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ABSTRACT

A FRAMEWORK OF COOPERATING AGENTS HIERARCHIES 
FOR LOCAL-AREA MOBILITY SUPPORT

Ayman Adel Abdel Hamid 
Old Dominion University, 2003 

Director: Dr. Hussein Abdel-Wahab

Host mobility creates a routing problem in the Internet, where an IP address reflects 

the network’s point of attachment. Mobile IP, relying on a mapping between a home 

address and a care-of address, and a home registration process, is widely accepted as a 

solution for the host mobility problem in wide-area mobility scenarios. However, its 

home registration requirement, upon each change of point of attachment, makes it 

unsuitable to handle local-area mobility, resulting in large handoff latencies, increased 

packet loss, and disrupted services. In this dissertation, we introduce a local-area mobility 

support framework for IPv4 based on the deployment of multiple cooperating mobility 

agents hierarchies in the foreign domain. First, we introduce a hierarchy model offering a 

backward compatible mode to service legacy mobile hosts, unaware of local-area 

mobility extensions. Second, for intra-hierarchy handoffs, we identify several design 

deficiencies within the current Mobile IP hierarchy extension proposal, and present an 

enhanced regional registration framework for local handoffs that encompasses a replay 

protection identification value dissemination mechanism. In addition, we present two 

novel registration frameworks for home registrations involving local handoffs, in which 

we identify the dual nature of such registrations, and attempt to emphasize the local 

handoff aspect. One technique, maintains tunneling of data packets to the MH (Mobile 

Host) through an old path until a home registration reply is received to set up the new 

path. In contrast, the other technique adopts a more proactive bold approach in switching 

immediately to the new path resulting in a reduction of the handoff latency. Third, for 

inter-hierarchy handoffs, we present a scalable, configurable, and cooperation based
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framework between mobility agents hierarchies to reduce the handoffs latencies. An 

attempt is made to exploit the expected network proximity between hierarchies within the 

foreign domain, and maintain a mobile host’s home-registered care-of address unchanged 

while within the same foreign domain. In addition, the involved registration signaling 

design requires a reduced number of security associations between mobility agents 

belonging to different hierarchies, and copes with the fact that the mobile host’s home- 

registered care-of address might not be reachable. The proposed mechanisms are 

evaluated qualitatively and analytically, and their performance is investigated through 

network simulations using our extension of Columbia University’s IP Micro-mobility 

software (CIMS), an ns-2 source code extension. The intra-hierarchy handoffs processing 

mechanisms achieve a sizable reduction in UDP packet loss, and maintain better TCP 

throughput in the case of a distant home agent, versus a base Mobile IP implementation. 

Moreover, the cooperation-based intra-hierarchy handoffs processing techniques are 

successful in achieving the same results (UDP packet loss reduction, and better TCP 

throughput) versus a non-cooperative approach for a distant home agent. Fourth, The 

need to evaluate the performance of our mobility support mechanisms prompted us to 

design and implement a local-area mobility network simulation framework. We extended 

CIMS to include the capability to model a true foreign domain with multiple mobility 

agents’ hierarchies with an arbitrary number of levels. In addition, our implementation 

encompasses several implementation enhancements including the support for regional 

registrations, periodical home registrations, and the smooth handoff mechanism.
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1

SECTION I 

INTRODUCTION

The increasing availability of wireless communication technologies and the 

proliferation of portable computing devices have made realistic a mobile computing 

paradigm: users, on the move, can seamlessly access network services and resources, 

from any-where, at any time. However, host mobility presents a challenge for the TCP/IP 

based Internet, since an IP address reflects a host’s point of attachment to the network. 

The Internet Engineering Task Force (IETF) standardized Mobile IPv4 [43] and is in the 

process of issuing a standard for Mobile IPv6 [33] as network layer solutions for the host 

mobility problem for IPv4 [50] and IPv6 [20], respectively. Mobile IP can handle wide- 

area mobility (macro-mobility) and local-area mobility (micro-mobility), although more 

suited to handle the former, since a mobile host is required to inform its, possibly distant, 

home network whenever it changes its point of network attachment. Such requirement 

results in unnecessary large protocol-signaling overhead, large handoff latencies, and 

potential packet loss in the local-area mobility scenario, which disrupts ongoing 

connections directly affecting a mobile host’s applications and services. The resulting 

overhead and handoff latencies are even higher when the mobile host experiences high 

handoff frequencies, e.g., in wireless networks with small size cells, where the mobile 

host crosses cell boundaries more frequently. In this dissertation, we present our view and 

efforts in developing a network layer mobility support solution, within the Mobile IP 

framework, capable of efficiently handling local-area mobility.

1.1 Overview

Host mobility refers to the function of allowing a mobile host to change its point of 

attachment to the network, without interrupting IP packet delivery to/from that host [39]. 

Host mobility presents a challenge for the TCP/IP based Internet, since an IP address 

reflects a host’s point of attachment to the network. During an active TCP session, if the

The journal model for this dissertation is the IEEE/ACM Transactions on Networking.
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2

source IP address, or the destination IP addresses change, due to a change of point of 

attachment, the TCP session breaks. If no special handling is provided to deal with host 

mobility, packets addressed to a mobile host will be routed to the mobile host’s home 

network, not to its current location. This problem occurs because an IP address serves a 

dual purpose: a routing directive in the network layer and an end point identifier in the 

transport layer [7],

The Primary design goal of mobile host protocols is to allow true mobile operation, 

so that the mobile host can remain in almost continuous contact with the network 

resources needed by its applications. Using these protocols, neither the system, nor any of 

the applications running on the system need to be reinitialized or restarted, even when 

network connectivity is frequently broken and reestablished at new points of attachment 

[44]. A change of access point while connectivity is maintained is typically called a 

handoff. Note that solutions that require mobile hosts to be restarted after migration 

support portability and not mobility.

Several solutions have been proposed for the host mobility problem, and some 

attempts have been made to contrast and compare such solutions [4], [23], [56]. In 

general, such solutions can be classified as network layer, application layer, and end-to- 

end solutions. Network layer solutions have the advantage of being fully transparent to 

upper protocol layers but require modifying the deployed IP base. Such solutions 

generally adopt a two-level addressing architecture with a home address and a care-of 

address. A recent survey of network layer mobility solutions can be found in [7] where 

the key mechanisms of any network layer solution have been identified. The identified 

mechanisms include an address translation mechanism to map the home address to the 

care-of address, a packet forwarding mechanism to tunnel the packets destined to the 

home address to the location of the care-of address, and a location management 

mechanism to update the mobile host's location. An application layer solution for the host 

mobility problem has been proposed in [65]. The solution is based on the Session 

Initiation Protocol (SIP) [58] which is an application-layer protocol used to set up and 

tear down unicast and multicast multimedia sessions. This approach aims at efficiently 

supporting real-time communication by providing mobility support through SIP, but 

proposes using Mobile IP for TCP connections. Recently, an end-to-end approach to host

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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mobility [59] has been proposed exploiting the secure dynamic updates feature within the 

Domain Name System (DNS) in order to update a mobile host’s current point of 

attachment at its home network. In addition, a new end-to-end TCP option has been 

introduced to support secure established connection migration while faced with an IP 

address change.

Mobile IP [43], [33] presents a network layer solution for the host mobility problem 

in the Internet for both wired and wireless networks. For wireless networks, it assumes 

that the Mobile Host (MH) can communicate over a wireless link with a Base Station 

(BS), which is statically connected through a fixed wired infrastructure to the Internet.

Mobile IPv4 [43] deploys Mobility Agents (MA) in the home network and the visited 

network. The MH is associated with two IP addresses: Its permanent home IP address 

which serves as an end point identifier, and a transient care-of IP address which reflects 

its current point of attachment, and serves as a routing directive at the network layer. The 

care-of address can be the address of a Foreign Agent (FA) in the visited network, or can 

be a collocated care-of address, which the mobile host may dynamically acquire on the 

visited network through the Dynamic Host Configuration Protocol (DHCP) for example. 

The FA is a router in the foreign network that acts as a mobility agent. Whenever a 

mobile host is away from home, it registers its current care-of address with its Home 

Agent (HA) and is responsible for renewing such home mobility binding. The HA is a 

router that acts as a mobility agent in the home network, and intercepts any datagrams 

destined to the mobile host’s home address, and tunnels them to the registered care-of 

address. A host in the Internet communicating with the MH is termed a Correspondent 

Host (CH). Mobile IPv4, in its base form, suffers several drawbacks including the 

requirement that the MH informs its HA at every change of care-of address, and the 

routing of data packets from a CH to the MH’s HA, which in turn tunnels such packets to 

the current care-of address, while data packets originating from the MH are routed 

directly using normal IP routing. The latter drawback is termed triangular routing. The 

route optimization enhancement [47] attempts to alleviate such drawback by introducing 

mechanisms to inform a CH of the MH’s current care-of address. In addition, it includes 

a smooth handoff mechanism by which the old FA is informed about the MH’s new FA in 

order to reduce potential packet loss at the old FA.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Mobile IPv6 [33] only deploys a HA in the home network since foreign agents are no 

longer needed because of IPv6 features which allow mobile nodes to operate in any 

location without any special support from local routers. The MH informs the HA and its 

corresponding hosts about its current care-of address through a binding update 

mechanism. Although base Mobile IPv6 does not deploy mobility agents in the foreign 

domain, several extensions have been proposed to reduce the number of exchanged 

binding updates and improve the handoff delay by deploying mobility agents in the 

foreign domain, e.g., Hierarchical Mobile IPv6 (HMIPv6) from INRIA [14], and the 

Mobile IPv6 regional registration approach from Nokia [38].

A special class of network layer solutions takes advantage of multicast technology 

[19], which provides a mechanism for location independent addressing and packet 

delivery to a group of hosts that subscribe to a multicast group. In addition, it introduces 

efficient mechanisms for hosts to dynamically join or leave a multicast group. As stated 

earlier, a network layer solution for the host mobility problem involves specifying 

mechanisms for address translation, packet forwarding, and location management of 

mobile hosts. Recognizing the similarity in the fundamental nature between the two 

problems, Mysore and Bharghavan [41] suggest using multicast communication as the 

sole mechanism to provide addressing and routing services for mobile hosts. In contrast, 

the Deadulus approach [6] uses multicasting from the HA to the BSs in the vicinity of the 

MH to achieve fast handoffs and to reduce packet loss during handoffs. Hence, 

multicasting is used in a more restricted fashion while preserving the two-level 

addressing architecture with the care-of address being a multicast address. The major 

drawback of such solutions is the reliance on the ubiquitous deployment of multicast 

technology and supporting mechanisms, e.g., multicast address allocation schemes [63].

1.2 Motivation and Objective

One of the main drawbacks of base Mobile IP is being unsuitable to handle local-area 

mobility (Intra-domain mobility, mobility within a defined local domain, or local 

coverage area) because of the requirement that the MH must inform the home network 

upon a change of care-of address. Such requirement induces large protocol signaling 

overhead with a possibly distant HA, resulting in large handoff latencies, increasing the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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possibility of potential packet loss at the old care-of address until the HA is informed of 

the new care-of address. Such drawback has prompted researchers to design host mobility 

protocols more suited to better handle a local-area mobility pattern (Intra-domain 

mobility) while relying on base Mobile DP to handle the wide-area mobility scenario 

(Inter-domain mobility). A common idea exploited in all such protocols is to move some 

of the HA functionality to a designated mobility agent located within the local domain 

that the MH is currently visiting. Consequently, a change of care-of address results in 

protocol signaling confined to the local area at hand, reducing handoff latencies and 

potential packet loss. Such local-area mobility management has been recently denoted as 

Localized Mobility Management (LMM), and its main requirements have been identified 

in [68].

A number of proposals, within the Mobile IP framework, exist to handle local-area 

mobility, without incurring any large handoff latencies, e.g. [21], [30], and [38]. Other 

researchers have optimized their local-area mobility solutions towards the wireless 

network environment, e.g., [9] and [55]. In addition, Cellular IP [64] targets the local- 

area mobility problem in an IP based cellular network

The regional registration approach [30], a LMM scheme for Mobile IPv4, deploys 

one or more foreign agent hierarchies within the foreign domain. The presence of a 

mobility agents hierarchy creates an old path and new path (and hence, an old FA and a 

new FA) towards the MH during a handoff, hence permitting the closest capable foreign 

agent, the crossover FA1, in the hierarchy to respond and handle the MH’s handoff, in 

contrast to a distant HA managing each individual handoff. Fig. 1 depicts an example of a 

MH’s handoff within a foreign domain deploying a single FA hierarchy. We analyzed 

and modeled the operation of the regional registration approach for Mobile IPv4, which 

enabled us to identify potential race conditions and shortcomings within its registration 

processing framework, e.g., its full dependence on the smooth handoff mechanism [47] 

being supported by both the MH and the FA hierarchy, and the lack of an efficient 

scalable approach to handle inter-hierarchy handoffs. Modeling and overview of the

1 The crossover FA is the first common FA between the old and new path.
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regional registration approach for Mobile IPv4 is presented in section II, while its critique 

and shortcomings are presented in section HI.

Root Foreign domain
FA

FA2
Old path

New path

' MH 'MH

The MH is performing a 
handoff from FAg to FA5

Fig. 1. A mobile host’s handoff within a foreign agents hierarchy.

The objective of our work is to provide a local-area mobility support framework, 

within the Mobile IP framework, capable of efficiently handling local movement 

scenarios, alleviating the expected large protocol signaling overhead and large handoff 

latencies experienced with base Mobile IP. In addition, we require that the framework 

provide the same level of security as base Mobile IP by offering authentication and replay 

protection for all protocol messages. Furthermore, we do not assume the availability of 

the smooth handoff mechanism as an integral component of our framework.
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We choose to adhere to the design guidelines of Mobile IP, in using generic mobility 

agents in the foreign domain, not restricting the placement or required functionality of 

such agents to any specific access technology. Moreover, we reuse the idea of deploying 

mobility agents’ hierarchies in the visited domain albeit introducing our own framework 

for hierarchy-optimized processing of the MH’s handoff for intra-hierarchy handoffs. In 

addition, we propose a novel cooperation-based approach between such hierarchies 

within the same foreign domain reducing inter-hierarchy handoff latencies as well. Our 

local-area mobility support framework was designed based on Mobile IPv4, although the 

ideas of hierarchy-optimized processing and cooperation between hierarchies are generic 

enough to be adapted to fit the specifics of a hierarchy-based Mobile IPv6 LMM scheme, 

e.g., the Mobile IPv6 regional registration approach [38].

1.3 Contributions

Our local-area mobility support framework deploys multiple cooperating foreign 

agent hierarchies within a foreign domain, e.g., a university campus, or a corporate site, 

where a novel hierarchy-cooperation feature permits reducing inter-hierarchy handoff 

latencies (Fig. 2). The roots of the FA hierarchies can be used as care-of addresses for the 

MH within such foreign domain. The framework relies on a regional processing 

paradigm that localizes the required registration processing when handling a MH’s local 

handoff. In brief, the MH uses a regional registration message for intra-hierarchy 

handoffs, or a specially formulated home registration message for inter-hierarchy 

handoffs in lieu of a home registration message, to signal the fact that a local handoff is 

in effect. For intra-hierarchy handoffs, the regional registration message is processed by 

regional foreign agents within the current hierarchy without involving the HA. For inter­

hierarchy handoffs, the specially formulated home registration message is processed 

using a cooperation approach between the new FA hierarchy and the FA hierarchy having 

its root as the current MH’s care-of address. If deemed necessary, e.g., due to the failure 

of the current care-of address, the home registration is actually forwarded to the HA for 

regular registration processing.

Our framework attempts to alleviate the observed shortcomings with the regional 

registration approach for Mobile IPv4 [30], albeit reusing the nucleus idea of supporting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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mobility by deploying a number of mobility agents’ hierarchies in the visited domain, and 

adopting a regional processing paradigm, whenever possible, even for inter-hierarchy 

handoffs. Our aim is to take advantage of the expected network proximity between FA 

hierarchies belonging to the same foreign domain, in order to optimize handoff delay for 

inter-hierarchy handoffs.

Foreign Domain

Hierarchy cooperation

FA 

Hierarchy n
FA 

Hierarchy 1

FA 

Hierarchy 2
MH

! m h

------- 1
MH

Fig. 2. A number of cooperating foreign agent hierarchies in the foreign domain.

The desired local-area mobility support framework requires addressing the following 

issues: foreign agent hierarchy model, registration processing for intra-hierarchy 

handoffs, registration processing for inter-hierarchy handoffs within the same foreign 

domain, and performance evaluation of the resulting local-area mobility support
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framework. We briefly present our approach to resolve each the aforementioned issues 

highlighting our contributions.

Foreign Agent Hierarchy Model

The foreign agent hierarchy model defines hierarchy layout and mobility 

agents’ advertisements. In section III, we present our adopted model which hides 

the structure of the hierarchy from visiting MHs. In addition, it provides a 

backward compatible mode of operation, if a legacy MH is not equipped to handle 

local-area mobility extensions [2],

Registration Processing for Intra-hierarchy handoffs

We identify the possible types of MH’s registrations as regional, home, and 

home registrations involving local handoffs2. First, we introduce an improved 

regional registration processing framework, which avoids the identified race 

conditions within the regional registration framework, while still ensuring the 

consistency of tunneling state within the FA hierarchy. Moreover, we propose a 

new replay protection information update mechanism in order to ensure 

successful future registration processing by upper levels in the FA hierarchy.

Second, we identify a double purpose for home registrations involving local 

handoffs: a change of local care-of address, and renewal of home mobility 

binding. Consequently, we treat such registration as a compound home and 

regional registration and present two new techniques for processing home 

registrations involving local handoffs. The two new techniques optimize the local 

handoff processing by exploiting the existence of an old and new path towards the 

MH during its handoff. The first technique attempts to maintain the old path 

“alive” until a registration reply is received from the HA to set up the new path. 

Such task is performed by maintaining the old path active for an estimated 

amount of time, which is computed as a function of previous response times seen 

by the HA replies, and the remaining MH’s registration lifetime. The second 

technique follows a non-traditional proactive approach in immediately

2 Although a home registration, old and new paths exist on the FA hierarchy towards the MH during 

the handoff process.
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acknowledging the handoff from the new path to the old path without waiting for 

the HA reply, hence emphasizing the local handoff aspect, for which the HA 

should not be involved. Both techniques obey our imposed requirement in 

providing authentication and replay protection for all exchanged protocol 

messages through a set of proposed protocol messages’ extensions.

Section III presents the design details, analysis, and performance evaluation, 

through network simulation, of the suggested regional and home registration 

processing frameworks. Simulation experiments with one foreign agent hierarchy 

in the foreign domain have demonstrated the effectiveness of the proposed 

approaches in reducing UDP packet loss, and achieving better TCP throughput 

when compared to a base Mobile IP approach.

Registration Processing for Inter-hierarchy handoffs

We introduce a novel scalable and configurable cooperation-based approach 

between FA hierarchies to reduce inter-hierarchy handoff latencies [1], [2]. Our 

approach relies on configurable cooperation between the root FAs for the 

deployed hierarchies, in a manner that attempts to localize the registration 

processing for the MH’s handoff. In addition, such cooperation is achieved using 

a minimum number of security associations [35] between deployed foreign agents 

in different FA hierarchies; hence scaling with a large number of such hierarchies. 

Section IV introduces design details, security associations’ requirement analysis, 

and performance evaluation of our cooperation-based approach. Network 

simulation experiments have demonstrated the cooperation-based approach’s 

effectiveness in reducing UDP packet loss and achieving better TCP throughput 

when compared to a non-cooperative approach.

Performance Evaluation

We adopted network simulation as the tool to evaluate our mobility support 

framework. The network simulator ns-2 [40] includes an implementation of 

Mobile IP [43]. ns-2 is widely used in the research community because of source 

availability, and possibility of components reuse and extension. The Columbia IP 

Micro-Mobility Software (CIMS) [15], an ns-2 source code extension, provides 

implementations for a suite of micro-mobility protocols including a simplified
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abstraction of the FA hierarchy approach [30] without an actual implementation 

of the regional registration mechanism. CIMS implementation allows constructing 

a 2-level foreign agent hierarchy, and imposes a restriction that the root of the 

hierarchy must be the MH’s HA. To the best of our knowledge, no network 

simulation tool provided capabilities for the construction of a true foreign domain 

with a number of deployed foreign agent hierarchies with an arbitrary number of 

levels. Section V presents a network simulation framework for local-area mobility 

that extends the design and functionality of CIMS to implement our proposed 

mechanisms for local-area mobility support. In addition, a novel foreign domain, 

and FA hierarchy configuration approach and implementation are introduced. 

Moreover, our CIMS-extension implements the regional registration approach, 

and the smooth handoff mechanism.

In conclusion, our contributions in this dissertation can be stated as follows.

1. A local-area mobility support framework that deploys multiple cooperating 

FA hierarchies within a foreign domain. The framework encompasses the 

following mechanisms providing authentication and replay protection for all 

mobility protocol messages.

a. An improved regional registration processing technique for intra­

hierarchy handoffs;

b. Two new home registration processing techniques for home 

registrations involving local handoffs, emphasizing the local handoff 

aspect and taking advantage of the compound nature of such 

registrations;

c. A novel scalable and configurable cooperation-based approach 

between FA hierarchies and relevant processing to efficiently handle 

inter-hierarchy handoffs.

2. A network simulation framework for local-area mobility implemented as ns-2 

design and source code extensions. The simulation framework implements our 

local-area mobility support solution and allows modeling a foreign domain
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comprised of a number of foreign agent hierarchies, each with arbitrary 

number of levels.

1.4 Outline

The rest of this dissertation is organized as follows. Section II introduces background 

information and related work for local-area mobility protocols, and host mobility 

protocols in general. Section HI focuses on intra-hierarchy handoffs, and presents the 

adopted FA hierarchy model, analysis and critique of a related FA hierarchy approach, an 

improved regional registration processing mechanism, and two new home registration 

processing mechanisms when involving local handoffs. In addition, performance 

evaluation results of the proposed mechanisms are presented through network simulation. 

Section IV considers inter-hierarchy handoffs and introduces a novel cooperation-based 

approach between FA hierarchies to handle such handoffs, along with performance 

evaluation results obtained through network simulation. Furthermore, we highlight how 

the mechanisms in section III can be applied when moving between FA hierarchies 

within the same foreign domain. Section V presents a network simulation framework for 

local-area mobility, based on an extension of the ns-2 network simulator. This framework 

and resulting implementation have been used to evaluate the proposed techniques in 

sections HI and IV. Section VI presents a suite of simulation experiments validating the 

results obtained through the simulation framework in section V, and evaluating the 

effects of some the network design parameters for foreign agent hierarchies, such as 

hierarchy height, and topology, among other factors. Finally, in section VII we conclude 

this dissertation summarizing our contributions as well as presenting ideas for future 

extensions.
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SECTION II 

BACKGROUND AND RELATED WORK

In section I, host mobility problem solutions were classified as network layer, 

application layer, or end-to-end solutions. In addition, we identified one of the major 

drawbacks of base Mobile IP, which is its unsuitability to handle local-area mobility due 

to the requirement to inform the home network upon each change of the care-of address. 

Consequently, base Mobile IP is assumed as a macro-mobility support framework, while 

a local-area mobility management protocol is required to handle intra-domain mobility.

In this section, we focus on network layer solutions to the host mobility problem, and 

present relevant background information including a high level overview of IP addressing 

and routing (section 2.1). Furthermore, we explore in more detail the operation of Mobile 

IPv4 as a network layer solution to the host mobility problem (section 2.2). In addition, 

we present modeling and operational overview of Mobile IPv4 regional registration 

framework as a reference hierarchy-based local-area mobility solution (section 2.3). 

Moreover, we classify and survey local-area mobility support solutions highlighting each 

solution’s major merits and drawbacks (section 2.4). Finally, section 2.5 summarizes 

section II.

2.1 IP Addressing and Routing

The IP layer, the network layer in the Internet, provides a connectionless and 

unreliable datagram delivery service [50]. IP makes its best effort to deliver an IP 

datagram to the specified destination but there is no guarantee that the datagram actually 

makes it to its destination. Upper layers add any desired reliability such as the transport 

layer in case of TCP, or the application layer in case of UDP.

Communication in the Internet works as follows. The transport layer takes data 

streams and breaks them up into datagrams. Each datagram is transmitted through the 

Internet, possibly being fragmented into smaller units as it goes. When all the pieces 

finally get to the destination machine, they are reassembled by the network layer into the
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original datagram. This datagram is handed to the transport layer, which inserts it into the 

receiving process input stream [62].

One of the most important functions of the IP layer is routing. In summary, for each 

datagram, each router in the Internet determines the next hop by finding the entry in its 

routing table that best matches the destination BP address. Therefore, the purpose of 

routing protocols within the Internet is to allow routers to exchange information about the 

networks they are connecting. Nodes that are not routers typically accomplish the routing 

objective simply by sending all of their outgoing datagrams to a default router.

An IPv4 address is a 32-bit address that has two components. The first component is a 

network ID that defines the network on which the address resides and is considered as a 

routing prefix. The second component is the host ID that occupies the least significant 

remaining bits of the IP address following the network ED bits. Routers within the 

Internet know only how to route datagrams based on the network ID of the destination 

address in each datagram; once the datagram reaches that network, it is then delivered to 

the correct individual host on that network.

Historically, IP addresses were divided into five classes: A, B, C, D, and E, with class 

D addresses reserved for multicast addresses. This classification implied the boundaries 

between the network ED and the Host ID in the IP address. With the advent of classless 

addressing, the distinction between IP addresses classes can be ignored. Instead, 

whenever an IPv4 network address is assigned to an organization what is assigned is a 

32-bit network address and a corresponding 32-bit netmask. Bits of 1 in the mask cover 

the network address and bits of 0 in the mask cover the host. Hence, the address mask can 

be specified as a prefix length that denotes the number of contiguous bits of 1 in the mask 

starting from the left. IPv4 network addresses are normally written as a dotted-decimal 

number, followed by a slash, followed by the prefix length.

With the introduction of IP subnetting, the IP address hierarchy becomes a three-level 

hierarchy, a network ID (assigned to the site), a subnet ED (chosen by the site), and a host 

ID (chosen by the site). The boundary between the network ED and the subnet ED is fixed 

by the prefix length of the associated network address, whereas the boundary between the 

subnet ID and the host ID is chosen by the site. All the hosts on a given subnet share a
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common subnet mask. Bits of 1 in the subnet mask cover the network ID and subnet ID, 

and bits of 0 cover the host ID. For instance, an assigned network address 

“206.62.226.0/24” implies that the leftmost 24 bits are used to identify the network ID. A 

subnet address "206.62.226.32/27" implies that the 27 leftmost bits are used to identify 

the network ID and subnet ID, where the rightmost 3 bits out of these 27 bits are used to 

identify the subnet ED. Hence, out of 32 bits, 5 bits are left to designate the host ID within 

a subnet.

The hierarchy in IP addressing and routing prevents datagrams from being routed 

correctly to a MH while it is away from its home network. Since a host's address logically 

encodes its location, without special handling for mobility, datagrams addressed to a MH 

will be routed by the IP layer only to the MH's home network.

2.2 Mobile IP: A Network layer Host Mobility Problem Solution

Mobile IP3 [43] is a modification to IP that allows MHs to continue to receive 

datagrams no matter where they happen to be attached to the Internet. It is intended to 

enable hosts to move from one IP subnet to another. In general, Mobile IP specifies 

mechanisms to perform the following three functions: Agent Discovery, Registration, and 

Tunneling. A high level outline of the Mobile EP protocol follows [44]:

1. Agent Discovery. Mobility Agents (HAs and FAs) may advertise their availability 

on each link for which they provide service. In contrast, a MH can send an agent 

solicitation on the link to learn if any Mobility Agents are present.

2. A MH uses the agent advertisements to determine whether, it is on its home 

network or a foreign network. When the MH detects that it is located on its home 

network, it operates without mobility services. When the MH detects it has moved 

to a foreign network, it obtains a care-of address on the foreign network. The 

care-of address can be a FA care-of address provided by a FA through its agent 

advertisement messages. Alternatively, the care-of address can be a co-located 

care-of address that is a local IP address on the visited subnet.

3 Unless otherwise stated, the term “Mobile IP” in this section refers to Mobile IPv4 [43],
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3. Registration: When away from home, the MH registers its care-of address with its 

HA. The registration process can be performed either directly (co-located care-of 

address) or through a FA, which forwards the registration to the HA (FA care-of 

address). The registration process entails the exchange of a registration request 

and registration reply message.

4. Tunneling: When the MH is away from home, the HA intercepts any datagrams 

sent to the MH's home address, and tunnels them to the MH's care-of address. 

When an FA care-of address is used, the FA is the endpoint of the tunnel and, on 

receiving tunneled datagrams, decapsulates them and delivers the inner datagram 

to the MH. When a co-located care-of address is used, the MH itself is the 

endpoint of the tunnel and performs decapsulation of the datagrams tunneled to it.

5. In the reverse direction, datagrams sent by the MH may be delivered to their 

destination using standard IP routing, without necessarily passing through the HA.

Mobile IP provides authentication for registration messages. Each MH, HA, and FA 

is required to support a Mobility Security Association (MSA) indexed by their Security 

Parameters Index (SPI) [35], For example, each MH and corresponding HA are required 

to have a pre-configured MSA. When the MH sends a registration request to its HA, it 

computes an authenticator value, using the pre-configured MSA, and includes this 

authenticator value in an authentication extension to the registration request. In such 

manner, the HA is able to authenticate the MH's registration request.

Mobile IP provides two styles of replay protection between the HA and MH: 

timestamp replay protection, and nonce replay protection. The style of replay protection 

is part of the pre-configured MSA. The registration request contains an identification 

field that guarantees the freshness of registration messages. In addition, the registration 

reply contains a corresponding identification field that is formulated based on the 

identification field in the corresponding registration request. Details of either style of 

replay protection can be found in [43].
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Base Mobile IP suffers from triangular routing (Fig. 3 [43]). Datagrams destined for 

a MH will be routed to the MH's home network, and then tunneled to the MH's current 

care-of address by the MH's HA, whereas datagrams originating from the MH are routed 

directly through normal IP routing. The route optimization enhancement to the base 

Mobile IP [47] attempts to alleviate this problem by maintaining binding caches within 

hosts communicating with the MH. If the MH's HA deduces that the source of a datagram 

destined to the MH has no binding cache entry for the MH, it should send a binding 

update message to the original source of the datagram informing it of the MH's current 

care-of address. The next time, this source wishes to send a datagram to the MH, it uses 

the care-of address, hence eliminating the triangular routing problem.

Home Network Foreign Network

3. Datagram detunneled 
and delivered to MH

1. Datagram to MH 
arrives on home 
network via standard 
IP routing

2. Datagram intercepted by 
HA (through ARP) and 
tunneled to care-of address 
(FA)

Triangular Routing

tunnel

4. Datagrams sent by MH are 
delivered through standard IP routing. 
In this case the FA is MH's default 
router

Fig. 3. Triangular routing in base Mobile IP.
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The route optimization enhancement specifies mechanisms to achieve smooth 

handoffs between FAs. When registering with a FA, a MH may establish a registration 

key "session key" for the duration of its registration with its FA. When the MH later 

moves and registers a different care-of address, it may notify this previous FA by sending 

it a binding update message that is authenticated using the previously established 

registration key. Notifying the previous FA of the new care-of address for the MH allows 

datagrams in flight to this FA, as well as datagrams tunneled from correspondent hosts 

with out-of-date binding cache entries to be forwarded to the MH's new care-of address. 

Various methods have been proposed to establish a registration key [48]. For example, if 

no pre-configured MSA exists between the FA and the MH, or none can be established 

dynamically, the HA might act as a Key Distribution Center (KDC) to distribute 

registration keys to be used between the FA and the MH.

2.3 Overview of Mobile IPv4 Regional Registration Framework

In this section, we model and overview the operation of Mobile IPv4 regional 

registration framework [30], as a reference hierarchy-based micro-mobility protocol. We 

introduce the concept of regional registrations, and present a classification of the MH’s 

registration messages while in the foreign domain. For simplicity, we restrict our 

presentation to the case of a single FA hierarchy in the foreign domain. Moreover, we 

explain registration signaling for different registration messages, and point out the need 

for a hierarchy tunneling consistency mechanism. In section III, we critique the regional 

registration framework, and identify race conditions within its registration processing 

mechanisms. This critique is presented as motivation for introducing our own framework 

for hierarchy-optimized registration processing for intra-hierarchy handoffs.

2.3.1 Operational Overview

A Foreign Agent hierarchy is rooted by a Gateway Foreign Agent (GFA), which has a 

publicly routable IP address. The MH can use the GFA address as its home-registered 

care-of address. Any intermediate level FA is termed a Regional Foreign Agent (RFA). A
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foreign agent might only advertise the GFA address, or all upper FA addresses on the 

path leading to the GFA, as part of its agent advertisement message.

The MH is required to perform a home registration when it first enters the foreign 

domain, registering the GFA as its care-of address4. Such care-of address does not change 

when the MH changes FA under the same GFA. The MH is allowed to perform regional 

registrations as long it is within the same FA hierarchy, i.e., did not change its GFA, 

changing its local care-of address within the foreign domain (as long as its registration 

with the HA did not expire). Thus, the MH has the responsibility of periodically renewing 

its home mobility-binding with its HA by periodically transmitting home registration 

requests.

A home registration request might be transmitted through a FA that the MH has 

already established as a local care-of address within the foreign domain by means of a 

home or regional registration mechanism. On the other hand, a home registration request, 

from within the current foreign agent hierarchy might coincide with a handoff from one 

FA to the other. We term such home registration a “Home Registration”-“Local Handoff’ 

(HR-LH). In such case, a local handoff occurs while renewing the home mobility 

binding, and hence the existence of a crossover FA between the new path followed by the 

new home registration request to the GFA, and the old established path from the GFA to 

the MH’s local care-of address. Fig. 4 illustrates a sample of home and regional 

registrations within a foreign domain comprised of one foreign agent hierarchy. Messages 

{1, 2, 3, and 4} represent the first home registration when the MH enters the foreign 

domain. The registration reply by the HA establishes {GFA-FA3-FA7} as the path to 

reach the MH. Messages {5 and 6 } represent a regional registration (a local handoff from 

FA7  to FA6), while FA3 is the crossover FA that generates a regional registration reply. 

The tunneling path within the foreign domain to reach the MH is now {GFA-FA3 -FA6 }. 

Messages {7, 8 , 9, and 10} represent a home registration involving a local handoff from 

FA6  to FA5 , with the crossover FA as the GFA. The home registration reply establishes 

the tunneling path {GFA-FA2 -FA5 } to reach MH.

4 Alternatively, the MH may choose to home register a co-located care-of address.
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{1,2,  3, and 4}: Home registration when the MH first enters the foreign domain. 
{5,6}: Regional registration with a local handoff from FA7 to FA$.
{7, 8, 9, and 10}: Home registration involving a local handoff from FAg to FA5.

Fig. 4. A sample of home and regional registrations within the foreign domain.

If the foreign domain deploys multiple foreign agent hierarchies with different GFAs, 

the MH is required to perform a home registration whenever it changes its GFA. The MH 

can detect such change of GFA by inspecting the foreign agent advertisement it receives, 

and comparing the advertised GFA and its current known GFA. In such case, the home 

registration involves a local handoff, but one that spans multiple hierarchies. Hence, no 

crossover FA exists in this case, assuming that foreign agent hierarchies are 

independently organized. Alternatively, a regional registration can be performed to the 

current GFA from within the new hierarchy with the possibility that the current FA 

denies such registration because the requested GFA is unknown [30]. We elaborate more
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on registration processing when multiple foreign agent hierarchies are involved, when we 

present our cooperation-based registration processing approach in section IV.

The MH and the GFA most likely will not share a pre-established security 

association, and hence a style of replay protection is unknown. Thus, the MH supplies 

with its first home registration request a replay protection extension, informing the GFA 

of its desired style of replay protection for regional registrations and an initial value. 

Replay protection can be provided through the usage of an identification value in 

registration requests (timestamps or nonces) [43], or a challenge-response mechanism by 

the advertising FA [46].

When the HA receives the first home registration establishing the GFA as the MH’s 

care-of address, it generates a registration key and distributes it to both the MH and the 

GFA as part of a registration reply message. The GFA relays the registration reply and 

the registration key down its hierarchy to the RFA that forwarded the home registration 

request. This process repeats at each intermediate RFA in a lower hierarchy level until 

the MH receives the registration reply and key. In such manner, the foreign agent 

hierarchy is capable of authenticating future regional requests from the MH. The MH 

uses the registration key to authenticate its regional registration requests by computing an 

authenticator value placed in an authentication extension (MH-GFA authentication 

extension, which is a subtype of the Generalized Authentication Extension [46]) 

appended at the end of the regional request. If the GFA does not distribute the 

registration key down the hierarchy, then only the GFA is capable of authenticating 

future MH’s regional registration requests.

Regional registration replies are generated by the crossover FA that in some cases 

might be the GFA itself, e.g., in Fig. 4, FA3  generates the regional registration reply when 

the MH is registering with FAg. The crossover FA distributes the MH’s registration key 

as part of the regional registration reply, to allow for future MH authentication by the 

RFAs in the new path. In general, a registration reply is propagated through the same set 

of foreign agents that forwarded the corresponding registration request, albeit in reverse 

order, establishing the MH as a registered visitor at every involved FA. If a regional FA 

has the MH as a registered visitor while processing a regional registration request, this
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FA is the crossover FA, and hence can generate a corresponding regional registration 

reply. The granted lifetime in regional registration replies is the remaining MH’s 

registration lifetime at the crossover FA. For every visitor MH, a RFA maintains a visitor 

entry [43] containing among other attributes, the remaining registration lifetime, the 

lower level foreign agent that is the tunnel endpoint for this MH, and the style of replay 

protection in use for this MH. When a data packet destined to the MH arrives at the GFA, 

it is forwarded to the tunnel endpoint stored in this MH’s visitor entry. This process 

repeats at each intermediate RFA until the packet eventually reaches the MH.

In general, the forwarding of registration requests between foreign agents is 

performed as follows. If a registration request only contains the GFA address as care-of 

address, a leaf FA appends its own address to the registration request by placing it in a 

hierarchical FA extension. Such data extension is protected by using an FA-FA 

authentication extension. The purpose of such data and authentication extensions is to 

inform the upper RFA about the address of the forwarding FA in an authenticated 

manner. The upper RFA (receiving RFA) creates a pending registration entry with a care- 

of address the forwarding FA address. Before forwarding to a next-level RFA, the current 

RFA removes such data and authentication extensions, appending respective extensions 

that provide his own address. Such process repeats until the registration request reaches 

the GFA or the crossover FA, in the case of a home registration or a regional registration, 

respectively.

2.3.2 Tunneling Consistency Problem and Solution

The ability of a FA to correctly identify itself as the crossover FA for a regional 

registration request is crucial to the correct registration processing by foreign agent 

hierarchies. Such ability might be hindered due to the following specification of the base 

Mobile IP protocol [43]: a MH is not required to inform a FA that it is no longer 

registered with it, i.e. that it is currently registering with a new FA, relying on an eventual 

expiration of registration lifetime. Such approach reduces protocol messages overhead, 

but creates a hierarchy tunneling consistency problem for FA hierarchies: a RFA not 

informed that the MH is no longer a current visitor might erroneously decide that it is the
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crossover FA and generate a regional registration reply in response to a regional 

registration request, although such request should be forwarded to upper level RFAs. 

Such consistency problem (e.g., see Fig. 5) occurs when the MH is attempting to register 

with an old FA for which the registration lifetime has not yet expired, and that was not 

initially informed that the MH is no longer a current visitor. In Fig. 5, the MH was 

originally registered with FAS, switched to FA6  and then back to FA5. FAS and FA2 

were not informed that the MH is no longer a current visitor when it switched to FAg. 

Consequently, FA2 erroneously generates a regional registration reply for the MH’s 

regional registration request, whereas the request should have been forwarded to the GFA 

to adjust the GFA’s tunnel endpoint for the MH to point to FA2 . Hence, a future data 

packet received at the GFA, is tunneled to FA3 , whereas it should have been tunneled to 

FA2.

GFA
Data packet

Data packet tunneled t o \  

FA3, whereas it should 

be tunneled to FA2.

Regional

request

Regional

reply

I
\
i

MH —> FAX: FAX is the 

tunnel endpoint for MH
r - A  n
' MH !MH

Fig. 5. Foreign agent hierarchy tunneling consistency problem.
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Hence, a mechanism is required by which old regional foreign agents are informed 

that a MH is no longer a current visitor. The regional registration framework requires a 

smooth handoff mechanism [47] to be performed by the MH and a new FA in order to 

inform an old FA that the MH is no longer a current visitor. Simply stated, the smooth 

handoff mechanism requires that the MH supply a Previous Foreign Agent Notification 

Extension (PFANE) along with its registration request to the new FA specifying the new 

FA as its new care-of address, and a lifetime within which this binding is valid. The new 

FA uses the information in the PFANE to send a Binding Update (BU) message on behalf 

of the MH to the old FA, informing it of the new whereabouts of the MH. The old FA is 

required to send back a Binding Acknowledge message to the new FA that delivers it to 

the MH. The old FA is capable of authenticating the BU since it shares a registration key 

with the MH as a result of the first home registration performed by the MH (section 

2.3.1). After authenticating the BU, the old FA deletes any MH’s visitor entry, and 

creates a new binding cache entry for the MH to forward any newly arriving data packets 

destined to the MH to the new FA.

The regional registration framework further extends this smooth handoff process to 

ensure tunneling consistency within the hierarchy as follows. The old FA relays the BU 

message upwards in the hierarchy (to its father FA) specifying itself as the care-of 

address of the MH, and using the lifetime supplied by the MH in the original BU 

message. The father FA performs the following steps in response to receiving the BU 

message.

-  Delete its MH’s visitor entry,

-  Create a binding cache entry for the MH with care-of address the child FA 

that sent the BU message,

-  Relay the BU message upwards in the hierarchy,

-  Send back a binding acknowledge message to its child FA.

Such process at each intermediate RFA repeats until the BU message reaches the 

crossover FA, which at this point generates a binding acknowledge message to the MH 

and sends it down the old path to the MH. The crossover FA deduces it is the crossover 

FA, and hence generates the binding acknowledge message to the MH, because it has
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received an earlier registration request from the MH’s new path beneath it in the 

hierarchy. The same process is used for regional registrations and HR-LH requests. Fig. 6  

provides an example of the tunneling consistency mechanism in the case of a regional 

registration. The MH was served by FA5, switched to FA6 , then back to FA5. Hence, FA5 

is currently the new FA, while FAg is the old FA. We can observe that BU messages flow 

in the old path towards the crossover FA at the same time that registration requests flow 

in the new path towards the crossover FA. Moreover, the crossover FA identifies its 

“crossover” status based on receiving an earlier registration request. We elaborate more 

on the consequences of such signaling design, and identify potential race conditions, 

when we present a critique of the involved registration processing mechanisms in section 

III. Note that binding acknowledgement messages are omitted from Fig. 6  for figure 

simplicity.

Crossover FA
RFA

Reg. Reply
BU

Reg. Req.

Reg. Req.

BUReg.

Reply
BU

Reg. Req. with 

PFANE

Reg.

Reply ^  Regional registration request 

^  Regional registration reply 

 ► Binding update message

r  _  X  ,

' MH !MH

Fig. 6 . Tunneling consistency mechanism applied to regional registration.
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2.4 Local-area Mobility Protocols: A Taxonomy and Survey

Local-area mobility protocols aim at reducing home signaling overhead, and 

improving handoff latency to reduce potential packet loss. Such objectives are achieved 

by localizing the effect of the MH handoff such that handoff processing is confined to the 

local domain at hand. Several local-area mobility protocols have been suggested in the 

literature. Researchers attempted to compare and contrast such protocols qualitatively, 

and through network simulations [11], [12], [57]. The existing protocols can be classified 

as belonging to the following categories.

■ Extensions to Mobile IP. Such solutions attempt to adhere to the Mobile BP 

framework, while localizing the MH’s registration processing. One well- 

known idea is to extend the notion of a mobility agent into a hierarchy of 

mobility agents. Such hierarchy can be viewed as a mobility support overlay 

network within the foreign domain, using hierarchical tunneling to forward 

packets to the MH. Our proposed local-area mobility support framework 

belongs to this category.

■ Host-based forwarding schemes. Such solutions install host-based routing 

entries within the foreign domain, requiring path set-up mechanisms in order 

to update such entries. Such approaches attempt to avoid the decapsulation 

and re-encapsulation overhead associated with hierarchical tunneling.

■ Multicast-based schemes. Such solutions exploit the usage of multicast 

technology by assigning a multicast address to the MH within the foreign 

domain. Handoffs are handled through standard multicast join and prune 

messages.

Recently, a new approach for localized mobility management [34] has been proposed 

which advocates exploiting existing optimized handoff mechanisms, e.g., the forwarding 

mechanism from the previous foreign agent in the route optimization extension for 

Mobile IPv4 [47], instead of introducing additional mobility agents in support of local- 

area mobility. Such solutions do not reduce the home signaling overhead, but attempt to
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improve handoff latency to reduce possible packet loss. The following sections present 

representative protocols for each of the aforementioned categories.

2.4.1 Mobile IP Extensions

Protocols in this category can all be abstracted as adopting a mobility agents’ 

hierarchy architecture in the visited domain. Such protocols include the Mobile IPv4 

regional registration approach [30], and the local and indirect registration approach [21]. 

Related solutions, not considered pure mobile IP extensions, adopting a mobility agents’ 

hierarchy approach, include TeleMIP [18], and the fast and scalable handoffs approach 

by Careres et al. [9]. For completeness, we mention Mobile IPv6  targeted solutions, 

which include Hierarchical Mobile IPv6  [14], and Mobile IPv6  regional registration 

framework [38].

Mobile IPv4 regional registration approach

In section 2.3, we modeled and overviewed the regional registration approach [30]. 

Such approach is sometimes referred to as hierarchical Mobile IP, because of its reliance 

on one or more hierarchy of mobility agents in the foreign domain. In summary, the MH 

uses a regional registration message when performing intra-hierarchy handoffs, while a 

crossover FA, the first common FA between the old and new path, is responsible for 

handling and replying to the MH’s registration request.

A number of FA hierarchies might be deployed in the same domain. When changing 

GFA, i.e. moving between FA hierarchies, the MH is required to register with its HA. 

Nevertheless, existing prototype implementations, and simulations have considered 

deploying only one FA hierarchy in the foreign domain [27], [49]. The FA hierarchy 

approach is sensitive to FA failures. In addition, the GFA is required to maintain a visitor 

entry for every MH currently registered within its hierarchy. Nevertheless, it is 

independent of any physical network placement of FAs and offers the same level of 

security as the base Mobile BP by extending the Mobile BP registration and authentication 

process.
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A relevant issue is making the FA hierarchy more fault-tolerant. Omar et al. [42] 

attempt to achieve this target by suggesting two approaches to recover from a regional 

FA failure. The first approach reverts to a non-hierarchical FA setup. Affected MHs are 

informed to perform a registration with the corresponding HAs, changing their registered 

care-of address, the GFA IP address, to their current FA. The second approach heals the 

broken hierarchy, by making an upper level FA remove the faulty FA from the hierarchy, 

and point to a lower FA in the hierarchy that has less probability of failure. The two 

suggested approaches do not deal with GFA failures.

El Malki and Soliman [24] introduce fast handoffs in a “flat” network setting through 

a “bicasting” approach to support data forwarding to the previous and new foreign agents. 

The “bicasting” approach is enabled through simultaneous bindings, which the MH 

explicitly requests in its registration request message. The authors explain how to apply 

the fast handoff approach within a hierarchical Mobile DP setting, and suggest routing 

improvements for data traffic between MHs within the same domain.

In a related approach, Avancha et al. [5] suggest the use of forwarding pointers 

between domain foreign agents (DFA) to implement a fast handoff scheme. A three-level 

mobility support hierarchy is assumed. The hierarchy is comprised of a DFA at the root 

(similar to the GFA), subnet FAs at the second level to represent subnets, and FAs at the 

leaf level to act as BSs. The MH is responsible for registering with the previous DFA, 

when handing off to a new DFA, without informing the HA. Hence, a forwarding chain is 

maintained amongst DFAs to point to the current domain where the MH is located. When 

the chain of forwarding pointers reaches a certain limit, the current DFA is responsible 

for collapsing the chain by sending a registration request to the HA. In such approach, the 

length of the forwarding chain increases the observed packet latency, hence affecting 

delay-sensitive applications. In addition, security implications of the proposed approach 

are not discussed.

Local and indirect registration (Anchor FA approach)

This approach [21] aims at reducing handoff latencies within the visited domain. 

Handoff latencies are attributed to three components: latency in Mobile IP registration,
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delay incurred to set up FA-HA dynamic keys, and latency incurred in setting up FA-HA 

secure tunnels. Two approaches are suggested: local registration, and global indirect 

registration. Either approach requires the MH to perform a global registration with its 

HA upon entering the visited domain. In the local registration approach, it is assumed 

that the current FA and the MH establish a shared security association. Later on, the 

current FA acts as an Anchor FA for this MH, authenticating the MH while it moves 

within the same domain. When the MH changes FA within the same domain, the new FA 

performs local registration with the Anchor FA. This approach requires a shared security 

association between every two FAs in the domain. In this manner, the handoff latency is 

reduced to registering locally with the Anchor FA. The global indirect registration 

approach is used when no security association could be established between the current 

FA and the MH, requiring the HA to always authenticate the MH registration. Again, the 

current FA acts as an Anchor FA for this MH. Any new FA directs the MH registration 

towards the Anchor FA, the Anchor FA relays the registration to the HA, which 

authenticates the registration. This approach eliminates the latency due to FA-HA 

dynamic key establishment, and the latency due to FA-HA secure tunnel establishment. 

This approach can be abstracted as dynamically creating a two-level FA hierarchy rooted 

by the anchor FA, while all other FAs become leaves in such hierarchy. The anchor FA 

can change from one MH to the other. However, security association requirements for 

such approach represent a scalability issue with increased number of deployed FAs. 

Every two MHs need to have a pair of security associations, one in each direction, in 

order to authenticate any inter-FA messaging.

Fast and scalable handoffs

This approach [9] suggests also the use of FA hierarchies. However, distinguishes the 

local mobility case where a MH moves between BSs on the same IP subnet, and does not 

rely on standard Mobile IP signaling. The Address Resolution Protocol (ARP) proxy and 

gratuitous ARP messages are used in the IP subnet to maintain the illusion that the MH 

resides on the wired link in this subnet. The handoff protocol between the old and the 

new BS uses a retransmission buffer. The size of the retransmission buffer size is tuned to
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the number of expected packet losses during a handoff, and the complete buffer is 

retransmitted from the old to the new BS after every handoff to reduce packet loss. 

Movement between IP subnets is handled by subnet FAs. A MH uses a domain FA IP 

address as its care-of address in its Mobile BP home registration. Use of proxy and 

gratuitous ARP represents a major security problem in this approach.

Teleeommunications-enhanced Mobile IP (TeleMIP)

TeleMBP [18] is an IP-based architecture to handle intra-domain mobility in cellular 

wireless networks. A two-level mobility agents’ hierarchy is proposed in the foreign 

network. At the root level, a Mobility Agent (MA) provides a global care-of address for 

the MH, while at leaf levels, subnet Agents (SA) provide local care-of addresses to the 

MH. Conceptually, TeleMIP is a special case of the general FA hierarchy approach, 

specialized for wireless access networks, although standard Mobile IP registration 

signaling is not used. The base intra-domain mobility management protocol (IDMP) in 

TeleMIP is further extended to support fast handoffs and paging [17],

2.4.2 Host-based forwarding schemes

Protocols in this category install host-specific routing entries in the foreign domain to 

alleviate the hierarchical tunneling overhead observed with the mobility agents’ hierarchy 

approach. Special techniques are required to maintain and update such entries. Examples 

of such update techniques include snooping on the MH’s data packets to update the 

current whereabouts of the MH, and explicit message signaling by the MH. Protocols 

include Cellular IP [64], and the Handoff-Aware Wireless Access Internet Infrastructure 

(HAWAII) [55]. A generic host-based routing scheme was introduced in [69] while 

comparing the performance of the aforementioned schemes with the hierarchical Mobile 

IP approach. In addition, Campbell et al. [12] recently compared the performance of 

hierarchical Mobile IP, cellular IP, and HAWAII through network simulation by using 

the Columbia BP Micro-Mobility Software (CIMS) [15].
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Cellular IP

This approach [13], [64] suggests handling local-area mobility through a wireless 

access network. A wireless access network primarily consists of base stations 

interconnected by wired links, and other nodes that have no radio device, but can have 

mobility support functions. The network is connected to the Internet through routers, 

called gateway routers (GW). The gateway router can act as a HA or a FA.

The wireless access network is partitioned into Paging Areas. BSs transmit which 

paging area they belong to as part of their periodic beacon signals. Packets addressed to a 

MH are routed to its current BS on a hop-by-hop basis. To accomplish that, two types of 

caches are deployed within the wireless access network: Paging Caches maintained for 

idle mobile hosts, and Routing Caches maintained for MHs currently receiving or 

expecting to receive data. Paging caches are deployed in selected nodes of the wireless 

access network, while it is expected that most of the nodes will have a routing cache.

While idle, the MH is required to send a paging-update packet whenever it enters a 

new paging area. If the MH roams within the same paging area it periodically sends the 

paging-update packet only when a specific timer expires. These packets are routed hop- 

by-hop towards the GW where they are eventually discarded. Meanwhile, they update 

any paging caches along the way. When data packets are available to the MH, the GW 

sends a paging packet that is routed to the MH. At any node, if no up-to-date route cache 

mapping is available, the paging cache is used to route the packet. If a node does not 

contain a paging cache, it forwards the paging packet over all its downlinks. If a node 

contains a paging cache with no mappings for this MH, the packet is discarded. When the 

MH receives this paging packet, it responds with a route-update packet that configures 

routing caches along the way to the GW. Hence, the nodes in the network do not exactly 

know the location of the MH, until data packets are available. In such case, a paging 

process is performed and routing caches are configured through a control packet sent by 

the MH. Any data packets transmitted by the MH are routed to the GW on a hop-by-hop 

basis. Nodes that contain routing caches monitor these passing data packets and use them 

to update the routing mappings. If the MH is not transmitting, only receiving or expecting
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to receive, it is required to periodically send route-update packets to keep the Routing 

caches current.

In such approach, the GW presents a single point of failure. In addition, when the 

number of MHs increases, the number of control packets needed to keep the mappings 

current increases possibly overloading the wireless access network.

HAWAII

This approach [54], [55] suggests partitioning the wireless access network into 

administrative domains with domain gateway routers named the Domain Root Routers. 

When a MH is moving within its home domain, it retains its IP address. Packets destined 

to the MH reach the Home Domain Root Router based on the subnet address of the 

domain and are forwarded over special dynamically established paths to the MH. In such 

manner, The HA functionality is not needed while the MH is moving within its home 

domain.

When a MH is visiting a foreign domain it is required to obtain a co-located care-of 

address within the foreign domain. The MH keeps this care-of address as long it is within 

the same foreign domain. Nevertheless, it is required to register with a BS within the 

domain to better handle handoffs. The BS in turn informs the MH’s HA about the MH’s 

co-located care-of address through the Mobile IP registartion process. The HA forwards 

any datagrams for the MH to its care-of address. These datagrams reach the foreign 

domain root router through normal IP routing, and are forwarded over dynamically 

established paths until they reach the MH. When the MH powers up, it sends a Mobile IP 

registration message to its nearest BS. The BS propagates a HAWAII path setup update 

message to the Domain Root Router using a configured default route. Each router in the 

path between the MH and the Domain Root Router adds a forwarding entry for the MH. 

Finally, the domain root router sends back an ACK to the BS, which sends a Mobile IP 

registration reply to the MH. The host-based forwarding entries are soft-state entries that 

are kept alive by periodic hop-by-hop HAWAII refresh messages.

Two variants of path setup schemes are proposed motivated by two types of wireless 

networks. The Forwarding scheme is optimized for networks where the MH is able to
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listen/transmit to only one BS. The Non-Forwarding scheme is optimized for networks 

where the MH is able to listen/transmit to two or more BSs simultaneously for a short 

duration. In the Forwarding scheme, packets are first forwarded from the old BS to the 

new BS before they are diverted at the crossover router. Whereas, in the Non-Forwarding 

scheme, as the path setup message travels from the new BS to the old BS, data packets 

are diverted at the crossover router to the new BS, resulting in no forwarding of packets 

from the old BS.

The problem we envision with such approach is the requirement that the MH must 

acquire a new co-located care-of address whenever it changes domains. This requirement 

stresses the already depleted IPv4 address space. In addition, all the routers in the domain 

must maintain host-based entries to efficiently implement the path setup scheme. 

Nevertheless, the proposed approach takes into account the different types of wireless 

networks suggesting two corresponding path setup schemes. In addition, HAWAII has 

been extended to include paging functionality [53].

2.4.3 Multicast-based schemes

A number of proposals have investigated the use of multicast technology as a solution 

for the host mobility problem. The proposals range from using multicast as the sole 

mechanism to provide addressing and routing services to MHs [41], to the HA pre­

assigning the MH a multicast address as suggested in the Daedalus approach [6 ]. The 

previous approaches are not considered as local-area mobility support solutions as they 

require handling issues such as allocating unique multicast addresses across the wide area 

network. Multicast-based local-area mobility solutions exploit the usage of multicast 

within a confined domain as an efficient mechanism to achieve fast handoffs through 

standard multicast join and prune mechanisms [28], [32], [61].

To achieve fast handoffs in connection-oriented picocellular (in-building) networks, 

Ghai and Singh [28] propose a three level hierarchy. At the lowest level is a dense 

collection of MHs that communicate with each other and with stationary hosts in the 

network as they move between cells. Mobile Support Stations (MSSs) handle 

communication in each cell. The MSSs are all connected to an assigned supervisor
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machine called the Supervisor Host (SH). The SH has the responsibility of tracking MHs 

and maintaining their connections within its subnet. Picocells in the vicinity of the MH 

are dynamically formed into multicast groups and packets for a MH are multicast by the 

SH to all MSSs within the group. The shape and composition of the group is determined 

by the architecture of the building, the speed at which the MH moves between cells and 

the direction of motion. The group is updated each time the MH moves between cells and 

all the MSSs that belong to the new group are informed by the SH of the group identity 

and the identity of the corresponding MH.

Tan et al. [61] proposed assigning a multicast address to the MH within the 

boundaries of the foreign domain. They describe a foreign domain architecture with a 

two-level hierarchy, with a Domain FA (DFA) at the top of the hierarchy, and BSs as 

leafs of the hierarchy tree. The DFA performs multicast address allocation to the MH. All 

MHs are required to register with the FA according to Mobile IP specifications. Multicast 

is used as the packet forwarding mechanism from the DFA to the BSs. To ensure no 

multicast address conflict, the authors point out that mechanisms for allocating multicast 

addresses globally, such as allocating a range of multicast addresses to each domain, 

must be used. However, The details of the multicast address allocation mechanism are 

not discussed. In addition, The DFA approach is a centralized approach for multicast 

address allocation that does not scale well with large numbers of MHs. Moreover, the 

DFA is required to be the forwarding agent for all MHs within the foreign domain in 

which case the DFA becomes a bottleneck and a single point of failure.

Helmy and Jaseemuddin [32] suggest allocating a locally-scoped multicast address to 

the MH within the foreign domain. Data packets are multicast-tunneled to the MH’s 

allocated multicast address within the foreign domain. The authors suggest two 

architectures for multicast-based mobility support, where a unicast regional care-of 

address (RCOA), and a multicast address (MCOA) are assigned to the MH. The first 

architecture is a proxy-based architecture where a mobility proxy (MP) handles the inter­

domain handoff and allocates MCOA. The second architecture is based on algorithmic 

mapping where an Access Router (AR) infers MCOA from RCOA through algorithmic 

mapping, while the MH informs the HA about its RCOA in its registration request. Such
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approach alleviates the need for explicit multicast address allocation. In addition, the 

authors investigate several multicast state aggregation techniques at routers, since the 

required number of multicast groups is proportional to the total number of MHs currently 

in the foreign domain.

Adopting a multicast-based solution is an attractive approach, because of similarities 

between network layer mobility management and multicast group management issues. 

However, several multicast-related issues have to be addressed such as efficient multicast 

address allocation schemes, multicast routing techniques that scale to a large number of 

multicast groups with a limited number of participants, and efficient techniques for 

aggregation of multicast groups state within domain routers.

2.5 Summary

In section II, we presented relevant background information about network layer 

mobility solutions. In addition, we overviewed the operation of Mobile IPv4 as a network 

layer host mobility problem solution. Furthermore, we modeled and overviewed the 

operation of Mobile IPv4 regional registration approach as a reference hierarchy-based 

local-area mobility protocol. We identified the main resulting registration classes, and 

pointed out the need for a hierarchy tunneling consistency mechanism. Furthermore, we 

classified and surveyed local-area mobility protocols in general, identifying their main 

categories as: Mobile IP extensions that leverage the existence of a hierarchy of mobility 

agents in the foreign domain, host-based forwarding, and multicast-based solutions.

In section III, we present a hierarchy-based local-area mobility support framework for 

intra-hierarchy handoffs, motivated by identified race conditions and drawbacks within 

Mobile IPv4 regional registration framework.
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SECTION III

A REGISTRATION FRAMEWORK FOR 

INTRA-HIERARCHY HANDOFFS

In this section, we introduce our framework for Mobile IP registration processing 

within a foreign domain where local-area mobility is supported through the deployment 

of foreign agent hierarchies. We present a FA hierarchy model, which hides the structure 

of the FA hierarchy structure from visiting MHs, while offering a backward-compatible 

mode of operation suited for legacy MHs, which are unequipped to handle local-area 

mobility extensions. We focus on intra-hierarchy handoffs and present novel registration 

processing techniques for such handoffs when associated with either home or regional 

registrations. The adopted message signaling attempts to overcome shortcomings and 

potential race conditions identified in the regional registration framework for Mobile 

IPv4 (MIP_RR) [30], which is a related hierarchy-based local-area mobility solution (see 

section 2.3). Moreover, an attempt is made to exploit the presence of a mobility support 

overlay network in the form of a FA hierarchy, and emphasize the local handoff aspect in 

order to optimize the mobile host registration and regional handoff processing. In section 

IV, the proposed mechanisms herewith are used as a building block within a local-area 

mobility solution based on cooperative foreign agents hierarchies to handle inter­

hierarchy handoffs. We qualitatively and analytically compare and contrast our proposed 

mechanisms versus MCP_RR. In addition, we simulated our proposed framework using 

design and implementation extensions (section V) of the network simulator ns-2 [8 ] and 

experimented with UDP and TCP traffic. Network simulation results demonstrate that the 

proposed techniques are effective in reducing UDP packet loss, and achieving better TCP 

throughput, compared to a base Mobile IP approach, in the case of a distant HA.

Section HI is organized as follows. Section 3.1 presents a critique of the regional 

registration framework for Mobile IPv4, identifying some drawbacks and potential race 

conditions. Section 3.2 introduces our adopted foreign agent hierarchy model. Section 3.3 

presents a regional registration processing approach, which prevents the identified race
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conditions and drawbacks in section 3.1. In addition, a new replay protection update 

mechanism is suggested to propagate to upper levels in the hierarchy, any new 

identification values assigned to the MH. Section 3.4 presents two novel approaches for 

processing home registrations associated with local handoffs. Section 3.5 presents 

performance evaluation results using network simulations comparing the proposed 

approaches versus other approaches, e.g., base Mobile EP. Finally, section ID is 

concluded in section 3.6.

3.1 Motivation: Critique of The Regional Registration Framework

In section II, we modeled and overviewed MIPJR.R [30], introducing the concept of 

regional registrations, and pointing out the need for a hierarchy tunneling consistency 

mechanism as an integral part of a registration protocol signaling. Such mechanism is 

crucial in ensuring consistency of tunneling state within the mobility support overlay 

network (FA hierarchy), when the MH changes serving foreign agents in an intra­

hierarchy handoff (see section 2.3.2). In this section, we identify some drawbacks and 

potential race conditions within the aforementioned tunneling consistency mechanism. 

Such drawbacks and race conditions motivated us to introduce our framework for MH’s 

registration processing presented later in section 3.3, and section 3.4.

Evaluating MIP_RR’s tunneling consistency mechanism, we point out the following 

advantages.

-  It requires the smooth handoff mechanism [47], hence reduces potential 

packet loss until handoff completion;

-  It introduces the binding acknowledgment of binding update (BU) messages 

between RFAs to insure message delivery;

-  The tunneling consistency mechanism is symmetrical for home and regional 

registrations.

However, the following disadvantages can be observed.

-  A MH that is not smooth handoff enabled would be denied service from 

within such FA hierarchy.
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-  A potential race condition exists within the proposed message signaling, 

which might lead to inconsistent tunneling state within the hierarchy.

The identified race condition can be described as follows. If the BU message 

propagated through the old path reaches the crossover FA before the registration request 

propagated through the new path, a crossover FA can not deduce it needs to generate the 

MH’s binding acknowledge message and hence forwards the BU message to its father FA 

towards the GFA. Such scenario has the following consequences.

-  Upper RFAs, higher than the crossover FA, possibly up to the GFA will 

replace the MH’s visitor entries with corresponding binding caches. The 

MH’s will be considered as not currently a visitor for these RFAs.

-  The MH’s remaining registration lifetime, which the initial lifetime amount 

was initially granted by the HA, will be replaced with the specified lifetime in 

the BU message. Tunneling lifetime inconsistencies will exist in the hierarchy.

In the case of a home registration associated with a local handoff (HR-LH), such BU 

lifetime might expire before a registration reply is received from the HA. In the case of a 

regional registration, such BU lifetime is not consistent with the lifetime granted by the 

crossover FA in the generated regional registration reply, thus creating remaining lifetime 

inconsistencies within the RFAs. MIPJRR’s authors suggest that upper level RFAs 

should ignore the BU forwarded by the crossover FA since it does not supply any new 

care-of address. We argue that this condition is true for every binding update propagated 

through the old path and can not be used as a special condition to ignore the BU for RFAs 

above the crossover FA.

The signaling design flaw highlighted here stems from allowing 2 messages, the BU 

through the old path, and the registration request through the new path, to simultaneously 

flow in 2 separate paths towards the crossover FA that identifies its “crossover” status 

when receiving a registration request through the existence of a visitor entry for this MH. 

Furthermore, such separate paths may not be symmetric in terms of available bandwidth, 

link delay, or current congestion status. In Fig. 7, we abstract the tunneling consistency 

mechanism along with the involved hierarchy links. The MH is handing off from the old 

FA to the new FA and generating a registration request (home or regional). When the 

new FA receives the registration request; it initiates the tunneling consistency mechanism
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by sending a BU to the old FA, and propagates the registration request upwards in the FA 

hierarchy. In order to better quantify the conditions favoring the occurrence of the 

identified race condition, we introduce a set of relevant delay measures as summarized in 

TABLE 1.

RFA Crossover FA

BU
Registration

Request

New path''
Old path

Old New

Registration

Request

FA FAnew-old

BU
MH

Fig. 7. Abstraction of the tunneling consistency mechanism.

TABLE 1

SUMMARY OF DELAY MEASURES

Delay Measure Description

Dnew-old The delay required for a BU message to be generated and transmitted by the new 

FA to reach the old FA, when the new FA receives the MH’s request.

&old~crossover The delay for a BU message to be generated and transmitted by the old FA and 

relayed by each intermediate RFA in the old path to reach the crossover FA, when 

the old FA receives the BU from the new FA.

Dnew-cmssover The delay for a MH’s registration request to be relayed by the new FA and 

propagated by each intermediate RFA in the new path to reach the crossover FA, 

when the new FA receives the MH’s request.
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Referring to Fig. 7 and TABLE 1, we highlight the factors affecting each of the 

introduced delay measures. D n ew -0 id  is dependent on link, queuing, and routing delays on 

the routing path from the new FA to the old FA. {Dmw-cmssover) is dependent on

link, and queuing delays on each intermediate link between the old (new) FA and the 

crossover FA along the old (new) path in the FA hierarchy, and on processing delays at 

each intermediate RFA on this path. The identified race condition with possibility of 

subsequent hierarchy tunneling inconsistencies will occur if the inequality in ( 1 ) holds.

^ n e w - o ld  ^ o ld -c r o ss o v e r  — ^  new-c'rossover

3.2 Foreign Agent Hierarchy Model

In this section, we present our adopted foreign agent hierarchy model, in terms of 

terminology and mobility agents advertised addresses. We reuse the terminology from 

MEPJRR [30], and assume that a FA hierarchy (Fig. 8) is rooted by a Gateway Foreign 

Agent (GFA), which the MH can use its publicly routable IP address as its home- 

registered care-of address. Any intermediate level FA is termed a Regional Foreign 

Agent (RFA).

We place no restriction on the number of levels in the hierarchy, nor on the number of 

FAs within a hierarchy level. When the MH is handing off from one FA to another, the 

crossover FA is the first common FA between the old and the new path to the GFA. In 

Fig. 8 , when the MH hands off from FA7 to FA6 , the old path is {FA7 , FA3 , GFA} and 

the new path is {FA6, FA3 , GFA} with the crossover FA being FA3. An individual FA 

advertises the IP address of the GFA, and might advertise his own IP address if such 

address is not private. If the MH is not equipped to handle regional registrations, and an 

FA advertises its own IP address, the MH can register this FA’s address as its home- 

registered care-of address, according to the base Mobile IP protocol [43], Hence, we offer 

a backward compatible mode of operation for legacy MHs, which are unable to handle 

local-area mobility extensions.

Individual FAs advertise their Network Address Identifier (NAI) [3] through a FA- 

NAI extension [10] appended to the agent advertisement. Inspection of the FA’s NAI
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allows a MH to decide whether it has changed foreign domains, or whether it has 

returned home. Furthermore, if individual FA addresses are private addresses, the MH 

uses the previous foreign agent’s NAI to identify such FA when sending a registration 

request to a new foreign agent as part of a smooth handoff mechanism [47]. For instance, 

in Fig. 8  FA7 advertises the IP addresses {FA7 , GFA}, as well as his NAI 

{FA7 @RealmX}. For authentication purposes between foreign agents, security 

associations [35] are required between each parent FA and its children FAs beneath it in 

the FA hierarchy.

We believe that an FA should not advertise the FA hierarchy addresses leading to its 

GFA. In such manner, the size of the FA advertisement is not dependent on the number 

of hierarchy levels above it in the FA hierarchy, less bandwidth is required if the FA 

advertisement is to be transmitted over a wireless link, the structure of the FA hierarchy 

is hidden from the MH, and the structure of the FA hierarchy can change dynamically 

without having to alter the FA advertisement. The fact that the FA hierarchy structure is 

not advertised to the MH implies that the MH cannot decide which RFA is the crossover 

FA to be used as the target of its next regional registration. Hence, the MH always uses 

the GFA as the target of any regional registrations within the FA hierarchy.

GFA Foreign Agent 

Advertisement

[FA7, GFA}

FA7 @RealmX

{FA6, GFA} 

FA6 @RealmX

MH !MH

Fig. 8 . A foreign agent hierarchy with a sample of agents’ advertisements.
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3.3 A Regional Registration Processing Framework

While performing an intra-hierarchy handoff, the MH’s resulting registration can be 

classified as: a regional registration implying a local handoff to be replied to by the 

crossover FA, or a home registration associated with a local handoff (HR-LH), if the 

timing to send a home registration coincides with a local handoff. In this section, we 

present a regional registration processing framework and associated tunneling 

consistency mechanisms. We opt for a signaling design methodology that does not 

require the smooth handoff mechanism to maintain tunneling consistency, leaving such 

functionality to be optionally used by the MH to further reduce potential packet loss. In 

our signaling design, the crossover FA triggers the tunneling consistency mechanism 

upon receiving a regional registration request. Thus, race conditions, stemming from the 

crossover FA’s inability to properly identify its status as a “crossover FA” for a certain 

registration request as previously identified within MIP_RR (see section 3.1), are 

prevented. In the following sections, we present our proposed framework for regional 

registrations processing, explaining how the smooth handoff mechanism, if used by the 

MH, can coexist with our proposed approach. In addition, we discuss how authentication 

and replay protection can be performed for protocol messages. Furthermore, we suggest a 

new replay protection update mechanism, which propagates the new identification value 

assigned by the crossover FA to the MH, to ensure future successful processing of MH’s 

registrations by upper levels of the FA hierarchy. Furthermore, we compare and contrast 

our proposed approach versus MIPJRR using qualitative and analytical comparison.

3.3.1 Operational Overview

When the MH sends a regional registration request, it is propagated upwards in the 

hierarchy until it reaches the crossover FA. The crossover FA generates a regional 

registration reply switching the tunneling path for the MH from the old path to the new 

path. The regional registration reply is propagated down the new path until it reaches the 

MH. Any future data packets received at the crossover FA for the MH are tunneled 

through the new path, alleviating the need for the old path.

We suggest using a Deregistration mechanism, as a tunneling consistency 

mechanism, triggered by the crossover FA, by which a binding update message with
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lifetime equal to 0 is propagated through the MH’s old path originating from the 

crossover FA. A similar approach, albeit relying on home registrations only, was 

previously proposed and implemented in the Dynamics Hut Hierarchical mobile IP 

implementation [27]. Furthermore, we require binding update delivery acknowledgement 

by the receiving FA in response to the deregistration message. Consequently, each RFA, 

beneath the crossover FA in the old path, receiving the binding update message from its 

parent FA performs the following steps.

-  Note the current tunnel endpoint for the MH,

-  Delete the MH’s visitor entry,

-  Generate a deregistration message to the noted tunnel endpoint (one of its 

children FA),

-  Generate a binding acknowledgment message back to the sender FA (its 

parent FA).

This process repeats at each intermediate RFA until the BU message reaches the leaf 

FA that was previously serving the MH (old FA), hence does not have a tunnel endpoint 

for the MH. If a RFA does not receive a binding acknowledgment message from the 

tunnel endpoint (one of its children FA) after a specific time interval, it is responsible for 

resending the BU message, until an acknowledgment is received.

The proposed tunneling consistency mechanism ensures that the old path entries for 

the MH are cleared in a timely fashion. Fig. 9 illustrates the proposed signaling message 

flow for regional registrations along with the associated tunneling consistency 

mechanism invoked by the crossover FA. If the MH is requesting simultaneous binding 

[43], i.e., the desire to maintain the old and new path simultaneously, in its regional 

request, such deregistration mechanism is not triggered by the crossover FA.
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MH Old FA RFAj New FA RFA; in route to Crossover FA

In old path crossover FA (can be GFA)

Rreg.
Req.

Rreg. Req.

Rreg.
Req.

Rreg.
ReplyRreg. Reply

Rreg.
Reply

‘ Dereg. 
(BU)

! Dereg. }

| (bu .̂4
|

I A
| Binding ack. j

Binding ack.

^  Regional Registration messages Regional RegistrationRreg.:
(Request/Reply) Req.: Request

 ^  Route Optimization messages Ack.: Acknowledgement
(BU/Binding ack.) Dereg.: Deregistartion

Fig. 9. Proposed signaling message flow for regional registration.

3.3.2 Authentication and Replay Protection

Any binding update or acknowledgement message exchange between foreign agents 

is authenticated by a route optimization authentication extension [47] based on the pre- 

established security associations between each parent and child FA. Replay protection is 

provided for binding updates by usage of the identification field within the binding 

update and acknowledgment messages [47] according to the replay protection style 

between each 2  pairs of foreign agents.
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The MH authenticates its regional registration request using its registration key 

shared with the foreign agent hierarchy by appending a MH-GFA authentication 

extension. The crossover FA checks the authenticity of the request by confirming the 

authenticator value supplied by the MH, and makes sure that this indeed is the latest 

message from the MH (message freshness). Replay protection for regional registration 

requests is provided through the usage of the identification field within the request and 

reply messages [43] according to the replay protection style selected by the MH for 

regional registrations.

Timestamp replay protection is processed according to [43]. Nevertheless, the FAs 

individual clocks along with the MH’s clock, used to generate the timestamps, need to be 

synchronized. In such case, any newly generated timestamps by intermediate FAs need 

not be distributed in the FA hierarchy.

The FA hierarchy only advertises the GFA, but not the hierarchy itself. Thus, in the 

case of nonce replay protection, the MH associates the identification value supplied 

within the registration reply with the current GFA. Any intermediate RFAs record the 

current nonce value for future use, if such intermediate RFA is in a position to reply to a 

future regional registration request. If an RFA generates a new nonce value, a mechanism 

is needed to disseminate this new nonce value to higher FAs in the hierarchy, since any 

of these FAs might be next to authenticate future regional registration requests from this 

MH5. We propose that the RFA generating the new nonce value, the crossover FA, sends 

a replay protection update message upwards in its FA hierarchy. This new Mobile IP 

message (Fig. 10) propagates upwards all the way to the GFA and contains the MH home 

address, along with the new identification value and is authenticated by means of a FA- 

FA authentication extension. Intermediate RFAs in the path towards the GFA associate 

the new identification value with the MH. In such manner, such RFAs are capable of 

authenticating any future regional registration requests by the MH. Similarly, in case of 

timestamp replay protection, the same idea of propagating the generated timestamp using

5 In nonce replay protection, the crossover FA generates the new nonce value that the MH supplies in 

its next regional registration request.
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the replay protection update message can be equally applied, if general clock 

synchronization cannot be achieved.

Alternatively, another solution to provide replay protection is through the announcing 

FA by means of a challenge-response mechanism [46]. In such case, timestamps or 

nonces are not needed between the MH and the GFA.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Type Reserved

MH Home Address

New MH Identification

Identification 

Extensions ...

Message Type.

Reserved. Sent as 0; ignored on reception.

The home address of the MH to which this message 

refers.

A 64-bit number, the new identification value for the 

MH stored by the receiver for future use.

A 64-bit number, assigned by the sender to assist in 

protecting against replay attacks.

Fig. 10. Replay protection update message format and fields.

Type

Reserved

MH Home Address 

New MH Identification 

Identification

3.3.3 Coexistence with Smooth Handoff Mechanism

If the MH is requesting the usage of the smooth handoff mechanism (section 2.3.2), 

the new FA transmits a BU on behalf of the MH to the old FA (BUNewFA)> which
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authenticates the BU and sends a binding acknowledgment to the new FA, which delivers 

it to the MH. Meanwhile, a deregistration message is propagated through the old path by 

the crossover FA towards the old FA. The following two cases can arise.

1. BUuewFA reaches the old FA before the deregistration message. The MH’s 

visitor entry is deleted, and a binding cache entry pointing to the new FA is 

created. Such binding cache entry is eventually removed when the old FA 

receives the deregistration message, since such message is simply a BU with 

zero lifetime.

2. Deregistration message reaches the old FA before BUncwfa■ The MH’s visitor 

entry is deleted upon first receiving the deregistration message. In such case, 

the old FA receives B U ^wfa while no visitor entry exists for the MH. Thus, 

the old FA denies the BU generating a negative binding acknowledgment 

back to the new FA.

If buffering services are provided by foreign agents to the MH [49] and the 

deregistration message reaches the old FA before BU^wFA, the old FA does not know 

how to forward the buffered packets to the new FA while it needs to delete the MH’s 

visitor entry. Thus, a mechanism is needed which informs the old FA about the MH’s 

new FA when the MH is not using the smooth handoff mechanism (i.e., the MH is not 

providing the old FA information to the new FA). Even if the MH is smooth handoff 

enabled, individual foreign agents may not be advertising their own IP address, or their 

NAI to allow the MH to use either for smooth handoff purposes. Such mechanism 

leverages the existence of a hierarchy, and relies on propagating the new FA IP address, 

provided by the new FA itself, with the regional registration request along the new path, 

then along the old path with the tunneling consistency binding update messages. We 

present the details of such mechanism as part of our home registration processing 

framework, which we detail in section 3.4.

3.3.4 Analysis and Comparison

We analyze the proposed regional registration framework and associated tunneling 

consistency mechanism using the delay measures introduced earlier in TABLE 1. Fig. 11
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abstracts the regional registration processing along with involved delays in our proposed 

approach as well as the MIP_RR,s approach for comparison purposes.

BU
✓ ✓

crossover-old) /  /

^rossover ̂

/ '  /  Regional

©
Registration
Reply
D  crossover-new

Regional Registration 

Request

(Ê new-crossover)

New

FA J  Regional

Registration Request

(a)

RFA Crossover FA

Regional Registration 

Request

BU

Regional \  
Registration 
Reply

Old New

Regional

Registration Request

FAFA

BU
MH

(b)

Fig. 11. Abstracted view of regional registration processing along with involved delays, 

(a) Proposed (b) MIP_RR [30].
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We define regional registration latency as viewed by the MH to be the time interval 

between submitting a regional registration request and receiving a regional registration 

reply. After receiving a regional registration reply, the MH is assured that its tunneling 

path within the foreign agent hierarchy has been switched to the new path. Furthermore, 

such regional registration reply indicates to the MH the completion of the current handoff 

event from the foreign agent hierarchy perspective (network-layer point of view). We 

introduce a new delay measure D crossover-new to be the delay to generate and transmit the 

regional registration reply by the crossover FA, to be relayed by all intermediate RFAs to 

reach the new FA, starting when the crossover FA receives the MH’s registration request. 

Such delay is dependent on link, and queuing delays on each intermediate link between 

the crossover FA and the new FA along the new path in the FA hierarchy, and on 

registration reply processing delays at each intermediate RFA on this path. In general, the 

MH’s perceived regional registration latency can be formulated as shown in (2).

Time for the new FA to receive the request from the MH +

Registration latency — Dnew-crossover "F Dcrossover-new +

Time for the MH receive the reply from the new FA (2)

We define Dcr0SS0ver-0id to be the delay to generate and transmit a BU down the old 

path by the crossover FA, to be relayed by all intermediate RFAs to reach the old FA, 

starting when the crossover FA receives the MH’s registration request. In TABLE 2, we 

compare the proposed approach versus M3P_RR, in terms of the following aspects.

1. The MH’s perceived registration latency.

2. The delay before the tunneling consistency mechanism is initiated 

iP initC onsistent) starting when the new FA receives the MH’s request.

3. The delay before the tunneling consistency mechanism runs to completion

( D  Consistent) •

4. The delay before the old FA can forward any packets (buffered or received 

afterwards) to the new FA ( D p orward), if any, starting when the new FA 

receives the MH’s request.

R e p ro d u c e d  w ith  p e rm is s io n  o f  th e  c o p y r ig h t o w n e r. F u r th e r  re p ro d u c tio n  p ro h ib ite d  w ith o u t p e rm is s io n .



50

For our proposed approach, we are assuming the availability of a mechanism that 

propagates the new FA IP address information to the old FA (see section 3.3.3), while the 

MH is not using the smooth handoff mechanism. If the MH is using the smooth handoff 

mechanism, only Dporward is affected, according to whether the BU from the new FA, or 

the tunneling consistency BU from the parent FA reaches the old FA first.

Analyzing the formulas presented in TABLE 2, we conclude that the initiation of the 

tunneling consistency mechanism in our proposed framework is dependent on the number 

of RFAs between the new FA and the crossover FA (number of intermediate levels), and 

the corresponding link and queuing delays on the new path. On the other hand, for 

MIPJRR such measure is dependent on link, queuing and routing delays between the new 

and old FA, respectively. The mathematical relationship (<, >) between Dnew.0n  and Dnew. 

crossover holds the key to which approach is faster in ensuring tunneling consistency along 

the old path6.

TABLE 2

QUANTITATIVE COMPARISON OF THE PROPOSED APPROACH VERSUS

MIP_RR

Measure Proposed Proposed with 

MH using smooth handoff

MIP_RR [30]

Registration

latency

As given in (2) As given in (2) As given in (2)

&  IntiConsistent ^new-crossover & new-crossover & new-old

&  Consistent & Init Consistent &  crossover-old & InitConsistent &  crossover-old DInitConsistent'^' &  old-crossover

&  Forward & new-crossover ^crossover-old Min { &  new-old,

&  new-crossover ^crossover-old}
& new-old

6 Assuming Dcrossov„.oM is equivalent to DM_crossover"
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Utilizing the smooth handoff mechanism as the basis for the tunneling consistency 

mechanism, allows initiating such mechanism from the earliest possible point on the RFA 

tree, which is the new FA. However, as pointed earlier in section 3.1, the use of such 

approach coupled with the dependence on the time of receiving the corresponding 

regional registration request by the crossover FA open the door for potential race 

conditions. Even in the absence of such potential race condition, we argue that our 

framework presents a viable approach to ensure hierarchy tunneling consistency and 

inform the old FA about the new FA when the MH is not enabled to use the smooth 

handoff mechanism, or the foreign agents are not advertising any means for personal 

identification such as their IP addresses, or their network access identifiers.

3.4 A Home Registration Processing Framework

The MH performs a home registration when it first enters the foreign domain, and 

periodically to maintain its home mobility binding. For intra-hierarchy handoffs, we 

classified home registrations (section 2.3.1) according to whether a local handoff from 

one FA to the other is involved. If no handoff is involved, the home registration is 

propagated in a path that has MH’s visitor entries established using a previous regional 

registration. In such case, no tunneling consistency mechanism is required since there is 

no crossover FA, and no old path with visitor entries to be deleted. On the other hand, if a 

local handoff is involved (HR-LH, see section 2.3.1), the registration request is 

propagated in an un-established path until it reaches a crossover FA that forwards the 

request over an already established path until it reaches the GFA. In the latter case, 

simply applying a tunneling consistency mechanism that deletes the MH’s visitor entries 

in the old path maintains the tunneling consistency, but degrades handoff performance 

since the MH can not be reached until the registration reply from the HA establishes the 

new path. HR-LH rate of occurrence depends on the MH mobility pattern, home 

registration lifetime, and when the MH receives foreign agents’ advertisements. For 

instance, a MH can initiate a home registration that does not involve a local handoff, 

move to another FA due to a received FA’s advertisement, and subsequently generate 

another home registration, which at this time involves a local handoff.
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In this section, we present 2 novel approaches for processing of home registrations 

involving local handoffs within the same foreign agent hierarchy. We analyze and 

contrast both approaches, and later present a simulation study comparing their usage 

(section 3.5). Both approaches attempt to exploit the hierarchy structure, in order to 

optimize the MH handoff while waiting for the home registration reply to be received 

from the HA. The KOPA (Keep Old Path Alive) approach (section 3.4.1) follows the 

same line of thought as MDP_RR [30] in attempting to keep the old path “alive” and 

tunnel packets to the MH’s new FA until the handoff completes by receiving a home 

registration reply. Nevertheless, such task is performed without relying on the MH’s 

usage of the smooth handoff mechanism as a required component, and designed to 

prevent previously identified race conditions (section 3.1). The SINP (Switch 

Immediately to New Path) approach (section 3.4.2) emphasizes the local handoff aspect 

and switches the MH’s tunneling path within the hierarchy immediately to follow the 

new path without waiting for the home registration reply. We focus here on home 

registrations associated with intra-hierarchy handoffs. In section IV, we present a foreign 

agent hierarchy cooperation-based framework to handle home registrations associated 

with inter-hierarchy handoffs.

3.4.1 KOPA: Keep Old Path Alive Approach

The KOPA approach relies on the crossover FA to initiate a mechanism by which the 

MH’s old path is kept alive until the home registration is received, and consequently 

creating visitor entries in the new path. “Keeping the old path alive” implies performing 

the following two steps.

1. Replace visitor entries in the old path with binding cache entries, with a 

specified lifetime, that point to the same visitor entry’s tunnel endpoint for the 

MH (one of the children FAs),

2. Inform the old serving FA about the MH’s new FA to tunnel to it any already 

buffered or future data packets that arrive at the old FA.

Such procedure ensures future tunneling consistency since a visitor entry is replaced 

with a binding cache avoiding future erroneous decisions by RFAs when receiving a 

future MH’s regional registration request. Propagating the new FA information to the
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crossover FA and then down the old path is necessary since we do not rely on the MH’s 

usage of the smooth handoff mechanism. Nevertheless, if the MH is using the smooth 

handoff mechanism, we present how our approach coexists with such mechanism in 

section 3.4.I.4. Fig. 12 illustrates an abstracted view of the KOPA approach for 

processing home registrations involving local handoffs.

Registration Request

Registration Request 

Crossover FA

BU with estimated lifetime, 

along with new FA IP 

address information

New path
Old path

Old FA can tunnel buffered 

or future packets to new

FA

Registration Request along 

with new FA IP address 

information
 !

Registration

Request

Fig. 12. The KOPA approach for processing home registrations involving local handoffs.
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The new FA, upon receiving the MH’s home registration request, propagates the 

registration request upwards in the new path, appending his own IP address information 

(see section 3.4.1.3). This registration request eventually reaches the crossover FA. The 

crossover FA generates a binding update message with an estimated lifetime (see section

3.4.1.1) down the old path to its visitor entry tunnel endpoint appending the new FA 

information it extracts from the received registration request. In addition, the crossover 

FA propagates the home registration request upwards towards the GFA7  which sends it to 

the HA. The crossover FA only propagates the new FA information down the old path, 

but does not use such information for tunneling data packets to the MH even after a home 

registration reply is received. This is due to the fact that the next MH’s regional 

registration might terminate at a crossover FA that is at a lower hierarchy level than the 

current crossover FA, hence the current crossover FA will not be informed to update its 

MH’s tunnel endpoint. Thus, the crossover FA always establishes the MH’s tunnel 

endpoint as its child FA that originally forwarded the registration request.

Each RFA, beneath the crossover FA in the old path, upon receiving the binding 

update message from its parent FA performs the following steps.

-  Note the current tunnel endpoint for the MH,

-  Delete the MH’s visitor entry,

-  Create a binding cache entry with the specified lifetime (pointing to the noted 

tunnel endpoint),

-  Generate a binding update message to the noted tunnel endpoint (one of its 

children FA),

-  Generate a binding acknowledgment message back to the sender FA (its 

parent FA).

This process repeats until the BU message along with the new FA information 

reaches the FA that was previously serving the MH, hence does not have a tunnel 

endpoint for the MH. The old FA, armed with the new FA information, can send any 

already buffered, or future data packets to the new FA that delivers them to the MH. The 

binding caches in the old path will eventually expire. Meanwhile, the home registration

7 If the crossover FA is the GFA, then he simply forwards the request to the HA.
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reply should be received from the HA switching the MH’s tunneling path to the new path 

alleviating the need for the old path. Fig. 13 illustrates the signaling message flow for the 

KOPA approach.
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Fig. 13. Signaling message flow in the KOPA approach.
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The following design issues need to be addressed for correct and efficient operation 

of the KOPA approach.

1. What lifetime the crossover FA uses for the binding update?

2. How the crossover FA ensures authentication and replay protection for the 

MH’s home registration request, in order to initiate the tunneling consistency 

mechanism?

3. How the new FA information is propagated along the new path with the MH’s 

home registration request, and later along the old path with the binding update 

message?

4. Coexistence with smooth handoff mechanism if used by the MH?

We next present our solution for each of these issues highlighting possible 

alternatives and design tradeoffs.

3.4.1.1 Binding update lifetime

The old path needs to be kept “alive” until the home registration reply establishes the 

new tunneling path for the MH in the foreign domain. Actually, the crossover FA starts 

tunneling data packets to the new path after it has received the home registration reply 

and established the sending child FA (in the pending registration record) as the tunnel 

endpoint for the MH. Hence, the crossover FA can switch to the new path after the 

registration request it propagates upwards, on behalf of the MH, eventually reaches the 

HA, is processed, and a home registration reply is received by the crossover FA. The time 

interval which is the difference between the time the crossover FA propagates the 

registration request upwards and the time it receives a corresponding home registration 

reply, represents the home registration latency as seen at each involved RFA. The 

duration of such time interval is affected by the following factors: the number of 

hierarchy levels and required request/reply messages processing at each level between the 

crossover FA and the GFA; the round trip time between the GFA and the HA; and the 

home registration processing time by the HA.

The binding update lifetime can be readily selected as the remaining MH’s 

registration lifetime at the crossover FA when receiving the registration request. 

Nevertheless, such remaining lifetime is dependent on when the MH initiates a home
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registration, might not be enough for the request to reach a distant HA, be processed by 

the HA, and for a registration reply to reach the crossover FA. Thus, we suggest 

incorporating measuring the home registration latency as part of the BU lifetime selection 

process, as explained next.

We propose to let RFAs measure the aforementioned time interval ( A t )  for every 

approved MH’s home registration. Such decision implies that a RFA notes the time it 

forwards a home registration request towards the GFA (tforwardrequest), storing it for future 

use in a pending registration record. When the RFA receives the approved home 

registration reply ( t receive_rePiy), the stored forwarding time is extracted and the time 

interval is computed according to (3). This measure provides a crossover FA with an 

estimate to aid in selecting the BU lifetime, since it represents the most recent home 

registration latency as seen by this RFA

A t  — treceive_reply tforward_request (3)

The estimated measure is updated at each RFA in any hierarchy path towards the 

GFA that the MH’s home registration request is propagated through. We only store the 

most recent measured value, and not compute the estimate as a weighted average of old 

and new values, since this process might not be that frequent depending on the time 

intervals between consecutive home registrations. However, a crossover FA cannot solely 

depend on this measure to compute the BU lifetime, since the crossover FA might not yet 

store this measure depending on the MH’s mobility pattern. Fig. 14 depicts an example 

scenario where a crossover FA does not store a home registration latency measure for a 

MH. When the MH enters the foreign domain, it sends its first home registration to FA6 - 

Hence, home registration latency measures are stored by {FA3, GFA} because the home 

registration reply flows in the path {GFA, FA3, and FAe}. Next, the MH hands off 

regionally from FA6 to FA5 with the GFA being the crossover FA. Later, the MH hands 

off from FA5 to FA4 and sends a home registration request. At such time, FA2 is the 

crossover FA, which does not store a home registration latency measure for the MH.
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Fig. 14. A scenario where the crossover FA does not store home registration latency.

We suggest a BU lifetime selection mechanism that combines the knowledge of the 

remaining registration lifetime, and the measured most recent home registration latency at 

each crossover FA as shown in (4).

BU lifetime = Max {home reg. latency, a *  remaining reg. lifetime} (4)

Where 0 < a  < 1.

Analyzing equation (4), the fraction a  represents the percentage of the remaining 

registration lifetime to be used in comparison to the home registration latency. We 

suggest using a value of 0.5 for a 8, since the initial value for the registration lifetime is 

set by the MH and later approved or modified by the HA, and the MH most probably will

8 The value o f a  is implementation dependent, as what fraction of the remaining registration lifetime is 

desired to affect the selection of the BU lifetime.
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issue a home registration request long enough before the registration expiration. Hence, 

the remaining registration lifetime might be too much larger than the home registration 

latency, depending on when the MH initiates a home registration request. If the home 

registration latency is not known, the BU lifetime is selected as a fraction of the 

remaining registration lifetime. Otherwise, the home registration latency guides the 

selection process by acting as a lower/upper bound for the BU lifetime.

3.4.1.2 Authentication and replay protection

In the KOPA approach, the crossover FA acts upon the MH’s home registration and 

generates binding updates down the MH’s old path, hence altering the MH’s tunneling 

state in affected RFAs. If the crossover FA cannot authenticate the received home 

registration, then such approach would not be feasible. However, this is a home 

registration with no regional authentication information. Hence, we exploit the presence 

of a hierarchy structure and the existence of an old and new path to the MH by extending 

such home registration, a HR-LH request (see section 2.3.1), as a special case of a 

combined home and regional registration. The home registration aspect ensures that the 

request is propagated all the way to the HA to renew the MH’s home mobility binding. 

The regional registration aspect permits the crossover FA to act upon the received request 

and proceed in generating the keep “alive” binding updates. Consequently, we require 

that the MH authenticate any HR-LH requests by using a MH-GFA authentication 

extension. Moreover, the home registration request does not contain regional 

identification information9, creating a regional replay protection problem. The crossover 

FA cannot guarantee the “freshness” of the request unless the MH includes its regional 

identification information along with its home registration. Thus, we define a local replay 

protection extension (Fig. 15) to be supplied by the MH with a HR-LH request to ensure 

the feasibility of the KOPA approach. The MH uses the local replay protection extension 

to supply its current regional identification value; to enable the crossover FA’s processing 

mechanism of the home registration request.

The local replay protection extension is included with any other non-authenticated 

extensions pertaining to the MH and the hierarchy of foreign agents, after the Mobile-

9 Recall that home and regional replay protection mechanisms are separate [30].
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Home authentication extension [43], but before the MH-GFA authentication extension. In 

such manner, the home-targeted part of the registration request message along with its 

authentication is not affected when the foreign agents hierarchy removes the local replay 

protection extension along with its authenticating extension.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Type Length Regional identification ...

Regional identification ...

Regional identification

Type Extension Type.

Length 8-bit unsigned integer, in this case is equal to 8 (Length of the extension

in octets excluding extension type and length).

Regional identification A 64-bit number, The current regional identification value for the MH.

Fig. 15. Local replay protection extension format and fields.

The crossover FA must authenticate the MH’s request and ensure the validity of the 

supplied regional identification value. If the MH fails the authentication or the 

identification validity test, then the crossover FA generates a regional registration reply 

back to the MH with appropriate error code, but still forwards the home registration 

portion of the request upwards for normal home registration processing10. A regional 

registration reply with an authentication error code prompts the MH to attempt a new 

home registration without supplying its regional information while appending a replay 

protection extension. Such registration is processed according to [30]. A regional 

registration reply with an identification mismatch error code would provide the MH with

10 The crossover FA forwarding of the home registration request, even through the MH failed regional 

authentication, is required to maintain the home mobility binding of the MH.
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means to re-synchronize its identification information with the hierarchy depending on 

which style of replay protection is in use [43]. In such case, the MH resends its 

registration request using the new regional identification value supplied in the previous 

regional registration reply. Such request serves to ensure the execution of the tunneling 

consistency mechanism by the crossover FA.

If the crossover FA is able to successfully authenticate the MH, it initiates the binding 

updates down the old path as previously explained, and forwards the MH’s request 

unchanged upwards towards the GFA. Such processing allows RFAs in higher levels than 

the crossover FA to know the current regional identification used by the MH. Eventually, 

this request reaches the GFA, which removes any regional information extensions (e.g., 

the local replay protection extension along with the authenticating extension) and 

forwards the request to the HA. If the MH is using nonce replay protection, then a new 

nonce value needs to be generated and sent back to the MH. In this case, we suggest that 

the GFA perform this function by placing the new nonce value in a local replay extension 

to be appended at the end of the home registration reply received from the HA, and 

authenticated using a MH-GFA authentication extension. The registration reply flows 

down the hierarchy to reach the MH, informing all RFAs of the new nonce value 

generated for this MH. If timestamp replay protection is used, then such processing is not 

needed.

Exchange of binding updates and acknowledgments between foreign agents is 

authenticated using the route optimization authentication extension. Any FA is capable of 

ensuring the freshness of the BU message (replay protection mechanism) it receives by 

inspecting the BU’s identification field [47].

3.4.1.3 New FA information

The new FA information needs to be propagated from the new FA along to the new 

path to the crossover FA, and then along the old path to the old FA (see Fig. 12). Along 

the new path, we use the home registration request to convey this information, while 

along the old path we use the binding updates designated to implement the KOPA 

approach.
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We define a local care-of address extension to carry the new FA IP address 

information along the new path (Fig. 16). The new FA appends this extension to the HR- 

LH request it receives from the MH. In addition, it authenticates this information by 

appending a FA-FA authentication extension using the security association it shares with 

its parent FA. The home registration request and the added extensions are propagated in 

the new path up to the crossover FA. Each intermediate RFA in the new path removes the 

FA-FA authentication extension it receives and maintains the local care-of address 

extension inserted by the new FA address, while authenticating the request to its parent 

FA by using a FA-FA authentication extension. This process repeats until the registration 

request reaches the crossover FA. After authenticating the registration request (see 

section 3.4.1.2), the crossover FA extracts the local care-of address extension to use in 

formulating the binding updates down the old path, removes the local care-of address 

extension and the corresponding authentication extension from the registration request, 

and propagates the stripped down registration request upward in the hierarchy toward the

GFA.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Type Length New FA IP address...

New FA IP address

New FA IP address

Type

Length

Extension Type.

8-bit unsigned integer, in this case is equal to 4 (length of the extension 

in octets excluding extension type and length).

The IP address of the new FA.

Fig. 16. Local care-of address extension format and fields.
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The crossover FA sends a binding update to its current tunnel endpoint for the MH 

(The first RFA in the old path) appending the local care-of address extension to the 

binding update before the route optimization authentication extension used to 

authenticate the BU message. The BU lifetime is set as explained in section 3.4.1.1. The 

BU care-of address is set to the MH home address. The presence of the local care-of 

address extension along with a non-zero lifetime and setting the BU care-of address to the 

MH home address dictates the following processing steps at each RFA in the old path 

receiving this BU.

-  Delete current visitor entry for the MH retaining the current tunnel endpoint;

-  Create a binding cache entry pointing to the tunnel endpoint;

-  Send back a binding acknowledgment message back to the sender FA (father 

FA);

-  Send a new binding update message to the tunnel endpoint using the provided 

values for the BU lifetime and MH care-of address while appending the local 

care-of address extension and authenticating the BU message using a FA-FA 

authentication extension.

This process repeats until the BU traverses the old path and reaches the old FA that 

does not have a tunnel endpoint to the MH. The old FA deletes its MH’s visitor entry,
j  -j

creates a binding cache entry pointing to the new FA using the provided BU lifetime; 

and acknowledges the BU message back to its father FA.

The same approach and data extensions providing the new FA IP address from within 

the hierarchy can be similarly used when processing regional registration requests 

(section 3.3) to allow for forwarding of any buffered data packets from the old FA to the 

new FA without relying on the MH’s usage of the smooth handoff mechanism. The main 

difference would be that a zero lifetime is provided in the binding updates propagated 

down the old path resulting in no binding cache entries created along the old path. In this 

case, the old FA can forward any already-buffered packets to the new FA, and can 

assume a default lifetime for the time interval in which it performs tunneling of any 

future data packets to the new FA.

11 The old FA extracts the new FA IP address from the local care-of address extension.
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3.4.1.4 Coexistence with smooth handoff mechanism

If the MH is using the smooth handoff mechanism, the old FA will eventually receive 

2 binding update messages: the BU message from the father FA which implements the 

KOPA approach (BUFatherFA)', and the BU message from the new FA forwarded on behalf 

of the MH as part of the smooth handoff mechanism (BUNewFA)- These 2 BU messages 

contain the same new care-of address information for the MH that is the new FA IP 

address. The BU that reaches the old FA first causes the old FA to delete its MH’s visitor 

entry and create a binding cache entry using the supplied lifetime. When the second BU 

reaches the old FA, it provides the same care-of address as the one pointed to by the 

binding cache entry; hence no care-of address update is performed. Nevertheless, the MH 

specifies the lifetime in B U ^wFA, while the crossover FA specifies the lifetime in

B U p a th erF A ■

We suggest the following MH-biased processing by the old FA: the second BU 

lifetime is applied only if it is larger than the remaining lifetime o f the binding cache 

entry. Hence, the MH is always granted the largest possible lifetime for the binding cache 

entry. In this special case, the granted lifetime might be different than the requested 

lifetime. Thus, the binding acknowledgement message can be modified to include an 

approved lifetime field. We acknowledge that such processing might create binding cache 

lifetime inconsistencies between the old FA and along the old path to the crossover FA, 

nevertheless the main purpose was achieved by preventing race conditions, and providing 

an alternative to inform the old FA about the new FA without relying on the smooth 

handoff mechanism. If absolute binding cache lifetime consistency along the old path is 

desired, and the BUFatherFA arrives later at the old FA with the current remaining lifetime 

being higher than requested (i.e., the remaining lifetime granted due to BUn^ fa is greater 

than requested in BUFatherFA), then the binding acknowledgement message to the father 

FA will include the new lifetime, and can trigger a set of binding updates along the old 

path upwards towards the crossover FA.

3.4.2 SINP: Switch Immediately to New Path Approach

The SINP approach reinforces the local handoff aspect while the MH is sending a 

HR-LH request. We note that the HA does not know which local FA is currently serving
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the MH, since the home registered care-of address for the MH is the GFA. We argue here 

that the establishment of the new path within the hierarchy should not be dependent on a 

home registration reply that only indicates that the GFA has been established as the MH’s 

care-of address. Hence, we capitalize on such issue and view a home registration with an 

involved local handoff as truly a combined home and regional registration. The regional 

aspect of the registration is handled by the crossover FA in order to switch the MH’s 

tunneling path from the old path to the new path immediately without waiting for a home 

registration reply, while the home registration aspect is handled by the HA to renew the 

MH’s home mobility binding. Therefore, we suggest that the crossover FA switches 

immediately the M H’s tunneling path from the old path to the new path by issuing a 

regional registration reply in response to the M H’s home registration reply. To enable 

such functionality, similar to the KOPA approach, the MH formulates the home 

registration request by supplying any current regional protection information 

authenticating the request using a MH-GFA authentication extension (see section

3.4.1.2). In addition to generating a regional registration reply, the crossover FA forwards 

the home registration request upwards in the hierarchy towards the GFA for normal home 

registration processing by the HA. Furthermore, to ensure tunneling consistency, the old 

path to the MH is cleared by using a tunneling consistency mechanism triggered by the 

crossover FA similar to the deregistration mechanism introduced in section 3.3. Fig. 17 

illustrates an abstracted view of the SINP approach for processing home registrations 

involving local handoffs, while Fig. 18 depicts a more detailed signaling message flow.

In essence, the MH generates a specially formulated home registration request, and 

expects receiving 2  registration replies: a regional registration reply, and a later home 

registration reply. Thus, involved foreign agents along the new path create two pending 

registration records: a pending home registration record, and a pending regional 

registration record. Matching registration replies against pending requests is performed 

based on the MH’s home address and identification value stored in the pending record 

[43]. For the pending regional request, the MH’s local identification value is stored in the 

pending regional request. Such value most probably will be different than the home 

identification value. Recall that the MH supplies its local identification value through a 

local replay protection extension to enable processing by the crossover FA.
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The MH requests a home registration lifetime within its home registration request. 

Such information is targeted to the HA and represent the home binding registration 

lifetime. The regional registration reply is generated using the remaining registration 

lifetime of the existing MH’s home registration that is available at the crossover FA. 

Hence, the crossover FA is establishing the new path as the MH’s tunneling path for the 

remaining amount of time previously approved by the HA. No guarantees are provided 

here that the home registration reply would reach back the GFA and the MH before the 

new path registration lifetime expires. Nevertheless, we note that the MH, in practice, 

would periodically renew its home mobility binding long before its expiration. We opted 

for this approach instead of adopting an estimate approach similar to the one introduced 

in the KOPA framework (see section 3.4.1.1), since a regional registration reply is 

generated, hence we are bound by the previously approved lifetime amount by the HA.

Home Registration Request

HA GFA

Home Registration Request

Deregistration mechanism 
(BU message with zero 
lifetime)
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Home Registration Request

New path'
Old path

Old New

FAFA
Home Registration Request

Regional Registration Reply 
The crossover FA switches the MH 
tunneling path to the new path before 
receiving a home registration reply.
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Fig. 17. The SINP approach for processing home registrations involving local handoff s.
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Fig. 18. Signaling message flow in the SINP approach.

Similar to the KOPA approach, the crossover FA is required to authenticate the MH 

request by inspecting the authenticator value in the MH-GFA authentication extension 

and checking the validity of the regional identification value provided in the local replay 

protection extension. If the MH fails either test; a regional registration reply is generated 

with appropriate error code. Nevertheless, the home registration portion of the request is 

propagated upwards towards the GFA for normal home registration processing. For
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requests successfully processed by the crossover FA, the MH request is propagated 

upwards towards the GFA that removes any regional extensions and forwards the request 

to the HA. For timestamp replay protection, the crossover FA forwards the MH request 

unchanged leaving the local replay protection extension, hence allowing for upper-level 

RFAs to know the current identification value used by the MH. For nonce replay 

protection, the crossover FA puts a new nonce value in its regional registration to the 

MH. Two alternatives are available to inform upper-level RFAs about such new nonce 

value: propagate a separate replay protection update message upwards in the hierarchy 

towards the GFA as previously introduced as part of the regional registration framework 

(section 3.3.2), or append a local replay protection extension containing the new nonce 

value to the end of the MH request. In the latter case, the resulting message is 

authenticated using a FA-FA authentication extension.

A successful regional registration reply that reaches the MH indicates that the local 

handoff was successfully processed and the tunneling path has been switched from the 

old path to the new path. In such case, if the MH does not receive a home registration 

reply, or receives a home registration reply indicating registration failure by the HA, the 

MH initiates another home registration request, which in this case would not involve a 

local handoff, since the local handoff has been already processed during the previous HR- 

LH. The lack of a regional registration reply, or the receipt of an authentication failure 

regional reply prompts the MH to re-synchronize with the hierarchy by sending a new 

home registration not supplying its regional information while appending a local replay 

protection extension. The receipt of an identification mismatch regional reply provides 

the MH with a new identification value that it uses in sending a new home registration 

request to ensure the execution of the hierarchy consistency mechanism by the crossover 

FA.

3.4.3 Analysis and Comparison

We analyze and compare the KOPA approach, the SINP approach, and MIP_RR [30] 

while processing home registrations involving local handoff s. We reuse the delay 

measures introduced in TABLE 1 in section 3.1, and in TABLE 2 in section 3.3.4. KOPA 

and SINP rely on a “crossover FA”-initiated approach, similar to the proposed regional
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registration framework (section 3.3), to perform the tunneling consistency mechanism. 

Hence, the previous analysis and comparison presented in section 3.3.4 hold true for the 

following delay measures: D i nitConsist, D consisten t, and D Forward- In summary, in our proposed 

approaches (KOPA and SINP), the delay to initialize the tunneling consistency 

mechanism, for it to run to completion, and the delay before forwarding of data packets 

from the old FA to the new FA would be dependent on various processing and 

intermediate link delays between the new FA and the crossover FA on the new path, and 

between the crossover FA and the old FA on the old path. Whereas, with MIP_RR such 

delays are dependent on various processing and intermediate link delays between the new 

and old FA, and the old and crossover FA on the old path.

The MH’s perceived home registration latency is unaffected by the different 

approaches, since it is defined to be the time interval between submitting a home 

registration request and receiving a home registration reply. However, the network-layer 

handoff completion within the foreign agent hierarchy varies among the investigated 

approaches. Recall that KOPA, and MIP_RR use a similar approach that does not switch 

the MH’s tunneling path to the new path until a home registration reply is received, 

whereas, SINP emphasizes the local handoff aspect, switching the MH tunneling path to 

the new path as soon as possible without waiting for a home registration reply. Hence, the 

latter approach (SINP) achieves lower handoff latency than the former (KOPA and 

MIP_RR [30]). Specifically, in SINP the network-layer handoff latency (starting when 

the new FA receives the MH’s request) is equivalent to the case of processing a regional 

registration by the crossover FA. The crossover FA is expected to be much nearer (in the 

network sense) to the new FA than a possibly distant HA. Fig. 19 illustrates an abstracted 

view of home registration processing along with involved delays in the KOPA and SINP 

approaches.
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Fig. 19. Abstracted view of home registration (HR-LH) processing with involved delays, 

(a) KOPA approach, (b) SINP approach.
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We define D cr0ssover-HA to be the delay involved for a home registration request 

propagated by the crossover FA to actually reach the HA, starting when the crossover FA 

receives the MH’s request (the registration request eventually reaches the GFA which 

sends it to the HA). Similarly, DnA-crossoveAs the delay involved for the HA to process the 

home registration request, generate a home registration reply sending it to the GFA, that 

propagates it within the hierarchy to eventually reach the crossover FA. In general, the 

MH’s perceived home registration latency is given by (5), assuming the time for the 

crossover FA to process the home registration reply and propagate it within the hierarchy 

until it reaches the new FA is equivalent to Dcr0ssover-new

The network layer handoff latency for KOPA and MIP_RR is the same and is given 

by (6), while for SINP it can be calculated as in (7). The KOPA approach and MIPJRJR 

are similar in completing the handoff from the old path to the new path only when 

receiving a home registration reply, whereas the SINP approach is expected to have a 

lower handoff latency measure since the handoff processing is localized within the 

hierarchy itself, without relying on a registration reply by the HA to set up the new path.

Time for the new FA to receive the request from the MH +

Registration latency = Dnew-crossover "F &crossover-HA"F

D HA-crossover "F D crossover-new "F

Time for the MH to receive the reply from the new FA (5) 

KOPA and MIPJRR network layer handoff latency =

Dnew-crossover "F DCrossover-HA "F D HA-crossover "I" Dcrossover-new (6)

SINP network layer handoff latency = Dnew-crossover "F D  crossover-new (7)
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A consequence of waiting for the home registration reply to set up the new path in 

KOPA and MDPJRR is that the old path, and the old FA are relied upon to deliver any 

data packets that reach the crossover FA for a period of time. Hence, during the time 

interval it takes for the registration reply to reach the crossover FA (D crossover.HA + D h a - 

crossover), the crossover FA forwards any data packets through the old path. In general, 

after the old FA is informed about the new FA, data packets latency is augmented by the 

delay it takes for a packet to be processed, and sent by the old FA, and later received by 

the new FA. Using the SINP approach, the old path is used until the home registration 

request reaches the crossover FA, at which point any subsequent data packets follow the 

new path. Hence, the time period where the old path is still used by the crossover FA is 

reduced compared to KOPA and MIPJR.R. Data packets latency is an important factor in 

interactive multimedia applications where a playout delay is maintained to overcome 

network jitter [36]. A data packet playout time is set to be the packet send time + the 

current playout delay. If a data packet is received after its playout time, it is dropped.

3.5 Performance Evaluation

We evaluate the performance of the proposed approaches through simulations. We 

implemented the proposed registration processing framework by extending the Columbia 

IP micro-mobility software (CIMS) [12], [15], which is an ns-2 network simulator [40] 

source code extension implementing a 1-level foreign agent hierarchy below the GFA. 

CIMS was extended to simulate n-level foreign agent hierarchies and model a true 

foreign domain. We defer the details of our network simulation framework to section V.

We investigate the performance of both TCP and UDP traffic for KOPA, SINP, and 

Base Mobile IP (MIP) approaches, and attempt to enforce an adequate number of home 

registrations involving local handoff s. In our approaches, the MH performs an initial 

home registration when it enters the foreign domain. Afterwards, it performs regional 

registrations until it renews its home mobility binding by issuing another home 

registration. Regional registrations are processed as presented in section 3.3, while home 

registrations involving local handoffs are processed according to KOPA (section 3.4.1) or 

SINP (section 3.4.2). In base MIP, the MH initiates a home registration request whenever 

it receives an advertisement from a new FA, hence has large registration signaling
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overhead, and large handoff latency. For comparison, we include a “naive” HR-LH 

processing approach where the old path is cleared by the crossover FA upon receiving the 

home registration propagated through the new path, hence treating HR-LH similar to 

regional registrations. We term this “naive” approach the Delete Old Path (DOP) 

approach. Observing the performance of the DOP approach gives an insight of the 

benefits achieved by the KOPA and SINP approaches. We assume that the MH is not 

using the smooth handoff approach, and hence the old FA is only informed about the new 

FA in the case of the KOPA approach (see section 3.4.1.3).

Fig. 20 depicts the simulated network topology. The foreign domain is comprised of a 

single FA hierarchy. The FA hierarchy is a perfect 4-level binary tree. We added the 

capability of simulating foreign agent hierarchies modeled as perfect N-ary trees with an 

arbitrary number of levels. We use the notation FA(J- to denote the foreign agent number j  

in level i of the tree. Leaf foreign agents, for / = ! —>8 , provide wireless access to the

MH by acting as base stations (BS), whereas other foreign agents in the hierarchy do not 

possess such capability. Neighboring base stations’ coverage areas have an overlap 

region of 30 meters. We use ns-2 implementation of a wireless medium access layer 

(implementing IEEE 802.11 distributed coordination function which is based on 

CSMA/CA12 [16]) for wireless connectivity between the MH and leaf foreign agents.

Each FA is only connected to its children foreign agents through individual 100 Mbps 

duplex links and link delay L D f a - f a  in milliseconds (unless otherwise stated, default link 

delay is 0.5 ms). The GFA is connected to the MH’s HA through a 1.5 Mbps duplex link 

with delay L D q f a - h a  ms (unless otherwise stated, default link delay is 2 0  ms). We 

simulate a single MH within the hierarchy communicating with a fixed Correspondent 

Host (CH). The CH is connected to the HA using a 1.5 Mbps duplex link with 20 ms link 

delay.

12 CSMA/CA stands for Carrier Sense Multiple Access with Collision Avoidance.
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Fig. 20. Simulated network topology.

For the purpose of these simulations, the MH is periodically moving between FA4i4 

and FA4,5 , hence periodically performing 3 hop handoffs with the crossover FA being the 

GFA. We used this approach to have the same number of hops for all handoffs. The home 

registration lifetime requested by the MH was set to be 30 seconds. After the initial home 

registration, the MH performs regional registrations until it decides it is time to renew its 

home mobility binding by sending a home registration request. In general, the home 

mobility binding renewal procedure is scheduled, when issuing a home registration 

request, to be executed after a time interval equal to “registration lifetime - V4 registration 

lifetime,” hence allowing enough time before home registration expiration for the request 

to make it to the HA. However, in order to obtain simulation results with adequate 

number of occurrences of HR-LH (home registrations involving local handoffs), the MH 

performs a home registration, instead of a regional registration; whenever it receives an
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agent advertisement from a new FA and the remaining time to issue a home registration 

request is less than or equal a fraction of the initial registration lifetime. We chose the 

fraction to be 0.25, i.e., perform home registrations if the remaining time to issue a home 

registration is less than or equal 14th the initial registration lifetime. Fig. 21 depicts the 

timing involved with the home mobility binding renewal process during these 

simulations.

lifetime -  lA lifetime
■> T2

Tj: Current home registration. 
Schedule next home registration 
at T2

t 3

AT

T3: Receive new FA advertisement.
Issue a home registration if AT < !4 lifetim e.

Fig. 21. Timing involved with the home mobility binding renewal process.

3.5.1 UDP Traffic

We simulate the behavior of an audio application by applying constant bit rate UDP 

traffic from the CH to the MH. A 160-byte data packet is transmitted every 20 ms to 

simulate a 64 kbps audio stream. The MH is moving periodically between FA4 4  and 

FA4 ,5  at a speed of 1 0  m/sec until an adequate number of handoffs is attained (more than 

100 handoffs). The number of home registrations associated with local handoffs (HR-LH) 

is different from one simulation run to the other but was bounded between [30-36]% of 

all handoffs, i.e., [64-70]% of the handoffs involved regional registrations. We do not
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impose any other traffic or overhead in the simulation to capture the ideal performance of 

the proposed approaches. Performance measures include the average number of lost 

packets per handoff, average number of lost packets per HR-LH, and in the KOPA case, 

the average number of encapsulated packets from the old FA to the new FA per HR-LH.

3.5.1.1 Effect of L D q f a - h a

We investigate the effect of the delay to the HA { L D q f a - h a )  to show the effect of 

having a distant HA. Fig. 22 illustrates the average lost packets per handoff while varying 

L D q f a - h a  from 5 to 50 ms and fixing L D f a - f a  at 0.5 ms. The KOPA and SINP approaches 

outperform both base MIP and DOP, with DOP outperforming base MIP. In general, the 

number of lost packets per handoff increases linearly with the link delay increase in base 

MIP and DOP, while it is not affected in KOPA and SINP13. For instance, with L D q f a - h a  

equal to 50 ms (a distant HA) the average lost packets in base MIP equal 6 . 8  packets per 

handoff, whereas in KOPA and SINP it is almost the same equal to 0.26 packets per 

handoff, representing a reduction in packet loss of almost 96%. In addition, the average 

lost packets in DOP in this case is 2.4 packets per handoff, representing a reduction in 

packet loss of 89% for using KOPA or SINP. We note that KOPA and SINP perform 

similarly in terms of packets lost since the link delays on the old path are the same as on 

the new path, and KOPA is able to keep up the same performance as SINP, since the 

number of encapsulated packets from the old FA to the new FA increases linearly with 

the increase of L D q f a - h a  as illustrated in Fig. 23. Such linear increase is attributed to the 

increase of L D q f a - h a  while L D f a - f a  is fixed, allowing for longer use of the old path by the 

crossover FA as the MH’s tunneling path. However, we later show that the KOPA 

approach affects average packet latency due to relying on the old path and tunneling from 

the old FA to the new FA, for a longer time interval than the SINP approach. The DOP 

approach, even though “naive” in terms of HR-LH processing, represents an 

improvement over base MIP (e.g., 65% packet loss reduction when L D q f a - h a  is 50 ms) 

since it reduces registration latency through regional registrations, and consequently 

reduces packet loss.

13 The longer it takes for the registration request to reach the HA, the greater the number of lost packets 

will be in base MIP and DOP in the absence of any smooth handoff mechanisms.
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Fig. 22. Average lost packets per handoff versus L D g f a - h a -

GFA to HA delay ( in msec)

Fig. 23. Average encapsulated packets per HR-LH versus L D q f a - h a  in the KOPA 

approach.
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We demonstrate the reduction in packet loss achieved by introducing special 

processing for home registrations involving local handoffs. Fig. 24 depicts the average 

number of lost packets during HR-LH. In DOP, the number of lost packets per handoff 

increases linearly with the link delay increase, while it is not affected for KOPA and 

SINP. Comparing Fig. 22 and Fig. 24 in the case of DOP, we conclude that the total 

number of lost packets during HR-LH represents a very high percentage compared to the 

total number of lost packets over all handoffs. This ratio is bounded between [75-93]% 

for L D g f a - h a  between [5-50] ms; hence the necessity of the KOPA and SINP approaches 

to handle home registration processing during HR-LH.

- KOPA SINP * — DOP

GFA to HA delay ( in msec)

Fig. 24. Average lost packets per HR-LH versus L D q f a - h a -

3.5.1.2 Effect of LDfa-fa

We investigate the effect of hierarchy link delay L D Fa - f a  to show the effect of the 

delay between the new FA and the crossover FA. In this experiment, we exclude the DOP
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approach since we previously showed that it is an improvement over base MIP, but does 

not match the performance achieved while using KOPA and SINP. In our simulated 

network topology (Fig. 2 0 ), with 3 hop handoffs an L D f a - f a  value of d  ms implies that 

the propagation delay for the path from the old FA to the new FA is 6 d ms14. Fig. 25 

illustrates the average lost packets per handoff when varying L D f a - f a  between 0.5 and 5 

ms while fixing LDg f a - h a  at 20 ms. All approaches exhibit average lost packets per 

handoff linearly increasing with the increase of L D f a - f a -  However, a sizable packet loss 

reduction can be achieved with KOPA and SINP. For example, for an L D f a - f a  value of 5 

ms (the propagation delay between the crossover FA and the new FA is 15 ms), the 

average lost packets per handoff in base MIP is 4.7 packets per handoff, while in KOPA 

and SINP it is almost 2 packets per handoff representing a reduction in packet loss of 

57%. The increase in propagation delay between the new FA and the crossover FA is the 

cause for the linear increase in packet loss in KOPA and SINP, since it takes longer for 

the MH’s request to get to the crossover FA, allowing for increased packet loss over the 

old path in KOPA while the old FA is not informed about the new FA, and in SINP 

before the switch to the new path is performed by the crossover FA. The SINP approach 

switches the MH’s tunneling path immediately, while KOPA uses the old path for a 

period of time until the home registration reply is received at the crossover FA. KOPA’s 

use of the old path is evident in Fig. 26 that shows the average number of encapsulated 

packets per HR-LH in the KOPA approach. We note that the average number of 

encapsulated packets is almost the same for various link delay values since the 

propagation delay between the crossover FA (GFA) and the HA is the same throughout 

the experiment (equal to link delay L D g f a - h a ) -  This results in a similar number of packets 

that reach the GFA13, during the time interval it takes the HA to generate the registration 

reply after receiving the registration request, and are forwarded to the MH using the old 

path, resulting in a similar average number of encapsulated packets from the old FA to 

the new FA.

14 The path from the old FA to the new FA consists of 3 hops from the old FA to the GFA, and 3 more 

hops from the GFA to the new FA.

15 Packets sent by the CH are intercepted by the HA and tunneled to the GFA.
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Fig. 26. Average encapsulated packets per HR-LH versus L D f a - f a  in the KOPA 

approach.
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Fig. 27 shows the average number of lost packets per HR-LH. The previously 

presented discussion applies here that the longer it takes for the registration request to 

reach the crossover FA, the higher the resulting packet loss. Comparing Fig. 25 and Fig. 

27, when L D f a - f a  is 5 ms, the percentage of packets lost during HR-LH compared to the 

total number of packets lost is 36% and 35% in the KOPA and SINP approaches, 

respectively. We conclude that the number of hops (number of intermediate RFAs) 

between the new FA and the crossover FA affect the performance of KOPA and SINP. In 

general, the usage of the smooth handoff mechanism by the MH and the serving FAs 

would reduce the observed packet loss, since the new FA (the earliest point of contact in 

the FA hierarchy) sends a BU message to the old FA on behalf of the MH. We note that 

our proposed approaches optimize registration processing within the FA hierarchy 

resulting in packet loss reduction compared to base MIP, and are not meant as a 

replacement for the smooth handoff mechanism. We later present, in section VI, a study 

of the effect of using the smooth handoff mechanism along with our approaches using 

various FA hierarchy network topologies. Another alternative to improve on the observed 

packet loss is to provide packet-buffering services by the old FA to the MH [49].

- KOPA SINP

FA hierarchy link delay (msec)

Fig. 27. Average lost packets per HR-LH versus L D f a - f a -
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3.5.13 Effect of tunneling in KOPA

We investigate the effect of the tunneling approach from the old FA to the new FA in 

KOPA compared to the immediate switch approach in SINP. The efficiency of such 

tunneling depends on the following factors.

-  How fast the old FA is informed about the new FA. This affects the observed 

number of lost packets if the old FA is not providing packet-buffering services 

to the MH, or the MH takes too long to find a new FA.

-  The propagation delay between the old FA and new FA. Tunneled packets 

experience such delay increasing packet latency, which affects multimedia 

applications attempting to deal with network jitter.

In addition, the existence of an old path with a tunnel and a new path for data packets 

can create out of order packets16. Similarly, such issues equally affect the efficiency of 

the smooth handoff mechanism.

We consider the case where L D f a - f a  is 5 ms and observe the received packet order. 

On the average 1 packet was received out of order during HR-LH in KOPA, while no 

such behavior was observed with SINP. Moreover, a constant playout delay is maintained 

and varied while we measure the average number of application-dropped packets per 

handoff in KOPA and SINP. Note that this packet drop is different than packet loss 

experienced in the network due to mobility. A packet playout time is calculated to be the 

packet send time + playout delay. If a packet is received after its playout time it is 

dropped. Fig. 28 illustrates the average number of application-dropped packets per

handoff versus the playout delay in ms. Recall that the propagation delay for a packet
11from the CH to a leaf FA is 55 ms . We note that zero dropped packets can be achieved 

in SINP by maintaining a smaller playout delay (around 60 ms) than KOPA (around 90 

ms). In our network topology, the old path is symmetric to the new path, and hence the 

added latency in KOPA is due to the tunneling process from the old FA to the new FA 

during HR-LH, hence the necessity for a higher playout delay.

16 An older packet is received through the old path after a newer packet has already been received 

through the new path.

17 20 ms link delay from CH to HA + 20 ms L D Gfa -h a  + 15 ms over hierarchy links to a leaf FA.
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Fig. 28. Average number of dropped packets per handoff versus playout delay.

3.5.2 TCP Traffic

We simulate the behavior of a long-term FTP session between the MH and the CH 

where the MH is downloading a very large file from the CH. The MH is periodically 

moving between F A ^  and FA4 4  at a speed of 2 0  m/s until an adequate number of 

handoffs is attained (> 100 handoffs). We vary L D q f a - h a  between 5 and 50 ms and 

measure the observed application-level TCP throughput. No constraints are placed on 

buffering capabilities at individual links, hence no packet drops occur due to buffer 

overflows. TCP Tahoe [60] was used for the purpose of this simulation.

Fig. 2 9  illustrates TCP throughput in Mbps versus L D q f a - h a -  A s expected, the 

application-perceived TCP throughput degrades with the link delay increase due to 

increased round trip times. We note that the throughput is bounded by 1.5 Mbps since the 

bottleneck bandwidth is 1.5 Mbps represented by the link between GFA and HA or 

between HA and CH (recall that hierarchy links have a bandwidth of 100 Mbps). Base 

MIP exhibits the worst throughput degradation since the throughput at an L D q f a - h a  value
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of 50 ms represents a drop of 30% compared to an L D g f a - h a  value of 5ms. KOPA and 

SINP demonstrate similar behavior with the throughput degradation at link delay of 50 

ms representing a drop of 9% and %10 respectively compared to a 5 ms link delay. At 

smaller link delays, e.g., 5 ms, all investigated approaches achieve a comparable 

throughput value. With the link delay increase, KOPA and SINP attain higher throughput 

than base MIP and DOP, e.g., at a link delay of 50 ms KOPA represents a throughput 

increase of 34% and 8 % over base MIP and DOP, respectively. Such higher sustained 

throughput is exhibited due to the reduction in packet loss, consequently requiring fewer 

number of TCP retransmissions, which translates into higher TCP throughput.

- KOPA SINP Base MIP DOP
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1.2

0.9
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Fig. 29. TCP throughput versus L D g f a - h a -

We investigate TCP’s retransmission behavior during the simulation by measuring 

the retransmission ratio, calculated as the number of retransmitted packets to the total 

number of transmitted packets (Fig. 30). As expected, Base MIP is able to keep up with 

the increased number of lost packets by increasing the number of retransmitted packets,
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hence leading to an overall lower throughput value. DOP achieves a lower retransmission 

ratio than base MIP, but is worse than KOPA and SINP for higher link delays. It is worth 

noting that, during the TCP traffic simulations, we sometimes observed batches of lost 

packets due to packet discards at the MAC layer in the serving base station. In the IEEE 

802.11 MAC implementation, in order to send a data packet, the sending MAC agent 

transmits an RTS (Request to Send) packet, which should be replied to by a CTS (Clear 

To Send) packet. Upon receiving the CTS packet, the sending MAC agent is allowed to 

send a data packet. If a CTS packet is not received for a number of transmitted RTS 

packets, the designated data packet is discarded. Further probing revealed that the RTS 

packets are being dropped at the receiving node because of low packet energy level upon 

reception compared to a receive threshold, implying that the MH is moving out of range 

from its serving BS. We argue that this is due to the poor MH’s “serving BS” selection 

process currently implemented in ns-2 , which does not account for example for the 

distance between the MH and the serving BS [67], This problem was not observed with 

UDP simulations, because of the low frequency of packets exchanged between the 

serving BS and the MH compared to the TCP case.

SINP Base MIP DOP
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Fig. 30. TCP Retransmission ratio versus L D g f a - h a -
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We demonstrate the effect of increasing the handoff rate on TCP throughput. We 

consider 3 speeds for the MH: 5, 10, and 20 m/s corresponding to average handoff rates 

of 5, 1 0 , and 15 handoffs per minute. In addition, we select 2  values for L D q f a - h f a -  5 and 

50 ms and compare base MIP, KOPA, and SINP. The objective is to investigate the effect 

of the handoff rate with either a nearby or a distant HA. Fig. 31 depicts the TCP 

throughput versus the MH speed (handoff rate). Solid lines represent a link delay of 5 ms 

(nearby HA), while the dashed lines represent a link delay of 50 ms (distant HA). For a 

nearby HA, the throughput drop with the handoff rate increase is not that significant for 

all approaches. For a distant HA, base MIP exhibits the worst throughput drop with the 

handoff rate increase attributed to an increase in the number of lost packets (at 2 0  m/s a 

throughput drop of 20% is reported compared to 5 m/s), whereas KOPA and SINP report 

a modest throughput drop with the handoff rate increase (at 2 0  m/s, throughput drops are 

3% and 2% for KOPA and SINP, respectively, compared to 5 m/s).
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"-□•- -KOPA 50 SINP50

— *—  Base MIP 5 
— A- •• Base MIP 50
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Fig. 31. Effect of handoff rate on TCP throughput.
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3.6 Conclusion

In section III, we introduced a framework for home and regional registration 

processing for intra-hierarchy handoffs, when mobility is supported through the 

deployment of foreign agent hierarchies in the foreign domain. First, we identified race 

conditions and drawbacks within the regional registration processing framework for 

Mobile IPv4 [30], e.g., complete dependence on the smooth handoff mechanism being 

supported by the MH and the FA hierarchy, and the possibility of introducing 

inconsistencies in the registration lifetime and erroneous removal of visitor entries for a 

MH within the FA hierarchy. Such issues prompted us to introduce our registration 

processing mechanisms for home and regional registrations, which adopt a different 

signaling design methodology, and prevent the aforementioned race conditions. In 

general, our mechanisms rely on a “crossover FA”-initiated robust tunneling consistency 

mechanism instead of being MH-initiated, and based on the smooth handoff mechanism. 

We analytically contrasted and compared such different design methodologies 

highlighting the network and processing delays that affect each. We concluded that our 

mechanisms are not designed to be a substitute for the smooth handoff mechanism to 

reduce packet loss, but can be a successful alternative when either the MH or the FA 

hierarchy does not support such smooth handoff mechanism.

We suggested a foreign agent hierarchy model that provides local-area mobility 

extensions, albeit including a backward-compatible mode of operation for legacy MHs 

that are unable to take advantage of such extensions. In addition, we introduced a new 

identification value update mechanism for replay protection purposes, which ensures 

future successful registration processing within upper levels of the hierarchy. 

Furthermore, we introduced 2 novel home registration processing techniques for home 

registrations associated with local handoffs. The first technique termed “Keep Old Path 

Alive” (KOPA) relies on keeping the old path active tunneling packets to the MH from 

the old FA to the new FA, until a registration reply is received from the HA establishing 

the new path. The second technique termed “Switch Immediately to New Path” (SINP) 

adopts a proactive approach in switching tunneling to the new path, without waiting for 

the HA’s registration reply, hence emphasizing the regional handoff aspect which should 

be processed within the hierarchy bounds, and reducing the network-layer handoff
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latency within the hierarchy. Moreover, our mechanisms provide the same security 

measures as Mobile IP by providing authentication and replay protection for all 

registration messages through a set of suggested Mobile IP message extensions.

We simulated our proposed framework using the network simulator ns-2 [40] by 

extending the Columbia IP micro-mobility software [15]. Simulation results have shown 

that the proposed registration processing mechanisms achieve substantial improvements, 

compared to base MIP, in terms of reducing UDP packet loss during handoffs (up to 

96%), and achieving higher TCP throughput (up to 34%) in the case of a distant HA, 

without relying on the availability of a smooth handoff mechanism [47]. Furthermore, 

results have demonstrated that the KOPA approach increases packet latency due to its 

reliance on tunneling from the old FA to the new FA. Such packet latency increase 

possibly affects delay-sensitive applications such as interactive multimedia applications. 

In addition, such latency increase requires maintaining a higher playout delay to ensure a 

reduced number of application-dropped packets.

In section IV, we introduce a local-area mobility solution based on cooperative 

foreign agent hierarchies in the foreign domain. The cooperation feature optimizes 

registration processing for inter-hierarchy handoffs in order to further reduce packet loss, 

while the registration processing mechanisms presented herewith are adopted for intra­

hierarchy handoffs.
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SECTION IV 

LOCAL-AREA MOBILITY SUPPORT 

THROUGH COOPERATING HIERARCHIES OF 

MOBILE IP FOREIGN AGENTS

Section HI introduced Mobile IP registration processing for intra-hierarchy handoffs 

when local-area mobility is supported through foreign agent hierarchies. In this section, 

we present a novel local-area mobility support framework based on deploying and 

operating a number of cooperating FA Hierarchies within the foreign domain. FA 

hierarchies cooperate in a scalable configurable manner to keep the MH, home-registered 

mobility binding, current. The proposed framework reduces inter-hierarchy handoff 

latency by isolating the effects of the MH's movement from the HA, hence reducing 

home registration signaling. If possible, the MH keeps the same its home registered care- 

of address, even if it moves across multiple FA hierarchies within the same foreign 

domain. In addition, the format and processing of Mobile IP protocol messages are 

modified to account for the failure of the MH’s home registered care-of address while 

moving between FA hierarchies. The proposed framework along with introduced Mobile 

IP protocol modifications maintain the same level of security as the base Mobile IP, by 

providing message authentication and replay protection of protocol messages. We have 

evaluated the performance of the proposed framework using our extension of the network 

simulator ns-2 [8 ], and have demonstrated its effectiveness in reducing UDP packet loss 

and TCP retransmissions while a MH is moving between FA hierarchies within the 

foreign domain.

Section IV is organized as follows. Section 4.1 presents the motivation behind the 

cooperation framework. Section 4.2 introduces the suggested foreign domain architecture 

along with resulting modifications in the foreign agent advertisement messages. Section 

4.3 presents a high-level operational overview of the cooperation framework between FA 

hierarchies. Section 4.4 presents the adopted registration messages and related processing
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details. Section 4.5 details the conducted simulation experiments in order to evaluate the 

performance of the proposed framework. Finally, section IV is concluded in section 4.6.

4.1 Motivation and Overview

Deploying one FA hierarchy in the foreign domain places a burden on the GFA. The 

GFA has to maintain a visitor entry for every MH within the foreign domain. This 

becomes a drawback as mobility becomes the norm, rather than the exception. In 

addition, one GFA presents a single point of failure in such system. Although the regional 

registration approach [30] suggests that at least one GFA should be present in a domain, 

it does not allow cooperation between GFAs to maintain the current MH mobility binding 

within the domain to further reduce any unnecessary registrations with a possibly distant 

HA. Nevertheless, it allows the MH to request regional registration with its known GFA, 

other than the one advertised by the current FA. Such regional registration can fail since 

the current FA may know nothing about the current MB’s GFA, forcing the MH to send a 

home registration request changing its home registered care-of address to the new GFA, 

and consequently incurring a possibly large home registration signaling overhead. In 

addition, this approach requires security associations between FAs and GFAs in different 

FA hierarchies, which might not be feasible if the FA hierarchies are controlled by 

different administrative entities within the same domain, or if even feasible increases 

substantially the required number of security associations. On the other hand, the Anchor 

FA approach [21] allows any FA to become an Anchor FA, requiring security 

associations between any two FAs. Management of such security associations can 

become cumbersome when the number of deployed FAs within a zone increases.

In order to further reduce any home registration signaling overhead while the MH is 

moving within the same foreign domain, and to reduce the required number of security 

associations between FAs, we suggest deploying multiple cooperating FA hierarchies in 

the foreign domain. Although, multiple FA hierarchies coexist in the foreign domain, 

they can cooperate in a configurable and scalable manner to maintain the MH home 

registered care-of address current, and the same as long as the MH is moving within the 

same foreign domain. The suggested cooperation is an attempt to deal with the inter­
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hierarchy handoff regionally (within the foreign domain) instead of involving a possibly 

distant HA in processing such local movement.

Scalable cooperation implies requiring the minimum number of security associations 

to ensure such cooperation, and is achieved in our suggested architecture by allowing 

cooperation across FA hierarchies only between the roots of each hierarchy (section 4.3). 

In order to enable scalable inter-hierarchy cooperation, two security associations, one in 

each direction, are required between each 2 roots of such hierarchies. Recall that, within 

the same FA hierarchy additional security associations are required between each parent 

FA and its children FAs (section 3.2). For instance, if 2 hierarchies each with /  leaf 

foreign agents are deployed within the foreign domain, the required number of security 

associations to enable our suggested inter-hierarchy cooperation is 2  (one in each 

direction between the 2 GFAs). Whereas, in a non-scalable setting where any FA can be 

required to forward a registration request to the GFA of the other hierarchy [30], 4*/ 

security associations are required ( 2  security associations between any leaf foreign agent 

in one hierarchy and the GFA of the other hierarchy, hence 2*/ associations between one 

hierarchy and the other GFA). In general, k deployed hierarchies within the foreign 

domain only require security associations for scalable inter-hierarchy cooperation 

between all hierarchies18.

Configurable cooperation implies the capability to easily configure such cooperation 

by network administrators. Such task is achieved by extending the FA’s advertisement 

message, to signal whether a GFA will send and/or receive cooperation requests on 

behalf of this MH.

4.2 Foreign Domain Architecture

The foreign domain is partitioned into Routing Zones (Fig. 32). Routing zones are 

non-overlapping in the sense that each routing zone constitutes an independent FA 

hierarchy. The ability to partition the foreign domain into FA hierarchies gives great

18 The number of ways of obtaining an ordered subset o f m elements from a set of n elements is „Pm 

and is equal to n! /(n-m)!
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flexibility to network administrators. Each hierarchy can be managed independently from 

the other, while still not precluding any possible inter-hierarchy cooperation.

Special cases might arise when partitioning the foreign domain into routing zones 

such as a domain-wide routing zone, and single-FA routing zone. The domain-wide 

routing zone case implies deploying one FA hierarchy within the foreign domain. The 

single-FA routing zone case implies that the routing zone is constituted of only one FA,

i.e. the FA hierarchy has been reduced to a single FA. If all the routing zones in the 

foreign domain are single-FA routing zones, then this foreign domain partitioning maps 

to the anchor FA strategy of independent FA deployment within the foreign domain [21].

Foreign Domain
Zone 1

GFA, Zone i

Configurable Cooperation

GFA;

GFA!

Hierarchy
Zone 2

GFAi

Hierarchy
GFA2

Hierarchy

Fig. 32. Routing Zones (FA hierarchies) within the foreign domain.

For an individual FA hierarchy, we adopt the foreign agent hierarchy model 

introduced in section 3.2. The root FA in a zone acts as a GFA for this foreign domain, 

and is required to have a publicly routable IP address. Each FA advertises its own IP
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address, if not private, as well as its GFA IP address. The GFA IP address can be used by 

a MH as care-of address when registering with its HA. In this manner, at any point of 

time, different MHs may register different GFA addresses as their care-of addresses. 

Hence, mobile hosts routing entries are distributed between GFAs, and consequently, a 

single GFA does not have to act as the HA tunnel endpoint for all MHs within the foreign 

domain. In addition, any FA advertises its Network Access Identifier (NAI) [3] in its 

agent advertisement message. This enables the MH to determine if it is in its home 

domain, or it is now in a visited foreign domain, and whether it has changed domains 

since its last registration. All FAs in all routing zones have the same realm (domain 

name) in their NAI.

We introduce the required foreign agent advertisement extensions to enable 

configurable cooperation between deployed foreign agent hierarchies. The MH can detect 

that it has changed routing zones, within the same foreign domain, by examining the 

advertised GFA IP address. GFAs cooperate to maintain the mobility binding of an MH 

current without having to register with its HA, unless deemed necessary by the MH, or by 

the current GFA. To make such cooperation configurable and controllable by network 

administrators, any FA advertises two new flags in its mobility agent advertisement 

extensions [43] as depicted in TABLE 3. These flags define whether this GFA, the root 

of the current FA hierarchy, will permit the following.

1. Accept cooperation requests from other GFAs within this foreign domain? 

(The P  flag)

2. Send cooperation requests on behalf of the MH to other GFAs within this 

foreign domain? (The C flag)

For instance, if the MH has home registered GFAj as its care-of address, and is 

moving into the GFA2  hierarchy, cooperation can occur if GFA2  advertises the possibility 

of sending cooperation requests on behalf of the MH (set the C flag), and if GFAi 

advertises the possibility of accepting cooperation requests from other GFAs (set the P 

flag).
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TABLE 3

COOPERATION FLAGS IN THE FOREIGN AGENT ADVERTISEMENT MESSAGE

Flag Explanation

If set, the GFA of this FA hierarchy will send cooperation requests, on behalf 

of the MH to another GFA within the same domain.

If set, the GFA of this FA hierarchy will receive, and acknowledge cooperation 

requests from other GFAs within the same domain.

4.3 Operational Overview

We present a high-level overview of a cooperation scenario between foreign agent 

hierarchies for local-area mobility support. Throughout this section, unless otherwise 

stated, the processing of home and regional registrations from within a foreign agent 

hierarchy is performed according to the regional and home registration processing 

frameworks previously introduced in section III (see sections 3.3 and 3.4).

When a MH first enters the foreign domain, it is required to perform a home 

registration with its HA to establish a home-registered care-of address. The MH is 

responsible for periodically renewing such home mobility binding. Assume that a MH 

first enters the foreign domain, and is located within the GFA; hierarchy. We shall focus 

hereafter on the case where the MH chooses to home register GFAj as its care-of address. 

According to [48], the HA generates a registration key, and distributes it to both the MH, 

and GFAj. This registration key will be used to authenticate the MH within this foreign 

domain until it performs another home registration, and another registration key is 

generated and distributed by the HA. GFAj in turn distributes this registration key down 

its own hierarchy to the regional FA that forwarded the home registration request. The 

MH needs to remember that GFAj is its home registered care-of address as long as it is 

within this foreign domain. GFAi is termed the Home Registered GFA (HRGFA) for this 

MH, and represents the root of the forwarding tree for this MH inside this foreign 

domain. Such terminology was introduced to differentiate between GFAs, and to 

distinguish the HRGFA hierarchy from other FA hierarchies in the foreign domain. Note
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that, different MHs might have different HRGFAs, according to which GFA is their 

current home registered care-of address. This remains in effect until the MH decides to 

perform another home registration while within the same foreign domain or another GFA 

decides that the MH must perform a home registration. This can be due to, for example, 

the failure of the current HRGFA (GFAi). The home registration process from within the 

GFAi hierarchy is illustrated in Fig. 33.

MH Regional FA in GFAj GFA; HA
Hierarchy

Home Registration 
RequestHome Registration 

Request

Home Registration 
Request

► Home Registration 
] \ Reply

Home Registration 
Reply

Home Registration 
Reply

If the HA accepted the MH's registration, GFA; is 
now the HRGFA for this MH within this foreign 
domain

Fig. 33. Home registration process.

When the MH moves to another F A  hierarchy within the same foreign domain, e.g. 

changes location from within the G F A i  hierarchy to within the G F A j  hierarchy, it has two 

choices available. The first choice is to perform a new home registration changing its 

home registered care-of address to G F A j .  Alternatively, it can inform G F A j  to cooperate
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with GFAi to maintain its home mobility-binding current if both GFAi and GFAj allow 

such cooperation. This can be envisioned as if GFAi is dynamically acquiring a new child 

FA, GFAj. The MH can base its decision for example on the fact that it is active, sending 

or receiving datagrams, or currently idle, or based on the cooperation advertisements by 

both GFAs. If the MH is active, then the obvious choice, to minimize the handoff latency, 

is to keep his home registered care-of address to be GFAj, meanwhile GFAj tunnels any 

newly received datagrams to GFAj, which in turn tunnels them down its own FA 

hierarchy. Later on, if the MH changes location to within the GFAk hierarchy, the same 

cooperation process is repeated to establish a tunnel from GFAj to GFAk, and the old 

tunnel from GFAj to GFAj is eventually removed (Fig. 34). If the MH is idle, it can 

choose to inform GFAj that it needs to perform home registration, to minimize tunneling 

overhead within the foreign domain.

Foreign Domain

GFA, is the M ’s HRGFA
GFA,

New tunnel

Old tunnel

GFAk

Hierarchy GFA;

HierarchyGFAj

Hierarchy

MH
MH

MH

Fig. 34. The MH movement between FA hierarchies within the foreign domain.

G F A j  is the MH's H R G F A .  The MH moves to within the G F A j ,  and G F A k  hierarchies, 

respectively.
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In cooperation mode between GFAj and GFA;, GFAj relays the MH registration to 

GFAj. If GFAi accepts the registration relayed by GFAj, it sends to GFAj the registration 

key acquired from the HA, when the MH first entered the foreign domain. GFAj in turn 

distributes this registration key down its own hierarchy. If for some reason, GFAj failed, 

GFAj receives an ICMP [51] error while trying to contact GFAi, it may go ahead and 

perform a home registration on behalf of MH. In this case, the MH needs to have 

included its Home Credentials in the registration request to GFAj. The MB's home 

credentials are any registration information pertaining to its HA as defined in [43]. If the 

MH did not include its home credentials, GFAj returns a registration reply to the MH 

containing an appropriate error code. The MH upon receiving this registration reply sends 

another home registration request choosing its care-of address as GFAj. In this case, 

further delay and potential packet loss is introduced by the fact that GFAj sends a 

registration reply to the MH with an error code, and consequently the MH sending 

another home registration with either messages having to flow through the current FA 

hierarchy. Therefore, in this case we suggest formulating the home registration message 

in a new manner by adding a new Mobile IP extension [43] that carries regional 

registration information (see section 4.4.3). The differently formulated home registration 

request represents a combined home-regional registration request. The home portion of 

the registration request serves to establish GFAj as the new care-of address within the 

foreign domain, in case the current HRGFA is not reachable. Meanwhile, the regional 

portion of the request provides the MH s regional contact information (the current 

HRGFA) for the current GFA. The current GFA, upon receiving the home-regional 

registration request, attempts to contact the MH’s current HRGFA by using the regional 

registration information. If ICMP errors persist after a number of retries, the current GFA 

uses the MH’s home registration information to perform a home registration on behalf of 

the MH. In such manner, an attempt is made to account for the failure of the HRGFA, 

and the MH’s home mobility binding is maintained current, while minimizing the 

incurred delay. The home-regional registration process is illustrated in Fig. 35 and Fig. 36 

according to whether the current GFA is successful or not in contacting the HRGA.

As long as the MH is moving within its HRGFA hierarchy, or within another GFA 

hierarchy for which it had already sent a home-regional registration, the MH can initiate a
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regional registration to change its local care-of address within the same F A  hierarchy. 

The regional F A  generating the regional registration reply, sends a deregistration message 

to the old care-of address registered for that M H ,  unless the M H  is requesting 

simultaneous binding within its registration request. Such deregistration message is 

forwarded hop by hop down the hierarchy path leading to the M H  as part of the hierarchy 

consistency mechanism. The H R G F A  is the F A  responsible for generating the 

deregistration message while responding to a home-regional registration message (see 

section 3.3).

When the M H  returns to its H R G F A  hierarchy ( G F A i )  after handing off to another 

hierarchy, it initiates a regional registration targeted to its H R G F A .  A s  an added 

precaution, the M H ’ s  return to the H R G F A  hierarchy requires special treatment since 

previously stored tunneling state in R F A s  might not have been properly cleared. 

Therefore, to avoid any erroneous regional registration replies by intermediate R F A s ,  the 

M H  signals the need that such registration must only be replied to by the H R G F A  to 

properly establish its new tunneling path within the hierarchy (see section 4.4.2).

MH Regional FA in GFAj 
hierarchy

Home-regional
registration
request

Regional registration 
reply

GFAj

Home-regional
registration
request

Regional registration 
reply

GFAi 
(MH’s HRGFA)

Home-regional
registration
request

Regional registration
\  reply

If the HRGFA accepted the regional registration request, the GFAj 
hierarchy is now able to authenticate any future registration 
requests by the MH.

Fig. 35. The home-regional registration process in case the MH’s HRGA is reachable.
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MH Regional FA in GFAj
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Home-regional
registration
request

Home
registration
reply

GFAj GFAi
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Home-regional
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Home
registration
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1
ICMP errors

Home
registration
request

Home
registration
reply

Upon successful registration, the MH's HRGFA is 
changed within the foreign domain

Fig. 36. The home-regional registration process in case the MH’s HRGFA is not 

reachable.

4.4 Registration Messages and Processing

Fig. 37 illustrates a simplified MH’s registration state diagram while moving within a 

foreign domain deploying multiple cooperating foreign agent hierarchies. We assume that 

the MH chooses to take advantage of the FA hierarchies’ cooperation by performing a 

home-regional registration when detecting a handoff to another hierarchy. The MH can 

perform either of the following registrations within the foreign domain.

-  Home registration. Performed when first entering the foreign domain, 

periodically when renewing the home mobility binding, and anytime the MH
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wishes to change its home registered care-of address. After a successful home 

registration, the MH transitions into the regional registration state.

-  Regional registration. Performed to change the local care-of address of the 

MH within the foreign domain. A received FA advertisement from another FA 

hierarchy prompts the MH to perform a home-regional registration, unless it is 

moving back to its HRGFA hierarchy.

-  Home-regional registration. Performed to take advantage of the advertised FA 

hierarchies’ cooperation. After receiving a successful reply for a home- 

regional registration, the MH switches back to performing regional 

registrations while moving within the bounds of its current FA hierarchy.

The following sections highlight the processing involved and message extensions, if 

any, for each of the aforementioned registration types, especially in the presence of 

multiple FA hierarchies.

Home registration 
lifetime expiration

W  Regional Home-regional
reg.

Home reg.

AD_HFA or 
HRE_HANDOFF_HFA

Ads from the current 
or HRGFA hierarchy

Enter foreign 
domain

-► Automatic transition

Event transition

reg.: registration

Ads: FA advertisements

AD_HFA: Ads from another FA hierarchy

HRE_HANDOFF_HFA: Home registration

lifetime expiration while moving to another

hierarchy

Fig. 37. The MH registration state diagram.
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4.4.1 Home Registration

The initiation and processing of home registrations in a FA hierarchy setup was 

previously introduced in sections II and III. Section 3.4 presented a home registration 

processing framework for home registrations involving local handoffs. In this section, we 

highlight any additional processing required to take into account the presence of multiple 

cooperating FA hierarchies.

In summary, the MH is required to perform a home registration when it first enters 

the foreign domain, and periodically to renew its home registered care-of address before 

the home registration lifetime expiration. If the MH is able to acquire a co-located care-of 

address, it registers this address as its care-of address directly with its HA according to 

[43]. Alternatively, if registration with the foreign agent is required, the MH home 

registers the co-located care-of address through the current GFA [30]. Otherwise, The 

MH formulates a home registration request using as care-of address the GFA IP address, 

or the advertising FA IP address. The advertising FA upon receiving this registration 

request inspects the supplied care-of address. If the care-of address is its IP address, then 

this FA forwards the registration request to the MH's HA and acts according to [43]. 

Alternatively, if the MH is using the GFA IP address as care-of address, this FA proceeds 

as previously explained in section 3.1. The MH’s home registration is eventually 

processed by the current GFA and the MH’s HA; establishing this GFA as the MH’s 

care-of address.

We note that due to the presence of multiple hierarchies, the MH might be moving 

within a hierarchy other than its HRGFA’s hierarchy. When the MH’s home registration 

lifetime is about to expire, the following cases can be identified.

-  The MH is within its HRGFA hierarchy. The MH simply sends a home 

registration to its HA.

-  The MH started moving into another FA hierarchy other than its HRGFA 

hierarchy. The MH formulates a home-regional registration request by 

forming a home registration request addressed to his HA; with care-of address 

its HRGFA. Next, the MH appends a regional data extension (the HRGFA 

extension, see section 4.4.3) to this home registration request to provide 

information about its current HRGFA and records the current GFA as its care-
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of address. Intermediate FAs, recognizing that the care-of address in the 

regional extension is their GFA IP address, forward the registration request 

upward in the FA hierarchy while adding the Hierarchical FA extension, and 

the FA-FA Authentication extension. The current GFA inspects and records 

the information provided by the MH in the regional extension, notes the 

intermediate FA that relayed this request, and relays the registration request to 

the HRGFA. Since the care-of address in the original registration information 

is the HRGFA, the current GFA simply relays the registration request. In such 

case, the regional extension is provided to enable cooperation between the two 

FA hierarchies. The HRGFA removes any unnecessary extensions and the 

regional extension, and records the sending GFA before relaying the request 

to the MH’s HA. If the HRGFA is not reachable, a registration reply with 

appropriate error code is returned to the MH. In such case, the MH might 

formulate another home registration request with care-of address the current 

GFA, changing its HRGFA within the domain to be the current GFA. In such 

manner, this home registration along with the regional extension serve to 

renew the home-registered care-of address, and to notify the current HRGFA 

about the new care-of address for the MH inside the foreign domain.

-  The MH is within a FA hierarchy other than its HRGFA hierarchy. The MH 

has already established a mobility binding within the current GFA hierarchy,

i.e., it has previously initiated a home-regional registration request. The MH 

formulates a home registration request addressed to his HA; with care-of 

address its HRGFA. In such case, the current GFA simply relays the 

registration request to the HRGFA appending its hierarchical FA extension, 

authenticating this request with the FA-FA Authentication extension. The 

regional extension need not be supplied in this case, since cooperation 

information had been previously exchanged between these two FA 

hierarchies.
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4.4.2 Regional Registration

Regional registrations are initiated and processed as previously presented in section

3.3 where a regional registration processing framework for intra-hierarchy handoffs was 

introduced. We identify various scenarios when the MH is sending a regional registration.

-  The MH is moving within its HRGFA hierarchy. The MH generates a regional 

registration requested targeted to the HRGFA, with the care-of address set to 

the current FA.

-  The MH is moving within another FA hierarchy. The MH had already 

registered its current hierarchy with the HRGFA by sending a home-regional 

registration request (see section 4.4.3). Afterwards, if the MH needs to 

handoff to a new FA within this GFA hierarchy, it generates a regional 

registration request targeted to its HRGFA, with the care-of address set to the 

advertising FA.

-  The MH is moving back to its HRGFA hierarchy. When first returning to its 

HRGFA hierarchy, the MH sends a regional registration request signaling the 

fact that this registration must only be replied to by the HRGFA. Intermediate 

RFAs forward such registration upwards in the hierarchy for normal regional 

registration processing, nevertheless without generating a registration reply 

even in the presence of a visitor entry for this MH. If by any chance, a visitor 

entry does exist, it is cleared. In addition, the first RFA that has a visitor entry 

for this MH (the crossover FA) initiates a tunneling consistency mechanism 

by sending a deregistration message to the old care-of address. Higher RFAs 

only clear their visitor entry since the registration message is received from 

the currently stored tunnel endpoint for the MH19. Eventually, the registration 

message reaches the HRGFA, which in turn generates the registration reply 

establishing the tunneling path for this MH. The MH indicates the need for 

such special handling by setting a new flag in the reserved bits as part of the 

regional registration request.

19 If a visitor entry exists at a crossover FA, when a MH is returning to its HRGFA hierarchy, higher 

RFAs in the path to the HRGFA most probably would also have visitor entries for this MH.
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In normal regional registration processing, the crossover FA generates the regional 

registration reply that is forwarded down the FA hierarchy until it reaches the MH. In the 

worst case, the crossover FA is the HRGFA if the MH is within its HRGFA hierarchy, or 

it is the current GFA if the MH is moving within another FA hierarchy. In all cases, the 

lifetime field in the regional registration reply is set to the remaining lifetime of the MH 

home registration. The initial value for this remaining lifetime had been recorded from 

the home registration reply previously sent by the HA to the HRGFA.

4.4.3 Home-regional Registration

Home-regional registration is performed when the MH discovers that it is changing 

FA hierarchies within the same foreign domain, i.e. the current FA advertisement 

contains a GFA IP address different than the MH’s HRGFA. Home-regional registration 

attempts to combine the home and regional registration in one message to minimize any 

unnecessary delays faced while moving to a new FA hierarchy, in case the HRGFA has 

failed. The home-regional registration request is basically a home registration request 

with a mandatory regional data extension.

The current FA is advertising its NAI, with the realm part of the NAI the same for all 

FA hierarchies within the foreign domain. Consequently, the MH can deduce that it is 

still within the same foreign domain, and needs to formulate a home-regional registration 

request, instead of a home registration request.

In order to be able to carry home registration information, along with regional 

registration information in one message, a HRGFA extension is defined to carry the 

regional registration information (Fig. 38). The HRGFA extension must exist in the 

home-regional registration message. Information in the HRGFA extension is 

authenticated by the MH-GFA Authentication extension. The HRGFA extension serves a 

dual purpose in the home-regional registration request as follows.

-  For the current GFA. It provides information about the current mobility 

binding between the MH and the HRGFA such as the HRGFA IP address, the 

style of replay protection currently in use between the MH and the HRGFA 

along with the current identification value [30].

R e p ro d u c e d  w ith  p e rm is s io n  o f  th e  c o p y r ig h t o w n e r. F u r th e r  re p ro d u c tio n  p ro h ib ite d  w ith o u t p e rm is s io n .



105

-  For the HRGFA. It provides the current GFA IP address, whether the MH is 

requesting simultaneous binding, the current identification value to validate 

this registration request, and the type of encapsulation to be used between the 

HRGFA and the current GFA if this registration request is accepted.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Type Length M G Reserved

Lifetime

HRGFA IP address

Care-of address

Identification

Replay protection style

Type

Length

S

M

G

Reserved

Lifetime

HRGFA IP 
address

Care-of
address

Identification

Replay
Protection

Style

Extension Type.

Length in bytes o f the extension, not including the Type and Length bytes.

If set, the MH is requesting simultaneous binding, i.e., the HRGFA retains any prior 
mobility bindings for this MH to enable fast handoffs [24],

If set, the MH requests that HRGFA uses Minimal encapsulation [45] for any 
datagrams tunneled to this GFA. This bit informs the current GFA, that if this 
registration is accepted, this type of encapsulation will be used by the HRGFA.

If set, the MH requests that HRGFA uses GRE encapsulation [31] for any datagrams 
tunneled to this GFA. This bit informs the current GFA, that if this registration is 
accepted, this type of encapsulation will be used by the HRGFA.

Reserved for future use.

The requested lifetime for this registration by the MH.

The IP address of HRGFA.

The current GFA IP address.

A 64-bit number, used for matching registration requests with registration replies, and 
for protecting against replay attacks o f registration messages. This is the current 
identification value used between the MH and the HRGFA.

This field identifies how to interpret the Identification field. In addition, it informs the 
GFA of the current replay protection style used between the HRGFA and the MH. A 
value of 0 means timestamp protection. A value of 1 means nonce protection.

Fig. 38. The format and data fields of the HRGFA extension.
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The Home-Regional registration request formulated by the MH is structured in the 

following order:

-  Home registration information as defined in [43];

-  Any non-authenticated extensions relevant to HA appended by the MH;

-  The Mobile-Home Authentication extension to authenticate the previous 

information;

-  The HRGFA extension carrying regional registration information;

-  Any non-authenticated extensions relevant to HRGFA appended by the MH;

-  The MH-GFA authentication extension to authenticate the previous 

information.

Upon receiving the MH’s registration request, the current FA behaves the same as if 

it is receiving a home registration, and appends the hierarchical FA extension and 

authenticates the request by the FA-FA Authentication extension. Each intermediate FA 

performs the same processing, and forwards the registration request upward in the FA 

hierarchy until it reaches the current GFA. The current GFA identifies this registration 

request as a home-regional registration request, and begins by processing the regional 

registration information supplied in the HRGFA extension. The current GFA might 

append any extensions relevant to HRGFA. Such extensions are authenticated using an 

FA-FA authentication extension with an authenticator value computed based on the 

established security association between the current GFA and the HRGFA. Finally, the 

current GFA forwards the registration request to the HRGFA. The HRGFA validates the 

registration request, and if successful records that the current regional care-of address for 

this MH is the forwarding GFA, and returns a regional registration reply back to the 

sending GFA. The regional registration reply includes the MH’s registration key 

encrypted using the shared security association between the current GFA and the 

HRGFA. The GFA, in turn, distributes this key down its own hierarchy, until the 

registration reply reaches the MH. In such manner, this new FA hierarchy is able to 

authenticate any future regional registration requests received from this MH. Moreover, 

the HRGFA initiates a hierarchy consistency mechanism by sending a deregistration 

message to the old care-of address of the MH (see section 3.3).

R e p ro d u c e d  w ith  p e rm is s io n  o f  th e  c o p y r ig h t o w n e r. F u r th e r  re p ro d u c tio n  p ro h ib ite d  w ith o u t p e rm is s io n .



107

If the current GFA discovers the failure of the HRGFA by receiving ICMP errors, it 

may attempt to forward the registration request for a predetermined number of times; 

afterwards it gives up and switches to performing home registration on behalf of the MH. 

The current GFA strips the HRGFA extension, and the MH-GFA Authentication 

extension from the home-regional registration request, and might append any necessary 

authentication extensions to establish a security association between itself and the HA, 

and forwards the request to the HA. The HA identifies this request as a home registration 

request and acts according to [43], If the HA accepts the registration request, the MH's 

HRGFA is changed within the foreign domain to be the current GFA. In such case, the 

current GFA (the new HRGFA) uses the identification and replay protection style fields 

in the HRGFA extension as the MH’s current choice for replay protection style and initial 

identification value. Alternatively, if the MH supplies a replay protection extension along 

with the home-regional registration request, the current GFA is required to use the replay 

protection style and initial identification value from such extension20.

4.5 Performance Evaluation

We evaluated the performance of our proposed foreign agent hierarchy cooperation 

framework through network simulations. We extended the Columbia IP Micro-Mobility 

Software (CIMS) from Columbia University [15], which is a network simulator ns-2 [40] 

source code extension, to model a foreign domain where local-area mobility is supported 

through a set of cooperating FA hierarchies. The details of our local-area mobility 

network simulation framework are presented in section V.

Briefly, in cooperation mode, the MH responds to an eminent inter-hierarchy handoff, 

within the same foreign domain, by issuing a home-regional registration as previously 

introduced in section 4.3, unless it is returning to its HRGFA hierarchy. In the latter case, 

it issues a regional registration as detailed in section 4.4.2. In addition, a non-cooperation 

mode between FA hierarchies was added for comparison purposes, where the MH issues 

a new home registration upon changing FA hierarchies within the foreign domain. We

20 The MH might wish to enforce a new identification value (or a new replay protection style) if  a 

change of HRGFA will occur (due to the failure to contact the current HRGFA).
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use the notation (C-GFAs) for cooperating gateway foreign agents, while (NC-GFAs) is 

used for non-cooperating GFAs.

We experiment with UDP and TCP traffic while highlighting the effect of inter­

hierarchy handoffs. We do not adopt the agent advertisement handling approach by the 

MH, previously presented in section 3.5, that produces a significant number of home 

registrations involving local handoffs, since it is not the issue in focus in our current 

simulation. Consequently, a MH does not renew its home mobility binding unless its 

home registration timer is about to expire, which may or may not coincide with a local 

handoff. Regional registrations are processed according to section 3.3, and 4.4.2, while 

home-regional registrations are processed according to section 4.4.3. Furthermore, the 

KOPA approach is used to handle HR-LH registrations, if any (see section 3.4.1).

Fig. 39 illustrates the simulated network topology. The MH is moving within a 

foreign domain comprised of 2 cooperating FA hierarchies. The 2 FA hierarchies are 

modeled similarly as perfect 4-level binary trees. In each FA hierarchy, each father FA is 

connected to its 2 children FAs through a 10 Mbps local-area network (subnet) with 1 ms 

delay. GFAi and GFA2  are connected through an individual 10 Mbps duplex link with 

L D g f a - g f a  link delay (default value is 1 ms). Each GFA is connected to the MH’s HA 

through an individual 1.5 Mbps duplex link with L D h a - g f a  link delay (default value is 20 

ms). We simulate a single MH within the hierarchy communicating with a fixed 

correspondent host (CH). The HA is connected to the CH through an individual 1.5 Mbps 

duplex link with 20 ms delay.

We use the notation FAij to denote the foreign agent number j  in level i of the tree, in 

each hierarchy. Leaf foreign agents, FAij for j: 1—>8, provide wireless access to the MH 

by acting as base stations (BS), whereas other foreign agents in the hierarchy (regional 

foreign agents) do not possess such capability. Neighboring base stations’ coverage areas 

have an overlap region of 25 meters. We use ns-2 implementation of a wireless medium 

access layer for wireless connectivity between the MH and leaf foreign agents [26].

For the purpose of these simulations, the MH is periodically moving between FA^s in 

hierarchy 1 and FA4J in hierarchy 2 at a speed of 20 m/s to investigate the effect of inter­

hierarchy handoffs. In cooperation mode, such movement pattern results in periodical 

handoffs where the current HRGFA (GFAi) acts as the crossover FA due to the resulting
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home-regional and regional registrations. Whereas, in non-cooperation mode, a periodical 

change of the MH’s home-registered care-of address is observed due to the resulting 

home registrations.

1.5 MbpsCH HA
20 ms

LDha-gfa 
(Default is 

20 ms)
1.5 Mbps1.5 Mbps

10 MbpsGFA; GFA;
LDgfa-gfa 

(Default is 1 ms)

g f a 2

Hierarchy

GFA,

Hierarchy
LD: Link Delay

Local-area Network 
10 Mbps

1 ms

MH

Foreign domain

GFA; hierarchy topology, for i = 1, 2

FA;

FA,FA,

Fig. 39. Simulated network topology.
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4.5.1 UDP Traffic

We simulate the behavior of sample audio and video applications by applying 

constant bit rate UDP traffic from the CH to the MH. For the audio application, a 160- 

byte data packet is transmitted every 20 ms to simulate a 64 kbps audio stream. For the 

video application, a 1000-byte data packet is transmitted every 25 ms to simulate a 320 

kbps video stream. The MH’s periodical movement is performed until an adequate 

number of handoffs is attained (more than 100 handoffs). We do not impose any other 

traffic or network overhead to capture the ideal performance of the cooperation 

framework.

4.5.1.1 Effect of LDha-gfa

We investigate the effect of increasing the link delay between the HA and either 

GFAs ( L D h a - g f a )  from 10 to 50 ms to model a distant HA scenario. We measure the total 

number of lost packets during the simulation and compute the average number of lost 

packets per handoff for both audio and video applications. Fig. 40 depicts the average 

number of lost packets per handoff for cooperating and non-cooperating hierarchies when 

audio and video applications are separately used. We identify each investigated scenario 

by appending “/A” or “/V,” e.g., “NC-GFAs/A” denotes non-cooperating GFAs results 

while audio traffic is in effect, and “C-GFA/V” denotes cooperating-GFAs results while 

video traffic is in effect.

We note that the frequency of data packets in the audio application is higher than the 

video application, which explains the general trend that the number of lost packets in the 

audio case is higher than the video case for either investigated approaches. Focusing on 

the audio application, the average lost packets in the C-GFAs approach are independent 

of L D h a - g f a , while the NC-GFAs lost packets increase linearly with the delay increase. 

For instance, at 10 ms link delay, C-GFAs outperforms NC-GFAs by recording a lower 

number of lost packets (58% reduction in packet loss). Similarly, at 50 ms link delay 

between the HA and either GFAs, C-GFAs achieves 0.95 lost packets/handoff while NC- 

GFAs records 7.4 lost packets/handoff, constituting an 87% reduction in packet loss. 

Such increasing packet loss reduction is the byproduct of converting home registration 

signaling overhead into a regional registration and benefiting from the network proximity
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of the other FA hierarchy. By inspecting video results, we observe a similar pattern of 

substantial packet loss reduction (a 47% and 90% packet loss reduction is achieved at 

link delays 10 and 50 ms, respectively)

o—C-GFAs/A 
■X—C-GFAs/V

-#— NC-GFAs/A 
-A— NC-GFAs/V

HA-GFA link delay (msec)

Fig. 40. Average lost packets per handoff versus L D h a - g f a -

4.5.1.2 Effect of LDgfa-gfa

We investigate the effect of increasing the link delay between GFAi and GFA2  

(.L D Gf a - g f a ) from 1 to 5 ms, to highlight the effect of the link delay between the HRGFA 

and the current GFA. We measure the average number of lost packets and average packet 

latency for an audio application. L D h a - g f a  is fixed at 20 ms.

Fig. 41 illustrates the average number of lost packets while varying the delay between 

the HRGFA and the current GFA ( G F A i  and GFA2 ) for both cooperating and non­

cooperating approaches. As expected, NC-GFAs lost packets are not affected with L D g f a -  

g f a  increase, because of the resulting home registrations that eventually traverse the links
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0 1HA-GFAi or HA-GFA2 with similar link delay of 20 ms . On the other hand, as 

expected, C-GFAs produce lower lost packets per handoff than the NC-GFAs case, that 

slightly increases linearly with the GFA-GFA link delay increase. For instance, at an 

LDgfa-gfa value of 5 ms, NC-GFAs achieves a 66% reduction in packet loss, compared 

to 72% reduction at 1 ms link delay. Such experiment demonstrates the basic property 

that the cooperation framework is attempting to exploit: another GFA hierarchy within 

the same foreign domain will most probably be nearer (in the network sense) than a 

distant HA. Exploiting such property by cooperation between GFAs results in substantial 

reduction in packet loss for inter-hierarchy handoffs.

Fig. 42 illustrates the effect of increasing LDgfa-gfa on the average packet latency. 

For every data packet that eventually reaches the MH, i.e., it is not lost in the network,

the packet latency is computed as the difference between the simulation packet receive
22and send times , and the average packet latency is reported at the end of the simulation. 

We note that NC-GFAs records lower average packet latency than C-GFAs, independent 

of LDgfa-gfa, whereas with C-GFAs, the average packet latency slightly increases with 

the link delay increase. Such result is expected since with NC-GFAs, a packet traverses 

the network path (CH-HA-GFAj) and then is tunneled within GFAi hierarchy until it 

reaches the MH. Whereas with C-GFAs, on the average half the packets traverse the 

network path (CH-HA-HRGFA) and are tunneled within the HRGFA hierarchy towards 

the MH, while the other half of the packets, after reaching the HRGFA, are tunneled to 

the other GFA, incurring the link delay LDgfa-gfa- Hence, depending on the MH’s 

movement pattern and network topology, higher packet latencies might be expected with 

the cooperation framework.

21 Recall that both hierarchies have the same topology and subnet delays. Hence, a home registration 

from within either hierarchy faces the same delays in the absence o f any other competing traffic.

22 The packet send time is stored by the sender in the packet header, while the receive time is noted by 

the receiver, that in turn computes the packet latency as “receive time -  send time”.
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4.5.1.3 Effect of the HRGFA being unreachable

We investigate the effect of the HRGFA being unreachable (due to its failure, or 

link(s) failure between the current GFA and the HRGFA) through simulation as follows. 

A desired probability of not being able to contact the HRGFA by the current GFA {Pp) is 

chosen before simulation, and is stored as part of any GFA configuration. A Pp value of 0 

implies that the current GFA will always succeed in contacting the HRGFA, while a Pp 

value of 1 implies that the current GFA will always fail in contacting the HRGFA. When 

a GFA receives the MH’s home-regional registration, it generates a uniformly distributed 

random number between 0 and 1. If the generated number is greater than or equal to the 

chosen PF, the attempt to contact the HRGFA is carried on by the current GFA, 

otherwise, the current GFA switches to perform a home registration by contacting the HA 

on behalf of the MH, using the home information supplied as part of the home-regional 

request as introduced in section 4.4.3. We designed such approach to compensate for the 

fact that ns-2 does not provide an implementation of ICMP [51] to detect the inability to 

reach the HRGFA. We do not enforce any elapsed period to simulate the time it takes to 

actually receive back an ICMP error message after the current GFA sends the request. 

Adding an elapsed period of time to compensate for such delay might increase the 

observed UDP packet loss, proportional to how long this elapsed time interval would be 

and the packet generation rate (constant bit-rate traffic is used in this experiment).

Fig. 43 illustrates the average number of lost packets as Pp is increased from 0 to 1, 

while L D g f a -g f a  is fixed at 1 ms, and L D h a -g f a  is fixed at 20 ms. As expected, the number 

of lost packets increases with Pp increase, due to the incurred home registration signaling 

overhead. For instance, average packet loss at Pp value of 1 constitutes more than a three­

fold increase compared to a Pp value of 0. Hence, the cooperation framework can deal 

with the event of the HRGA being unreachable at the expense of unavoidable increased 

packet loss in the case of active UDP traffic.
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Fig. 43. Average lost packets versus the probability of being unable to contact HRGFA.

4.5.2 TCP Traffic

We simulate the behavior of a long-term FTP session between the MH and the CH 

where the MH is downloading a very large file from the CH. We vary L D h a -g f a  between 

10 and 50 ms and measure the observed application-level TCP throughput. No constraints 

are placed on buffering capabilities at individual links, hence no packet drops occur due 

to buffer overflows. TCP Tahoe [60] was used for the purpose of this simulation. L D q f a - 

g f a  was fixed at 1 ms.

Fig. 44 depicts the application-level TCP throughput while increasing L D h a -g f a  for 

both C-GFAs and NC-GFAs. As expected, the increase in link delay results in an increase 

in round trip times, and hence the drop in observed TCP throughput. Note that TCP 

throughput is constrained by 1.5 Mbps (the bandwidth of the slowest link which in this 

case is either CH-HA, or HA-GFAi^ link banwidth). The C-GFAs maintain a slight 

throughput edge over NC-GFAs for large link delays (higher than 20 ms, e.g., at link 

delay 50 ms, C-GFAs achieves a 5% higher throughput than NC-GFAs).
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To investigate the reason why NC-GFAs is able to record comparable throughput 

values, we measure the retransmission ratio previously introduced in section 3.5.2. Recall 

that, the retransmission ratio is computed as the ratio of retransmitted packets to the total 

number of packets. Such ratio highlights what percentage of packets the transport layer 

had to retransmit to achieve the current throughput value.

Fig. 45 shows the TCP retransmission ratio for the previous experiment (while 

increasing L D h a -g fa) -  NC-GFAs are able to record comparable throughput values to C- 

GFAs by increasing the retransmission ratio to combat the increased frequency of a TCP 

retransmission timer timeout (Such event occurs because of lack of acknowledgments 

due to mobility-induced packet loss). For instance, at 50 ms link delay, NC-GFAs records 

a retransmission ratio of 5% compared to a modest 0.7% for C-GFAs.

We should expect to observe a slight drop in TCP throughput for C-GFAs if we 

perform the experiment of increasing L D g f a -g f a  while fixing L D h a -g f a  and adopting the 

same mobility pattern (see section 4.5.1.2 for the corresponding UDP traffic experiment).

C-GFAsNC-GFAs

GFA-HA link delay (msec)

Fig. 44. TCP throughput versus L D Ha -g f a -
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NC-GFAs
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Fig. 45. TCP Retransmission ratio versus L D h a -g f a -

4.6 Conclusion

In section IV, we presented a local-area mobility support framework based on Mobile 

IPv4 FA hierarchies, where a novel approach for scalable configurable cooperation 

between FA hierarchies in the foreign domain was introduced. FA hierarchies within the 

same foreign domain cooperate to reduce any unnecessary home registration with a 

possibly distant HA Hence, the HA is shielded from such local movement and home 

registration signaling overhead is reduced. The required extensions and modifications in 

processing of Mobile IP protocol messages were presented. When the MH is moving 

across FA hierarchies, the processing of protocol messages accounts for the MB’s home- 

registered care-of address failure, such that the handoff delay due to such failure is 

reduced. The proposed solution maintains the same security measures as the base Mobile 

IP protocol in providing message authentication and replay protection. Moreover, the 

proposed cooperation framework requires a minimal number of security associations 

between deployed foreign agents belonging to different hierarchies. Performance
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evaluation of the cooperation framework, using an extension we implemented for the 

network simulator ns-2 [8], have shown that up to 90% reduction in UDP traffic packet 

loss can be achieved compared to a non-cooperating set of FA hierarchies in the case of a 

distant HA. In addition, TCP traffic experiments have demonstrated that the proposed 

framework reduces the required number of data packets retransmissions compared to the 

non-cooperating approach, while achieving slightly higher throughput values. Thus, the 

effectiveness and feasibility of the cooperation framework have been successfully 

demonstrated.

In section V, we introduce the design and implementation details of our network 

simulation framework for local-area mobility. This framework has been used to conduct 

the simulation experiments described in sections III and IV.
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SECTION V 

NETWORK SIMULATION FRAMEWORK 

FOR LOCAL-AREA MOBILITY

Sections HI and IV introduced a framework for local-area mobility support based on 

the deployment of multiple cooperating foreign agent hierarchies in the foreign domain. 

In this section, we present the design and implementation details of the network 

simulation used in evaluating the proposed mobility support framework. The Columbia 

IP Micro-mobility Software [15] (CIMS), which is a network simulator ns-2 [40] source 

code extension23, was enhanced allowing the simulation of n-level foreign agent 

hierarchies, and providing foreign domain modeling capabilities. We automate the 

simulation of a configurable hierarchy model represented as a perfect A-ary tree with 

different types of network topologies. The introduced model allows specifying which 

hierarchy levels under the GFA belong to an overlay foreign agent tree superimposed on 

top of the hierarchy, such that other hierarchy levels are simple routers with no mobility 

support functionality. Furthermore, we introduce design changes to allow tunneling of 

data packets from any regional foreign agent node in the hierarchy to a lower hierarchy 

level towards the MH. Such design changes remove the restriction that the MH and the 

forwarding RFA need to be in the same network cluster as dictated by ns-2 addressing 

rules. Moreover, the GFA and HA can be selected as two different network entities, 

allowing true foreign domain modeling and the deployment of multiple foreign agent 

hierarchies in the foreign domain. In addition, a number of implementation enhancements 

were introduced such as support for regional registrations, periodical home registrations, 

and smooth handoff from the old to the new FA.

Section V is organized as follows. Section 5.1 introduces a brief overview of ns-2 

highlighting relevant available mobile networking capabilities. Section 5.2 presents an 

overview of CIMS’ ns-2 extension with emphasis on the provided FA hierarchy 

implementation. Section 5.3 presents CIMS-based design and implementation

23 CIMS source code extension is based on ns version 2.1b6.
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enhancements in order to simulate the proposed mobility framework. Section 5.4 presents 

a sample simulation scenario focusing on node and network topology configuration. 

Finally, section V is concluded in section 5.5.

5.1 Network Simulator Overview

The ns-2 network simulator is a publicly available object-oriented event driven 

simulator for computer networks. It is widely used in the research community because of 

source availability, modularity, and open architecture permitting components reuse and 

extension. The simulator implementation uses a split-language programming model, 

where C++ is used for implementing the simulator core when more processing is required 

to allow for fast simulations, while OTcl24 is used as a command and configuration 

interface for simulation scenario description, dynamic network components 

configuration, and simulation events scheduling, ns-2 includes implementations for a 

number of network protocols and technologies such as network links (point-to-point, 

LANs, etc.), queuing models, IP and Mobile IP, unicast and multicast routing, transport 

protocols such as TCP and UDP, quality of service protocols, and network applications 

(FTP, Telnet, etc.) [26].

ns-2 supports the creation of wired network topologies consisting of stationary 

network nodes connected by links, which possess a queuing mechanism, delay, and 

throughput specification. Wireless topologies are comprised of wireless nodes connected 

by means of channels. Hybrid wired/wireless topologies can be constructed by combining 

wired and wireless topologies constmction approaches. Packets manipulation 

(construction, consumption) is performed by agents, which are attached to nodes. 

Examples of agents are network-layer agents such as routing agents for packet 

forwarding, transport-layer agents such as TCP or UDP senders/sinks. Applications can 

act as traffic sources using agents to communicate with traffic sinks in other network 

nodes, e.g., an FTP application can use a sender TCP agent on one node to communicate 

with a sink TCP agent on another node.

24 OTcl [66] is an object-oriented variant o f Tel (Tool Command Language).
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We briefly introduce relevant node addressing information and mobile networking 

capabilities in ns-2, with emphasis on Mobile IP support.

Addressing and Packet Forwarding Support

A packet is addressed to a destination pair (node address, port number). The node 

address specifies which node is the final destination for this packet. The port number 

implies which agent within the destination node is responsible for processing this packet. 

An address classifier within the node processes incoming packets: packets addressed to 

this node are passed on to a port classifier to decide which agent is this packet handler, 

while packets addressed to other nodes are passed on to next hop destinations based on 

available routing information (e.g., network links in wired topologies).

ns-2 supports hierarchical node addressing for n levels to decrease routing table 

information. The default configuration supports 3 addressing levels, namely: domains, 

clusters, and nodes. For example, a node address of “1.2.3” implies this is domain 1, 

cluster 2 within domain, and node number 3 within cluster 2. A 3-level addressing 

structure dictates the presence of a node address classifier comprised of 3-level 

classifiers. A domain classifier contains one entry per domain. A cluster classifier 

contains one entry per cluster within the node’s domain. A node classifier contains one 

entry per node within the node’s cluster.

Wireless Communication and Mobile IP Support

ns-2 supports a pure wireless framework for simulating wireless ad-hoc networks. 

This framework implements wireless channels, radio propagation models, antennas, 

MAC protocols, link layer with address resolution protocol (ARP) support, and ad-hoc 

routing protocols. Random node movement is supported in a 2-dimensional grid. In 

addition, support was later added for a hybrid wired/wireless framework. A hybrid 

topology consists of wired nodes, base stations, and mobile nodes. Base stations act as 

gateways between wired and wireless nodes.

Mobile IP support was first developed for wired nodes, and later extended to permit 

wireless nodes mobility. Currently, only MIPv4 is supported, although separate 

researchers have developed ns-extensions for IPv6 and MIPv6 [25]. The supported 

MIPv4 components are HA, MH, and FA, with the MH using the FA as its care-of 

address. A MH is modeled as a mobile node, while HA and FA are modeled as MIPv4
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base stations. Fig. 46 depicts the design of a wireless MIPv4 base station [26]. A 

registration agent sends out beacons (agent advertisements) periodically, and in response 

to a M B’s solicitations. In addition, it forwards registration requests received from the 

MH to its HA, and relays registration replies received from the HA to the MH. A 

corresponding registration agent is attached to a mobile node, to send out solicitations, 

process agent advertisements, and handle Mobile IP registration signaling. A HA base 

station installs node classifier entries to point to a packet encapsulator when it receives 

registration requests from a FA, and stores the FA node address in a tunnel exit data 

structure. When a data packet is received at a HA, addressed to a MH, the encapsulator 

provides IP-in-IP encapsulation functionality, where the destination node (the FA) is 

determined by inspecting the tunnel exit data structure for the existence of current MH 

care-of address. By closely inspecting Fig. 46, we observe that the MH and HA need to 

be co-located within the same cluster, assuming 3 address levels, for later packet 

redirection to the packet encapsulator. An FA base station pre-installs a packet 

decapsulator agent. When a registration reply is received from the HA, classifier entries 

are installed within the decapsulator to point to the path to the MH (the network link 

leading to the MH in wired topologies). In wireless topologies, the decapsulator 

eventually forwards data packets to an ad-hoc routing agent.

The MB’s handles agent advertisements in a simple manner, leading to a non­

optimized handoff mechanism between base stations. Agent advertisements are stored in 

a linked list data structure that is periodically inspected to delete any expired entries 

based on the advertisement lifetime. The head of the linked list contains the FA list entry 

from which the MH received the most recent advertisement. If the current care-of address 

list entry has expired, the MH is prompted to issue a new registration request to the 

current head of the linked list. When a MH receives an advertisement from a FA that 

does not exist in the linked list, it immediately registers with its HA through this FA 

making it its serving base station. We can observe that if a MH is in an overlapping 

region between 2 base stations, it might keep constantly switching between base stations. 

When an advertisement is received from an already stored FA, this FA’s list entry is 

moved to the head of the linked list, and if this FA is the current care-of address, a 

registration is initiated to refresh the HA’s tunneling state. This approach is adopted
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instead of a periodic home registration approach, in which the MH would not issue a new 

registration to its current FA before a periodic registration timer expires, unless it senses 

that the FA has rebooted for example by inspecting the current agent advertisement 

sequence number. Recently, Widmer implemented an optimized handoff mechanism as 

part of his ns extension to simulate a mobile network architecture for vehicles, where for 

example inspecting the distance between the MH and the BS is an integral part of the 

handoff decision [67].
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Fig. 46. The design of a wireless MIPv4 base station node in ns-2.
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5.2 Columbia IP Micro-Mobility Software Overview

The Columbia IP Micro-mobility software (CIMS) [15] extends ns-2 by providing 

implementations for a number of micro-mobility protocols including Cellular IP [13], 

Hawaii [54], and Hierarchical Mobile IP [30]. CIMS has been used to compare the 

performance of these micro-mobility protocols [12]. We limit our overview presentation 

to the provided hierarchical Mobile IP implementation.

CIMS implements a simple foreign agent hierarchy where 1-level of foreign agents 

exists below a Gateway Foreign Agent (GFA) at the root of the hierarchy. A new node 

class is introduced modeling a GFA, which very much resembles the design of base 

stations (see Fig. 46) with the restriction that it does not send out agent advertisements. In 

addition, the GFA is selected to be the MB’s HA in order not to change the existing 

tunneling infrastructure through the packet encapsulator. Such selection restricts the type 

of possible network topologies involving both a HA and a GFA, or multiple GFAs and a 

HA. Leaf foreign agents are modeled as ns-2 bases stations and only advertise their 

individual addresses but not the GFA’s node address. A MH designates the GFA as its 

HA in its registration request, which prompts a receiving base station to forward the 

request to the HA which is actually the GFA. Data packets arriving at the GFA (HA) are 

encapsulated to the current care-of address as originally implemented in ns-2.

The implementation supports a single type of registration (home registration) from 

the MH to the HA (GFA) as opposed to home and regional registrations. This is 

attributed to the existence of only 1-level of FAs below the GFA, making the GFA the 

crossover FA for any MH’s registration. Furthermore, periodic home registrations are not 

supported due to the previously outlined approach by which the MH handles received 

agent advertisements (see section 5.1).

ns-2 does not support any link layer notification that the MH is out of range with it 

current BS. CIMS added a notification to the old BS, through the new BS, when the new 

BS receives the MH’s registration request with the old BS information. The old BS 

simulation object is directly accessed, and its state altered to signal the switch to being an 

old BS with regard to this MH. This BS state is used to immediately drop a data packet 

when this is an old BS, instead of attempting to forward it to the MH through the routing
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agent. No smooth handoff mechanism implementation is provided to the foreign agent 

hierarchy.

CIMS uses a Non-Ad-Hoc Routing Agent (NOAH) [67] as its routing agent instead of 

the ns-provided full-fledged ad-hoc routing agents. With a full-fledged ad-hoc routing 

agent, a MH can use other MHs as intermediate routers instead of the serving BS, which 

creates a problem for the Mobile IP case, in which direct communication between a MH 

and its BS is assumed. With NOAH, a MH can directly communicate with it serving base 

station. Please refer to [67] for more details about NOAH and how direct communication 

between wireless nodes is enabled.

5.3 Network Simulator Design And Implementation Enhancements

In order to simulate the local-area mobility framework introduced in sections HI and 

IV, a number of ns-2 and CIMS design and implementation enhancements were 

introduced. Such enhancements added the following features to the current CIMS 

implementation.

1. The capability of simulating multiple n-level foreign agent hierarchies within a 

foreign domain.

2. The capability of modeling a true foreign domain where the HA and GFA can 

be 2 different entities.

3. Support for home, regional, and home-regional registrations with periodical 

home registrations.

4. Support for the smooth handoff mechanism.

Section 5.3.1 introduces design and implementation enhancements to simulate a 

foreign domain with foreign agent hierarchies comprised of arbitrary number of levels. 

Section 5.3.2 explores the implemented support for home, regional, and home-regional 

registrations. Section 5.3.3 discusses the implemented support for the smooth handoff 

mechanism. Throughout the following sections, we introduce, where relevant, the OTcl 

API to be used from within network simulation scripts in order to properly configure 

various simulation aspects. Note that appendix A lists internal OTcl API, used from 

within the C++ implementation, for various simulation objects.
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5.3.1 A Foreign Domain with Multiple Foreign Agent Hierarchies

A foreign domain consists of a number of foreign agent hierarchies. Our current 

implementation supports one foreign domain, i.e., all deployed hierarchies belong to the 

same foreign domain. Section 5.3.1.1 introduces the simulated foreign domain and 

foreign agent hierarchy model. Section 5.3.1.2 presents node design changes to model a 

true foreign domain where the GFA and HA can be 2 separate entities.

5.3.1.1 Foreign domain and foreign agent hierarchy model

An n-level foreign agent hierarchy is comprised of a GFA at the root of the hierarchy, 

RFAs at intermediate levels, and base stations providing wireless connectivity to MHs at 

the leaf level. We extended the GFA node class introduced by CIMS to function as a 

GFA and RFA, while MIP ns-2 base stations are used as leaf foreign agents. Each leaf 

and intermediate node in the hierarchy is informed about the list of its parent nodes’ 

addresses leading to the GFA. GFAs and RFAs do not send agent advertisements, while 

base stations do, advertising the node’s address. In addition, base stations can either 

advertise the GFA address, or the addresses of all parent nodes in the hierarchy leading to 

the GFA. The MH compares the advertised GFA address versus its current GFA address 

to decide whether it has changed foreign agent hierarchies. The following is the 

registration agent list of OTcl methods (used from within a BS or a RFA) introduced to 

set and get the type of base station advertisement, and to inform a node about the 

hierarchical path up to the GFA (set of RFAs between the node and the GFA).

set-adv-method <adv-method>

The implementation defines two advertising methods: HIERARCHICAL_ADV to advertise the full 

RFA path to the GFA, and GFA_ONLY_ADV to only advertise the GFA (in addition to the BS address). If 

the simulation script does not set the advertisement method, the default value is HIERARCHICAL_ADV. 

The possible set of alternatives for the advertisement method is stored in the global OTcl list 

VALID_ADV_METHODS. 

get-adv-method

Get the advertisement method. Returns the current BS’s agent advertisement method. 

add-adds-coa-list <coa-!ist>

Add node addresses to the B S’s list of care-of addresses. Add the node addresses in the list <coa-list> 

to the list of care-of addresses maintained by the registration agent. Element 0 in <coa-list> is the father

R e p ro d u c e d  w ith  p e rm is s io n  o f  th e  c o p y r ig h t o w n e r. F u r th e r  re p ro d u c tio n  p ro h ib ite d  w ith o u t p e rm is s io n .



127

RFA of the current node, while element n is the GFA. If the selected advertisement method is 

HIERARCHICAL_ADV, the current node’s address, along with all addresses supplied in <coa-list> are 

advertised. This method is equally used for an RFA/GFA node to inform it about its father RFA.

Any number of hierarchy levels and individual node degrees can be simulated. 

However, we automated the simulation of hierarchies configured as perfect N-ary trees 

with an arbitrary number of levels [52]. A perfect tree allows storing hierarchy nodes in a 

1-dimensional array, starting with the root node as element 1, and the remaining 

hierarchy nodes consecutively stored in level-order from left to right. In addition, 

mathematical relationships can be derived to calculate some measures that permit 

automating the manipulation of such data structure. For a perfect N-ary tree with n levels, 

assuming the root node is at level 1, the total number of hierarchy nodes is given by the 

sum of the geometric series 1+ N +N2+ ...+NnA which is (Nn-l)/(N-l), the number of 

nodes in level z is given by NlA, the array index of the parent node of a node M  is given 

by f (M-1)/Nl, and the N  array indices of the children of a node j  are given by N*(j-1)+2, 

N*(j-1)+3,.., N*j+1.

Hierarchy levels can belong to a wired FA overlay tree superimposed on the 

hierarchy as follows. By default, a hierarchy is rooted by the GFA at level 1, and level n 

(the leaf level) consists of ns-2 base stations. Levels 1 and n are always a part of the FA 

overlay tree. The number of consecutive hierarchy levels below the GFA (excluding the 

leaf level), that are simple routers and have no RFA functionality, i.e., are not part of the 

FA overlay tree can be specified. For instance, a hierarchy configuration of “5/2/3” 

implies that the hierarchy is a 5-level hierarchy with the GFA at level 1, each node has a 

degree of 2 (2 children per node), and the 3 lower hierarchy levels are part of the FA 

overlay tree (level 5 is a base stations leaf level, levels 4 and 3 are RFAs levels, while 

level 2 consists of simple ns-2 nodes acting as wired routers). In general, with a hierarchy 

of n levels and a node degree of N, a hierarchy configuration can be expressed as “nlNln- 

z” (z: 1 —» n-1). The default hierarchy configuration is “ra/N/l” and implies that no RFA 

levels exist below the GFA, while “n/iV/zz-l” is a hierarchy configuration where all 

hierarchy levels are part of the FA overlay tree with the upper n-1 levels being GFA/RFA
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nodes, and the n& level a base stations leaf level. Fig. 47 depicts the simulated model for 

foreign agent hierarchies along with the superimposed FA overlay tree.

Hierarchy nodes can be connected using any of the following alternatives.

1. Individual duplex links between each father FA and immediate children 

foreign agents;

2. A single local-area network (the entire hierarchy is located in one subnet);

3. A number of local-area networks (subnets) where each father and immediate 

children foreign agents are located in one subnet (the required number of 

subnets for a perfect n-level A-ary tree is given by [.Total number of hierarchy 

Nodes / a J.

GFA

N  children

Level 2

Simple router levels
n levels

Level j

RFA levels
Level n-1

1 _ .

Leaf base stations level (level ri)

Fig. 47. The simulated model of foreign agents hierarchy.
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A foreign domain may contain any number of FA hierarchies with different 

configurations and topologies. However, we automated the simulation of foreign domains 

where all FA hierarchies have the same hierarchy configuration using a multiple subnets 

topology, and each pair of GFAs are connected using individual duplex links. For 

example, a foreign domain configuration of “2/4/2/3” implies that this domain contains 2 

hierarchies, each with the same hierarchy configuration of “4/2/3”.

In order to automate the configuration of the base stations’ wireless coverage, and 

their placement, we automated the BS placement strategy adopted by CIMS [15], where 

base stations are located on a 45 degrees inclined straight line, L meters apart. The value 

of L and a desired overlap area between BSs determine the cell coverage area. 

Consequently, increasing the hierarchy height increases the number of base stations at the 

leaf level, and the total wireless coverage area. The cell coverage area, receive threshold 

of the wireless physical medium, and antenna parameters are used to calculate the BSs’ 

transmission power according to a two-ray ground reflection model [26].

5.3.1.2 A true foreign domain model

In order to simulate a true foreign domain where the GFA and HA are 2 separate 

entities, and to allow simulating multiple FA hierarchies (multiple GFAs) within the 

foreign domain, the GFA/RFA packet encapsulation infrastructure was modified to allow 

the possibility that the GFA/RFA and MH might not be in the same network cluster. In 

addition, a GFA/RFA might need to maintain a binding cache entry for a MH, e.g., when 

it receives a BU message with a specified lifetime as part of the KOPA approach (see 

section 3.4.1). In order to maintain the binding cache information, we reuse the tunnel 

exit data structure with expiration, while adding a tunnel type entry to distinguish 

between binding cache entries and visitor entries. The presence of a visitor entry allows 

an RFA to decide whether or not it is the crossover FA for a MH’s registration request.

Fig. 48 illustrates the design of a GFA/RFA node. The encapsulator has been moved 

to the entry of the node to be consulted before the hierarchical address classifiers in order 

to inspect the tunnel exit (binding cache) before the routing tables (hierarchical address 

classifiers), when needed, and remove the restriction that the GFA/RFA and the MH need 

to be co-located within the same cluster.
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Fig. 48. Design of a GFA/RFA node.

Base stations and GFA/RFA nodes use the same encapsulator object; hence its 

functionality has been extended to allow its usage within either node types (Fig. 49). A 

HA provides IP-in-IP encapsulation for data packets destined to the MH. At a GFA/RFA 

node, if a packet is already encapsulated and destined to this node, the tunnel exit data 

structure is consulted to check for an entry specifying the current care-of address for the 

MH address. If a packet is not encapsulated, the MH address is assumed to be the 

destination address in the packet’s BP header; otherwise it is the destination address in the 

inner IP header. GFA/RFA nodes perform re-tunneling to a child RFA by overwriting the 

outer IP header to reflect the new source (this node) and destination (the child FA’s in the
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hierarchy) information. Regardless of whether re-tunneling is performed or not, the 

packet is forwarded to hierarchical address classifiers to decide on the packet’s next 

processing step (forward to a next hop, or forward to a port classifier if destined to this 

node).

/* On receive a packet p at encapsulator, process p  to perform tunneling to new care-of address.
* p  might be already encapsulated by a HA.
* ifp  is encapsulated, an inner and outer IP header exist.
*/
dst p ’s IP header destination address 
if {{p already encapsulated) and (not addressed to this node)) 

forward p  to address classifiers 
return

endif
if ip already encapsulated)

d st«— p 's  inner IP header destination address /* the MH address */
endif
lookup a care-of address in the tunnel exit data structure using dst 
if  (care-of address exists)

if  (p not encapsulated) /* HA performs IP-in-IP encapsulation*/ 
allocate new IP header
fill allocated IP header with original IP header information 
designate the allocated IP header as p ’s inner IP header

endif
/* Overwrite the outer IP header with new source and destination information */ 
replace outer IP header destination address with new care-of address 
replace outer IP header source address with this node’s address

endif
forward p to address classifiers /* whether p was actually encapsulated or not */_____________

Fig. 49. Encapsulator packet processing pseudocode.

5.3.2 Support for Home and Regional Registrations

In order to simulate more realistic registration processing, support for periodic MIP 

home registrations has been added to ns-2. The existing MIP implementation 

continuously refreshed the home-registered binding to a FA by issuing a home 

registration to such FA regardless of the remaining home registration lifetime. This '
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approach was left unchanged for the basic MIP approach. Using the foreign agent 

hierarchy approach with regional registrations, the support for periodic home 

registrations alleviates the need for such unnecessary home registration overhead. In 

addition, such support was necessary to implement in order to compare the performance 

of the KOPA and SINP approaches (see section 3.4). The desired type of processing for 

home registrations involving local handoffs can be selected by using the following global 

OTcl command. The selected type of processing implies the tunneling consistency 

mechanism initiated by the crossover FA, and whether a regional registration reply is 

generated before a home registration reply is received from the HA.

set-home-renewal-handling <method>

Set the desired processing method for home registrations involving local handoffs. The implementation 

provides the following alternatives: KEEP_OLD_ALIVE for the KOPA approach, SWITCH_NEW for the 

SINP approach, DELETE_OLD for the DOP approach, and NOTHING. If the simulation script does not 

set the desired processing, a default value of KEEP_OLD_ALIVE is assumed. The possible set of 

alternatives for the cooperation mode is stored in the global OTcl list

VALID_HOMER_HANDLING_METHODS. The processing mode is consulted from within the C++ 

implementation of the MIP registration agent to determine the appropriate course of action while 

processing the MH’s home registrations.

Home Registration Scheduling

While sending a current home registration, the next home registration is scheduled 

after a time interval allowing for enough time for the future registration request to reach 

the HA, and for a registration reply to make it back to the GFA before the GFA’s visitor 

entry for the MH expires. We selected this time interval to be “home registration lifetime 

- Va home registration lifetime”. In section III, we presented how this approach could be 

modified to enforce a significant number of home registrations involving local handoffs 

(HR-LH) requests (see section 3.5). Alternatively, the MH could schedule the next home 

registration aided by the experienced home registration latency, leading to an adaptive 

home-registration scheduling process based on the current experienced delay. The home 

registration lifetime need not be a small time interval (order of milliseconds), or else it 

would create a lot of unnecessary home registration overhead. A typical value for home 

registration lifetime used during our simulation experiments is 30 seconds. The following
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is the MH’s registration agent list of OTcl commands introduced to set the home 

registration lifetime used by the MH, and to force a considerable number of HR-LH 

requests.

set homereg_lifetime_<vaIue in seconds>

Set the home registration lifetime used by the MH. If the simulation script does not explicitly set the 

lifetime value, a default value of 50 seconds is assumed, 

set forceHome_LocalHandofF_ <value>

Set how the MH handles the agent advertisements. A value of 0 implies not enforcing a considerable 

number of such registrations. A value of 1 implies to initiate home registrations while coinciding with a 

local handoff (see section 3.5)

MH’s Processing of Agents Advertisements

Fig. 50 shows how a MH processes a received mobility agent advertisement in order 

to decide which registration, if any, should be initiated. Currently, the supported 

registration types are as follows.

1. Home registrations: To change the home-registered care-of address

2. Regional registrations: To change the local care-of address within a local-area 

while maintaining unchanged the home-registered care-of address.

3. Home-regional registrations: Initiated when handing off to a new hierarchy in 

the foreign domain, while in hierarchy cooperation mode (see section IV).

While the home registration is still valid and the advertisement received from the 

serving FA did not expire, the MH does not issue any further registrations (home or 

regional) to this FA. While the MH is moving within the same foreign agent hierarchy, a 

regional registration is initiated upon receiving an advertisement from a new FA (a new 

FA implies that the MH does not currently store this FA’s advertisement in a current 

agents’ advertisements data structure). Receiving an advertisement from a known FA 

(advertisement still valid, i.e., stored in the advertisements linked list) while having a 

current care-of address prompts the MH to move this FA advertisement entry to the head 

of the advertisements linked list, but no registration is initiated.
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/* On receive a mobility agent advertisement (ad), process the ad to decide which registration is initiated.
* An ad  contains at least the agent’s IP address. If FA hierarchy mode is supported, ad will contain a set 
of BP addresses (addrj, ..., addr„) where addri is the node’s IP address and addrn the GFA address
* current_coa is the MH’s home-registered care-of address.
* a current (not expired) agent advertisements linked list is maintained. */ 
regDest <— advertised node IP address /* addri */
target_coa <— regDest
target_coa <— Advertised GFA IP address if applicable /* addr„ */ 
lookup regDest in current advertisements linked list 
if  (regDest entry found) /* a known mobility agent */

/*Entry at head of advertisements list is used as potential coa if current_coa has its ads expired*/ 
place regDest entry at head of advertisements linked list 
if  (regDest =  target_coa) /* non hierarchy case, HA or FA */ 

if  (current_coa =  regDest)
issue home registration to regDest using it as care-of address

endif
else /* FA advertising GFA and this is a known FA*/

/* do nothing */
/* This processing implies keeping the current_coa the same until its ads expire, as long 
as no other ads were received from a new mobility agent */

endif
else /* a new mobility agent */

create a new advertisement entry for regDest
place newly created entry at head of advertisements linked list
if  (regDest == target_coa) /* non hierarchy case */

issue home registration to regDest using it as care-of address 
else /* hierarchy case */

if  (current_coa == target_coa) /* same GFA, new FA */ 
issue regional registration to regDest 

else /* new GFA, new FA */
if  ((current_coa =  HA) or (current_coa =  UNASSIGNED))

issue home registration to regDest using target_coa as the new care- 
of address

else
if  (no cooperation mode) /* new home registration */

issue home registration to regDest using target_coa as new 
care-of address 

else /* cooperation mode between hierarchies */
if (moving within an already registered hierarchy)

/* The MH has already issued a home-regional 
registration from within this hierarchy and was 
approved by the root GFA for this MH*/ 
issue a regional registration to regDest

else
issue a home-regional registration to regDest

endif
endif

endif
endif

endif
endif

Fig. 50. The MH’s processing for a received mobility agent advertisement.
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FA Hierarchies Cooperation

When multiple hierarchies are deployed in the foreign domain, two hierarchy 

cooperation policies are implemented: non-cooperating and cooperating hierarchies (see 

section IV). In non-cooperation mode between hierarchies, a handoff to a new hierarchy 

in the domain implies sending a new home registration, effectively changing the MH’s 

home-registered care-of address. In cooperation mode, a handoff to a new hierarchy 

implies sending a home-regional registration request, while handoffs within an already 

approved hierarchy by the root GFA implies sending regional registrations. A return to 

the MH’s root GFA hierarchy triggers a regional registration, since the home-registered 

care-of address was not changed (see section 4.4.2). The following global OTcl command 

allows setting the desired cooperation mode between FA hierarchies within the same 

foreign domain.

setHFA_RoutingType < ty p e >
Set the desired cooperation mode between FA hierarchies within the same foreign domain. The

implementation defines two possible alternatives: REGIONAL for a non-cooperation mode, or

GFA_COOPERATION for a cooperation mode. If the simulation script does not set the cooperation mode,

a default value of REGIONAL is assumed. The possible set of alternatives for the cooperation mode is

stored in the global OTcl list VALIDJTFA_ROUTING_TYPES. The cooperation mode is inspected from

within the C++ implementation of the MIP registration agent to determine the appropriate course o f action

while processing inter-hierarchy handoffs.

Registration Replay Protection

Timestamp-like replay protection is provided for all MH registrations (home or 

regional) at the HA and GFA/RFA. The MH supplies, as part of its registration requests, 

a registration sequential number (continuously incremented for all registration types). 

The HA and GFA/RFA store and update the latest registration sequential number to aid in 

judging the freshness of a received MH’s request. During the simulation, such 

registration sequential number maintenance and inspection guards against erroneously 

processing an older registration when a newer registration has been received. Such 

scenario can occur due to differences in network delays and congestion state on different 

simulation links leading from the old and new FA to the HA or crossover FA.
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Pending Registrations

The introduction of an n-level FA hierarchy necessitates the presence of a pending 

registrations request data structure (implemented as a linked list) at each RFA/GFA in 

order to match registration replies to registration requests. The latest pending request is 

inserted at the head of the pending requests linked list. A pending registration request 

entry contains the following data fields.

1. The MH address.

2. The registration’s sequential number (provided by the MH as part of the 

request). Matching registration replies to registration requests is based on 

comparing the stored pair (MH address, sequential number) in the pending 

entry versus the registration reply corresponding data fields.

3. The address o f the request’s sending node to identify which child RFA 

forwarded this request. A later registration reply is forwarded to the stored 

sending child RFA, until the reply eventually reaches the MH.

4. How to handle this pending request entry when a reply is received. This field 

is necessary because of the introduction of the SINP approach (see section 

3.4.2), where a regional registration reply precedes a home registration reply 

in flowing through the same new path to the MH. If the pending entry is 

removed after the regional reply is received, an RFA would not know to 

which child RFA it should forward the later home registration reply. Possible 

handling options are: delete after receiving any corresponding reply (the 

default case), delete after only receiving a home registration reply, and delete 

after receiving a regional registration reply.

5. The simulation time at which the request was received.

5.3.3 Smooth Handoff Mechanism Support

The smooth handoff mechanism (PFANE [47]) is supported as follows. A MH 

supplies as part of its registration request its old FA address (old BS), and a desired 

binding cache lifetime. The new FA (new BS), upon receiving the registration request, 

sends a BU message to the old FA. The old FA, upon receiving the BU from the new FA, 

saves in a “new FA” data structure the current binding cache entry pointing to the new
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FA. Such binding cache entry expires after the desired lifetime requested by the MH. The 

MH uses a default binding cache lifetime of 0.5 seconds. We did not implement the 

binding acknowledgement feature, by which an acknowledgement message is formulated 

by the old FA and destined to the MH. Such message should be encapsulated to the new 

FA, which later delivers it to the MH. The following is the MH’s registration agent OTcl 

command to enable the usage of the smooth handoff mechanism within the MH’s 

registration requests.

set useSmoothHandoff_ <value>

A value of 0 implies that the MH does not request the new FA to initiate a smooth handoff mechanism. 

A value of 1 implies to request such mechanism from the new FA. If the simulation script does not 

explicitly select which mode to use, a default value of 0 is assumed.

We extended the decapsulator functionality to add the capability of encapsulating 

data packets from the old FA to the new FA (the old and new FA are leaf base stations in 

our foreign agent hierarchy model). We opted for this approach, to support encapsulation 

to any MH, even if not within the same cluster as the old FA. The existing ns-2 

implementation only supported encapsulation from a HA to the current MH care-of 

address, provided that the HA and MH are in the same cluster. An alternative approach 

would have been to apply the same node design changes presented earlier to support 

foreign agent hierarchies (see section 5.3.1), to ns-2 base station node structure, and use a 

binding cache tunneling approach. We opted to keep ns-2 base station node structure 

intact, and change the functionality of the decapsulator component of the node. Note that, 

a data packet would reach the decapsulator component only if it is addressed to this node 

(see Fig. 48), which fits the scenario that this node is an old FA receiving an encapsulated 

packet destined to the MH.

Within a base station, a data packet that reaches its decapsulator agent is processed 

according to the state of this base station as follows (Fig. 51).

-  Base station currently serving the MH. The packet is decapsulated and 

forwarded to the MH (through a wireless routing agent).

-  Base station currently an old FA that was informed about the new FA through 

the smooth handoff mechanism. The data packet is already an encapsulated
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packet; hence the MH address is assumed to be the destination address of the 

inner IP header. The “new FA” data structure is consulted to extract the new 

care-of address information, and afterwards the packet is re-tunneled to this new 

care-of address, by overwriting the outer IP header using the new source and 

destination information. The new resulting packet is forwarded to the node’s 

hierarchical classifiers to decide on its next hop towards the new FA.

The new FA relays any data packets tunneled from the old FA to the MH, even before 

a registration reply, corresponding to a MH’s registration request, is received. In adopting 

such approach, we rely on the fact that the old FA is responsible for authenticating the 

MH’s request informing it of its new care-of address.

/* On receive a packet p  at decapsulator, process p  to extract original packet and forward it to MH.
* if this node is an old FA, p  is forwarded to the new FA address if found in a “new FA” data structure.
* p  is already encapsulated with an inner and outer IP header.
*/
MH address p ’s inner IP header destination address 
if  (this BS currently serving MH) /* decapsulation */ 

replace outer header with inner header 
delete inner header

endif
if  (this BS previously serving the MH) /* an old FA */

lookup new FA address in “new FA” data structure using MH address 
if (new FA address found) /* forward p  to new FA */

/♦Overwrite outer header with new source and destination information */
replace outer IP header destination address with new FA address
replace outer IP header source address with this node’s address
forward p  to address classifiers to decide on p ’s next destination towards the new FA
return

else
drop p  
return

endif
endif
forward p  to next target /* Next target would be a wired link towards the MH, or a wireless
routing agent*/_______________________________________________________________________________

Fig. 51. Decapsulator packet processing pseudocode.
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5.4 A Sample Simulation Scenario

In this section, we present a sample simulation scenario highlighting how the main 

simulation aspects are configured, while focusing on the FA hierarchy topology 

generation. We introduce as sample scenario, the simulation of a foreign domain 

comprised of a number of FA hierarchies. An individual FA hierarchy’s nodes are 

connected using multiple subnets, where each father and children FA are on the same 

subnet. The foreign domain and FA hierarchy model are configured as introduced in 

section 5.3.1. For more information about writing ns-2 simulation scripts in general, the 

reader is referred to the ns-2 tutorial [29].

Simulation Command Line Parameters

The simulation accepts the command line parameters depicted in TABLE 4 in their 

listing order. All parameters are optional, i.e., if not provided, default values are assumed.

TABLE 4

SAMPLE SIMULATION SCENARIO COMMAND LINE PARAMETERS

Parameter Description

hiemum The number of FA hierarchies within the foreign domain. The default value is 2

levelnum The numbers of levels within each FA hierarchy in the foreign domain. The default 

value is 4.

fanout The fanout (number of children nodes) of each node. The default value is 2.

level_HFA The number of levels in the FA hierarchy tree, apart from the GFA, that belong to the 

RFA overlay tree. A value of 1 indicates only the leaf level (BS level) belong to the 

overlay tree. The default value is 1.

speed The movement speed of the MH in meters/second. The default value is 20 

meters/second.

InterB S_Distance The distance between adjacent base stations (see section 5.3.1.1). The default value is 

140 meters. Such distance is the same for both dimensions of a two-dimensional grid.

overlap The desired overlap distance in meters between adjacent BSs coverage areas. The 

default value is 25 meters. The <interBS_Distance> and <overlap> are used to 

compute the BS’s effective coverage area.
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Simulation Configuration

Numerous configuration values need to be assigned from within the simulation script. 

We classify and group such simulation configuration values according to their function. 

The following script fragment introduces some of the main configuration values.

# Traffic type to be used during simulation. Possible values are UDP and TCP 
set opt(transport) TCP

#instantaneous TCP throughput measurement interval
set tcp_opt(time_interval) 2.0 ;#time interval in seconds for TCP throughput calculations

# TCP instantaneous throughput file, used to log such information every time interval
# a line in this file is formatted as follows <current_time Bandwidth_during_Interval B andwidth_Mbps> 
set opt(tcpf) "TCPlogfile"

# Default hierarchy settings
set hier_opt(hiemum) 
set hier_opt(levelnum) 
set hier_opt(fanout) 
set hier_opt(level_HFA) 
set hier_opt(startX) 
set hier_opt(startY)

2 ; #default is 2 hierarchies 
4 ; #with GFA at level 1 
2 ; #2 children per node
1 ; #only leaf level (BSs) belongs to FA overlay tree

1.0 ; #X coordinate of first BS in 2D grid from left
1.0 ; #Y coordinate of first BS in 2D from left

#Links settings for duplex links 
set link_opt(CH_H A_linkB) 
set link_opt(CH_HA_linkDelay) 
set link_opt(H A_GF A_linkB) 
set link_opt(FLA_GFA_linkDelay) 
set link_opt(inter_GFA_linkB) 
set link_opt(inter_GFA_linkDelay)

1.5Mb; #link bandwidth betwn CH and HA 
20ms ; Mink delay betwn CH and HA 
1.5Mb; Mink bandwidth betwn HA and GFA 
20ms ; Mink delay betwn HA and GFA 
10Mb ; Mink bandwidth between GFAs 
lm s ; Mink delays between GFAs

#LAN settings used for hierarchy LANs 
set lan_opt(bw) 10Mb
set lan_opt(delay) lms

# mobile IP settings 
set mip_opt(homereg_lftm) 
set mip_opt(hfa_routingtype) 
set mip_opt(agent_adv) 
set mip_opt(home_reneWal_handling) 
set mip_opt(reg_rtx) 
set mip_opt(useSmoothHandoff) 
set mip_opt(forceHome_LocalHandoff)
# Probability of failure to contact HRGFA from current GFA 
set mip_opt(rzfa_contactFprob) 0.0

30 ;#home registration lifetime from within HFA
$GFA_COOPERATION
$HIERARCHICAL_ADV ; # type of agent advertisement 
$KEEP_OLD_ALIVE ; # type of home registration processing 
1.0 ;# time interval to attempt to retransmit a registration
0 ;# 0 do not use, 1 use
0 ;#0  do not force, 1 force

# UDP settings
# interval and packet size correspond to 64Kbps audio
set udp_opt(interval) 20ms ;# interval between packets
set udp_opt(packet_size) 160 ;# packet size in bytes
;# playout delay for Loss Monitor in ms to calculate application-dropped packets 
set udp_opt(playout_delay) 48___________________________________________
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The usage of the FA hierarchy mode within ns-2 has to be enabled, along with the 

desired cooperation between deployed FA hierarchies. In addition, the desired processing 

for home registrations involving local handoffs is selected. The following script fragment 

shows such configuration commands.

# Enable FA  hierarchy usage, introduced by CIMS 
set HFA_Routing 1

# Select which FA hierarchy cooperation mode
set HFAJR.outing_.Type $mip_opt(hfa_routingtype)

# Select the home registration processing
set-home-renewal-handling $mip_opt(home_renewal_handling)_______________________________________

Node Creation and Topology Generation

Each FA hierarchy is a perfect n-level A-ary tree (where n is the hiemum argument, 

and A is the fanout argument). The following script fragment presents how to compute 

various topology related measures such as the total number of nodes, total number of 

LANs, and the total number of base stations nodes.

# num_nodes_level <fanout> <levelnum> computes the number o f nodes in a specific level 
#get_num_nodes <fanout> <levelnum> computes the total number of nodes in the hierarchy

#Number o f BS nodes in 1 hierarchy
set num_bs_nodes [num_nodes_level Sfanout $levelnum] 
set totalnum_bs_nodes [expr $num_bs_nodes * $hiernum]

#Total number in hierarchy
set hier_nodes [ get_num_nodes $fanout $levelnum]
set totalhier_nodes [expr $hier_nodes * $hiernum]

#Number o f wired nodes
set num_wired_nodes [expr $hier_nodes - $num_bs_nodes]

#Number of required LANs for 1 hierarchy
set num_lans [expr int(floor([expr $hier_nodes/$fanout.O]))]
set totalnum_lans [expr $num_lans *$hiemum]

#Total number of wireless nodes
# number of base stations + 1 MH +1 HA
set opt(nn) [expr $totalnum_bs_nodes + $num_mobile_nodes + 1]_________________
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In terms of ns-2 node addressing, all nodes belong to the same domain. The MH and 

the HA are members of the same node cluster, while other nodes belong to individual 

one-node clusters. In addition, an ns-2 LAN needs to be allocated its own cluster for 

addressing purposes. The following script fragment shows how to setup node addressing 

for this configuration.

# All nodes in 1 domain 
AddrParams set domain_num_ 1

# Number of clusters = total number of hier nodes + 1 (for MH and HA) +1 for CH + totalnum_lans for 
LANS
lappend cluster_num [expr $totalhier_nodes + 1 + 1 + $totalnum_lans]
AddrParams set cluster_num_ $cluster_num

# multiple hierarchies
# Number of nodes = 1 in each cluster for hier and CH + 2 for MH cluster
# The order of clusters is as follows: hierarchy clusters, CH cluster, MH cluster, and LAN clusters for HFA
# CH_cluster = totalhier_nodes
# MH_cluster = totalhier_nodes + 1
# lan_clusters start at totalhier_nodes + 2
for {set i 1} {$i <= $totalhier_nodes } finer i} { 

lappend eilastlevel 1
1
lappend eilastlevel 1 2 ;

#clusters for LANs
for {set i 1} {$i <= $totalnum_lans } {incr i} { 

lappend eilastlevel 1
}
AddrParams set nodes_num_ Seilastlevel___________________________________________________________

The perfect tree features allow us to store hierarchy nodes in two one-dimensional 

arrays. One array holds all wired nodes (do not have wireless capabilities), in level order 

from left to right, in each hierarchy, while the other array holds the base station nodes 

(wireless nodes) within each hierarchy ordered from left to right. Consequently, for wired 

nodes, the array index difference between corresponding wired nodes in each hierarchy is 

the number of wired nodes in a single hierarchy. Similarly, for base station nodes, the 

array index difference between corresponding base stations in each hierarchy is the 

number of base station nodes in a single hierarchy.
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The creation of hierarchy nodes can be subdivided into the following tasks: the 

creation of the wired nodes which are not part of the FA overlay tree for each hierarchy, 

the creation of GFA nodes in each hierarchy, the creation of RFA levels within each 

hierarchy, and the creation of BSs (leaf level) within each hierarchy. The following script 

fragment illustrates the node creation process for base station nodes for each hierarchy in 

the foreign domain.

# Create base station nodes in each hierarchy 
for {set i 1} {$i <= $num_bs_nodes } {incr i} {

#Calculate the node number in tree
set nodenumjntree [ expr $num_wired_nodes + $i]

#Calculate the cluster number corresponding to this node 
set cluster_num [ expr $nodenum_intree -1] 
set index $i

# For each hierarchy
for {set k 1} {$k <= $hiernum} {incr k} {

# configure the transmission power of base station 
$ns node-config -rxPower $power -txPower $power

# create the base station
set BS($index) [$ns node 0.$cluster_num.0]

#set the advertisement method for the BS registration agent 
[$BS($index) set regagentj set-adv-method $mip_opt(agent_adv)

# Inform theBS about the hierarchical set o f RFA nodes between it and the GFA
# parents_list <node_number> <fanout> <hier_num> returns a list o f node addresses which constitute 

the parent list for this BS including the GFA
[$BS($index) set regagentj add-adds-coa-list [parents_list $nodenum_intree $fanout $k]

#setup BS as foreign BS in HFA, introduced by CIMS 
makeHfaBS $BS($index)

# Prepare for next iteration
set cluster_num [expr $cluster_num + $hier_nodes] 
set index [expr $index+ $num_bs_nodes]

}

Each father FA and children FAs belong to the same subnet. Due to the perfect tree 

representation, the nodes in each LAN can easily be identified. The following script 

fragment illustrates LAN creation and configuration for hierarchy nodes.
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#Create subnets between hierarchy nodes
#  Each Father and children nodes form a LAN (subnet) 
set lan_cluster_offset (expr $totalhier_nodes +2]

# For each hierarchy
for {set k 1} {$k <= $hiernum} {incr k} {

# For each node in the current hierarchy
for {set i 1} [$i <= $num_wired_nodes } {incr i} {

#get list o f nodes in LAN rooted by node number I
#lan_nodes <node_number> <fanout> <Number of wired nodes> <hier_num> returns a list of node 

addresses belonging to the same subnet rooted by node <node__number> 
set current_lan_nodes [lan_nodes $i $fanout $num_wired_nodes $k]

#Calculate the lan cluster
set current_lan_cluster [expr $lan_cluster_offset+$i-1 ]

# Create the lan
set lan [$ns newLan $current_lan_nodes $lan_opt(bw) \

$lan_opt(delay) -llType $lan_opt(ll) -ifqType $lan_opt(ifq) \
-macType $lan_opt(mac) -chanType $lan_opt(chan) \
-address "0 .$current_lan_cluster.0 "]

#$lan cost 2
}

#Calculate the next lan cluster offset
set lan_cluster_offset [expr $lan_cluster_offset +$num_lans]

}__________________________________________________________________________________

The configuration of the MH can be performed using the following commands.

# This command was introduced by CIMS and later extended to include new configuration parameters 
makeHfaMH <MH node> chome registration lifetime> \

< Is Smooth Handoff enabled> <Force Home registrations involving local handoffs>

where <home registration lifetime> is $mip_opt(homereg_lftm) \
<Is Smooth Handoff enabled> is $mip_opt(useSmoothHandoff) \
<Force Home registrations involving local handoffs> is $mip_opt(forceHome_LocalHandoff)

# Inform the MH’s registration agent about the MH’s home agent
#  SHAaddress is the node address of the HA 
[$MH set regagent_J set home_agent_ $HAaddress

Other Simulation configuration tasks

Other simulation configuration tasks not covered in this section include the placement 

of base stations in the two-dimensional grid (see section 5.3.1), the configuration of the 

MH movement, and the configuration of traffic streams parameters.
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5.5 Conclusion

In section V, we introduced the design and implementation details of the network 

simulation used to evaluate the local-area mobility framework presented in sections III, 

and IV. The Columbia IP Micro-Mobility Software (CIMS) [15], which is an ns-2 source 

code extension [40], provided limited simulation capabilities for 1-level of foreign agents 

(base stations) below the GFA, and a restricted foreign domain model requiring that the 

GFA and HA be the same entity. We extended CIMS to allow modeling foreign agent 

hierarchies with an arbitrary number of levels, and a true foreign domain where the GFA 

and the HA can be two separate entities. Separating the GFA and HA entities allows 

deploying multiple foreign agent hierarchies within the foreign domain. In addition, a 

number of implementation enhancements were added such as support for regional and 

periodical home registrations, and the smooth handoff mechanism. To the best of our 

knowledge, this is the first network simulator extension to implement a true foreign 

domain where local-area mobility is supported by deploying one or more foreign agent 

hierarchies implementing the regional registration framework and periodical home 

registrations.

In section VI, we use the presented extensions and hierarchy simulation model to 

present a study of some of the FA hierarchy design parameters such as the hierarchy’s 

height, and topology.
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SECTION VI 

A SUITE OF SIMULATION EXPERIMENTS 

FOR FOREIGN AGENT HIERARCHIES

In this section, we present a suite of foreign agent hierarchies simulation experiments, 

using the aforementioned network simulator extension and enhancements detailed in 

section V. Our objective is to highlight the validity and effectiveness of our extensions 

and implementation. Furthermore, we exploit these experiments to present a study of 

some of the network factors affecting the performance of an FA hierarchy based on the 

regional registration approach, e.g., hierarchy height, delay to the HA, topology, and the 

usage of the smooth handoff mechanism.

Section VI is organized as follows. Section 6.1 presents an overview of the simulation 

experiments presented in section VI. The subsequent sections present the following 

simulation experiments and corresponding UDP/TCP results as applicable: effect of FA 

hierarchy height and number of RFA levels (section 6.2) and hierarchy link delay (section 

6.3) while using a duplex links hierarchy topology, effect of link delay between HA and 

GFA (section 6.4), and effect of hierarchy topology and the smooth handoff mechanism 

(section 6.5). Finally, section VI is concluded in section 6.6.

6.1 Simulation Experiments Overview

For the purpose of the experiments, we use the regional registration processing 

framework (section 3.3), and the KOPA approach for processing home registrations 

involving local handoffs (section 3.4.1) previously presented in section III. However, we 

do not enforce a large number of home registrations involving local handoffs as 

previously adopted in section HI. Alternatively, a MH issues a periodical home 

registration request upon timer expiration as explained in section 5.3.2, which might or 

might not coincide with a local handoff. In general, the number of HR-LH requests, 

observed during these simulations, was limited to a handful of occurrences. The main 

observed scenario where HR-LH requests occurred was due to the MH receiving an
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advertisement from a new FA, while the MH had just issued a home registration request 

(no handoff involved) to its current serving FA. Such event prompts the MH to issue 

another home registration request involving a local handoff. The home registration 

lifetime is set to be 30 ms.

We assume a foreign domain comprised of one foreign agent hierarchy. Fig. 52 

illustrates the simulated network topology. The FA hierarchy is an n-level perfect binary 

tree where n is dependent on which experiment is performed. Unless otherwise stated, 

each FA is only connected to its children foreign agents through individual 100 Mbps 

duplex links and link delay L D f a -f a  in milliseconds (default link delay is 0.5 ms). The 

GFA is connected to the MH’s HA through a 1.5 Mbps duplex link with delay L D g f a -h a  

ms (default link delay is 20 ms). We simulate a single MH within the hierarchy 

communicating with a fixed Correspondent Host (CH). The CH is connected to the HA 

using a 1.5 Mbps duplex link with 20 ms link delay.

Foreign domainCH HA GFA

1.5 Mbps 
20 ms

LD: Link delay

FA Hierarchy

MHMH
“ 1

BI
1II! i8

Fig. 52. Simulated network topology.
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Unless otherwise stated, the MH is periodically moving back and forth across the 

entire domain until an estimated number of handoffs are attained (more than 100 

handoffs). Consequently, the MH is performing a set of handoffs with a variable number 

of hops between the serving FA and the crossover FA. In general, within a perfect n-level 

FA tree, with only individual links between a father and children foreign agents, the type 

of handoffs performed by the MH can range from 1-hop to (n-l)-hop handoffs.

6.2 FA Hierarchy Height and Number of RFA levels

We investigate the effect of increasing the hierarchy height on performance during 

handoffs. We perform this task by actually adding extra RFA levels to an FA hierarchy. 

Adding an extra RFA hierarchy level implies increasing the wireless coverage area of the 

leaf base stations level, and increasing the tunneling overhead within the hierarchy25. In 

addition, for every hierarchy height n, we investigate the effect of varying the number of 

consecutive RFA levels above the leaf base stations level from 0 to n-1 (see section 5.3.1) 

to highlight the effect of bringing the crossover FA closer to the MH. For example, when 

the number of RFA levels is 0, the GFA is the crossover FA for all MH handoffs, located 

(n-1) hops away from the serving BS. By installing one level of RFAs above the base 

stations, some of the (n-l)-hop handoffs are substituted by 1-hop handoffs, with the 

crossover FA located 1-hop away from the serving BS.

6.2.1 UDP Traffic

The MH is periodically moving back and forth across the entire domain at a speed of 

20 m/s. A constant bit rate UDP traffic is applied from the CH to the MH to simulate the 

behavior of an audio application (a 160-byte data packet is transmitted every 20 ms to 

simulate a 64 kbps audio stream). The experiment is performed for hierarchy heights 4, 5, 

and 6. For every hierarchy height, we calculate the average number of lost packets per 

handoff by dividing the total number of lost packets by the total number of handoffs. In 

addition, using hierarchy heights 4 and 5 as sample, we calculate the number of regional

25 A hierarchy height increase from n to n+1 implies that a data packet has to go through one extra re­

tunneling step to reach the MH.
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registration replies generated by each RFA, and classify such replies according to the 

number of hops between the crossover FA and the serving FA.

Fig. 53 depicts the average lost packets per handoff while varying the number of 

intermediate RFA levels for hierarchy height 4. Modeling the foreign domain as an FA 

hierarchy, even without any RFA levels (RFA levels = 0), achieves a significant 

improvement versus the base Mobile IP case (average lost packets of 2.9 packets/handoff 

in base case versus 0.2 packets/handoff in hierarchy case which is a 93% reduction in 

packet loss). Increasing the intermediate number of RFA levels from 0 to 1 further 

reduces the average lost packets/handoff from 0.2 to 0.1 packets/handoff. This is due to 

the fact that some of the 3-hop handoffs, in case RFA levels = 0, are replaced by 1-hop 

handoffs when RFA levels = 1 (Fig. 54). This substitution reduces the handoff latency, 

resulting in a reduction of the number of lost packets during such handoff. We note that, 

the performance of base Mobile IP is not improved or affected by such change, since it is 

not aware of any RFA levels between the serving FA and the HA. The lowest average 

lost packets/handoff in the hierarchy case (0.09 packets/handoff) is observed for RFA 

levels = 2, where all hierarchy levels are part of the FA tree.

□  Base MIP ■  FA Hierarchy
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Fig. 53. Average lost packets per handoff for hierarchy height 4.
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Fig. 54 illustrates the RFA regional registration replies distribution classified as GFA 

replies (3-hop RFA replies), 2-hop RFA replies, or 1-hop RFA replies. An increase in the 

number of intermediate RFA levels implies an increase in the number of /-hop handoffs 

for i = 1, 2 below the GFA, and a reduction in the number of GFA replies. Consequently, 

the number of control messages (registration requests), reaching the GFA, is reduced, 

hence making the hierarchy links leading to the GFA less congested. In addition, bringing 

the crossover FA closer to the serving FA reduces the handoff latency and consequently 

the number of lost packets.

□ GFA replies S  2-hop RFA replies B 1-hop RFA replies 
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Fig. 54. Distribution of regional registration replies for hierarchy height 4.

Fig. 55 and Fig. 56 show simulation results for hierarchy height 5. We obtain similar 

results of significant improvements by adopting an FA hierarchy approach (92% 

reduction in packet loss even without any RFA levels), and a decrease in average lost 

packets per handoff by increasing the number of intermediate RFA levels (ranging from 

0.23 packets/handoff for zero RFA levels to 0.09 packets/handoff for RFA levels =3.
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Fig. 55. Average lost packets per handoff for hierarchy height 5.
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Fig. 56. Distribution of regional registration replies for hierarchy height 5.
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Fig. 57 depicts the average number of lost packets for hierarchy height 6. The same 

results pattern similar to heights 4 and 5 results can be observed. With no RFA levels, the 

hierarchy approach achieves 89% reduction in packet loss over base Mobile IP. The 

increase in number of RFA levels results in a decrease in the average lost packets/handoff 

(ranging from 0.33 packet/handoff for no RFA levels to 0.13 packets/handoff for RFA 

levels = 4). It is expected that the resulting regional registration replies’ distribution 

exhibits the same pattern as previously reported for heights 4 and 5 (Fig. 54, and Fig. 56). 

With no RFA levels, all handoffs will be 5-hop handoffs with the GFA being the 

crossover FA. The increase in number of RFA levels substitutes some of the i-hop 

handoffs with /'-hop handoffs, where j  < i, consequently reducing the average handoff 

latency and the average packet loss per handoff.

Comparing the average packet loss for hierarchy heights 4, 5, and 6 (Fig. 58), 

hierarchy height 4 achieves the lowest average lost packets/handoff with heights 5 and 6 

recording a slight increase for all choices of RFA levels (the maximum number of RFA 

levels for hierarchy height n is n-2). With the maximum number of RFA levels, an 

increase in hierarchy height implies an increase in tunneling overhead within the FA 

hierarchy (because of the added RFA levels), and an increase in data packets latency. 

Such latency increase is also dependent on the hierarchy link delay between RFA levels 

(set to 0.5 ms in this experiment). In addition, the increase in hierarchy height implies an 

increase in average handoff latency for the adopted mobility pattern resulting in an 

increase in average lost packets/handoff. However, no major irregularities are observed 

with the hierarchy height increase, hence arbitrary n-level hierarchy designs can be 

adopted at the expense of average packet loss increase for some mobility patterns 

compared to a smaller choice of hierarchy height n26.

26 If the hierarchy height increase does not affect the type of experienced handoffs, e.g., the MH’s 

handoffs were all 1-hop handoffs; the average packet loss would not be affected. Hence, the mobility 

pattern is an important factor in shaping the experienced packet loss.
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Fig. 57. Average lost packets per handoff for hierarchy height 6.
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Fig. 58. Average lost packets per handoff for hierarchy heights 4, 5, and 6.
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6.2.2 TCP Traffic

We investigate the effect of the number of intermediate RFA levels on TCP 

throughput (TCP Tahoe [60]). We use a 4-level hierarchy and set up a long-term FTP 

session between the CH and the MH, where the MH is downloading a large file from the 

CH. We measure the application-level TCP throughput as seen by the MH at the end of 

the simulation. The MH is moving back and forth across the domain at a speed of 20 m/s.

Fig. 59 depicts TCP throughput (Mbps) versus the number of intermediate RFA 

levels. Note that, TCP throughput is bounded by the bandwidth of the bottleneck link (1.5 

Mbps). With no RFA levels, the FA hierarchy approach achieves slightly higher TCP 

throughput than base Mobile IP. The FA hierarchy TCP throughput increases with the 

increase in number of RFA levels, while base Mobile IP throughput is not affected. The 

throughput increase is attributed to a decrease in average handoff latency. With Base 

Mobile IP, TCP is able to cope with packet loss by maintaining a higher packet 

retransmission ratio (1%) compared to the FA hierarchy’s case (average of 0.3%).

TCP throughput is calculated as the application-level total received bytes over the 

FTP session duration to yield a bytes/s measure. Such measure does not reveal the 

instantaneous throughput distribution during the FTP session. Therefore, we calculate the 

instantaneous throughput every 2 ms during the FTP session. We partition the throughput 

spectrum into m bandwidth intervals, and calculate the frequency freq(Bj) for z':l—>m 

defined as the ratio of the number of times an instantaneous throughput value is within 

bandwidth interval Bt to the total number of throughput values. Fig. 60 depicts the 

instantaneous TCP throughput intervals frequency during this experiment. For bandwidth 

interval [1.4, 1.5] (Mbps), Base Mobile IP records a frequency of 71%, while the FA 

hierarchy with no RFA levels records 84%, with a highest frequency of 88% attained by 

2 RFA levels. Hence, the FA hierarchy approach is capable of achieving a high 

instantaneous throughput value more frequently than the base approach. We note that, 

both base Mobile IP and the hierarchy approach experience some low throughput values 

in the range [0, 0.2] (Mbps). As previously explained in section III, this is attributed to

27 As introduced in section III, the retransmission ratio is the number of retransmitted packets to the 

total number of transmitted packets.
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batch packet losses due to the poor MH’s BS selection process currently implemented in 

ns (see section 3.5.2), and the resulting TCP’s exponential back off feature [60].
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Fig. 59. TCP Throughput versus the number of intermediate RFA levels.
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Fig. 60. Instantaneous TCP throughput intervals frequency with varying RFA levels.
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6.3 Hierarchy Link Delay

We investigate the effect of the hierarchy link delay L D f a -f a ■ We use a 4-level 

hierarchy with 2 intermediate RFA levels (hierarchy configuration “4/2/3”). The MH is 

periodically moving between 2 foreign agents to create only 3-hop handoffs at a speed of 

10 m/s. In addition, we repeat the experiment when the MH periodical movement 

generates only 2-hop handoffs. Constant bit rate UDP traffic is applied between the CH 

and the MH and we measure the average lost packets per handoff at the MH. Our 

expected result is that 2-hop handoffs should produce less average lost packets than the 3- 

hop handoff case. Recall that we demonstrated in section HI, that the increase of 

hierarchy link delay resulted in an increase of average lost packets per handoff, while 

enforcing a significant number of HR-LH requests (see section 3.5.1.2).

Fig. 61 shows the average lost packets per handoff versus the FA hierarchy link 

delay. As expected, the increase of hierarchy link delay yields an increase in average lost 

packets per handoff for the investigated cases. The average lost packets in the 3-hop 

handoff case is consistently higher than the 2-hop handoffs case.

■X—2-hop handoffs3-hop handoffs

FA hierarchy link delay (msec)

Fig. 61. Effect of FA hierarchy link delay.
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6.4 Link Delay between GFA and HA

We investigate the effect of the link delay between the GFA and the HA { L D g f a -h a )- 

We use a “4/2/3” hierarchy configuration where the MH is periodically moving across 

the entire foreign domain at a speed of 20 m/s until a desired number of handoffs is 

achieved. We compare base Mobile IP and the hierarchy approach, and experiment with 

both UDP and TCP traffic. Measurements include the average lost packets per handoff, 

and application-level throughput, for UDP and TCP traffic, respectively.

6.4.1 UDP Traffic

Fig. 62 depicts the average lost packets per handoff while increasing the link delay 

between the GFA and HA. As expected, the FA hierarchy approach achieves substantial 

reduction in packet loss compared to base Mobile IP with the link delay increase. In 

addition, the average lost packets per handoff are not adversely affected by the link delay 

increase. Hence, the FA hierarchy approach truly localizes the handoff effect, reducing 

the lost packets per handoff.

—X—FA HierarchyBase MIP

GFA to HA delay ( in msec)

Fig. 62. Effect of L D g f a -h a  on the average lost packets per handoff.
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6.4.2 TCP Traffic

Fig. 63 shows the application-level TCP throughput for base Mobile IP and the FA 

hierarchy approach while increasing L D g f a -h a ■ As expected, the throughput decreases 

with the link delay increase for both approaches. However, the FA hierarchy approach 

exhibits lower throughput reduction with the link delay increase. For instance, at L D g f a - 

h a  = 50 ms, the hierarchy TCP throughput was reduced around 8% compared to its 

throughput value at L D g f a -h a  = 5 ms, while base MIP throughput reduction was around 

18%. In addition, at 50 ms, the FA hierarchy approach records a throughput higher than 

the base approach by 13%.

Fig. 64 illustrates the instantaneous TCP throughput intervals frequency during this 

experiment. The graph only shows the cases for L D g f a -h a  equal to 5, and 50 ms for both 

approaches. At high link delay (50 ms), neither approaches record an instantaneous 

throughput value in the [1.4, 1.5] range. The hierarchy approach records a frequency of 

94 % in the [1.2,1.4] range versus a 70 % frequency for the base approach. For small link 

delay (5 ms), both approaches’ results are comparable in terms of long-term throughput, 

and instantaneous throughput intervals frequency.
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Fig. 63. Effect of L D g f a -h a  on TCP throughput.

R e p ro d u c e d  w ith  p e rm is s io n  o f  th e  c o p y r ig h t o w n e r. F u r th e r  re p ro d u c tio n  p ro h ib ite d  w ith o u t p e rm is s io n .



159

Base 5ms ■  HFA 50ms □  Base 50msE3 I f f  A 5ms

L D g f a -h a

3
"o •sr
Throughput Interval (Mbps)

■<T

Fig. 64. Instantaneous TCP throughput intervals frequency while varying L D g f a -h a -

6.5 FA Hierarchy Topology and Smooth Handoff

We investigate the effect of the smooth handoff functionality, while experimenting 

with a number of network topologies for the FA hierarchy as follows.

-  Each FA and its immediate children are connected through individual duplex 

links (section 6.5.1).

-  All hierarchy nodes are located in one 10 Mbps subnet (section 6.5.2).

-  Each FA and its immediate children are in an independent 10 Mbps subnet, 

i.e., the FA hierarchy is composed of multiple FA subnets (section 6.5.3).

We use a perfect 4-level binary tree for the FA hierarchy, with a default “4/2/3” 

configuration. For each topology, we apply constant bit-rate UDP traffic between the CH 

and the MH, and calculate the average number of lost packets per handoff at the MH. The 

MH is periodically moving back and forth between 2 foreign agents at a speed of 20 m/s 

to produce a desired number of handoffs. The 2 foreign agents are selected to produce 3- 

hop and 2-hop handoffs in the individual duplex links topology, and later reused with the 

other two topologies. The experiment is repeated where the MH is using the smooth
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handoff functionality by supplying a PFANE along with its registration request to the 

new FA [47]. The default smooth handoff BU lifetime is 0.5 s.

6.5.1 Individual Duplex Links Topology

Fig. 65 illustrates the average lost packets per handoff while increasing the FA 

hierarchy link delay. Moreover, Fig. 66 shows the same measure when smooth handoff is 

used. We use two separate figures to present the results instead of one since the smooth 

handoff results almost coincide with the normal case. This is attributed to the nature of 

the duplex links topology. Recall that base stations do not provide buffering capabilities 

to the MH. The routing path for the smooth handoff binding update message from the old 

FA to the new FA is the same path taken by the MH’s registration request until it reaches 

the crossover FA, and then by the deregistration message propagated from the crossover 

FA up to the old FA (Fig. 67). The smooth handoff BU does not reach the old FA early 

enough to forward any future packets to the new FA. Hence, no evident benefits can be 

gained by using the smooth handoff in this particular case. Such experiment further 

shows that a buffering capability in base stations would be indeed useful [49].

3-hop handoffs —x—2-hop handoffs

1.4 n
o ’

^  0
0 2 3 4

FA hierarchy link delay (msec)

Fig. 65. Average lost packets in the duplex links topology.
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—X— 2-hop handoffs/SH3-hop handoffs/SH

0.4 -

0.2 -

FA hierarchy link delay (msec)

Fig. 66. Average lost packets in the duplex link topology with smooth handoff.

GFA

RFA RFA

RFA RFA

oFA nFA

| MH -> MH

The smooth handoff BU from nFA to 

oFA traverses links (A, B, C, D, E, 

and F} in that order.

The MH’s Registration request 

traverses links {A, B, and C} in that 

order in route to the crossover FA.

The Deregistration message traverses 

links {D, E, and F} in that order.

Fig. 67. 3-hop handoffs and smooth handoff in the duplex links topology.
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6.5.2 One-subnet Topology

We repeat the same experiment when the FA hierarchy is located in one 10 Mbps 

subnet. Thus, any FA is only one hop away from any other FA in the hierarchy. We use a 

“4/2/3” hierarchy configuration. In this case, although the network topology is one 

subnet, the FA hierarchy levels are logically overlaid over the physical network topology.

Fig. 68 illustrates the average lost packets for 3-hop, 2-hop handoffs, and the 

corresponding smooth handoff cases while increasing the subnet delay. As expected, the 

smooth handoff is beneficial in this case reducing the average lost packets per handoff. 

Such result can be attributed to the fact that the smooth handoff BU message from the 

new FA to the old FA only takes 1-subnet delay to actually reach the old FA, allowing 

ample time to forward received packets to the new FA until the crossover FA switches 

the MH’s tunneling path to the new path. The 3-hop handoffs record a higher average 

than the 2 hop handoffs, while the smooth handoff results are almost the same for the two 

investigated handoff types because of the 1-subnet delay between any two foreign agents.

3-hop/SH — X—  2-hop/SB2-hop

0.4 -

0 0.2 0.4 0.6 0.8 1 1.2
Subnet Delay (msec)

Fig. 68. Average lost packets in the 1-subnet topology for a “4/2/3” configuration.
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Fig. 69 illustrates the results of the same experiment for a “4/2/1” hierarchy 

configuration. In this case, the GFA is the crossover FA for all handoffs and is 1-subnet 

delay (1-hop) away from any BS. As expected, the observed packet losses without 

smooth handoff are less than the “4/2/3” hierarchy configuration packet losses (Fig. 68).

1-hop/SH1-hop

0.5

0.4

1? 0.3

0.2

0.1

0.6 1.20.2 0.4
Subnet Delay (msec)

Fig. 69. Average lost packets in the 1-subnet topology for a “4/2/1” configuration.

6.5.3 Multiple Subnets Topology

The experiment is repeated for a multiple 10 Mbps subnets topology using a “4/2/3” 

hierarchy configuration. In this case, each FA and its immediate children FAs are located 

in an independent subnet. The same subnet delay is used for all subnets. The smooth 

handoff BU message for an i-hop handoff reaches the old FA after 2*i -  1 subnet delays, 

while the deregistration message reaches the old FA after 2*i subnet delays in addition to 

any processing delay by each intermediate regional foreign agent. Thus, a period of time 

is available for the old FA to forward any newly received packets to the new FA.
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Fig. 70 shows the average lost packets per handoff while increasing the subnet delay. 

The usage of the smooth handoff mechanism lowers the average number of lost packets 

for the investigated handoffs, but the reduction is lower than achieved in the 1-subnet 

topology with a similar configuration (Fig. 68).

♦ 3-hop 2-hop 3-hop/SH - - -X- - - 2-hop/SH

-X

X**

0.2 0.4 0.6 0.8
Subnet Delay (msec)

1.2

Fig. 70. Average lost packets in the multiple subnets topology for a “4/2/3” configuration.

6.6 Conclusion

In section VI, we presented a suite of simulation validation experiments, while 

investigating the effect of some network design parameters such as FA hierarchy height 

and topology. Simulation results have shown that FA hierarchies can be constructed 

using an arbitrary number of foreign agent levels at the expense of increased average 

packet loss function of the delay between RFA levels and dependent on the MH’s 

mobility pattern. In addition, we have demonstrated that increasing the number of RFA 

levels below the GFA while fixing the hierarchy height, i.e., reducing network hops
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between the new FA and the crossover FA, reduces average packet loss, and increases 

TCP throughput. Moreover, the smooth handoff mechanism has been shown to be a 

viable approach to reduce packet loss, depending on hierarchy topology and availability 

of buffering capabilities in base stations.
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SECTION VII 

CONCLUSION AND FUTURE EXTENSIONS

In this section, we conclude this dissertation by summarizing our motivations, 

objectives, contributions, and the performance of our proposed local-area mobility 

support framework. Furthermore, we discuss a list of possible future extensions to our 

work in the context of the local-area mobility support framework, and the corresponding 

network simulation framework.

7.1 Conclusion

Host mobility is quickly becoming the norm rather than the exception. However, host 

mobility scenarios break the operation of a TCP/IP based Internet, which relies on a 

host’s IP address to act as a network-layer routing directive and a transport-layer 

connection identifier. Mobile IP for IPv4, standardized as a network-layer host mobility 

problem solution [43], deploys mobility agents in the home and foreign domain. Such 

mobility agents provide the solution to the host mobility problem through a home 

registration mechanism, in which the home agent is informed about the current care-of 

address of the MH (the address of a foreign mobility agent, or a co-located care-of 

address). However, the home registration requirement, upon change of point of 

attachment (change of care-of address, or handoff), results in considerable registration 

signaling overhead with the expected increase in the number of mobile hosts. In addition, 

if every MH’s handoff is processed by a possibly distant HA, the handoff latency 

increases, resulting in increased packet loss and disrupting effects on the MH’s 

application and services. Researchers identified such problem, and adopted Mobile IP as 

a wide-area mobility solution, while suggesting alternative solutions to handle local-area 

mobility. Local-area mobility solutions normally operate within the bounds of a foreign 

domain, and attempt to minimize the resulting home registration signaling by localizing 

the effect of a MH’s handoff. In such manner, a HA is not involved in managing every 

MH’s local movement and handoff, resulting in local handoff processing and lower 

handoff latencies.
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We classified local-area mobility solutions as belonging to the following categories: 

Mobile BP extensions, host-based forwarding schemes, and multicast-based schemes. The 

solutions in the Mobile IP extensions category attempt to adhere to Mobile IP’s 

registration framework between mobility agents, while localizing the handoff processing. 

One such solution is the regional registration approach (MIP_RR) that extends the notion 

and functionality of a foreign agent through the deployment of a foreign agent hierarchy 

in the foreign domain and the introduction of a regional registration mechanism used to 

process local-handoffs [30]. The foreign agents’ hierarchy acts as a mobility support 

overlay network, in which packets destined to the MH are tunneled by the GFA (The 

hierarchy root is the Gateway Foreign Agent) to subsequent hierarchy levels (regional 

FAs) until received by the MH (through a leaf FA). We presented an overview and 

modeling of the MIPJR.R approach identifying the necessity of a mechanism we termed a 

“hierarchy tunneling consistency mechanism,” ensuring the removal of a RFA’s visitor 

entries on a MH’s old route, hence guaranteeing the integrity of future registration 

processing by such RFAs.

In this dissertation, we presented a local-area mobility framework based on the 

deployment of multiple cooperating foreign agent hierarchies in the foreign domain. Our 

framework is independent of any access technology, relying on generic mobility agents’ 

functionality and registration processing mechanisms adopted by base Mobile IP, and 

MIP_RR. However, our introduced framework and signaling design alleviate several 

identified deficiencies within the MEP_RR approach, listed as follows.

-  The complete reliance on the smooth handoff mechanism to implement the 

tunneling consistency mechanism, hence denying service to some MHs (or 

legacy MHs) that do not support the smooth handoff mechanism.

-  The existence of a potential race condition in its tunneling consistency 

mechanism. Such race condition stems from allowing the registration request 

and the corresponding tunneling consistency mechanism to proceed in parallel 

on the old and new path towards a crossover FA. Such race condition might 

lead to inconsistencies in registration lifetimes and erroneous removal of 

visitor entries maintained by RFAs for the MH.
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-  The lack of a scalable registration framework to manage inter-hierarchy 

handoff s. The proposed registration mechanisms for such handoffs either 

require the initiation of a home registration along with incurred long 

processing delays, or the initiation of a regional registration requiring the set 

up of a large number of security associations between foreign agents in 

different hierarchies, which might not be feasible or acceptable. Moreover, the 

latter solution does not scale well with an increased number of foreign agent 

hierarchies, or number of foreign agents within a hierarchy.

The following issues were addressed in the context of this dissertation while 

designing the local-area mobility support solution: foreign agent hierarchy model, 

registration processing for intra-hierarchy handoffs, registration processing for inter­

hierarchy handoffs within the same foreign domain, and performance evaluation.

Foreign agent hierarchy model

We suggested a foreign agent hierarchy model with a backward compatible mode that 

enables the service of legacy MHs not capable of processing local-area mobility 

extensions. A leaf FA advertises its IP address if not private, along with the GFA IP 

address. Regional FA addresses between the leaf FA and the GFA are not advertised in 

order to hide the hierarchy structure from visiting MHs, and to reduce the agent 

advertisements over a wireless link. Legacy MHs register the agent’s IP address as their 

care-of address, while enabled MHs use the GFA address to benefit from the mobility 

extensions.

Registration processing for intra-hierarchy handoffs

We identified possible handoff scenarios associated with home and regional 

registrations: home registrations not involving local-handoffs, home registrations 

involving local-handoffs (HR-LH), and regional handoffs associated with regional 

registrations. We proposed a regional registration framework with an associated 

tunneling consistency mechanism that alleviates the aforementioned drawbacks in 

MEPJRR. In brief, the crossover FA is responsible for initiating the tunneling consistency
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mechanism to clear the visitor entries on the MH’s old hierarchy path to avoid the 

reliance on the smooth handoff mechanism. In addition, message acknowledgments are 

required between involved RFAs to ensure the proper operation of the tunneling 

consistency mechanism. Moreover, we suggested an identification value dissemination 

mechanism as part of a replay protection support mechanism for MHs, when the MH is 

using either timestamp or nonce replay protection. The crossover FA sends a replay 

protection update message upwards in the hierarchy towards the GFA, in order to update 

the identification value associated with the MH. Such mechanism ensures future 

successful registration processing by upper levels in the hierarchy.

For HR-LH scenarios, we proposed 2 registration processing mechanisms that ensure 

tunneling of data packets to the MH while its home registration request is in transit to the 

HA, and until a home registration reply is received establishing a new path to the MH. 

The first approach, termed KOPA, attempts to maintain the old path to the MH “alive” 

until the new path is established. KOPA relies on replacing visitor entries in the old path 

by binding cache entries with an estimated lifetime, and informing the old FA about the 

new FA without relying on the smooth handoff mechanism. The binding cache lifetime is 

calculated based on observed home registration latencies, and the remaining registration 

lifetime at the crossover FA. The second approach, termed SINP, adopts a proactive 

approach in immediately switching the tunneling of data packets from the old path to the 

new path, without waiting for a home registration reply. The crossover FA generates a 

regional registration reply in response to a specially formulated home registration request, 

while simultaneously clearing visitor entries on the old path. Either approaches required 

the introduction of a local-replay protection extension that conveys current regional 

registration identification information, and a local care-of address extension that conveys 

the new FA IP address to eventually reach the old FA.

We evaluated the performance of our proposed registration frameworks for intra­

hierarchy handoffs using our extension of the Columbia IP Micro-mobility Software 

(QMS) [15], which is a network simulator ns-2 source code extension [40], 

implementing a suite of local-area mobility protocols. Network simulation results have 

demonstrated the effectiveness of our framework versus a base Mobile IP implementation 

in reducing UDP packet loss (96% packet loss reduction without relying on a smooth
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handoff mechanism) and achieving better TCP throughput (34% throughput increase over 

base MEP) in the case of a distant HA. In addition, for TCP streams, results have shown 

that base MIP increases the number of retransmitted packets (a retransmission ratio of 

5%) to combat increased packet loss due to increased round trip times between a MH and 

a CH, while our framework is capable of maintaining a negligible retransmission ratio 

and achieving better TCP throughput values. Moreover, network simulation of the KOPA 

and SINP approaches have shown that the SINP approach would need to maintain a 

smaller playout delay in order to achieve zero packet loss, due to not relying on tunneling 

data packets from the old FA to the new FA for an extended period of time as adopted by 

the KOPA approach.

Registration processing for inter-hierarchy handoffs

For inter-hierarchy handoffs, we proposed a configurable scalable cooperation 

framework between deployed foreign agents hierarchies. Such cooperation framework 

attempts not to change the home-registered care-of address unless deemed necessary by 

an involved GFA or the MH. Cooperation in registration processing is only allowed 

between the roots of the FA hierarchies, hence reducing the number of required security 

associations between FAs in different hierarchies, and scaling with an increased number 

of such hierarchies. Configurable cooperation is achieved by altering the agent 

advertisements to include cooperation initiation and acceptance options between GFAs. 

In addition, the proposed framework attempts to cope with the failure of the current care- 

of address by introducing a specially formulated home registration message. Such 

message enables a current GFA to forward the MH’s registration request to the HA upon 

detecting that the GFA, acting as the MH’s care-of address, is not reachable.

We evaluated the performance of the proposed cooperation framework for inter­

hierarchy handoffs using the aforementioned network simulator extension. For UDP 

traffic, when compared against a non-cooperative approach for a distant HA, the 

cooperation approach between GFAs achieves 87% and 90% packet loss reduction for 

audio and video traffic, respectively. For TCP traffic, the cooperation approach records 

5% higher throughput values, with the non-cooperative counterpart maintaining a
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retransmission ratio of 5% in order to achieve comparable throughput values (compared 

to a retransmission ratio of 0.7% for the cooperation approach).

Performance evaluation

The network simulation experiments were performed using an extension of CIMS. 

We designed and developed a network simulation framework for local-area mobility. We 

added to CIMS the capability of modeling a tme foreign domain with multiple foreign 

agent hierarchies, each with an arbitrary number of levels and various topologies. We 

automated the creation of FA hierarchies modeled as perfect trees, with FA levels 

constituting an overlay tree superimposed on the tree topology. In addition, we 

incorporated a number of enhancements including the support for periodical home 

registrations, regional registrations, and the smooth handoff mechanism. In the future, we 

plan to contribute our extension to QMS and ns-2 distributions. Moreover, we used our 

extension to conduct a number of validation network simulations to investigate the effects 

of various factors such as hierarchy height, topology, and usage of the smooth handoff 

mechanism. We concluded that bringing the crossover FA closer to the MH reduces 

packet loss, and the hierarchy network topology plays an important role in determining 

whether the smooth handoff mechanism is effective in reducing packet loss.

In conclusion, this dissertation encompasses two major contributions: a local-area 

mobility support framework deploying multiple cooperating FA hierarchies in the foreign 

domain, and a network simulation framework for local-area mobility. The mobility 

support framework introduces a backward compatible FA hierarchy model, enhanced 

regional registration processing and new home registration processing for intra-hierarchy 

handoffs, a cooperation framework for registration processing for inter-hierarchy 

handoffs. The network simulation framework allows simulating a foreign domain 

comprised of a multiple FA hierarchies, with an arbitrary number of levels, and 

implements our proposed mobility support framework.
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7.2 Future Extensions

The work in this dissertation can be extended in two orthogonal directions: extending 

the local-area mobility support framework, and extending the network simulation 

framework.

Local-area Mobility Support Framework Extension

The local-area mobility support framework can be extended as follows.

• Extend the registration processing frameworks, when the FA hierarchy is

actually a forest instead of a tree, i.e., a FA can have a number of parent FAs 

instead of one parent FA. Such task entails identifying which parent FA is

forwarded a MH’s registration request in route to the GFA. A related issue is 

the advertisement of multiple GFAs by a leaf FA, and directing the MH’s 

request to the appropriate GFA

• Optimize the case of inter-domain handoffs. An inter-domain handoff would 

normally trigger a home registration to establish a new care-of address in the 

new foreign domain. Can cooperation be enabled between FA hierarchies in 

multiple domains? Alternatively, one can rely on the smooth handoff 

mechanism to reduce packet loss, until the home registration reply is received.

• Investigate a protocol to dynamically set up FA hierarchies. For instance, 

Malinen [37] suggests configuring each FA with its parent FA. When an FA is 

booted, it performs a secure registration process to inform its parent FA of its 

availability. We envision introducing a hierarchy registry component within 

the foreign domain that is responsible for dynamically reorganizing FA 

hierarchies within the foreign domain. The hierarchy registry and FAs would 

be members of some control multicast group to exchange status and control 

messages.

• Investigate techniques to improve the fault-tolerance of the registration of the 

FA hierarchy. We assume the existence of a recovery protocol that allows an 

RFA to recover its visitor entries after a failure or restart. Such protocol can 

be executed on startup so that an RFA queries its children FAs about any
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current visiting MHs, hence restoring its tunnel endpoint for each involved

MH.

■ Use the introduced CIMS extension to compare the FA hierarchy approach, 

HAWAII, and Cellular IP as local-area mobility support frameworks. 

Recently, Campbell et al. [12] compared the aforementioned approaches while 

using a limited 1-level FA hierarchy below the GFA. The introduced 

extension allows creating rz-level FA hierarchies.

■ Establish a network testbed for the local-area mobility support framework. A 

good starting point is the Dynamics-Hut Mobile IP project at Helsinki 

University of Technology [22], which offers a user space implementation of 

their hierarchical Mobile IP variant [27] on Linux.

• Investigate the extension of the introduced IPv4 registration processing 

techniques to process binding updates in an IPv6 hierarchical mobility support 

solution such as [38].

• Investigate other techniques to enable a crossover FA to properly determine 

its crossover status for the MH’s registration request. Currently, the presence 

of a MH’s visitor entry is the deciding factor for such crossover FA. 

Alternatively, Malinen [37] suggests that each RFA is informed about the NAI 

of all FAs below it in the hierarchy, and that a MH supplies the NAI of the 

previous FA as part of its registration request. If the previous FA is part of the 

subtree under this RFA, no upper RFAs need to be informed about such 

registration request, and this RFA is actually the crossover FA for this request.

• Leverage multicast technology in the foreign domain as a means for data 

packets delivery to a MH, where the MH is assigned a unique multicast group 

within the foreign domain, e.g., [32]. Such task entails investigating a number 

of related multicast issues including multicast group allocation, and multicast 

routing for a large number of multicast groups with a small number of 

participants.
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Network Simulation Framework Extension

The network simulation framework can be extended as follows.

* Introduce the notion of multiple foreign domains and handoffs between 

domains. Such task entails that a foreign agent advertises its network address 

identified (NAI), to aid the MH in identifying handoffs between domains.

■ Incorporate security mechanisms related overhead in the reported simulation 

results. Such task entails adding protocols to set up security associations, 

generating an authenticated message, ensuring that a message is properly 

authenticated, and generating registration keys.

■ Automate other base station placement techniques in a two-dimensional grid.

For instance, Perkins and Wang [49] arrange base stations in the foreign

domain to constitute a rectangle.

■ Automate the generation of network link orientations for rc-level, N-ary 

perfect trees to allow visualizing output network trace files using the network 

animator tool nam [26].

■ Develop an FA hierarchy editor to aid in the design of FA hierarchies in the

foreign domain. Such tool would allow placing RFAs in a domain using drag

and drop approaches, specifying the type of connectivity between hierarchy 

levels, and specifying the placement and overlap areas of base stations. The 

output of such editor would be an ns-2 script that can be further specialized 

and extended by a ns-2 user to speed up the programming process.
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APPENDIX A 

NETWORK SIMULATION FRAMEWORK: 

FURTHER DETAILS AND API

In this appendix, we present some additional details for the network simulation 

framework for local-area mobility support, including the format of introduced trace files 

resulting from the simulation, and the internal OTcl API available to the C++ 

implementation for various simulation objects . In section V, we introduced the OTcl 

API usable from within network simulation scripts to configure various simulation 

aspects.

Source Code Compilation

The C++ source code compiles successfully on Solaris™ 2.6, with gcc version 2.8.1. 

We were not able to successfully compile the CIMS package on Solaris™ 8. In the future, 

we plan to port the source code to Solaris™ 8 with a recent gcc version such as 2.96 

20000306 (experimental).

Output Trace Files

ns-2 has built-in capabilities to output a configurable simulation trace file, and 

wireless trace file for wireless traffic [26].We create two MIP registration trace files to 

track the MH’s registrations. The first trace file, named “basicRegLog,” tracks the 

registrations for a non-hierarchical setting (for base MIP). A line in the file constitutes a 

single registration record and is comprised of the following fields: registration request 

send time, registration reply receive time, registration latency> where registration latency 

is computed as the difference between the registration reply receive time and the 

registration request send time. The second trace file, named “regionalRegLog,” tracks the 

regional registrations within a FA hierarchy setting. A line in the file constitutes a single

28 The API listing in this appendix is not an exhaustive listing.
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registration record and is comprised of the following fields <MH care-of address, 

registration request send time, MH HA, registration reply receive time, regional 

registration latencyx We do not currently track home and home-regional registrations in 

a FA hierarchy setting.

The UDP’s traffic monitoring agent generated a trace file, named “cbrseqfile,” which 

signaled packet loss, duplication, or out-of order. We extended the format of the trace file 

as follows. For each UDP packet received, a line is written to the file, comprised of the 

following fields: <Packet Sequential number, Packet Unique ID, Packet Send time, 

Packet playout time, Packet Receive time> where the packet playout time is computed as 

the packet send time + a desired playout delay to be configured by the simulation script. 

If a packet is received after its packet playout time, it is dropped. Such event is signaled 

in the trace file by printing a line “PLAYOUT DROP ***” after the packet trace line.

The simulation scripts can be configured to generate an instantaneous TCP 

throughput file. Each line in the file constitutes the TCP throughput as observed in the 

previous measuring interval. Each output line is comprised of the following fields: 

cCurrent time, throughput during measuring interval in bytes, throughput as a Mbps 

measure>.

BS/RFA/GFA Registration Agent OTcl API

The following methods permit management of maintained tunnel entries. A tunnel 

entry can be a visitor entry or a binding cache entry. Upon receiving a BU message, the 

visitor entry is converted to a binding cache entry.

encap-route <mhaddr> <coa> < lifetime> <seqno>
Set up a tunnel entry for <mhaddr> pointing to <coa> with the specified <lifetime> and marking the 

sequential number for the corresponding registration request as <seqno>. If this node is an RFA/GFA the 

tunnel entry is set to be a visitor tunnel entry. A clear-reg method is scheduled such that it executes after the 

lifetime expires, in order to clear the entries for this MH. The encap-route method is used to set up 

tunneling entries by a HA for the current MH’s care-of address, or by a RFA/GFA to one of the children 

FAs.

clear-reg < m h a d d r >

Clear any registration information for this MH.
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tunnel-exit <mhaddr>
Returns the current tunnel exit for this MH, or -1  if no data could be found for this MH. 

tunnel-entry-type < m h a d d r >

Returns the tunnel entry type for <mhaddr>. The possible return values are: -1 for an entry not found, 1 

for a visitor entry, and 2 for a binding cache entry. This method is used to decide whether or not a crossover 

FA should issue a registration reply back to the MH based on the current tunnel entry type 

to-binding-cache < m h a d d r >  < li f e t im e >

Converts the visitor entry for <mhaddr> into a binding cache entry, and sets the entry lifetime to 

<lifetime>. The care-of address for the binding cache entry is kept the same as in the visitor entry (to the 

same Child FA). This method is used in response to receiving a BU message as part of a tunneling 

consistency mechanism.

The following methods allow the management of MH’s registration sequential 

numbers for purposes of replay protection, and message freshness.

set-last-seqno < m h a d d r >  < s e q n o >

Set the current sequential number for a MH to <seqno>. The sequential numbers are stored as a Tel 

array indexed by the MH node address. 

last-seqno < m h a d d r >

Get the current Sequential number stored for a MH, or -1  if no current number is stored for this MH

The following method allows for querying the remaining registration lifetime for a 

specific MH. A crossover FA uses such method in order to identify the remaining 

lifetime used in forming a regional registration reply for this MH.

remaining-reg-time < m h a d d r >

Returns the remaining registration lifetime for a MH, or -1  if the registration lifetime has expired, or 

no data could be found for this MH.

The following methods allow for setting and querying the home registration latency 

as part of the KOPA approach. The measured home registration latency is used by a 

crossover FA to calculate the binding update lifetime as part of tunneling consistency 

mechanism (see section 3.4.1).
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setHomeRegLatency <mhaddr> <latency>

Set the home registration latency for a MH to <latency>. Upon receiving a home registration reply, 

each RFA on the hierarchy path towards the MH, stores such measure. The latency is computed by 

subtracting the registration request send time, stored in a pending registration request, from the registration 

reply receive time. 

getHomeRegLatency <mhaddr>

Get the home registration latency stored for this MH, or -1  if no information is stored.

An old FA (BS node) uses the following methods in order to implement the smooth 

handoff mechanism. These registration agent’s methods invoke the corresponding 

methods in the decapsulator object of the node (The corresponding methods have the 

same method names and parameters). The decapsulator object stores a new FA data 

structure to implement the smooth handoff mechanism. In addition, such methods allow 

for the tunneling consistency mechanisms to coexist with the smooth handoff mechanism, 

by inspecting and updating the remaining binding update time (see sections 3.3.3 and 

3.4.1.4).

setNewFA <mhaddr> <new FA> <lifetime>

Install a <new FA> entry for the <mhaddr> with the specified <lifetime>. The new FA data structure is 

maintained within the Decapsulator object of the node. During <lifetime>, any data packets arriving at this 

old FA are tunneled to <new FA>. A clear-newFA method is scheduled such that it executes after the 

lifetime expires, in order to clear stored data for the MH. 

clear-newFA <mhaddr>

Clear the new FA entry for <mhaddr>. As a result, any data packets arriving at this old FA after a call 

to this method are dropped. 

getNewFA <mhaddr>

Get the <new FA> entry for this MH, or -1  if no data could be found. 

remaining-cache time <mhaddr>

Returns the remaining lifetime of the binding cache entry found within this old FA for the <mhaddr>, 

or -1  if entry expired or not found. 

update-binding-time <mhaddr> <lifetime>

Update the lifetime o f an existing binding cache entry for <mhaddr>. The care-of address in the 

binding cache entry is maintained the same.
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APPENDIX B 

ACRONYMS

BS Base Station

BU Binding Update

C-GFAs Cooperating Gateway Foreign Agents

CH Correspondent Host

CIMS Columbia IP Micro-Mobility Software

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

DOP Delete Old Path

FA Foreign Agent

GFA Gateway Foreign Agent

GRE Generic Routing Encapsulation

HA Home Agent

HRGFA Home Registered Gateway Foreign Agent

HR-LH “Home Registration”-“Local Handoff’

ICMP Internet Control Management Protocol

KOPA Keep Old Path Alive

LMM Localized Mobility Management

MA Mobility Agent

Mbps Mega bit per second

MH Mobile Host

MIP Mobile IP

MIP_RR Mobile IPv4 Regional Registration Framework [30]

MSA Mobility Security Association

NAI Network Access Identifier

NC-GFAs Non-Cooperating Gateway Foreign Agents

NS, ns Network Simulator

PFANE Previous Foreign Agent Notification Extension

RFA Regional Foreign Agent

SH Smooth Handoff

SINP Switch Immediately to New Path
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