ted  

m em ory m achines one factor which contribu tes significantly to  the  overhead is the 

interprocessor com m unication. These are  ju s t som e o f th e  causes of overhead and 

they  are  not unconnected. Reducing one type  of overhead m ay cause another type 

to  increase. For instance a  good load d istribu tion  am ong processors m ay cause

r
much m ore in ternode com m unication and vice versa. O r m inim izing replication 

of com putations in different processors m ay cause som e processors to  rem ain idle. 

A good parallel algorithm  m ust take in to  account th e  trade-offs in overhead and 

find a good balance between them . It should be aim ed a t  decreasing th e  overall 

com putation  tim e rather than full processor u tilization  or equal load d istribu tion  

or o ther such issues.

2
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1.2 Fast Fourier Transform

Fourier transform s are an im portan t ingredient of m athem atica l analysis. The 

discrete version of the  Fourier transform , known as th e  D F T , plays an im portan t 

role in num erical analysis, with applications such as: digital filtering, calculation 

of auto- and cross-correlation, the  solution of partia l differential equations etc. 

T he com putation  of the D FT from its definition takes 0(ra2) tim e for an input 

sequence of length n.  T he fast Fourier transform  (F F T ) algorithm  com putes the 

transform  of an n-com ponent sequence in O (n lo g n ) tim e. It was first introduced 

by Cooley and Tukey in 1965 [21]. T he F F T  algorithm  m ade techniques based on 

Fourier transform  attrac tive  for m any applications. A large num ber of variants of 

the  original Cooley and Tukey algorithm  have been proposed since 1965 [24].

T he standard  F F T  algorithm  com putes the  D FT of a  sequence of complex data . 

In m any applications, such as the  solution of P D E ’s, we need to  com pute D FT 

of real d a ta  only. For such applications one can use th e  stan d ard  F F T  algorithm  

by tak ing  the  im aginary p a rt of the  input to be zero. However, such an approach 

leads to  a lot of redundant com putation, since the D F T  of real d a ta  can be di­

vided into two halves which are complex conjugates of each o ther. The real fast 

Fourier Transform  algorithm  (R F F T ) uses this p roperty  to reduce com putation 

[T, 44]. A lternatively, one can use the  fast H artley transform  (FH T ) algorithm  

[12] for com puting the  Fourier transform  of real da ta . T he FH T  algorithm  pro-

3
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vides advantage over th e  F F T  algorithm  by elim inating  all com plex arithm etic . 

A com parative s tudy  of algorithm s for com puting D F T  of real d a ta  can be found 

in [42]. In m ost applications the  R F F T  algorithm  is slightly faster th an  the  FH T 

algorithm . However, where both forward and reverse transform s are needed, the 

FH T  algorithm  is the  more a ttrac tiv e  one since it involves identical com putation 

for bo th  forw ard and inverse transform s.

Even with the  F F T  algorithm  only very lim ited real life problem s can be solved 

on conventional m achines. To solve even th e  m oderately  sized problem s, one has 

to  use the  so called “high perform ance com puters.” T here  are two classes of such 

high perform ance m achines. T he machines in the  first class use higher clock rates 

and o ther technological advances along with carefully designed arch itec tu re  and 

software support to  achieve high com putation  speeds. T he second class of high 

perform ance m achines achieve high speeds through parallelism . A parallel m achine 

typically  has a  num ber of identical processing un its. T he to ta l work is divided into 

sm aller tasks and these tasks are d istribu ted  am ong the  processing un its which 

execute them  in parallel. The parallel m achines can also use some of the  features 

of the  first class of high perform ance m achines to  achieve higher speeds. T he m ain 

advantage of the  high com putation speed m achines over parallel m achines is th a t 

achieving good perform ance is tran sparen t to  th e  user. P a rt of th is  advantage 

comes from  optim izing compilers while the  o ther p a rt comes through th e  use of

4
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highly optim ized subroutine libraries. In order to  get good perform ance out of a 

parallel m achine the  users have to be aware of th e  arch itec tu re  of the  machine. 

Further, there  are very few parallel subroutine libraries available to  the  users. 

Considering the  po ten tia l of parallel m achines for high perform ance com puting, it 

is desirable to  look into the  issues related to program m ing them  and providing the 

kind of software support th a t  is available on other high perform ance m achines.

1.3 D ata  D istributions

To develop a  general purpose subroutine on a d istribu ted  m em ory parallel m achine 

one has to  address the  issue of da ta  d istribution in addition to  all th e  issues m en­

tioned earlier in th is section [36]. It is possible th a t different users m ay wish to  use 

the  routine w ith different d a ta  d istributions. Typically, users determ ine their d a ta  

d istribu tion  based on the over all application requirem ents, which could vary from 

user to  user. T hus, it is extrem ely im portan t to  design schem es on d istribu ted  

m em ory parallel m achines which can support a  variety of d a ta  d istribu tions.

T here are two possible approaches to  th is problem . T he first one is to design 

a  schem e for a  specific d a ta  d istribution which gives op tim al perform ance, along 

w ith a  set of basic com m unication subroutines to  convert a  user supplied d a ta  

d istribu tion  to the  specific d a ta  distribution. T his approach has the  problem  of 

rearranging the  user d a ta  initially  which is quite costly on d istribu ted  m em ory
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parallel m achines. T he second approach is to  design a scheme which works well for 

a rb itra ry  d a ta  distributions. T he second approach is obviously extrem ely  difficult 

to  achieve. A com prom ise between these two extrem es is to  design algorithm s th a t 

support a  class of d a ta  d istributions. A comm on set of d a ta  d istribu tions, referred 

to  as block scattered  distribu tions, has been identified by W alker and  D ongarra 

[49] as very useful for d istribu ted  m em ory parallel m achines. Block scattered  

d istribu tions encom pass the  two m ost common d a ta  distributions; th e  linear d a ta  

d istribu tion  and the scattered  d a ta  d istribu tion . For a  one dim ensional d a ta  set, 

a  block scattered  distribu tion  is specified by th e  block size. The d a ta  are divided 

in to  a  set of equal sized blocks. A block j  is m apped  to  node ( j  m od p), where p 

is th e  num ber of nodes. For exam ple, two d a ta  d istributions for a  one dim ensional 

array  of 16 d a ta  values on a  4 node machine, w ith two different block sizes are 

shown in Figure 1.1.

1.4 O verview

In th is d issertation we present algorithm s for com puting D FT of real and complex 

d a ta  th a t  work for block scattered  d a ta  distributions. These algorithm s work for 

all block sizes w ithout requiring any initial redistribution of da ta . For com puting 

D F T  of com plex d a ta  the  F F T  algorithm  is used. The F F T  algorithm  is well 

su ited  for m ost parallel environm ents. It is possible to d istribu te  work am ong

6
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p  0 Pi

(a). Block size = 2

(b). Block size = 1

F igure 1.1: Block scattered  d a ta  d istribu tions for two block sizes.

7
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processors such th a t the  load is balanced and no processor is idle. T he in ternode 

com m unication p a tte rn  is also very regular and does not cause excessive overhead 

[14, 18, 26, 29, 34, 47]. However, the  R F F T  and FH T  algorithm s do not work 

very well on d istribu ted  m em ory parallel m achines. Their com m unication p a tte rn s  

result in excessive com m unication overhead, which m ay even offset their com pu­

tational advantage on d istribu ted  m em ory parallel m achines [37, 39]. We present 

a  restruc tu ring  of the  R F F T  and FH T  algorithm s which elim inates their excessive 

com m unication overhead, while reta in ing  their com putational advantage. T he al­

gorithm s for com puting D FT of real d a ta  w ith block scattered  d istribu tion  are 

based upon the  restructu red  R F F T  and FH T  algorithm s. We have also addressed 

the  issue of rearranging d a ta  after com putation  such th a t the  o u tp u t d a ta  have 

the  sam e d istribu tion  as the inpu t. T he m otivation for rearrangem ent comes from 

problem s such as solution of partia l differential equations using spectral techniques 

which require the  final d a ta  d istribu tion  to  be identical to  the  in itial one.

T he dissertation is organized in six chapters including th is one. C hap ter 2 

includes a discussion of the  previous work in th e  area of parallel F F T  algorithm s. 

It also gives the  definitions relevant to th is work. T he restructu ring  of R F F T  and 

FH T  algorithm s is described in C hap ter 3. T he restructu red  FH T and R F F T  

algorithm s, along with the F F T  algorithm  were im plem ented on two d istribu ted  

m em ory parallel m achines with different arch itectures. All th ree  im plem entations

8
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work only for a specific d a ta  d istribu tion . C hap ter 3 also describes th e  results of 

th e  experim ents w ith these im plem entations to verify the  superiority  of the  FH T  

and R F F T  algorithm  over the  F F T  algorithm  for com puting D FT of real data .

An F F T  im plem entation on a d istribu ted  m em ory parallel m achine for block 

scattered  d a ta  d istribu tions with different block sizes is given in C hap ter 4. C hap­

te r  5 gives the  R F F T  and FH T im plem entations for block scattered  d a ta  d istri­

butions using th e  restructu red  algorithm s from  C hap ter 3. As with the  F F T  algo­

rith m , these im plem entations support different block sizes. However, a  m inim um  

of 4 blocks are required per node irrespective of the  block size. This requirem ent 

comes from  th e  grouping form ed in the  restructu red  algorithm s. All the  algorithm s 

are independent of the  num ber of processors in the  m achine as long as the  d a ta  

size is g rea ter th an  the  num ber of processors. T he perform ances of all th ree  im ple­

m entations were evaluated on the  Intel iPSC /860. T he conclusions and the  scope 

for fu rth e r s tudy  in th is area are discussed in chap ter 6.

9
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C hapter 2

Background

2.1 D efinitions

In th is chap ter we give th e  definitions and history of the F F T  algorithm s. A num ber 

of variants of the  F F T  algorithm s exist in litera tu re . We give the  definitions 

relevant to  th is work only since it is not possible to  include all definitions here. A 

discussion of th e  previous work by o ther researchers is also included in th is chapter.

2.1.1 D iscrete  Fourier Transform

T he D FT, X ( k ), of an N-point sequence x(r)  is defined as,

N - l

X ( k )  =  1 /A  ] T  x(v ) e - j2*rk/N, 0 <  k  <  A , (2.1)
r = 0

10
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where j  =  y / — 1, and N is a  power of 2.

F F T  A lg o r i th m

T here are two m ajor classes of the  F F T  algorithm s, namely; d e c im a t io n  in  t im e  

( D I T - F F T )  and d e c im a t io n  in  f r e q u e n c y  (D I F -F F T . T he two classes of the 

F F T  algorithm  are described here briefly. (For details one can refer to  [24]). For 

the  D IT -F F T  algorithm  the  N-point sequence x(r )  is divided into two (A /2 )-po in t 

sequences :ci(r) and x 2(r) as the  odd and even elem ents of x(r )  respectively; i.e.

x \ ( r )  =  x ( 2 r ) , r  =  0 ,1 ,2 , . . . N / 2 — 1, (2.2)

x 2(r) =  x(2r  +  1), r  =  0 ,1 ,2 , . . .N/ 2  — 1. (2.3)

We then recursively com pute X \  (k)  and X 2(k),  th e  D F T ’s of x i( r )  and x 2(r) 

respectively. T he recursion stops when the  D FT of a  1-point sequence, which is 

the  elem ent itself, is required. The two sequences X\  (k ) and X 2(k)  are then  m erged 

to generate X ( k )  using the  following expressions

X { k )  = X \ ( k )  +  u j ^ X 2(k),  0 < k < N / ‘2, (2.4)

X { k )  = X ] ( k  -  N / 2 )  -  u ^ X 2(k -  A /2 ) , N / 2  < k < N.  (2.5)

where =  e~i'2irk/N .

II
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For the  D IF -F F T  algorithm  the  N-point sequence x( r )  is divided into two 

halves, ;ci(r) and x-z(r) so th a t  the  the transform ed sequence can be w ritten  as

(N /2 —1)

X{2k )  =  £  [x , (7- )+x2(i-)]uN2kr (2.6)
r=0  

(N /2 —1)

X { 2 k  +  1 )  =  ] T  [ * i ( r ) -  * 2 ( r ) ] w N W N 2*r , k  =  0 ,1. .N/2  -  1. (2.7)
r= 0

These equations represent two N /2  point D F T ’s of sequences [;ci (?•) +  ^ ( r ) ]  and 

[aii (7*) — a?2(»*)]u ,Jv. T he process is then repeatedly  applied to  the  two subsequences. 

T he flow graphs for the  D IT F F T  and D IF -F F T  for inpu t sequence of length 8 

are shown in F igure 2.1. Notice th a t the  D IT -FFT  algorithm  requires the  input 

sequence to be in bit-reversed order (ordering obtained by reversing th e  b its  in the  

binary  representation of th e  d a ta  item  indices) and re tu rns the  o u tp u t in sequential 

order. T he D IF -F F T  algorithm  requires the  inpu t in sequential o rder and returns 

th e  o u tp u t in a  b it reversed order. T he basic units of com putation  for the  F F T  

algorithm s are butterflies shown in Figure 2.2.

RFFT Algorithm

T he R F F T  algorithm  described here is derived from  th e  D IT -FFT  algorithm . It 

is different from th e  F F T  algorithm  a t th e  m erge step. In the  R F F T  algorithm  

th e  N -poin t sequence X ( k )  is obtained from two N /2 -po in t sequences x i ( k )  and 

xz(k)  as follows

X { k )  =  Ni(fc) +  cokN X 2(k),  0 <  fc <  N /2 , (2.8)

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a) D IT-FFT Flowgraph. (b) D IF-FFT Flowgraph.

Figure ‘2.1: Flow G raphs of 8-point D IT  and D IF F F T  algorithm s.

13
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(a) Butterfly for DIT FFT
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flj =  a0 +  a x
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(b) Butterfly for DIF FFT

Figure 2.2: B utterflies for the F F T  algorithm s.
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X ( k )  =  X * ( N  — k) N / ‘2 < k < N  

where X * ( N  — k) is the  complex conjugate of X ( N  — k).

(2.9)

2.1.2 H artley  Transform

The discrete H artley transform , X ( k ) ,  of an N -point sequence x(r )  is defined as 

[12]

N - 1

X ( k )  = l / N  ^  x (r ) {cos(2 in 'k /N)  +  sin(27r7-&/AQ}, 0 < k < N  (2.10)
r= 0

T he even and odd parts  of the  DH T are given by

E (k )  =  ( X { k )  + X { N  - k ) ) / 2 ,  (2.11)

0(A ) =  {X ( k )  -  X { N  -  k ) ) / 2. (2.12)

The even and odd ])arts of the  D H T can be com bined to  give real and im aginary 

parts of th e  D FT [12].

X ( k )  = E ( k ) - j O { k ) .  (2.13)

FHT Algorithm

The fast H artley transform  (FH T ) differs from  th e  F F T  algorithm  only a t the  

merge step. For the  FH T algorithm  th e  m erging of two sequences X i ( k )  and 

X-2(k)of  length N / 2  each to  give a  sequence of length N  is given by,

X ( k )  = X i ( k )  + X 2(k)ca&(2irk/N)

15
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+ X 2{ N / ‘2 -  k ) sm{2irk/N) ,  0 < k <  N / 2 ,  (2.14)

X ( k )  =  X ^ k  -  N /2 )  +  X 2{k -  N / 2 )  cos(27rfc/jV)

+ X 2( N  -  k) s 'm(2irk/N),  N / 2  < k < N .  (2.15)

The flow graph for the  R F F T  and FH T  algorithm s are given in Figure 2.3. It

can be seen from this figure th a t it is very difficult to identify a basic unit of

com putation for these algorithm s.

2.2 Previous Work

T hree d istinct phases can be identified in the  history of parallelization of the  F F T  

algorithm . T he first phase s ta rted  in the  late  60’s and continued up to the  m id 70’s. 

M ajority  of the  im plem entations reported  in th is phase were based on hypothetical 

or “paper and pen” m achines [8, 9, 38]. One work even tried  to  m atch th e  F F T  

algorithm  to the concept of associativity  derived from  m em ory design [50]. These 

early works were alm ost always targeted  a t special purpose and highly constrained 

architectures. D espite the  lack of m achines on which to  te s t these ideas, they  still 

m ade a  significant contribution towards understanding  th e  parallelism  inherent in 

the  F F T  algorithm .

The second m ajor phase s ta rted  with the  arrival of com m ercial vector proces­

sors. Korn and Lam biotte  [35] discussed an im plem entation on CDC S tar 100. 

T hey identified a m ajor draw back of the  F F T  algorithm  in relation to  vector pro-

16
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(a) RFFT Flowgraph (b) FHT Flowgraph

Figure ‘2.3: Flow G raphs for th e  R F F T  and FH T  algorithm s.

17
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cessing. The size of vector in a  single F F T  com putation  is not uniform  and can 

be very small in some stages. Hence it was not possible to  exploit the  vector 

processing capabilities th roughout the  algorithm . T hey suggested com putation  of 

m ultiple independent transform s as a  way of countering th is  problem . M ultiple 

independent transform s arise in a  num ber of application for exam ple com puting 

m ulti-dim ensional transform s. The corresponding elem ents of each d a ta  sequence 

to be transform ed are processed as vectors in such a  situa tion . Fornberg [23] im­

proved upon th is work and suggested evaluation and sto ring  of the  m ultiplication 

coefficients before com puting the  D FT. T he coefficients were ex trac ted  from the 

tab le  when they  were needed for com putations. T h is approach proved to  be very 

useful when a  num ber of D F T ’s of sam e size were to  be com puted  a t  different 

tim es. Sw arztrauber [43] divided the  single transform  in to  m ultip le  transform s to 

exploit th e  capabilities of th e  vector processor. Agarwal and  Cooley [1] identified a  

second m ajor problem  w ith efficient im plem entations of th e  F F T  algorithm  on vec­

tor m achines, namely, cache use. As long as the  d a ta  size for the  F F T  was sm aller 

than the  size of cache m em ory, the perform ance of th e  algorithm  was very good. 

However, for d a ta  sizes bigger than  th e  cache size, th e  perform ance deteriorated  

rapidly. This is because in m ost variants of th e  F F T  algorithm , in every stage a  

d a ta  item  is required for a  few com putations. By th e  tim e  it is required in th e  next 

stage it would have been throw n out of the  cache. Hence th e  ratio  of cache miss

18
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to  cache h it is fairly high. T here  are several o ther vector F F T  im plem entations in 

the  lite ra tu re  using different approaches [2, 4, 6, 17, 48].

T he th ird  phase in the  developm ent of parallel F F T  algorithm s has overlapped 

with the second phase. Some of th e  challenges faced in th is phase are sim ilar to  

those in the  second phase while some others are quite different. This phase cam e 

with the  advent of m ultiprocessor m achines in the  m arket. These m achines come 

in a  wide variety of arch itectures including SIMI) array processors to  M IM I) hyper­

cubes to  m assively parallel connection m achines. F F T  im plem entations reported  

on these m achines are necessarily different from each o ther. Some of th e  earliest 

work in th is phase has been on array  processors [27, 25] and tow ards developing 

F F T  processors [19, 20]. T he  early work on m ultiprocessor m achines addressed 

the  issues involved in m apping the  d a ta  onto the  processors. Some of these issues 

are: the  relation between th e  num ber of d a ta  points and the  num ber of processors, 

overheads of d a ta  organization when the num ber of d a ta  points is m ore than  the 

num ber of processors and the  degree of parallelization achievable w ith different 

d a ta  d istribu tions [27, 25, 26]. These issues continue to  be relevant for all the 

m achines available com m ercially today.

Since the m id 80’s, a  great deal of a tten tion  has been given to  F F T  im ple­

m entations on m achines w ith hypercube architectures for two reasons. One of the  

reasons is the  ease w ith which the  F F T  algorithm  m aps onto a  hypercube when the
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



size of the  input sequence is a  power of ‘2. T he second reason is th a t a significant 

num ber of com m ercially available m achines have hypercube based interconnection 

networks. On these m achines the  d a ta  com m unication costs are an im portan t 

factor in the  overall cost of com putation. Johnson e t.a l [‘29, 31] discussed the  com­

pu tation  of F F T  on boolean cubes and o ther sim ilar interconnection networks. 

Johnson et.al [30, 33] and Kam in and A dam s [34] gave im plem entations on a con­

nection m achine. Sw arztrauber [45] used index-digit perm utations to  address the 

issue of com puting ordered transform s (where both  the  initial and final d a ta  d istri­

bution are in sam e order). In a la ter work w ith Tong [47], he pointed out a cyclic 

order d a ta  d istribu tion  which results in less com m unication cost than  the  natural 

order on connection m achine for ordered F F T . He also gave an im plem entation 

for an a rb itra ry  size d a ta  (not power o f ‘2) on a  hypercube [46]. Cham berlain [18] 

discussed com puting F F T  of an in itial d a ta  d istribu tion  which is in a Gray code 

ordering ra ther than  natu ral ordering. He proved it would require com m unication 

between nodes a t m ost a distance two ap art.

R elatively less a tten tion  has been given to shared m em ory m achines. Swarz­

trauber [45] discussed im plem entations on Cray-X M P and A lliaut FX-8 which are 

shared m em ory vector processors. Briggs e t.a l [14] discussed F F T  m ethods on HEP 

com puter which is an MIME) shared m em ory m achine. M ore recently Averbuch 

e t.a l [3] reported  the  results of their im plem entation on an experim ental shared

20
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m em ory m achine MMX.

O ne can arrive a t two conclusions by looking a t the  existing lite ra tu re  for the 

F F T  algorithm s. Even though a  lot of a tten tion  has been given by the  researchers 

to  the  parallelization of the  complex F F T  algorithm , the  R F F T  algorithm  has been 

largely ignored. Also, there  has been very little  effort tow ards finding parallel 

im plem entations th a t can com pute the  Fourier transform  of the  variety of da ta  

d istribu tions useful to  the  scientific com m unity.

21
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Chapter 3

C om puting Fourier Transform of 
R eal D ata on D istributed  
M em ory Parallel M achines

3.1 Introduction

On a sequential com puter it has been shown th a t bo th  th e  R F F T  and the FH T 

algorithm s are faster than  the F F T  algorithm  [7, 1‘2, 42, 44]. However, it is not 

obvious th a t  the  same is true  on parallel m achines. T he com m unication pa tte rn s 

of the  R F F T  and the FH T algorithm s, which are critical to  the  cost of im ple­

m entations on d istribu ted  m em ory parallel m achines, a re  different from those of 

the  F F T  algorithm  (see Figures 2.1 and 2.3 ). We assum e th a t in a parallel envi­

ronm ent a  processor is assigned to each node of the  flow-graph. A link between 

two nodes of the  flow-graph represents com m unication betw een th e  corresponding 

processors. A careful observation of Figure 2.3 also indicates th a t  for an identical 

d a ta  d istribu tion , the com m unication p a tte rn  of the  R F F T  algorithm  is a subset
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of the  com m unication p a tte rn  of the  FH T algorithm . It can be easily verified 

th a t th is is in general true . T he com m unication pa tte rn s  of these algorithm s are 

unsuitab le for M IM D and SIMD m achines [39, 37]. For M IM D m achines these 

p a tte rn s  require additional com m unication overhead. For SIMD m achines there  is 

an added disadvantage of different d a ta  m ovem ents a t different processors. Hence 

a sim ple m apping of d a ta  item s to processors is not likely to be efficient.

In th is chapter we present a  restructu ring  of the  R F F T  and FH T  algorithm s 

such th a t their com m unication p a tte rn s  become sim ilar to  th a t of th e  F F T  al­

gorithm . T he  restructu ring  is such th a t  the  com putational advantage of these 

algorithm s is also retained. T he restructu red  algorithm s are based on the  observa­

tion th a t  a t any stage of th e  R F F T  and the  FH T algorithm s, a  group of four d a ta  

points uniquely determ ine four d a ta  points of the  next stage (a sim ilar grouping 

of d a ta  has been suggested before [4, 12, 15, 42] in the  context of m inim izing the  

num ber of arithm etic  operations). This restructu ring  makes these algorithm s su it­

able for m ost of the  contem porary  d istribu ted  m em ory parallel arch itectures. We 

tested  the  su itab ility  of the  restruc tu red  algorithm s by im plem enting them  on two 

different parallel m achines. One is an MIMD d istribu ted  m em ory m achine with 

a hypercube interconnection network, the  NOIJBE. T he second one is the  AM T- 

DAP which is an SIMD d istribu ted  m em ory m achine with a  mesh arch itecture . 

O ur results indicate th a t im plem entations of the FH T and R F F T  algorithm s run
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about 25 — 40% faster than  the  F F T  algorithm  on these machines.

3.2 Sim ple FFT-like Im plem entation

We have seen th a t the  com m unication p a tte rn s  of the  FH T and the R F F T  algo­

rithm s are different from those of the  F F T  algorithm . This necessitates a different 

approach for the ir im plem entation on parallel m achines. We illu stra te  this by con­

sidering the im plem entations of 8-point D IT -FFT , R F F T  and FH T algorithm s on 

a 3-cube and a  4 x 2 mesh. T he com m unication p a tte rn  of the  F F T  algorithm  

im plem entation on the  cube is shown in Figure 3.1(a) and it follows directly  from 

Figure 2.1(a). Sim ilarly the  com m unication p a tte rn s  of the  R F F T  and FH T algo­

rithm s on a  cube, im plem ented from the  flow graphs in Figure 2.3 are shown in 

Figures 3.1(b) and 3.1(c) respectively. (An arrow between two nodes indicates a 

corresponding d a ta  transfer.) It can be seen from Figure 3.1 th a t for the R F FT  

and FH T  algorithm s, Stage 2 (com puting a  sequence of length 8) requires com m u­

nication between two nodes which are a  distance two apart (the  diagonal transfer 

on the  face of the  cube shown in Figure 3.1(b) and 3.1(c)). It is easy to prove that 

in geueral if a  stage is com puting a  sequence of length 2m, where, m  >  2, then it 

requires com m unication between two nodes which are a  distance m  — 1 apart.

For the  mesh im plem entation of the  algorithm s, the  inpu t sequence is dis­

trib u ted  linearly along the  processors. T he com m unication p a tte rn s  generated by
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th is  d istribu tion  are  shown in Figure 3/2. T t  is obvious from Figures 3.1 and 3/2 

th a t the  im plem entations with sim ple d a ta  m apping are not efficient for th e  R F F T  

and FH T  algorithm s. Since the com m unication p a tte rn  of th e  R F F T  algorithm  

is a  subset of th a t of the  FH T algorithm , an efficient m apping of the  FH T  al­

gorithm  would also be efficient for the  R F F T  algorithm . T he two restruc tu red  

algorithm s differ only in the  com putation. Hence we discuss only the  restruc tu red  

FH T  algorithm  in the  next two sections.

3.3 R estructured FH T  A lgorithm

T he restruc tu red  FH T algorithm  consists of an in itialization step  followed by a 

num ber of stages (in general for an Appoint sequence there are log(/V) — 2 stages) 

where inpu t to  a  stage is a  set of groups consisting of four d a ta  points each. A 

stage in the  restructu red  FH T algorithm , like the  F F T  algorithm , m erges two n- 

po in t sequences X \  and X 2 to  form a 2n-point sequence X .  T he  o u tp u t of the  final 

stage is the  DH T of the  input da ta . T he initialization step partitions the  inpu t 

in to  groups of four d a ta  points each and com putes 4-point D H T for each of them , 

which becom es th e  input for stage 1. A stage consists of two phases.

Exchange Phase

Form s a  new set of four d a ta  point groups by exchanging d a ta  between two groups
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of th e  original set.

Computation Phase

Processes the  four d a ta  points in each group obtained after the  exchange phase to 

generate four new d a ta  points. These four new d a ta  points form  a group for the 

next stage.

Before giving the  details of the  restructu red  FH T  algorithm  we in troduce some 

necessary notations and define sets of four d a ta  point groups, henceforth referred 

to  as groupings.

3.3.1 N otation s and G rouping D efin itions

Notations

T he two n-point sequences to  be merged in a stage i are denoted by X \  and X.]; 

and the resulting 2n-point sequence by / / t+1, where n  =  2t+1. For brevity  we also 

in troduce the  following notations.

q\(k)  =  k  m od n /4 ,  

q2(k)  =  n /2  -  k, 

q:i(k)  =  n /2  +  k  m od n /4 , 

qi{k) = n  — k ,
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qs{k) =  k  m od n /2 .

For convenience, the  argum ent k will be dropped  in all th e  subsequent references 

to  <jrj(fc)’s.

Grouping Definitions

Grouping Gl

A grouping, Gx is com posed of groups G l(k) ,  1 <  k < n j 4 consisting of four 

elem ents from  Hl defined by

G>(k) =  [ / / '( „ ) ,  / / ‘(ft), H’(ft), / / ‘(ft)] (3.1)

Grouping G\

A grouping G\  is com posed of groups G \(k ) ,  1 <  k < n / 4  consisting of four

elem ents from  X{ ,  given by

<?,(*) =  |A -;(„), X\(q2)X[(qx) , X \ ( qi)}. (3.2)

Grouping G \

A grouping G\  is com posed of groups G \( k ) ,  1 <  k  <  n /4  consisting of four

elem ents from  X%, given by

f 4 W  =  [*.)(?,) ,x j( f t) ,A :‘( f t) ,x ;( f t) ] .  (3.3)
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G ro u p in g  G \ 2

A grouping, G \2, is defined as the  result of an exchange operation, ‘< = > ’, between

G\  and G’?2. The exchange operation < = >  is such th a t G\(k)  < = >  G\{k)  implies 

an exchange of two elem ents of G\(k )  with two elem ents of G\{k) .  T he  elem ents 

exchanged depend 011 the  value of k. For 1 <  k  <  n /4 , X \{q 2) and X\(q%) of G\ 

are exchanged with X](c/i) and X](</4) of G2; and for k  =  n /4 , X\{q \)  and X\{q%) 

of G\  are exchanged w ith X \ ( q 2) and X ^ q ^ )  of G\.  As a  resu lt the  following four 

sets define the  grouping G,l12.

This can be verified by observing th a t  th e  above equation can be w ritten  as

[*,'(?,),•V jM .-tfM .-’Cjfo)], 1 < * < » / 4

1 <  * <  n /4  

[* { (« ,) ,X j f a ) , * { ( * , ) , ^ ( * 0 ) ,  *  =  n /4  

[-v;(®), k =  n /4 .

T he new groups defined by G\-2(k)  can also be w ritten  as

G \2(k) = [Xl (q5) , X , ( q 5) , X , ( q 4) , X 2(q4)}, 1 < k <  n /2 . (3.4)

[ * j M ,  X i ( q2), X {(H ), X i M l ,  k  =  n /4  

K W ,  X f a ) ,  X U ® ) ,  X ‘(<K )], 1 < k <  n /4

(3.5)
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where:

[*{(«), XHto), X ’(q,), *•(„)], k = n/4

is identical to

Mte), x i M ,  x;M, xiMl, * = »/4,

and

[x; M ,  x ‘m ,  x ; m ,  1 < * < »/4

is identical to

[X U te),X .i(V 5 ),X i(q4) ,X '(q 4) ] ,n /4  <  k  <  n /2 .

The groupings G\  and G\  define the  sequences X \  and X \  respectively. These 

sequences form  th e  inpu t for stage i of th e  restruc tu red  algorithm . T he  grouping 

G \2 is the  set of new groups form ed in the  exchange phase of the  algorithm  where 

four elem ents of every group uniquely determ ine four new d a ta  points. It should 

be noted here th a t th is property  of grouping G\2 fo rm s the basis of restructuring . 

T he new d a ta  points are com puted in the  com putation  phase and they  form the 

grouping Gn+1, which is also the ou tpu t of stage i.
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3.4 A lgorithm

Initialization

(i) R earrange the  d a ta  in a  b it reversed order.

(ii) P artition  the  iV-point sequence, x(n) ,  in to  N / 4  groups given by,

+  i ) , x ( N / 4  +  i),a:(3Af/4 +  *)], 0 < i  < N / 4

(iii) C om pute (4-point) H artley transform s for each of these groups. The resu ltan t 

groups are the  inpu t for Stage 1.

T he exchange and com putation  phases of a  Stage i are given below.

Exchange Phase

Form G\-2th roughG \(k )  < = >  Gl2(k).

Computation Phase

C om pute Gn+1 from G \2 using Eq. ‘2.14-2.15.

Example.

T h e  basic com putation  units of the  restructured  FH T and R F F T  algorithm s are 

shown in Figure 3.3.

We illu s tra te  th e  com m unication pa tte rn  of the  restructu red  algorithm  with 

th e  help of an exam ple of 16-point FHT (Figure 3.4). For Stage 1 we assum e
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(a) FHT Algorithm

x’(n/2)x'{n/ 2)

x2{n/4) 0 ------------------- 0  x/(nfA)
-1

- c

- s

-s'

(b) RFFT Algorithm

Figure 3.3: Basic com putation  units of the  restruc tu red  R F F T  and F H T  algo­

rithm s.
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th a t all steps necessary to  generate sequences of length 4 have been executed and 

the  two such sequences are to be com bined. It is seen from  Figure 3.4 th a t the  

com m unication requirem ents of the  restructu red  FH T  algorithm s are  very sim ilar 

to those of the  F F T  algorithm  (see F igure 2.1).

Computing DFT from the restructured FHT.

T he groupings suggested for the  restruc tu red  FH T  algorithm  have ano ther nice 

property. The four points of DHT in a  group, after th e  final stage, a re  sufficient 

to generate the  four corresponding points of th e  D FT . To see th is  consider the  

grouping Gk( k ), k =  log N  — I, of  d a ta  points a fter th e  final stage.

G * (t)  -  [ # * ( * ) ,  /» * (* )! , l < k < N / 4  (3.6)

It is observed from  Eq. 2.11-2.13 th a t  such a  group of four D H T po in ts directly 

gives the  four corresponding points of D FT.

x m  = { / / ( ? , ) + h m - m < h )  -  h m d /%

V-Ji
V

!

X M  = H M ,  k = N / 4

X M  = { H M  + H M  -  j \ H M  -  H M D / 2 , 1 < k < N/4

X(qi) = { H M  +  H M  - j [ H M  -  H M D / % k = N/4

X M  = { H M  + h m - i [ H M  -  H M D / %

V
 

-wV
I

x m  = H M ,  k = N/ 4

X M  = { H M  + H M - i l H M - H M D / %

VV
I
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Computation 
Phase \

Exchange
Phase

4 0 ),4 8 ), « ! ( ! )  =

4 4 ), 412)
► 4(0),4(i). 

4(2).4(3),

G\2(2) = 
M (0 ),4 (0 ) . 

4 (2 ) ,4 (2 )

Gf(2) =
----------->

G?2(4) =

4(0),4(4), ?̂(0),-t|(0), >

4(2)>4(6)> 4(4)*4(4)>

m . m ,
*(4),*(12)

4 2 ),4 1 0 ), 

4 6 ),4 1 4 )

<4(1) = Gh(i) = <4(0 = \ 1 GU1) = m * (i5 ) , 

* (7 ),* (9)
> 4(°)>4(i),

4(2),4(3), — >
4(i), 4(i),

4P). 4(3)
► 4(1)>4(7)>

4(3),4(5)

\l  “

\  A J

4(i),4(0, 
4(7),4(7)

>

4 1). 4"), 

4 5 ),4 1 3 )
4(o)>4(0>
4(2). * (3 ) ,

G\2(2) =

4(°)>4<°)>
4 (2 ) ,4 (2 )

G\{ 2) = G\2{2) = X(2),W(14),

4 (0 ) ,4 (4 ) ,
A

4 (2 ) ,4 (2 ) , > A'(6),W(10)
4 (2 ) ,4 (6 ) 11 4 ( 6),^1(6)

43 ),4 1 1 ),
4(i) = 0'{2(1) = <4(0 = / ^  G?2(3) =

4 7 ),4 1 5 )
> 4 (0 ) ,4 ( i ) , 4 (1 ) ,4 (1 ) , ► 4(i),4 (7 ), L ? (3 ) ,4 (3 ) , >

4(2)>4(3)> 4 (3 ) ,4 (3 ) ^|(3),a:|(5) |4(5)>4(s)

*(3),*(13), 

*(5),*(11)

Figure 3.4: Flow Graph of the  restruc tu red  FH T  algorithm .
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3.5 M achines

3.5.1 N C U B E

NCUBE-7 is a  coarse grain MIMD distributed m em ory m achine with a hyper­

cube arch itec tu re . A A:-dimensional hypercube is an interconnection network of 2k 

nodes, each node being a  processor. The nodes of a  hypercube can be labeled by 

an integer (represented as a binary num ber) in the  range 0 to 2k — 1 such th a t 

there  is a  d irect com m unication link between any two processors if and only if the 

binary representations of their labels differ in precisely one bit. On NCUBE-7 the  

m axim um  allowable dim ension is 5. However, a sm aller dim ension can be used 

depending upon the  problem  size. T he processors in NCUBE-7 com m unicate with 

each o ther in message passing m ode. Hence the larger the  distance between the 

two processors com m unicating, the  more is the tim e taken. There is a host pro­

cessor which invokes a cube of the  given dimension, and loads the  program  on to 

the  corresponding nodes.

NCUBE-7 supports the  regular FORTRAN and C languages for program m ing 

w ith a  set of parallel constructs in the  form of subroutine library. Some of the  

m ost im portan t routines are :

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



n o p e n  : for host only, to  open a  cube of given dim ension,

n lo a d m : for host only, to  load the  program s on the nodes,

n r e a d  : for host and node, to  receive a  message,

n w r i te :  for host and node, to  send a  message.

3.5 .2  D A P -510

T he DAP-510 is a  fine grain m assively parallel com puter. It is an S I M D  m achine 

w ith 1024 one-bit processors, arranged in a 32 x 32 m atrix . Each processor is 

connected to  its four nearest neighbors. T he  processors on the  edge of the  m atrix  

have w rap around connections to  the  processors on the  opposite edge. In addition 

to nearest neighbor connections, a  bus system  connects all the  processors in each 

row and  all th e  processors in each colum n. Each processor has its  local m em ory of 

64K bits. T he whole m em ory can be viewed as a th ree  dim ensional array  of bits, 

consisting of 64K bit-planes. A bit-p lane has 1024 b its , one from  each processor’s 

local m em ory. Similarly, a word-plane has 1024 words, one from each processors 

local m em ory.

T he  higher level language available on the  DAP is extended Fortran  Plus, a 

parallel extension of Fortran , which also supports v irtual array  sizes. T he  m ost 

im p o rtan t featu re  of Fortran  Plus is the  ability  to  m an ipu la te  m atrices and vectors 

as single objects. For exam ple, two m atrices can be added w ith a  siugle s ta tem en t,
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as done for scalars. The m asking and selection operations are available for per­

form ing com putation  on selected processors. As an exam ple, consider th e  Fortran 

code:

DO 10 I =  1,32 

DO 10 J =  1,32

IF (A (I,J) .GE. 0) GO TO 10 

A (I,J) =  A (I,J) +  5 

10 C O N TIN U E

This is very inefficient on a  serial m achine partly  due to the  IF construct. In the  

corresponding Fortran  Plus sta tem en t,

A(A.LT.O) =  A +  5, 

the  boolean m atrix  A.LT.O is used as a  m ask so th a t  only those values of A 

corresponding to  a  TR U E  value are changed. T he contrast w ith the  sequential 

m achines on conditional operations is im portan t: th e  sequential m achine perform s 

a  conditional ju m p , whereas the  DAP will typically  use ac tiv ity  control to  perform  a 

m asked assignm ent. In addition to  the  basic functions which have been extended to 

take vector and m atrix  argum ents, a  large num ber of o ther functions are provided 

as standard . For details on these functions one can refer to  th e  A M T DAP 510 

extended Fortran-P lus Language M anual. The functions which we have used in 

our im plem entation are described below.
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sh ec : right shifts m atrix  columns by a given distance, 

shw c: left shifts m atrix  colum ns by a  given distance, 

sh n c : shifts m atrix  rows upward by a  given distance, 

sh sc : shifts m atrix  rows downward by a  given distance.

All the  shifts are carried out in w rap-around m anner.

3.6 Im plem entations

3.6.1 H yp ercu be Im plem en tation

T he hypercube im plem entation of the  restruc tu red  algorithm  follows from  Figure 

3.4. For reasons of clarity we restric t our discussion to the  com putation  of 4n- 

poin t DHT where n  is th e  num ber of nodes in the  hypercube (however, th e  actual 

code for th e  NCIJBE m achine has been w ritten  for th e  general case). We use the 

following variables and constructs in describing our im plem entation.

V a r ia b le s

x()  : A real array for storing the  input. 

h() : A real array to  store the  ou tpu t. 

h 1() and h2()  : Real arrays used for exchanging data . 

h'i() : A real tem porary  array.
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T he arrays x()  and hQ are of dimension four; and /il( ) , /i‘2(), and h'i() are of

dimension two.

node : node num ber.

negh : neighbor node num ber.

dimension : dim ension of th e  cube.

temp : a real tem porary  storage.

Constructs

receive (negh,buffer): receives da ta  from the node negh in to  the  buffer, 

sendfnegh,buffer):  sends buffer d a ta  to  the  node negh. 

f ind.negh(i,negh):  finds the neighboring node negh for the  xth iteration  

combine(arrayl,array2,arrayS):  merges d a ta  of array 1 and array2 using Eq. 2.14 

and Eq. 2.15 and stores the  result in array 1 and arrayS.

Algorithm:  H artley Transform

Input: A  sequence of real d a ta  of length AN.

Output: A transform ed sequence of real d a ta  of length A N .

(* the  following code is executed at all nodes *)

(* two po in t m erge for x (l) ,x (2 ) and x(3),x(4) *) 

h ( l)  =  x ( l)  +  x(2); 

h(2) =  x ( l)  - x(2);
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h(3) =  x(3) +  x(4); 

k(4) =  x(3) - x(4);

(* four poin t M erge for h (l:4 ) *) 

tem p  =  h ( l )  -f- h(3); 

b ( 3 ) = h ( l ) - h ( 3 ) ;

k ( l )  = tem p ; 

tem p  =  h(2) +  h(4); 

h(4) =  h(2) - h(4); 

h(2) = tem p ;

(* all m erge w ithin the  node clone *)

(* p repare  for exchange *)

h 1 (1) =  h( l ) ;  

h i  (2) =  h(4); 

h2( 1) =  h(2); 

h2(2) =  h(3);

(* com m unication betw een nodes for m erging *) 

fo r  i =  1 to  dim ension d o

(* find the  node num ber of the  Neighbor to  exchange data*)
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find_negh(i ,negh); 

i f  (node <  negli) t h e n  

b e g in

receive(negh,li3);

(* receive h‘2 for com putation from  the  neighbor and 

store it in 1)3 *) 

send (negh,h‘2) ;

(* and send h2 to the  neighbor, com pleting the  exchange*) 

com bine(h 1 ,h3,h‘2);

(* merge h i and h3 and return  values in h i and h‘2, 

such th a t they are in the  correct place for exchange 

in the next stage *)

e n d

e lse

b e g in

(* corresponding actions of the  neighboring node *)

send(negh ,h l);

receive (negh ,h i)

combine(l) 1 ,h2,h2)

e n d
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end if

end for

Figure 3.5 illustrates the im plem entation of the  restruc tu red  FH T algorithm  

on a  2-c.ube.

3.6.2 D A P  Im plem entation

T he m apping on the  DAP requires a t least 4 x N 2 d a ta  points, where N  x  N  is 

th e  size of the  m esh. The general SIMD Mesh im plem entation of the  FH T algo­

rithm  follows from  Figure 3.4. For reasons of clarity we restric t our discussion to  

the  com putation of 4 x  N  x  A -point DHT, even though the  algorithm  has been 

im plem ented for larger sized DHTs.

We use the  following variables in describing our im plem entation.

Variables

A (,) in the argument o f  array represents N  x N ,  the size o f  the DAF) array 

hart(, ,4) '■ A real array  for FH T data.

ndist : A  real scalar variable to  indicate the  d istance between colum ns or rows 

being exchanged.

f ac tor !( , )  and factor2( ,)  : Real arrays to  keep in term ediate  results.
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Figure 3.5: H ypercube im plem entation of the  restructu red  FH T  algorithm .
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Algorithm: Hartley Transform

Input: A sequence of real d a ta  of length 4 * N 2, d istribu ted  such th a t any da ta  

item  h (k ), w ith k  m od N 2 =  N ( i  — 1) x  (j  — 1) is m apped to  th e  processor Ptj. 

(T he four d a ta  item s on a processor are referenced by h ( i , j ,  1 : 4))

Output: A H artley sequence of real d a ta  of length  4 * N 2, such th a t  if a  processor 

Pij has d a ta  item  h(k) ,  it also has h (N /2  — k), h ( N /2  +  k) and h ( N  — k ),

begin

fourdh t(h ); { carry ou t four point D H T on all nodes } 

for i = 1 to log i(N )  do 

begin

ndist =  log2 (A f)/‘2l mod(lo&2(N)/2) { d istance betw een colum ns exchanging d a ta  } 

for j =  1 and 3 do

begin { d a ta  exchange w ith appropriate  m asks. } 

if (i <  log2 (/V )/2) then { com m unication am ong columns} 

begin

tem p =  shw c(hart(„ j),nd ist);
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h a rt(„ j)  =  sh e c (h a rt(„ j+ l) ,n d is t); 

end;

else { com m unication among rows } 

begin

tem p  =  shnc(hart(„ j),nd ist); 

h a rt( ,,j)  =  sh sc (h a rt( ,,j+ l),n d is t) ; 

end;

h a r t ( , , j+ l)  =  tem p; 

end;

fac to rl =  hart(,,2)*cos 0 +  hart(,,4)*sin  0; { 0 com puted according to  Eq. ‘2.14-2.15 

fac.tor2 =  h a r t (,,4)*cos 0 - hart(„2)*sin  0; 

h a r t( ,,‘2) =  hart(,,3 ) - factor2; 

h art(,,4 ) =  h a rt(„3 )  +  factor2; 

h a rt( ,,3 )  =  h a r t ( , , l )  - factorl; 

h a r t ( , , l )  =  h a r t( , , l )  +  factorl; 

end;

T h e  im plem entation  based on th is m apping in shown in Figure 3.6. w ith 3‘2-point 

d a ta  sequence on a  4 x  2 mesh.
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Figure 3.6: Mesh im plem entation of the  restruc tu red  FH T  algorithm .
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3.7 R esu lts and D iscussion

On the  NCUBE-7 we conducted a set of experim ents to  determ ine the  effect of 

th e  varying the  d a ta  size and the num ber of nodes on the  overall execution tim e 

of th e  algorithm s. The num ber of nodes was varied from one to  th irty  two and 

th e  num ber of d a ta  points from 128 to 32K. T he results of these experim ents are 

sum m arized in Tables 3.1, 3.2, 3.4 and 3.5. For ease of presentation the  com pletion 

tim e, which is m easured as the  num ber of clock ticks, is averaged over the  individual 

nodes. One clock tick equals 1024/(c.loc.k ra te ), so for a  6 MHz system , one tick is 

approxim ately  0.17msec. The first colum n in all these tables gives the  execution 

tim e on a  single node in term s of clock ticks. These num bers are used as a  reference 

for com puting the  speed-up as shown in the rem aining columns. We define speedup 

as the  ra tio  of the  algorithm ’s execution tim e on one processor to  the  execution 

tim e on P processors. The efficiency of execution (Table 3.4,3.6 ) is defined as the 

ra tio  of the  speedup to  P, the  ideal speedup.

The cost of executing these algorithm s on the MIMD hypercube NCUBE-7 

consists of two parts  (indeed, th is is true  for any algorithm ). T he first is the  cost 

of doing the  com putation and the second is the  cost of com m unication between 

processors. For a  given problem size, increasing the num ber of processors will de­

crease the am ount and cost of com putations per processor bu t m ay increase the 

com m unication cost. Depending on the  relative cost of com putation and communi-
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cation , increasing th e  num ber of processors for a  fixed problem  size m ay result in a 

decrease in efficiency. Increasing the  problem  size for a  fixed num ber of processors 

will certain ly  increase th e  com putation  cost in proportion. It m ay not, however 

result in a  p roportionate  increase in com m unication cost. Thus there  m ay be an 

increase in both  the  speedup and the  efficiency.

B oth these effects are apparen t in the  results presented  in Tables 3.1, 3.2, 3.4 

and 3.5. In all the  four tables the  problem  size is constan t along a  row and the 

num ber of processors is constan t along a  colum n. From Tables 3.1 and 3.4 one can 

see th a t, proceeding along a  row, the  speedup is not linear with the  increase in the  

num ber of processors. In fact, for the  case of 128 d a ta  poin ts, the  speedup actually  

decreases as th e  num ber of processors is increased from  8  to  16 and from 16 to  32. It 

is also clear from Tables 3.1 and 3.4 th a t  as th e  num ber of d a ta  points is increased 

w ith a  fixed num ber of processors the  speedup increases tends to sa tu ra te  around 

a  certain  value. (N ote th a t  th is trend  will be th ere  irrespective of the  relative cost 

of com putation  to com m unication. If com putation  is very efficient com pared to  

com m unication, then the sa tu ra tion  will occur a t a lower value of speed up and 

vice-versa). S im ilar behavior is also seen in th e  results shown in Tables 3.2 and 

3.5. For a  fixed problem  size, increasing the  num ber of processors nearly always 

results in a  decrease in the  efficiency. Finally, one can see from the  results of Tables 

3.2 and 3.5 th a t  there  is a  threshold value of num ber of d a ta  points per processor
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below which there  is a  d rastic  fall in efficiency. T his th reshold  is clearly  algorithm  

and m achine dependent and thus is not a  universal constan t.

We also im plem ented a  s tandard  F F T  algorithm  to  com pare its  perform ance 

w ith those of the  restructu red  FH T  and the  R F F T  algorithm s. O n th e  NCUBE-7, 

a set of experim ents were conducted to  m easure th e  execution tim es of th e  th ree  

im plem entations for different cube sizes and different d a ta  sizes. Tables 3.3 and 

3.6 sum m arize the results of com parison betw een th e  perform ances of th e  standard  

F F T  algorithm  and the restruc tu red  FH T and th e  R F F T  algorithm s respectively. 

T he  tim e taken for the execution of these program s can be a ttr ib u te d  to  two 

con tribu ting  factors; com putation tim e and com m unication tim e. O ne can m ake 

two observations from Tables 3.3 and 3.6, nam ely;

1. T he ratios of execution tim es of F F T  and FH T  algorithm s and  F F T  and 

R F F T  algorithm s are uniform for m ost d a ta  and  cube sizes. T h e  ratios 

are lower when the  num ber of d a ta  po in ts m apped  per node is below the  

threshold.

2. T he R F F T  algorithm  perform s slightly b e tte r  than  th e  F H T  algorithm . T he 

reason is th a t the com putation un it of th e  R F F T  algorithm  has fewer com ­

p u ta tio n  than th a t of the  FH T  algorithm  (see F igure 3.3).

On DAP-510 experim ents were conducted for real inpu t sequences of lengths 

4K to 256K. For the  sake of com parison we also im plem ented th e  F F T  algorithm
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for the  sam e d a ta  sizes, T he results of these experim ents are sum m arized in Table 

3.7. T he first colum n is the  num ber of d a ta  points to  be transform ed. The second, 

th ird  and fourth colum ns give the  execution tim e in seconds for the  FH T, R F F T , 

and F F T  im plem entations respectively. T he final two colum ns show the ratio  of 

execution tim es of F F T  algorithm s over those of th e  FH T and R F F T  algo­

rithm s. Note th a t the  ratios are essentially independent of the  size of the  da ta  

array  as w ith the NCUBE-7. However, on DAP-510, the  FH T  algorithm  perform s 

b e tte r  than  the  R F F T  algorithm . T he reason is the  less regularity  in the  com pu­

tation  un it of the  R F F T  algorithm . DAP-510, being an SIMD m achine, requires 

m ore instructions for irregularities.
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Table 3.1: Speed-Up of the Restructured FHT Algorithm.

No of 

Points

1 Node 

Tim e

2 Nodes 

Speed-Up

4 Nodes 

Speed-Up

8  Nodes 

Speed-Up

16 Nodes 

Speed-Up

32 Nodes 

Speed-Up

128 519 1 .8 8 3.33 5.14 5.70 4.51

256 1223 1.93 3.64 6.37 8.93 8 .8 6

512 2822 1.96 3.78 7.11 11.81 14.85

1024 6400 1.97 3.86 7.45 13.65 20.98

2048 14321 1.98 3.89 7.63 14.66 25.57

4096 31689 1.98 3.92 7.72 15.13 28.37

8192 69460 1.98 3.93 7.77 15.34 29.82

16384 151150 1.98 3.94 7.80 15.45 30.48

32768 326724 1.99 3.94 7.83 15.52 30.75
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Table 3.2: Parallelism Efficiency of the restructured FHT Algorithm.

No of 1 Node 2 Nodes 4 Nodes 8  Nodes 16 Nodes 32 Nodes

Points T im e Efficiency Efficiency Efficiency Efficiency Efficiency

128 519 94.0% 83.3% 64.3% 35.6% 14.1%

256 1223 96.5% 91.0% 79.6% 55.8% 27.7%

512 2822 98.0% 94.5% 88.9% 73.8% 46.4%

1024 6400 98.5% 96.5% 93.1% 85.3% 65.6%

2048 14321 99.0% 97.3% 95.4% 91.6% 79.9%

4096 31689 99.0% 98.0% 96.5% 94.6% 88.7%

8192 69460 99.0% 98.3% 97.1% 95.9% 93.2%

16384 151150 99.0% 98.5% 97.5% 96.6% 95.3%

32768 326724 99.5% 98.5% 97.9% 97.0% 96.1%
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Table 3.3: Ratio of Execution Times of FFT and Restructured FHT Algorithms.

Points 1 Node 2 Nodes 4 Nodes 8  Nodes 16 Nodes 32 Nodes

128 1.185 1.207 1.205 1 .2 0 2 1.109 1.035

256 1.180 1 .2 0 2 1 .2 0 2 1.208 1.153 1.079

512 1.176 1.197 1 .2 0 1 1.227 1.197 1.132

1024 1.172 1.192 1 .2 1 0 1.224 1 .2 2 0 1.184

2048 1.169 1.187 1.205 1 .2 2 1 1.228 1.213

4096 1.166 1.184 1 .2 0 0 1.216 1.226 1.224

8192 1.165 1.180 1.195 1 .2 1 0 1.219 1.230

16384 1.163 1.177 1.191 1.205 1 .2 1 2 1.230

32768 1.162 1.172 1.188 1 .2 0 0 1.213 1 .2 2 0
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Table 3.4: Speed-Up of the Restructured R FFT Algorithm.

No of 

Points

1 Node 

T im e

2 Nodes 

Speed-up

4 Nodes 

Speed-Up

8  Nodes 

Speed-Up

16 Nodes 

Speed-Up

32 Nodes 

Speed-Up

128 478 1.84 3.21 4.83 5.25 4.16

256 1 1 2 2 1.90 3.52 6 .1 0 8.37 8.19

512 2579 1.93 3.68 6.82 1 1 .1 2 13.79

1024 5840 1.95 3.77 7.23 13.04 19.66

2048 13043 1.96 3.82 7.40 14.07 24.29

4096 28824 1.96 3.84 7.51 14.59 27.06

8192 63111 1.96 3.86 7.58 14.84 28.58

16384 137191 1.97 3.87 7.67 14.98 29.33

32768 296342 1.97 3.92 7.68 15.09 29.68
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Table 3.5: Parallelism Efficiency of the Restructured R FFT Algorithm.

No of 1 Node 2 Nodes 4 Nodes 8  Nodes 16 Nodes 32 Nodes

Points Tim e Efficiency Efficiency Efficiency Efficiency Efficiency

128 478 92.0% 80.3% 60.4% 32.8% 13.0%

256 1 1 2 2 95.0% 8 8 .0 % 76.3% 52.3% 25.6%

512 2579 96.5% 92.0% 85.3% 69.5% 43.1%

1024 5840 97.5% 94.3% 90.4% 81.5% 61.4%

2048 13043 98.0% 95.5% 92.5% 87.9% 75.9%

4096 28824 98.0% 96.0% 93.9% 91.2% 84.6%

8192 63111 98.0% 96.5% 94.8% 92.8% 89.3%

16384 137191 98.5% 96.8% 95.9% 93.6% 91.7%

32768 296342 98.5% 98.0% 96.0% 94.3% 92.8%
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Table 3.6: Ratio of Execution Times of FFT  and Restructured R FFT Algorithms.

Points 1 Node 2 Nodes 4 Nodes 8  Nodes 16 Nodes 32 Nodes

128 1.290 1.280 1.262 1 .2 0 2 1.109 1.035

256 1.286 1.290 1.266 1.260 1.179 1.088

512 1.286 1.292 1.280 1.288 1.233 1.150

1024 1.284 1.292 1.295 1.300 1.277 1 .2 1 2

2048 1.283 1.290 1.296 1.299 1.294 1.260

4096 1.282 1.289 1.295 1.300 1.299 1.283

8192 1.282 1.288 1.293 1.299 1.297 1.298

16384 1.281 1.287 1.292 1.304 1.295 1.303

32768 1.281 1.282 1.302 1.299 1.300 1.299
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Table 3.7: Com parison of the  perform ances of FH T  and R F F T  im plem entations 

with th e  F F T  im plem entation on DAP-510.

No of 

Points

FH T  T im e 

(Sec)

R F F T  T im e 

(Sec)

F F T  T im e 

(Sec)

F F T /F H T F F T /R F F T

4K 0.026 0.027 0.042 1.62 1.56

8 K 0.063 0.066 0.104 1.65 1.58

16K 0.133 0.138 0.215 1.62 1.56

32K 0.282 0.292 0.450 1.60 1.54

64K 0.598 0.619 0.949 1.59 1.53

128K 1.269 1.324 2.028 1.60 1.53

256K 2.685 2.790 4.261 1.59 1.53
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Chapter 4

A n FFT  Im plem entation for 
Block Scattered D ata  
D istributions

4.1 Introduction

In a num ber of applications the  F F T  algorithm  is only a p a rt of the  overall com­

pu tational scheme. In such cases, the  ordering of th e  d a ta  elem ents m ay be de­

term ined  by considerations o ther than  the  requirem ents of the F F T  algorithm . 

W hile this is not a big concern 011 sequential m achines, it can pose a  m ajo r prob­

lem on d istribu ted  m em ory parallel m achines. T he ordering of d a ta  d ic ta ted  by 

an application m ay result in a  d a ta  d istribu tion  which is not ideally su ited  for 

the  F F T  algorithm . The users in such a  situation  have three options. O ne is to  

design different F F T  subroutines to  m atch  the  d a ta  d istribu tions for different ap­

plications. T he second option is to  m atch the  d a ta  d istribu tion  of the  application 

as closely as possible to  the  requirem ents of the  F F T  subroutine. And the  th ird
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option is to red istribu te  d a ta  before a  call to  the  F F T  subroutine. Clearly none of 

the  these options are very suitable and hence there  is a  need for a  subroutine th a t 

can support different user d a ta  distributions.

This chapter presents an adaptation of the  F F T  algorithm  for d istribu ted  m em ­

ory m achines which works for block scattered d a ta  d istribu tions w ith different block 

sizes. Block scattered distributions have been identified as being extrem ely useful 

for scientific com putations [49]. They have already been described in detail in 

C hap ter 1. T he im plem entation also makes the final d a ta  d istribu tion  identical 

to  the  in itial one. This is im portan t in a large num ber of practical engineering 

and scientific applications. F F T  algorithm s generally change the ordering of data. 

As a  result m aking input and output da ta  d istribu tions identical involves in tern­

ode com m unication. T he perform ance of th is  schem e has been evaluated by an 

im plem entation on Intel iF*SC/860.

4.2 Parallel Im plem entation

A typical im plem entation of the FFT  algorithm  on a  d istribu ted  m em ory m a­

chine results in a  sequence of butterflies a t each node interspersed w ith internode 

com m unication. Depending upon the initial d istribu tion , d a ta  for some of the 

butterflies are available locally and for o thers, off-node d a ta  are required. There 

are two approaches for com puting butterflies which need off-node data . The first
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approach splits a bu tterfly  between two nodes, and in the second approach a  com­

plete  bu tterfly  is com puted on a  node. T he parallelism  in the  la ter case is achieved 

by d is tribu ting  different butterflies on different nodes. For exam ple, consider a 

sim ple case of com puting  two butterflies on a two node m achine as shown in Fig­

ure 4.1(a). (These butterflies are from  the  D IF -F F T  algorithm , which is used for 

th is  im plem entation .) N otice th a t both  butterflies need off-node da ta . T he two 

approaches are illu stra ted  in Figure 4.1(b) and Figure 4.1(c), respectively. It is 

obvious from  these figures th a t  the first approach has certain disadvantages. These 

are:

H ig h  c o m m u n ic a t io n  v o lu m e  T he first approach requires twice the  inter-node 

com m unication volum e when com pared w ith the  second approach.

U n b a la n c e d  c o m p u ta t io n a l  lo a d  T he first approach results in additional com­

p u ta tio n  on som e of the  nodes. For exam ple, th e  m ultiplication by u> in the  com­

pu ta tio n  of bo th  th e  butterflies of F igure 4.1(b) is done on node P i, unlike the 

second approach (See Figure 4.1(c).)

E x t r a  s to r a g e .  T he first approach requires twice the storage of th e  second ap­

proach.

For these reasons our parallel im plem entation of the  F F T  algorithm  is based on 

the  second approach.
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Figure 4.1: Two approaches for com puting butterflies in parallel.
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4.3 A lgorithm

As sta ted  earlier, th e  m ain fea tu re  of our F F T  scheme is th a t it works for block 

scattered  d a ta  d istribu tion  with variable block sizes. T h a t is, th e  sam e algorithm  

can be used for different d a ta  d istribu tions w ithout any initial rearrangem ent of 

the  data . The algorithm  consists of th ree  phases: the  first and th e  th ird  phase 

com pute butterflies for which the  d a ta  are locally available, and the  second phase 

com putes butterflies for which off-node d a ta  are required. As a  resu lt, in ternode 

com m unication occurs only during the second phase. D epending upon the  block 

size the  work d istribu tion  for the  first and th ird  phases will differ. In extrem e 

cases one of these two phases will not be executed. For a  block size of 1 we need 

to  execute only the first two phases, while for a  block consisting of all th e  d a ta  on 

a  node only the last two phases are executed. For all o ther block sizes all three 

phases of the  algorithm  are executed. Given the num ber of processors, the  am ount 

of work in the  second phase rem ains constan t for all block sizes. W hen a single 

block is m apped on a  node, it m ust be trea ted  as a  special case. This is because in 

phase 2  of the  algorithm , where off-node d a ta  are needed, the  block gets divided 

into two sub-blocks, which is not true  for o ther block sizes.

An F F T  algorithm  with d a ta  size N  has log2 (A ) d istinct stages of com putation. 

Each stage com putes N /2  butterflies. In our F F T  scheme, as in m ost o ther parallel 

F F T  schemes, all the  nodes partic ipa te  in com puting a  stage by operating  on
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different d a ta  points. The. algorithm  is described here by considering an N  point 

F F T  on a  p-node m achine, with n =  N / p  as the  num ber of d a ta  points m apped 

per node and b as the block size. The d istribution of work in the  three phases is 

as follows

1. T he first \og2(n/b) stages are com puted in the  first phase. T he butterflies in 

these stages require da ta  available locally from different blocks.

2. T he next log2 (p) stages are com puted in the  second phase. T he butterflies 

need off-node data, hence internode com m unication takes place.

3. T he last log2(&) stages constitu te  phase three. T he butterflies in phase three 

are com puted with local d a ta  from within a  block.

T he  algorithm  has a  com putational kernel d f t s t e p  which is common to all the  

th ree  phases. T he kernel is common to all nodes and com putes all th e  butterflies 

of a  stage m apped onto a  node. It assumes th a t the  u> values (see Eq. 2.6 and 2.7) 

have been precom puted and arranged so th a t they  are available in the  right order 

as needed. A FORTRAN call to  the  kernel can be m ade as follows:

call d f ts tep (a , to, o f  f  set,, groups, (list, w incr)

where the  argum ents are:
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a  A rray of inpu t sequence,

w  A rray of coefficients oj.

o ffse t T he  distance between the two elem ents of a butterfly.

g ro u p s  T he num ber of sim ilar sets of butterflies.

d i s t  T he d istance between two groups.

w in c r  T he stride  for w.

T he kernel d f t s t e p  essentially com putes n /2  butterflies. T he form ation of

these butterflies is determ ined  by the  th ree  argum ents o f fse t, g ro u p s  and d is t .

F igure 4.2 shows th e  difference in the form ation of the  sets of butterflies depending

on th e  values of these th ree argum ents.

T he  pseudo code given below describes the  F F T  algorithm  using ’d fts tep ’. 

{ This code is executed on each node }

begin{phase 1}

offset =  n /2  {distance between two points of a bu tterfly  } 

groups =  1 {only one subgroup in the  first stage } 

wincr =  1 { stride  for u> } 

fo r  i =  1 to \og2(n/b)  d o

dftstep(a ,w , offset, groups, offset*2 , wincr) 

offset =  offset/ 2  

groups =  groups* 2
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Figure 4.2: Form ation of different sets of butterflies.
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end for

end {phase 1 } 

begin {phase 2  } 

offset =  n /2  

groups =  offset /b

for i = 1 to  log2 (p) do

{negh is node with d — i tk b it differing}

{exchange half the d a ta  w ith negh } 

negh =  m ynode  © 2 rf-t+ 1

exchange(a(k),uegh) {k =  n  * j / ‘2  +  1 , where j  is the  value of (d — i ) th b it } 

dftstep(a,w ,offset,groups,b,w incr) 

if(6 = n) then {special case} 

negh =  m ynode  © 2d 

exc.hange(a(k),negh) 

end if 

end for 

end {phase 2  } 

begin {phase 3 }

for i =  1 to log2 ( t)  do 

groups =  groups* 2
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dftstep(a,w ,offset,groups,offset*2 ,wincr) 

offset =  offset/ ‘2  

wincr =  2 *wincr 

e n d  fo r  

e n d  {phase 3 }

For the  im plem entation 011 Intel iPSC /860 the call to procedure e x c h a n g e  first 

in itia tes a  send and then posts a  receive for incoming data . This protocol is followed 

due to  the  peculiarity  of the  iPSC /860 com m unication characteristics [41]. The 

com m unication between two nodes s ta r ts  with the source node sending a  probe to 

the  destination  node. The d a ta  is sent to  the  destination node only after it has 

acknowledged the  probe. If both  nodes want to  exchange d a ta  with each other 

and they  send out the  probe a t the sam e tim e, the  d a ta  can be transferred to both  

nodes concurrently. However, if the  nodes are out of step and one node sta rts  

sending its d a ta  before the o ther one sent its probe, then the  transfer of da ta  

proceeds in only one direction. This is because each connection betw een nodes has 

only two channels, one for receiving and one for transm itting . Once a node s ta rts  

sending out d a ta  it has no channel available to acknowledge the probe. Hence the 

second node is forced to wait until th e  first one finishes sending its  data .

T he working of the three phases is shown in Figure 4.3 with the initial da ta
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d istribu tion  of Figure 2.1(a). In th is exam ple a  to ta l of 4 stages are  required. The 

first phase is com puted in stage 1 of the  algorithm . T he butterflies in th is stage 

are form ed by the  corresponding elem ents of the two blocks. T he second phase 

is com puted  in stages 2 and 3 which require exchanges of data . T he th ird  phase 

includes stage 4, which is com puted by com bining the  d a ta  w ithin a block.

4.4 R earrangem ent

In general, F F T  algorithm s generate th e  resu ltan t sequence in an order different 

from  th a t  of the  inpu t sequence. T he decim ation in tim e algorithm s have the  in­

p u t sequence in b it reversed order (index of a  d a ta  item  is obtained by reversing 

the  b inary  representation of the  original index) and o u tp u t in na tu ra l order. The 

decim ation in frequency algorithm , used in this im plem entation , has the  input 

sequence in natu ral o rder and the  ou tp u t sequence in b it reversed order. T he com­

p u ta tio n  of a  bu tterfly  w ithin a  node also scram bles th e  o u tp u t d a ta  d istribu tion . 

As a  consequence, th e  resu ltan t d a ta  are in the wrong node a t th e  wrong indices 

and m ust be red istribu ted . In a  parallel environm ent red istribu tion  alm ost always 

involves in ternode com m unication in addition to  reordering w ithin the  node. T he 

difficulties in red istribu ting  the  d a ta  can be fully appreciated  by following th e  d a ta  

m ovem ents using the  b inary  representation of the  th e ir  indices (sim ilar to  index 

digit perm u ta tions used in [44]). Consider a  d a ta  sequence of length 2n . T he index
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of each d a ta  item  in th is sequence can be uniquely represented by n  b its. Let this 

be represented by

Here it is assum ed th a t th is d a ta  is divided am idst 2d nodes using a block scattered  

d istribu tion  w ith a block size b. In th is d istribu tion , b its 1*6—2 ---*o represent the  

offset of a  d a ta  item  w ithin a  block, b its (ib+d-i--ib) represent the  node num ber on 

which a  d a ta  item  is m apped and b its  ( in-i..ib+d) represent the  block num ber of a 

d a ta  item .

We will now see the  change in the  d a ta  d istribu tion  during F F T  com putation. 

To ensure the  com putation  of a  butterfly  w ithin a  node, the  following strategy  is 

used for d a ta  exchange. Consider two nodes p\ and p2 th a t  m ust exchange da ta  

w ith each o ther. Between a  node pair exchanging d a ta  a t a  stage j  in phase 2 of 

the  algorithm , p\ is the node with ib+d-j — 0 and p2 is the  node w ith ib+d-j =  1- 

Let each node have k  blocks of data . Then p\ keeps the  first k /2  blocks and sends 

the  last k /2  blocks to  p2. W hereas p2 keeps the last k /2  blocks and sends the  first 

k /2  blocks to p\.  In term s of binary representation of the  indices th is m ovem ent 

tran sla tes  in to  an exchange between th e  m ost significant and b + d — j t h  bits. A 

sequence of a few such exchanges is shown below; 

original  di stribution i i Z b + d — ' i i b + d —3'•• 6̂̂ 6—i 

after first exchange . i b d - d —\ ^ n —2 - - - ^ b - \ - d ^ n —i*6+rf—2*6+rf—
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a f t e r  s e c o n d  e x c h a n g e  t m.ib+d—2 1̂1—2 ...*6-t-rf*7i—i*6+rf—i*6+d—3 "**6*6—i ” -*07 

a f t e r  t h i r d  e x c h a n g e  • .ib^-ii~3 ^n—2 "-^b+d^n—i*6+fi—i*6+<i—2 "-*6*6—i • ••io*

At the  end of the  second phase ( when all the  d a ta  m ovem ent for com putation  is 

over after d exchanges) the  binary  representation of the da ta  d istribution is

* 6 * 71—2 , , , * 6 + d * ? i —l * 6 +r f — 2  • • • * 6 + 1 * 6 —1 • ••*£)• ( ^ ‘^ )

In th is d istribu tion  the  block num ber is given by ibhi-2 hi-zH+d, th e  node num ber 

by in_iib+d-2 ---H+\ and the  offset w ithin a  block by 4-i---*o- This d istribution 

rem ains und istu rbed  in the  th ird  phase. T he binary representation required of the  

final d a ta  indices is

* 0*1 • • • * 71—2*71 — 1 • ( ^ • ' ^ )

T he red istribu tion  process changes the d a ta  d istribu tion  of Eq. 4.2 to  th a t of Eq. 

4.3.

Eq. 4.2 and 4.3 also help in determ ining the  num ber of nodes th a t each node 

m ust send d a ta  to  and receive d a ta  from. T he num ber of nodes is determ ined by 

com paring the  b its corresponding to the  node num ber in the  two equations. This 

is illu stra ted  w ith the  help of an exam ple of 1024 d a ta  points d istribu ted  over 16 

nodes with two different block sizes, 8 and 4. For both  block sizes the  initial da ta  

d istribu tion  is

*9*8 *7*6*5*4 *3 *2*1*07 (4.4)
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and the  final required d a ta  d istribu tion  is

*0*1 *2*3 *4 *5*6*7 *8*9 - (4.5)

For block size of 8 d istribu tion  after all th ree  phases of F F T  com putation  is

*3 *8 *7*9*6 *5*4*2 *1*0 - (4-6)

T he node num ber in Eq. 4.5 is given by 23*4*5*6 and in Eq. 4.6 by 19*6*5*4 - Notice 

th a t  b its *3 , i4 and *5 are comm on to both  the node num bers. Given a  node 

num ber, th e  values of these bits are fixed. T he only bit th a t can be varied in the 

destination  node num ber is b it *3 . Hence each node will be sending d a ta  to  a t most 

two nodes. A careful consideration of th e  two equations also gives the  fixed bits 

in th e  representation  of source node num bers th a t a  node will receive d a ta  from. 

In th is exam ple it is ***4*5*6 , where ix can be any b it o ther than  the  ones included 

in the  expression. This expression reveals th a t  each node will receive da ta  from at 

m ost two o ther nodes. For exam ple node 6 will be sending d a ta  to  nodes 3 and 11 

and receiving d a ta  from  the  sam e two nodes. Node 5 011 th e  o ther hand will send 

d a ta  to  and receive d a ta  from only node 13.

For a  block size of 4 the  d istribu tion  after com putation  is

*2*8 *7*6*9 *5*4 *3 *1*0 - (4.7)

H ere th e  node num bers from  E quations 4.5 and 4.6 are given by *g*s*4*3 and *4*s*6*7 , 

respectively. The fixed bits are *4 and *5 , and the b its  th a t  can be varied in
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th e  destination  node num bers are  i6 and i7. The binary expression for the  node 

num bers th a t  a  node will receive d a ta  from is ixi^igix, where the  first and the 

last b its  in the  expression are changeable. Each node therefore sends d a ta  to 

and receives d a ta  from  at m ost 4 nodes. However, a  com parison between the 

expressions for source and destination node num bers indicates th a t  they may not 

be identical. Indeed, node 6 sends d a ta  to  nodes 12, 13, 14 and 15 and receives 

d a ta  from  nodes 4, 5, 12 and 13. Sim ilarly it can be easily verified th a t with 

block sizes of 1 and 16, each node will be sending d a ta  to and receiving d a ta  from 

m axim um  8 nodes and for all o ther block sizes all nodes will be sending d a ta  to  

each other. T he last type  of d a ta  exchange is known as the com plete exchange.

T he exam ple given above highlights a num ber of problem s th a t arise in deciding 

a  stra tegy  for red istribu tion  of d a ta  after the  com putation  is over. The m ost 

im p o rtan t of these are  sum m arized here.

1. For a  given d a ta  size and th e  num ber of processors the  na tu re  of the redis­

tribu tion  problem  varies w ith block size (it m ay or m ay not be a  com plete 

exchange problem .)

2. For th e  block sizes where red istribu tion  is not a  com plete exchange problem , 

all nodes m ay not send d a ta  to  an equal num ber of nodes. More precisely, 

som e nodes will them selves be a  destination and hence will send d a ta  to  one 

less node.
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3. T he  bits comm on to the binary representation of source and  destination node 

num bers appear in different order and in different places. The order and 

placing are dependent on the block size, d a ta  size and the  dimension of the  

cube. T here  is no easily noticeable p a tte rn  to generalize the  red istribu tion  

process.

On Intel iPSC /860 m achine the  situation is som ew hat sim pler when the  red istri­

bution problem  is a  com plete exchange. T here  are several algorithm s available for 

the  com plete exchange problem  which carry out d a ta  transfer w ithout contention 

[10, 11]. However, when the  redistribution problem  is not a  com plete exchange, it 

is obvious th a t these algorithm s will result in some redundan t work. Each node 

will be  try ing  to  send d a ta  to  some nodes for which it has no data . T he sim plest 

way to  counter th is problem  is to elim inate th e  redundan t d a ta  “sends” . In addi­

tion to  redundancy there  may also be the  problem  of contention on the  network. 

We consider an exam ple with ‘2048 d a ta  poin ts, a  5-c.ube and a block size of 8. T he 

b inary  representations for source and destination nodes num bers are *10*7*6*5*4 and 

*3*4*5*6*7 , respectively. From these representations, node ‘2 m ust send da ta  to nodes 

4 and 20 and node 3 m ust send da ta  to  nodes 12 and ‘28. T he routing  in iPSC /860 

follows the  e-cube algorithm , where the next node in the  rou te  is determ ined by 

com plim enting the  least significant b it th a t does not m atch w ith the  corresponding 

bit in the  destination . In th is exam ple the  respective routes for d a ta  transfer from
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node 2 to  both  of its destinations are

2 - 0 - 4 ,  (4.8)

2 -  0 -  4 -  20. (4.9)

Sim ilarly for node 3 they are

3 - 2 - 0 - 4 - 1 2 ,  (4.10)

3 - 2 - 0 - 4 - 1 2 - 2 8 .  (4.11)

It is obvious from Eq. 4.8-4.11 th a t, irrespective of the  way these transfers are 

scheduled, there  will be contention. For these reasons one of the com plete exchange 

algorithm s from [10] has been used in the  redistribution section of the  code.

4.5 Experim ental results

We evaluated the  perform ance of our im plem entation on Intel iPSC /860 for dif­

ferent block sizes and for different d a ta  sizes. The Intel iPSC /860 is a  d istribu ted  

m em ory m achine which can have up to  128 nodes. In ternode com m unication is 

done through a hypercube interconnection network. T he  experim ents reported  

here were carried out using all nodes of a 32 node m achine. T he results of these 

experim ents are sum m arized in Figures 4.4 through 4.7. In all th e  figures, the  

quan tity  along the x axis is represented by its logarithm  to  the base 2.
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Figure 4.4 sum m arizes the  results for variation in perform ance in term s of 

Mflops pe r node as the  d a ta  size is increased. The two lowest curves in the  figure 

are for th e  two extrem e block sizes. T he th ird  curve gives perform ance when the 

block size is approxim ately  equal to  the  num ber of blocks and the top m ost curve 

gives th e  best perform ance of any block size for a  given d a ta  size. T he curves 

corresponding to  the  best perform ance, and the two ex trem e block sizes show a 

sim ilar trend . T here is a  rapid  increase in the  perform ance with increase in da ta  

size in th e  beginning, which tends to  sa tu ra te  w ith sufficiently large data . To 

explain the  reason for this behavior we consider the  com m unication characteristics 

of the  m achine Intel iPSC /860 the  cost of com m unication is determ ined by the 

equation

tcomm =  164 +  0.398a +  29.9/3 (4.12)

w here a  is the  num ber of bytes in the  message and f) is the  distance between two 

nodes [10]. T he  first term  in the  equation is the  setup overhead. As «  increases for 

fixed (3, the  fraction of to ta l tim e used in the  setup decreases. For small d a ta  sizes 

th e  overheads are a  significant fraction of the overall execution tim e and bring down 

th e  perform ance. As the  d a ta  size increases, the overheads become a  sm aller and 

sm aller fraction until they becom e insignificant, and the  perform ance curve reaches 

sa tu ra tion . T he  curve for the  m id sized blocks shows a  m uch m ore curious trend. 

For these block sizes a  node sends d a ta  to  only a  subset of nodes, thus saving
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on setup overheads, bu t there is contention in the  rearrangem ent process. For 

sm aller d a ta  sizes, the  volume of d a ta  com m unicated is low enough for overheads 

to  be a greater factor in determ ining the  perform ance, hence it is close to  the  best 

perform ance. However, for large da ta  sizes, the  volume of da ta  com m unication 

being high, contention plays a m ore im portan t role and brings the perform ance 

down.

M flo p s
per

N o d e

6 8 10 12 14 16
log2(n)

Figure 4.4: T he variation in perform ance per node as datasize is increased.

T he best perform ance for a given d a ta  size occurs when there is no contention 

in th e  redistribution and the  num ber of blocks are as close as possible to  the  block 

size. This can be observed from Figure 4.5 which plots the perform ance per node as 

a  function of block size for a  fixed d a ta  size. T he top curve in Figure 4.5 gives the  

perform ance of the  F F T  com putation w ithout rearrangem ent and the second curve
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gives the  overall perform ance. These results indicate th a t while th e  perform ance 

of com putational section varies by sm all am ounts, th e  overall perform ance shows 

m ore noticeable differences. T he  variation in the  overall perform ance is due to  

th e  d a ta  rearrangem ent. T he curve for the  F F T  perform ance tend  to  peak in the  

m iddle. T he  reason for the slight variation in the  F F T  section perform ance lies 

in the  relative d istribution of work between th e  th ree phases of the  algorithm . In 

Figure 4.6 we have p lo tted  the effect of block size on relative d istribu tion  of work 

in the  th ree  phases of the  com putational section. As expected, the  fraction of 

tim e  taken by the first phase is m axim um  for the  sm allest block size and steadily  

decreases as the  block size increases. T he th ird  phase exhibits a  reverse trend . T he 

region where both these phases have approxim ately  equal work is also the  region 

which shows higher perform ance in the  com putational section curve of Figure 4.5. 

Also notice from Figure 4.6 th a t th e  fraction of tim e used in the  second phase 

rem ains alm ost constant for all block sizes. T he second phase takes m ore tim e 

th an  the  o ther two since it also involves internode com m unication.

The effect of d a ta  size on the  com m unication and com putation  tim e of the  

com putational section of the  code is shown in Figure 4.7. To p lo t th is  we chose the  

best perform ance for every d a ta  size. W ith  very small d a ta  sizes alm ost the  en tire  

tim e  is taken up by th e  com m unication. As the d a ta  sizes increase, com putation  

s ta r ts  tak ing  larger fractions of the  execution tim e. T he com putation  fraction
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3.5

C o m p u ta t io n a l  sec tio n -

2.5
M F lo p s  

p e r  
N o d e

F u ll co d e '

0 2 4 6 128 10 14 16
log 2{B locksize)

Figure. 4.5: The variation in perform ance as block size is increased.

100
P h a se  3

P h a se  2
T im e %

P h a se  1

0 62 4 10 12 14 16

Figure 4.6: T he d istribu tion  of work in th e  th ree  phases w ith different block sizes.
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tends to  sa tu ra te  when the d a ta  sizes become sufficiently large. To explain the 

reason we consider Eq. 4 .1‘2 again. Notice from Figure 4.7 th a t  th e  satu ration  

occurs for a  =  ‘211. T he  value of ft for the  en tire  curve is 1. For th is d a ta  size the  

contribu tion  from  th e  overhead term  in the  expression is abou t 5%.

100

80

60
C o m m u n ic a t io n

T im e  %

" S a tu ra tio n  p o in t40

20

0
4 6 10 12 14 168

l°g2(«)

Figure 4.7: T he relative contributions of com putation and com m unication in the  

com putational section as the  datasize is varied.

4.6 Sum m ary

In th is  chapter an F F T  im plem entation was given on a  d istribu ted  m em ory parallel 

m achine which works for a  num ber of d a ta  d istribu tions com m only encountered 

in scientific applications. We evaluated the perform ance of our im plem entation
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ou the  Intel iPSC /860. The results of our experim ents ind ica te  th a t  th e  variation 

in block sizes has m ore effect on the  perform ance of th e  rearrangem ent section 

than  on the  com putational section. In the  com putational section, th e  variation  in 

perform ance is no t significant enough to  m ake the  choice of block size a  critical 

issue. On a  32 node m achine we obtained a  peak perform ance of 124 Mfiops, th a t  is 

3.875 Mfiops per node (This Figure does not include th e  in itia lization  costs which 

are incurred only once for a given size F F T .) If we include th e  d a ta  rearrangem ent, 

the  perform ance decreases to 2.69 Mfiops per node.
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Chapter 5 

Fourier Transform o f B lock  
Scattered Real D ata  D istribution

5.1 Introduction

In the  previous chapter we discussed an im plem entation of the  F F T  algorithm  for 

block scattered  d a ta  d istributions. T he im plem entation tac itly  assum ed the input 

d a ta  to  be  complex. In C hapter 3 efficient parallel im plem entations of th e  FH T 

and the  R F F T  algorithm s for transform ing real d a ta  were given. However, those 

im plem entations are efficient only for a specific d a ta  d istribu tion . T he use of these 

im plem entations w ithout modification for o ther d a ta  d istribu tions may require 

internode com m unication in the  beginning. The in ternode com m unication, being 

very expensive on d istribu ted  m em ory m achines, m ay e lim inate  the  com putational 

advantage of the  FH T  and R F F T  algorithm s. It m ay even m ake the  use of these 

algorithm s m ore expensive than  the F F T  algorithm . An alternative  is to adapt the 

restructu ring  to  the  given d a ta  distribution such th a t no rearrangem ent involving
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in ternode com m unication is required in the  beginning.

A stra tegy  for adapting the restructu ring  of da ta  to block scattered  d istribu ­

tions is suggested in this chapter. We give im plem entations for the  restruc tu red  

R F F T  and FH T  algorithm s on a d istribu ted  m em ory parallel m achine for block 

scattered  d a ta  distributions with different block sizes. The issue of d a ta  rear­

rangem ent after the com putation is also addressed, as with the  com plex F F T  

im plem entation. The perform ances of these im plem entations were evaluated on 

th e  Intel iPSC /860 and were also com pared with the  perform ance of the  F F T  

algorithm  given in C hapter 4.

5.2 Parallel Im plem entation

T he im plem entations presented in th is chapter have certain  features in comm on 

w ith the  im plem entation of the F F T  algorithm  from C hapter 4. Some of these 

features are :

1. T he algorithm s work for block scattered  d a ta  d istribu tion  w ith variable block 

sizes.

2. T he algorithm s have three phases. T he d a ta  required for the  first and the  

th ird  phase are available locally, and the second phase needs off node data .
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3. T he am ount of work in the first and the  th ird  phase varies w ith the block 

size, bu t rem ains constant for the  second phase.

4. T he d istribu tion  of work in the  three phases is similar.

5. Each algorithm  has a  com putational kernel which is common to all th ree  

phases. T he kernels are different for different algorithm s.

T he m ain differences between them  are :

1. T he basic unit of com putation for the  complex F F T  algorithm  is a butterfly, 

while for R F F T  and FH T algorithm s it consists of four d a ta  points as shown 

in Figure 3.3. (We refer to it as a  g ro u p .)  Also a group with index 0 is 

com puted differently from the o ther groups.

2. T he first stage of these algorithm s, where sequences of size 1 are combined, 

m ust be trea ted  as a special case, since no group can be form ed.

3. Unlike the  F F T  algorithm , these two algorithm s need a t least four blocks 

per node to  be efficient. Less than four blocks per node would require initial 

d a ta  rearrangem ent with internode com m unication.

4. A block is not m aintained as an en tity  throughout th e  com putation in the  

FH T  and R F F T  algorithm s.

5. Some d a ta  rearrangem ent within the node is required in all th ree  phases of 

the  two algorithm s discussed here.
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6. T he d a ta  rearrangem ents after the  com putation are vastly different.

A com putational group of Figure 3.3 can be com puted in parallel in two ways 

sim ilar to  th e  butterfly  in C hapter 4. This is illu stra ted  in F igure 5.1. using a 

com putational group with a  non-zero index from the FH T  algorithm . T he com pu­

ta tion  shown in Figure 5.1(b) has the disadvantages of twice the  storage area  and 

tw ice the  com m unication volume requirem ents of the  one in Figure 5.1(c). The 

com putational load is identical in both approaches, unlike the  butterfly . However, 

th e  approach shown in Figure 5.1(b) divides a  group between two processors. This 

results in an unsuitab le da ta  distribution for the  next stage. Hence, we m ust use 

the  approach shown in Figure 5.1(c).

T he restructu red  FH T and R F F T  algorithm s require inpu t d a ta  to  be in bit 

reversed order. This could be avoided in the  F F T  im plem entation by using the 

decim ation in frequency FFT  algorithm  which shifts the  process of b it reversal to  

the  end. This is not possible with the restructu red  FH T  and R F F T  algorithm s 

since the form ation of the grouping m entioned in C hap ter 3 requires the  d a ta  to 

be in bit reversed order. However, arranging the entire d a ta  in b it reversed order 

requires in ternode com m unication. A com prom ise can be reached by arranging 

th e  d a ta  w ithin the  node in a  b it reversed order. Recall from  C hap ter 3 th a t 

the  initial grouping is formed by pu tting  four consecutive d a ta  item s of the  bit 

reversed sequence in one group. In term s of binary  representation of the  indices,
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Figure 5.1: Two ways of com puting groups in parallel.
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a bit reversed sequence of 2n data  points is represented as

(5.1)

T he in itial grouping is form ed by p u ttin g  all d a ta  item s which have identical values 

for b its *o---*n- 3  in one group. To verify th a t the  bit reversal of the  d a ta  w ithin a 

node allows the in itial grouping to be form ed, we consider a  m apping of 2” length 

d a ta  on 2d nodes, w ith a block size of 2b and the num ber of blocks on a  node equal 

to  2k. T he da ta  d istribu tion  is

®7i—l  *6+<i—1 ..**6) *6—1 ■•*0) ( '^ • ^ )

where b its give the  block num ber, bits it,+d-\—ib represent the  node

num ber and bits ib-i..io  give the  offset w ithin a  block. T he d istribu tion  w ith b it 

reversal w ithin a  node is

* 0 .” *6—l* 6 + rf .” *ji—6—1) *6+rf—1 •••*6) *»i—6*” *7i—2*7j—1 j k 6 , (*5.3)

*0-"-*6—1 7 *6+rf—1 • ” *6) *6+rf--.*7 i—1 j k —  6 , ('•^■^')

? *6+rf—1 ••*6) *fc...*6—l*6+(/>,,*7i—1! k  <C b (5.5)

T he com m as in all th e  equations separate the  b its representing the  th ree different 

quantities, nam ely the  block num ber, the  node num ber and the  offset w ithin the 

block. It can be easily seen from Eq. 5.3-5.5 th a t the  conditions for form ing a

grouping are m et as long as b its  in_i and i n - 2  are not a p a rt of the  node num ber

which is tru e  for k > 2. Following the  argum ent from Section 3.3, one can see th a t
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th e  d a ta  for the  first stage and the groups for the  next k  — 1 stages are available 

w ithin the node, when k > 2. T he next d  stages require off node d a ta  and  the 

last b stages are again com puted w ithin the  node. The internode com m unication 

during com putation is carried out along decreasing order of dimension. T h a t is, in 

the  first stage of phase 2 nodes differing in bit ib+d- 1  exchange data . In the  next 

stage the  nodes exchanging d a ta  w ith each o ther differ in b it ib+d- 2  and in the  last 

stage they differ in bit

5.3 A lgorithm s

As m entioned earlier, th e  algorithm s have a  com putational kernel f h t s t e p  which 

is common to  all the th ree  phases. T he only difference between the  kernels of the  

two algorithm s is the set of equations for com puting the groups, hence we discuss 

only the FH T kernel. T he kernel is comm on to all nodes and com putes all th e  

groups of a  stage m apped onto a  node. It assum es th a t the  cosine and sine values 

have been precom puted and arranged so th a t they  are available in the  right order 

as needed. A FO RTRAN call to  the  kernel can be m ade as follows:

call fht,st,ep(a, w, len, groups, o f f s e t ,  d ist, s tr id e ) 

where the  argum ents are:
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a  array containing the  input sequence.

w  array of coefficients.

le n  length of the  inpu t sequence.

g ro u p s  num ber of groups differing in the  values of coefficients.

o ffse t d istance between the  elem ents of a  group.

d i s t  d istance between two successive identical groups.

s t r i d e  d istance between two successive elem ents of w  to  be used.

T he kernel d f t s t e p  essentially com putes n j 4 groups. T he  four d a ta  elem ents

th a t m ake a  group are always available in two sets. T he elem ents in each set are

consecutive to each other. Each group can be represented as consisting of elem ents

x ( i  +  1), x ( j ) ,  x ( j  + 1 ) . T he values of i and j  are determ ined  by the  argum ents

o ffse t, g ro u p s  and d is t .  Figure 5.2 illustrates th is w ith 8 d a ta  points m apped

on a  processor and two different sets of values for i and j .  In Figure 5.2(b) the

values of i and j  are 0 and 2 respectively, while in Figure 5.2(c) they  are 0 and

4 respectively. T he pseudo code given below describes the  F F T  algorithm  using

’d fts tep ’. { This code is executed on each node }

b e  g in  {phase 1}

bitreverse {rearrange d a ta  on a  node in b it reverse order }

tw opoint(a) {first stage of the  flit algorithm  }

offset =  2 {distance between the elem ents of a  group }
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dist =  4 {distance between two successive identical groups } 

groups =  1 {num ber of d istinct groups } 

stride  =  6/2 { stride  for w } 

for i =  1 to  log2(n /6 ) — 1 do

fh tstep(a ,w , leu, groups, offset, d ist, stride) 

offset =  offset*2 

dist =  dist*2 

groups =  groups*2 

stride  =  s trid e /2  

end for 

end {phase 1} 

begin {phase 2 }

shuffle(a) {break each block into two subblocks shuffle them }

offset =  n /2

dist =  6/2

groups =  d is t/2

stride =  2

for i =  0 to  log2(p) — 1 do

{negh is node w ith d — i lh b it differing}

{exchange half th e  d a ta  with negh }
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negh =  m ynode  0  2d' 1

exchauge(a(k),negh) {k =  n * j /2 + l ,  j is the  value of (d — i ) ih b it } 

fh tstep(a,w , len, groups, offset, d ist, stride) 

end  for 

end  {phase 2 } 

begin  {phase 3 }

inverse_shuffle(a) {recom bine sub blocks from  phase 2 } 

offset =  b 

d ist =  offset*‘2 

for i =  1 to  log2 (6) do 

groups =  groups*2

fh tstep(a,w , len, groups, offset, d ist, stride) 

offset =  offset*2 

dist =  dist*2 

end  for 

end  {phase 3 }

T he working of the  algorithm  is shown in F igure 5.3, w ith an exam ple of 32 

d a ta  points d istribu ted  over 4 nodes with a  block size of 2. T he num bers represent 

the  indices of the da ta . Step (a) in Figure 5.3 shows th e  initial d a ta  d istribu tion
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P  0

(a) Processor with 8 data points.

L0

X r

(b) Set of groups with 
offset = 2, 
dist = 4, 
groups = 1.

(c) Set of groups with 
offset = 4, 
dist = any value, 
groups = 2.

Figure 5.2: Form ation of different groups. 
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and step  (b) shows the. d a ta  after b it reversal w ithin a  node has been carried  out. 

The first stage is com puted w ithout the  form ation of groups and is therefore not 

shown in the figure. The d a ta  movement of stage 2 is shown in step (c.). step  (d) 

shows th e  d a ta  rearrangem ent prior to  phase 2. T his step  accum ulates the  d a ta  

to be sent out from a  node. It is a  much less expensive m ethod than  sending d a ta  

in various packets because of the com m unication overheads. T he da ta  exchange 

betw een th e  nodes in the  two stages of phase 2 is shown in steps (e) and (g). T he 

d a ta  m ovem ent with com putation in the  sam e two stages is shown in steps (f) and 

(h). S tep(i) shows d a ta  rearrangem ent w ithin a  node prior to  phase 3. This step 

ensures the  sim plicity and generality of the  kernel. T he final com putational stage 

is shown in step (i). Notice th a t a block ceases to  exist in step  (a) of the algorithm  

and rem ains so until the end. It is restored only in the  rearrangem ent section. 

None of the  steps involving da ta  rearrangem ent w ithin the  node are expensive 

relative to  the  overall cost.

5.4 Rearrangem ent

T he FH T  and R F F T  algorithm s give the  o u tp u t d a ta  in an ordering different from 

th a t of the  inpu t in general. A careful look at Figure 3.3 reveals th a t the  d a ta  are 

displaced from their original position in com puting a  group. Internode com m uni­

cation in the  second phase of the  two algorithm s also displaces the  data . Hence,
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21 23 26 27
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(g) (h) (i) G)
Phase 3

Figure 5.3: Steps in the  com putation of R F F T /F H T  algorithm s.
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as w ith  th e  F F T  algorithm , the  d a ta  m ust be rearranged  to re tu rn  the  o u tp u t 

sequence in th e  sam e d istribu tion  as the  inpu t sequence. T he  d a ta  m ovem ent d u r­

ing th e  com putational section of the  algorithm  can be followed using th e  b inary  

represen ta tion  of their indices as w ith the  F F T  algorithm  discussed in C hap ter 4. 

U nlike th e  F F T  algorithm , the d a ta  m ovem ent in the  F H T  and R F F T  algorithm  

takes place in all th ree  phases. T he in itia l d istribu tion  and the d istribu tion  w ith 

b it reversal w ithin the  node have been discussed in the  previous section (see Eq. 

5.1, 5.3, 5.4, 5.5. Here the d a ta  m ovem ent of the  d istribu tion  of Eq.5.4 only will 

be discussed in detail since the o ther two are very sim ilar.

T he first stage in the  two algorithm s does not have any d a ta  m ovem ent. In 

th e  subsequent k — 1 stages which are com puted w ith in  a node the  d a ta  m ovem ent 

consists of two steps. In a  stage m  two sequences and x 2(r) of length 2m~1 

are com bined to  form  a sequence of length 2m (see Eq. 2.8,2.9 and 2.14,2.15). T he 

first step involves d a ta  m ovem ent in r 2(r) . T he d a ta  item s with even indices o ther 

th an  zero exchange places w ith the next d a ta  item . For exam ple d a ta  item s with 

indices 2 and 4 exchange places w ith d a ta  item s w ith indices 3 and 5 respectively. 

All th e  elem ents of X i ( r )  and the first two elem ents of x 2( r )  rem ain in place. T he 

least significant b it in the  binary representation after th is  step is determ ined  by

^ n —m ( * n —m + 2 4" *n—m + 3 - ■ ■^n—l )  ©  &n—ro+1

Let th is expression be represented as ■ In the  second step the  d a ta  item s
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w ith  even num bered  indices in  x 2(r) exchange places w ith  th e  odd num bered d a ta  

item s in £ i( r ) .  Hence the  d a ta  item s with indices 1 , 3  and so on from  X \ ( r )  ex­

change place w ith  data, item s w ith indices 0, 2 on so on respectively from  x 2(r). 

In b inary  representation  th is is equivalent to exchanging b it in- m w ith  b it j n- m+i 

determ ined  in the  first step. T he da ta  m ovem ent in th e  stages 2-4 w ith the  d istri­

bu tion  of Eq. 5.4 is shown below:

Stage 2:

J n — 1  — ^n—X

i ,  2£>4-c/...Zn _ l ^ n —2

Stage 3:

J n — 2  — ^n —3 ^ n —] $  I n —'I

%Q. . . l b— 1 5 ^ b + d —1 ■■ '1>bi ^ b + d ‘ " J n —2 ^n —l ^ n —3

Stage 4:

J n - 3  =  b i - < l ( i n - 2  +  b i - 1  ) ©  i / i - 3

=  *«—<l(*n—3*n—1 ©  *n—2 ©  *n—1) ©  *7 1 —3

— *n—4 (*n—2 ©  *n— l )  ©  *n—3

*0- • •1b—J i *6+d—1 • ■ -*6i *()+</• • • J n - 3 j n - 2 * 7 i - ]  *7i—*1
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At th e  end of stage k th e  d istribu tion  will be

ib+d—1 • -^6) jb+d+1 • •■jn—2^n—1 ^b+d

This is the  d a ta  d istribu tion  a t the  end of pha.se L

T he shuffle s tep ju st before th e  beginning of th e  second phase breaks th e  already 

com puted sequences of length 2k in to  two subsequences. (N ote  th a t  th e  num ber 

of such already com puted sequences is exactly  equal to  th e  block size and  the ir 

length  is equal to  the  num ber of blocks.) T he subsequences thus c rea ted  a re  then  

forw ard shuffled once. This results in the  following d istribu tion

J b + d + 1  to* • -tfc— l b+d . — l ■■•Ibi l'b—l J b + d + 2 - - - J n ~ 2 l n — 11b + d -

This step is necessary since one half of each of th e  2k length sequences m ust be 

exchanged with a corresponding subsequence in ano ther node. Shuffling of su b ­

sequences ensures th a t all th e  d a ta  to  be exchanged w ith an o th e r node a re  con­

tiguous. The d a ta  then  can be sent in one step , thus encountering com m unication 

overheads only once.

T he d a ta  m ovem ent in the  second phase involves th ree  steps. T h e  first step 

exchanges d a ta  between the nodes and th e  next two steps m ove d a ta  for com p u ta ­

tion. T he first step is identical to  data, m ovem ent in th e  second phase o f th e  F F T  

algorithm  discussed in the  Section 3.4. In step 2, a t a stage r th e  d a ta  m ovem ent 

in  nodes having a value 0 in r m ost significant bits differs from th a t  in th e  rem ain­

ing nodes. In nodes where r  m ost significant bits are ft, th e  even num bered  d a ta
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item s w ith a value 1 in a t least one of b its  in the  offset and the  m ost significant 

b it exchange place w ith th e ir  next odd num bered neighbor. In nodes where at 

least one of th e  r m ost significant b its  in  the  node num ber has a  value 1, all even 

num bered d a ta  item s w ith  a  value 1 in their m ost significant b it exchange places 

w ith  th e  next odd num bered da ta  item . In the  th ird  step, the  least significant 

and  th e  m ost significant b its  exchange places. T he first two stages of phase 2 are 

shown here to  illu stra te  these steps.

S tage 1

^ b + d ~ i ^ o * - - ^ 6 — J b + d + 1  • • • ^ 6 ?  ^ b ~ \ 3 b + d + 2 " ' J n ~ 2 ^ n — l '^b+d

j b + d  =  H + d - 1 - { j b + d + 1  +  j b + d + 2 --- +  * n - 1 )  ©  H + d

—  H + d - l - { H + d + l  +  i b + d + 2  • • • +  * n - l )  ©  H + d

2i J b + d + 1  t b —l j b + d + 2 ' " j n ~ 2 ^ n ~  l ^ b + d ~ 1

Stage 2

^ b + d —2 ^ 0 -  " ^ b ~ 2 ;  J b + d + l J b + d ' ^ b + d —3  • • ^ 6  —  l J b + d + 2  ** ' j n  — 2^n — 1  ^ b + d — I

j b + d - 1 =  h + d - 2 - i h + d .  +  H + d + 1  +  j b + d + 2  +  ••• +  i - n - l )  ©  H + d - 1  

j b + d —1 ^0* *^6—2? J b + d + 1 J b + d ^ b + d —3 • *^6? *̂6—1,76+d-f 2 • • *,/n—2^?i— 1 ^ b + d —2 

Following these steps the  d istribu tion  a t the  end of phase 2 will be

J b + 1 ^ 0 - - ^ b —2 i  ] b + d + \ 3 b + d - - - 3 b + 2 i  *6—l J b +d +2 - - J n —2*n— ( b- 9)
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A t th is  po in t one inverse shuffle is carried out on the  subsequences form ed in the  

beginning of phase 2. T he purpose of th is step  is only to  m ain ta in  th e  sim plicity 

of th e  com putational kernel. W ith  th is step  th e  d a ta  d istribu tion  a t th e  end of 

phase 2 is

*()•• -tb—1) jb+d+1 jb+d.-- -Jb+2i jb+ljb+d+2 • • -in—l^b (5.10)

T he  d a ta  m ovem ent in phase 3 of th e  algorithm s is an extension of th e  d a ta  move­

m en t in phase 1. Hence a t the  end of th e  com putational section of th e  algorithm s 

th e  d a ta  d istribu tion  will be

j  1 • • -jb-, jb+d+1 jb+d. • • •jb+2, jb+ljb+d+2 • • .in-l«0 (5.11)

W hen k  >  b the  final d a ta  d istribu tion  is

jl---jbi jb+ljb+d+2---jn—bi jb+d+1 jb+d---jb+2i Jn—6+1 •■■jn—2^n—l *01 (5.12)

and w ith  k < b th e  final d a ta  d istribu tion  is

J l  • • ■ Jk"i Jb+d+1 j b + d "  'Jb+2i j k + 1  • *J6+1 Jb+d+2  • • * J n —2 ^ n —1 ̂ 0 (5.13)

In all th ree  equations 5.11-5.13, the expression for node num ber is

jb+d+1 jb+d-■■jb+2- (5.14)

T he  d a ta  d istribu tion  required a t th e  end of th e  rearrangem ent section of the 

a lgorithm s is

Zô l • • • in—2^n—l (5.15)
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It is obvious from Eq. 5.14 and 5.15 th a t a com parison betw een b its  appearing in 

source and destination node num bers does not determ ine the n a tu re  of rearrange­

m ent problem . Here the num ber of source and  destination  nodes is not fixed. To 

illu s tra te  th is we again consider the  exam ple w ith  d a ta  size 1024 and  block size 8  

d istribu ted  over 4 nodes. The four b its in th e  node num ber a t the  end of phase 3 

are

j s  =  'iT-ig © is

j l  — *6-(*8  +  *9 ) 0  *7

j§ —  *5-(*7  +  *8 +  *9 ) 0  *6

jh — 'hi.(Z6 +  i- +  is +  *9 ) © *5

T he  destination  node num ber is given by If we consider destina tion  node

13 , then  is  =  1, *5 =  0, hi =  1, 23 =  1 . This fixes the  values of b its  je  and j 5 in

th e  source node num ber. Hence node 13 will receive d a ta  from nodes 3, 7, 11 and

15. However if consider node 12, we can fix the  value of only js  in th e  source node 

num ber. Hence this node will receive da ta  from  nodes 0, 1, 3, 4, 5, 8 , 9, 1 2  and 13. 

For node 14 it is not possible to fix the  value of any bit in the  source node num ber, 

hence it  will receive d a ta  from all the other nodes. Here due to  th e  difference in 

the  num ber of source nodes, contention is likely to occur. However, when none 

of b its  can be fixed for any node num ber, it is possible th a t the  exchanges are 

scheduled w ithout contention. This is likely to occur for the  ex trem e block sizes
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w here there  are no com m on bits in the  source and  destination  node num bers. It 

m ust be noted here th a t even w ith  all nodes exchanging d a ta  w ith  all o ther nodes, 

th e  rearrangem ent problem  m ay not be exact equivalent of th e  com plete exchange 

problem  of [11], since the am ount of d a ta  being exchanged m ay not be th e  sam e 

for all nodes.

5.5 Experim ental R esu lts

T he FH T  and the  R F F T  algorithm s w ith block scattered  d a ta  d istribu tions were 

im plem ented on the Intel iPSC /860 m achine to  evaluate their perform ance. We 

conducted two sets of experim ents w ith these im plem entations. T he first set ol 

experim ents evaluated th e  perform ance of the  various sections of th e  codes and 

th e  variation in perform ance w ith the  change in  block size and d a ta  size. The 

second set of experim ents com pared the  perform ance of the  FH T  and the  R F F T  

algorithm s w ith the F F T  algorithm  described in C hapter 4. T he experim ents were 

conducted on all nodes of a 32 node machine.

The results of the experim ents to  evaluate the  perform ance of FH T  and R F F T  

algorithm s are sum m arized in Figures 5.4 through 5.11. Figures 5.4 and 5.5 show 

th e  execution tim es for th e  FH T and the R F F T  algorithm s respectively. Each 

figure has two curves showing the  best and the worst tim e of any block size for a 

given da ta  size. T he curves for bo th  the algorithm s are alm ost identical in trend ,
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bu t the  FH T  algorithm  shows slightly b e tte r  perform ance. T he slight difference 

in the  perform ance of the  two algorithm s is clue to  the  rearrangem ent section of 

th e  code. T he volum e of d a ta  com m unication is higher in the  R F F T  algorithm  

since it involves com plex num bers. Figures 5.6 and 5.7 show the  variation in the 

execution tim e for a fixed d a ta  size as the  block size is increased. T he  lower curves 

in bo th  the  figures show th e  tim e taken  by the  com putational section alone. The 

top curves include the  tim e  taken by the rearrangem ent of data . T he top curves 

show the reason for a difference betw een the  best and the  worst perform ances of 

th e  two algorithm s. The tim e taken by th e  com putational section does not vary 

w ith the  block size, but th e  rearrangem ent section is affected by th is variation. 

T he rearrangem ent section takes a  longer tim e when the  num ber of block sizes 

is approxim ately  equal to the  num ber of blocks. Recall th a t  a sim ilar trend  was 

observed in the  F F T  algorithm , where contention was responsible for deterioration 

in the  perform ance. C ontention is also likely to occur in the  rearrangem ent section 

of the  FH T  and R F F T  algorithm s when the num ber of blocks is of the same 

order as the  block size. T his is because different nodes have a  different num ber of 

destinations for their da ta . Figures 5.8 and 5.9 show the relative contribu tion  of the 

th ree  phases in  the  overall execution tim e. T he relative con tribu tion  of the second 

phase is alm ost constant for bo th  the  algorithm s. It is also the  largest since this 

is th e  only phase involving in ternode com m unication. Figures 5.10 and 5.11 show
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th e  relative contribu tion  of the  in ternode com m unication and com puta tion  in all 

th ree  phases com bined. For sm all d a ta  sizes a  very large fraction  of tim e is taken 

by com m unication because the setup overheads constitu te  a  significant fraction 

of to ta l execution tim e. As the  d a ta  sizes grow, the  fraction con tribu ted  by the 

overheads reduces, thus reducing th e  relative contribu tion  of th e  com m unication 

tim e. W hen the  overheads becom e insignificant, th e  relative con tribu tion  due to 

com m unication sa tu ra tes. All of these trends are identical for th e  two algorithm s 

presented in th is chap ter and sim ilar in to  those of the  F F T  algorithm  presented 

in th e  C hap ter 4.
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0.6 W o rs t  p e rfo rm a n c e -  
B e s t  p e rfo rm a n c e -

0.4
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0
4 6 8 10 12 14 16

log2(n)

Figure 5.4: V ariation in perform ance w ith  d a ta  size for th e  FH T  algorithm .
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Figure 5.5: V ariation in perform ance w ith d a ta  size for th e  R F F T  algorithm .
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Figure 5.6: Variation in F H T  Perform ance w ith block size.
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Figure 5.7: Variation in R F F T  Perform ance w ith  block size.
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Figure 5.8: R elative contribution of the three phases of the  F H T  section with 

different block sizes.
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Figure 5.9: Relative contribu tion  of the  th ree  phases of the  R F F T  section with 

different block sizes.
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Figure 5.10: R elative contribution of com m unication in the  com putational section 

of the  F H T  algorithm .
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F igure 5.11: R elative con tribu tion  of com m unication in the com puta tional section 

of th e  R F F T  algorithm .

T he results of com parison betw een th e  FH T , R F F T  and  F F T  algorithm s are 

shown in Figures 5.12-5.17. F igure 5.12 shows the  best execution tim e of any 

block size for a given d a ta  size for all th e  th ree  algorithm s. F igure  5.13 shows 

sim ilar curves for the  worst execution tim es. In bo th  the figures, F F T  algorithm  

is th e  slowest and F H T  algorithm  is the  fastest. T he reason for th e  F F T  being 

th e  slowest is th a t  it uses com plex a rith m etic  and  has twice th e  com m unication 

volum e of th e  o ther two algorithm s in the  com puta tional section. This can be 

verified by observing Figure 5.14. F igure 5.14 shows the tim e taken  by the  three 

algorithm s w ithout including the  rearrangem ent section. Here th e  F H T  and  R F F T  

algorithm s have identical tim e, while the  F F T  a lgorithm  takes longer. Sam e is true
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of the  tim e taken by internode com m unication in the  th ree  algorithm s as shown in 

Figure 5.15. The difference betw een the  F H T  and R F F T  algorithm  perform ance 

in Figures 5.12 and 5.13 can be a ttr ib u ted  to  the  difference in the  com m unication 

volum e of the  two algorithm s in the  rearrangem ent section. T he variation in the 

perform ance of the  three algorithm s w ith block size is shown in F igure 5.16. All 

th ree  curves peak in the m iddle, where th e  block sizes and the num ber of blocks 

are of the  same order. The F F T  algorithm  also takes m ore tim e for a  block size 

of 1, because the rearrangem ent for th a t block size is not a com plete exchange 

and involves contention. T here is also a  difference in the  general tren d  of the 

effect of block size on the rearrangem ent section of th e  F F T  algorithm  from  those 

of th e  R F F T  and FH T  algorithm s (see F igure 5.17. T he curves for the  R F F T  

and FH T  algorithm s have sim ilar shape which differs from  the curve for the  F F T  

algorithm . The difference in the  actual tim e taken  by the rearrangem ent section 

of the  F H T  and R F F T  algorithm s is because of the  com m unication volume. The 

d a ta  being rearranged in the FH T  algorithm  consist of real num bers while they 

are com plex num bers for the R F F T  algorithm . T he curve for the  F F T  algorithm  

lies betw een the curves for the  R F F T  and FH T  algorithm s. T he reason for this 

curious behavior can be a ttr ib u ted  to  the  difference in the  d a ta  d istribu tion  a t the 

end of the  com putational section. A t ex trem e block sizes, the  F F T  and the  R F F T  

algorithm s take approxim ately the  same tim e in rearrangem ent. This indicates th a t
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for those block sizes th e  rearrangem ent problem  for R F F T  and F H T  algorithm s is 

sam e as the  com plete exchange. However, when the  order of block size is th e  same 

as th e  num ber of blocks, the  F F T  algorithm  curve is closer to  th e  F H T  algorithm  

curve. This indicates th a t  for these block sizes, the  d a ta  d istribu tion  of the  F F T  

algorithm  is m ore suitable for rearrangem ent th an  the  o ther two algorithm s. The 

FH T  algorithm  is close in its perform ance to the  F F T  algorithm  because it deals 

w ith  real num bers and therefore has less com m unication volume.

1.2

1

0.8
F F T -

R F F T0.6
F H T

0.4

0.2

0
6 7 8 9 10 11 12 1.3 14 15

log2{n)

Figure 5.12: Com parison of the  best perform ances of th e  F F T , th e  R F F T  and the 

F H T  algorithm s.
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Figure 5.13: Com parison of the  worst perform ances of the  three algorithm s.
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Figure 5.14: Com parison of execution tim es in the  com putational section.
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F igure  5.15: C om parison of the contribu tion  of in ternode com m unication  in the 

com puta tional phase.
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Figure 5.16: Com parison of variation in perform ance w ith block size.
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Figure 5.17: Com parison of th e  tim e taken  in the  rearrangem ent section.

5.6 Sum m ary

In  th is  chap ter, im plem entations were given for the  F H T  and th e  R F F T  algorithm s 

which work for block scattered d a ta  d istribu tions w ith different block sizes on 

d istribu ted  m em ory machine. A 32 node Intel iPSC /860 m achine was used to 

evaluate these im plem entations. T he perform ance of these im plem entations was 

com pared w ith  th a t of the F F T  algorithm  which also works for block scattered  

d a ta  d istribu tions with different block sizes. O ur experim ents ind ica te  th a t  the 

use of F H T  and R F F T  algorithm s is m ore efficient for com puting th e  D F T  of real 

d a ta . T he  FH T  algorithm  gives the  best perform ance of th e  th ree  algorithm s. 

Unless th e  transform ed d a ta  are required in the  com plex form  the  F H T  algorithm
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is th e  best choice. However, if th e  block size is such th a t  less th an  4 blocks are 

m apped on a node, the  F F T  algorithm  m ust be used. T he variation  in perform ance 

w ith the  block size is very sim ilar in all th e  th ree  algorithm s and th e  F H T  and 

R F F T  algorithm s consistently  outperform  the  F F T  algorithm . T here  is very little  

variation in the  perform ance of the  com putational section of th e  algorithm s with 

the  block size.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6 

Sum m ary and Future Studies

6.1 Sum m ary

In th is d issertation  we presented parallel im plem entations for com puting  discrete 

Fourier transform s on d istribu ted  m em ory m achines. Efficient im plem entations 

were also given for com puting the  D FT of real data . T he im plem entations pre­

sented here com pute D F T  for block scattered  d a ta  d istribu tions w ith different 

block sizes. T he block scattered  d a ta  d istribu tions are ex trem ely  useful for sci­

entific com putations and encom pass the linear and scattered  d a ta  d istribu tions. 

These algorithm s can be used w ithout an in itial d a ta  rearrangem ent in applica­

tions having block scattered  d a ta  d istribu tions. T he only constra in t is th a t  for 

com puting the  D FT  of real d a ta , a t least four blocks m ust be m apped  on a  node. 

The algorithm s also re tu rn  the  o u tpu t d a ta  in the same d istribu tion  as the  input. 

Each algorithm  consists of two sections; one com putes the transform  and the o ther 

rearranges d a ta  in the  same order as the  inpu t.
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T here  is a  th reshold  in the  size of d a ta  below which these im plem entations do 

not give a  sufficiently good perform ance. T he thresho ld  is m ainly due to  th e  com ­

m unication  overheads which are very significant for sm all d a ta  sizes in  d istribu ted  

m em ory parallel m achines. T he rela tive  con tribu tion  of th e  com m unication over­

heads decreases as th e  d a ta  size is increased. T he overall perform ances of all th ree  

a lgorithm s have sim ilar trends. T heir perform ance is worst w hen th e  num ber of 

blocks and block sizes are of the sam e order. T he block size has very little  effect 

on the  perform ance of the  com putational section of th e  algorithm s. However, the 

perform ance of the  rearrangem ent section vary g reatly  with the  block size, and 

account for the  variation in the overall perform ance.

T he very slight variation in the  perform ance of the  com puta tional section is 

likely to  be because of the  variation in the  execution tim es of different runs. The 

execution tim e for the  sam e block and d a ta  size varies from  one run  to  ano ther 

as can be observed from  Figures 6.1 and 6.2. In F igure 6.1 execution tim es are 

shown for 50 different runs of the F F T  algorithm  on 32 nodes w ith 16 d a ta  points 

per node and th e  block size of 4. F igure 6.2 is sim ilar to  F igure 6.1 except th a t  

there  are 64k d a ta  poin ts per node and  the  block size is 256. It can be observed 

from  th e  two figures th a t  th e  relative variation is larger for sm aller d a ta  size, when 

the  con tribu tion  from  the  com m unication overheads is significant. T he R F F T  

and th e  F H T  algorithm s give alm ost identical perform ance in the  com puta tion
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section, which is about 1.3 tim es faster th an  the  F F T  algorithm . T he R F F T  

algorithm  shows the  worst perform ance in the  rearrangem ent section while the 

F H T  algorithm  gives the  best perform ance, even though the  two have identical 

d a ta  d istribu tions. The difference is because of th e  difference in the  volum e of 

d a ta  being moved by the two algorithm s. T he difference betw een the  R F F T  and 

F F T  perform ances is due to  th e  different d a ta  d istributions even though they  have 

identical volum e of data. For all block sizes, the  R F F T  and F H T  algorithm s 

outperform  the  F F T  algorithm .

0.003

T im e
in

Sec

0.00285

0 5 10 15 20 25 30 35 40 45 50
S a m p le  N u m b e r

Figure 6.1: V ariation in tim ing for different samples w ith 16 d a ta  points per node.

T he im plem entations given in this work can be easily transported  to  other 

d istribu ted  m em ory m achines w ith different architectures. This is especially true  

of the  com putation  section because of th e  kernel. T he com putational kernels for all
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Figure 6.2: Variation in tim ing  for different sam ples w ith 32,678 d a ta  points per 

node.

th ree  algorithm s are very sim ple and regular in their s tru c tu re  and  this m akes the 

task  of tran spo rting  them  easy. However, the  rearrangem ent problem  is specific to  a 

m achine, especially where the  d a ta  are exchanged betw een a  subset of nodes. Much 

b e tte r  perform ances can be obtained by optim izing (exploiting the arch itectu ral 

features such as cache, num ber of registers, p ipelining etc. of a  processor) the  

kernels and internode com m unication for a  specific m achine (abou t 25% expected 

for iPSC /860).
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6.2 Suggestions for Further Study

T he im plem entations suggested in th is dissertation use the F F T , R F F T  and the 

FH T  algorithm s when d a ta  size and block size are a  power of 2. T here  are several 

variants of the  F F T  algorithm  which work for arb itrary  size data . It would be use­

ful to  find their im plem entations on d istribu ted  m em ory parallel m achines which 

can suppo rt block scattered  d a ta  d istribu tions w ith arb itrary  block sizes. I t  would 

also be in teresting  to see how the rearrangem ent problem  varies w ith different 

arch itectures and different rou ting  algorithm s. Here the rearrangem ent problem  

was studied  only on an M IM D hypercube based machine. T he  perform ance of 

the  rearrangem ent section is likely to be affected by the in terconnection network, 

the  stra tegy  for sending and receiving messages and the routing  of messages. In 

addition , w hether a m achine is SIMD or MIMD is also likely to play a  role in the  

rearrangem ent of data . It could be useful to  find routing algorithm s specific to 

th e  applications sim ilar to  th e  ones described in th is work. A com parative study 

of the  perform ance of these algorithm s on different d istribu ted  m em ory architec­

tures can also help to determ ine the type of m achines m ost su ited  for applications 

involving extensive use of Fourier transform s. I t would also be in te resting  to  see 

the  perform ance of m ultidim ensional transform s on d istribu ted  m em ory m achines. 

Also, there  is need to study  sim ilar general im plem entations for the  shared m em ory 

architectures.
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