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ABSTRACT

FAST FOURIER TRANSFORMS ON DISTRIBUTED MEMORY

PARALLEL MACHINES

Anshu Dubey

Old Dominion University, 1993

One issue which is central in developing a general purpose subroutine on a dis-
tributed memory parallel machine is the data distribution. It is possible that users
would like to use the subroutine with different data distributions. Thus there is
a need to design algorithms on distributed memory parallel machines which can
support a variety of data distributions. In this dissertation we have addressed the
problem of developing such algorithms to compute the Discrete Fourier Transform
(DFT) of real and complex data. The implementations given in this dissertation
work for a class of data distributions commonly encountered in scientific appli-
cations, known as the block scattered data distributions. The implementations

are targeted at distributed memory parallel machines. We have also addressed
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the problem of rearranging the data after computing the FFT. For computing the
DFT of complex data, we use a standard Radix-2 FFT algorithm which has been
studied extensively in parallel environment. There are two ways of computing the
DFT of real data that are known to be efficient in serial environments: namely
(i) the real fast Fourier transform (RFFT) algorithm, and (ii) the fast Hartley
transform (FHT) algorithm. However, in distributed memory environments they
have excessive communication overhead. We restructure the RFFT and FHT algo-
rithms to reduce this overhead. The restructured RFFT and FHT algorithms are
then used in the generalized implementations which work for block scattered data
distributions. Experimental results are given for the restructured RFFT and the
FHT algorithms on two parallel machines; NCUBE-7 which is a Hypercube MIMD
machine and AMT DAP-510 which is a Mesh SIMD machine. The performances
of the FFT, RFFT and FHT a.lgorit.hms with block scattered data distribution

were evaluated on Intel iPSC/860, a Hypercube MIMD machine.
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Chapter 1

Introduction

1.1 Parallel Computation Issues

In developing parallel algorithms for a problem, there are various architectural
issues that confront us. The architecture of the machine may be coarse grain ( a
few powerful processors), or fine grain (a large number of very simple processors).
The machine may be SIMD, where every processor in the machine works in lock
step with all other processors, or it may be MIMD, where every processor does
its own share of work by executing its local code. The memory may be shared by
all processors, or each processor may have its own local memory, or there may be
a combination of local and shared memory. The interconnection networks differ
amongst machines and the interprocessor communication may also be brought

about in different ways. All of these factors play an important role in developing
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algorithms for a parallel machine.

Parallel algorithms usually have more overhead than their sequential counter-
parts. The overhead may be due to several reasons. If the work is not evenly
distributed to all the processors, then the overhead is due to some processors
remaining idle for periods of time. Sometimes the overhead may be caused by pro-
cessors duplicating their computations. In SIMD machines some of the overhead
may be due to steps which require different operations at various processors. In
MIMD machines it may be caused by the synchronization problem. In distributed
memory machines one factor which contributes significantly to the overhead is the
interprocessor communication. These are just some of the causes of overhead and
they are not unconnected. Reducing one type of overhead may cause another type
to increase. For instance a good load distribution among processors may cause
much more internode communication and vice versa. Or minimizing 'replication
of computations in different processors may cause some processors to remain idle.
A good parallel algorithm must take into account the trade-offs in overhead and
find a good balance between them. It should be aimed at decreasing the overall
computation time rather than full processor utilization or equal load distribution

or other such issues.

N
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1.2 Fast Fourier Transform

Fourier transforms are an important ingredient of mathematical analysis. The
discrete version of the Fourier transform, known as the DFT, plays an important
role in numerical analysis, with applications such as: digital filtering, calculation
of auto- and cross-correlation, the solution of partial differential equations etc.
The computation of the DFT from its definition takes O(n?) time for an input
sequence of length n. The fast Fourier transform (FFT) algorithm computes the
transform of an n-component sequence in O(nlogn) time. It was first introduced
by Cooley and Tukey in 1965 [21]. The FFT algorithm made techniques based on
Fourier transform attractive for many applications. A large number of variants of
the original Cooley and Tukey algorithm have been proposed since 1965 [24].
The standard FFT algorithm computes the DFT of a sequence of complex data.
In many applications, such as the solution of PDE’s, we need to compute DFT
of real data only. For such applications one can use the standard FFT algorithm
by taking the imaginary part of the input to be zero. However, such an approach
leads to a lot of redundant computation, since the DFT of real data can be di-
vided into two halves which are complex conjugates of each other. The real fast
Fourier Transform algorithm (RFFT) uses this property to reduce computation
[7, 44]. Alternatively, one can use the fast Hartley transform (FHT) algorithm

[12] for computing the Fourier transform of real data. The FHT algorithm pro-
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vides advantage over the FFT algorithm by eliminating all complex arithmetic.
A comparative study of algorithms for computing DFT of real data can be found
in [42]. In most applications the RFFT algorithm is slightly faster than the FHT
algorithm. However, where both forward and reverse transforms are needed, the
FHT algorithm is the more attractive one since it involves identical computation
for both forward and inverse transforms.

Even with the FFT algorithm only very limited real life problems can be solved
on conventional machines. To solve even the moderately sized problems, one has
to use the so called “high performance computers.” There are two classes of such
high performance machines. The machines in the first class use higher clock rates
and other technological advances along with carefully designed architecture and
software support to achieve high computation speeds. The second class of high
performance machines achieve high speeds through parallelism. A parallel machine
typically has a number of identical processing units. The total work is divided into
smaller tasks and these tasks are distributed among the processing units which
execute them in parallel. The parallel machines can also use some of the features
of the first class of high performance machines to achieve higher speeds. The main
advantage of the high computation speed machines over parallel machines is that
achieving good performance is transparent to the user. Part of this advantage

comes from optimizing compilers while the other part comes through the use of
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highly optimized subroutine libraries. In order to get good performance out of a
parallel machine the users have to be aware of the architecture of the machine.
Further, there are very few parallel subroutine libraries available to the users.
Considering the potential of parallel machines for high performance computing, it
is desirable to look into the issues related to programming them and providing the

kind of software support that is available on other high performance machines.

1.3 Data Distributions

To develop a general purpose subroutine on a distributed memory parallel machine
one has to address the issue of data distribution in addition to all the issues men-
tioned earlier in this section [36]. It is possible that different users may wish to use
the routine with different data distributions. Typically, users determine their data
distribution based on the over all application requirements, which could vary from
user to user. Thus, it is extremely important to design schemes on distributed
memory parallel machines which can support a variety of data distributions.
There are two possible approaches to this problem. The first one is to design
a scheme for a specific data distribution which gives optimal performance, along
with a set of basic communication subroutines to convert a user supplied data
distribution to the specific data distribution. This approach has the problem of

rearranging the user data initially which is quite costly on distributed memory
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parallel machines. The second approach is to design a scheme which works well for
arbitrary data distributions. The second approach is obviously extremely difficult
to achieve. A compromise between these two extremes is to design algorithms that
support a class of data distributions. A common set of data distributions, referred
to as block scattered distributions, has been identified by Walker and Dongarra
[49] as very useful for distributed memory parallel machines. Block scattered
distributions encompass the two most common data distributions; the linear data
distribution and the scattered data distribution. For a one dimensional data set,
a block scattered distribution is specified by the block size. The data are divided
into a set of equal sized blocks. A block j is mapped to node (5 mod p), where p
1s the number of nodes. For example, two data distributions for a one dimensional
array of 16 data values on a 4 node machine with two different block sizes are

shown in Figure 1.1.

1.4 Overview

In this dissertation we present algorithms for computing DFT of real and complex
data that work for block scattered data distributions. These algorithms work for
all block sizes without requiring any initial redistribution of data. For computing
DFT of complex data the FFT algorithm is used. The FFT algorithm is well

suited for most parallel environments. [t is possible to distribute work among
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Figure 1.1: Block scattered data distributions for two block sizes.
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processors such that the load is balanced and no processor is idle. The internode
communication pattern is also very regular and does not cause excessive overhead
[14, 18, 26, 29, 34, 47]. However, the RFFT and FHT algorithms do not work
very well on distributed memory parallel machines. Their communication patterns
result in excessive communication overhead, which may even offset their compu-
tational advantage on distributed memory parallel machines [37, 39]. We present
a restructuring of the RFFT and FHT algorithms which eliminates their excessive
communication overhead, while retaining their computational advantage. The al-
gorithms for computing DFT of real data with block scattered distribution are
based upon the restructured RFFT and FHT algorithms. We have also addressed
the issue of rearranging data after computation such that the output data have
the same distribution as the input. The motivation for rearrangement comes from
problems such as solution of partial differential equations using spectral techniques
which require the final data distribution to be identical to the initial one.

The dissertation is organized in six chapters including this one. Chapter 2
includes a discussion of the previous work in the area of parallel FFT algorithms.
It also gives the definitions relevant to this work. The restructuring of RFFT and
FHT algorithms is described in Chapter 3. The restructured FHT and RFFT
algorithms, along with the FFT algorithm were implemented on two distributed

memory parallel machines with different architectures. All three implementations
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work only for a specific data distribution. Chapter 3 also describes the results of
the experiments with these implementations to verify the superiority of the FHT
and RFFT algorithm over the FFT algorithm for computing DFT of real data.
An FFT implementation on a distributed memory parallel machine for block
scattered data distributions with different block sizes is given in Chapter 4. Chap-
ter 5 gives the RFFT and FHT implementations for block scattered data distri-
butions using the restructured algorithms from Chapter 3. As with the FFT algo-
rithm, these implementations support different block sizes. However, a minimum
of 4 blocks are required per node irrespective of the block size. This requirement
comes from the grouping formed in the restructured algorithms. All the algorithms
are independent of the number of processors in the machine as long as the data
size is greater than the number of processors. The performances of all three imple-
mentations were evaluated on the Intel iPSC/860. The conclusions and the scope

for further study in this area are discussed in chapter 6.
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Chapter 2

Background

2.1 Definitions

In this chapter we give the definitions and history of the FFT algorithms. A number
of variants of the FFT algorithms exist in literature. We give the definitions
relevant to this work only since it is not possible to include all definitions here. A

discussion of the previous work by other researchers is also included in this chapter.

2.1.1 Discrete Fourier Transform

The DFT, X (%), of an N-point sequence z(r) is defined as,

N-1
X(k)=1/N Y x(r)e N 0 < k < N, (2.1)

r=0

10
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where j = +/—1, and N is a power of 2.

FFT Algorithm

There are two major classes of the FFT algorithms, namely; decimation in time
(DIT-FFT) and decimation in frequency (DIF-FFT. The two classes of the
FFT algorithm are described here briefly. (For details one can refer to [24]). For
the DIT-FFT algorithm the N-point sequence z(r) is divided into two (N/2)-point

sequences 1(r) and z4(r) as the odd and even elements of z(r) respectively; i.e.
zy(r) = z(2r),r=0,1,2,..N/2 -1, (2.2)
z2(r) = z(2r+1),r=0,1,2,..N/2 — 1. (2.3)

We then recursively compute X;(k) and X,(k), the DFT’s of z1(r) and z,(r)

respectively. The recursion stops when the DFT of a 1-point sequence, which is

the element itself, is required. The two sequences X;(k) and X;(k) are then merged

to generate X (k) using the following expressions

X(k) = Xi(k)+wyXa(k), 0<k<N/2, (2.4)
X(k) = Xu(k—N/2) =i Xolk = N/2), N/2Sk<N. (2.5)
where wk, = e=92mk/N,

11
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For the DIF-FFT algorithm the N-point sequence z(r) is divided into two

halves, x1(r) and z»(r) so that the the transformed sequence can be written as

(N/2-1) .

Z_% [w1(r) + @2(r))on (2.6)
(N/2-1)
X@k+1) = Y [2i(r) = mo(r)whywn®™, k=0,1.N/2 — 1. (2.7)

r=0

X (2k)

These equations represent two N/2 point DFT’s of sequences [z1(r) + z3(r)] and
[1(r) — z2(r)]wy. The process is then repeatedly applied to the two subsequences.
The flow graphs for the DIT FFT and DIF-FFT for input sequence of length 8
are shown in Figure 2.1. Notice that the DIT-FFT algorithm requires the input
sequence to be in bit-reversed order (ordering obtained by reversing the bits in the
binary representation of the data item indices) and returns the output in sequential
order. The DIF-FFT algorithm requires the input in sequential order and returns
the output in a bit reversed order. The basic units of computation for the FFT

algorithms are butterflies shown in Figure 2.2.

RFFT Algorithm

The RFFT algorithm described here is derived from the DIT-FFT algorithm. It
is different from the FFT algorithm at the merge step. In the RFFT algorithm
the N-point sequence X (k) is obtained from two N/2-point sequences z1(k) and

x2(k) as follows

X(k) = Xi(k)+wyXa(k), 0<k<N/2, (2.8)

12
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(a) DIT-FFT Flowgraph. (b) DIF-FFT Flowgraph.

Figure 2.1: Flow Graphs of 8-point DIT and DIF FFT algorithms.

13
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Figure 2.2: Butterflies for the FFT algorithms.
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X(k) = X*(N~k) N/2<k<N (2.9)

where X*(N — k) is the complex conjugate of X(N — k).

2.1.2 Hartley Transform
The discrete Hartley transform, X (k), of an N-point sequence z(r) is defined as
[12]

X(k)=1/N NZ-:I z(r){cos(2mrk/N) + sin(2rrk/N)},0 <k < N (2.10)

r=0
The even and odd parts of the DHT are given by
E(k) = (X(k)+ X(N —k))/2, (2.11)
O(k) = (X(k) = X(N — k))/2. (2.12)
The even and odd parts of the DHT can be combined to give real and imaginary
parts of the DFT [12].
X(k) = E(k) — jO(k). (2.13)

FHT Algorithm
The fast Hartley transform (FHT) differs from the FFT algorithm only at the
merge step. For the FHT algorithm the merging of two sequences X;(k) and

X3 (k)of length N/2 each to give a sequence of length N is given by,

X(k) = Xi(k)+ Xz(k)cos(2rk/N)

15
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+X2(N/2 — k) sin(2rk/N), 0< k< N/2, (2.14)
X(k) = Xi(k—N/2)+ Xo(k — N/2)cos(2rk/N)
+Xy(N — k)sin(27k/N), N/2<k < N. (2.15)

The flow graph for the RFFT and FHT algorithms are given in Figure 2.3. It
can be seen from this figure that it is very difficult to identify a basic unit of

computation for these algorithms.

2.2 Previous Work

Three distinct phases can be identified in the history of parallelization of the FFT
algorithm. The first phase started in the late 60’s and continued up to the mid 70’s.
Majority of the implementations reported in this phase were based on hypothetical
or “paper and pen” machines [8, 9, 38]. One work even tried to match the FFT
algorithm to the concept of associativity derived from memory design [50]. These
early works were almost always targeted at special purpose and highly constrained
architectures. Despite the lack of machines on which to test these ideas, they still
made a significant contribution towards understanding the parallelism inherent in
the FFT algorithm.

The second major phase started with the arrival of commercial vector proces-
sors. Korn and Lambiotte [35] discussed an implementation on CDC Star 100.
They identified a major drawback of the FFT algorithm in relation to vector pro-

16
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Figure 2.3: Flow Graphs for the RFFT and FHT algorithms.
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cessing. The size of vector in a single FFT computation is not uniform and can
be very small in some stages. Hence it was not possible to exploit the vector
processing capabilities throughout the algorithm. They suggested computation of
multiple independent transforms as a way of countering this problem. Multiple
independent transforms arise in a number of application for example computing
multi-dimensional transforms. The corresponding elements of each data sequence
to be transformed are processed as vectors in such a sitnation. Fornberg [23] im-
proved upon this work and suggested evaluation and storing of the multiplication
coefficients before computing the DFT. The coefficients were extracted from the
table when they were needed for computations. This approach proved to be very
useful when a number of DFT’s of same size were to be computed at different
times. Swarztrauber [43] divided the single transform into mmultiple transforms to
exploit the capabilities of the vector processor. Agarwal and Cooley [1] identified a
second major problem with efficient implementations of the FFT algorithm on vec-
tor machines, namely, cache use. As long as the data size for the FFT was smaller
than the size of cache memory, the performance of the algorithm was very good.
However, for data sizes bigger than the cache size, the performance deteriorated
rapidly. This is because in most variants of the FFT algorithm, in every stage a
data item is required for a few computations. By the time it is required in the next

stage it would have been thrown out of the cache. Hence the ratio of cache miss
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to cache hit is fairly high. There are several other vector FF'T implementations in
the literature using different approaches [2, 4, 6, 17, 48].

The third phase in the development of parallel FFT algorithms has overlapped
with the second phase. Some of the challenges faced in this phase are similar to
those in the second phase while some others are quite different. This phase came
with the advent of multiprocessor machines in the market. These machines come
in a wide variety of architectures including SIMD array processors to MIMD hyper-
cubes to massively parallel connection machines. FFT implementations reported
on these machines are necessarily different from each other. Some of the earliest
work in this phase has been on array processors [27, 25] and towards developing
FFT processors [19, 20]. The early work on multiprocessor machines addressed
the issues involved in mapping the data onto the processors. Some of these issues
are: the relation between the number of data points and the number of processors,
overheads of data organization when the number of data points is more than the
number of processors and the degree of parallelization achievable with different
data distributions [27, 25, 26]. These issues continue to be relevant for all the
machines available commercially today.

Since the mid 80’s, a great deal of attention has been given to FFT imple-
mentations on machines with hypercube architectures for two reasons. One of the

reasons is the ease with which the FFT algorithm maps onto a hypercube when the
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size of the input sequence is a power of 2. The second reason is that a significant
number of commercially available machines have hypercube based interconnection
networks. On these machines the data communication costs are an important
factor in the overall cost of computation. Johnson et.al [29, 31] discussed the com-
putation of FFT on boolean cubes and other similar interconnection networks.
Johnson et.al [30, 33] and Kamin and Adams [34] gave implementations on a con-
nection machine. Swarztrauber [45] used index-digit permutations to address the
issue of computing ordered transforms (where both the initial and final data distri-
bution are in same order). In a later work with Tong [47], he pointed out a cyclic
order data distribution which results in less communication cost than the natural
order on connection machine for ordered FFT. He also gave an implementation
for an arbitrary size data (not power of 2) on a hypercube [46]. Chamberlain [18]
discussed computing FFT of an initial data distribution which is in a Gray code
ordering rather than natural ordering. He proved it would require communication
between nodes at most a distance two apart.

Relatively less attention has been given to shared memory machines. Swarz-
trauber [45] discussed implementations on Cray-XMP and Alliant FX-8 which are
shared memory vector processors. Briggs et.al [14] discussed FFT methods on HEP
computer which is an MIMD shared memory machine. More recently Averbuch

et.al [3] reported the results of their implementation on an experimental shared
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memory machine MMX.

One can arrive at two conclusions by looking at the existing literature for the
FFT algorithms. Even though a lot of attention has been given by the researchers
to the parallelization of the complex FFT algorithm, the RFFT algorithm has been
largely ignored. Also, there has been very little effort towards finding parallel
implementations that can compute the Fourier transform of the variety of data

distributions useful to the scientific community.
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Chapter 3

Computing Fourier Transform of
Real Data on Distributed

Memory Parallel Machines

3.1 Introduction

On a sequential computer it has been shown that both the RFFT and the FHT
algorithms are faster than the FFT algorithm [7, 12, 42, 44]. However, it is not
obvious that the same is true on parallel machines. The communication patterns
of the RFFT and the FHT algorithms, which are critical to the cost of imple-
mentations on distributed memory parallel machines, are different from those of
the FFT algorithm (see Figures 2.1 and 2.3 ). We assume that in a parallel envi-
ronment a processor is assigned to each node of the flow-graph. A link between
two nodes of the flow-graph represents communication between the corresponding
processors. A careful observation of Figure 2.3 also indicates that for an identical

data distribution, the communication pattern of the RFFT algorithm is a subset
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of the communication pattern of the FHT algorithm. It can be easily verified
that this is in general true. The communication patterns of these algorithms are
unsuitable for MIMD and SIMD machines [39, 37]. For MIMD machines these
patterns require additional communication overhead. For SIMD machines there is
an added disadvantage of different data movements at different processors. Hence
a simple mapping of data items to processors is not likely to be efficient.

In this chapter we present a restructuring of the RFFT and FHT algorithms
such that their communication patterns become similar to that of the FFT al-
gorithm. The restructuring is such that the computational advantage of these
algorithms is also retained. The restructured algorithms are based on the observa-
tion that at any stage of the RFFT and the FHT algorithms, a group of four data
points uniquely determine four data points of the next stage (a similar grouping
of data has been suggested before [4, 12, 15, 42] in the context of minimizing the
number of arithmetic operations). This restructuring makes these algorithms suit-
able for most of the contemporary distributed memory parallel architectures. We
tested the suitability of the restructured algorithms by implementing them on two
different parallel machines. One is an MIMD distributed memory machine with
a hypercube interconnection network, the NCUBE. The second one is the AMT-
DAP which is an SIMD distributed memory machine with a mesh architecture.

Our results indicate that implementations of the FHT and RFFT algorithms run
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about 25 — 40% faster than the FFT algorithm on these machines.

3.2 Simple FFT-like Implementation

We have seen that the communication patterns of the FHT and the RFFT algo-
rithms are different from those of the FFT algorithm. This necessitates a different
approach for their implementation on parallel machines. We illustrate this by con-
sidering the implementations of 8-point DIT-FFT, RFFT and FHT algorithms on
a 3-cube and a 4 x 2 mesh. The communication pattern of the FFT algorithm
implementation on the cube is shown in Figure 3.1(a) and it follows directly from
Figure 2.1(a). Similarly the communication patterns of the RFFT and FHT algo-
rithms on a cube, implemented from the flow graphs in Figure 2.3 are shown in
Figures 3.1(b) and 3.1(c) respectively. (An arrow between two nodes indicates a
corresponding data transfer.) It can be seen from Figure 3.1 that for the RFFT
and FHT algorithms, Stage 2 (computing a sequence of length 8) requires commu-
nication between two nodes which are a distance two apart (the diagonal transfer
on the face of the cube shown in Figure 3.1(b) and 3.1(c)). It is easy to prove that
in general if a stage is computing a sequence of length 2™, where m > 2, then it
requires communication between two nodes which are a distance m — 1 apart.
For the mesh implementation of the algorithms, the input sequence is dis-

tributed linearly along the processors. The communication patterns generated by
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this distribution are shown in Figure 3.2. Tt is obvious from Figures 3.1 and 3.2
that the implementations with simple data mapping are not efficient for the RFFT
and FHT algorithms. Since the communication pattern of the RFFT algorithm
is a subset of that of the FHT algorithm, an efficient mapping of the FHT al-
gorithm would also be efficient for the RFFT algorithm. The two restructured
algorithms differ only in the computation. Hence we discuss only the restructured

FHT algorithm in the next two sections.

3.3 Restructured FHT Algorithm

The restructured FHT algorithm consists of an initialization step followed by a
number of stages (in general for an N-point sequence there are log(/N) — 2 stages)
where input to a stage is a set of groups consisting of four data points each. A
stage in the restructured FHT algorithm, like the FFT algorithm, merges two n-
point sequences X; and X, to form a 2n-point sequence X. The output of the final
stage is the DHT of the input data. The initialization step partitions the input
into groups of four data points each and computes 4-point DHT for each of them,

which becomes the input for stage 1. A stage consists of two phases.

Exchange Phase

Forms a new set of four data point groups by exchanging data between two groups
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of the original set.

Computation Phase
Processes the four data points in each group obtained after the exchange phase to

generate four new data points. These four new data points form a group for the

next stage.

Before giving the details of the restructured FHT algorithm we introduce some
necessary notations and define sets of four data point groups, henceforth referred

to as groupings.

3.3.1 Notations and Grouping Definitions

Notations
The two n-point sequences to be merged in a stage ¢ are denoted by X? and Xg;
and the resulting 2n-point sequence by H**', where n = 21, For brevity we also

introduce the following notations.
q(k) = kmodn/4,
(k) = n/2-k,
@(k) = n/2+kmodn/4,
qa(k) = n—k,
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g5(k) = kmodn/2.

For convenience, the argument & will be dropped in all the subsequent references

to ¢;(k)’s.

Grouping Definitions

Grouping G*
A grouping, G is composed of groups Gi(k), 1 < k < n/4 consisting of four

elements from H* defined by

F(k) = [H (1), H'(a2), H'(3), H(g4)] (3.1)

Grouping G
A grouping G is composed of groups Gi(k), 1 < k < n/4 consisting of four

elements from X3, given by

G (k) = [X3 (1), Xi(2) X3 (as), X (qa)]- (3-2)

Grouping G!
A grouping G% is composed of groups Gh(k), 1 < k < n/4 consisting of four

elements from X3, given by

G(k) = [Xi(a1), Xia2), Xi(as), Xian)]- (3.3)
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Grouping G*

A grouping, Gi,, is defined as the result of an ezchange operation, ‘<=>’, between
G4 and Gj. The exchange operation <=> is such that Gi(k) <=> Gi(k) implies
an exchange of two elements of G%(k) with two elements of G(k). The elements
exchanged depend on the value of k. For 1 < k < n/4, Xi(q:) and Xi(g3) of Gi
are exchanged with X3(q1) and Xi(q4) of Gi; and for k = n/4, Xi(q:) and Xi(gs)
of G are exchanged with Xi(gs) and Xi(qs) of Gi. As a result the following four

sets define the grouping Gi,.

[Xi(q1), X3(an), Xi(qa), Xi(qa)], 1< k<n/d
[Xi(a2), X3(@2), Xi(a3), X3(as)], 1 <k<n/s
[Xi(@m), X5(@m), Xi(q3), Xj(q)], k=n/4

[Xi(q2) X5(02)s Xi(ga), X3(00)], & =n/4.

The new groups defined by Gi,(k) can also be written as
Gha(k) = [X1(gs), Xa(gs)s X1(a), X2(ga)], 1 <k <n/f2. (3.4)

This can be verified by observing that the above equation can be written as

4

[Xi(as), X3(45), Xi(qa), Xi(q)], 1< k<n/d
J"U(k) .y [Xiz(q'l)a X’E(‘h)? X;((M), X;’z(‘l‘t)], k= "’/4 (35)
[Xli(q‘2)7X;(Q2),X1i(q3)’x‘§((13)]a 1<k< 77‘/4

[Xi(g5), X3(a5), Xi(a), X3(as)], & =n/2
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where:

[X3(g2), X3(02), Xi(g4), X3(ga)), k = /4

is identical to

[Xli(qS)a X-;:((h), X;'((l'i), X‘g(q‘i)]’ k = "/4a

and

(X1 (02), Xi(a2), Xi (), X3(@a)), ] Sk <n/d

is identical to

[Xi(gs), X3(qs), Xi(qa), Xé(q4)], nfd<k<n/2

The groupings GY and G define the sequences X} and X} respectively. These
sequences form the input for stage i of the restructured algorithm. The grouping
(i, is the set of new groups formed in the exchange phase of the algorithm where
four elements of every group uniquely determine four new data points. It should
be noted here that this property of grouping G, forms the basis of restructuring.
The new data points are computed in the computation phase and they form the

grouping G*+!, which is also the ontput of stage i.
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3.4 Algorithm

Initialization
(i) Rearrange the data in a bit reversed order.

(ii) Partition the N-point sequence, z(n), into N/4 groups given by,
[2(), 2(N/2+14),2(N/4 +1),2(3N/4 +1)], 0<1i< N/4

(iii) Compute (4-point) Hartley transforms for each of these groups. The resultant
groups are the input for Stage 1.

The exchange and computation phases of a Stage ¢ are given below.

Exchange Phase

Form Gi,throughGh (k) <=> Gi(k).

Computation Phase

Compute G**! from G, using Eq. 2.14-2.15.

Example.
The basic computation units of the restructured FHT and RFFT algorithms are
shown in Figure 3.3.

We illustrate the communication pattern of the restructured algorithm with
the help of an example of 16-point FHT (Figure 3.4). For Stage 1 we assume
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that all steps necessary to generate sequences of length 4 have been executed and
the two such sequences are to be combined. It is seen from Figure 3.4 that the
communication requirements of the restructured FHT algorithms are very similar

to those of the FFT algorithm (see Figure 2.1).

Computing DFT from the restructured FHT.

The groupings suggested for the restructured FHT algorithm have another nice
property. The four points of DHT in a group, after the final stage, are sufficient
to generate the four corresponding points of the DFT. To see this consider the

grouping G*(k), k = log N — 1, of data points after the final stage.
G (k) = [H" (@), H(a2), H*(s), H*(aa)l, 1 < k< N/4 (3.6)

It is observed from Eq. 2.11-2.13 that such a group of four DHT points directly
gives the four corresponding points of DFT.

X(p) = {H(g)+ H(ga) —5[H(qn) = H(ga)]}/2, 1< k< N/4

X(q) = H(qp), k=N/4

X(q2) = {H(q)+ H(gs) - jlH(q2) — H(w:)]}/2, 1 <E< NJ4

X(a) = {H(e)+H(g) = ilH(e) ~ Haa)l}/2, k= N/4

S
—~
=
W
N
Il

{H(qs) + H(q2) — j[H(gs) — H(@2)]}/2, 1 <k < N4

S
~~
=
W
o
Il

H((]3), k= N/4’

X(qs) = {H(qa)+ H(n)—j[H(gs) — H(@)]}/2, 1 <E<N[4

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Computation
Phase

Exchange

Phase J

«0,x®), | | G0 = G = _» Gl =
1(0),x3(0),

wrxa [P] HOAHW, :,' o :12((2)) FLORHON
x1(2),%,(3), 1\e) %3 x%(Z),x% ©),

x(2),x(10), Gy = GL() = Gi(1) =
N L g e O OF 31,230, P 200,27,
' x42),403), SO O) I EAOR:C)

©(1),50), i) = GL@) = G22) =
X(S) x(l3) ’ x}(o))x}(l): x{(O),x%(O), > x%(o)’x%(4),
x}(z),x=(3), X}(Z),I%(Z) x%(Z),x§(6)

X3),(11), a3 = GL() = G(1) =
«).x(15) 3ot x3(0),x3(1), (1), x4(1), > (1),22(7),
x3(2),x(3), 23),403) (3),545)

GH4) = X(0),X®),
£HO 50 I ey x(12)
x%("r ,x§(4),

2 _—

Gp() = X(1),X(15),
H(D,55(1), Ly
amam || O
@ = | | x@)xas,
52,50, x6),x(10)
#5(6),25(6)

A= | |xe),xa3),
x§(3),x§(3), Lt X(5),X(11)
xf(S),x%(s)

Figure 3.4: Flow Graph of the restructured FHT algorithm.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




X(qs) = {H(qa)+ H(q2) — j[H(qa) — H(q2)]}/2, k= N/4

3.5 Machines

3.5.1 NCUBE

NCUBE-T is a coarse grain MIMD distributed memory machine with a hyper-
cube architecture. A k-dimensional hypercube is an interconnection network of 2¢
nodes, each node being a processor. The nodes of a hypercube can be labeled by
an integer (represented as a binary number) in the range 0 to 2% — 1 such that
there is a direct communication link between any two processors if and only if the
binary representations of their labels differ in precisely one bit. On NCUBE-T7 the
maximum allowable dimension is 5. However, a smaller dimension can be used
depending upon the problem size. The processors in NCUBE-7 communicate with
each other in message passing mode. Hence the larger the distance between the
two processors communicating, the more is the time taken. There is a host pro-
cessor which invokes a cube of the given dimension, and loads the program on to
the corresponding nodes.

NCUBE-T7 supports the regular FORTRAN and C languages for programming
with a set of parallel constructs in the form of subroutine library. Some of the

most important routines are :
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nopen : for host only, to open a cube of given dimension,
nloadm: for host only, to load the programs on the nodes,
nread :  for host and node, to receive a message,

nwrite:  for host and node, to send a message.
30502 DAP-510

The DAP-510 is a fine grain massively parallel computer. It is an SIMD machine
with 1024 one-bit processors, arranged in a 32 x 32 matrix. Each processor is
connected to its four nearest neighbors. The processors on the edge of the matrix
have wrap around connections to the processors on the opposite edge. In addition
to nearest neighbor connections, a bus system connects all the processors in each
row and all the processors in each column. Each processor has its local memory of
64K bits. The whole memory can be viewed as a three dimensional array of bits,
consisting of 64K bit-planes. A bit-plane has 1024 bits, one from each processor’s
local memory. Similarly, a word-plane has 1024 words, one from each processors
local memory.

The higher level language available on the DAP is extended Fortran Plus, a
parallel extension of Fortran, which also supports virtual array sizes. The most
important feature of Fortran Plus is the ability to manipulate matrices and vectors

as single objects. For example, two matrices can be added with a single statement,
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as done for scalars. The masking and selection operations are available for per-

forming computation on selected processors. As an example, consider the Fortran

code:

DO 10 1 = 1,32

DO 10 J = 1,32
IF (A(1,J) .GE. 0) GOTO 10
A(LJ) = A(LJ) + 5

10 CONTINUE

This is very inefficient on a serial machine partly due to the IF construct. In the
corresponding Fortran Plus statement,
A(ALT.0) = A +5,

the boolean matrix A.LT.0 is used as a mask so that only those values of A
corresponding to a TRUE value are changed. The contrast with the sequential
machines on conditional operations is important: the sequential machine performs
a conditional jump, whereas the DAP will typically use activity control to perform a
masked assignment. In addition to the basic functions which have been extended to
take vector and matrix arguments, a large number of other functions are provided
as standard. For details on these functions one can refer to the AMT DAP 510
extended Fortran-Plus Language Manual. The functions which we have used in

our implementation are described below.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



shec: right shifts matrix columns by a given distance.
shwe: left shifts matrix columns by a given distance.
shne: shifts matrix rows upward by a given distance.
shsc: shifts matrix rows downward by a given distance.

All the shifts are carried out in wrap-around manner.

3.6 Implementations

3.6.1 Hypercube Implementation

The hypercube implementation of the restructured algorithm follows from Figure
3.4. For reasons of clarity we restrict our discussion to the computation of 4n-
point DHT where n is the number of nodes in the hypercube (however, the actual
code for the NCUBE machine has been written for the general case). We use the

following variables and constructs in describing our implementation.

Variables

z() : A real array for storing the input.

h() : A real array to store the output.

h1() and h2() : Real arrays used for exchanging data.

h3() : A real temporary array.
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The arrays x() and k() are of dimension four; and h1(), h2(), and h3() are of
dimension two.

node : node number.

negh : neighbor node number.

dimension : dimension of the cube.

temp : a real temporary storage.

Constructs

receive (negh,buffer): receives data from the node negh into the buffer.
send(negh,buffer): sends buffer data to the node negh.

find_negh(i,negh): finds the neighboring node negh for the ith iteration
combine(arrayl,array?,arrayy): merges data of arrayl and array2 using Eq. 2.14

and Eq. 2.15 and stores the result in array! and array$.

Algorithm: Hartley Transform

Input: A sequence of real data of length 4N.

Output: A transformed sequence of real data of length 4 N.
(* the following code is executed at all nodes *)

(* two point merge for x(1),x(2) and x(3),x(4) *)

h(1) = x(1) + x(2);
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(* four point Merge for h(1:4) *)
temp = h(1) + h(3);

h(3) = (1) - h(3);

h(1) =temp;

temp = h(2) + h(4);

h(4) = b(2) - h(4);

h(2) =temp;

(* all merge within the node done *)

(* prepare for exchange *)
h1(1) = h(1);
h1(2) = h(4);
h2(1) = h(2);

h2(2) = h(3);

(* communication between nodes for merging *)
for i = 1 to dimension do

(* find the node number of the Neighbor to exchange data™*)

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



find_negh(i,negh);
if (node < negh) then
begin
receive(negh,h3);
(* receive h2 for computation from the neighbor and
store it in h3 *)
send (negh,h2) ;
(* and send h2 to the neighbor, completing the exchange*)
combine(h1,h3,h2);
(* merge hl and h3 and return values in h1l and h2,
such that they are in the correct place for exchange
in the next stage *)
end
else
begin
(* corresponding actions of the neighboring node *)
send(negh,hl1);
receive (negh,hl)
combine(h1,h2,h2)

end
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end if

end for

Figure 3.5 illustrates the implementation of the restructured FHT algorithm

on a 2-cube,

3.6.2 DAP Implementation

The mapping on the DAP requires at least 4 x N? data points, where N x N is
the size of the mesh. The general SIMD Mesh implementation of the FHT algo-
rithm follows from Figure 3.4. For reasons of clarity we restrict our discussion to
the computation of 4 x N x N-point DHT, even though the algorithm has been
implemented for larger sized DHTs.

We use the following variables in describing our implementation.

Variables

A (,) in the argument of array represents N x N, the size of the DAP array
hart(,,4) : A real array for FHT data.

ndist : A real scalar variable to indicate the distance between columns or rows
being exchanged.

factor!(,) and factor2(,) : Real arrays to keep intermediate results.
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Figure 3.5: Hypercube implementation of the restructured FHT algorithm.
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Algorithm: Hartley Transform

Input: A sequence of real data of length 4 * N2, distributed such that any data
item h(k), with £ mod N? = N(i — 1) x {(j — 1) is mapped to the processor F;.
(The four data items on a processor F;; are referenced by h(,7,1 : 4))

Output: A Hartley sequence of real data of length 4 + N2, such that if a processor

P;; has data item k(k), it also has A(N/2 — k), R(N/2 + k) and h(N — k),

begin
fourdht(h); { carry out four point DHT on all nodes }
for i =1 to log,(N) do
begin
ndist = log,(N)/2¢ medllee2(N)/2) { distance between columns exchanging data }
for j =1 and 3 do
begin { data exchange with appropriate masks. }
if (¢ < log,(N)/2) then { communication among columns}
begin

temp = shwe(hart(,,j),ndist);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



bart(,,j) = shec(hart(,,j+1),ndist);
end;
else { communication among rows }
begin
temp = shnc(hart(,,j),ndist);
bart(,,j) = shsc(hart(,,j+1),ndist);
end;
hart(,,j+1) = temp;
end;
factorl = hart(,,2)*cos 8 + hart(,,4)*sin 8; { @ computed according to Eq. 2.14-2.15
factor2 = hart(,,4)*cos 0 - hart(,,2)*sin 6;
hart(,,2) = hart(,,3) - factor2;
hart(,,4) = hart(,,3) + factor2;
hart(,,3) = hart(,,1) - factorl;
hart(,,1) = hart(,,1) + factorl;

end;

The implementation based on this mapping in shown in Figure 3.6. with 32-point

data sequence on a 4 x 2 mesh.
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Figure 3.6: Mesh implementation of the restructured FHT algorithm.
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3.7 Results and Discussion

On the NCUBE-7 we conducted a set of experiments to determine the effect of
the varying the data size and the number of nodes on the overall execution time
of the algorithms. The number of nodes was varied from one to thirty two and
the number of data points from 128 to 32K. The results of these experiments are
summarized in Tables 3.1, 3.2, 3.4 and 3.5. For ease of presentation the completion
time, which is measured as the number of clock ticks, is averaged over the individual
nodes. One clock tick equals 1024/(clock rate), so for a 6MHz system, one tick is
approximately 0.17msec. The first column in all these tables gives the execution
time on a single node in terms of clock ticks. These numbers are used as a reference
for computing the speed-up as shown in the remaining columns. We define speedup
as the ratio of the algorithm’s execution time on one processor to the execution
time on P processors. The efficiency of execution (Table 3.4,3.6) is defined as the
ratio of the speedup to P, the ideal speedup.

The cost of executing these algorithms on the MIMD hypercube NCUBE-7
consists of two parts (indeed, this is true for any algorithm). The first is the cost
of doing the computation and the second is the cost of communication between
processors. For a given problem size, increasing the number of processors will de-
crease the amount and cost of computations per processor but may increase the

communication cost. Depending on the relative cost of computation and communi-
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cation, increasing the number of processors for a fixed problem size may result in a
decrease in efficiency. Increasing the problem size for a fixed number of processors
will certainly increase the computation cost in proportion. It may not, however
result in a proportionate increase in communication cost. Thus there may be an
increase in both the speedup and the efficiency.

Both these effects are apparent in the results presented in Tables 3.1, 3.2, 3.4
and 3.5. In all the four tables the problem size is constant along a row and the
number of processors is constant along a column. From Tables 3.1 and 3.4 one can
see that, proceeding along a row, the speedup is not linear with the increase in the
number of processors. In fact, for the case of 128 data points, the speedup actually
decreases as the number of processors is increased from 8 to 16 and from 16 to 32. It
is also clear from Tables 3.1 and 3.4 that as the number of data points is increased
with a fixed number of processors the speedup increases tends to saturate around
a certain value. (Note that this trend will be there irrespective of the relative cost
of computation to communication. If computation is very efficient compared to
communication, then the saturation will occur at a lower value of speed up and
vice-versa). Similar behavior is also seen in the results shown in Tables 3.2 and
3.5. For a fixed problem size, increasing the number of processors nearly always
results in a decrease in the efficiency. Finally, one can see from the results of Tables

3.2 and 3.5 that there is a threshold value of number of data points per processor
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below which there is a drastic fall in efficiency. This threshold is clearly algorithm
and machine dependent and thus is not a universal constant.

We also implemented a standard FFT algorithm to compare its performance
with those of the restructured FHT and the RFFT algorithms. On the NCUBE-7,
a set of experiments were conducted to measure the execution times of the three
implementations for different cube sizes and different data sizes. Tables 3.3 and
3.6 summarize the results of comparison between the performances of the standard
FFT algorithm and the restructured FHT and the RFFT algorithms respectively.
The time taken for the execution of these programs can be attributed to two
contributing factors; computation time and communication time. One can make

two observations from Tables 3.3 and 3.6, namely;

1. The ratios of execution times of FFT and FHT algorithms and FFT and
RFFT algorithms are uniform for most data and cube sizes. The ratios
are lower when the number of data points mapped per node is below the

threshold.

2. The RFFT algorithm performs slightly better than the FHT algorithm. The
reason is that the computation unit of the RFFT algorithm has fewer com-

putation than that of the FHT algorithm (see Figure 3.3).

On DAP-510 experiments were conducted for real input sequences of lengths
4K to 256K. For the sake of comparison we also implemented the FFT algorithm
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for the same data sizes, The results of these experiments are summarized in Table
3.7. The first column is the number of data points to be transformed. The second,
third and fourth columns give the execution time in seconds for the FHT, RFFT,
and FFT implementations respectively. The final two columns show the ratio of
execution times of FFT algorithms over those of the FHT and RFFT algo-
rithms. Note that the ratios are essentially independent of the size of the data
array as with the NCUBE-7. However, on DAP-510, the FHT algorithm performs
better than the RFFT algorithm. The reason is the less regularity in the compu-
tation unit of the RFFT algorithm. DAP-510, being an SIMD machine, requires

more instructions for irregularities.
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Table 3.1: Speed-Up of the Restructured FHT Algorithm.

Noof |1 Node| 2 Nodes| 4 Nodes| 8 Nodes| 16 Nodes | 32 Nodes
Points | Time | Speed-Up | Speed-Up | Speed-Up | Speed-Up | Speed-Up
128 519 1.88 3.33 5.14 5.70 4.51
256 1223 1.93 3.64 6.37 8.93 8.86
512 2822 1.96 3.78 7.11 11.81 14.85
1024 6400 1.97 3.86 7.45 13.65 20.98
2048 14321 1.98 3.89 7.63 14.66 25.57
4096 31689 1.98 3.92 7.72 15.13 28.37
8192 69460 1.98 3.93 .77 15.34 29.82
16384 | 151150 1.98 3.94 7.80 15.45 30.48
32768 | 326724 1.99 3.94 7.83 15.52 30.75
52
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Table 3.2: Parallelism Efficiency of the restructured FHT Algorithm.

Noof |1 Node| 2 Nodes| 4 Nodes| 8 Nodes| 16 Nodes | 32 Nodes
Points | Time | Efficiency | Efficiency | Efficiency | Efficiency | Efficiency
128 519 94.0% 83.3% 64.3% 35.6% 14.1%
256 1223 96.5% 91.0% 79.6% 55.8% 27.7%
512 2822 98.0% 94.5% 88.9% 73.8% 46.4%
1024 6400 98.5% 96.5% 93.1% 85.3% 65.6%
2048 14321 99.0% 97.3% 95.4% 91.6% 79.9%
4096 31689 99.0% 98.0% 96.5% 94.6% 88.7%
8192 69460 99.0% 98.3% 97.1% 95.9% 93.2%
16384 | 151150 99.0% 98.5% 97.5% 96.6% 95.3%
32768 | 326724 99.5% 98.5% 97.9% 97.0% 96.1%
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Table 3.3: Ratio of Execution Times of FFT and Restructured FHT Algorithms.

Points | 1 Node | 2 Nodes | 4 Nodes | 8 Nodes | 16 Nodes | 32 Nodes

128 1.185 1.207 1.205 1.202 1.109 1.035
256 1.180 1.202 1.202 1.208 1.153 1.079
512 1.176 1.197 1.201 1.227 1.197 1.132
1024 1.172 1.192 1.210 1.224 1.220 1.184
2048 1.169 1.187 1.205 1.221 1.228 1.213

4096 1.166 1.184 1.200 1.216 1.226 1.224
8192 1.165 1.180 1.195 1.210 1.219 1.230
16384 1.163 1.177 1.191 1.205 1.212 1.230

32768 1.162 1.172 1.188 1.200 1.213 1.220
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Table 3.4: Speed-Up of the Restructured RFFT Algorithm.

Noof |1 Node| 2 Nodes| 4 Nodes| 8 Nodes| 16 Nodes | 32 Nodes
Points | Time | Speed-up | Speed-Up | Speed-Up | Speed-Up | Speed-Up
128 478 1.84 3.21 4.83 5.25 4.16
256 1122 1.90 3.52 6.10 8.37 8.19
512 2579 1.93 3.68 6.82 11.12 13.79
1024 5840 1.95 3.77 7.23 13.04 19.66
2048 13043 1.96 3.82 7.40 14.07 24.29
4096 28824 1.96 3.84 7.51 14.59 27.06
8192 63111 1.96 3.86 7.58 14.84 28.58
16384 | 137191 1.97 3.87 7.67 14.98 29.33
32768 | 296342 1.97 3.92 7.68 15.09 29.68
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Table 3.5: Parallelism Efficiency of the Restructured RFFT Algorithm.

Noof |1 Node| 2 Nodes| 4 Nodes| 8 Nodes| 16 Nodes | 32 Nodes
Points | Time | Efficiency | Efficiency | Efficiency | Efficiency | Efficiency
128 478 92.0% 80.3% 60.4% 32.8% 13.0%
256 1122 95.0% 88.0% 76.3% 52.3% 25.6%
512 2579 96.5% 92.0% 85.3% 69.5% 43.1%
1024 5840 97.5% 94.3% 90.4% 81.5% 61.4%
2048 13043 98.0% 95.5% 92.5% 87.9% 75.9%
4096 28824 98.0% 96.0% 93.9% 91.2% 84.6%
8192 63111 98.0% 96.5% 94.8% 92.8% 89.3%
16384 | 137191 98.5% 96.8% 95.9% 93.6% 91.7%
32768 | 296342 98.5% 98.0% 96.0% 94.3% 92.8%
56
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Table 3.6: Ratio of Execution Times of FFT and Restructured RFFT Algorithms.

Points | 1 Node | 2 Nodes | 4 Nodes | 8 Nodes | 16 Nodes | 32 Nodes

128 1.290 1.280 1.262 1.202 1.109 1.035
256 1.286 1.290 1.266 1.260 1.179 1.088
512 1.286 1.292 1.280 1.288 1.233 1.150

1024 1.284 1.292 1.295 1.300 1.277 1.212
2048 1.283 | 1.290 1.296 1.299 1.294 1.260
4096 1.282 1.289 1.295 1.300 1.299 1.283
8192 1.282 1.288 1.293 1.299 1.297 1.298
16384 1.281 1.287 1.292 1.304 1.295 1.303

32768 1.281 1.282 1.302 1.299 1.300 1.299
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Table 3.7: Comparison of the performances of FHT and RFFT implementations

with the FFT implementation on DAP-510.

No of | FHT Time | RFFT Time | FFT Time FFT/FHT FFT/RFFT
Points (Sec) (Sec) (Sec)
4K 0.026 0.027 0.042 1.62 1.56
8K 0.063 0.066 0.104 1.65 1.58
16K 0.133 0.138 0.215 1.62 1.56
32K 0.282 0.292 0.450 1.60 1.54
64K 0.598 0.619 0.949 1.59 1.53
128K 1.269 1.324 2.028 1.60 1.53
256K 2.685 2.790 4.261 1.59 1.53
58
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Chapter 4

An FFT Implementation for
Block Scattered Data
Distributions

4.1 Introduction

In a number of applications the FFT algorithm is only a part of the overall com-
putational scheme. In such cases, the ordering of the data elements may be de-
termined by considerations other than the requirements of the FFT algorithm.
While this is not a big concern on sequential machines, it can pose a major prob-
lem on distributed memory parallel machines. The ordering of data dictated by
an application may result in a data distribution which is not ideally suited for
the FFT algorithm. The users in such a situation have three options. One is to
design different FFT subroutines to match the data distributions for different ap-
plications. The second option is to match the data distribution of the application

as closely as possible to the requirements of the FFT subroutine. And the third
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option is to redistribute data before a call to the FFT subroutine. Clearly none of
the these options are very suitable and hence there is a need for a subroutine that
can support different user data distributions.

This chapter presents an adaptation of the FFT algorithm for distributed mem-
ory machines which works for block scattered data distributions with different block
sizes. Block scattered distributions have been identified as being extremely useful
for scientific computations [49]. They have already been described in detail in
Chapter 1. The implementation also makes the final data distribution identical
to the initial one. This is important in a large number of practical engineering
and scientific applications. FFT algorithms generally change the ordering of data.
As a result making input and output data distributions identical involves intern-
ode communication. The performance of this scheme has been evaluated by an

implementation on Intel iPSC/860.

4.2 Parallel Implementation

A typical implementation of the FFT algorithm on a distributed memory ma-
chine results in a sequence of butterflies at each node interspersed with internode
communication. Depending upon the initial distribution, data for some of the
butterflies are available locally and for others, off-node data are required. There

are two approaches for computing butterflies which need off-node data. The first
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approach splits a butterfly between two nodes, and in the second approach a com-
plete butterfly is computed on a node. The parallelism in the later case is achieved
by distributing different butterflies on different nodes. For example, consider a
simple case of computing two butterflies on a two node machine as shown in Fig-
ure 4.1(a). (These butterflies are from the DIF-FFT algorithm, which is used for
this implementation.) Notice that both butterflies need off-node data. The two
approaches are illustrated in Figure 4.1(b) and Figure 4.1(c), respectively. It is
obvious from these figures that the first approach has certain disadvantages. These

ares

High communication volume The first approach requires twice the inter-node
communication volume when compared with the second approach.

Unbalanced computational load The first approach results in additional com-
putation on some of the nodes. For example, the multiplication by w in the com-
putation of both the butterflies of Figure 4.1(b) is done on node F;, unlike the
second approach (See Figure 4.1(c).)

Extra storage. The first approach requires twice the storage of the second ap-
proach.

For these reasons our parallel implementation of the FFT algorithm is based on

the second approach.
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Figure 4.1: Two approaches for computing butterflies in parallel.
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4.3 Algorithm

As stated earlier, the main feature of our FFT scheme is that it works for block
scattered data distribution with variable block sizes. That is, the same algorithm
can be used for different data distributions without any initial rearrangement of
the data. The algorithm consists of three phases: the first and the third phase
compnute butterflies for which the data are locally available, and the second phase
computes butterflies for which off-node data are required. As a result, internode
communication occurs only during the second phase. Depending upon the block
size the work distribution for the first and third phases will differ. In extreme
cases one of these two phases will not be executed. For a block size of 1 we need
to execute only the first two phases, while for a block consisting of all the data on
a node only the last two phases are executed. For all other block sizes all three
phases of the algorithm are executed. Given the number of processors, the amount
of work in the second phase remains constant for all block sizes. When a single
block is mapped on a node, it must be treated as a special case. This is because in
phase 2 of the algorithm, where off-node data are needed, the block gets divided
into two sub-blocks, which is not true for other block sizes.

An FFT algorithm with data size N has log,(N) distinct stages of computation.
Each stage computes N/2 butterflies. In our FFT scheme, as in most other parallel

FFT schemes, all the nodes participate in computing a stage by operating on
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different data points. The algorithm is described here by considering an N point
FFT on a p-node machine, with n = N/p as the number of data points mapped
per node and b as the block size. The distribution of work in the three phases is

as follows

1. The first log,(n/b) stages are computed in the first phase. The butterflies in

these stages require data available locally from different blocks.

2. The next log,(p) stages are computed in the second phase. The butterflies

need off-node data, hence internode communication takes place.

3. The last log,(b) stages constitute phase three. The butterflies in phase three

are computed with local data from within a block.

The algorithm has a computational kernel dftstep which is common to all the
three phases. The kernel is common to all nodes and computes all the butterflies
of a stage mapped onto a node. It assumes that the w values (see Eq. 2.6 and 2.7)
have been precomputed and arranged so that they are available in the right order

as needed. A FORTRAN call to the kernel can be made as follows:
call dftstep(a,w,of fset, groups, dist, winer)

where the arguments are:
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a Array of input sequence.

w Array of coefficients w.

offset  The distance between the two elements of a butterfly.
groups The number of similar sets of butterflies.

dist The distance between two groups.

winer  The stride for w.

The kernel dftstep essentially computes n/2 butterflies. The formation of
these butterflies is determined by the three arguments offset, groups and dist.
Figure 4.2 shows the difference in the formation of the sets of butterflies depending

on the values of these three arguments.

The pseudo code given below describes the FFT algorithm using ’dftstep’.

{ This code is executed on each node }

begin{phase 1}
offset = n/2 {distance between two points of a butterfly }
groups = 1 {only one subgroup in the first stage }
wincr = 1 { stride for w }
for : = 1 to log,(n/b) do
dftstep(a,w,offset,groups,offset*2,wincr)
offset = offset/2

groups = groups*2
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Figure 4.2: Formation of different sets of butterflies.
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end for
end {phase 1}
begin {phase 2 }
offset = n/2
groups = offset/b
for : =1 to log,(p) do
{negh is node with d — i** bit differing}
{exchange half the data with negh }
negh = mynode @ 2¢-*+1
exchange(a(k),negh) {k = n % j/2 + 1, where j is the value of (d — )" bit }
dftstep(a,w,offset,groups,b,wincr)
if(b = n) then {special case}
negh = mynode & 2°
exchange(a(k),negh)
end if
end for
end {phase 2 }
begin {phase 3 }
for i =1 to log,(b) do

groups = groups*2

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



dftstep(a,w,offset,groups,offset*2, wincr)
offset = offset/2
winer = 2*wincr

end for

end {phase 3 }

For the implementation on Intel iPSC/860 the call to procedure exchange first
initiates a send and then posts a receive for incoming data. This protocol is followed
due to the peculiarity of the iPSC/860 communication characteristics [41]. The
communication between two nodes starts with the source node sending a probe to
the destination node. The data is sent to the destination node only after it has
acknowledged the probe. If both nodes want to exchange data with each other
and they send out the probe at the same time, the data can be transferred to both
nodes concurrently. However, if the nodes are out of step and one node starts
sending its data before the other one sent its probe, then the transfer of data
proceeds in only one direction. This is because each connection between nodes has
only two channels, one for receiving and one for transmitting. Once a node starts
sending out data it has no channel available to acknowledge the probe. Hence the
second node is forced to wait until the first one finishes sending its data.

The working of the three phases is shown in Figure 4.3 with the initial data
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distribution of Figure 2.1(a). In this example a total of 4 stages are required. The
first phase is computed in stage 1 of the algorithm. The butterflies in this stage
are formed by the corresponding elements of the two blocks. The second phase
is computed in stages 2 and 3 which require exchanges of data. The third phase

includes stage 4, which is computed by combining the data within a block.

4.4 Rearrangement

In general, FFT algorithms generate the resultant sequence in an order different
from that of the input sequence. The decimation in time algorithms have the in-
put sequence in bit reversed order (index of a data item is obtained by reversing
the binary representation of the original index) and output in natural order. The
decimation in frequency algorithm, used in this implementation, has the input
sequence in natural order and the output sequence in bit reversed order. The com-
putation of a butterfly within a node also scrambles the output data distribution.
As a consequence, the resultant data are in the wrong node at the wrong indices
and must be redistributed. In a parallel environment redistribution almost always
involves internode communication in addition to reordering within the node. The
difficulties in redistributing the data can be fully appreciated by following the data
movements using the binary representation of the their indices (similar to index

digit permutations used in [44]). Consider a data sequence of length 2*. The index
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Figure 4.3: Three phases of the FFT algorithm with block scattered data distri-
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of each data item in this sequence can be uniquely represented by n bits. Let this

be represented by
bm1bnzeei1d0 (4.1)

Here it is assumed that this data is divided amidst 2% nodes using a block scattered
distribution with a block size b. In this distribution, bits 7y_1¢_3...2¢ represent the
offset of a data item within a block, bits (¢y4+4-1..%) represent the node number on
which a data item is mapped and bits (3,-1..154.4) represent the block number of a
data item.

We will now see the change in the data distribution during FFT computation.
To ensure the computation of a butterfly within a node, the following strategy is
used for data exchange. Consider two nodes p; and p, that must exchange data
with each other. Between a node pair exchanging data at a stage j in phase 2 of
the algorithm, p; is the node with 7544—; = 0 and p; is the node with ip44—; = 1.
Let each node have k blocks of data. Then p; keeps the first k/2 blocks and sends
the last k/2 blocks to p,. Whereas p, keeps the last k/2 blocks and sends the first
k/2 blocks to p;. In terms of binary representation of the indices this movement
translates into an exchange between the most significant and b+ d — jth bits. A
sequence of a few such exchanges is shown below;
original distribution :4,_1%2,—3...25+dZb+d12b4d—20b+d=3++-162b—1-- 20,

after first exchange :2,4g-1%n—2--Gb4din-12b4+d=20b4d=3--Lblb~1--+10,
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after second exchange : iy 1q—20n—3...04+dln—1Tb4d—12bpd=3+-LbTb1 .+ L0y
after third exchange : 151 4-3%,—3...00 4 dln12b1d—12b4-d=2++-TbTp—1.--20.
At the end of the second phase ( when all the data movement for computation is

over after d exchanges) the binary representation of the data distribution is
ibin—‘l-'-ib-i-din—lib+d—2---ib+lib—1---iO- (42)

In this distribution the block number is given by 7yi,—3%4~3%44, the node number
by Zn—1%54d—2-.-2p41 and the offset within a block by #;_1...75. This distribution
remains undisturbed in the third phase. The binary representation required of the

final data indices is
ioi] ...Z.,,,_zin_] . (43)

The redistribution process changes the data distribution of Eq. 4.2 to that of Eq.
4.3.

Eq. 4.2 and 4.3 also help in determining the number of nodes that each node
must send data to and receive data from. The number of nodes is determined by
comparing the bits corresponding to the node number in the two equations. This
is illustrated with the help of an example of 1024 data points distributed over 16
nodes with two different block sizes, 8 and 4. For both block sizes the initial data

distribution is

19817l62584130971 20, (4.4)
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and the final required data distribution is

..........

1001192930425260 70809, (4.5)

For block size of 8 distribution after all three phases of FFT computation is

231827%9%6%524221212¢. (46)

The node number in Eq. 4.5 is given by i3i42576 and in Eq. 4.6 by 7g7¢75i4. Notice
that bits 23, 74 and i5 are common to both the node numbers. Given a node
number, the values of these bits are fixed. The only bit that can be varied in the
destination node number is bit z3. Hence each node will be sending data to at most
two nodes. A careful consideration of the two equations also gives the fixed bits
in the representation of source node numbers that a node will receive data from.
In this example it is ¢,7415t¢, where 7, can be any bit other than the ones included
in the expression. This expression reveals that each node will receive data from at
most two other nodes. For example node 6 will be sending data to nodes 3 and 11
and receiving data from the same two nodes. Node 5 on the other hand will send
data to and receive data from only node 13.

For a block size of 4 the distribution after computation is

2218%71629252423%120. (47)

Here the node numbers from Equations 4.5 and 4.6 are given by 19251423 and 24251617,
respectively. The fixed bits are ¢4 and 5, and the bits that can be varied in
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the destination node numbers are i and 7. The binary expression for the node
numbers that a node will receive data from is i;i5297z, Where the first and the
last bits in the expression are changeable. Each node therefore sends data to
and receives data from at most 4 nodes. However, a comparison between the
expressions for source and destination node numbers indicates that they may not
be identical. Indeed, node 6 sends data to nodes 12, 13, 14 and 15 and receives
data from nodes 4, 5, 12 and 13. Similarly it can be easily verified that with
block sizes of 1 and 16, each node will be sending data to and receiving data from
maximum 8 nodes and for all other block sizes all nodes will be sending data to
each other. The last type of data exchange is known as the complete exchange.
The example given above highlights a number of problems that arise in deciding
a strategy for redistribution of data after the computation is over. The most

important of these are summarized here.

1. For a given data size and the number of processors the nature of the redis-
tribution problem varies with block size (it may or may not be a complete

exchange problem.)

2. For the block sizes where redistribution is not a complete exchange problem,
all nodes may not send data to an equal number of nodes. More precisely,

some nodes will themselves be a destination and hence will send data to one

less node.
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3. The bits common to the binary representation of source and destination node
numbers appear in different order and in different places. The order and
placing are dependent on the block size, data size and the dimension of the
cube. There is no easily noticeable pattern to generalize the redistribution

process.

On Intel iPSC/860 machine the sitnation is somewhat simpler when the redistri-
bution problem is a complete exchange. There are several algorithms available for
the complete exchange problem which carry out data transfer without contention
[10, 11]. However, when the redistribution problem is not a complete exchange, it
is obvious that these algorithms will result in some redundant work. Each node
will be trying to send data to some nodes for which it has no data. The simplest
way to counter this problem is to eliminate the redundant data “sends”. In addi-
tion to redundancy there may also be the problem of contention on the network.
We consider an example with 2048 data points, a 5-cube and a block size of 8. The
binary representations for source and destination nodes numbers are 71927262524 and
4 and 20 and node 3 must send data to nodes 12 anc‘l 28. The routing in iPSC/860
follows the e-cube algorithm, where the next node in the route is determined by
complimenting the least significant bit that does not match with the corresponding

bit in the destination. In this example the respective routes for data transfer from
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node 2 to both of its destinations are

9-0-14, (4.8)

2-0-4-20. (4.9)
Similarly for node 3 they are

3-2-0~4-12, (4.10)

J—-2-0-4-12-28. (4.11)

It is obvious from Eq. 4.8-4.11 that, irrespective of the way these transfers are
scheduled, there will be contention. For these reasons one of the complete exchange

algorithms from [10] bas been used in the redistribution section of the code.

4.5 Experimental results

We evaluated the performance of our implementation on Intel iPSC/860 for dif-
ferent block sizes and for different data sizes. The Intel iPSC/860 is a distributed
memory machine which can have up to 128 nodes. Internode communication is
done through a hypercube interconnection network. The experiments reported
here were carried out using all nodes of a 32 node machine. The results of these
experiments are summarized in Figures 4.4 through 4.7. In all the figures, the

quantity along the x axis is represented by its logarithm to the base 2.
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Figure 4.4 summarizes the results for variation in performance in terms of
Mflops per node as the data size is increased. The two lowest curves in the figure
are for the two extreme block sizes. The third curve gives performance when the
block size is approximately equal to the number of blocks and the top most curve
gives the best performance of any block size for a given data size. The curves
corresponding to the best performance, and the two extreme block sizes show a
similar trend. There is a rapid increase in the performance with increase in data
size in the beginning, which tends to saturate with sufficiently large data. To
explain the reason for this behavior we consider the communication characteristics
of the machine Intel iPSC/860 the cost of c0111111u11icgti011 is determined by the

equation
teomm = 164 + 0.398c + 29.953 (4.12)

where « is the number of bytes in the message and 3 is the distance between two
nodes [10]. The first term in the equation is the setup overhead. As « increases for
fixed 3, the fraction of total time used in the setup decreases. For small data sizes
the overheads are a significant fraction of the overall execution time and bring down
the performance. As the data size increases, the overheads become a smaller and
smaller fraction until they become insignificant, and the performance curve reaches
saturation. The curve for the mid sized blocks shows a much more curious trend.

For these block sizes a node sends data to only a subset of nodes, thus saving

7
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on setup overheads, but there is contention in the rearrangement process. For
smaller data sizes, the volume of data communicated is low enough for overheads
to be a greater factor in determining the performance, hence it is close to the best
performance. However, for large data sizes, the volume of data communication

being high, contention plays a more important role and brings the performance

down.
3 | . | |
2.5 F Best Performance\ R |
Mflops
per 1.5
Node
1
0.5 3
logy(b)
0 ! ] \ .

Figure 4.4: The variation in performance per node as datasize is increased.

The best performance for a given data size occurs when there is no contention
in the redistribution and the number of blocks are as close as possible to the block
size. This can be observed from Figure 4.5 which plots the performance per node as
a function of block size for a fixed data size. The top curve in Figure 4.5 gives the
performance of the FFT computation without rearrangement and the second curve
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gives the overall performance. These results indicate that while the performance
of computational section varies by small amounts, the overall performance shows
more noticeable differences. The variation in the overall performance is due to
the data rearrangement. The curve for the FFT performance tend to peak in the
middle. The reason for the slight variation in the FFT section performance lies
in the relative distribution of work between the three phases of the algorithm. In
Figure 4.6 we have plotted the effect of block size on relative distribution of work
in the three phases of the computational section. As expected, the fraction of
time taken by the first phase is maximum for the smallest block size and steadily
decreases as the block size increases. The third phase exhibits a reverse trend. The
region where both these phases have approximately equal work is also the region
which shows higher performance in the computational section curve of Figure 4.5.
Also notice from Figure 4.6 that the fraction of time used in the second phase
remains almost constant for all block sizes. The second phase takes more time

than the other two since it also involves internode commumnication.

The effect of data size on the communication and computation time of the
computational section of the code is shown in Figure 4.7. To plot this we chose the
best performance for every data size. With very small data sizes almost the entire
time is taken up by the communication. As the data sizes increase, computation

starts taking larger fractions of the execution time. The computation fraction
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Figure 4.5: The variation in performance as block size is increased.
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Figure 4.6: The distribution of work in the three phases with different block sizes.
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tends to saturate when the data sizes become sufficiently large. To explain the
reason we consider Eq. 4.12 again. Notice from Figure 4.7 that the saturation
occurs for o = 211, The value of 3 for the entire curve is 1. For this data size the

contribution from the overhead term in the expression is about 5%.

100 — , _ |
Computation
80 \ |
60 y -
. Communication
Time %
40 Saturation point
20 -
0 1 L L !
4 6 8 10 12 14 16

log,(n)

Figure 4.7: The relative contributions of computation and communication in the

computational section as the datasize is varied.

4.6 Summary

In this chapter an FFT implementation was given on a distributed memory parallel
machine which works for a number of data distributions commonly encountered

in scientific applications. We evaluated the performance of our implementation
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on the Intel iPSC/860. The results of our experiments indicate that the variation
in block sizes has more effect on the performance of the rearrangement section
than on the computational section. In the compntational section, the variation in
performance is not significant enough to make the choice of block size a eritical
issue. On a 32 node machine we obtained a peak performance of 124 Mflops, that is
3.875 Mflops per node (This Figure does not include the initialization costs which
are incurred only once for a given size FFT.) If we include the data rearrangement,

the performance decreases to 2.69 Mflops per node.
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Chapter 5

Fourier Transform of Block
Scattered Real Data Distribution

5.1 Introduction

In the previous chapter we discussed an implementation of the FFT algorithm for
block scattered data distributions. The implementation tacitly assumed the input
data to be complex. In Chapter 3 efficient parallel implementations of the FHT
and the RFFT algorithms for transforming real data were given. However, those
implementations are efficient only for a specific data distribution. The use of these
implementations without modification for other data distributions may require
internode communication in the beginning. The internode communication, being
very expensive on distributed memory machines, may eliminate the computational
advantage of the FHT and RFFT algorithms. It may even make the use of these
algorithms more expensive than the FFT algorithm. An alternative is to adapt the

restructuring to the given data distribution such that no rearrangement involving
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internode communication is required in the beginning.

A strategy for adapting the restructuring of data to block scattered distribu-
tions is suggested in this chapter. We give implementations for the restructured
RFFT and FHT algorithms on a distributed memory parallel machine for block
scattered data distributions with different block sizes. The issue of data rear-
rangement after the computation is also addressed, as with the complex FFT
implementation. The performances of these implementations were evaluated on
the Intel iPSC/860 and were also compared with the performance of the FFT

algorithm given in Chapter 4.

5.2 Parallel Implementation

The implementations presented in this chapter have certain features in common
with the implementation of the FFT algorithm from Chapter 4. Some of these

features are :

1. The algorithms work for block scattered data distribution with variable block

sizes.

2. The algorithms have three phases. The data required for the first and the

third phase are available locally, and the second phase needs off node data.
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. The amount of work in the first and the third phase varies with the block

size, but remains constant for the second phase.

. The distribution of work in the three phases is similar.

. Each algorithm has a computational kernel which is common to all three

phases. The kernels are different for different algorithms.

The main differences between them are :

1.

The basic unit of computation for the complex FFT algorithm is a butterfly,
while for RFFT and FHT algorithms it consists of four data points as shown
in Figure 3.3. (We refer to it as a group.) Also a group with index 0 is

computed differently from the other groups.

. The first stage of these algorithms, where sequences of size 1 are combined,

must be treated as a special case, since no group can be formed.

. Unlike the FFT algorithm, these two algorithms need at least four blocks

per node to be efficient. Less than four blocks per node would require initial

data rearrangement with internode communication.

A block is not maintained as an entity throughout the computation in the

FHT and RFFT algorithms.

. Some data rearrangement within the node is required in all three phases of

the two algorithms discussed here.
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6. The data rearrangements after the computation are vastly different.

A computational group of Figure 3.3 can be computed in parallel in two ways
similar to the butterfly in Chapter 4. This is illustrated in Figure 5.1. using a
computational group with a non-zero index from the FHT algorithm. The compu-
tation shown in Figure 5.1(b) has the disadvantages of twice the storage area and
twice the communication volume requirements of the one in Figure 5.1(c). The
computational load is identical in both approaches, unlike the butterfly. However,
the approach shown in Figure 5.1(b) divides a group between two processors. This
results in an unsuitable data distribution for the next stage. Hence, we must use
the approach shown in Figure 5.1(c).

The restructured FHT and RFFT algorithms require input data to be in bit
reversed order. This could be avoided in the FFT implementation by using the
decimation in frequency FFT algorithm which shifts the process of bit reversal to
the end. This is not possible with the restructured FHT and RFFT algorithms
since the formation of the grouping mentioned in Chapter 3 requires the data to
be in bit reversed order. However, arranging the entire data in bit reversed order
requires internode communication. A compromise can be reached by arranging
the data within the node in a bit reversed order. Recall from Chapter 3 that
the initial grouping is formed by putting four consecutive data items of the bit

reversed sequence in one group. In terms of binary representation of the indices,
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Figure 5.1: Two ways of computing groups in parallel.
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a bit reversed sequence of 2™ data points is represented as
2021 +eeln—1. (5.1)

The initial grouping is formed by putting all data items which have identical values
for bits 7p...7,—3 in one group. To verify that the bit reversal of the data within a
node allows the initial grouping to be formed, we consider a mapping of 2" length
data on 2% nodes, with a block size of 2® and the number of blocks on a node equal

to 2%. The data distribution is
in_*] ...ib.{.d, Z.b.*.,[..;] ...ib, Z.b_q ..io, (5.2)

where bits 2,_;...5544 give the block number, bits Z,44-1...25 represent the node
number and bits z,_¢..7p give the offset within a block. The distribution with bit

reversal within a node is

100+ 2b12bde - Tnmbe1y Lbbdm1 ooy brmbeedn—2in—1; Kk > b, (5.3)
1:0...?:1,_1, ib+d_]...ib, ib+d...i,L_1; k= b, (54)
io...ik_l,ib+,¢_1..zb,ik...ib_1zb+,[...in_1; kE<b (5.5)

The commas in all the equations separate the bits representing the three different
quantities, namely the block number, the node number and the offset within the
block. It can be easily seen from Eq. 5.3-5.5 that the conditions for forming a
grouping are met as long as bits 7,y and 7,_, are not a part of the node number
which is true for £ > 2. Following the argument from Section 3.3, one can see that
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the data for the first stage and the groups for the next k — 1 stages are available
within the node, when k > 2. The next d stages require off node data and the
last b stages are again computed within the node. The internode communication
during computation is carried out along decreasing order of dimension. That is, in
the first stage of phase 2 nodes differing in bit 754.4-1 exchange data. In the next
stage the nodes exchanging data with each other differ in bit Z,44—» and in the last

stage they differ in bit ¢,.

5.3 Algorithms

As mentioned earlier, the algorithms have a computational kernel fhtstep which
is common to all the three phases. The only difference between the kernels of the
two algorithms is the set of equations for computing the groups, hence we discuss
only the FHT kernel. The kernel is common to all nodes and computes all the
groups of a stage mapped onto a node. It assumes that the cosine and sine values
have been precomputed and arranged so that they are available in the right order

as needed. A FORTRAN call to the kernel can be made as follows:

call fhtstep(a,w,len, groups, of fset,dist, stride)

where the arguments are:
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a array containing the input sequence.

w array of coefficients.
len length of the input sequence.

groups number of groups differing in the values of coefficients.
offset  distance between the elements of a group.
dist distance between two successive identical groups.

stride  distance between two successive elements of w to be used.

The kernel dftstep essentially computes n/4 groups. The four data elements
that make a group are always available in two sets. The elements in each set are
consecutive to each other. Each group can be represented as consisting of elements
w(2),z(i+1),2(7),z(5+1). The values of ¢ and j are determined by the arguments
offset, groups and dist. Figure 5.2 illustrates this with 8 data points mapped
on a processor and two different sets of values for 7 and j. In Figure 5.2(b) the
values of ¢ and j are 0 and 2 respectively, while in Figure 5.2(c) they are 0 and
4 respectively. The psendo code given below describes the FFT algorithm using

"dftstep’. { This code is executed on each node }

begin{phase 1}
bitreverse {rearrange data on a node in bit reverse order }
twopoint(a) {first stage of the fht algorithm }

offset = 2 {distance between the elements of a group }
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dist = 4 {distance between two successive identical groups }
groups = 1 {number of distinct groups }
stride = b/2 { stride for w }
for i =1 to log,(n/b) — 1 do
thtstep(a,w,len,groups,offset,dist,stride)
offset = offset*2
dist = dist*2
groups = groups*2
stride = stride/2
end for
end {phase 1}
begin {phase 2 }
shuffle(a) {break each block into two subblocks shuffle them}
offset = n/2
dist = b/2
groups = dist/2
stride = 2
for i =0 to log,(p) — 1 do
{negh is node with d — i bit differing}

{exchange half the data with negh }
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negh = mynode @ 2¢-*
exchange(a(k),negh) {k = n*j/2+1, j is the value of (d — 7)** bit }
fhtstep(a,w,len,groups,offset,dist,stride)
end for
end {phase 2 }
begin {phase 3 }
inverse_shuffle(a) {recombine sub blocks from phase 2 }
offset = b
dist = offset*2
for : =1 to log,(b) do
groups = groups™2
thtstep(a,w,len,groups,offset,dist,stride)
offset = offset*2
dist = dist*2
end for

end {phase 3 }

The working of the algorithm is shown in Figure 5.3, with an example of 32
data points distributed over 4 nodes with a block size of 2. The numbers represent

the indices of the data. Step (a) in Figure 5.3 shows the initial data distribution
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Figure 5.2: Formation of different groups.
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and step (b) shows the data after bit reversal within a node has been carried out.
The first stage is computed without the formation of groups and is therefore not
;hown in the figure. The data movement of stage 2 is shown in step (¢). step (d)
shows the data rearrangement prior to phase 2. This step accumulates the data
to be sent out from a node. It is a much less expensive method than sending data
in various packets because of the communication overheads. The data exchange
between the nodes in the two stages of phase 2 is shown in steps (&) and (g). The
data movement with computation in the same two stages is shown in steps (f) and
(h). Step(i) shows data rearrangement within a node prior to phase 3. This step
ensures the simplicity and generality of the kernel. The final computational stage
is shown in step (i). Notice that a block ceases to exist in step (a) of the algorithm
and remains so until the end. It is restored only in the rearrangement section.
None of the steps involving data rearrangement within the node are expensive

relative to the overall cost.

5.4 Rearrangement

The FHT and RFFT algorithms give the output data in an ordering different from
that of the input in general. A careful look at Figure 3.3 reveals that the data are
displaced from their original position in computing a group. Internode communi-

cation in the second phase of the two algorithms also displaces the data. Hence,
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Figure 5.3: Steps in the computation of RFFT/FHT algorithms.
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as with the FFT algorithm, the data must be rearranged to return the output
sequence in the same distribution as the input sequence. The data movement dur-
ing the computational section of the algorithm can be followed using the binary
representation of their indices as with the FFT algorithm discussed in Chapter 4.
Unlike the FFT algorithm, the data movement in the FHT and RFFT algorithm
takes place in all three phases. The initial distribution and the distribution with
bit reversal within the node have been discussed in the previous section (see Eq.
5.1, 5.3, 5.4-., 5.5. Here the data movement of the distribution of Eq.5.4 only will
be discussed in detail since the other two are very similar.

The first stage in the two algorithms does not have any data movement. [n
the subsequent k — 1 stages which are computed within a node the data movement
consists of two steps. In a stage m two sequences z,(r) and 22(r) of length 2m~!
are combined to form a sequence of length 2™ (see Eq. 2.8,2.9 and 2.14,2.15). The
first step involves data movement in x5(r). The data items with even indices other
than zero exchange places with the next data item. For example data items with
indices 2 and 4 exchange places with data items with indices 3 and 5 respectively.
All the elements of @(7) and the first two elements of z5(r) remain in place. The

least significant bit in the binary representation after this step is determined by
in—m(in—m+2 + in—m+3~--7:n—l) & in—m+1 (56)
Let this expression be represented as j,_n41- In the second step the data items
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with even numbered indices in x,(r) exchange places with the odd numbered data
items in z1(r). Hence the data items with indices 1, 3 and so on from z;(r) ex-
change place with data items with indices 0, 2 on so on respectively from z(r).
In binary representation this is equivalent to exchanging bit 7,,_,, with bit jp_m41
determined in the first step. The data movement in the stages 2-4 with the distri-
bution of Eq. 5.4 is shown below:

Stage 2:

jn—l = in—l

200+ Tb—1s bbdm1++-Tby Lodee-Ino1ln_2
Stage 3:

Jn—2 = tp-3ln—1 Dl

20 e Tbe1 Ubgdm1 s+ bbs Db Jrm2bn—10n_3
Stage 4:

jn—3 = in—4(jn—2 + 7/71—1) @D tn-3
= Z?L—d(ln—-BZn—l D2+ Zn—-l) D tn-3

= in—4 (in—2 + Z'n-—l) & Z'n—'?:

200442615 Lod—1 ++-Pbs Tbder-Jn—3]n—-20n—1tn—q
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At the end of stage £ the distribution will be

10-++8b—15 Lbtd—1+-Lbs Jotd41---Jn-2n—12b4d {(5.7)

This is the data distribution at the end of phase 1.

The shuffle step just before the beginning of the second phase breaks the already
computed sequences of length 2* into two subsequences. {Note that the number
of such already computed sequences is exactly equal to the block size and their
length is equal to the number of blocks.) The subsequences thns created are then

forward shuffled once. This results in the following distribution

Jbtdg 100+ 8025 Lhopd—1++-Lbs b1 Jbtd 2w~ Tr2bm 1 Lhrt- (5.8)

This step is necessary since one half of each of the 2¢ length scquences must be
exchanged with a corresponding subsequence in another node. Shuffling of sub-
sequences ensures that all the data to be exchanged with another node are con-
tiguous. The data then can be sent in one step, thus encountering communication
overheads only once.

The data movement in the second phase involves three steps. The first step
exchanges data between the nodes and the next two steps move data for computa-
tion. The first step is identical to data movement in the second phase of the FFT
algorithm discussed in the Section 3.4. In step 2. at a stage r the data movement
in nodes having a value 0 in » most significant bits differs from that in the remain-
ing nodes. In nodes where 7 most significant bits are 1, the even numbered data
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items with a value 1 in at least one of bits in the offset and the most significant
bit exchange place with their next odd numbered neighbor. In nodes where at
least one of the r most significant bits in the node number has a value 1, all even
numbered data items with a value 1 in their most significant bit exchange places
with the next odd numbered data item. In the third step, the least significant

and the most significant bits exchange places. The first two stages of phase 2 are
shown here to illustrate these steps.

Stage 1
Lpopd—120--2b—2y Jbtd1 -+ Lby Loo1Tbpd 42+ Tn—20m—1bbtd
Jord = Ubpd=1-(Jotdt1 F Jotdtae + tnm1) D lo4d
= ib+d—l-(ib+d+1 + ib+d+2... + in—1) & 7:b+d

Jbdl0e 262y Totdt1-+-Lby Lba1Jbtdt2e - Jne28n~1%btd—1

Stage 2
U d =200+ L2y Jotd1Jb+dbbrd—3---bbs Lbm1Tbrdt2- - Jnm2bn—1Cbpd—1
Tbtd=1 = Cbid—2-(Uotd + Cbgdr1 + Jogdsz + - F tno1) B bppa
Jb4d=120--06-25 Jbtd41Jb+dlbbd—3--Tbs Ehm1Jbtd2---Jr—2n—1 btd—2
Following these steps the distribution at the end of phase 2 will be

Jb4120--26=25 Jorkd1 Jb4do+-Jb425 tb—1Jbd2--Jn—22n—1%b (5.9)
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At this point one inverse shuffle is carried out on the subsequences formed in the
beginning of phase 2. The purpose of this step is only to maintain the simplicity
of the computational kernel. With this step the data distribution at the end of

phase 2 is

1040 Bb15 Jobd1Jbbd - Jb42, Jb417b4d 42+ In—1%b (5.10)

The data movement in phase 3 of the algorithms is an extension of the data move-
ment in phase 1. Hence at the end of the computational section of the algorithms

the data distribution will be

J1ee-Jbs Jord41Jb+de--Jo+2, Jo41bt+d+2-+-En—1%0 (5.11)
When k& > b the final data distribution is

J1+-Jbs Jo+1Jb4d+2---Jn—bs Jotd+1Jb4d--Jb+2, Jnmbt1 - Jn~28n—1%0, (5.12)
and with £ < b the final data distribution is

Tt Tk Jodt1Totd - -Jot2y Jht1--Jo41Jb+d42 -+ Jn—2n—1%0 (5.13)
In all three equations 5.11-5.13, the expression for node number is

Jbtdt1Tb+d---Jb+2- (5.14)

The data distribution required at the end of the rearrangement section of the
algorithms is
1001 bn—2bn—1 (5.15)
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It is obvious from Eq. 5.14 and 5.15 that a comparison between bits appearing in
source and destination node numbers does not determine the nature of rearrange-
ment problem. Here the number of source and destination nodes is not fixed. To
illustrate Ell‘i_smwe again consider the example with data size 1024 and block size 8

distri_butéd over 4 nodes. The four bits in the node number at the end of phase 3

are

Js = i7.19D g
Jr = te.(is + %) Dir
Jo = ts.(tr+ 15+ 29) B is

Js = talte+ir+is+19) D

The destination node number is given by 13242516 If we consider destination node
13 ,then =1, 15 =0, 14 = 1, i3 = 1. This fixes the values of bits j5 and j5 in
the source node number. Hence node 13 will receive data from nodes 3, 7, 11 and
15. However if consider node 12, we can fix the value of only g in the source node
number. Heince this node will receive data from nodes 0, 1, 3, 4, 5, 8, 9, 12 and 13.
For node 14 it is not possible to fix the value of any bit in the source node number,
hence it will receive data from all the other nodes. Here due to the difference in
the number of source nodes, contention is likely to occur. However, when none
of bits can be fixed for any node number, it is possible that the exchanges are
scheduled without contention. This is likely to occur for the extreme block sizes
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where there are no common bits in the source and destination node numbers. It
must be noted here that even with all nodes exchanging data with all other nodes,
the rearrangement problem may not be exact equivalent of the complete exchange
problem of [11], since the amount of data being exchanged may not be the same

for all nodes.

5.5 Experimental Results

The FHT and the RFFT algorithms with block scattered data distributions were
implemented on the Intel iPSC/860 machine to evaluate their performance. We
conducted two sets of experiments with these implementations. The first set of
experiments evaluated the performance of the various sections of the codes and
the variation in performance with the change in block size and data size. The
second set of experiments compared the performance of the FHT and the RFI'T
algorithms with the FFT algorithm described in Chapter 4. The experiments were
conducted on all nodes of a 32 node machine.

The results of the experiments to evaluate the performance of FHT and RFFT
algorithms are summarized in Figures 5.4 through 5.11. Figures 5.4 and 5.5 show
the execution times for the FHT and the RFFT algorithms respectively. Each
figure has two curves showing the best and the worst time of any block size for a

given data size. The curves for both the algorithms are almost identical in trend,
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but the FHT algorithm shows slightly better performance. The slight difference
in the performance of the two algorithms is due to the rearrangement section of
the code. The volume of data communication is higher in the RFFT algorithm
since it involves complex numbers. Figures 5.6 and 5.7 show the variation in the
execution time for a fixed data size as the block size is increased. The lower curves
in both the figures show the time taken by the computational section alone. The
top curves include the time taken by the rearrangement of data. The top curves
show the reason for a difference between the best and the worst performances of
the two algorithms. The time taken by the computational section does not vary
with the block size, but the rearrangement section is affected by this variation.
The rearrangement section takes a longer time when the number of block sizes
is approximately equal to the number of blocks. Recall that a similar trend was
observed in the FF'T algorithm, where contention was responsible for deterioration
in the performance. Contention is also likely to occur in the rearrangement section
of the FHT and RFFT algorithms when the number of blocks is of the same
order as the block size. This is because different nodes have a different number of
destinations for their data. Figures 5.8 and 5.9 show the relative contribution of the
three phases in the overall execution time. The relative contribution of the second
phase is almost constant for both the algorithms. It is also the largest since this

is the only phase involving internode communication. Figures 5.10 and 5.11 show
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the relative contribution of the internode communication and computation in all
three phases combined. For small data sizes a very large fraction of time is taken
by communication because the setup overheads constitute a significant fraction
of total execution time. As the data sizes grow, the fraction contributed by the
overheads reduces, thus reducing the relative contribution of the communication
time. When the overheads become insignificant, the relative contribution due to
communication saturates. All of these trends are identical for the two algorithms
presented in this chapter and similar in to those of the FFT algorithm presented

in the Chapter 4.

12 F T T T ( T ]
1k -
0.8 | 7
Time
in 06k Worst performance -
Sec Best performanc
0.4 7
0.2+ 7
0 ! 4 T A {
4 6 8 10 12 14 16

loga(n)

Figure 5.4: Variation in performance with data size for the FHT algorithm.
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Figure 5.5: Variation in performance with data size for the RFFT algorithm.
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Figure 5.6: Variation in FHT Performance with block size.
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Figure 5.7: Variation in RFFT Performance with block size.
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Figure 5.8: Relative contribution of the three phases of the FHT section with

different block sizes.
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Figure 5.9: Relative contribution of the three phases of the RFFT section with

different block sizes.
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Figure 5.10: Relative contribution of communication in the computational section

of the FHT algorithm.
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Figure 5.11: Relative contribution of communication in the computational section

of the RFFT algorithm.

The results of comparison between the FHT, RFFT and FFT algorithms are
shown in Figures 5.12-5.17. Figure 5.12 shows the best execution time of any
block size for a given data size for all the three algorithms. Figure 5.13 shows
similar curves for the worst execution times. In both the figures, FFT algorithm
is the slowest and FHT algorithm is the fastest. The reason for the FFT being
the slowest is that it uses complex arithmetic and has twice the communication
volume of the other two algorithms in the computational section. This can be
verified by observing Figure 5.14. Figure 5.14 shows the time taken by the three
algorithms without including the rearrangement section. Here the FHT and RFFT

algorithms have identical time, while the FFT algorithm takes longer. Same is true
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of the time taken by internode communication in the three algorithms as shown in
Figure 5.15. The difference between the FHT and RFFT algorithm performance
in Figures 5.12 and 5.13 can be attributed to the difference in the communication
volume of the two algorithms in the rearrangement section. The variation in the
performance of the three algorithms with block size is shown in Figure 5.16. All
three curves peak in the middle, where the block sizes and the number of blocks
are of the same order. The FFT algorithm also takes more time for a block size
of 1, because the rearrangement for that block size is not a complete exchange
and involves contention. There is also a difference in the general trend of the
effect of block size on the rearrangement section of the FFT algorithm from those
of the RFFT and FHT algorithms (see Figure 5.17. The curves for the RFFT
and FHT algorithms have similar shape which differs from the curve for the FFT
algorithm. The difference in the actual time taken by the rearrangement section
of the FHT and RFFT algorithms is because of the communication volume. The
data being rearranged in the FHT algorithm consist of real numbers while they
are complex numbers for the RFFT algorithm. The curve for the FFT algorithm
lies between the curves for the RFFT and FHT algorithms. The reason for this
curious behavior can be attributed to the difference in the data distribution at the
end of the computational section. At extreme block sizes, the FFT and the RFFT

algorithms take approximately the same time in rearrangement. This indicates that
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for those block sizes the rearrangement problem for REFFT and FHT algorithms is
same as the complete exchange. However, when the order of block size is the same
as the number of blocks, the FFT algorithm curve is closer to the FHT algorithm
curve. This indicates that for these block sizes, the data distribution of the FFT
algorithm is more suitable for rearrangement than the other two algorithms. The
FHT algorithm is close in its performance to the FFT algorithm because it deals

with real numbers and therefore has less communication volume.

0.8
Time

Sltlalc 0.6

Figure 5.12: Comparison of the best performances of the FFT, the RFFT and the

FHT algorithms.
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Figure 5.14: Comparison of execution times in the computational section.
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Figure 5.16: Comparison of variation in performance with block size.
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Figure 5.17: Comparison of the time taken in the rearrangement section.

5.6 Summary

In this chapter, implementations were given for the FHT and the RFFT algorithms
which work for block scattered data distributions with different block sizes on
distributed memory machine. A 32 node Intel iPSC/860 machine was used to
evaluate these implementations. The performance of these implementations was
compared with that of the FFT algorithm which also works for block scattered
data distributions with different block sizes. Our experiments indicate that the
use of FHT and RFFT algorithms is more efficient for computing the DFT of real
data. The FHT algorithm gives the best performance of the three algorithms.

Unless the transformed data are required in the complex form the FHT algorithm
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is the best choice. However, if the block size is such that less than 4 blocks are
mapped on a node, the FFT algorithm must be used. The variation in performance
with the block size is very similar in all the three algorithms and the FHT and
RFFT algorithms consistently outperform the FFT algorithm. There is very litile
variation in the performance of the computational section of the algorithms with

the block size.
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Chapter 6

Summary and Future Studies

6.1 Summary

In this dissertation we presented parallel implementations for computing discrete
Fourier transforms on distributed memory machines. Efficient implementations
were also given for computing the DFT of real data. The implementations pre-
sented here compute DI'T for block scattered data distributions with different
block sizes. The block scattered data distributions are extremely useful for sci-
entific computations and encompass the linear and scattered data distributions.
These algorithms can be used without an initial data rearrangement in applica-
tions having block scattered data distributions. The only constraint is that for
computing the DFT of real data, at least four blocks must be mapped on a node.
The algorithms also return the output data in the same distribution as the input.
Each algorithm consists of two sections; one computes the transform and the other

rearranges data in the same order as the input.
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There is a threshold in the size of data below which these implementations do
not give a sufficiently good performance. The threshold is mainly due to the com-
munication overheads which are very significant for small data sizes in distributed
memory parallel machines. The relative contribution of the communication over-
heads decreases as the data size is increased. The overall performances of all three
algorithms have similar trends. Their performance is worst when the number of
blocks and block sizes are of the same order. The block size has very little effect
on the performance of the computational section of the algorithms. However, the
performance of the rearrangement section vary greatly with the block size, and
account for the variation in the overall performance.

The very slight variation in the performance of the computational section is
likely to be because of the variation in the execution times of different runs. The
execution time for the same block and data size varies from one run to another
as can be observed from Figures 6.1 and 6.2. In Figure 6.1 execution times are
shown for 50 different runs of the FFT algorithm on 32 nodes with 16 data points
per node and the block size of 4. Figure 6.2 is similar to Figure 6.1 except that
there are 64k data points per node and the block size is 256. It can be observed
from the two figures that the relative variation is larger for smaller data size, when
the contribution from the communication overheads is significant. The RFFT

and the FHT algorithms give almost identical performance in the computation
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section, which is about 1.3 times faster than the FFT algorithm. The RFFT
algorithm shows the worst performance in the rearrangement section while the
FHT algorithm gives the best performance, even though the two have identical
data distributions. The difference is because of the difference in the volume of
data being moved by the two algorithms. The difference between the RFFT and
FFT performances is due to the different data distributions even though they have
identical volume of data. For all block sizes, the RFFT and FHT algorithms

outperform the FFT algorithm.

0.003 -
Time N
in

Sec
0.00285 =

1 L | { { i {

0 5 10 15 20 25 30 35 40 45 50

Sample Number

Figure 6.1: Variation in timing for different samples with 16 data points per node.

The implementations given in this work can be easily transported to other
distributed memory machines with different architectures. This is especially true

of the computation section because of the kernel. The computational kernels for all
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Figure 6.2: Variation in timing for different samples with 32,678 data points per
node.

three algorithms are very simple and regular in their structure and this makes the
task of transporting them easy. However, the rearrangement problem is specific to a
machine, especially where the data are exchanged between a subset of nodes. Much
better performances can be obtained by optimizing (exploiting the architectural
features such as cache, number of registers, pipelining etc. of a processor) the

kernels and internode communication for a specific machine (about 25% expected

for iPSC/860).
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6.2 Suggestions for Further Study

The implementations suggested in this dissertation use the FFT, RFFT and the
FHT algorithms when data size and block size are a power of 2. There are several
variants of the FFT algorithm which work for arbitrary size data. It would be use-
ful to find their implementations on distributed memory parallel machines which
can support block scattered data distributions with arbitrary block sizes. It would
also be interesting to see how the rearrangement problem varies with different
architectures and different routing algorithms. Here the rearrangement problem
was studied only on an MIMD hypercube based machine. The performance of
the rearrangement section is likely to be affected by the interconnection network,
the strategy for sending and receiving messages and the routing of messages. In
addition, whether a machine is SIMD or MIMD is also likely to play a role in the
rearrangement of data. It could be useful to find routing algorithms specific to
the applications similar to the ones described in this work. A comparative study
of the performance of these algorithms on different distributed memory architec-
tures can also help to determine the type of machines most suited for applications
involving extensive use of Fourier transforms. It would also be interesting to see
the performance of multidimensional transforms on distributed memory machines.
Also, there is need to study similar general implementations for the shared memory

architectures.
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