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ABSTRACT

Topics in Nonlinear Stochastic Control,
Estimation, and Decision, Using a Measure Transformation Approach

C. D. Charaiambous 

Old Dominion University, 1992 

Director: Dr. Joseph L. Hibey

We discuss topics in the theory of nonlinear stochastic control, estimation, and 

decision via a probabilistic approach using measure transformations and martingale theory. 

First, we investigate the problem of estimating a diffusion process using coordinate 

transformations and measure transformations, both locally and globally; this is the analog 

of nonlinear coordinate and state feedback transformations used to obtain exact 

linearization in nonlinear deterministic control problems. Our results are new in that we 

use a probabilistic approach rather than a purely geometric one, and also in that we derive 

representations when the processes are defined locally rather than just globally. A gauge 

transformation then leads to a Feynman-Kac formula that is related to the unnormalized 

conditional density and subsequent bounds of filter estimates, where some of these bounds 

are extensions of pre-existing results while others are presented here for the first time. 

Second, we present new methods and new results in obtaining a minimum principle for 

partially observed diffusions using calculus of variations when the control variable is
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present only in the drift coefficient and correlation exists between state and observation 

noise, and then when the control variable exists in both drift and diffusion coefficients 

and no correlation exists. Here the problem is formulated as one of complete information, 

but instead of considering the unnormalized conditional density as the new state, this 

density is decomposed into two measure-valued processes and leads to a separation 

principle reminiscent of the linear-quadratic-Gaussian problem and stochastic flows of 

Euclidean processes. Third, we study the decision problem using likelihood-ratio tests 

and evaluate the performance using Chemoff bounds. We present new results by 

expressing both likelihood-ratios and error-probabilities in terms of a ratio of two 

unnormalized conditional densities where each satisfies a stochastic differential equation 

that in some cases can be solved in closed form.
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CHAPTER 1 

INTRODUCTION

We discuss topics in the theory of nonlinear estimation, nonlinear decision and 

nonlinear stochastic control with partial observations via a probabilistic approach in terms 

of measure transformations and martingale theory. First, we investigate the problem of 

estimating a diffusion process observed in white noise by using diffeomorphisms, measure 

and gauge transformations. In the case that the nonlinear stochastic system is modelled 

in terms of state-variables, an exact linearization of the diffusion process is obtained 

through stochastic differential rules and measure transformations; this is the analog of 

coordinate and nonlinear state-feedback transformations established for the exact 

linearization of nonlinear deterministic control systems as discussed by Isidori [79] (for 

the local case) and Dayawansa, Boothby and Elliott [41] (for the global case). Our results 

are new in that we use a probabilistic approach rather than a purely geometric one and 

also in that we derive representations when the processes are defined locally rather than 

just globally. A further measure and gauge transformation results in a Feynman-Kac 

formula related to the evolution of the unnormalized conditional density and subsequent 

bounds of filter estimates, where some of these bounds are extensions of pre-existing 

results while others are presented here for the first time. The main results are:

(a) A set of necessary and sufficient conditions for linearization 
of nonlinear diffusion processes both locally and globally;
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(b) A set of finite-dimensional sufficient statistics for obtaining 
the unnormalized conditional density for the global case;

(c) By duality, a nonlinear degenerate stochastic control 
problem with explicit generalized solution;

(d) An initial-boundary value problem that describes the 
problem of locally estimating a diffusion process with 
termination;

(e) Approximate methods for obtaining lower and upper bounds 
on filter estimates using conditional correlation coefficients;

(f) Extension of the Bobrovsky and Zakai [23,24] lower bound 
on the mean-square estimation error to degenerate diffusion 
processes.

We have learned that independently Cohen and Levine [34] have proved a theorem 

equivalent to our results (a) and obtained a finite-dimensional filter based on the 

linearization techniques. Besides their approach being completely different than ours in 

obtaining the finite-dimensional filter, they do not provide any of our results (c)-(f).

Second, we present a new method and derive new results in obtaining a minimum 

principle for partially observed diffusions when the control variable is present only in the 

drift coefficient and correlation between observation and state noise is present, and then 

when control variable is present both in the drift and diffusion coefficients and no 

correlation is allowed. The problem is formulated as one of complete information, but 

instead of considering the unnormalized density as the new state of the system, this 

density is decomposed into two measure-valued processes. This decomposition was first 

indroduced by Kunita [94,96] to prove existence and uniqueness of solutions to stochastic 

partial differential equations. Here, this decomposition is used for the first time in the 

context of a stochastic control problem to serve as a separation principle similar to the

10
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Wonham [130] separation principle of linear state-valued processes. The main results 

obtained using weak variations in L2 space are:

(a) A rigorous derivation of Pontryagin’s minimum principle in 
L2 space and a formal derivation for the explicit 
representation of the adjoint-process and

(b) A rigorous derivation of Pontryagin’s minimum principle in L2 space and 
an explicit representation of the adjoint-process using the martingale 
representation theorem.

Third, we study the nonlinear decision problem when the unobserved process 

satisfies a diffusion process by observing only nonlinear functions of the unobserved 

process corrupted by white noise, so as to determine stochastic partial differential 

equations for computing the decision strategy and exact performance bounds. The 

decision strategy employed is the likelihood-ratio test and the performance bounds are due 

to Chemoff. Using the martingale representation theorem and measure transformations 

we prove that the likelihood-ratio test and performance bounds can be represented as a 

ratio of two unnormalized conditional densities integrated over the whole space, where 

each density satisfies a stochastic partial differential equation;to the best of our 

knowledge, these representations are new. The main results obtained through this 

approach are:

(a) A complete characterization of decision strategy and 
performance bounds by solving a single stochastic partial 
differential equation;

(b) A closed form solution for the evaluation of the decision 
strategy and performance bounds for linear and certain 
nonlinear decision problems.

11
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We now give a more detailed description of the methods employed in this study 

and show how they fit in with the historical development provided by other researchers.

1.1 THE NONLINEAR FILTERING PROBLEM

The nonlinear filtering problem involves the estimation of a stochastic process 

{xt, t£ 0 } ,  called the state process, which cannot be observed directly. Information about 

x is available only through observing a related process {yt, t > 0}, called the observation 

process. Given a complete probability space (Q, P) on which x, y are defined such 

that the y process satisfies

dyt = h(t,xt)dt + dbt > y ^ 0 (1-1-1)

where bt is a noise process (usually an independent increment process), the goal is to 

compute, for each t, the least-squares estimate of functions tp(-) of Xj given the

observation history {ys, 0 <> s < t}. Thus, one computes either the conditional expectation

IIt(<p) A E{tp(xt) | ^ } ,  where A a{y s, 0 < s< t} , is the o-algebra generated by y, or

the entire conditional distribution of x. Furthermore, this computation should be done 

recursively in terms of a statistic {©t, t> 0 }  that evolves on a finite-dimensional manifold

and which can be updated using new observations as

®t+s = a(t,s,Gt,{yu,t ^  u < t + s}) (1.1.2)

and from which estimates can be calculated in a "pointwise" fashion given by

n t(<p) = P(t,<p,yt,0 t). (1-1.3)

12
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Generally, ©t is related to the conditional distribution of {xt, t £ 0} given 3  ̂ and

depends nonlinearly on the observations {ys, 0 < s <1 t} ; equation (1.1.2) is known as 

the nonlinear filter.

The most recent results of filtering theory which give a characterization of the 

optimal filters are formulated in two general situations. The first is a version of Bayes 

formula for n^cp) as presented by Kallianpur-Striebel [85], where n t(<p) is represented by 

a functional space integration over the path space of {xt, t > 0} with = Xq, x t = z. This

function space integration is interpreted as integration against conditional Wiener measure 

as explained by Mitter [106]. The function space integration is the most general since 

it is valid for minimum restrictions on x, h, <p as shown in a paper by BeneS and

Karatzas [6], where the distribution of the initial state is not necessarily Gaussian, but

has finite first and second moments. The second characterization of optimal filters is 

valid when the {Xj, t > 0} process is Markovian. As presented by Liptser and 

Shiryayev [103] and Fujisaki, Kallianpur and Kunita [63], n^tp) satisfies a nonlinear 

measure-valued stochastic differential equation [103, Theorem 8.3] whose solution is the 

conditional distribution. However, in general, IT^cp) cannot be evaluated from this result 

because the filter equation depends on higher order moments which in turn require 

estimates of yet other functions, thus resulting in a system of equations which is infinite- 

dimensional.

The above two characterizations of nonlinear filters are a general extension of the 

celebrated Kalman-Bucy [83] filter which provides the solution of the model (1.1.1) when

13
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{Xj, t £ 0} is a Gaussian diffusion process, h(t,Xj) is linear in x, (p(xt) = xt and w( is a 

Brownian motion. For this specific case the conditional distribution of the present state, 

given past and present observations, is shown to be Gaussian with nonrandom covariance, 

and the conditional mean vector satisfies a linear stochastic differential equation driven 

by the observations (or innovations), the "Kalman filter".

Both characterizations of the nonlinear filtering problem can be formulated in terms 

of an evolution-type linear stochastic partial differential equation (PDE) whose solution 

is the unnormalized version of the conditional density of the process {Xj, 0 £ t £  T} given

the observations 3 ^v  t€ [0,T]. This stochastic PDE will be referred to as the Duncan-

Mortensen-Zakai (DMZ) equation and provides the most complete interpretation of the 

nonlinear filtering problem.

Despite extensive research in nonlinear filtering, generally speaking, the exact 

computation of the conditional distribution remains unsolved due to its mathematical 

intractability; thus, one is usually forced to seek suitable sub-optimal filters that can be 

solved using approximation techniques. Since the filtering problem posed in this thesis 

is investigated using as a primary tool the DMZ equation, we shall briefly present some 

of the recent advances in this field that use this approach.

1.1.1 Previous Method of Solution

The first explicit result for the nonlinear filtering problem was presented by BeneS 

[4] who considered a diffusion process satisfying

14
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dxt = f(t,xt)dt + c(t,x()dwt, x^ = Xq (1.1.4)

when observed through the noisy measurements (1.1.1). Using the Kallianpur-Striebel 

[85] formulation, BeneS [4] was able to solve the DMZ equation under the assumptions 

that (i) fe R 1, h e R 1, f(x) = VF(x), h(x) = x, (ii) a e R 1 is constant, and (iii)

which is a consequence of the Radon-Nikodym Theorem (otherwise called a measure 

transformation). Whenever conditions (i) - (iii) are satisfied this expectation would 

produce the sufficient statistics computed in a recursive manner much as in the case of 

Kalman filter. As we shall see later, equation (1.1.5) is also the fundamental solution to 

the DMZ equation

C7I 2 2 2+ f  + h  = Cj x + c 2 x + c .  With I j .j denoting the indicator function of the

event {•}, his formulation requires the evaluation of

t t

0 0

dp(x,t) = A(t)*p(x,t)dt+h(x)p(x,t)dy
lim p(x,t) = p ^ x )  
titQ

(1.1.6)

4*

where A(t) is the adjoint of the second-order operator

15
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A(t)4®(x)o(x)Ti l  * f T(x)JL
2  3 x 2 3 x

Introducing a gauge transformation the author has also shown that the solution p(x,t), 

called the unnormalized conditional density, can be factored into two exponential terms, 

the first being a time-independent term which results from the gauge transformation and 

the second being a time-dependent term which is Gaussian. This approach is due to an 

earlier paper by BeneS and Shepp [2], where the solution to the density function of 

unconditioned diffusion satisfying (1.1.6) with h(x) = 0 is obtained under assumptions (i) 

- (iii). The multidimensional version of the scalar case above is also shown by BeneS [4] 

to produce finite-dimensional statistics.

In the same paper, BeneS also studied the interplay between finite-dimensional 

filters and the Lie algebra (LA) (estimation algebra) generated by

LA a [ A * -_L h2,h}. (1.1.7)
2

The importance of LA was originally investigated by Brockett and Clark [28], and 

Brockett [2 6 ,27, 29] as follows. Suppose (1.1.2), (1.1.6) are recast as Fisk-Stratonovich 

equations. Then if (1.1.2) evolves on a finite-dimensional manifold the conditional 

statistic Il^tp) given by (1.1.3) is finite-dimensionally computable (i.e., computed 

pointwise). The system (1.1.2), (1.1.3) is a representation of the mapping from input 

functions yt, ts[0,T] to output functions n t(tp). Notice that (1.1,6) is a bilinear

16
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differential equation in p(x,t), and p(x,t) is related to the normalize conditional density p(xt |

of Xj given 3 ^  by

j  p(x,t)dx (1.1.8)

R"

Suppose now that some statistic II^cp) of the conditional distribution of {xt, te[0,T]}

estimator of the form (1.1.2), (1.1.3); then this statistic can also be obtained from p(x,t) 

through

together with (1.1.9) is a system representation of the same input/output mapping as 

(1.1.2), (1.1.3). Recalling that the 0 t process involved in (1.1.2), (1.1.3) is required to 

be finite-dimensional, the analog p(x,t) in (1.1.9), (1.1.10) is now seen to be infinite

dimensional, even though both have the same input/output map. Therefore, to gain insight 

into the solution of (1.1.10), we can view the y process in (1.1.10) as a control input and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

given the information 3 ^ , t€ [0,TJ, can be calculated with a finite-dimensional recursive

R n (1.1.9)

R n

But the Fisk-Statonovich equation

dp(x,t) = (A * ( t ) - l h 2(x))p(x,t)dt + h(x)p(x,t)«dy ( 1.1.10)
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appeal to the results covering solutions of finite-dimensional differential equations as 

described by Sussmann [125] and Hermann and Krener [73]. The importance of LA in 

(1.1.7) is now evident, the factors shown in its definition appear explicitly on the right 

side of (1.1.10). From the point of view of control theory, this algebra determines the 

region of accessibility of control functions u. As a consequence, LA governs the region 

accessible to the conditional density, and thus, this is an indication that some conditional 

statistic may be computed by an estimator of the form (1.1.2), (1.1.3). Indeed, this was 

the original modivation for studying the estimation algebra LA which reflects the 

complexity of the density equation p(x,t) and the dimension of the manifold the density 

p(x,t) lives on, which is also related to the number of sufficient statistics. Using this 

approach, Brockett and Clark [28] study the estimation of a finite state Markov process 

observed in additive Brownian motion leading to the discovery of new filters for the 

conditional distribution. For the linear case, the Lie algebraic approach provides results 

on how the evolution of differential equations for the sufficient statistics summarizes the 

relevance of past observations. The basic insight of the Lie algebraic approach is that the 

estimation algebra of (1.1.2) should be a homomorphic image of the estimation algebra

generated by {A * -  _Lh 2, h }.
2

Ocone [109] studies the question of existence and representation of finite

dimensional filters using results established by Brockett and Clark [28], Brockett 

[26, 27, 29], and Mitter [106], who demonstrated the importance of Lie algebras to 

nonlinear filtering problems. Ocone establishes the connection between finite-dimensional
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estimation algebras and finite-dimensional filters using the Wei and Norman [129] 

method. In fact, using the estimation algebra, he shows how one can integrate it, in the 

case when it is finite-dimensional, to recover the solution of the unnormalized conditional 

density. However, no extensions of BeneS results are obtained.

For the reader who is interested in applications of the Lie algebraic method to 

nonlinear filtering and smoothing, we provide the following bibliography: Roth and 

Loparo [117], Marcus [105], Hazewinkel and Marcus [70,71], Krishnaprasad, Marcus and 

Hazewinkel [87,88] Hazewinkel, Hazewinkel [69], Blankenship, Chang and Marcus [21], 

Benes [5], Ocone, Baras and Marcus [110].

In a series of papers by Pardoux [112, 113, 114, 115], the problem of existence, 

uniqueness and representation of the solution to the DMZ equation is investigated. His 

approach is mainly probabilistic. In the above cited references Pardoux uses probabilistic 

metho2ds to derive the equation that is adjoint to the DMZ equation and its robust 

version. The adjoint satisfies a backward stochastic PDE and its robust version satisfies 

a backward PDE equations. The backward and forward SDE’s are interpreted in the 

nonlinear filtering set up as the backward and forward Kolmogorov equations for 

unconditioned diffusions. Furthermore Pardoux [112, 114] considers the problem of 

existence and uniqueness of the solution to the above stochastic PDE’s by using 

variational method. The problem of prediction and smoothing is also investigated by the 

same author. Bensoussan [12], analyzes the evolutional properties of the above 

differential equations using the methodology presented by Pardoux [112, 114]. Similar 

results on existence and uniqueness are obtained by Kunita [93, 94, 96], Krylov and
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Rozovskii [90], Curtain [35], Sheu [120], Baras, Blankenship and Hopkins [1], whereas 

Davis [36, 37, 38, 39, 40] and Clark [33] emphasize pathwise solutions of the above 

partial differential equations using the result of Doss [44] and Sussmann [125].

Approximate methods to the nonlinear filtering problem are established in two 

directions. The first is based on approximating the DMZ equation (1.1.6) and the second 

is based on approximating the stochastic differential system (1.1.1), (1.1.4) using weak 

convergence techniques. The first approach is investigated by Elliott and Glowinski [48], 

Florhinger and Le Gland [59], Le Gland [102], Bensoussan, Glowinski and Ruscanu [13], 

Bensoussan [13]. The second approach is investigated by Kushner [99, 100].

1.1.2 Proposed Method of Solution

Our approach being of a probabilistic nature, most nearly resembles the one 

considered by BeneS [4], and Pardoux [113, 114, 115]. Thus, we also use the Radon- 

Nikodym Theorem as a basic tool to reduce the observation process to a pure Brownian 

motion, but unlike the authors above, we consider the theory of state-feedback 

linearization of control systems adapted to stochastic systems to introduce a new 

equivalent filtering problem. From the point of view of algebraic considerations it was 

originally shown by Brockett [27] that global coordinate transformations result in 

isomorphisms of estimation algebras. It is felt that the linearization approach allows us 

to provide a clear indication of the complexity that exists in determining finite

dimensional computable sufficient statistics. Whenever local coordinate transformation 

is under consideration we prove that the equation satisfied by the unnormalized 

conditional density is a stochastic PDE with split boundary conditions by assuming that
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the diffusion process (1.1.4) terminates at the first exit from a bounded domain of interest. 

We further introduce a stochastic control problem having a generalized solution related 

to the filtering problem and determine bounds on certain statistical information associated 

with the nonlinear filtering problem. We now present a brief outline of the solution 

procedure, with details found in Chapter 3.

Step 1. We start with a stochastic differential system defined on a manifold M. 

We then perform local and global coordinate transformation through the use of stochastic 

differential rules, and measure transformations to represent the original system in a new 

coordinate system under a new probability law having a measure which is equivalent to 

the original measure. This transformation of measure allows us to redefine a new driving 

stochastic input that leads to a linear controllable system which is equivalent to the 

original one. The coordinate and measure transformations are viewed as the analog of 

state-feedback linearization of deterministic control systems investigated by Isidori [79] 

and Nijmeijer and Shaft [108] for the local case and Dayawansa, Boothby and Elliott [41] 

for the global case.

Step 2. Next, we derive necessary and sufficient conditions for local and global 

linearization of nonlinear stochastic differential systems having an equivalent controllable 

representation in the geometric content of the original system. Global results are only 

given for single-input/single-output systems whereas local results are applicable to multi

input/multi-output systems, where input denotes the martingale term of the state process 

and output denotes the observation process.
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Step 3. We then investigate the nonlinear filtering problem that satisfies the 

necessary and sufficient conditions of Step 2, both globally and locally. That is, we 

recognize that the original and linearized filtering problems are equivalent in the sense 

that the conditional density of one can be obtained from the conditional density of the 

other. We proceed by introducing another measure transformation also used by the 

previous authors to reduce the observation equation (1.1.1) to dyt = dbt as in Zakai [134] 

and Wong [131]. Finally, the solution of a version of DMZ is shown to have a finite' 

dimensional solution which is interpreted as the degenerate version of BeneS’ [4] finite- 

dimensional filtering example whenever global linearization is considered. For the case 

of local linearization, the problem becomes more complex since the evolution of the 

unnormalized conditional density satisfies a partial differential equation with split 

boundary conditions described by Friedman [60] as an initial-boundaiy value problem. 

Using the approach of Fleming [57] and Fleming and Mitter [58] a stochastic control 

problem is introduced. When the filtering problem is defined globally, the associated 

stochastic control problem is shown to have a generalized solution which is related to the 

solution of the filtering problem by a gauge transformation.

Step 4. Since we were unable to completely characterize the filtering problem by 

finite-dimensional statistics, we are forced to consider bounding techniques. Using a 

property of the correlation coefficient we succeed in obtaining bounds on certain statistics 

of the nonlinear filtering problem. Furthermore, we extend the result of Bobrovsky and 

Zakai [23, 24], who derived lower bounds on the minimum-mean-square-error, to the
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filtering problem of Step 2. Thus, filtering problems that are linearizable through 

coordinate and measure transformations admit such a lower bound estimate.

1.2 THE PARTIALLY OBSERVED STOCHASTIC CONTROL PROBLEM

For the system (1.1.1), (1.1.4) presented in Section 1.1 with correlation between 

measurement and process noise and dependence of f  on the control functions 

{ut, t€ [0,T]}, and then when control functions {ut, te  [0,T]} are present on f, c  with the 

above correlation set to zero, an optimal control problem is formulated by specifying a 

performance criterion J(u) of the form

The problem can be formulated as one of constraint optimization where u is chosen to 

minimize (1.2.1) subject to constraints (1.1.1), (1.1.4). However, even though 

deterministic constraint optimization is well understood, the presence of random 

disturbances makes the above problem very difficult to analyze.2

In order to establish a minimum principle for the above problem, we are naturally 

led into a consideration of a measure transformation commonly used in nonlinear filtering. 

As pointed out in Section 1.1.1 this measure transformation results in a stochastic PDE 

which in this case is pathwise dependent on the control variable u. The minimization 

problem is then cast as one of complete observations given by

T
(1.2.1)

0
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J(u) = E{ J  (n(t, X|, Uj),p(xt, t)> + (tc(xT),p(x,T)}} O-2-2)
0

subject to the constraints

d v
dp(x,t) = Lu(t)* p(x,t)dt + E M.u(t)*p(x,t)dytk

k=l k ‘ (1.2.3)
lim p(x,t) = p ^ x )  
tito

where

<a(x), p(x)) n J  a(x) p(x)dx 

R n

Mku(t)A hk(t,xt) +Yku(t),
n,m -y

Y k (t) A E ^ j( t ,x t,u t) _ _ T, k = l , . . . ,d .
*j 9 x !

The correlation between the state process and observation process is denoted by

t
(y.k,w j)t = Jy^ds, j  = 1,..., m, k  = 1,... ,d.

0

Notice that if the diffusion coefficient a  of (1.1.4) is independent of the control variable 

u, the operator Mk —»Mk and is independent of the control variable u. Moreover, if the

correlation y*k is set to zero (i.e., wt, bt uncorrelated) then Mk -> hk(t,x) and is again

independent of control variable u while (1.2.3) is now given by (1.1.6). The above 

problem governed by (1.2.2), (1.2.3) is converted into a problem of complete information
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by considering the measure-valued function p(x,t) as the new state of the system. This 

formulation was originated by Striebel [123] in a discrete-time set up and is sometimes 

referred to as the separated stochastic control problem of partially observed systems. We 

also note that the set of admissible controls considered in this thesis are of strict sense, 

that is, functions of the form

u(t) =u(t,{ys, 0 £ s £ t} ) ,  

and not those of wide sense that is, functions of the form

t
u(t) = u(t, {ys, 0<s<t} ,  [vs, 0 £ s < t } ) ,  vt=Jusds.

0

1.2.1 Previous Methods of Solution.

In recent papers, Bensoussan [10,15], Haussmann [68] and Elliott and Yang [50] 

addressed the stochastic control problem above when the operator Mk(t) is a zero-order 

differential operator, which corresponds to the case when state and observation noises are 

independent or simply uncorrelated.

Bensoussan [10], using weak variations, presents a minimum principle and an 

explicit representation of the adjoint process (Lagrange multiplier) when the control enters 

the drift coefficient f. His approach is based on the robust version of (1.1.6) which 

satisfies a linear PDE obtained via a gauge transformation p(x,t) = exp [y th(t,xt)}q(x,t).

Using the backward stochastic PDE’s V(x,t), and its robust version u(x,t) which are the 

adjoint to p(x,t), q(x,t), respectively, he then obtains an equation for the adjoint-process
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by applying the result of the Kunita and Watanabe [97] for martingales with values in L2 

spaces.

Bensoussan in a recent book [15] presents a new method for proving the equation 

satisfied by the adjoint process above. His method involves a Gelerkin approximation 

procedure using a finite-dimensional base vector for the Sobelev space H 1 defined by

H 1 A{ueL2; - ? L e L 2 i = l  n}.
a x 1

Haussmann [68], using strong variations, presents a minimum principle which 

depends on the representation of the adjoint-process when the control enters the drift 

coefficient. His adjoint-process is obtained by performing strong variations on the robust 

version of the conditional expectation which satisfies the backward PDE u(x,t). However, 

the description of the adjoint-process is given in terms of only a characterization of the 

conditional expectation, and this makes the result very difficult to implement especially 

for nonlinear systems.

Elliott and Yang [50] introduce a minimum principle by considering the 

differentiation of BlagoveSCenskii and Freidlin [22] when the control enters the drift 

coefficient f  and the diffusion coefficient a . Their minimum principle depends on the 

description of the adjoint-process in terms of a conditional expectation, and therefore is 

again difficult to implement.

1.22  Proposed Method of Solution.

Our approach is completely different than the ones mentioned above due to the 

correlation between state and observation noise which prevents us from using the robust
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version of the unnormalized conditional density since such version does not exist when 

the differential operator Mk(t) is of the first-order. Moreover, our approach is different 

in that instead of considering perturbations associated with the measure-valued process 

p(x,t) we introduce a further separation of the problem (1.2.2), (1.2.3) by decomposing 

p(x,t) into two measure-valued processes Pj, vt satisfying 

Case (i)

d .
dpt(<» = £  p,(Mk(t>j>)*dyt , 1% = 5x (l-2.4(i))

k=l

dvt((j>) = vt(ptL u(t)pt"1(J.)dt , Vt() = 8X (1.2.5(i))

Case (ii)

d .
dpt(<j>) = E  pt(hk( U t)<j>)*dyt , p. = 8X (1.2.4(u))

k=l

dvt(<j>) = vt(ptLu(t)pt" l<|))dt , = 5X (1.2.5(ii))

where case (i) corresponds to control variable appearing only on the drift coefficient f 

with correlation between state and measurement process present and case (ii) corresponds 

to control variable appearing in both drift and diffusion coefficients f,c , respectively when 

the above correlation is zero. As a result of the above decompositon any control variation 

would only affect the measure-valued process vt which is the only process with explicit 

dependence on control functions u(t). This decomposition is used by Kunita [94, 96] to 

prove existence uniqueness and smoothness of the unnormalized conditional density p(x,t). 

It is felt that the decomposition above allows us to generalize the Euclidean deterministic
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variational methods given by Fleming and Rishel [56] and the Euclidean variational 

methods presented by Bensoussan [9, 11], where necessary conditions for state-valued 

completely observed stochastic processes are given to measure-valued processes in L2 

spaces. In order to successfully solve the optimization problem considered above we are 

required to determine equations that are satisfied by the inverse measure-valued processes

pt 1(f) and vt *(f), which are also shown to be the adjoints to the measure-valued

processes p^f), vt(f), respectively. We now give a brief outline of two solution 

procedures employed in obtaining a minimum principle and an explicit representation of 

the adjoint-process with values in L2 spaces for case (i) which is also applicable to case 

(ii) once we establish certain technical conditions; details will be presented in Chapter 4. 

Approach 1.

Case i

The approach we employ in obtaining the minimum principle is based on the 

previously given decomposition. However, to obtain the representation of the adjoint 

process we use the results of Bismut [16] and Kwakemaak [101] with the important 

difference that in our case the adjoint process is not originally assumed to be output

feedback (i.e., .^ -a d a p te d ) but it is formulated to satisfy this output feedback 

requirement.

Step 1. The minimization problem we consider is the one given by (1.2.2),(1.2.3) 

where pt a p(x,t) is given by the composition v(*pt which we shall denote by vtpt for
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simplicity reasons. Thus, the measure-valued process described by (1.2.3) is now 

decomposed into (1.2.4(i)), (1.2.5(i)) or (1.2.4(H)), (1.2.5(ii)). Due to this decomposition 

any control variation affects only the measure-valued process vt; then a representation for 

the perturbed measure-valued process is obtained using Fleming and Rishel [56, Chp. 2, 

Thm. 10.2, pp. 38].

Step 2. We then derive the Gateaux derivative of J(u(*)), which is a function on 

the Hilbert space L2 adapted to the filtration S» I

Step 3. Next, we introduce a process Pt which is the adjoint to the perturbed 

measure-valued process of Step 1 using an extension of Fleming and Rishel [56, Chp. 2 

Thm. 11.1, p. 41] to process with values in L2 spaces.

Step 4. At this point we perform the composition of the perturbed measure-valued 

process of Step 1 with its adjoint-process of Step 3. Then, substituting the result of the 

composition above into the variational cost of Step 2, the minimum principle is obtained 

in the L2 space.

Remark 1.2.1 The minimum principle we obtain in Step 4 is a general 

formulation of the minimum principle presented by Bensoussan [10, Theorem 2.1]. 

Moreover, the perturbed process considered by Bensoussan [15] is a special case of the 

process obtained by the composition of the perturbed process of Step 2 with the process 

described by (1.2.4(i)) when Mk(t) —» h(t,xt). Due to the approach taken, the adjoint

process appearing in the minimum principle is an ^ .-a d a p te d  process (no output2>,(

feedback assumption was needed).
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Step 5. Next we present the stochastic PDE satisfied by the adjoint-process by 

using the result of Kwakemaak [101], which is an extension of Bismut [16], without 

having to assume that this process is output feedback as Kwakemaak does. We also show 

how one can recover the general necessary conditions presented by Kwakemaak [101] 

using our methodology.

Approach 2.

Case i

The approach we employ here requires no previously known result of stochastic 

partially observed diffusions. It is, however, more complete in the sense that we give a 

rigorous justification of the stochastic minimum principle without having to use the result 

of Kwakemaak [101] as an initial motivation.

Step 1. As a starting point we consider the perturbed measure-valued process of 

procedure 1, given in Step 1. That is, we do not use the equation satisfied by the 

unnormalized conditional density (1.2.3) but we treat the problem as one of the 

decomposed form presented by (1.2.4(i», (1.2.5(i».

Step 2. Next, we find a representation for the measure-valued process defined by

the composition y s t a zs tvs *. Then we express the variational cost of Approach 1,

Step 2, in terms of the new process \|/s t.

Step 3. The minimum principle is then established by using a representation 

theorem stated by Liptser and Shiryayev [103, Chp.4, Thm. 4.6, pp. 128-130]. The above

representation theorem allows us to express an -adapted process in terms of a
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martingale adapted to the filtration where the process (yx, s < x ^  t} is in this case 

a Wiener process.

Remark 1.2.2 The minimum principle obtained in Step 3 has the exact same form 

as the one given in Approach 1, Step 4. The adjoint-process as identified by the 

minimum principle is expressed in terms of a composition of three measure-valued 

processes.

Step 4. Finally, we derive the stochastic PDE satisfied by the adjoint-process 

identified in step 3. This adjoint-process satisfies the stochastic PDE of Approach 1, Step 

5 having an additional term which is a driven by the observation {yx, s < x < t}.

Remark 1.2.3 The two procedures outlined above can be adapted to handle the 

case when no correlation is present but f ,c  are control dependent (i.e., case (ii)) by 

choosing the supremum norm as the new metric space.

Remark 1.2.4 It turns out that the adjoint-process of Approach 2 step 4 which is 

a measure-valued process satisfying a backward stochastic PDE is very similar to the 

state-valued adjoint-process given by Bensoussan [10, Sect 4, p. 31, equation 4.17] for 

the case of a completely observed control problem in the Euclidean space. It is believed 

that the similarity is due to the decomposition (1.2.4), (1.2.5) that allows us to solve the 

partially observed problem as a completely observed problem since vt does not depend 

on the observations {yx, s < x  <> t} explicitly. The kind of separated control problem 

presented here in the L2 space environment can be viewed as a generalization of the one 

established by Bensoussan [9, pp. 234-243] for processes with values in Euclidean space.
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1.3 THE NONLINEAR DECISION PROBLEM

We are given a measurable space (£2, and two probability measures P0, Pj

defined on it. Given the d-dimensional vector {ys; 0 £  s ^  T} of observations, determine,

so as to minimize an expected risk function, which of the following hypotheses is true:

(Pj; Hj): dyt = h jd t + dw/ (I-3-1)

(P0; Hq): dyt = h®dt + dw^ (1.3.2)

where wt\  i = 0, 1 are d-dimensional Wiener processes ht!, i = 0, 1 are d-dimensional 

random signal processes, and PQ, P | are induced by H q , H j ,  respectively.

The generalized likelihood-ratio (LR) for the above problem has been shown by 

Duncan [45] and Kailath [80, 81, 82] to be

/  -  0 T<>s-. -  i .  J  (Id ,1 12 -  | h “  |2)d t (1 3 3)

At ~ e

where htl is the conditional expectation of ht! given the observations up to time t when

hypothesis Hj is true. The likelihood-ratio (1.3.3) is obtained by assuming Pj is 

absolutely continuous with respect to PQ and defining

AT A E „ ( i ! L | 4 )  (1.3.4)
CIVa
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where Eq denotes expectation with respect to measure PQ when restricted to the Cf-algebra 

3 ^ .  A derivation of (1.3.2) based on martingale theory for both continuous and

discontinuous process is given by Hibey [74, 75]. The likelihood-ratio test involves 

testing At against a given threshold y, that is, performing the test

Hi

J it < r ;  0-3-5)

Ho

we decide in favor of hypothesis Hj if At is greater than y and decide in favor of 

hypothesis Hq if At is less than y. If At = y, then Hq, H j are equally probable.

Now, once we adapt the decision strategy above, the next step is to study the error 

performance. In our case, there are two possibilities of making errors. The first is called 

"false alarm" and is denoted by PF; it is the error of deciding hypothesis Hj is true when 

in fact hypothesis Hq is true. The second is called a "miss" and is denoted by PM; it is 

the error of deciding hypothesis H q  is true when in fact hypothesis Hj is true. The 

detector peformance is completely characterized once PF, PM are known. However, in 

theory, to compute them one need the distribution of Aj, and this is often unknown. 

Hence, one is forced to consider bounding techniques which can be computed exactly.

The bounding technique we are concerned with is the so called Chemoff bound 

as given by Van Trees [128]. The extension of this bound to the nonlinear detection 

problem is presented in Evans [52] and Hibey [74]. The Chemoff bound on PF is derived 

for s > 0 as follows:
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Pp = Prob {accept Hj |Hq is true} (1.3.6)

= ^{toeQ; !n At(to) > In y}}-

The second equality follows from (1.3.5) since the logarithm is a monotonic increasing 

function of its argument. Proceeding by writing the moment generating function of In \  

as

E0[eSlnAt] = J  es b l A p(A|Ho)dA
—00

OO

> J e s l n A p(A|H0) d A ,
Y

we have

PF ^ e " s l n YE0[Aj] ,  s > 0 .  (L3-7)

The expectation Eg is understood to be restricted to the c-algebra 3 ^ .  Therefore to

obtain the tightest bound on PF, a minimization leads to

PF £ min e ~ s ] n y  E0[A h . (1.3.8)
0<s< 1

Similarly, to find the tightest bound for PM one has to consider

PM < min e ' ^ ^ E A * ] .  (1.3.9)
- 1 <s<0
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It can be easily shown that the PM can be expressed in terms of expectation with respect 

to measure po fey

PM £ min e " s l n YE0[A?+1]. (1.3.10)
- 1 <s<0

More detailed discussion on this subject is found in Hibey [74]. Before we present our 

approach let us present the method of solution as given by Van Trees [128], Evans [52], 

Hibey [74, 75], and BeneS [7].

1.3.1 Previous Method of Solution.

In the textbook by Van Trees [128, Chps. 1-2] the decision problem is treated for 

the case when the signal hj is either a known function or some of its components are

random such that no filtering estimate for hj is required. In this case the LR test given

by (1.3.5) is expressed as a ratio of two Gaussian densities. The performance bounds PF, 

PM are given by (1.3.8), (1.3.10) respectively, where A is again the ratio of two Gaussian 

densities.

Evans [52] considers the decision problem of (1.3.1), (1.3.2) when the signal 

h *(t, Xj1) is a nonlinear random function with the state process x{* satisfying a nonlinear

diffusion process. His concern is mainly the development of the expressions (1.3.8) and 

(1.3.9) as well as optimal and sub-optimal methods of solving for these bounds. Using 

some of the properties of Markov processes he is able to obtain an evolution type partial 

differential equation which is related to the evaluation of the Chemoff bounds PM’ PF
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above. The coefficients of the partial differential equation are in terms of optimal or 

sub-optimal estimates.

Hibey [ 74, 75 treats the nonlinear decision problem studied by Evans for both 

continuous and discontinuous processes, but unlike Evans, he uses the theory of 

martingales and measure transformations to extend the result of Evans [52]. He then 

presents a partial differential equation which is related to the evaluation of the Chemoff 

bounds PM» PF for both optimal and sub-optimal estimates. This partial differential 

equation is the adjoint equation to the one obtained by Evans [52].

Recently, BeneS [7] treated the sonar decision problem with emphasis on the use 

of nonlinear filtering techniques to formulate a general Bayesian model. His treatment 

considers two kinds of optimal detectors, fixed-time interval and sequential.

1.3.2 Proposed Method of Solution.

Our approach differs from the one taken by Evans [52] and Hibey [74,75] above. 

Here, we formulate the nonlinear decision problem of evaluating (1.3.5), (1.3.8), (1.3.10) 

in terms of the unnormalized conditional density. However, we also consider as our basic 

tool the use of measure transformations which in this case are restricted to a bigger

filtration ^  containing the filtration It is felt that our approach would allow for the

evaluation of the decision strategy (1.3.5) as well as the performance bounds PF’ P M 

exactly, even for certain class of nonlinear systems. This is indeed an improvement over 

the approach taken by Evans [52] and Hibey [74, 75] since the PDE developed by the 

above authors is usually solvable for the linear Gaussian case only. We also notice that

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the decision strategy and performance bounds we employ have as a special case the 

decision strategy and performance bounds obtained by Van Trees [128]. We now briefly 

present the approach to be followed in Chapter 5.

Step 1. Our initial concern is to express the well-known likelihood-ratio (1.3.3)

in terms of yet another likelihood-ratio *Ft restricted to the filtration d  ^  such that

the LR At can be expressed as At = EqOPJJ^) where = Eq [— L \ & j ] .  This

representation of At allows us to obtain a new method for solving the decision problem 

without having to find equations that describe the evolution of the signal estimates

h *(t, x t*) as others do.

Step 2. Next we prove the Theorem that permits us to represent \  in terms of 

a ratio of two conditional expectations with respect to the filtration ^  generated by the

process {ys, 0 ^  s < t), which under this new measure becomes a standard Brownian 

motion. Then the likelihood-ratio test (1.3.5) is expressed as the ratio of two conditional 

densities integrated over the space Rn®Rn. Each conditional density satifies a stochastic 

PDE with random coefficients much as in the case of the nonlinear filtering problem 

presented in Section 1.1.

Step 3. Having established the decison strategy, we next address the Chemoff 

bounds Pp, PM as given by (1.3.8), (1.3.9) (or (1.3.10)), respectively. We first express 

Pp given by (1.3.8) using the formulation of Step 1. Similarly, we repeat the same 

procedure for PM given by (1.3.10). Then by introducing another measure as in Step 2
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we derive expressions for PF, PM as a ratio of two conditional densities integrated over 

the space Rn®Rn. As in Step 2, each conditional density satisfies a stochastic PDE.

Step 4. Finally, we demonstrate the effectiveness of this approach by solving 

certain linear and nonlinear decision problems. We conclude that if the nonlinear filtering 

problem associated with the decision problem is solvable by means of solving a single 

stochastic PDE, the decision strategy and the exact Chemoff bounds can be evaluated. 

This is indeed the original goal for studying such decision problems.

Remark 1.3.1 In Step 4 we stated that if a single stochastic PDE is solvable the 

two questions concerning the decision problem can be answered. This is due to 

imbedding the two stochastic PDE’s of Step 2 and Step 3 into a single stochastic PDE 

which then generates the solution of the above two stochastic PDE’s.

1.4 ORGANIZATION OF THESIS

In this thesis we study topics in the theory of nonlinear estimation, nonlinear 

decision, and nonlinear stochastic control with partial observations.

In Appendix 7.A we discuss the mathematical concepts of differential geometry 

and its applications to linearization of nonlinear deterministic control systems. Here we 

define vector fields and introduce some notation. Our attention is focus on the Frobenius 

theorem and its application to local and global linearization of nonlinear control systems.

Appendix 7.B contains a survey of martingales. Here we define martingales, 

predictable processes and introduce notation. In addition we discuss stochastic integrals 

with respect to martingales and discuss topics such as Ito and Fisk-Stratonovich
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differential rules in both forward and backward direction. We also provide the 

connection between Ito and Fisk-Stratonovich integrals.

Appendix 7.C serves as a brief introduction on strong and weak solutions to 

stochastic differential equations. While doing so, we present conditions of existence and 

uniqueness of strong and weak solutions.

Appendix 7.D contains a discussion of the stochastic differential geometry and its 

applications to stochastic differential equations. Here we present Fisk-Stratonovich 

differential rules when the drift and diffusion coefficients are represented using the 

tangent space basis. The connection between Ito and Fisk-Stratonovich integrals is also 

given. Next, we give the representation of a forward semimartingale in terms of the 

representation of a backward semimartingale using the definition of a differential maps.

Finally, we indroduce the inverse map which is expressed in terms of the solution of a 

certain backward stochastic differential equation.

Appendix 7.E contains a discussion of the measure transformations, translation of 

martingales and sufficient conditions of absolute continuity of measures. Here we begin 

by introducing the exponential formula which allow us to define new measures. The 

connection between conditional and unconditional expectations under two different 

measures which are absolutely continuous is also presented here.

Finally, in Appendix 7.F we present some aspects of the semigroup theory of 

Markov processes. We begin with an introduction on transition functions of Markov 

processes and then present two families of operators which can be associated with
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transition probabilities, and finally we give the backward and forward equations which 

are related to the above transition probabilities.

Chapter 2 contains a detailed exploration of representations of the unnormalized 

conditional density. Section 2.2 begins with a precise problem statement for the 

partially observed stochastic control problem.

In Section 2.3, we present a proof of the fundamental solution of the equation 

satisfied by the unnormalized conditional density (the DMZ equation) using the 

representation introduced by Friedman [60, 61, 62]. Then we give the PDE satisfied by 

the robust version of the DMZ equation and introduce the definition of the fundamental 

solutions to PDE’s. Next, we represent the solutions of the backward SDE and its robust 

version which were originally derived by Clark [33] and Pardoux [113,114], respectively, 

to their fundamental solutions.

In Section 2.4, we present the partially observed stochastic control problem by 

adapting the dynamic programming formulation used for completely observed systems. 

Here the problem is first converted into a completely observed stochastic control problem 

by viewing the unnormalized conditional density as the new state of the system.

Finally, in Section 2.5, we present the derivation of the unnormalized conditional 

density of a diffusion process when terminating at the first exit time from a domain of 

interest The proof is an extension of the one presented by Hibey [74, 75] for 

unconditioned diffusion processes.

In Chapter 3, we present a detailed analysis in estimating diffusion processes by 

using diffeomorphism and measure transformations.
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Section 3.1 begins with a precise problem statement and Section 3.2, Section 3.3 

provide the necessary and sufficient conditions of local and global linearization of 

stochastic differential systems both locally and globally, respectively.

In Section 3.4, we present sufficient conditions for solving a Feynman-Kac 

formula whose solution is related to the solution of the DMZ equation using the 

developments of Section 3.3. Finally, we conclude this section by relating the solution 

to the Feynman-Kac formula in terms of a stochastic control problem using the 

methodology first introduced by Fleming [57].

In Section 3.5, we express the unnormalized conditional density of a diffusion 

process defined locally in terms of an initial-boundary value problem.

In Section 3.6, we derive lower and upper bounds on function of state estimates 

using the conditional correlation coefficient.

Finally, in Section 3.7, we extend the previous work of Bobrovsky and Zakai [23, 

24] who derived lower bounds for nondegenerate nonlinear filtering problems to 

degenerate filtering problems which satisfy the linearization conditions of Sections 3.3, 

3.4.

In Chapter 4, we present a detailed solution of the nonlinear partially observed 

stochastic control problem using two approaches, when the control variable is present in 

the drift coefficient and correlation between state process and observation process is 

allowed, and when the control variable is present in both drift and diffusion coefficients 

and no correlation is allowed. The methods and results appeared in this chapter are new.
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Section 4.1 begins with a precise problem statement and a derivation of the 

equation satisfied by the unnormalized conditional density when correlation between state 

process and observation process is present and the diffusion process is of degenerate type.

Section 4.2 provides derivations of the decomposed measure-valued processes in 

both forward and backward direction. Equations satisfied by the inverse maps of the 

above measure-valued processes are also derived.

Section 4.3 presents the first approach to the stochastic control problem by 

providing a rigorous derivation for the minimum principle and a formal derivation for the 

equation satisfied by the adjoint-process. The second case is also discussed here.

Section 4.4 presents the second approach to the stochastic control problem by 

providing a rigorous derivation for both minimum principle and the equation satisfied by 

the adjoint-process. The second case is also discussed here.

In Chapter 5, we present a detailed solution of the decision problem. The 

representations and results of this chapter are new.

Section 5.1 begins with a precise problem statement of the problem we propose 

to solve. Then we give the derivation that allows us to represent the generalized 

likelihood-ratio restricted to the filtration generated by the observation in terms of a 

likelihood-ratio restricted to a bigger filtration.

In Section 5.2 we represent the generalized likelihood-ratio in terms of a ratio of 

two unnormalized conditional densities satisfying stochastic PDE’s.
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In Section 5.3 we provide expressions for evaluating the error probabilities which 

are due to Chemoff in terms of a ratio of two unnormalized conditional densities 

satisfying stochastic PDE’s.

Section 5.4 contains linear as well as nonlinear decision examples which can be 

solved exactly.

Finally, we present Chapter 6 which is the concluding chapter, where Section 6.1 

provides a brief summary of our work and indicate its main contribution, and Section 6.2 

contains some topics for further research.
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CHAPTER 2

EVOLUTION OF UNNORMALIZED CONDITIONAL DENSITY 
AND ITS REPRESENTATIONS

2.1 INTRODUCTION

Much of the modem nonlinear filtering and stochastic control problems are 

analyzed using the unnormalized conditional density that satisfies a linear stochastic 

partial differential equation (the DMZ equation). Answers to questions such as existence 

of admissible control to problems of a nonlinear nature were first presented by Fleming 

and Pardoux [53,54], and later by Bismut [20], Elliott and Kohlmann [49] and others 

through this unnormalized density. Also, exact solutions to linear filtering problems and 

linear partially observed control problems with non-Gaussian initial distributions are 

obtained by BeneS and Karatzas [6], using a version of the Kallianpur-Striebel formula 

[85] as a function space integral.

Results on the existence and uniqueness of the solution of DMZ equation are 

discussed by Pardoux [112,114] and Krylov and Rozovskii [90] when the Kolmagorov’s 

operator is elliptic. Pardoux [112,114] proves existence and uniqueness of the solution 

using variational methods to stochastic PDE’s while Krylov and Rozovskii [90] prove 

existence and uniqueness using Sobolev spaces. Furthermore Kunita [93,94,96] proves 

such existence and uniqueness of solution when the Kolmogorov’s operator is degenerate 

by expressing the solution as the conditional expectation of some suitable stochastic
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process. Then, using probabilistic methods and expressing any L2 solution as an infinite 

sum of multiple Wiener Ito integrals, he proves uniqueness.

Derivations of the DMZ equation can be found in Zakai [134], Wong [131], 

Pardoux [113,114,113], Kunita [93,96] and Bensoussan [12]. Pardoux in his work 

[113,114,115] provides a pair of stochastic PDE’s, one with respect to the forward 

variable and the other with the respect to the backward variable. The forward equation 

is the DMZ equation and the backward equation is its adjoint equation. In the filtering 

problem, they both play the role of the backward and forward Kolmogorov equations for 

unconditioned diffusions as presented in Appendix 7.F. He also presents the robust 

version of the forward and backward stochastic SDE’s, with the forward one originally 

being formulated by Clark [33].

In this section we shall utilize certain results from the theory of partial differential 

equations and their fundamental solutions as given by Friedman [60,61,62] to construct 

fundamental solutions for the two pairs of stochastic and partial differential equations 

related to the nonlinear filtering problem. We shall show that the fundamental solution 

of the unnormalized density is exactly equal to a version of the Kallianpur-Striebel 

formula considered by BeneS [4] and BeneS and Karatzas [6] which were then used to 

obtain the finite-dimensional statistics associated with the nonlinear filtering problem and 

partially observed linear stochastic control problem with non-Gaussian initial conditions. 

Next, using the fundamental solution of the DMZ equation, we shall give a representation 

for the value function of a partially observed strict sense stochastic control problem in a 

dynamic programming formulation. Finally, we shall consider the filtering problem when
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the unobserved state process is defined on an open bounded set in Rn having an exit time 

x < T w.p.l. Using the approach of Dynkin [46], Prohorov and Rozanov [116], and 

Hibey [74], who considered the above problem when the state process is completely 

observed, we shall derive an evolution-type stochastic partial differential equation for the 

unnormalized conditional density for the partially observed problem. We shall also 

present a derivation which is based on the infinitesimal opearator of a diffusion process. 

This resulting stochastic differential equation can be transformed into a PDE which is 

classified by Friedman [60] as a first initial-boundary value type problem. This is indeed 

the equation we shall consider in our subsequent development to analyze the local 

equivalence of a nonlinear filtering problems.

2.2 PRECISE PROBLEM STATEMENT

We shall formulate the problem as one of partially observed nonlinear stochastic 

control. Notationwise, we shall address the nonlinear filtering problem by disregarding 

the performance index and ignoring the pathwise dependence on the control variable.

Consider the following minimization:

subject to constraints that describe the state process [xs, 0 £  s ^  t} and observation 

process {ys, 0 ^  s £ t} in terms of the stochastic differential equation and measurement 

equation

(2.2.1)

T
(2.2.2)

0

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



dxt = f(t, xt, ut)dt + a(t, xt)dwt , x^  = Xq (2.2.3)

dyt = h(t,x t)dt + dbt , y ^  = 0. (2.2.4)

We shall make the following assumptions:

(A l) X()6Rn is given;

(A2) f:[0,T]xRnxU-»Rn is Borel measurable, continuous, continuously

differentiable in x, u, with U a Borel set and Kj, K2 constants such that 

|fx(t, x, u) | + 1 fu(t, x, u) | < Kj

|f(t, x, u) | < K 2(1 + | u | + | x | );

(A3) o:[0,T]xRm—»Rn<2>Rm is Borel measurable, continuous, continuously 

differentiable in x, u, and K3 a constant such that

I |o(ti x) 11 + 11crx(t,x)11£ K3;

(A4) h:[0,T]xRn—>Rd is Borel measurable, continuous, continuously

differentiable in x, and with constant K4 such that

I h(t, x) | < K 4 (1 + |x  |) ;

(A5) P0 is a probability measure on (Rn, BTn), where BTn is a family of Borel 

sets on Rn, and

J  M 'W d x )  <
R n

(A6) k :R"-»R  is continuously differentiable in x with constant K5 such that
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| k ( x ) |  + | k x ( x )  |^ K 5(1 + 1x1*1) , q < ~ ;

(A7) Ji:[0,T]xRnxU-»R is Borel measurable continuously differentiable in x, u

with constant Kg such that

!~(t» X, u) | + | Hx(t, X, u) I<K^(1 + |x  |q + |u |q).

Consider the space £2 = RnxC([0,T]; Rm)xC([0,T]; Rd), with coordinate functions 

(xq, w , y), were w and y  independent standard Brownian motions on RmxRd, and Xq an

independent random variable with density p0. Let pw denote a Wiener measure on

lc K iC([0,Tj; R ) and BT the Borel c-fields on R ; then the measure $  and a-algebra on 

£2 are defined by

P a P(x, dw, dy) a P0(dx)p™(dw)pJ(dy),

STt A B j 0 B ™ ® B j

Define ^  A o { y s; 0 < s < T }  and 3 ^  a o { w s; 0 < s < T } .

The set of admissible control functions consists of the 3 f , t e  [0,T] -adapted 

functions

u:[0,T] x C([0,T];Rd)-4U  

which are Borel measurable such that

(A8) u(t,yt)eLy([0, T] x C([0, T];R d)).
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Let xtu be a unique strong solution of

dxt = f(t, x t, u(t,yt))dt + o(t,xt)dwt, t £ 0 (2  2  5)
*0 ~  Po

on the probability space (£2, S?v  P) for u e l l^ ,  xeR n.

Suppose we define the process

t
mt a J  h(s,xs)dys P) (2.2.6)

0

where h(t, xt) is an adapted, predictable process. Then by defining the exponential 

formula as in Theorem 7.E.1,

T T

a exp{mT -  i .  (m, m>T} = exp { fh(s, Xg)dys -  i .  f|h (s, xs) | 2ds}
2 0 2 0

and using Theorem 7.E.2, we can define the measure Pu

a !  a e  [ i? ! .  i ^ T] 
dg* T

where Pu is absolutely continuous with respect to measure P . Thus, because h(t,xt) 

satisfies a linear growth, o(t,x) is assumed to be bounded, and f(t,x,ut) satisfies (A2) (see 

Remark 7.E.2), we obtain E [A^] = 1 (E denotes expectation with respect to measure

P) and therefore conclude that Pu is a probability measure and, using an extension of
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Theorem 7.C.2 (xu, y) is a weak solution of (2.2.3), (2.2.4) on the probability space 

(Q , y t , Pu). The cost function (2.2.2) can be expressed as

T

J(u) = E u{J i(t , x “, u(t,yt))dt + K(x-Jf)}
0

T
(2.2.7)

= E { Aj  ( Jn(t, xtu,u(t,yt))dt + k ( x ^ ) )  }

where Eu denotes expectation on (Q, Pu).

Remark 2.2.1 Superscript u on A, E, x indicates their dependence on control 

variable u. Whenever this dependence is removed, the problem is formulated as one of 

nonlinear filtering type, represented by (2.2.3), (2.2.4) only.

Remark 2.2.2

(i). under Pu the following properties hold:

(a) {ws, 0 £  s £  t}, {bs, 0 £ s £  t} are 
independent Brownian motion processes;

(b) {bs, 0 £ s < t} and {h (s,xsu), 0 <, s £  t} are
independent (i.e., the signal is independent 
of the measurement noise).

(ii). under P the following properties hold:

(a) {ws, 0 <, s <, t}, {ys, 0 £  s £  t} are 
independent Brownian motion processes;

(b) {ys, 0 £ s < t} and (h(s,xs), 0 < s < t} are independent;

(c) {xgu, 0 < t < t} has the same distribution as under measures Pu, P;

(d) PU~ P  with Radon-Nikodyrn derivative
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Properties of (a) - (d) of Remark 2.2.2 (ii) are evident from the definition of the 

measure 0 on (Q, ^ j )  which can be expressed as

0(A) = f  (cd) Pu(dco), for any A e i^ p
AdPu

as in Theorem 7.E.2, where
,  T T

-1 — = exp { - fh(s,xsu)dbs - i . f | (h(s, x u) |)2ds} 
dPu J0 o

is a Radon-Nikodym derivative of 0 with respect to Pu. By martingale translation, 

(Theorem 7.E.3),

bt = bt -  (b.,-Jh(s, x “)ds)t 
0

t
= b t + j ’h d . X j V e M ^ ,  0 ).

0

It then follows that bt is a Wiener process since (b, b)t = (b, b)t = t and the sample

paths of bt are continuous. The equivalence of measures Pu, 0 (i.e. Remark 2.2.2 (d))

follows from Remark 7.E.3 since assumption (A4) implies

T

0 ( J  |h(t, x t) | 2dt < °o) = i.
0
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2.3 DERIVATION OF FUNDAMENTAL SOLUTION ASSOCIATED WITH 
THE NONLINEAR FILTERING PROBLEM

Suppose we are concerned with the filtering problem (2.2.3), (2.2.4). If we define 

a new probability measure as in the previous section, then by (7.E.6), for any integrable 

function <!>(•),

which relates the statistics of 3> evaluated under measure 9  to that of measure &.

Following the approach taken by Zakai [134] and Wong [131], rather than derive the 

DMZ equation, we shall instead derive the stochastic PDE satisfied by the fundamental 

solution of the DMZ equation. Thus, by reconditioning on xt and x ^ ,

(2.3.1)
E [A t | j f ]

E {E (A t | * f ,  x t, x ^ l ^ f }

Next, by defining A(xt()t y ^ )  a At, and A (z,x,yt() t) u  E(At | ^ f ,  xt=z, x ^ x ) ,

and setting

P(z,t) = Prob{xt < z ], P(x,tg) = P ro b lx ^ ^ x ]

(2.3.2) is expressed as
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J* <&(z)A(z, x, y ,^) P(dz, dx, t, tQ | & * )

E [<D(xt) | * f ]  = Rn0R" ---------------- ------------------------------
J A(z, X, t) P(dz, dx, t, tg |

R n®R"

where

P (z, x, t, tg | = Prob{xt ^  z, x ^  £ x | j f }  =P(z,x,t,to)

which follows by Remark 2.2.2 (ii), (b), (c). Thus,

J  d>(z)A(z, x, y^ t) P(dz, dx, t,

E [ * ( x t) | * f ]  = 3 .Dg 3 l   ----------------------------------------
J  A(z, x, y^ t) P(dz, dx, t, ^

R n® R n

Using the Markov property of xt and the fact that P(dz, dx, t, to) is absolutely 

continuous with respect to the Lebesque measure,

J  <&(z)A(z, x, y^ t) p(z, t; x, t0)ptfl(x)dxdz

E [d>(xt) | ^ f ]  =   (2.3.3)J A(z, x, y^ t) p(z, t; x tg jp ^ x ^ d z
R n® R n

where p(z, t; x, t^) is the conditional density of xt = z given xtQ=x.

Further, if E [d>(xt) | &*] = Jd>(z)p(z, 11 ^ ) d z ,  where p(x, 1 1 r f )  is the normalized
A

conditional density of xt given for any Borel set Ae we have

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Prob{xte A | & * }  = J  p(z, t \ & * ) d z  = E [I{(0. Xt((0)GA} |-^ f] and from (2.3.3), since 
A ’ ‘

P(dz, dx; t, tfl) is absolutely continuous with respect to the Lebesque measure, we have

J  A(z, x, y^ j) p(z, t; x, tg) p^(x)dx

P ( x t, t |5 f )  = -------------  (2.3.4)
J  A(z, x, y^t) p(z, t; x, tg) p tQ(x)dxdz

R n® R n

Remark 2.3.1

Recall that the unnormalized conditional density p(-, •) of xt given the fil tra tio n ^  

satisfies the stochastic PDE (1.1.6). Referring to (2.3.4), we shall show that

r(z, t; x, tg) = A(z, x, y^ t) p(z,t; x, tg) (2.3.5)

is the fundamental solution of the DMZ equation. Notice also that the numerator of 

(2.3.4) equals the unnormalized density p(z,t). The denominator of (2.3.4) is its 

normalization part

The following definition is from Friedman [60, pp.3].

Definition 2.3.1 A fundamental solution of the DMZ (1.1.6) is a function 

r(z, t; x, s) defined for all (z, t) and (x, s) in R^tO.T], t > s, satisfying

p(z, t) = J  r(z, t; x, s)ps(x)dx. (2.3.6)
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Theorem 2.3.1

Suppose a fundamental solution r(z, t; x, s) for the DMZ equation exists. Then 

r(z,t; x,s) as a function of (z, t) satisfies

dr(z,t; x,s) = L(t) *r(z,t; x,s)dt + h(t, z)r *(z,t;x,s)dy t, s ^ t ^ T
lim r(z,t;x,s) = 5(z -  x)

Proof: To prove (2.3.7) we follow the same approach as presented by Zakai [134] 

and Wong [131] up to the point where we define r(z,t; x,s) as in (2.3.5). Thus, applying 

the Ito differential rule to \  and then taking conditional expectation, we obtain, 

respectively,

tis

with

J  r(z, t; x, s)ps(x)dxdz
R n®Rn

t
6  x t, = 1 {J  Agh T(s, x) dys | ^ t, x t, x^} .

0

For t £ s £  0 define

Bl = ̂ ys * a{xu, yu, ^  ^ u ^ s ] ,B 2 Ao{yT- y s, s ^ x ^ t ]  and 

B A^ s V<xP * o )-
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Since under measure $, 3 ^  s is independent of 3 ^  and {ys, tg £  s £  t} is a Brownian 

motion, it follows that and B2e ^ t are independent given B, i.e.,

£ { § ,  B2 |B} = ${Bi |B } £{B2 |B}.

By Theorem 7.E.4, for any Ae

${A | B2, B} = ${A | B}.

Hence, E h(s, x ) | ^  t V{xt, x^}) = E (A, h(s, x ) ^  V{xt, xg}).

Using the smoothing property of conditional expectation

E(AS h(s,x) l* ^ )iSV{xt,xto})=E{E(As h(s,x)\ 3 ^  s V t x ^ x ^ } )  V l x ^ } }.

Because of the Markov property of (xs, ys), 3 ^  and xt are conditionally independent

given {x^, xs} and {ys}, therefore Bj and {xt} are also independent given {x^, xs} and 

B, that is,

S ffjV Ix ,}  I f x ^ l  V ^ D - S t B J l x ^ x , )  V ^ ^ l l x ^ x , )  v y » s).

Using Theorem 7.E.4, for any A e 3 ^ ' \
K)̂

S (A l < ,x  V< V s >  V(x.J) = ?  ( A | V l x ^ ,  xs)) .
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Therefore,

t
E (A (xlo>t,y to>t) | ^ f , x t,Xto) = 1+ J*E{h ^ s ^ E C A C x ^  s,yt())S) l ^ x ^ x , . )  | ^ )S,x to,x t }dys.

•o

Thus, by the independence of x., y. (and using Fubini’s Theorem, see Kunita [96]) we 

arrive at

t
A(z, x, y^ t) = 1 +J*[ J*h(s,£)A (4,x,y^ s)P(d^,s; z, x, t,tQ>]Tdys. (2.3.8)

*o R n

Next, we define r(z,t;x,tg) A A(z,x,y0>t) p(z,t;x,to) ^  by (2.3.8) we have

t
r(z, t; x, tQ) = p(z, t; x, to) + f  [ f  h(s, £) A(£, x, y. „)

0 R n * (2.3.9)

xp(£, s; z, x, t, t^) p(z, t; x, t<))d£]T dys .

Using the Markov property of xt,

✓e \ / \ P(^» x, t, s, t̂ j)
p(£, s; z, t, x, to) p(z, t; x, to) = ----   _  p(z, t; x, to)

p(z, t, x, to)

= p(z, t; £, s, X, to) p(£, s; x, tg) = p(z, t; £, s,) p(£, s; x, tg) 

substituting into (2.3.9), and using the definition of r(£, s; x, to), we get

t
r(z, t; x, t^) =p(z, t; x, to) + f [  f  h(s,£) r(£, s; x, ^  p(z, t; £,s)d£]Tdys. (2.3.10)

*o R n

The integral equation (2.3.10) is similar to the integral equation given in Wong 

[131] and Zakai [134]. Therefore, (2.3.7) follows by expanding (2.3.10) in the same
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fashion described by Wong [131] followed by an integration by parts. The second part 

of Theorem 2.3.1 follows directly from (2.3.4) by setting s = !q. Notice also that the 

integral equation (2.3.10) is similar to the integral equation obtained by Gihman and 

Skorohod [66 , Chp. 1, pp. 69] for multiplicative functions. QED

2.3.1 Robust Version of DMZ Equation

Next, we shall consider the robust version q of the unnormalized density p defined

as

-h ( t ,z ) y t (2 .3 .H )
q(z,t) a p(z,t) e

It was first shown by Clark in [33] and later by Pardoux [113] that q(z,t) satisfies the 

stochastic differential equation

4-q(z-t) = L(t)*q(z, t) + e(t, z)q(z,t), 0 £  t £ T (2.3.12)
dt

q (z ,0) = p(z, 0) a p0(z) 

where

L t(0 A Lt(-) -  y tTVh(t, z)a(t,z)^_(-)
dz

e(t, z) a i .y tTVh(t, z)a(t,z)(Vh(t, z))Tyt

-  y,T +L,h(t, z ) ) - i . |h ( t ,  z )|2
dt Z

a(t,z) a o(t, z) a  (t, z)T .
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Remark 2.3.2 The robust version of the DMZ equation exists if the 

multiplications by h‘ and h1 of the stochastic part of the DMZ equation commute. When 

there is correlation between measurement noise and state noise, this commutation property 

is violated, so no such robust representation exists.

The following proposition establishes the relation between (2.3.12) and its 

fundamental solution.

Proposition 2.3.1 Suppose a fundamental solution T(z, t; x, s) for the forward 

partial differential equation (2.3.12) exists. Then T(z, t; x, s) as a function of (z,t) in 

R’bcfO.t], 0 < s < T satisfies

jlr (z ,t ;x ,s )  = L(t)* T(z,t; x,s) + e(t,z) r(z,t;x,s) 
dt (2.3.13)
lim r(z,t;x,s) = 8 (z-x) 
tis

where the solution to (2.3.12) is given by

r  -h(x,s)ys
q(z, t) = J  T(z, t; x, s)e  p s(x) dx. (2.3.14)

R n

The relation between r(z, t; x, s) and T(z, t; x, s) is given by

r(z, t; x, s) = exp {h(t, z) yt -h (s , x)ys}T(z, t;x , s). (2.3.15)

One can easily show by direct substitution into (2.3.12) that (2.3.14) satisfies

(2.3.12). Moreover, using the same approach it can also be shown that (2.3.15) satisfies

(2.3.7).
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Remark 2.3.3 The fundamental solution r(z, t; x, s) or its robust version 

r ( z ,  t; x, s) is a version of the Kallinupur-Striebel formula considered by BeneS [4] and 

BeneS and Karatzas [6] to obtain the fundamental solution of the DMZ equation using a 

probabilistic approach. In their work [4,6], the function space integration

^^ { x tedz} ^ t l ^ t ^

is considered. This expectation, however, is exactly equal to the fundamental solution of 

the DMZ equation, namely the function r(z, t; x, s)dz.

2.32  Backward Stochastic Partial Differential Equation

Here we represent the solution to the backward stochastic differential equation 

given by Pardoux [113] in terms of its fundamental solution r*(z,t; x,T). We will also 

relate the solution to the adjoint of (2.3.13) in terms of the fundamental solution 

r*(z,t; x,T).

Again, referring to Pardoux [113], the adjoint equation to the DMZ equation is the 

following backward stochastic PDE:

dV(z, t) + L(t)V(z, t)dt + h(t, z)V(z, t)dyt =0 , 0 £  t £  T, @.3 16) 
V(z, T) = d>(z)

where V(z, t) A E {$(xT)Atj | i ^ .p X t} . If <.,.> denotes the L2 norm, then

(p(z,T),4>(z))=(p(z,t),V(z,t))=(p(z,s),V(z,s))= j* p^(z)fi{«6 (xT)A^ T \ 3 ^  T,xt()=z}dz
r “ ’ (2.3.17)
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Remark 2.3.4 The solution to (2.3.16) will be an .^ -ad ap ted  process. The 

stochastic integral has to be considered as a backward Ito integral. If we define 

y t A yt - y x, then dyt =dyt. Since yt is a backward ( ^ T, $) Wiener process, for all

tj< t2 ^T , y tj -  y^ is a Gaussian random variable with mean zero, and covariance 

(t2-tj)I, independent of

Definition 2.3.2 The fundamental solution of (2.3.16) in Rnx[0,T] is a function 

r*(z, t; x, T) defined for all (z, t) and (x, T) in Rnx[0,T], t<T, which satisfies for any 

continuous <b(z)

V(z, t) = J  r * ( z , u  W O d C  (2 .3 . i 8)
R “

Next, consider the adjoint equation to (2.3.12), given by 

d
_ u (z , t) + Lu(z, t) + e(t, z) u(z, t) = 0, 0 £  t £  T (2.3.19)
3 t y T h(T, z)
u(z, T) = <b(z) e

Again, u(z,t) and V(z,t) are related by

u(z, t) = V(z, t) exp{yt h(t, z)}. (2.3.20)

Indeed, u(z, t) is the adjoint of q(z, t) since, when u,q have compact support in a domain

G,
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J J  (VL*u -  u£,V)dzdt = 0.

J L  f  q(z, t)u(z, t)dz = 0. 
at ^

Alternatively, (for homogeneous equations) we say that u(z, t) is the adjoint of q(z, t) if

d

R"

In addition, carrying out this differentiation, we can easily derive (2.3.19).

Proposition 2.3.2 Suppose the fundamental solution of (2.3.16) and (2.3.19) exist 

Then r*(z, t; £, T) and T*(z, t; £, T) as functions of (z, t) in Rnx[0,T], 0 < t ̂  T satisfy

- lr* (z , t; £, T) + L(t) r *(z, t; £, T) + h(t, z)r*(z, t; £, T>dyt = 0
dt (2.3.21)
lim r*(z, t; £, T )  = 8(C~z) 
t tT

4 -  r*(z, t; C, T) + L(t) r*(z, t; C, T) + e(t, z) r*(z, t; C T) = 0 
ot (2.3.22)
lim r*(z, t; C, T) = 8 (£-z) 
t t T

V(z, t) = J  r*(z, t; £, T) <&(Q d£ (2.3.23)
R n

r  .  Yt  hCT> 0
u(z, t) = J  r*(z, t; C, T) <*>(0 e d£. (2.3.24)

R n

Proof: Substituting (2.3.23), (2.3.24) into (2.3.16), (2.3.19), respectively, and using 

(2.3.21), (2.3.22), equations (2.3.16), (2.3.19) are satisfied. QED

Remark 2.3.5 Equation (2.3.19) can be obtained by applying the backward 

differential rule to (2.3.20) as given in Theorem 7.B.3. One could obtain the same result
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if (2.3.16) is expressed in the Fisk-Stratonovich form through (7.B.1). Finally the relation 

between r*(z, t; T) and r*(z, t; £, T) is given by

^  yt h(t, z ) - y T h(T, 0  (2.3.25)
r  (z, t; T) = e r (z, t; £, T).

The following proposition is a consequence of analogous results for parabolic 

partial differential equations as presented by Friedman [60,Thm.l5,pp.28-29].

Proposition 2.3.3 Suppose the fundamental solutions r*(z, t; £, T) and

r*(z, t; £, T) of (2.3.16), (2.3.19), respectively, exist Then they are related to the 

fundamental solutions r(z, t; x, s) and T(z, t; x, s) of the stochastic and PDE’s of (2.3.7),

(2.3.13), respectively, by

r(z, t; £, x) = r*(C, t; z, t) , t > x (2.3.26a)

r(C, x; z, t) = r*(z, t; £, x) , x > t .  (2.3.26b)

with the above equalities satisfied if r, r* are replaced by T, T* respectively. Moreover, 

the solutions V(z, t), u(z, t) can be expressed as

V(z, t) = J  r(C, T; z, t) d>(0 d£ (2.3.27a)
R “

r  Vt  h(T , 0
u(z, t) = J  T(C, T; z, t) e O (0 d £ . (2.3.27b)

R n

where r(z, t; x, s), r(z , t; x, s) are the fundamental solutions to (2.3.7), (2.3.13), 

respectively.

Proof: The proof of (2.3.26a), (2.3.26b) is an easy extension of the proof found

in Friedman [60, Thm. 15, pp. 28-29]. Once we accept the relation (2.3.26a), then
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(2.3.18) can be represented as given by (2.3.27a). To show (2.3.27b), we start with

(2.3.18) and substitute for r*(z, t; T) using (2.3.25); thus,

V(z, t) = J  r*(z, t; £, T) exp {- yt h(t, z) + yx  h(T, Q ] <&(Q d£.

R n

By the relation (2.3.20) it follows that

c  yxh(T, 0
u(z, t) = J  T*(z, t; C, T) e d>(0 d£

R “

and (2.3.27b) is a consequence of (2.3.26b). QED

Remark 2.3.6 What we have shown up to this point is that if we start with two 

stochastic differential equations for p(z, t), V(z, t), the first evolving forward in time and 

the second evolving backward in time, we can express their solutions in terms of the 

fundamental solutions of p(z, t), V(z, t), respectively. The same also holds for robust 

versions q(z, t), u(z, t), respectively. Moreover, if p(z, t), V(z,t) are adjoints of each 

other, in the sense defined earlier, we can always express the solutions p(z,t), V(z,t) in 

terms of the fundamental solutions of V(z, t), p(z, t) respectively. Finally, we conclude 

that stochastic PDE’s have similar representations as nonstochastic PDE’s.

Next, we shall give some results on the existence of the solution to (2.3.12),

(2.3.19) which are characterized by Friedman [60] as Cauchy problems. The following 

proposition follows by the result of Friedman [61, Chp. 6, pp. 139-144].
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Proposition 2.3.4 Suppose assumptions (A2), (A3), (A4) are valid. Then there 

exist at most one solution q(z,t) and u(z,t) of the Cauchy problems (2.3.12), (2.3.19), 

respectively, satisfying

pi* i2 p i * i2
|q(z, t) | S B e  , |u(z, t) | £  B e

where B, (J are some positive constants. In our case both solutions q(z, t) and u(z,t) are 

pathwise dependent on the trajectory of y, which may regarded as a parameter.

If, however, we assume that (2.3.12), (2.3.19) are parabolic and (Al), (A2), (A3) 

are satisfied, then there exist fundamental solutions T(z, t; x, s) and T*(z, t; £, T), 

respectively, satisfying the inequalities

3m -  (n + | m | )/2  - C j l i l i £
|  T(z, t; x, s) | £  C i( t-s )  e e t - s

3 z m

am -  (n + I m |)/2
*  r* (x , t; T) I <5 C ^CT-t) e e T - t

d x m

for |m | = 0 ,1 , where C 'j, C '2, Cj, C2 are positive constants. Based on the above results 

the existence and uniqueness of the DMZ equation follows.

Remark 2.3.7 It should be noted that both p,V (also, r*, r) are measure-valued 

semimartingales, as defined in Appendix 7.B.
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2.4 PARTIALLY OBSERVED STOCHASTIC CONTROL AND ITS 
REPRESENTATIONS

Here we consider the stochastic control problem described by (2.2.1) - (2.2.4), and 

attack it by adapting the dynamic programming approach used for complete observation 

(see, e.g. Elliott [47]) to our problem of partial observation. First, we wish to convert the 

partially observed stochastic control problem to one which is completely observed and 

where the DMZ equation is regarded as the new state equation.

If ueU , then the total expected cost is given by (2.2.2). However, if the dynamic 

programming approach is used and control ve U0 s is used on the interval (0,s) and control 

ueU s T is used during the interval (s,T], then the expected cost at time s, given the 

observations up to time s, is expressed as

T

J(S, u) = E u { J 3i( t ,x tu, ut)dt + k ( x ^ ) |^ } .  (2.4.1)
0

Using the smoothing property of conditional expectation,

T

J(s, u) = E U{ E U [ J i ( t ,  Xtu , ut)dt + K(x") \ 3 \ )
0

T

= E u { J e u [n(t, xtu, ut) |^ ] d t  + E U [K(x“) | ^ . ] | ^ y } .
0

If we define a new measure as done earlier, then by using the concept of conditional 

independence as is done in the proof of Theorem 2.3.1, we obtain
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T/ V _  jjf f  xt , ut),p(x, t)> (k(xt ),p(x, T)>
J(s, u) = E {   ‘-L _ -------dt + —  '---------   | } ■

J  <l,p(x, t)> U,p(x, T)> s '

Again, applying (7.E.5),

T
AU r * K̂T’Pt \  I

I(s, u) = -----------2--------------------------------------
E [ A j | ^ ]

By the smoothing property of conditional expectation,

J(s, U) = ------------

Thus,

J(s, u) =
o <i7pt> U ,pT> s

T

E {J  {at,pt)dt + (kt ,pt > | ^ }

Since we are interested in minimizing controls used during the interval (s,t), then, 

as in dynamic programming, we need not be concerned with controls ve U0 s. Therefore,

by an abuse of notation (i.e., without introducing a new symbol for J(s, u)), we have

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



T
J(s, u) = E{J<nr(t, x “, Ut),p(x, t))dt + (K(xj),p(x, T ) ) | ^ } .  (2.4.2)

s

This is in fact the cost functional we shall minimize over all ue Us T. 

If we define

T
<Ps,T *  /  fo (t. x tU’ l))dt + (k (X j),p (x ,T )) ,

s

then

T
fs,T * E { k (x “t ) A"t  + J  A ", K t, x “t, Qt) 1

=  E ( E [ K (xsQt )  a “t  .  J  A“ t(t, x “ , u , ) d t | ^ T, x s] | < T 1
S

= (V(z, s), p(z, s)) = J  V(z, s) p(z, s)dz

R ”

where

T
V(z, s) A E {k(xsj  A“ t  + J  A“ t  n(t, xs“ , u t) d t | ^ T, xs = z ) .

s

The last equality of (2.4.4) is a consequence of (2.3.17).

Theorem 2.4.1

The expectation (2.4.5) satisfies the stochastic backward PDE
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dV(z, s) + L(t)V(z, s)ds + h(s, z)dys + i ( s ,  x, u) = 0, 0 £  s £  T
IimV(z, s) = k ( z ) .  (2.4.6)
stT

Moreover, if the fundamental solution r*(z, s; £, T) of (2.4.6) exists in R’ScfO.T], defined 

for all (z, s, £, T) in Rnx[0,T]xRnx[0,T], s < T, then it must satisfy (2.3.21).

Using proposition (2.3.3), V(z, s) can be written as

T

V(z, s) = Jr(C , T; z, s) k (© dC+J* J r (©  t; z, s) !(©  t, ut)d£dt. (2.4.7) 

R" SR"

Proof: First, consider the proof of (2.4.5). Since ^ ’ty and are conditionally

independent given V{xs}, then Theorem 7.E.4, (2.4.5) can be written as

T
V(z,s) =E{k (xŝ .) A“ t | ^ t xs=z}+E{ t3i(t,xs“ , u t) d t | V { x s}}

s
T

= E {k (x “T) T +J ( t ,  xsUt,u t)d t |x s =z}. 
s

The last equality can be shown as follows: Define B a {x„}, B, B? = .P*’y Then,
“  ^ o»l Oft

P(B, Bj, B2)
P(B2|B,Bi) =

P(B,B!)
P(B1,B 2 |B)P(B)

P(B! |B)P(B)

PfBj |B) P(Bj) 21
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where last equality follows since Py(w) is a Wiener measure.

Applying the Ito differential rule to V(z, s) as presented by Krylov [89,Chp. 1] we

deduce (2.4.6) which is also given in Bensoussan [10] and Haussmann [68]. Substituting

(2.4.7) into (2.4.6), one can show that (2.4.7) is the correct representation of the solution V(z, s)

by using (2.3.21) which also follows by Freidman [61,Chp. 6, pp. 139-144]. QED 

The robust version of (2.4.6) is obtained through the gauge transformation

yt h(s, z)
u(z, s) = V(z, s) e

Proposition 2.4.1 The random function u(z,s) satisfies the partial differential 

equation

9  _  v _  _  y sh(s,z)
— u(z,s)+Lsu(z,s)+e(s,z)u(z,s)+3i(s, z, u)e =0, O ^ s ^ T  (2.4.8)

yTh(T,z)
u(z,T) = K(z)e

Furthermore, if a fundamental solution T*(z, t; £, T) of (2.4.8) exists in Rnx[0,T], defined 

for all (z, s, C, T) in Rnx[0,T|xRnx[0,T], s < T, it satisfies (2.3.22),

4 - r * ( z ,  s; C, T ) + L ( s ) r * ( z ,  s ; £ , T )+e(s, z) r * ( z ,  s; £ , T)  = 0 , 0 < s < T
dS

(2.4.9)
lim r*(z, s, C, T) = 5(C-z). 
sTt

The solution u(z,s) can be represented as
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r  yxh(T,0 I  ,  yth (t,0  (2.4.10)
u(z,s) = J  k (C)r(C,T;z,s)e d£ + J  J  T(C,t;z,s)e i  (t,C,u)d£dt.

R n SR"

Proof: It follows as in Theorem 2.4.1. QED

Theorem 2.4.2 The cost function (2.4.2) can be expressed as 

J(s, u) = E{(V(z, s),p(z, s ) ) \ & * )

= E{ J(r(C , T ; z ,  s),p(z, s)> K(QdC 

R n
T

+ J  J  (t& , t; z, s), p(z, s)) i(C , t, u)d£dt|.S^}
S R n

where the expectation E is with respect to the Wiener measure Py (dy).

Proof: The first equality is just (2.4.4) and the second equality follows from

(2.4.7). QED

2.5 DERIVATION OF THE DMZ EQUATION WITH TERMINATION

Suppose the state and observation processes satisfy (2.2.3), (2.2.4), respectively, 

where in this case the Markov process {xt, 0 £ t £  T} terminates at some time x > s w.p. 

1 and is interpreted as the first exit time of the state process Xj from some open bounded 

set D with C^-boundary 9D. For this version of the stopping problem the only available 

information is given through the noisy measurements {yt, 0 £  t <, T}. Our problem is to 

derive an evolution-type stochastic PDE that describes the behavior of the unnormalized 

conditional density.

Thoughout the remainder of this section we shall make the following assumptions.
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(a) The coefficient f, a , h of the stochastic differential
equations (2.2.3), (2.2.4) are bounded, twice continuously 
differentiable having bounded first derivatives.

(b) The initial density satisfies assumption (AS) given earlier.

(c) The function <f>(x) is bounded with compact support in
(0,T)xD.

We start by noting that the time x(co), cue £2 must be an ^ -a d a p te d  process.

Therefore, by the definition of stopping times given in Appendix 7.B, it is a stopping time 

with respect to family of c-fields te[0 , T]} since the event {x <. t}

Moreover, by c  it follows that x is also a stopping time with respect to the

family te [0, T]}. Using the exponential formula of Theorem 7.E.1 we define

x
\  A # (  J h  T(s, Xs)dys)

0

with

d iVy>

where PT(y), denote the restriction of measures P, & (i.e., the measures introduced

earlier for the case x > t) on the o-algebra Due to the bounded assumption on h(t, xt), 

x(y)
it follows that PT(y) { J  |h(t, xt) |2dt < °°} = 1, a.s.; therefore, by Girsanov’s Theorem 

0
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(Theorem 1 1 1 2 )  E[A j] = 1 (that is PT̂  «  and by Remark 7.E.3

Pt (y) «  Pt (y), so PT(y) -  £t (y). At this point we like to follow the approach presented

by Pardoux [113,114] to first derive a backward PDE the adjoint of the DMZ equation. 

Thus, we formulate the filtering problem by considering

E t* M ^  .  ^
EtA x| ^ ]

where we drop the dependence of x on y by keeping in mind that under measure PT the

stopping time % is a function of y, a standard Brownian motion process. By the proof of 

Theorem 2.4.1 we are left to consider the quantity:

V(x,s) = E[d>(xx) Ast | Xs] (2-5-D

where, x  >  s a.s..

ysh(s, xs)
Next, defining u(x, s) = V(x, s) e as in (2.3.20), we are required to

determine a partial differential equation satisfied by

T

y h(Tjc_) / e(0-x«’y«)d0 <Z 5-2>
u ( l , l ) = E { 0 ( l , ) t W . ‘ |xs = x).

Notice also that the drift coefficient of (2.2.3) is now replaced by 

f(t,xt) - a(t, xt)(Vh(t,xt))T yt).
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The approach to be followed is based on the work of Dynkin [46, Chps. 9, 10], 

Prohorov and Rozanov [116, pp. 277-282], Gihman and Skorohod [66, pp. 63-75], Hibey 

[74, pp. 39-44] where the above authors treated the same problem when the state process 

is completely observed and the second exponential term of (2.5.2) is a standard 

multiplicative functional of the state process xt, that is, the functional of Xj defined by

satisfying psx = ps>t for s £  x ^  t and 0 £  ps t $  1. In our case ps t is not standard

unnormalized conditional expectation. Dynkin [46, pp. 283] calls such a function a quasi

transition function.

Following the same approach as in Hibey [74, pp. 39], suppose we are given 

function £(g>), G>eQ taking values in the interval [0, «>]. The Maikov process xt(Q>) 

defined on the space Q , where te [0, £(©)] for each coe £2, takes values in the measurable 

space (Rn, Bn), the state space having a transition function P(x, t; x, s). Suppose a new 

process x t((0) is obtained by terminating the process Xj at some random time x(£0) <, £(©),

where x(0)) is an ^ -a d a p te d  stopping time. Then the time set te [0, 4] on which the 

original process was defined can be replaced by the time set te [0, x(y)].

s
Ps,t A e

in that it is not homogeneous and is not bounded above by one because u(x,s) is an
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Assume there exists a constant c such that -  e a  e(t, x t, y t) + c £  0; then (2.5.2) 

can be expressed as

x
v h f t v )  - | e y( u , x ) d u  -c (x -s ) .

u(x, s) = E t ^ )  ey* mT,y*> e {  |xs = x] e

where the ^ -a d a p te d  process x(y) can be removed from die expectation via (2.5.1).

Now, let each trajectory of the original process xt(o)), when taking the value 

xt(co) = xe(R n, Bn) terminate during the following period of time At with probability

e y (t, x) At + 0(At), e y £ 0 which is pathwise dependent on the trajectory of the process

yt(co). This density is called the termination density of the new process. The new process 

x t(co) obtained in this way will terminate at some random time x(y) where

0 <, x(y) £  £(go) for all ooeft. The function £(©) is called the lifetime of the original 

process xt(oa), or the terminal time. If £(co) = <» then we say that xt(co) is non-terminating 

for all coe £2. The terminated Markov process xt(©) will have the same drift and

diffusion coefficients as the original process xt. Denote the completion of Bn by B n . 

Then, for coe£2, if we define f(y) A x(y), x t(co) a  xt(to) for 0 ^  t <, x(y) and

where subscript x denotes conditional probability measure on xs, then xt is

also a Markov process in the state space (R n, B n) of lifetime %{y) with measure x
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(see Dynkin [46, pp. 301]). That is, if we denote by £, £ the duration of the processes 

xt, xt , respectively, then x t can be obtained by the truncation of the duration of the 

process xt.

At this point we adapt the methodology presented by Prohorov and Rozanov 

[116, pp. 278-281] by defining the probability of surviving until time t, given that the 

process moves along the paths of Xj, yt by

t
- J i y(u, x„)du 

P(x > t |x u, yu, 0 £  u £  t) A e S

By the equivalence of measures Pt>x ~ PT x we have for any [$€ B n

Pr,x(xte P lxs = x) = ^x,x txte P»x > t lxsJ = ^t^{©;xte P) n  {co;x>t} lxs = x^
= E[E(I{a).X t € n  {W;T>t)|xu, y u, s ^ u ^ t ) | x s = x)]

where E denotes expectation with respect to measure PT>X.

But, under measure P tpc, x. and y. are independent, so

p x ,x  (<&• dy) = P t . x  (* 0  Py (dy) 

where Py is a Wiener measure. Therefore,
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By the definition of u(x, s) it follows that

- c(t -  s)_ 
u(x, s) = e u(x,s)

where

T

.  y , h(x, x,) 
u(x,s) A E [e e s |xs = x].

Moreover, the random process u(x, s) satisfies the functional relation

u(x, s) = J  u(z, t) PT(dz, t; x, s)
D

in which P^Xje P; xs = x) denotes the transition function given by (2.5.3) and

y & iv y d
u(z,t)=e <b(z). The function u(x, s) satisfies the Feynman-Kac equation

+ L s u(x,s) -  e y(x, s) u(x, s) = 0 , (s, x)e [0,t]xD
os

-v , , y t h^ ’xt) ^  (2.5.4)u(x, t) = <D(x)e , x€ D

u(x, s) = 0 , (s, x) e[0 , t),x3D.
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— —c(t ~s)Since, u(x,s), u(x,s) are related by the factor e if follows from (2.5.4) that u(x,s)

satisfies

^Û C* + L s u(x, s) + e(x, s) u(x, s) = 0 , (s, x) e  [0, t]xD

u(x, t) = 4>(x)e
y t h ( t ,x t)

, xeD

, (x, s) e[0 , t),x9D.

(2.5.5)

u(x, s) = 0

The resulting boundary value problem (2.5.5) is investigated by Friedman 

[60, Chp. 3] when the pathwise dependence on the process yt(co) is eliminated. The same 

author classifies such problems as first initial-boundary value problems. Existence and 

uniqueness results on the solution to (2.5.5) are given by Friedman [60, Chp. 3].

Remark 2.5.1 Suppose a solution u(x, s) to (2.5.5) exists. Then, using an earlier 

formula stated in this section when i  > t, we have

Using the methodology described earlier for nonterminating diffusion processes 

we can derive the adjoint equation to (2.5.5) which satifies a forward PDE. The results 

are summarized in the following theorem.

Theorem 2.5.1

Suppose the state process xt is defined on an open bounded domain D cR n having 

a C^-boundary 9D (i.e., 9D is a manifold of class C2). Assume that f, a  (i.e drift and 

diffusion coefficients of xt process) are bounded and twice continuously differentiable

E[<D(xt) | * f ]  -  J  u(x,0 ) p0(x)dx.
D
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with respect to x and the operator L  is of parabolic type. Then the robust version of the 

DMZ equation satisfies

^ ( z , t )  + t(t)*q(z, t) + e(t, z t) q(z,t) = 0 ,(t,z)e[0,t]xD

q(z,0) = p0(z) ,x e D  (2.5.6)

q(z,t) = 0 ,(z,t) e[t,0)x3D,

where q(z,t) has a unique continuously differentiable solution q(z, t) for any smooth initial 

density p0(z).

Proof: The existence and uniqueness of the solution q(z, t) follows by direct 

application of the results presented by Friedman [60, Chp. 3, Thm. 16, pp. 82].

Remark 2.5.2 The physical interpretation of the stopping time T associated with 

the state process xt is interpreted as the hitting time of a suitable boundary by the 

conditional distribution q(z, t).

Remark 2.5.3 One could also derive the result of Theorem 2.5.1 by modyfying 

the approach considered in proving Theorem 2.3.1 as follows. First replace (2.3.1) by

EL<P(xt)I{u . ((0)6D} |.^ ]   ------------------------------------

and use the smoothing property of conditional expectation thus,
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W M  W D 1
E[E(At | ^ f , x t,x0) |^ f ]

^^(lfi;xt({fl)eD}^xt) E(A tl«^. x t, x ^ ) ] ^ ]  

E[E(At |^ f , x t,x 1()) |^ f ]

Since the domain of the infinitesimal operator of the nonterminating diffusion process 

{xt, t £  0} given by (2.3.3) is contained in the domain of the characteristic operator of 

the terminating process {xt, 0 £  t £  x) ( t  4 inf {t £  0; xt«D})

(see Dynkin [46, pp. 143,Vol. 1]) defined as

E[f(x-)|xs = x] -f(x)
L(s)f(x) = lim -  - , . - s____. .  .

D ix  E[x|xs = x]

and the above limit coincides with the limit of (7.F.5) for any (^-functions f, it follows 

that for diffusion processes satisfying the strong Markov property (see, Wong and Hajek 

[132, pp. 19 for definition), L(s) of (7.B.5 ) takes the form of the second order operator 

given by (7.F.6).

Therefore, we have

j"<J>(z)A(z, x, yt()t)p(dz, dx, t, ty)

E[<l)(xt)I{(0;Xt(a))e D) l-^f] = — p z----------------------------------
J A(z, x, ytot)p(dz, dx, t, t^
D

where

P(A, x ,t,to) = Prob{xte  A, x ^  = x}, for any Borel set AeD.
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It is now clear that the proof of Thorem 2.3.1 could be adapted to show that

where r(z,t; x,s) is defined by (2.3.5) and satisfies the stochastic PDE (2.3.7) on the 

domain [0,T]xD and

As a consequence of (2.5.7), (2.5.8), the representations derived earlier for nonterminating 

processes could also be modified to cover the case of the current section.

2.5.1 An Upper bound on DMZ Equation with Termination

We shall now find an upper bound for the unnormalized conditional density p(z,t) 

given by (2.5.7), (2.5.8) using the representation methods introduced in this Chapter.

Suppose r(z,t; x,s) is the fundamental solution of the DMZ equation. Then using 

Friedman [62, pp. 346] the function r(z,t;x,s) of (2.5.7), (2.5.8) is called a Green’s 

function for (1.1.6) in the domain (0, °°)xD. If r(z,t; x,s) is unique we can construct the 

function ?(z,t;x,s) by

where r(z,t; x,s) is the fundamental solution of the DMZ equation satifying (2.3.7) as 

shown by Theorem 2.3.1. Notice also that rj(z,t; x,s) should be the solution to

(2.5.7)
D

p(z,s) = ps(z) , xeD  
p(z,t) = 0, , (t,x)e [0,t)x3D.

(2.5.8)

r(z,t;x,s) =r(z,t;x,s) + r1(z,t;x,s) (2.5.9)
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<hj(z,t;x,s) = L(t)*r1(z,t;x,s)dt+hTi
lim r1(z,t;x,s) = 0  
tis
r1(z,t;x,s) = -r(z,t;x,s)

(t,z)rj(z,t;x,s)dys , [0,T]xD
, zeD  (2.5.10)

, (t,z)e(0,T)x9D.

That is, the unnormalized conditional density given by (2.5.7) can always be constructed 

by (2.5.9), (2.5.10). An application of maximum principle (see Friedman [Chp. 6 , 

pp. 132-133]) implies that rj(z,t; x,s) is always less than zero. Therefore,

which provides an upper bound on u(z,t) also. Thus, if we can solve (2.3.7) we can 

determine the upper bound of the unnormalized conditional density of a diffusion process 

terminated at the first exist time from D.

We conclude this chapter by presenting the following table to assist the reader in 

referencing the several processes we have introduced.

r(z,t;x,s) £  r(z,t;x,s)
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Table of Measure-Valued Processes and their Representation

Process Defining
equation

Differential
operator

Time
Equation

Adjoint
Process

Fundamental
Solution

Representation

P 1.1.6 L* forward V r P=/rPsdx

V 2.3.16 L backward P
•r V=Jr*<MC

q 2.3.12 V forward u r q=JVe'hypsdx

u 2.3.19 I backward q r *
u=Jr^<PehydC

r 2.3.7 L* forward *r - -

*r 2.3.21 L backward r - -

r 2.3.13 L* forward r* - -

r* 2.3.22
V

L backward r - -
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CHAPTER 3

NONLINEAR FILTERING PROBLEM: LINEARIZATION OF STOCHASTIC
DIFFERENTIAL EQUATIONS

3.1 PRECISE PROBLEM STATEMENT

Suppose the state process {x^tefO.T]} is defined by the stochastic differential 

equation

dxt = f(xt)dt + c (x t)dwt , x,o = x0  (3.1.1)

and is observed via

dyt = h(xt)dt + dbt , y to=y0 =0. (3.1.2)

For the moment we shall assume that conditions (A1)-(A5) of Section 2.2 and conditions

(i), (ii) of Remark 2.2.2 are satisfied, thus the unnormalized density of xt given the

filtration satisfies the stochastic partial differential equation (1.1.6).

In the ensuing sections we shall investigate the nonlinear filtering problem by first 

considering a measurable mapping of a state space (E, B) of a Markov process x onto

the space (E, B) such that d>(B) c  B , where Px denotes the probability measure of the

xt-process. The above mapping is assumed to be a local diffeomorphism with d>(x)

defined by d>:U—>VeE with U an open set in E. Now, if we define Zj a d>(xt) and
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3 ^  a a |z s, o ^ s  ^  t | , the a-algebra generated by events [zteA , t ^  0} for A eB, then

we can define measures $z on 3 ^  such that

$z{zteA} = {xted>_1(A)}

where zt also forms a Markov process. Generalizing the above formulation to measures 

restricted on certain Borel sets (i.e., Borel sets generated by observations) we have a way 

of recognizing equivalent filtering problems related by local diffeomorphic 

transformations. When U, V are replaced by Rn and <D(x) is a global diffeomorphism 

onto Rn, then d> becomes a measurable mapping of the measurable space (Rn, Bn) onto 

itself.

Diffeomorphic transformations of the above type appear to be significant in 

relating equivalent filtering problems. That is, once the conditional density of z is 

obtained, the conditional density of x can be determined and vice-versa. Moreover, if a 

second type of transformation is used, that is, if a change of scale on the unnormalized 

density p(x,t) is performed by p(x,t) -» 'Ffr) p(x,t), then p(x,t) can be obtained from 

p(x,t) as long as 'F(x) is a nonnegative function. It is shown by Brockett [27] that the 

estimation algebra is invariant under the above two types of transformations, with the 

second transformation sometimes being called a "gauge" transformation, often used in 

physics (classical mechanics).

The following remark relates conditional densities defined under two coordinate 

systems.
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Remark 3.1.1 Suppose that <D: Rn —> Rn is a one-to-one and invertible mapping 

such that d> and d>_1 have continuous partial derivatives with respect to the coordinates. 

Furthermore, suppose that Xj has a conditional density p(x, t). Then Zj = d>(xt) also has 

a density function, which is given by

p(z,t) = p(d>_1(z,t) | J(z) |

where J is the Jacobian matrix of first partials and |J(z) | is the absolute value of its 

determinant (see Wong and Hajek [132, pp. 9-10]).

3.2 LOCAL LINEARIZATION OF STOCHASTIC DIFFERENTIAL 
SYSTEMS: NECESSARY AND SUFFICIENT CONDITIONS

In this section, we shall consider the stochastic analog of the control system

defined in Appendix 7.A where local state-feedback linearization is considered to

transform a nonlinear control problem into an equivalent linear controllable system. We

shall show that the stochastic system 3.1.1 is linearizable up to a stopping time x if and

only if the deterministic control system obtained by replacing wt with ut is linearizable.

The stopping time x(xq) is such that ( x(xq) <1 t}€ for each te [0,T], thus x is a stopping

time with respect to the family of o-fields {&~v  te[0,Tj}.

Suppose the control input of (7.A.1) is replaced by a more general input such as

white noise. Then, by rewriting (7.A.1) in terms of an Ito differential equation, we have

m
(12,^ P) Zj: dxt = f(x,)dt + EC j(xt)dwtJ , 0 < t £ T  (3.2.1)

j=l

where
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1 n'm : 
f ‘(x) 4  f '(x ) + * £  o [ _ 2 ;

2 j*  ^

the differential term in f 1 is sometimes called the "correction term" (see, e.g., Wong and

Hajek [132, pp. 155-163]). Furthermore, assume that the vector fields f, Oj, j = l , .... m 

are bounded on an n-dimensional manifold M. By Friedman [61, p.104-105], there exists 

a unique solution Xj ~ 3TV 0 :£ t < x. We shall first consider the case when m=l and then 

generalize to the multi-input case. We are interested in the behavior of (3.2.1) when 

defined in an open neighborhood U° c  M of some point xQe M where x^0 denotes the 

first exit time of xt for U°.

We start by introducing a new probability measure $  on (ft, 9 ^  defined by

where

tAiyO tAtyO

tAtyO J  a(xs)dws - 1  J  |a(xs) |2ds

A j1 = 8 ( J  a(xs)dWg) = e ° °
0

Thus,
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-  J  a(Xs)dws - i .  J  |a(Xs)|

Aj = e

-  . , - v . , , 2<ls
„ 2  r  y  <3-2-2)

where a ^ )  is an adapted, predictable process, and by Girsanov’s Theorem (Theorem
tAXuO

7.E.2), under measure $ ,  the process w t = wt -  J  a (Xs)ds e  Mloc( ^ ,  P ) with
0

<w., w )t =t so that w is a standard Brownian motion (see Remark 7.B.4). Therefore, 

system Zj is transformed to

(£2, P) 2^: dxt = (f(Xt)+ a (X,) a ( Xt» d t+ a (Xt)dwt , 0  £  t < XyO. (3.2.3)

Moreover, the ^[-adapted process Xt, 0 £  t £  XyO with stopping time XyO taking values

in U ° c M  is the solution of

t t
X{ = J  (f(Xg) + o(Xg) a(Xs))ds + J  o(Xs)dws , 0 <, t < xy o.

0 0

When Is eXpressed in terms of a Fisk-Stratonovich representation (using 7.B.1), (3.2.3) 

is equivalent to

( £ 2 ,^ ,  &)Z3: dxt = (f(Xt) +o(Xt) a ( Xt))dt +a(X()*dwt , 0 <. t < XyO. (3.2.4)

Remark 3.2.1 System £3  has the same eXact form as (7.A.2) with P(x) = 1 that 

was obtained in Appends 7.A by applying a nonlinear feedback transformation 

u = a (X) + v to (7.A.1) (i.e., both are in F-S form, but the input in (7.A.3) is a 

deterministic control whereas the input in (3.2.4) is a random process). Thus, we can
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view the martingale translation dwt = dwt + a(x t)d t as the dual of nonlinear feedback

transformation, and the rest of the analysis from this point forward will, for the most part, 

be identical to the analysis following for deterministic systems (see, Isidori [79, Chp. 4]).

Although the deterministic linearization is well understood by now,

(see, for example, Isidori [79, Chp. 4-5] and references cited in Section 2.1), we shall 

present some of the concepts involved in obtaining equivalent linear controllable 

stochastic systems assuming a nonlinear stochastic system is given.

Suppose the measurable map <b is such that the following conditions are satisfied 

for all x°eU °cU :

n dd>t .
£  _ _  (f J(x) + oJ(x) a(x) + o^(x)*dw) = <j>2(x), 

j= l

n 3(h0
E  — (f  J(x) + o^x) a(x) + o1(x)«dw) = <t>3(x),

j= l 3xj
: (3.2.5)

n 8d)n -
£  _ _ — (f  J(x) + c^x) a (x)+  a I(x)-dw) = <t>n(x) 

j= l dxj

where f*, o* are the j-th components of the vector fields f,a, respectively.

If we use the notation (., .)j introduced in Appendix 7.A, we can rewrite (3.2.5)

as

Cd<t>|, f  + a  a  + a*dw)| = <(>j+ 1 ,  i = 1, ... , n - l .  (3.2.6)

Since the first n - 1 equations are not excited by the noise term, we shall have
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<d<j>j, 0>! = 0 (3.3.7)

<(%  f)j = (j)i + 1 , i = 1, n -1 (3.2.8)

and

Cd<j>n,f  + o a + o  *dw)j = + (d<J>n,oa)! + (d ^ .a )!  *dw. (3.2.9)

Next, using the identity

(dX, [ f+ o a , a]>j = (dvdX.a^, f +00)! -<d(dX,f+00)2,0)!
(3.2.10)

“  f̂+aa^<A “ ̂ a^f+ca^

given by Isidori [79, pp. 10], which is an application of the Leibnitz rule, we rewrite 

conditions (3.2.7) - (3.2.8) in terms of <|>| as follows:

(d<J>!, adf(o))! = 0  i = 0 , 1 , „., n - 2 ; (3-2-n )

Define

(d<|>!, ad" _1(o))i *  0.

o(x) a -  Lfn <{)1(x)(L0L j" 1^ 1(x))-1.

(3.2.12)

The last two conditions imply that the existence of the scalar field <|>| is necessary 

for transforming system Z3 to X4 given by:

dzu 0  1 0  ... 0 zlt 0

d ^ t 0  0  1 0  0 *2t dt +
0

<Kt_
• •• V

0  .............  0 .V

.......\
1C 

Vm
JJ

\

>dw, (3.2.13)
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where the new coordinate system is related to the original coordinate system by 

z »a t  n  =  J -  Moreover, it can be shown (see Isidori [79, Chp. 4, Lemma 2, pp.

148-149]) that a necessary condition for (3.2.11) - (3.2.12) to hold is the linear 

independence of the n vector fields

o(x), adf (a)(x), ..., adf_1(a)(x) (3.2.14)

for all xeU . But, if condition (3.2.14) is satisfied, then the distribution

A = span {a, adf(o), » .,ad"- 2 }(x) (3.2.15)

is nonsingular and (n-l)-dimensional for all xeU. Thus, since A is nonsingular for x°e U, 

condition (3.2.11) implies that distribution A is completely integrable for x°eU , so there 

exists a scalar field <j>j. Finally, due to Frobenius Theorem, (Theorem 7.A.1) the 

distribution A is involutive for x°eU, thus proving necessity of involutive distribution A. 

The equivalence of systems 2^, is understood up to the stopping time XyO. That is,

the solution Xj of 2^  can be obtained from the solution of Z4 at least up to a stopping 

time xITo, where z~  . = <&(x-. J  if x- ne U °  c  U and z . n = 0 otherwise, because
u  '•yo ‘y o  '-yo y

of the assumption that <b is a local diffeomorphism on U and Zq = d>(xy) eU ° c U .

Conditions (3.2.11) - (3.2.12) are also sufficient as shown by Isidori 

[79, Lemma 2.5, pp. 165].
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Remark 3.2.2 For the rest of this chapter we shall assume that LgL,"-1^  is

independent of x, so, without loss of generality, we can set L qL"-1^  = 1 .

Definition: Locally Linearizable Stochastic Systems.

The nonlinear single-input stochastic Ito differential system Ej defined on a 

probability space (Q, SFV 9 )  is said to be locally linearizable if given an initial condition 

Xq, there exist a neighborhood U° of Xg, a local diffeomoiphism $  defined on U°, and

a Wiener process wt = wt -  J  a(xs)ds also defined on U°, up to a stopping time
0

TyO a  inf {xt«U°; Xq€U°}, such that the corresponding stochastic equation when 

defined on a new probability space (ft, STV 9 )  is linear and of the form

tA ty O  tA iy O

= ^<xo )+ /  Azs ds+ J  Bdws
(3.2.16)

's*
0 0

Furthermore, the nxn matrix A and nxl vector B are a controllable pair.

Theorem 3.2.1

Suppose that the single-input stochastic system Ej is defined on a C°°-manifold 

M of dimension n, with f, o , both bounded on M of C°°-class. Then, system Ej is locally 

linearizable in a neighborhood U° of Xq if and only if the deterministic control system is 

locally linearizable. That is, if  and only if the following conditions are satisfied:

(i) {o, adf<a),..., ad^a)} (xq) = T ^ U 0;

(ii) A = span {a, a d ^ a ) ,..., adn'2f{a)} ( x q )  is involutive near Xq .
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Proof: Follows from the deterministic analog by choosing U°cU. QED 

The Multidimensional Case. The result of Theorem 3.2.1 can be extended to 

stochastic differential equations with more than one input This follows from its 

deterministic analog stated by Isidori [79, Chp. 5]. Once we assume deterministic 

linearization we proceed in the exact manner as presented for the single-input case. Thus 

we introduce the coordinate transformation

z 1 = (fy, Lf fy ,..., Lf1"1̂ ) 7  = d>\ i = 1, 2, m, rj + r2 +... + rm = n 

and define the exponential formula as in Theorem 7.E.2 by

tATTIo tATno

_i i 
Aj t e

Therefore, by martingale translation, Theorem 7.E.3,

m  *

Wtj = w / -<wj, E JaM w ^tA tyO  , j = 1, 2, ..., m (3.2.18)
i=l 0

is a standard Brownian motion with respect to measure $ . Writing (3.2.18) in vector 

form we have,

^ u 0

Wt = Wt -  J  Im« sds e  Mloc («S*[, $)
0

where wt, wt, a  are mxl vectors and ^  is the mxm identity matrix. If we define
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a(x) a p _1(x) fi(x) a -

rj-l 
LCTjLf 4*1 ~ Hi 

ii »-* 1
-e

-~
* -1

L 'V l

L*1Lfm‘1<l>,n - T T r,n~lA
<rm f ™

I f,nA 
. f ^m.

(x)
(3.2.19)

then, under probability space (A, SFX &) the original system (3.2.1) is transformed to

(3.2.20)
m

dzt‘ = Aj zt* dt + Bj dwt' , wt‘ = £  P^dwtJ
M

where py denotes the (i j)-th component of matrix p.

As in the deterministic case, the rj x q  matrix Aj and rj x 1 vector Bj are of the

form

0 1 0 .. 0 0

A i =
0 0 1 0 :••• •

1 » ®i =
0

_0 0 ... 0 1

, 1 <, i ^  m. (3.2.21)

Remark 3.2.3 With appropriate modifications, Theorem 3.2.1 for single-input 

systems also applies to multi-input systems.
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3.3 GLOBAL LINEARIZATION OF STOCHASTIC DIFFERENTIAL 
SYSTEMS: NECESSARY AND SUFFICIENT CONDITIONS

Here we will use the results of the preceding section and the conditions of global

linearization of deterministic control systems stated in Theorem 7.A.2 to establish

necessary and sufficient conditions for global linearization of stochastic differential

systems.

Suppose U° = U = M = Rn and we require <t> to be a global diffeomorphism onto 

Rn. Then for the single-input case, we define a new measure P as in Section 3.2 and,

if we can show that it is a probability measure, then P « P .  We start by assuming that

f, g  satisfy globally the Lipschitz and linear growth condition of Theorem 7.C.I. 

Definition: Global Linearization of Stochastic Systems.

The nonlinear stochastic system (3.2.1) is said to be globally linearizable if there 

exist a global diffeomoiphism d> onto Rn and a martingale translation 

dwt = dwt -  cc(xt) dt such that wt is a Brownian motion under a new measure P «  P,

where a(x) is an adapted, predictable process on the new probability space (ft, iPj, P)

and coordinate Zj = <fr(xt) satisfies (3.2.16) globally with (A, B) a controllable pair. 

Theorem 3.3.1

Suppose the stochastic differential system (3.2.1) with m=l is defined on Rn with 

f,G satisfying a global Lipschitz and linear growth condition. Then this system is globally 

linearizable if and only if the deterministic control system given by 7.A.1 with m=l and 

g replaced by a  is globally linearizable and there exists a 8  > 0  such that
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sup E < °°, where a(x) = - Lfn«j>.(x). That is, conditions (i)-(iii) of Theorem 
te [0, T]

7.A.2(b) are satisfied with the additional condition:

sup E e^® ^ < ® o ,  for some 8  > 0. 
te[0,T]

Proof: The proof follows that of the deterministic control problem and is given 

by Dayawansa, Boothby and Elliott [41]. The sup bound is a sufficient condition for

measure £  to be absolutely continuous with respect to P as stated in Remark 7.E.2 and

given by Gihman and Skorohod [65, Thm. 3, pp.90] or Liptser and Shiryayev 

[103, pp. 220]. This condition is satisfied when f  is Lipschitz and has a linear growth, 

a  is bounded, and a(x) has a linear growth, as given by Liptser and Shiryayev 

[103, Thm. 4.7, pp. 137-139]; in our case if (^{x) has a of linear growth, this condition 

is always satisfied. QED

3.4 FINITE DIMENSIONAL FILTERS: GLOBAL CASE

In this section we shall derive a set of sufficient statistics for obtaining the 

unnormalized conditional density for the nonlinear filtering problem (3.1.1), (3.1.2) stated 

in Section 3.1. Throughout this section we shall assume that conditions of Theorem 3.3.1 

are satisfied so that (3.1.1) is linearizable through the global diffeomorphism map <I>€Rn. 

Even though we restrict ourselves to this class of linearizable problems, they are by far 

less restrictive than the current existing filtering problems that admit finite-dimensional 

filters.

We start by defining the transformation
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and noting that, since 4> = h (the signal component of (3.1.2)) the condition given in 

Theorem (3.3.1) regarding linear growth in fact becomes a requirement on h. Proceeding, 

we obtain the equivalent filtering problem

where the only nonlinearity appears in the last component of state coordinate z. We shall 

consider two measure transformations. The first will express the state process z in terms 

of a certain linear stochastic Ito system, and the second will reduce the observation 

equation to yt = bt.

First consider the following martingale

where a '(x ) is some arbitrary adapted, predictable process that will be chosen to satisfy 

a linear growth condition. If we introduce a new measure P ' on (Q, defined by

‘k 'lt = *2t 
^ 2 t  ~  z 3t ^

dZnf = L f"h(x)dt + dwt
dyt = h(xt)dt + dbt , y0 = 0

0

T

Lt a E[ |# p ]  where LT (3.4.2)

Then if P «  P ',
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Consequently, by the martingale translation, Theorem 7.E.3, under measure 9" the process

dw 't tk dwt -  oc'(xt)dt e M ( / [ ,  P*) (3.4.3)

is a standard Brownian motion with respect to probability measure P*. which follws from 

Remark 7.B.4. Therefore, substituting (3.4.3) into (3.4.1), the last component satisfies

dz,jt = (x(x)dt + dw' (3.4.4)

where we define a(x) a L fn h(x) + a '( x ) . Substituting (3.4.3) into the expression of-^P.
d P '

and using (3.4.4), after some simple algebra we can write 

T T

f(L fnh(x) -  a frg fldz^  - 1  f ( |Lfnh(Xs) |2 -  |a (xs) |2)ds
_dP _ J  2 0 ( 3 A 5 )

d P ' 6

Note that under the new probability measure P \  bt remains a standard Brownian 

motion independent of Zj, but the distribution of Zj is changed. Also, a(x) will be chosen 

to satisfy a linear growth condition so that EfLp] = 1 and thus, P ' « P .

A different approach to the definition of measure 9 '  can be established along the 

lines of weak solutions to stochastic differential equations as discussed in Appendix 7.C.
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If we assume (£2, & [) -> (£2, under probability measure P, system 3.4.1, when

viewed in terms of the coordinate variable z = (z1, z2)7, z ^ R 11' 1, z2e R 1, can be 

expressed as

dz* = f ^ Z j . z ^ d t

dZjjt = f 2(zj, z^)dt+a(zt\  z^)dwt

where z2 az„ ,  z 1 =(z1, z 2,...,z n_1)T, a  is nonsingular, and f1 is Lipschitz in z*, 

uniformly in z^. Then for each trajectory z„t(fi)), die £2, there is a unique solution 

Zj1 = ^(Zjj^C))) and the differential equation of znt can be written as

^ t  = f2 tffcm)’ Znt)^ +

This equation has a weak solution, as shown by Davis [37] and presented by Elliott

[47, pp. 224]. Thus, by the definition of weak solutions given in Appendix 7.C, we must 

T T
have P {©, J |a ( z nt(ffl))|2dt<oo} = 1 a.s. and P{&; J | f 2(znt(w))|2dt<oo} = l a s .  which 

0 0

imply P « P / . However ,  by Remark 7.E .3 it fo llows that  if  
T

P'{fi>; J | c - 1(fi>)f2(©)|2 dt<oo} = 1 a.s. we must have P '« P .  Therefore we conclude 
0

that P ~ P \

Next we define another new probability measure P on (£2, to be absolutely 

continuous with respect to P ' in the following manner. Consider the martingale
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mt 4 -  Jh (Xs)dbs € M ( ^ t, PO

dPwhere h ^ )  is an adapted, predictable process. Then by defining &(mT) 4 E '[___  | ̂ T] ,
d P '

where E ' denotes expectation with respect to measure P ', we have

T 

2 :

i t  - e  ° 
d P ' "

X X
-Jh (x ^ d b s -  I / | h ( x p | 2ds

Consequently,

T

jh (x s)dys -  i | | h ( Xs) |2ds
d P : _ eo H  *  <3A 6>

dP

where, because of the martingale translation, theorem, the process yt, te  [0,T] is a standard 

Brownian motion as was shown in Remark 2.2.2(ii)(a).

Therefore by (7.E.6) for any integrable function 'F(x)

E m « , ) l ^ l  = ------------- d g --------- (3.4.7)

‘ dP- ds '  ,J

dP d P 'Now, if we define AT 4  x  it follows that
T dP ' d g>

^  = * (  fh(<J>-1 ( Z g ) ) d y ^ x i t . (3.4.8)
0 d P
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Remark 3.4.3 The sufficient condition for 9  to be absolutely continuous with 

respect to 9 '  again follows from the existence of some 8  > 0 such that

sup E e ^ X‘̂  < °o, where h(xt) satisfies a linear growth condition. Moreover, 
ts [0, T]

T

9  «  9 ' if the weaker condition 9 '  (fl>: J*|h(xt(co))|2dt < »}  = 1 a.s. is satisfied. The
0

proof is found in Liptser and Shiryayev [103, Example 4, pp. 221-222] and is due to h(xt)
n ._j

being independent of b,. Finally, if we choose a(x) = E  CjLf" h(x) the filtering
i=l

problem (3.4.1) is equivalent to

0  1 0  ... 0 0
0  0  1 0  ... 0 0

(& , 9): d z t =
1

ztdt + : dw 't

C1 °2  “• cn l

(3.4.9)

where any conditional estimate with respect to 3 ^x under measure 9  is related to the

conditional estimate under measure 9  through (3.4.7) with At defined by (3.4.8).

The next step is to find the density of \  Suppose we assume the existence of a 

scalar potential V(z), Vze Rn such that

(3.4.10)
j=l

d X Q , = 0 , 1 £ i £  n -1  .
dZ;

(3.4.11)

Applying the Ito differential rule to V(Z(), we find
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r  n 1 “
V(zt) -  V(zq) = J  (Lfn h(<D_1(zs)) -  E  Cj Zjs) dZjjj 

o j=10

t
+ 1  f  [ - L  (Lfn -  E  Cj Zjs)]d s .

2  0 dZA j=l

t
Furthermore, integrating J*hsdyt by parts, yields

0
t t

/ zisdys = zityt-J^ys^-
O 0

Substituting (3.4.12), (3.4.13) into (3.4.8), \  is expressed as

t
- i f [  * cjZjs)]ds

t> -V (Zo) +Z]ty t 2  J 3z„ j . ,  J JS
e

t n t t
"  i  J ( l L fn h(<D_1(z))i2 -  E  |CjZjs |2)ds - J z ^ y ^

Z 0 i=1 0 0

V(z
Aj = e

By (2.3.2), the numerator of (3.4.7) can be written as

- jQ (s ,z s)ds 
V(z) -  V(zq) + zj y _ o 

E W ^ e  E(e  | ^ f , z t = z ,z to=z0) }

c  V (z ) -V (zo )+ zi y
= J  ^ (O  (z))e q(z, t)dz

R n

where q(z,t) satisfies the Feynman-Kac formula
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q(z,t) = L(t)* q(z,t) -  Q (U t)q(z,t), 0 <. t £ T 
ot (3.4.15)

q(z»0) = p0 (z)

with L(t) the Kolmogorov’s operator associated with Markov process z described by the 

linear system (3.4.9) and Q(t,z) defined by

Q (U ) ( L f V r V z ) )  -  £  CjZj)
L </Zn j=l (3.4.16)

+ h \L ^ ~ lm 2 -  E  IcjZjl2) + y tZ2 + 1  z \ . L j=l ^

The Feynman-Kac formula (3.4.15) follows by a slight modification of the proof 

presented in Theorem 2.3.1. Finally, if the solution to (3.4.15) can be determined, the 

unnormalized conditional density of {zt, 0 <, t <, T} is given by

V(z) -  V(zo) + ziy (3A17)
p(z,t) = e q(z,t)

which is related to the unnormalized conditional density of {Xj, 0 ^  t ^  T} through 

Remark 3.1.1. The following theorem provides a set of sufficient condition for obtaining 

a finite-dimensional filter, i.e., the sufficient statistics are finite-dimensional and evolve 

on a finite dimensional manifold.

Theorem 3.4.1

Suppose we are given the nonlinear system of Section 3.1.1. If we assume that 

the necessary and sufficient conditions of Theorem 3.3.1 are satisfied with
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n _ l
<fr(x) = (h(x), Lfh(x),..., Lf h(x)) , then, if there exists a scalar potential function

satisfying (3.4.10), (3.4.11) with the additional condition

JL Lfnh(d)_1(z)) +1 Lfnh(<D_1(z)) |2 = z TAz + B Tz + C , (3.4.18)
ozn

the unnormalized conditional density of the state process {Zj, 0 £  t £  T) is given by

V(z) -  V (zq) + Zly -  1  (z -  -  ^ )  (3.4.19)
p(z, t) = e e 2

and is determined in terms of two statistics ty, 2^ satisfying

P, -  ( A - I lA ') II, -  Ix ,B  -  iz,H Ty , , ^  = <K(Xo) (3.4.20)

Sj = AZt + 2 tA T - ^ A ' Z t +B B t  , Z q = 0  (3.4.21)

Proof: As given above, with (3.4.19) as proved in the Appendix 7.G. QED 

Remark 3.4.4 The conditions of Theorem 3.4.1 are satisfied when the nonlinear

component of (3.4.1) satisfies Lfnh(d>_1(z)) = tanh(zn). Thus the conditional density of 

{Zj, 0 ^  t < T} is finite-dimensional and is given by (3.4.19).

3.4.1 The Stochastic Control Problem

The connection between filtering and stochastic control was established by 

Fleming and Mitter [58] by considering the transformation s(z,t) = - log q(z,t) when the 

filtering problem is nondegenerate. This transformation was also used by Fleming [57]
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to derive the Ventcel-Freidlin estimates for diffusion processes depending on small 

parameters.

Here we shall use the above logarithmic transformation to obtain the dynamic 

programming equation of an optimal control problem.

Suppose we define

-s(z,t)
q(z,t) = e

where q(z,t) satisfies (3.4.15), then

4 r s(z’t) = " - t t tdt q(z,t) dt

After some simple algebra we deduce that s(z,t) satisfies the nonlinear degenerate 

parabolic equation

4-s(z,t) = _Llr(BB T_ ^ _ s (z ,t ) ) - l ( i .s ( z ,t ) )T BB Ti.s (z ,t )  
dt 2  0Z 2 2  dz dz

-  (Az)TJL s(z ,t)+(Q(t,z) +Tr(A)). 
dz

Let us now replace t by T-s so that a backward PDE for s(z,t) is obtained. Then

- 4 - s ( z ,T - s )  = i.T r(B B  Ti l s ( z , T - s ) )  - i . (  A s ( z ,T - s ) ) t BB t 4 - s ( z ,T - s )  
ds 2  gz 2 2  dz dz

-  (Az)Ti-s(z,T-s) + (Q(z,T-s) +Tr(A)). 
dz

If we set s(z,s) = s(z,T-s) we deduce
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-Jj(z ,s)+ i.T r(B B  TiL ? (z ,s ))  - I ( . | .S ( z ,s ) ) T BB Ti ( z , s )
9s 2  3z 2  ^  (3 .4 .22a)

-(A z)t 4 -s (z ,s )  + (Q (z,T -s) +Tr(A» = 0 
dz

s(s,T) = -  log p0(z). (3.2.22b)

It can be easily shown that (3.4.22) is the dynamic programming equation to the 

stochastic control problem

d£t = - A^jdt+Bujdt+Bdwj , 0 £ t £ T  (3.4.23)

T

J(u) = E[ J { I u tTBB Tut +Q (£,T -t) + Tr(A) }dt +?(£,T) | x] (3.4.24)
0

where i^eR 1, B = [0 ,0 ,..., 1], A the nxn matrix identified by (3.4.9). That is,

s(z,s) = min J(u). (3 4 24)
ueUaj

Notice that (3.4.22a) is degenerate parabolic therefore we can no longer assume

that a solution s(z,t)e C 1 ̂  exist as required by the Verification theorem given by Fleming

and Rishel [56, Thm. 4.1, pp. 159]. Thus, no existence of control u(t, ^ )  can be deduce. 

As explained in Remark 7.C.3 we shall consider generalized (weak) solutions to (3.4.22). 

However, since the transition density of

d ^  = -  A£tdt + Bdwt

satisfy

J|p(y,t;x,s)|kdtdx<«x>, 0 £ s £ t £ T
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then by Fleming and Rishel [56, Chp. VI, pp. 177-178] any Borel measurable feedback 

control law u(t,^) is admissible. Equivalently one can show that there is a solution ^  of 

(3.4.23) which is unique in probability law using the approach presented in Chapter 2. 

Finally, excluding the details which are found in Fleming and Rishel [56, Chp. VI, pp. 

177-178] we conclude that if s(s,t) is a solution of (3.4.22) in some Lp space, then

(i) ?(s,t) £  J(u) for some bounded Borel measurable u,

3 — —
(ii) for the optimal control u * = - . . . -I(^,t) we have s(s,t) = min J(u *),

a5n

(iii) the optimal cost s(s,t) is related to the solution of the filtering problem of 

Theorem 3.4.1 by

s(z,t) = -  log q(z,t).

3.5 FINITE DIMENSIONAL FILTERS: LOCAL CASE

Here we consider the filtering problem stated in Section 3.4 with the assumption 

of a global diffeomorphism map onto Rn removed. Thus we use Theorem 3.2.1 and

assume the existence of a local diffeomorphism >V °. The motivation for

investigating filtering problems of this nature stems from the fact that the local results of 

stochastic linearization (Theorem 3.2.1) are less restrictive than the global results. In 

addition, no explicit recursive generated set of statistics are currently known for the 

representation of the unnormalized conditional density when the BeneS [4] multi-
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dimensional conditions: a) c(x) is constant, b) h(x) = Hx, and c) f(x) = VF(x), where F(x) 

is a function on all of Rn satisfying

AF(x) + 1 |VF(x) 112 + | |Hx| |2 = x TAx + B Tx + C , A £  0,

are satisfied only locally on an open bounded domain of Rn (A is the Laplacian operator).

Here we shall give conditions similar to Section 3.4 for the existence of finite

dimensional statistics for the representation of the unnormalized density. This 

unnormalized conditional density is given in terms of a backward PDE restricted to an 

open bounded neighborhood V° of Zq as described in Section 2.5. The derivation of the 

above backward PDE is similar to the derivation of (2.5.5). The adjoint equation to this 

backward PDE can be obtained as in Theorem 2.5.1 or Remark 2.5.3.

We start by considering the filtering problem (3.1.1), (3.1.2) represented by

(ft, K  £): '
dzt = A zt + B L^h(<&- 1(zt))d t + Bdwt , 0 <, t  < xy o (3.5.1) 
dyt = zltdt + dbt

which is the result of the local diffeomorphism d> chosen as in Section 3.3.4, where U° 

is an open neighborhood of Xq. Let {zs, 0 £  s < xy o) be the solution of (3.5.1) defined

up to time xy o, the time it takes for the process z to hit the boundary 3V° of class C2.

If we define the Radon-Nikodym derivative A as in (3.4.8) with T replaced by xy o, then
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we can define a new measure $ ~ P .  By 7.E.6, for any bounded function 'F, the 

numerator of (3.4.7) can be expressed as

EPP(4>-| fet)) <3-5-2>

which is the result of Section 2.5. If we assume conditions (3.4.9), (3.4.10) are satisfied 

locally, then (3.5.2) can be expressed as

t
- J q (s, zs)ds

v(zt>_v(zo)+zi r zisys s , „
E(Ao,sE [I(m; (M), 1j ¥ ( 2, ) e  e  M - ^ >  (3.5.3)

for s < ty o a.s. where the definitions of V(z) and Q(t,z) are given as in Section 3.4. If 

we define

t
-  f*Q(s,z)ds

, \ Zlsyse r r   ̂ V(zt)-V (zs)+zu yt- z lsys Js (354)
u(z,s) Ae E [I{w;Tv0(fl))>t}'F(zt)e  e |zs) *

as was similarly done in Section 2.5, we observe that (3.5.4) satisfies the backward PDE

4 ^  (z,s) + L(t)u(z,s) -  Q(s,z)u(z,s) = 0 , (s,x)e[0,t]xV° 
ds

V(z) -  V (zq) + z l y i  (3 .5 .5 )
u(z,t) = 'F ^ e  , xeV

u(z,s) = 0  , (s,x)e [0,t)x3V°.
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Suppose that the initial density of Zq is p0(z), and (3.5.5) can be solved; then (3.5.2) is 

equal to

Remark 3.5.1 An equation for the adjoint process q(x,t) to u(x,t) could also be 

derived using the methodology of Remark 2.5.3. Therefore, if we can solve the initial- 

boundary value problem above, the unnormalized density can be obtained.

3.6 LOWER AND UPPER BOUNDS ON FUNCTIONS OF STATE ESTIMATES

In this section we shall derive lower and upper bounds on some of the components

of the minimum-mean-square-error (mmse) state estimate E [ xt | .5^] and its corresponding

error-covariance. Furthermore, lower and upper bounds on nonlinear functions of the 

state such as E[T/(xt) | ^ r] will also be obtained. Throughout this section we assume

that the filtering problem (3.1.1), (3.1.2) satisfies the necessary and sufficient conditions 

stated in Theorem 3.3.1.

Our starting point is (3.4.9) defined on the probability space (ft, P), where 

the exponential formula is defined as in (3.4.8) and is equal to

J  'P(d>_1(zt)) u(z,0)p0(z)dz. 

v °
(3.5.6)

= « (J lL fV & ^ z ,;) ) " £  cjZjs]dw's)x2( J z lsdys). (3-6.1)
T T

0 j=l 0

Recall (7.E.4) that for any integrable function 'P
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EPF (<&- 1(z.)) A. I & ]
E [^ (x .)  | & \  = J  J  -L i . 1 (3.6.2)

E t M ^ ]

and

f i W ' f e , ) )  | ^ f ]  = E [y (x ^  (3.6.3)
E [ \  1 ^ 1

Bayes formula (3.6.2) relates conditional estimates of measure P  to that of measure 9  as

in (3.4.7), whereas Bayes formula (3.6.3) relates conditional estimates of measure 9  to

that of P. Next, we define the conditional correlation coefficients of *F, A and 'F, A"1 as

a  E [ T ( * - 1(l,))At | ^ l  -  E['F(<i>-1(Zt) ) |.7 f ]E [A t |.P f]
VV A  1 -----------------------------------------   <3 ®-4>

'FA-1 9 9
° A-1

E P F (x t)A t" 1 | - ^ ]  - E m x ^ l ^ l E t A ; 1 ! ^ ]
(3.6.5)

_ b p
where superscript P, P denotes the probability measure and o ^ ,  O q denotes the 

conditional standard deviation of process (•) under probability measure 9 ,  P, 

respectively.

Substituting (3.6.4), (3.6.5) into (3.6.2), (3.6.3) respectively, we obtain

p 9 9 9
E[*F(xt) | ^ f ] = E [ W 1 (z.)) | + . 7 A  y  A (3-6.6)

E[At |^ f ]
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pP P P1 m a Om O i
E ['P(x,) I =E  t w ' f z , ) )  I ■??] - __________ i ~  (3 .6 .7 )

E [A ,'‘ l ^ f l
P P P P

lp  C»F a A 2P ^  A-1 Defining kt A ---------------- , k t A ------------------- we have the following proposition.

Proposition 3.6.1 Using the property | p |. | | £  1 we obtain the following lower 

and upper bounds:

for P $ A <; 1 : E['P(xt) | ^ ]  £  E['P(4>"1(zt))] + k t1? (3-6-8)

f o r p £ A S>-l : E ['F(xt) | ^ f ]  £  E[^(<I>-1 (zt))] -  k tlS> <3-6-9)

for P ^ A_, £1 : E[*P(xt) 13 ? ]  > E I W 1 (zt))] -  k f P (3-6.10)

fo rP P A_ ^ - l  : E [^ (x t) l ^ f ]  <; E['F(0>-i (zt))] + k 2P. (3.6.11)

Proof: From the equivalence of measures P, P the exponential processes At'* 

are positive martingales a.s., which implies E(A{ | & * )  > 0 , a.s. EfA ^1 13 ^ )  > 0  a.s., so

k t1P ^ 0 ,k t2S>̂ 0  a.s.. RecaU also that E[4'(<P“1(zt) \ 3 * ) ]  = E['F(d>"1(zt))], by the

independence of 3 ^  = a{ys, 0 < s < t} and {zt, s :£ t} under measure P.  The 

proof then follows immediately. QED

lP IPNext, we shall concentrate on obtaining upper bounds for k t and k t , which 

will then be used in Proposition 3.6.1.
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10
Bound for k t

We shall find a lower bound £ (k^min and an upper bound

P i  Ao A £  (kt )mnT using the fact that under measure 9  the signal process zt satisfies the 

linear stochastic differential equation given by (3.4.9).

By the convexity of the exponential function it follows from Jensen’s 

inequality that

x e

By Remark 2.2.2 (ii) (b), under measure P, {zs, 0< s ^  t} and (w 's, 0 < s <. t} are 

independent of {ys, 0  £  s £  t}, so

f i l - I / t m "  hC<*>-*(Zs)) -  £  Cj zjs I2 * I zls |2]ds | } =
j=1

-  ‘ f  E[ |L " h(4 .-'(zs)) -  E  Cj z- I2 + I z „  |2]ds.
2 0  J-l

Also,

E {JtL fhC ^-^Z s))-  E c jZjs]dw's |^ f }  = 0 . 
o J=1
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Next, since

$ ( J |z l t |2dt<oo) = 1 a.s., E |z l s |<oo, 0 £  s £  T

and
T

0

then for all t in the interval 0 £  t 2  T,

$ (J e ( |z1s| l ^ ) | 2ds < oo) = l  a.s.,

i i I
E ljfc isd y s)!* ?] = J  E (2 l s |J ^ } d y s = j £ ( z ls)dys, 

0 0 0

(see Liptser and Shiryayev [103, Thm. 5.14, pp. 185-186]).

Therefore the lower bound ( k ^ ) ^  is given by

|L fnh(d»_1(zs) ) -  E  cjZjs |2 + |z ls |2ds}ds
l 0 J=1

E[At | ^ ] ^ ( k tI)min= e
t
J*E(zls)d y s
0

x e

&
We shall now determine an upper bound for c A. By definition,
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thus, using (3.6.13),

oj; s  (fi[At2 ii> f]-[(k 1')mllj 2) 1'2.

From (3.6.1) we have

V n i n
2J [L f" h(<I>(zs)) -  E  Cj Zjjdw',

E[A,2 | ^ ]  = B ( e  °  J l

1 n 1 1
-  J tlL fV fr" 1̂ ) )  -  E Cjzjs |2]ds + 2 fz lsdys - J | z l s |2ds 

0 i=1 0 0 , ,
xe  \& * }

By the Schwartz inequality,

4 J[L fnh(4»_1(zs)) -  E  cjZjs]dw's 

E[Af 13 ? }  <, {E[e °

t n t t
- 2 J \Lfh(®-\zs)) -  E  Cj zjs |2ds 4 Jzlsdys - 2 Jzfgds

0 j_1 0 0 „
x{E[e x e  \&%])1/2.

Again, using the $ independence of {zs, 0 £  s £ t) and {w's, 0 < s < t}, then
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r  n n r  n
4 J[L"h(4>" (zs» -  E  Cjzjs]dw 's 4 J [L fnh(d>_1(zs) ) -  E  Cjzjs]dw's

0 i=1 _ v  .  0 J=1
E [e  |* f ] = E [ e

Furthermore, since &(J"|L^h(<D_1(zt)) |2dt<°°) = 1 a.s., by Gihman and Skorohod [65, 
0

Lemma 2 pp. 86-87] (which is an application of Schwartz inequality and the fact that the 

expected value of an exponential supermartingale is less than one ) the previous 

expression is upper bounded by

J |L fnh(0"I(z£)) - E  Cj zjsldw'j 32tJ|Ltnh(4>-1(zs))[2*32t| E  Cj zjs|2ds
-  0 j=1 . 0  j =1 , n
E[e ]^{E[e ]}1/2.

One can also find a Feynman-Kac PDE which would be the solution to the left side of 

the previous expression without having to use the bounding result of Gihman and 

Skorohod [65,Lemma 2,pp.86-87].

1 n
-2 j |L " h (® " '( z s) ) -  S  CjZjs |2ds

o J=1
Thus, since Ee <, 1, we obtain
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E [A f |^ f ]^  {E[e{E[e ]}l/4 (3.6.15)
t t

4Jzisdys- 2Jzi2sds
x {E[e 0 0 | ^ f ] ) 1/2.

The unconditional expectation on the right side of (3.6.15) can be further upper bounded

to the linear growth assumption on f, h. For the exact value of this unconditional 

expectation one has to solve a Feynman-Kac formula where the only nonlinearity is due

to L fnh(4>“1(z)).

Finally, the conditional expectation on the right side of (3.6.15) can be evaluated 

in a similar fashion as in Section 3.3.5 by solving a Feynman-Kac type PDE where

by using the property that L^h(4>- 1(z)) satifies a linear growth condition which is due

4ytzi - 0
e q(z,t) AE[e

(3.6.16)
0

l* f ]

and satisfies the PDE
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.|Lq(z,t) = L(t)*q(z,t) -  Q(t,z)q(z,t) , 0 £  t £  T 

q(z,0) = P q (z )

with L(t) the Kolmogorov’s operator associated with the diffusion process zt given by

Remark 3.6.1 The solution of the PDE (3.4.17) gives an unnormalized conditional 

density of the Gaussian type. It is of Gaussian type because Q(t,z) is a quadratic function 

in the coordinate z and the forward operator L(t) corresponding to the process zt given 

by (3.4.9) satisfies a linear stochastic differential equation. The procedure for solving 

(3.4.18) is exactly the same as the one given in Appendix 7.G.

Summarizing, we get the following.

Lemma 3.6.1 Let (3.1.1), (3.1.2) be the filtering problem under consideration. 

Let f, h satisfy a linear growth condition, f  satisfy a Lipschitz condition, a  bounded, f, 

g, h of C°° class, and assume that the necessary and sufficient conditions of Theorem

3.3.1 are satisfied with a global diffeomorphism 4> = (h(x) , ..., Lfn' 1(h(x))T. For any 

integrable function 'F(x) we have the following lower and upper bound:

(3.4.9) and Q(t,z) a  4yt z2 +2zj!r

where

E ['F(d»"1(zt))] - g |  ( - i.'>maX < E [Y (xt) | * f ]  £  E [ W 1̂ ) ) ]  + 4
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t
32tJ*F(z,t)dt

(k,‘W  = (<E[e “ ])w n[e4Ziyt J  qCz.t>dz] I/2 -  (k,1)^ in } 1/2

R n

F(z,t) = |L ^ h (0 _1(z) ) |2 + I E  C : Z j J 2
j=l 1 J

and CkVmin is Siven by (3-6.13).

Proof: As above. QED

If we try to follow the same procedure to obtain an appropriate upper bound for

IPk t using (3.6.10), (3.6.11), we perform expectations with respect to measure P. This,

however, becomes a very difficult task since under measure 9  we can no longer use the 

independence of 3 ^  and {zs, 0  ^  s <. t}, so we cannot repeat the above procedure.

3.7 RELATION TO PREVIOUS WORK

In previous work, Snyder and Rhodes [121] and Bobrovsky and Zakai [23,24] 

derived lower bounds for the nonlinear filtering problem. More specifically, Snyder and 

Rhodes presented a lower bound in estimating Gaussian processes from nonlinear 

observations while Bobrovsky and Zakai gave a lower bound on the filtering error of 

certain nondegenerate Markov processes. The above bounds are based on the Van Trees

version of the Cram6r-Rao bound [128], in particular e ^  JT where e is the mean-

square estimation error of the process xT and JT is the Fisher information matrix.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Here we shall extend the filtering problems that admit the lower bound given by 

Bobrovsky and Zakai to Markov processes which satisfy degenerate stochastic differential 

equations (we say that a stochastic differential system is degenerate if not all components 

of the state process are directly affected by a noisy input). The lower bound given by 

Bobrovsky and Zakai is the filtering error of some suitable Gaussian system chosen in 

such a way that

dp
is a nonnegative definite matrix J; where AT A _ _  is the Radon-Nikodym derivative

s

of the measure 9  induced by the nonlinear system under consideration with respect to the 

measure induced by a Gaussian system. However, if the dimension of the state noise 

wt differs from that of xt, in general, JT would not be nonnegative definite, thus a lower 

bound on the estimation error cannot be found. This implication is avoided if the 

necessary and sufficient conditions of Theorem 3.2.1 or Theorem 3.3.1 are satisfied. The 

following theorem, then, is an extension of Bobrovsky and Zakai [23,24] for the case of 

degenerate Markov processes.

Theorem 3.7.1

Suppose xt, yt and zt,y t satisfy the following stochastic equations on probability 

spaces (£2 , 9 ) ,  (C l, 9 ) , respectively:
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(£2, P) Xj!
.dxt = f(xt)dt+a(xt)dwt id z t = Atzt dt+Bdwt

dyt = h(xt)d t+dbt ; (£2 ’ P ) 2 2: ldyt = Ct ztd t+dbt

with

(i) wt, bt of dimension one, Xj€ Rn, and
(ii) initial densities p0(x)=p0(z).

If the conditions of Theorem 3.2.1 or Theorem 3.3.1 are satisfied, then

E? = E[<t>i(xt) -E (H li (x| ) | ^ ' ) ] 2 S e f i j ,  -  E(Zjt I {3'7' 1)

where

A, =

0  1 0  
0  0  1

C1 c2 ~  5r

, Cj = E
dZ:

L f  h(d>~ (z)) , i — l , 2 , .., n (3.7.2)

CtT Ct =E{ [.JL(L "  h(d>“1 (z)))]TJL L " h(<l»~1 (z)) - C tT Ct + [1 0  ... 0 ] (3.7.3)

with (jjj the i-th component of the vector

4>(x) = (h(x), Lf h(x), ..., L f ' 1 h(x))T.

Proof: Assume conditions of Theorem 3.3.1 are satisfied, then by defining
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T

/(Lf1 h(a>_1(zs)) - e s z^dZns
dP - 0
£ l  = E [AT | ^ T] = e
d&

T

- i .r ( |L fnh(<t-1(zs))|2 - |C szs |2)ds
2 0

x e

T T

-C szs)dys - I J ( |h ( . ir 1(zs)) |* -  |Cszs |2)ds 
0 0

x e

we have P «  $  where zt = d>(xt) . Following the proof given by Bobrovsky an Zakai

[24, 25], if (3.7.2), (3.7.3) are satisfied then JT becomes a nonnegative definite matrix, 

thus the bound (3.7.1) is valid. The above bound remains valid if instead of Theorem 

3.3.1, Theorem 3.2.1 is considered. For this case, however, t should be replaced by x. 

QED

We conclude this chapter by pointing out to the reader that when local 

linearization is under consideration the need for solving (3.5.5) is required. However, 

even thought we were not able to provide the solution of this boundary value problem we 

can still apply the bounding technique of Section 2.5.1 to obtain an upper bound for 

u(z, s).
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CHAPTER 4

OPTIMAL CONTROL OF PARTIALLY OBSERVED DIFFUSIONS

4.1 PRECISE PROBLEM STATEMENT

We study the stochastic partially observed control problem stated in Section 1.2. 

Consider the stochastic system.

dxt = f(t,xt,u t)dt + c(t, xt, ut)dwt (4.1.1)

dyt = h(t,xt)dt + g(t,xt)dwt + g(t)dbt. (4.1.2)

where, assuming w., b. are uncorrelated for all t, the quadratic covariation between 

{xs, 0  £  s <, t} and {ys, 0  £  s £  t} is
t

(x,y)t = J a (s ,x s)g T(s,xs)ds. (4.1.3)
0

The problem is then to derive the necessary conditions for

min {J(u); u e U ^ } ,
T

J(u) = E u{ Jn (t,x t,ut)dt + k (x t )}
T (4.1-4)

0

subject to constraints (4.1.1), (4.1.2) with controls u taking values in a non empty 

compact subset of Rk.

Throughout this chapter we shall assume the following assumptions:

(A 'l) f:[0, T]xRnxU-»Rn, Borel measurable, bounded, continuous C°° in x with 

bounded first derivatives in x, u;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(A'2) g :[0, T]xRnxU-»Rn®R,n, Borel measurable, bounded, continuous C°° in 

x with bounded first derivatives in x, u and bounded second derivatives in 

u;

(A'3) h:[0, T]xRn—>Rd, Borel measurable, bounded, continuous C °  in x with 

bounded first derivatives in x;

(A'4) g:[0, T]xRn—>Rd®Rm, Borel measurable, bounded, continuous C°° in x;

(A'5) g:[0, T]->RdxRd, Borel measurable, continuous;

(A'6 ) 3i:[0, T]xRnxU->R1, Borel measurable, bounded, continuous C°°in x, C1 

in u and

|^ .( t,x ,u ) | £  7(x), t ( x ) €  L 2(R n); 
du

(A'7) K:Rn-»R 1, Borel measurable, bounded, and K(x)eL2(Rn);

(A'8) there exist pj, p2 > 0 such that

g(t,x) g T(t,x) + g(t) g T(t) > p id

g(t) g T(t) £  P2 Id 

where Id denotes the dxd identity matrix;

(A'9) P q ( x ) s  L 2(R n), the density of Xq;

(A'10) the admissible control set is a non empty compact convex, subset of

Rk such that u ( t ,.) consists of A o(ys, 0 ^  s £  t)-adapted processes

on [0, T]xC([0, Tj; Rm) with values in U and 

u(t,yt)e Ly([0,T]xC([0,T];R d)) .
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As in Section 2.1, consider the space Q = R"®C([0, TJ; Rm)®C([0, T]; Rd) with 

coordinate functions (x,w,y). In this case, however, the problem is more difficult since

the independence of w., y., is violated. Thus, the measure on Cl is no longer a

Wiener measure, hence

& T  = B ^ B ™  ® B 4 

Cl = R n®C([0,T]; R m)®C([0,T]; R d) (4 L5)
? !  = PjCdx.dw.dy)

where B j  is the Borel c-algebra on C([0,T]; Rk).

Pardoux [114] considers the filtering problem (4.1.1), (4.1.2) (i.e., u = 0) when c  

is an nxn matrix, g is independent of x, and

g(t)gT(t) + g(t)gT(t) = Id .

Here, we shall first prove that even in the general case above (4.1.1), (4.1.2) has weak 

solutions, and later determine the equation satisfied by the unnormalized conditional 

density of {Xj, te[0,T]}.

Lemma 4.1.1

The stochastic system of equations (4.1.1), (4.1.2) has solutions

(xsu, ys, 0  ^  s <. t) which are unique in probability law; i.e., has weak solutions.

Proof: Consider the system 

dxt = f(t,xt,ut)dt -  a(t,xt,ut)g T(t,xt) k(t,xt))dt + a(t,xt,ut)dwt (4.1.6)
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dyt = g(t,x,)dwt + g(t)dbt (4-1.7)

for some initial condition XgeRn and control variable u e U ^  where k(t, x^ is a bounded 

Borel measurable function to be defined shortly. Due to the bounded assumptions 

imposed earlier (which imply Lipschitz conditions) there exists a unique strong solution

{xgu, ys, 0 <, s £  t} on the probability space (Q, & {).

Next, consider the martingale defined as 

t
mt A Jk  T(t,xs)(g(s,xs)dws + KOdb^e M(^"T, &j) (4.1.8)

0

and using the exponential formula, define Pu by

_ ,1011 % ■ -  (m, m )r
At  a E [ _ | ^ t ] = e 2

d v  T

Thus,

T T
2  
2

A*j. e

x 1

Jk  T(t,xs)(g(s,xs)dw s +g(s)dbs) - I J k  T(s,xs)(g(s,xs)g T(s,xs)+g(s)g T(s))k(s,xs)ds 
0 2 0

(4.1.9)

where k(t,xt) is defined by

k(t,xt) a (g(t,xt)g T(U t) + g(t)g T(t))_1h(t,xt). (4.1.10)
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By assumptions (A'3), (A'8), k(t,Xj) is a well-defined bounded function; therefore, by 

Theorem 7.E.2, it follows that E [A-p] = 1 , thus Pu is absolutely continuous with respect

to (Pu «  P j). By the translation theorem (Theorem 7.E.3) it follows that

dmj = dwt - d(w.,m.)t = dwt -  g T(t,xt)k(t,xt)dt eM (^ J,P u) (4.1.11a)

dm^ = dbt -  d(b., m.)t = dbt -  g T(t,xt)k(t,xt)dt e M ( ^ ,P u). (4.1.11b)

Moreover, mt ,m t satisfy (m .,m . )t =Imt, (m. ,m. )t = Idt, thus mt ,m t are standard

Brownian motions. Substituting (4.1.11) into (4.1.6), (4.1.7) we obtain the stochastic 

differential equation (4.1.1) and observation equation

dyt = g(t,xt)dm* + (g(t,xt)g T(t,xt)k(t,xt) + g(t)g T(t)k(t,xt))dt + g(t)dm^

which by (4.1.10) is equivalent to (4.1.2). Thus, we have constructed the solution

{x“, ys, 0 < s ^  t} to (4.1.1), (4.1.2) on the probability space (£2, Pu) to be a

weak solution which is unique in probability law. QED 

The differential of the LR \  is given by

dAt = Atk T(t,xt)(g(t,xt)dwt + g(t)dbs). (4.1.12)

Next, we shall derive the equation satisfied by the unnormalized conditional 

density pt of the state process by modifying the probability space (Q , P j) to be
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equal to the product probability space (ft®&, P® £) as given in Chapter 2 for

the case when gfcxj) = 0 .

Theorem 4.1.1

For any bounded, twice continuously differentiable function <J»(-), the unnormalized 

conditional probability density pt A p(x,t), where pt(<|>) A J*<|>(z)pt(dz), satisfies the

equation

f n f\A . r r lA V v W
1 (4.1.13)

Pt(40(x) = <K>0 + Jp(A u(r))<J))(x)dr + E  Jp(M k(r)<J>)(x)dytk
s 11=1 s

lim pt(<|>)(x) = <(>(x) 
tio

where

A u(t) A E  f(t,x ,u )J L  + i.E a(t,x ,u)lj— ? L _ , k(t,xt) = g(t,xt)g T(t,xt) + g(t)g T(t) 
i=l 3 x ! 3 x !axJ

d -1 -1
Mk (t) A E  (k 2 (t*))*  bj(t, x) + E  (c(t, x, u)g T(t, x)k 2 (t, x ^ - J L , 

i=l i=l 9 x 1

Q 1J is the (ij)-th component of a matrix, yt is a standard Brownian motion andk(t,xt) 

is independent of x.

Proof: Consider as starting point the system (4.1.6), (4.1.7) under the measure 

$ jand  define the new process
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t
wt = J  DfspCgXdw,, -C fs .x ^ y ,,)  (4.1.14)

0

where wte R m, D(t,x)€ Rm0R m and C(Ux)eRm0 R d. We shall determine D(t,x), C(Ux)

so that the quadratic covariation process (w.,y.)t = 0 ,i.e., wt ,y t are orthogonal 

martingale processes. From (4.1.7) we have

d(w.,y.)t = d(jD(s,xs)(dwt -  C(s,xs)g(s,xs)dw -  C(s^cs)g(s)dbs) , J(g(s,xs)dws + g(s)dbs))t 
0 0

= D(t,xt)(g T(t,xt) -  C(t,xt)g(t,xt)g T(t,xt) -  C ( u t)g(t)g T(t))

= D(t,xt)(g T(t,xt) -  C(t,xt)[g(t,xt)g T(t,xt) + g(t)g T(t)]).

If we define

C(t,xt) a g T(t,xt)[g(t,xt)g T(t,xt) + g(t)g T(t) ] _1 (4.1.15)

then (w., y.)t = 0 , thus wt ,yt are orthogonal for all L Next, we shall choose D(t,xt) so

that the new process wt is a standard Wiener process. Consider the quadratic variation 

process

d(w.,w.)t = d(J*D(s,xs)(dws -  C(s,xs)dys), jD&XjXdw,, -  C(s,Xg))dys >t 
0 0

= D(t,xt)[Im -  g T(t,xt)C T(t,xt) -  C(t,xt)g (U t) + C(t,xt)g(t,xt)g T(t,xt)C T(t,xt)

+ C(t,xt)g(t)g(t)T(t)C T(t,xt)]D T(t,xt)

= D(t,xt)ImD T(t,xt) + D(t,xt)C(t,xt)[g(t,xt)g T(Uxt) + g(t)g T(t)]C T(t,xt)D T(t,xt)
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-  D(t,xt)g T(t,xt)[g(t,xt)g T(t,xt) + g(t)g(t)]“Tg(t,x,)D T(t,xt)

-  D(t,xt)g T(t,xt)[g(tfx t)g T( U t) + g(t)g T(t)]- 1g(t,xt)D T(U t)

= D(t,xt)ImD T(t,xt) -  D(t,xt)g T( U t)[g(t,xt)g T(U t) + g(t)g T(t)]"Tg(t,xt)D T(t,xt)

= D(t,xt){Im -  g T(t,xt)[g(t,xt)g T(t,xt) + |( t )g T(t)]- 1g(t,xt)}D T(t,xt).

If we define

D (U t) Alm -  {g T(t,xt)[g(t,xt)g V t) + g(t)gT(t)]- 1g(Uxt) } “ 1/2 (4.1.16)

then wt is a standard Wiener process. Thus we have constructed a process wt which is 

orthogonal to of yt. Notice that from assumption (A'8 ,) D(t,xt) is well defined and 

positive definite. From (4.1.14) we solve for wt and obtain

dwt = D _1(t,xt)dwt + C(t,xt)dyt . (4.1.17)

Now, substituting (4.1.17) into (4.1.6) we obtain

dxt = [f(t,xt,ut) -  c(t,xt,ut)g T(t,xt)k(t,xt)]dt j j

+ o(t,xtut)D _1( u t)dwt + a(t,x j,ut)C(t,x t)dy t .

Let us next define a new process yt by 

dyt a  C(t,xt)dyt = C(t,xt)(g(t,xt)dwt + g(t)dbt) (4.1.19)

where C(t,xt) e R d®Rd. The quadratic variation of the new process y t is 

d(y,y)t = C(t,xt)(g(t,xt)g T(t,xt) + g(t)g T(t))C T(t,xt)dt.

If we define
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C(t,xt) A (g(U t)g T(U t) + g(0g(t))“1/2 (4.1-20)

we have

d(y,y>t = I m dt

so y t is a standard Wiener process. Next, substituting (4.1.19) into (4.1.18) we deduce

dxt = [f(t,xt,ut) -  a(tpct,ut)g T( u t) k ( u t)]dt • ^

+ a ( t^ t,ut)D - 1( U t)dwt + o (U put)C (U t)C - 1(t,xt)dyt .

From (4.1.15), (4.1.20) we also have

C(t,xt)C "1( ^ t) = g T(t,xt)[g (U t)g T(t,xt) + g(t)gT(t)]"1/2. (4-1.22)

If we define

k(t,xt) a  (g(t,xt)g T(t,xt) + g(t)gT(t)), (4.1.23)

we can rewrite (4.1.18) (i.e., (4.1.21)) as

dxt = [f(tpct,ut) -  a(t,Xj,ut)g T(t,xt)k _1h(t,x,)]dt

+ a(t,xtut)[Im -  g T(t,xt)k _1( U t)g (U t)] 1/2dwt (4.1.24)

+ a(t,xt,ut)g T( U t)k "1/2(t,xt)dyt .

The observations yt are related to yt by (4.1.19). Notice that the diffusion process (4.1.6)

is now expressed in terms of w., y. which are independent standard Wiener processes. 

From (4.1.19) we have

1

dyt = k 2 (t,xt)dyt

which is again well defined. Moreover, the LR given by 4.1.13 is now rewritten as
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1
T - >  (4.1.25)

dAj = A,h (t,xt)k (t^tt)dyt .

Since the solution {xsu,ys, 0 £s£ t}  is a unique strong solution to (4.1.6), (4.1.7)

it follows that {xsu,y s, 0 £s£ t}  is also a unique strong solution to (4.1.24) where the

input is now the Wiener processes w., y. related to w., y. through (4.1.14), (4.1.17), 

respectively. Furthermore, the coordinate functions (w ,y) are independent o f Xq;

therefore, the probability space (Q, ^ > ,  can be rewritten as a product of two

probability spaces $®S>), where

a  a Cl®Cl = C([0 ,T];R d)®C([0,T];R m)0 R  n

Pj = $0 $

and by an abuse of notation •^>’W) denotes the complete nitration on

C([0,T];R m)®B n , $(dw) denotes the measure £(dx,dw). Note that if x is deterministic 

the notation is well defined with no abuse.

Since the new functions (y,w) are independent standard Wiener processes on the

probability space (Q, P j), the measure P(dy,dw) defined on Q is a Wiener measure 

which satisfies
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$l(dy,dw) -  $(dy) ® $(dw)

where 0(dy) = p^(dy) a Wiener measure.

Hence on the product probability space (ft® ft, $ 0 $ ) ,  we consider the

stochastic differential equation

dxt = ( f u(t,xt) -  o u( U t)g T( U t)k "1(t,xt)h(t,xt))dt

+ c u(t,xt)E 1/2(t,xt)dwt + o“(t,xt)g T( U t)k _1/2(t,xt)dyt (4.1.26)

where superscript u denotes dependence on the control u and, for simplicity, we have 

defined

E(t,xt) A Im - g T(t,xt)k _1(t,xt)g(t,xt).

If we now assume = o{ys, 0 £  s <, t } (which is actually not true unless g(t,Xj) is

2
independent of Xj) and apply the Ito differential rule to any <|>€ Cb(R n) and perform some

cancellations we obtain

, .  v . . .  f3<KXs), 1 f ^ ^ s )  x<Kxt) = (^Xq) + J  dxs + ------ -—d(x.,x.)s
0 “  2 0 3x2

t t "V • /  \

= ^(xq) + J l  u(s)<)>(xs)ds + J  s ou(s,xs) E 1/2(s,xs)dws
0

l/*9<t>(xs) „ T A
+ — o“(s,xs)g (s,Xg)k (s,xs)dys

0 dx

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where

£ “(•) = i . E a ‘j(t^,u)— ?L_. + E ( f ,(t,x ,u )-(o (tIx,u)gT( u ) k " 1(U )h (u )))I- i -  
2 ij 9 x 'd x J i=l d x 1

a(t,x,u) Aa(t,x,u)cT(t,x,u), and f* the i-th component of vector field f.

Applying the Ito differential rule to ^(x^Aj, where Aj is given by (4.1.25),

(Kx^Aj = <t>(xo) + J*AsL u(s)<|>(xs)ds + fAg ^ qu(s,xs)E 1/2(s,xs)dws 
0 o

+ (Ag_ t l  *!.ou(s,xs)g T(s,xs)k 2(s^g)dys + fA g^x^h^s.X g)^ 2(s,xs)dy 
0 0

jA s- t ^ . ^ .qu(s,xs)g T(spcs)k “1 (s,Xg)h(s,x)ds.

Thus, after cancellation

t t a . ( \
^(x^Aj = <t> (xq) + J*As A u(s)<()(xs)ds + jA s_ _ L o u(s,xs)E 1/2(s,xs)dws

0 0
t
jAfM  u(s)<J> (x s)dy s+

0

where

A u(t) a J-Ea^(t,x,u)— ^ —- + E  f i(t,x,u)_^_
2 id 9 x ‘3xj i=l 9 x ‘
d _ l _J_

Mk(t) A E (k 2(t,xt))ikhi(t,xt) + E (o “(t,x)gT(t,x)k 2(t,xt))ik_ i r . (4.1.27)
i=l i=l 9 x 1
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The next and final step to prove the validity of Theorem 4.1.1 would require the 

conditional expectation of the integral representation of 10

We therefore proceed as follows. From the definition of conditional expectation (see, 

e.g., Wong and Hajek [132]), for every A e & f ,

A  A

Recalling that the measure has been decomposed into the product of the measures

&(dy) (sometimes called a delta measure) and $(dw) above, the right side of the 

previous definition actually denotes the double integral

J j E O K x ^  | J^ )$ (d y A d w ) • 
AA

This, in turn, can be rewritten as

Ji[E(<|>(xt)A ^ ) |^ ]& (d w )= jE ( ( t ) (x p A j^ f )^ (d w )
A  A

where the last equality follows by the measurability of the inner conditional expectation. 

Then, by Liptser and Shiryayev [103, pp. 187, 188] the last expression equals its integral, 

while we now define

E^(«()(xt)At)AE((l)(xt)At |^ f ) .

Summarizing, we now write for every As
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J<|> = E ^C xjJA j) (4.1.28)
A A

Next, since <Kxt)- \  is an 5 ^ 0 ^ -a d a p te d  process it follows that

t
E f t ^ x ^ ]  = <t»(x) + E^[ JA^A u(s)<t>(xs)ds]

0

+ Eft [ J A S ou(s,xs)E 2 (spts)dws ]
0
t

E ft[ jA g M  u(s)«J) (xs)dy s ] .+  _
0

Using a version of Fubini’s Theorem as given by Kunita [96, Lemma 1.2, pp. 132-

133] or Liptser and Shiryayev [103, Chp. 5, Thm. 5.15, pp. 187-188] and the fact thatwt

is a Wiener process with respect to measure & , we obtain

t t
E f tO K x ^ )  = <)>(x) + jE f t tA g A ^ C x ^ d s + jE f t tA g M ^ C x ^ d y s .

0 0

It then follows that there exists a measure-valued process pt(<j>) = Eft (At <j>(xt)) which is

considered a weak solution to (4.1.13). This completes the proof. QED

Remark 4.1.1 Notice that if we 1) exclude dependence of g on x, 2) let a  be an 

nxn matrix, 3) consider no control present, and 4) assume the condition

g(t)gT(t) + g(t)gT(t) = Id (4.1.29)

is satisfied, then pt(<j>) satisfies the exact equation presented by Pardoux [114, 115]. That 

is, the stochastic PDE given by Pardoux [114, 115] is a special case of the one given in
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__1_

Theorem 4.1.1 when the dxd matrix k (t,x) is replaced by Id. Kunita [96] treats the

filtering problem (4.1.1), (4.1.2) when g is zero and dxt = f(tpct)dt +a(t,xt)dw +g(t,xt)dbt .

His derivation is based on the one-to-one correspondence between the evolution of 

Kushner’s equation [98] (i.e., the equation satisfied by the normalized conditional density) 

and the stochastic PDE satisfied by the unnormalized conditional density. Recently 

Bensoussan [IS] presented stochastic PDE’s satisfied by unnormalized density for two 

cases. The first case considers the filtering problem when o(xt) is an nxn matrix and 

g(t,x) -»  g(t), and the second case considers the filtering problem when o(xt) —> a  

(Xj, yt), an nxn matrix, and dyt = h(Xj, yt)dt + g(yt)dwt + dbt. However, his derivation 

is different than ours.

For the rest of the chapter we shall assume for reasons of correctness that 

g(t,x) -»  g(t) and for reasons of simplicity that (4.1.29) is satisfied. As a consequence

k -1(t,x)—»Id thus dyt=dyt and However, the result to be presented in this

chapter can always modified to cover the cases considered by Kunita [96], Bensoussan 

[15], and also the case when k(t,x)^Id where k(t,xt) is independent of xt. We mention

that the case when g(t,Xj) depends on x, is still open unless we can show that ^

If we express the stochastic integral of the stochastic PDE derived in Theorem 4.1.1 in 

terms of a F-S integral, by (7.D.4) we have
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1 d d .
dp,(f)(x) = pt( A £ M “(t)2f)<x)dt* E

2k=l * k=l (4.1.30)
lim pt(f)(x) = f(x). 
tiO

where

Mk (t) *M ku(t) + E ( a u(Ux)gT(t) )_ L .
i=l 9 x ‘9 x ’

The solution to (4.1.13) can be considered as a weak solution to the generalized solution 

of (4.1.30) by treating (|> as a test function.

Next we represent the differential operators Au(t), Mk (t) using the tangent space

basis as described in Appendix 7.D. Thus,

Mku(t) A hk(t) + Yj(t), k=l,2 d

i m
A u(t) f i i E X j V d )  + XoU(t).

I  j=l

X;U(t) a E  Xji(t,x,u)_^_, Yk(t) A E  Y^(t,x,u)-iL., h k(t) Ahk(t,xt) , l ^ j < m .  
i=l 9 x ‘ i=l 9 x 1

The operator Lu(t) defined by

L u(t) a A u(t)- I  E  Mk (t)2 (4.1.31)
2 k=l

can be represented as

, m
L u(t) = I  E X j V  + XoU(t) + ho(t) (4.1.32)

2 j=i J
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where XjU, j = 0,...,m  are first order differential operators denoted in the following 

lemma.

Lemma 4.1.2 Suppose the correlation between the state process and observation 

process is denoted by

T

= Ja(t)gT(t,xt,ut)dt.
0

Then

m ,.  n m , .
Yj(t) = E•ykj(t)X ju(t) = £  E V IJ(0 X '(t,x 1,u t) _ L .  k = l , . . . ,d  (4.1.33)

j - l  M j-1  1 d x 1

and Ijj, - g (t)g(t) is nonnegative-definite, where is the (ij) component of g(t). Also

defining the mxm matrix 0  with components whete 0  0 (t) = ^  - g (t)g(t), then the

operator L(t) of (4.1.32) can be identified as

m
x.u(t) = E 0»k(t)xku, j = 1 m (4.1.34)

J k=l

XoU(t) = XoU(t) -  E  hk(t)Yj(t) (4.1.35)
k=l

£o<() = ‘ ^ t - i hk<t)- (41 -36>

Finally, the solution to (4.1.30) can be expressed as

pt(f)(x,<5) = [ f(£s t(x,fi>, *))<|>S(t(x, & ,') ] (4.1.37)

where <|>S(t(x) = <|>s t(x,ffl,<S)) is defined as

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



d 1 1
£  J h k( r£ s j (x ))*dyk + J h o O ^ W J d r
:=1 s sk -l {  ‘  ^  r {  u ^  (4.1.38)

<f>s>t(x) A e

and the process £s t(x,fi>,d>), © eft, (b eC l starting at ^  = x is the solution to the stochastic 

differential equation

m d ,
&8>$): d$t = XoU(t,^) f  £  XjU(t,^)-dw tJ + £  Y j(t£ t)*dy k (4.1.39)

j=l k=l

defined on Rn (where in this case since dy = dy a standard Brownian Motion).

Proof: The nonnegativity of ^  - gT(t)g(t) follows from Theorem 4.1.1. Next

(4.1.33) is a representation of <x.,y.>t using the tangent space basis, which can be easily 

verified. Using (4.1.31) and (4.1.33).

1 m d ,.
L"(t) = 1  £  (5; j -  £ 7 k,(t)7k'(t))X “(t)X j“(t)

2 i j = i  J i=i J
d 1 d ->

-  £  hk(t)Y“(t) + XoU(t) - 1  £  h j(t).
k=l 2fc=i

Since 0  is nonnegative-definite, if we define

m
XjU(t) A £  0*kXjU, j = 1,..., m

we obtain the representation given by (4.1.34) - (4.1.36).

From the theory of partial differential equations we can associate with the 

stochastic PDE (4.1.30) a diffusion process ^  having a generator
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1 m d
_  E  X “(t) + Xnuft) + E  Yjj(t),

hence the diffusion process ^  should satisfy (4.1.39). Finally, if we apply the Fisk- 

Stratonovich differential rule to f(^) <j>t(x) we can show (see, Kunita [93, 96]) that 

(4.1.37) satisfies (4.1.30).

Remark 4.1.2 Kunita [93, 94, 96] considers the existence and uniqueness of the 

solution to a stochastic PDE similar to (4.1.30) when the operator L(t) is degenerate (see 

Remark 4.1.1). When L(t) is a hypoelliptic operator Kunita [93, 94, 96] shows that 

(4.1.30) has a C00 solution (in the weak sense).

During the same period Kunita [94] proved that when Mk(t) is a zeroth-order 

operator, the hypoellipticity of L(t) is a necessary and sufficient condition for the 

existence of smooth densities. His approach however, differs from the one reported in 

Kunita [93] in that the decomposition of (4.1.30) into two measure-valued processes is 

considered. These two equations are expressed as

where 8X denotes the delta function concentrated at x. Once the above decomposition is 

established, then existence of a C°° density pt(x,<B,dz) is shown by first showing that the

solution to (4.1.41) represented as vt(x, dz) has a C°° density. The composition pt = vtpt 

is then a solution of (4.1.30).

dpt0t>) = E  pt(Mk (t)<|>)*dytk , lim pt = 8X
k=l ‘  1 tito

(4.1.40)

dvt(<|>) = vt(ptL u(t)pt-1(j))dt , lim pt = 8X
tito

(4.1.41)
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In this chapter we shall adapt the result established in Lemma 4.1.2 together with 

the decomposition method above to present two approaches in obtaining necessary 

conditions for the stochastic minimum principle of partially observed diffusions having 

strict sense admissibility. Within each approach we shall treat two cases,

Case (T)

when M ^(t)—»Mk(t) (no control dependence) which implies that a(t,x,u)-»a(t,x) 

Case (ii)

When M ^(t)-»hj.(t) (no correlation) but a  depends on control u.

Both approaches correspond to the Pontiyagin’s minimum principle in the case of 

deterministic systems. Approach one is easier and less involved due to the direct use of 

the results presented by Bismut [16] for state-valued processes and their extension by 

Kwakemaak [101] to measure-valued processes. Approach two appears to be more 

complicated since no previously known general stochastic minimum principle result is 

utilized. Both methods have in common the same exact representation for the variational 

cost. However, their adjoint (Lagrange multiplier)-processes have a different 

representation. This is of no surprise since there may be several forms of stochastic 

Lagrange multiplier processes as pointed out by Bensoussan [9, C'hp. VI, pp. 221]. As 

mentioned in Chapter 1, Sections 1.1.4 - 1.1.5 our method differs from the currently 

existing approaches taken by Bensoussan [10,15], Haussmann [68] and Elliott and Yang 

[50] in that, a separation principle for nonlinear systems is established similar to the one 

given by Wonham [130], whose results are only applicable to state-valued processes 

described by linear systems.
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Moreover, to our knowledge our problem formulation is the first that considers correlation 

between state and observation processes. The approach we proposed in Secdon 1.2. 

requires the proof of certain theorems which we shall introduce in the next section. They 

are in fact the primary tools for our analysis.

4.2 DECOMPOSITION OF THE BACKWARD (SDE) AND ADJOINT 
PROCESSES

In this section we shall derive the decomposed measure-valued processes 

associated with the backward SDE, i.e., the adjoint of the forward SDE (4.1.30). Next, 

we shall derive a pair forward and backward stochastic differential equations satisfied by

the process pt *(f) and a pair of parabolic PDE’s satisfied by vt *(f) in both forward and

backward variable. It is then evident that the inverse maps vt_1(f) (in both

forward and backward variables) have properties analogous to those shared by state-

-1 "Ivalued processes defined in Euclidean space. In fact, pt (f), vt (f) are solutions of

stochastic differential equations and PDE’s, respectively, which are the adjoint equations 

to the ones satisfied by p^f), vt(f). Similar results for state-valued processes are given 

in Kunita [95, Thm. 3]. Indeed, using the properties of stochastic flows for processes in 

Euclidean spaces Bensoussan [11] derives necessary conditions for the stochastic control 

problem with complete observations.

The results established in this section enable us to derive in an explicit way the 

change in the cost due to weak variations of the optimal control and a stochastic PDE
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satisfied by the stochastic Lagrange multiplier for the problem stated in Section 4.1. In 

other words the above processes constitute the tools for determining the stochastic 

minimum principle and the measure-valued adjoint process for the partially observed 

stochastic control problem.

We start by proving the following lemma stated without proof in Kunita [96, Thm. 

4.2, p. 144]. For notational simplicity, the superscript u used to denote dependence on 

the control variable will be dropped and re-introduced in the next section.

Lemma 4.2.1

The solution ps>T(f) of (4.1.30) can be represented by

d .
dpt,T(f)(x,d>) = -  L(t)ptT(f)(x,<B)dt -  E  Mk(t) p ,T(f)(x,ffl)*dy.

k=l (4.2.1)
lim ptX(f) = f(x). 
tTT

Proof: Applying the stochastic differential rule of Theorem 7.D.1 to f ( ^ t(x)) 

<|)s t(x) where ^  t satisfies the stochastic differential equation (4.1.39) and (j)s t is defined 

by (4.1.38), we obtain

S J = 1 s
d 1 d 1 *

+ E  jY j(r)f(^)({)s>r-dyrk + E  j h k(r)f(£s>r)<t>s/ d w rj + jh0(r)f(^s>r)(J)Sjrdr. 
s s s

Using (7.D.4), the (Cl, $) martingales are written in terms of Ito integrals, thus
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t 1 m
-  # * )♦  J d  I  Xj(r)2 *X o(r)*ho(r))% SJ)<|)s / lr 

s ^ j =1

m V ^ V v

J=1 s s

By Theorem 7.D.1, with t fixed

t _
/* 1 /*

f(^s t(X))4»s t(x) = f(x) + [ ( i .  5: X:(r)2 +Xo(r) +h0(r))(f-^>t<j>r t)(r,x)dr
s 2 J'=1

m V : d V t
+ E  JX jC r ) ( f ^ rtt)(r1x)dwrJ + E  JM k( r ) ( f ^ rtt)(r,x)*dyr .

J=1s s

Taking expectation with respect to measure P  the -martingales are zero. Thus,

t
-  f(K )*/L (t)E e,[(f-ir^ rt)(rjt)]d r

3

d 1
* £  -ayrk .

k=l s

setting t = T, s = t and differentiating with respect to the backward variable t  and using 

(4.1.27) we obtain (4.2.1). QED 

Theorem 4.2.1

The measure-valued process Vt(x) a pt(vt(f))(x) is the solution of the backward

SDE
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d .
dVt(x) + L(t)V,(x)dt + JE Mk(t) Vt(x)*dyt =0

lim Vt(x) = f(x) 
ttT

where

d ,
dpt(x,fi>) = -  E  Mk(t) pt(x,fi>)*dyt

lim pt(x,G>) = f(x) 
ttT

dvt(x) = -  (pt-1L(t)pt)vt(x,G)dt
lim v.(x,fi>) = f(x). 
ttT

(4.2.5)

Proof: Let us first verify that pt(vt (f)) satisfies (4.2.3). Using the F-S backward 

differential rule given by Theorem 7.B.6,

d(pt(vt(f)) = dpt(vt(0) + pt(dvt(f))
d . ,

= -  E  Mk(t)pt(vt(f))*dyt - p t((pt" L(t)pt)vt(f))dt 
k=l
d .  k

= -  E  Mk(t)pt(vt(f))*dyt -  L(t)pt(vt(f))dt 
k=l

which verifies (4.2.3).

Let us first prove (4.2.4). If we set L(t) = 0 then pt(x,fi>) is a special case of

(4.2.1) or (4.2.3). Letrjs t be the solution of (4.1.39) with Xq, ..., Xm equal to zero; then

d .
dqt = E  Yk(t,rit)«dy

k=l
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and Tis t(x,fi>) does not depend on <b. From (4.1.37), the solution of (4.2.3) (i.e., 4.2.1) 

is written as

d *
^E Jh k(r,‘ns j(x,ffl))-dyr 

pt(x,di) = f(ns t(x)) e s

which can be shown as follows.

Define

E  jhk(r,T|s (x,fl>))*dyrk 
k=1s

<j>s>t(x) a e

and apply the F-S differential rule to f(T|s t(x))<|>s t(x). Thus,

-  m  *  £  jY k(r)f(ns>r(x))(t,s / dy[k 

d * .
+ ^  J f(Tlsj(x))hk(r’Tl s / x))<l‘sj*dyrk-1 s

= f(x) -  £  
k=1 s

Interchanging the forward variable t and backward variable s, we deduce

f(Tls,t(x)<M x) = fW  + ^  k(r) (f‘Tlr,t<l) r,t) (r,x) * h j  •
k=* s

If we fix time t and differentiate with respect to the backward variable s (4.2.4) is 

satisfied. Denote the solution pt(x,fi>) by pt(f)(x,fi>). From (A'3) and the bounded
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assumption on f, it can be shown (see Kunita [94, 96]) that (4.2.4) has a unique solution

o
in the L sense. Moreover, the map pt is one-to-one and onto with inverse ^  given by

d r  - l  * k-  E  Jh k(r,T|r t (x,fi»))(r)*dyr

Pt_1(f)(x,G>) = fCHgJto) e

It remains to show (4.2.5). Consider the second-order operator p ^ L O )^  which is well-

defined since p"1: C^(R n) -> C^(R  n) . Then,

i i 1 m o
P t  L(t)pt = p E  Xj(t) + Xo(t) + ho(t))pt 

j =l
1 ^  _1 o 1

= _  E (p "  X:(t)pt) + p~ Xo(t)pt + ho(t). 
j=l

But

d
pt_1Xj(t)pt = (x) exp { - E  J h k(r,Ti"t1(x,a))*dyrk}

k=l s

xXj(t)(Tis^(x) exp { E  Jh k(r,TiSJ(x,©))*dyrk})
s

-1 V -1 ■» k ~ d V k
= Tls t (x )exp{- E  Jh k(r,'nr t (x,fl>))-dyr }[Xj(t)(Tjs t(x))exp{ E  J h k(r,T|SJ.(x,fi>))-dyr }

k=1 S ’ k = 1 s

+ Xj(t)(exp{ E  fh k(r,riSJ(x,©))-dyk})Tls t(x)]. 
k=l c

Since
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I I
Jhk^r't1 (y,&)) |y=Tls((x) *dyrk = Jhk07ns/x,G>))*dy k
s ’ s

which is an application of the backward F-S integral (see Kunita [94, Lemma 1]) and

Xj(Tlst(x))(Tls" t1(x)) = Tis t*(Xj)(x) 

which is an application of (7.D.12) (with f=l where T]s>t*(Xj) is a stochastic vector field 

and Tls t* is the differential map of *ns t), we deduce

P t'^ jW P t = ils,t*(Xj) + Xj(t)( E  J h k(r,Tls>r(x,fl)))*dyrk)
k=1 s

= TlSit*(X:) + E  fX:(r)hk(r,TlSJ(x,fii))-dyrk) 
k=l „ J

” Tls,f(Xj) + gs>t(x)-

The function gsJt is now defined as

gg>t(x) A E  J*Xj(r)hk(r,T|sj(x,©)) • dy k
k—1 c

Thus,

|  1 m  n
= T £(T ls,t*(Xj) + gsj t(x))2 + Tls ^(Xo(t)) + hod) + g (x)

j =l

Following Kunita [92, 95], we construct the solution £s t(x,<a,<S)) of (4.1.39) as 

follows: Let
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m
dC, = E iiy .p C iX Q -d w ,' * T ly .tfo K Q d t, CS = X

j=l
m

= E X jC Q -dw / + X ^ Q d t. 
j=l

By Kunita [92, Sect 4, Proposition 4.2], the solution ^  t can be represented by the 

composition T]s {£s>t (the proof requires the extended Ito’s formula). The solution to

(4.2.5) can now be represented as

m ‘ 1 *

•?, J  *sJA / x))' dwr * J « s / W x» d r* J fiO «dr 

vt(x,C»=Efr{f(Cs/x ))e J’  S s 8 )

which can be shown by defining

m 1 1 1
P  J W A / X))‘dwr + J g S° A / x))dr J fi0(r>dr

, . . j=1s s s
<l>s,t(x) A e e

and applying the extended Ito’s formula to f(£st(x)) <J>S t(x), thus 

t
= * ho(r))f(CSJ>|.Mdr

s

1 m V
* i . E +

J  ̂s 
m *

j = 1S
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Writing the first two components of the above equation in terms of p~[L(t)ps t we obtain

m *
* E  J (n SJ.(X /r)  * .

S j =1 s

Finally, interchanging the forward variable t and backward variable s

t

s

m *,
+ E  fe r . t^ jC r )  +gsJp f ^ r>t<})r>tdwrJ, 

i = 1 s

taking expectation with respect to measure £ , by interchanging the operator Ep with the

second order operator (obviously we can do this since p~|L(t)ps>t is bounded),

i

-  /(N „ U 0 1Vl)Es,[f-CrA . t(x)]dr
s

and differentiating with respect to variable s we deduce (4.2.5). QED 

Theorem 4.2.2

Suppose we define pt A pt *(f), vt 4v , *(f) then pt, vt are the inverse maps of

(4.1.40), (4.1.41) respectively. Furthermore, pt, vt satisfy the backward measure-valued 

processes
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d
dpt(x,6i) = E  ^ (M k(t)f) (x,<S))*dyt

k=l (4.2.6)
lim pt(f) = f(x)
ttT

dvt(f)(x,ffl) = vt(ptL(t)pt"1f)(x,a)dt
lim vt(f) -  f(x) 
ttT

(4.2.7)

Proof: The proof of the first part of the theorem is easily established by applying 

stochastic differential rule to pt(pt(f)), vt(vt(f)). The proof of (4.2.6), (4.2.7) can be

shown in a similar fashion as the proof of Theorem 4.2.1. Consider the solution to 

stochastic differential equation (4.1.39) having solution Tls t(x,fi>) when L(t) = 0. Then,T|s t(x,fi))

would satisfy

dTW  = £ Y j M S)t)°dyt

and the inverse operator pjJ(f) is defined as before by

ps"t1(f)(x,©) =f(Ti"t1(x,a)))e
(4.2.8)

As shown by Kunita [95, Thm. 2] the inverse map Tis J(x,ffl) satisfies the backward

stochastic differential equation

j=l
(4.2.9)
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(see also Theorem 7.D.2). Since in our case Y ,̂ j = 1, m, i = 1, d are bounded and

Tls t eR n the inverse map T|st1(x,ffl)eCO0(R n). If we define <|>s t to be the exponential

component of (4.2.8) and apply the stochastic differential rule to f(fls t(t))<|>Sit(x) where 

<j>s t(x) is expressed in terms of f |s t(x,co) we deduce

The above equation satisfies (4.2.6) which can be shown by fixing t and differentiating 

with respect to s. The proof of (4.2.7) is similar to the one given in Theorem 4.2.1.

Next we shall present analogues results for measure-valued processes integrated 

forward in time.

Theorem 4.2.3

Let ps J(f), vsJ(f) are the inverse operators to the measure-valued processes

(4.1.40), (4.1.41) respectively. Then, the measure-valued processes equations 

ps J(f), vst1(f) satisfy the forward equations

s

s

d r
£  j M k(r)f(fjr t (x))(()r i (x)*dy]

k=l cs
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dPs t1(f) = -  E  Mk(t)p_1(f)*dytk
k=l s,t (4.2.10)

U m p ^ f)  = f

dvs>  = -  (ps,tU t)ps- t1)vs-tt1(f)dt 

U rnp't1(f) = f

Proof: Before we provide the proof let us verify that

■ f

vs" X i ®  ■ f -

by direct use of (4.2.8), (4.2.11). Applying Ito differential rule 

t t

X t M f )  = f  + + Jp^V dPs/f))
s s

= f  -  E fMk(r)p"j(p (f))*dyrk + E  f  p"j(p (Mk(r)f))t d y k = 
k = l i  k = li

(4.2.11)

Repeating for v “{ (vs t(f))

\ t ( vs,t®) = f  - J  ( ( P s ^ r)Ps’j ) vs " j v ^ dr + / vs"j(vs A /  Ur)ps"?Jf))dr = f. 
s s

We start by considering the stochastic differential equation (4.2.10). Setting 

L(t) = 0 , the solution to (4.1.39) on the product probability space

(C l® C l, & * ®  3 ^ ,  P ® & )  is represented by

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



d k
dr|t = E  Yj(tfit)*dyt .

j=l
(4.2.12)

Again the operator p~*t (f) is well defined and is expressed as

d 1
pjJ(f) = (x.ffi)) exp{ -  E  f  hk(r,Tl~t1(x,w))*dyrk}. (4.2.13)

j=i i

We shall show that (4.2.13) satisfies (4.2.10). The key step in proving that

(4.2.13) satisfies (4.2.10) lies in a theorem given by Kunita [95, Thm. 2]. This theorem

states that if f |s t = T|s j then

d *
\ t  = * -  £  J YjM r.t(x))*dyr • \ t  = x - (4.2.14)

j=1 s

where fls t = T|s  ̂ are onto maps as presented in Theorem 4.2.2. Thus (4.2.13) can be 

expressed as

!*,“{© = exP{ "  S  / h k(r,f|r t(x))*dyrk}. (4.2.15)
j=l Js

d V - kSetting <j>st(x,z) = exp{ -  E  hk(r,fjr t(x))‘dy }z then by applying stochastic differential
i = l J  1 1 s

formula to f(f|s t(x)) <J>S t(x,l) we have
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d  V  lr

f(fls,tW^s,t(x*1) = f "S J Yj(r)f(flr,t(x))$r,t*dyr
j =1 s

-  E  fh k(r)f(t|rt(x))$rt«dyrk
j =1 s

= f - E  j M l (r)f(f |r,t(x ))$ r4 -d y k .
j=1 S

Interchanging the forward variable s and backward variable t using (Theorem 7.D.2) we 

write

-  f - .E  j M k(r)(f •flu $ M)(x)-dyrk .
J=1 S

Differentiating with respect to t by fixing the initial variable s, we see that (4.2.10) is 

verified.

Next, we consider the inverse map to (4.2.15). The inverse map is expressed as

d 1
Ps,t(f)(x) = fCflJtW) exP ^  Jhk(r,'n~(r(x))0dyr

j=1 s

where the justification is given by Kunita [94, Lemma 1]. Moreover, the operator 

ps t L(t) ps * is well-defined (see Theorem 4.2.1) and is given by

1 1 ^  1 O 1= ± E  (D ^X /O m ;,1)2 *ho(t).
J. j=l

Next, we need to find an expression for ps t Xj(t) p j* . Since
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- 1  - t  d V - 1  lr d  V
PsitXj(t)Ms"t =fls"t (x)exp{ E  JhkM sjC x^^dy,. }Xj(t)[f|s t(x)exp{- E  jh k(r,f|r t(x))*dyr }]

k=l s k=1s
= n ; t1(x )x j(t)(f\Stt(x))

- I  d V - 1  lr d  V ■
+ fls"t (x) {exp E  jh k(r,Ti“ (x)«dyr } Xj(t)(exp{ E  - J h k(r,flr t(x))-dyr )}f|s t(x).

k=1s k=1 s

Using the identity £s t *(X)f(x) =X(f-^s t) ( ^ t1(x)> given by Kunita [4], where (£s t)«, is

by definition a linear map from Tx (Rn) into  ̂ (x) (R n) (see, Appendix D) it follows

that

t |s‘J1(x)Xj(t)ffls l(x)) = n s,t.(X j(t))

and by Kunita [94, Lemma 1].

d 1 d 1
exp{ E  fhk(r,f|"j(x))*dy k}X:(t)(exp{- E  fhk(r,f| t(x))*dyk}

k=1s k=1s

Therefore, for almost all fi>, ps tL(t)ps |  is a second-order operator written as

1 1 ^  A
= 4  2  (X /t)) -  gsJt(x))2 -f f ly .t fo d ) )  -  gs> )  * ho(t)

j =l
where
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I d r -  k
gs/ x) = E  JXj(r)(hk(r)-fls /)(r,z)-dyr lz _fl- ifxr 

k=lg £ -1 ls,tw

Next, we shall construct the solution to (4.2.11) similarly but instead of 

considering the solution ^  t of (4.1.39) in the forward direction this solution is

constructed using the composition where £$ t satisfies a backward SDE. Then,

proceeding as in Theorem 4.2.1 one can obtain (4.2.11) by interchanging backward and 

forward variables to deduce an equation evolve in the forward variable. QED

Summarizing, we have established now that the solution maps pt, p ”1 satisfying

(4.2.6), (4.2.10), respectively, are the adjoint stochastic differential equations adjoint to 

(4.2.4), (4.1.40), respectively. Likewise vt, vt 1 are the adjoint processes to (4.2.5),

(4.1.41), respectively. Similar results for state-valued processes are established by Kunita 

in [95, Theorem 3].

In this thesis we assume the bounded conditions stated earlier. However, one is 

often concerned with control problems satisfying a weaker linear growth condition. We 

shall show that the decomposition established by (4.2.10), (4.1.41) holds in a weaker 

sense by proving existence of their solutions.

Lemma 4.2.2 The decomposition results of the current section can be extended 

to systems having Lipschitz and linear growth conditions as long as the coefficients of 

operators L(t), M(t) are of class (k > 2), their first and second derivatives are bounded,

and {Mk}, have bounded coefficients.
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Proof: We shall only prove existence results. Let us consider the decomposition u "I (f)S,l

of Theorem 4.2.3. First we shall prove that the solution to (4.2.10) exists in L2 sense. 

Consider the operator p’ ^ f) given by (4.2.15) and backward SDE (4.2.14). Since

all the coefficients of L(t), Mj(t) are of class, k > 2 and their first derivatives are 

bounded, by Kunita [92, Thm. 2.3] f|s t(.,fi>) is a diffeomoiphism from Rn onto Rn of

C^'1 class for any t a.s and there exists a unique strong solution f]s t(x,G>) satisfying

(4.2.14). If we assume that f  is a bounded function, then by applying the Schwartz 

inequality twice, we obtain

d 1

E&IPst (f)l2 = exP{_ E  K f r  fir,t(x))*^yrk} I2
k=l s

d *
Ep |f(f]git(x,fi)))|2E? exp{- 2 £  fhk(r, f |r>t(x ) ) -a y rk }

k=l c

^  K(t,x) % [e x p { -2  E  fhk(r,nr t(x))-dyrk }]
k=l i
d 1 d

= K(t,x) Ep[exp{- 2 E  fhk(r,f]r t(x))dyk - £  fYk(r)(hk(r,f|r t(x))dr} ] 
k=l s k=l Ja

d ‘ a d * ,
<. K(t,x)E^[exp { - 4 E  jhk(r,f|rt(x))dy -  8 E  jhk(r,f| ,(x))dr}] 

k=1s k=l g

xEgj[exp { -  2 E  jV k(r)(hk(r),fjrt(x))dr + 8 E  j*hk(r,f]rt(x))dr}] 
k=1s k=1s

< K(t,X)<oo.
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For fixed t, the first exponential function is an 3 ^ ® $ ^  -backward martingale whose 

expectation is 1. By Remark 7.E.2 the second expectation satisfies Ep(,)<°°. Thus,

_ 2 ty
ps t (f)(x) is an L solution. Let us next, consider the measure-valued process vs t(f) of

(4.1.41). It can be shown (see Kunita [94]) that the solution vs4 of (4.1.41) is represented 

by

m *
" •?!/ gs j ^ s > » ,dwr - / g s V U ^  

vs,t(f)(x) = E^[f(Cs>t(x))e s ]
(4.2.16)

where

-1 e m;,!.cxp-gi)2+(n-|.(Xo) -ĝ ,)
J=1

-  M f y W  = E  /(X jCD h^rj.-V )X *) (42 -17)

gsVx )= g s , t W - h0(t’Tls,t)
and Cs>t(x,fl»,<i)) is the solution to

i m i
dS| = n y .(X „ ( t) ) (C 1) d t ♦ x  ^ . . ( x / o x y - d w ' ,  (4.1.18)

j=l

The composition T|s t£st provides a representation for the solution of (4.1.39). To 

prove existence of vs t(f) we shall show that
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E*|vs/f)(x ,fi» |2 < oo a.s..

But using Jensen’s inequality,

E j, |v SJ(f)(x.ffl) |2 £  E f 8 j > [ I f ^ / x ) )  I2 * 2 ,]

where,

m 1 f
-  E  -  Jgs°A j(x ))d r

, J=1s s
= e

2
Thus, since f  is bounded, it is sufficient to show that <|>s t is integrable for all t and x.

Since the solutions T|s t, ^  t, £s t exist and f  is a bounded function, writing the exponent 

of (j)s t using Ito integral representation, we have

t - V o  m l  ,
- 2  X gsĴ s/x ))d w rJ-2 jg SJ(Cs/x ) ) d r - E  jT i^ #(Xj(r))gsJ(r(CStr(x))drrJ

m V i S m V 5 x,
" 4 J  J g S/ ^ ( x))dwr 8 .^  J lg s/ C s / X))l dr

J = 1 S s

16!
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-2  £ Tls^.(X j(r»gsV ? s/x ) )dr -4 ^ ° sf i u (x))dr*8 E  f  

).

The first exponential is an -adapted supermartingale thus, a E ^ ^ * )  < 1. Since

the remaining exponential term has an exponent which is of quadratic growth, then, by

follows since the solutions ^  t, £s t, Tjs t are unique. QED

4.3 APPROACH 1: STOCHASTIC MINIMUM PRINCIPLE

Consider the stochastic control problem (4.1.1) - (4.1.4). Using the decomposition

(4.1.40), (4.1.41) the performance cost can be written in a separated form as

T

-  f  K i . ( X j ( r ) ) ^ C M(x ))d r-4 js,g«r(?SiI(x))dr
j —i c

2
it follows that <j>s t(t) is integrable by a version of Remark 7.E.2. Uniqueness would also

J(u(-) = Ep{psT(K(x))+ j*pSJ(i(r,x,u(r))dr}
s (4.3.1)

T
= E? {vs>TpsT(K(x)) + | v SJpSJ(3i(r,x,u(r))dr}

s

where ps t = vs t ps>t.
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CASE I

Consider the case when a  is independent of the control variable u. As stated in 

Section 1.2.2 Lu(t) defined by (4.1.32) is the only operator which contains any explicit 

dependence on control u which is also evident from (4.1.33)-(4.1.35). Therefore, for this 

problem we have

m . n 3
XjU(t) A E  ©)k E  o! (t, x ) J L  (4.3.2)

k=l i=l dx*

n a 4 m n .
x0u(t) 6 E f ’(t,X,u)_£_- E hk(t)Yk(t), Yka E E/J(t)oVt,x)_^. (4.3.3) 

i=l ax1 k=l j=li=l J 3x»

Suppose that u(t)e is an optimal control. Then since is a convex set (by

assumption (A'10)) for any other control u(t)e U ^ , u(t) + eu(t) is also in for each

te [0,T] and ee  [0, 1]. Therefore we may construct a mapping £ : 0 £ e £ l - » U  given

by £(e) a u + eu. This map £(e) is called a weak variation of the control and is the map

we shall consider for the current and next sections.

As a result of the decomposition of ps t into (4.1.40), (4.1.41) any control variation

would only affect the measure-valued process vs t(f). This is easily seen since ps t does

not depend on the control explicitly but only vs t does (ps t(x,fi>) is independent of die ft) .

That is, ps t depends on the initial state x and the observations J ^ v  Therefore if we

£
consider u(t), u(t)s and denote by v t the measure-valued process corresponding to

control u(») + eu(*),with t defined by (4.1.41), and with u(») replaced by u(*) + eu(«), 

we have
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* * u  (MSJL “(O ^ fjd t * v J t t E g P . a(t)ns- > t  (4 3 4)

lim zs , = 0 .| 9*1
t is

where

~ ^ V O I e - 0 .

D
which can be verified by considering instead of the perturbed process ps t 

defined by pB (f) A ^ p ® t(f)|e=0.

Theorem 4.3.1

Let u(»), u(»)e U ^ . For ee[0, 1] let correspond to the solution of (4.1.41) 

with control function u(») + eu(») and having initial condition 8X. Then

vs,t® = V O  + Ezs,t<f) + (43,5)

where zs t(f) is the solution to (4.3.4) and, as e->0,

(i) < t(f) -* vs t(f) in L 2(fl® G , &®&),

£

(ii) -> zst(f) in L 2(G® G, $®£>),
£

(iii) the solution zs t(f) of (4.3.4) exists and is unique.

Proof:

(i) We have
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and by Kunita [94, 96]

t

e .  .  "  ^  f S s / 0 ' dwr ' f S s j ^ s P
v ^ O - E ^ W t f p e  j - i Js SJ ^  |  “  " 1 .

By Jensen’s inequality

E » [ |v ' , ( f > - v Stt(o  p i  s  e p 8 j j  i < , ) ^ , , - f ( ; s, ) f s .t iz ]

where <|>Stt, <j>st 316 t l̂e exponential terms of t(f), vs t(f), respectively, defined by

(4.2.16). By first expressing the F-S integrals in terms of Ito integrals and then using the 

Ito differential rule, we obtain

j=l ^j=l
m1 i n  i  .

z J=i

where Q  Cs,  satisfy the stochastic differential equation (4.2.18). Since

<.>4>s,t -Kj)*u -  < . ) * «  - f« * X .

then
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Thus,

estlvs,l®-vs/f) |2] s  Ef,a{,[|f(CSJ)(^J-ctSil)|2]

By the bounded assumption on f, the above expression is further upper bounded by

£  W l < t - ' U 2 * W l ' U 4fi» « o l f < V - < . ) l 4

But

IfK y -  f(CSlt)c)l‘1 -> 0S® (> a.s.

H>s.t -  W  - » o e ® « > a . s .

(i.e., in some Lq space, q £  1) due to the bounded assumption on Xj1, hg, hj. 

Therefore, we conclude

e 0 ® * l < t f f l - \ t ® l 2 - > o -

£
(ii) Let vst(f) be the solution to (4.1.40) corresponding to the control 

u(*) + eu(*) and set

£ Vgt( f ) - v s t (f)

^ = 0 .

Then,
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e d v * (f)-d v st(f)
< . ©  = ' e ■ -  * u ©

e

-  \ t K t L  -  vs,t(Ps, t ^ G ( t ) P s",!f)dt •

If we replace t(f) by e9®t(f) +ezs t(f)+vs t(f), we get

< t ®  -  / 1 h l v  * -  L “WlMs'ifl
s

- l  "(t) - e i L ^ a w ^ f )  ^
j  _
S

By the bounded assumption on the coefficients of the operator Lu(t) it follows that Lu(t) 

satisfies a uniform Lipschitz condition, thus by (4.1.32) and (4.3.2), (4.3.3),

Then using the Gronwall inequality (see (Fleming and Rishel [56 , pp. 198]), ,(f) -4  0b»l

in L2 as e -»  0.

(iii) Consider the composition zs tps t. Then
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d k
d(zs,tPs,t(f)) = zs,t(k̂ iMs,t(Mk(t)f), dwt )

+ zs,t(Ps,tL ll(t)f1s~t1Ps,tf)

d k a i  u
= E  zs,t^s,t(Mk(t)f)*dwt +zs t(pSjtL u(t)f)dt+vs>tpStt(_ _ u ( t) f )d t .

k=l ou

Let Pt = zs tps t; then

•v d .
dPt(f) = P t(L u(t)f)dt+pt(^ iu (t)f)d t+ E P t(Mk(t)f)-dwtk

du k=l

and by treating f  as a test function we deduce

dPt = L “( O 'P j d t + .y (t)*ptu(t)dt + E  Mk(t)*Pt*dwtk

where pt is the unnormalized conditional density. Since f  is bounded and

u e L 2(Cl, S ? [, P ), it follows that p/.-lr'. ft-u(t)f)eL2(ft, S?x , $ ). If we set
du 1

t u
Pt =Pr J p [( iL ® a (r ) fX lr

dus

then
d ,

dPt(f) = Pt(L u(t)f)dt + E  Pt(Mk(t)f)*dw*

and Pt(f) has a unique L2 solution (see Kunita [93, 94, 96], Pardoux [112, 114]). Then, 
it also follows that Pt(f) has a unique solution in L2 sense. But since Pt(f) is considered

as a weak generalized solution of Pt, by the composition above we havezs t = Ptp~*

r\
which also has a solution in L sense since pc, does (see Lemma 4.2.2). QEDS»l
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If the Gateaux derivative of J(») as a function on the Hilbert space 

is -adapted and well-defined, we have the following

lemma.

Lemma 4.3.1 The cost function J is Gateaux differentiable and satisfies 

J L  J(u(*) + Efl(*)) |e =o = Ep {zs Tps T(K(x))

Tr dn ■ (43’6)
+ J t W 11 U(r)) +vs jP s j( -^ j- ( r)Q(r) ) ] d r-}

s

Proof: Denote by J the right side of (4.3.6). We then have

J(uC).ea)-J(u(.)) - J ■ l E , ( v ^ s,T( K ( x ) ) . / v ^ jJi"^ (r)d r)
s

T

' T 6 P{vs.tPs.t (k (x)) + f w  " O Wc J
S

T

"  Ep{zStTps,T(K(x)) + f[zSJpStr( i  u(r» +vSJpS4 an r̂ )u(r))]dr}.
s 9ue

Replacing v®t by e9g t + ezst + vs t , the right side of the preceding equation becomes
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T

7 e ^ {(e ^ T + e z s,T + v s,T)Ps.T(K(x) ) + J [ (e^ +Ezs ^ + v s P l1s,t(;,I,1+ea(r) ) idr}
s

T

" | fi?{Vs,TMs,T(K(x)) +/ Vs/Psx11
s

T

-  E ? {z s T p s T (k (x ) )  + f[zSitps t(K u(r)) + vStrps>r( ̂  ®  u(r))]dr}
s 9u

T

-  - 1  “©  -
s du
T T

* E j./zsA /n " * ® ®  -n  “(r))dr + EflJ ^ s-r(nu*Eil(r))dr.
s s

Letting e tend to zero we notice that the first and second terms of the right side of the

du uprevious expression tend to zero due to the bounded assumption o n  The third term
du

also tends to zero due to Theorem 4.3.1 (ii). QED

Remark 4.3.2 The cost function (4.3.6) and the perturbed process zs t are related 

to the cost function and perturbed process given by Bensoussan [7, 10, 15] through the 

composition:

pf,t(f> = zs,rPs,T(f)

which satisfies

dPsB|©  -  PSll( i ! ^ a ( t ) f ) * p B (L "(t)f)+ E p sBt(Mk(t)f)-dy,k. (4.3.7)
ou k=l
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Indeed if we set Mk(t) = hk(t), and consider the stochastic control problem treated by

jj
Bensoussan [10] the measure-valued process pst(x,fi>) corresponds to the perturbed

process considered by Bensoussan [10, eqn. 2.7]. The Gauteaux differential of J( ) is 

exactly the one considered by Bensoussan [10, eqn. 2.9] since, by definition, the

, bcomposition zs t ps t is equal to ps t .

MINIMUM PRINCIPLE

At this point we introduce the measure-valued process Ps t(x,fi>) defined by

dPst(x,fi>) = -  (ps>tL u(t)ps"t1)Ps t(x,a)dt - p s tn u(t)(x,G>)dt

^ ps,t = Ps,t(k (x)) 
tTT

The choice of the measure-valued process satisfying (4.3.8) is obtained by viewing 

the perturbed process satisfying (4.3.4) and performance cost (4.3.1) as the deterministic 

analog of the control problem given by Fleming and Rishel [56] for state-valued 

processes. In fact the homogeneous part of (4.3.8) should be the adjoint operator to the 

homogeneous part of (4.3.4). Note the striking similarity that exists between the 

Lagrange multiplier as defined for deterministic systems and that of (4.3.8); for example, 

the term p 13iu(t) corresponds to the integral cost and the final condition corresponds to 

the terminal cost.
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Lemma 4.3.2 The measure-valued process Ps t(x,<B) satisfying (4.3.8) is the 

adjoint process to the measure-valued process 2̂ t(f)(x,©) satisfying (4.3.4). Moreover, 

there exists a unique solution Ps t(x,fi>) to (4.3.8) in L2 sense.

Proof: The first part follows by the composition of (4.3.4) and (4.3.8) which will 

be shown shortly. The second part follows by defining

t

p t = P s . t M ) * / ^  U(r)dr 
s

and differentiating to deduce

= ~(Ps,tL U(t)Ps,t>PS,t(x’®)dt 
P T = P s,t(k (x»

which is a parabolic type partial differential equation. It is well-defined for almost all© 

and has a unique solution (see Kunita [96]) or Theorem 4.3.1 (iii). QED

The first part of Lemma 4.3.2 will be evident in the next lemma (i.e., the 

homogeneous parts of (4.3.4), (4.3.8) are adjoint).
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Lemma 4.3.3 The variational cost (4.3.6) can be expressed as 

T
- i  J(u(-) +eu(-)) |e=0 = Ep{J*[vSJpSJ( u(r))

s

+ vs > s j

= Eg, { ^  ,pt)u(r)d r+J ( — _u~ ^ r  Pr)u(r)dr} (4-3.9)
s s

where

Pt(x,<D) A Eg>[Pt(x,<3>) | S f y  , Pt(x,ffl) A pt_1Pt(x,G)).

Proof: We start by applying the Ito differential rule to the composition

thus*

T T

zs,T(Ps,T(x’a ) =zs,s(Ps,s(x’ffl)) +/ zs/(dPsj(x’a )) +/ d zsj(Psj(x’G))-
s s

Using (4.3.4) and (4.3.8) we have

T T

zs.tP s,t(k (x»  = " f a j t o s j ' U(r)Ps"j)Ps j(x’C)))dr -JzsjC P s^ 1 “(r))dr
s s

T T

U(r)P siPsj(x’a )) +/ vs / P s ^ ~ G(r>Ps"iPs > ’a ))dr+

s s

which is equivalent to

T T

zs.tP s,t(k (x) ) = / vs > s 4 (r)u(r)ps~jPs>r(x,<B))dr-j z s>r(ps>rg u(r))dr.
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Substituting the last equation into (4.3.6), the variational cost is expressed as

i(u (0 ^ O (0 )|Ê =Ef (jvs> SĴ 2 u (r )p s-jPŝ ,Q))dr+JvsA /^ ® a (r ))d r .
s s

Notice that ps t = vs tps t which implies

T  T

jLj(u(-) +eu(-» |e=0 =E& {Jps t( ^ ^ lu ( r ) p s"jps j(x,ffl))dr+Jpsj(^ ^ lu (r ) )d r .
s s

_  _  J
Next, suppose we define Pt a  ps tPs t(x,©) where, as shown in Theorem 4.2.3

pt *(f) satisfies (4.2.10) and is the inverse map to p^f) (also the adjoint map to pt(f)).

By applying the F-S differential rule to the composition pt *Pt (dropping the time index

s) and using Theorem 4.2.3 we have,

T  T

P t V t W 6)) =P^1(Pt(k(x)))=ps_1(Ps(x,a)) + Jdpr- 1(Pr(x,ffi))+Jpr- 1(dPr(x,fi)))
s s

d  T  T

K (x )-|i;‘(Ps(x,ffi)) = -■ £  jM k(r)p ;1(Pr(x,ffl))-dyrk-Jp r' 1((|iIL “(r)|iJ1)Pr(x,«)))dr
s s

T

-  JPr^PjE U(r))dr.

If we differentiate with respect to the variable s we obtain
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d f t(x ,G )+ L u(t)P t(x,& )dt+3i u(t)d t + £  M k(t)P t(x ,a ) - d y tk = 0
k=l (4.3.11)

limPt(x,©)=K(x)
ttT

which is the backward SDE given in Theorem 2.4.1. Therefore, we can rewrite the 

variational cost as

T

± J ( u ( - ) + e u ( - » |eM) = Ef, J < ^ H u ( r ) ,p r )dr
s

T

+ J - ^ - ( L u(r)u(r)Pr pr >dr}
s

T

» Ep { J [ ( i ^ ! , p r ) +^ - < L u(r)Pr pr)]u(r)dr(4-3-12>
s

where the last equality follows since u(») is S Q̂, -adapted. Next we make use of theSfl

conditional optimality given by Striebel [123 , Chp. 4] which states that whenever u e 

is conditionally optimal, it is also optimal. Thus, reconditioning (4.3.12) on the filtration
S»1

we can write

T u
Jb(u(-)+eu(-)) |£=0 = Ep{ J [ ( ^ _ ^ , Pr) +^ _ (L u(r)PrPr)]u(r)dr}. (4.3.13)

s

where

Pt(x,ffl) = Ep[(Pt( x , f f l ) |^ t]. QED 

The form of the variational cost established by (4.3.12) (or (4.3.13)) is exactly the 

one obtained by Bensoussan [10, Sect 2.3, ] and [7,15]. The backward SDE satisfying
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(4.3.11) and the process Pt(x,fi>) are exactly the ones obtained by the above author in

[10, Lemma 2.2] and also in [IS].

The following theorem presents the necessary condition for choosing the control 

to optimize the cost function.

Theorem 4.3.2

Let be a convex set. Suppose u(») is an optimal control for the problem

T

J(v(*)) = Efr{ps>T(K(x)) + J p s>r( l  u(r))dr] (4-3.14)
s

dPs,t = LU(t)*Ps,tdt + S M k(t)*Ps.t*dytk>Ps.s = Po- (4.3.15)
k=l

Then there exists a unique Pt(x,ffl)e Ly such that the following condition is satisfied:

E (aj(t)-U j(t))[ f  ( |i ( t ,x ,u ( 0 )  -  J - L  uf>,(x,a)|pt(x,(I))Jdx20 (4.3.16)
i ' l  RJ„ 3uj

for all ue Uad a.e. in t, a.s.. The Hamiltonian function Ht(pt, £ t, u t) is given by

= A  J  [ I a(t)+ L ii? llp tdx = A { ( p tj  °(t))+ (?,E ii(t)“p t) 1(4.3.17) 

R " U

Proof: First we start by showing existence of Pt(x,fi>). Thus, by Jensen’s 

inequality

%  \Pt(x ,& ) |2 = % |E ?(Pt(x,&) | ^ t) |2 < E? |Pt(x,&) |2.

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



But Pt(x,<S) is the solution to (4.3.11) which can be shown to have a unique solution by

T

defining Pt(x,fi>) = Pt(x,G>) -  Ji u(r)dr and proceeding as in Lemma 4.3.2. Next we shall
t

prove (4.3.16). Since is convex and u(»)e it follows that u(») + e(u(*) - u(»)) is 

also admissible and

J(u(*) + e(u(*) -  u(*))) £  J(u(-)).

Thus, we can write

±  J(u(-) + e(u(-) -  u(-))) |e=o * 0 . 
de

Therefore using the same procedure as before if follows that

$ f  E  (u:(t) -u:(t))[ f  ( | l ( U ,u ( t ) )  + - ^ - L uPt(x,ffi)} pt(x,ffi)}dx£0
s j = 1 nD dUi dUj

for all u(»)<= U ^ , as shown by Fleming and Rishel [56, Them. 11.2, pp. 41] for 

deterministic systems. The rest of the proof is a consequence of the proof presented by 

Bensoussan [9, Chp. VI, Them. 1.2, pp. 232-234]. Suppose tQe(0, T) and take u small 

enough so that + 0 < T. Choose u^e L2 taking values in C((0, T); Rd) where UqG 

a.s. Take

u(t) = u(t) for t« (tQ.tQ + 0) 
u(t) = v0 for t€(to, tg + 0)

which is again admissible. Define the stochastic process Xj(t) by
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Xj(t) A J  {^ .(t,x ,u (t)) +j | x uPt(x,a)}pt(x,fi>)dx. 
b«  ui i

Then we deduce that

k to+0 to+e k
, E v 0j J  Xj(t)dt -  Ep J  D Uj(t)X,j(t)dt ;> 0.
 ̂  ̂ trt tn j ^

If we consider Xj(t) as a process in L2 space we have

t0+6

-i- J  ^j(t)dt -> Xj(t0) in L2 sense a.e. tQ.

*0

Therefore, we obtain

k
E$ E  (Gqj -  Uj(to)) X.j(to) 2: 0. a.e. t^CO/T).

j=l

Next, choose u to be deterministic in and set

TOo) = (u -u (tg )) ^j(to) which is ^ -m easu rab le .

Also set A = {G>; y(tg) < 0} and take Uq = u in A, Uq = u(tg) outside A. Then we deduce 

that E^(Ij g,. <y(to»} ^  0 which is a contradiction, unless A has measure 0. QED

Remark 4.3.3 The variational cost (4.3.13) and Theorem 4.3.2 which provide the 

necessary conditions of optimality for deciding what control is optimal are the exact 

necessary condition obtained by Bensoussan [10, Thm. 2.1]. His treatment, however, is 

based on energy inequalities and linear contraction maps. Our justification of the

existence of P as given Theorem 4.3.2 is based on the Pontryagin’s minimum principle
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when extended to measure-valued processes. Bensoussan [10, IS] considers the case 

when no control enters the diffusion coefficient and the correlation between the 

observation process and state process is zero. His early result on this subject [10] is

v h(tx)
based on the robust version of (4.3.11) defined by us^(x,&) A Ps t (x,fi>) e 1 and

introduced in Chapter 2. Therefore, his formulation cannot be extended to the general 

case considered here since no such robust version exists when correlation between state

process and observation process is allowed (due to h \ h* being non commutative). Very

recently Bensoussan [15] provided a different approach to the existence and representation

of the process P(x,G>) which is based on Galerkin’s approximations for Sobolev spaces 

to approximate the process £(x,fi>) using a finite-dimensional basis. Using this

approximation he then derives a stochastic PDE satisfied by P(x,fi>) without having to

introduce the robust version ust as done in Bensoussan [15].

Remark 4.3.4 We shall now present a formal derivation of the equation satisfied

by the adjoint process £ t using (4.3.17). Since (4.3.17) provides the partial of H with 

respect to u, it follows that the Hamiltonian should be represented by

H A (pt, i  u(t))+(Pt,L fl(t)*Pt>+ft
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where f t is some process independent of u. From deterministic optimization theory we

3Hknow that the dynamic constraint (i.e., the state derivative x ) is related to H byx = ___
3q

where q is the adjoint process (Lagrange multiplier). Applying the last comment to

1 dHoptimization in L space, the state of our system (in this case pt) should satisfy dpt = —
9P

where f* is the Lagrange multiplier. But pt satisfies the stochastic PDE

d .
dpt = A u(t)*ptdt+ E  Mk(t)*Ptdyt ,

k= l

Therefore the unknown process in the L2 norm set up should be given by

d
E  <rt, Mk(t)*pt)dy 

k=l

where rt is some -adapted process and rt is interpreted as the second adjoint process.

This statement will be made clearer shortly. In fact this is indeed the formulation we 

shall explore in the next section to give a formal derivation of the stochastic PDE

satisfied by f*t .

ADJOINT-PROCESS REPRESENTATION

Having obtained the result of Theorem 4.3.2, we shall determine a representation 

for the adjoint process using Bismut’s [16] minimum principle for a system with complete
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information and its extension by Kwakemaak [101] to systems with partial information 

having output feedback.

Bismut’s Minimum Principle; Bismut’s version of the stochastic minimum 

principle applies to minimization of the criterion

T
J = E{k (xt ) + j i  u(t)dt} (4.3.18)

0

for the system

dxt = f(t,xt,ut)dt+o(t,xt,ut)dwt (4.3.19)

where a  a{xQ, ws; 0 ^  s £  t}. The state process xt, t€[0,T] is assumed to be 

measurable with respect to the filtration t e  [0, T], which results in an open loop 

control (i.e., not of feedback form) and system (4.3.19) is assumed to have Ito solutions. 

Bismut defines the Hamiltonian function by

H(t,x,u,q,r) = q tf(t,xt,ut) + r ta(t,xt,ut) + n u(t) . (4.3.20)

The necessary conditions of optimality are then given by

dX[ = 3H(U.q,r)rft<. aH(t,x,qJ) ^ | (4 3 21)
3q dr

dq, = _ aH (W .qj)H, . 3H (U ,q /)Hm

*  (4.3.22)

qT =

where qj, rt are ^ -adap ted  processes. If the control minimizes (4.3.18) and

{xs, 0 < s ^  t} is the solution to (4.3.19), then ut minimizes H (t,x,v,q,r) with respect to
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v for each te [0, TJ. The above minimum principle is extended formally by Kwakemaak 

[101] to systems that are partially observed by defining (4.3.18) - (4.3.22) in an L2 

setting. His treatment however was completely formal, and he assumed that rt are

-adapted processes (output feedback).

Here we shall make use of the minimum principle given by Bismut [16] and 

Kwakemaak [101] to obtain the representation of the adjoint process Pt(x,fi>) without

assuming output feedback since by Theorem 4.3.2 Pt(x,w) is an -adapted process.

If we form the analog of the Hamiltonian function (4.3.20) using the Hamiltonian function 

given by (4.3.17) (Theorem 4.3.2), we deduce that

H t(pt, P v  r t) = <PV A u(t)* Pt> + E  (rtk, Mk(t)* pt> + fe" , Pt) (4-3.23)
k= l

where Au(t)* is the adjoint operator of Au(t) given by

A u(t) = L u(t) + 1  E  Mk(t)2. (4-3.24)
2 k=i

The operator Au(t) is obtained by writing (4.3.15) in terms of the Ito integral 

representation. Therefore, by casting (4.3.22) in an L2 setting we deduce that the adjoint

process £ t(x,fi>) takes the form
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k=18(Mk pt) (4.3.26)
PT(x,fi>) = k (x).

where the above derivative denotes a Frfcchet derivative.

Thus,

d If d V V
dPt(x,fi>) = -  A u(t)£t(x,fi>)dt - I  u(t)dt -  E  Mk(t)rt (fi>)dt -  r t (®)dyt

k=l k=l

which is the equation satisfied by the adjoint process defined by

C, t  Ep (P, I ) ,

where r tk(&) an 3 ^  -adapted process.

Theorem 4.3.3 Assume the minimum principle of Theorem 4.3.2 is satisfied 

where the differential of the Hamiltonian function with respect to control u(») is given by

(4.3.17). Then the adjoint process Pt(x,fi>) is represented by

d If d lr v
d£t(x,fi>) + A u(t)P,(x,fi>)dt+31 u(t)dt+ E Mk(t)rt (fi>)dt + E  r, (&)dy. =0

k=l k=l (4.3.27)
lim Pt(x,fi)) = k (x) 
ttT

where Pt(x,co) has an L solution, and {rt (<£>)}k=1 is an -adapted process.

Moreover,the conditions of the minimum principle of Bismut (i.e., (4.2.20) - (4.2.22)) 

when represented in an L space are satisfied.
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Proof: It follows from Theorem 4.3.2, the definition of the Hamiltonian function

(4.3.17), the definition of the adjoint process £t(x, <&), and the minimum principle

conditions of Bismut QED 

CASE n

Consider the case when a  depends on the control variable u and the correlation 

between the state process and observation process is zero. This is indeed the case 

introduced in Section 1.2.2. That is, Mk(t) -4  h^Ctx), a  —» a(t, x, u) = o“( t  x). It then 

follows from (4.3.2), (4.3.3) that

X:u(t) -4  E  cL(t x, u )-JL  = XjU(t) (4.3.28)
J i=l dx* J

X ^ t)  -4  E  f  J( t  x, u)JL = XoU(t) (4.3.29)
i=l 3 x 1

Yk(t) -4  0. (4.3.30)

From the analysis of CASE I it follows that if we can show a similar theorem to Theorem 

4.3.1 and a similar lemma to the Lemma 4.3.1 under the above conditions, the minimum 

principle and adjoint-process representation given by Theorem 4.3.2 and Theorem 4.3.3, 

respectively, remain valid under the current conditions.

Indeed if we choose the set of admissible control functions to consist of the

te[0 , TJ-adapted functions

u:[0,T]xC([0,T];Rd) -4 U

such that
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|u (t,y t) |£ K ( l  + | |y | | t), | | y | | t = sup{|ys |, se[0 ,T j]

and assume that

T

su p J |i( t, x, u) |dt < oo, |i(t,x,u) |e L 2,
0

then Theorem 4.3.1 and Theorem 4.3.2 remain valid by considering the sup norm 11 *| |t .

Background information in proving Theorems 4.3.1,4.3.2 under the above conditions are 

found in Haussmann [68] and Elliott and Yang [50].

Next, we shall derive the minimum principle of the partially observed system 

using a different approach which does not require the formal definition of the adjoint 

process, as presented by Bismut [16] and Kwakemaak [101], to obtain the backward 

equation (4.3.27).

4.4 APPROACH 2: STOCHASTIC MINIMUM PRINCIPLE

CASE I

In this section we shall derive the necessary conditions of optimality when the cost 

function is given by (4.1.3) subject to constraints (4.1.1), (4.1.2). That is, we treat the 

same problem stated in Section 4.1 but instead of using the approach given in Section 4.3 

(specifically the formal derivation of 4.3.27), we adapt some results of deterministic 

control optimization found in Fleming and Rishel [56, Chp. 2, Thms. 11.1, 11.2] and of 

completely observed stochastic control optimization found in Bensoussan [9, Sect 4, pp. 

25-42]. However, our problem is described in terms of measure-valued processes rather
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than state-valued processes considered by the above authors. The approach we consider 

is based on inverse maps and stochastic flows for measure-valued processes. 

Furthermore, we shall see that our method of solution will require the martingale 

representation theorem given Liptser and Shiryayev [103, Chp. 5, Thm. 5.7, pp. 167-170] 

when extended to processes adapted to the filtration generated by Wiener processes given 

also by Liptser and Shiryayev [103, Chp. 5, Thm. 5.8, pp. 171].

The important conclusion that one obtains from the result of this section in 

comparison to the results of the previous section is that the minimum principle given by 

Theorem 4.3.2 remains the same, but the adjoint process has a different representation.

We start by calling upon the procedure outlined in Section (1.1.2), Approach 2, 

Case (I). Assuming the cost function is described by (4.3.1), the state of the system is 

given by the two measure-valued processes vs t, ps t satisfying (4.1.41), (4.1.40) 

respectively. The perturbed measure-valued process Zj t is the same as the one defined 

in Section 4.3, and given by (4.3.4) where the convergence conditions of Theorem 4.3.1 

remain valid. We start with the following proposition.

Proposition 4.4.1 The measure-valued process zs t described by (4.3.4) can be 

expressed as

zs,t = Vs,tvs,t (4-4-1)

where
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Vs,t(0 =/ vs A ^ - ^ Q(r)Ps’j vs"j(f))dr
s

lim \if.t = 0. 
tis S,t

Proof: Applying the F-S differential rule to the composition z^v 'J  using (4.3.4) 

and (4.2.11) we deduce

t t
V s ’ !®  = zs,s v >  + J z ^ d v ^ f ) )  + J d z s /v j^ f ) )

s s

t t t u

= - / zs +/ zs> sjL  U(r)Ps’X , ! (f))dr +/ vsJ ( P s ^ - ® G®Ps' / VsJ 
s s s

Since y s t a  zs tv~[ then

t u

Vs.t® = J v  (Ps.T - ^ “ “WPs’j v 1® ) ^
s

which is (4.4.2). Using ps t = vs tps t then (4.4.2) can be written as

t u

Vs,t® = /p s J ( - 2 ^ “(r)Ps'X j ® ) dr- QED <4A3)
S

Next, we express the variational cost function (4.3.6) of Lemma 4.3.1 in terms of 

the new measure-valued process y s t which is well-defined and bounded since

- 1  - 1  oo
Ps.t’ Ps.t’ \ t  316 311 well-defined and bounded for any feC fe (Rn). Thus, from (4.3.6)
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. £  (u(-) + eu(*)) |e=0= E p{ysTvsT ps>T(K(x))

T

-  “(r» ♦ vSJ|JSJ(^L !5 1 a(r))]d r |.
s

But Ps,t = vs,tMs,t’ hence

£.(■!(•) + eu(-» -  Et (vsTpsT(K(x))
T n (4.4.4)

+ J tV s jP s /1 " « )  -  ps/ i i ^ u ( r ) ) ] d r .
s

At this point we recognize that the process Xs<t defined by

T

A,S)T«&) * vs T p s T (k (x ) )  + J v s>rps>r(n u(r))dr (4.4.5)
s

is an -adapted process having solution in L2(C([0,T];Rd)) due to k ^i u being 

bounded functions.

Before we present the martingale representation theorem we shall need the 

following estimate.

Proposition 4.4.2 The function A,s T(G>) satisfies | A.sT(<B)|2<°° a.s..

Proof: We recognize that

T
X,sT(fi>) = Ep{K(^sT(x))(|»sT(x,l) + <t>s>x(x, 1) J i  (t,£s j(x),u(r))dr} (4.4.6)

s

where
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d 1 1
<J>s>T(x,l) A exp{ £  J h k(r,£s /(x)) *dyrk + J h o ( r 4 /x ) ) 2dr}, (4-4.7)

k=1 s s

and ^  t(x) is the solution to (4.1.39). By Jensen’s inequality

T

%  | ks>T(to) |2^Ejj0 ^[ |k(£s>t(x)) +Jn (t,^ >t(x),u(t))dt |2 |<t>SiT(x) |2]
s

2
and the bounded assumptions on K, n  it is sufficient to show the integrability of<b„ t(x,l)S»l

for all t and x a.s.. First write <J>S t(x,l) using the Ito integral representation, thus 

<|>2S t(x,l) is represented by

d T T
< t(x,l) = exp(2 E [ J h k(r,^Sir(x)dyrk -2Jh^(r,5sj(x ))dr]}

k=l s ° (4.4.8)
r  d

x exp{J  { E  [Yk(r)hk( r 4 /x ) ) + 2 h k( r 4 J (x))]dr+2h0(r4 SJ(x)}dr}. 
s k=1

Since the integrand of the exponent of the second part of (4.4.8) is a bounded function, 

the second part is dominated by a constant depending on s and t only. The expectation

of the first pait is equal to one since it is a martingale with respect to hence <j>gT(x,l)

is integrable. QED

We could also show that if instead of assumptions (A 'l) - (A TI) the weaker 

assumptions of Section 4.1 are satisfied which include the linear-quadratic problem, the 

following proposition holds.
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Proposition 4.4.3 When the stochastic control problem under consideration 

s a t i s f i e s  a s s u m p t i o n s  ( A l )  - ( A 7 )  o f  S e c t i o n  2 . 2  a n d

T

sup M 31 (t,£g t(x),u(t,yt) |2dt < °° P j . a.s. then \  T(G») is an integrable process. 
s^tST '

Proof: Here we need to show that Ep | X̂ >T(C>) | « » .  Using Jensen’s inequality 

we have (by assuming ^a"£a)

T

Ep | >.s,T(G>) I ̂  Ep0i> |k (§sJ (x)) (j)s T(x, 1) +<{>S)T(x, l ) J ] i ( t 4 it(x),u(t)dt|
s

£  Es,0 j,( |K gs,T(x)) * ^ ^ (x .1 )  JsTi ( a s,,(x),u(t))dt|)

S E s,0 f,|K (^,T (x))|2Ef,gl(1 » 2t(x,1)]
T

*Ef,8S ,[ i J u a ^ u w d t  i2]E(,s s , m>2t(x, i ) ] .
s

Since §s t (x) is a unique strong solution to (4.1.39) and the inequality (see assumption 

A6, Section 2.2)

| k (£ ) |^  K (1 + |£ |q) <  q  <  oo 

is satisfied, it follows by Liptser and Shiryayev [103, Chp. 4, Thm. 4.6, pp. 128-130) that 

Eg>®J>|K($) I2m<°° for m £  1.

2Therefore, as in Proposition 4.4.2 it is sufficient to show that <|>s T (x, 1) is

integrable for all x, t  Using the same approach as in Lemma 4.2.2, by Jensen’s 

inequality,
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T d
exp f  2{ E (Yk(r)hk(r) + 4hk(r)) + 2ho(r)}dr 

s k=l

1 Tr  d= exp J L  J 2(T-s) { E (Yk(r)hk(r) + 4hk(r)> + 2ho(r)}dr 
T -s  {  k=ls

T

£
T s

L  fexp2(T-s){ E  (Yk(t)hk(t) + 4hk(t» * 260(1) ) *  
-s  {  k=l

Hence, if (T - s) £  28, for some 8 > 0, then

Tr d(exp 2{ E  (Yk(r) hk(r) + 4hk(r)) + 2ho(r)}dr} 
'  k=l

d
^  SUP exp {4 6 { E (Yk(t)hk(t) +rhk(r» + 21^(0}} <

0 £  t £  T k=l

The last inequality follows from Liptser and Shiryayev [103, Chp. 4, Thm. 4.7, pp. 220] 

since by assumptions (A2), (A3) of Section 2.2, f, h satisfy a linear growth condition, a  

is bounded, and the correlation between state process and observation process is bounded. 

QED

Returning to the process XS>T(C>) defined by (4.4.5) let us define another process 

X s,t(® ) ~  K t by

T
X,4<ffl) » - | v *  I  "(r)dr * Ej> [X^fffl) \ & u \ .  (4.4.9)

s

where by (4.4.5)
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Xs.T^) = vs,TMs,T̂ k (x)) = Ps,T̂ k W) • (4.4.10)

Theorem 4.4.1 Suppose Proposition 4.4.2 or Proposition 4.4.3 holds. Let 

Ep(X,s T(fi>) l ^  t)» te  [s»TI (a right continuous modification of conditional expectations).

Then there exists a process G kt (fi>) -  te [s, T ], such that

T

&f J |G k«b)|2dr < - )  = 1, a.s.,
s

for all 1 < k ^  d, te [s,T], and

d '  . .
E ^ s>t (G>) | ^ t) = E ^ T(fi>) + E  | G k (fi>)dyk , a.s.. (4.4.11)

k=l s

Moreover,

d Tr  lr t
K t (G>) = Ep[?iSiT(a)] + E  j G sk (©)dy k. (4-4.12)

k=1 s

Proof: See in Liptser and Shiryayev [103, Chp. 5, Thm. 5.8, pp. 171]. QED 

By an application Theorem 4.4.1, we deduce that

OX s/O) = -  vs A l Jl " « * ♦  k| G > ) d y tk ^  u )

Hm Xs,tm  = Ps>t(k (x )).
tTT

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



MINIMUM PRINCIPLE

Next, we shall find the differential equation satisfied by the composition 

YS(t 5Cs,t(®) 80 ^ at we can express the terminal variational cost of (4.4.4) in terms of an

integral process as in the previous section. Since y s>t is given by (4.4.3) and satisfies 

(4.4.13), by the application of Ito differential rule we have

5

Thus, we have the following lemma.

Lemma 4.4.1 The cost functional (4.3.6) or, equivalently, (4.4.4) can be expressed

as

T T

Vs,t Xs.t (®) =V s.t  vs,tPs,t (k (x)) = /d V SJ0CS/ ( a )) +/ ' M ciXs>r(<&))
s s

T T

= J Vs > s J - ^ ^ G(r) P s / V X s ^ ) ) d r - J v s / (v s A ^ 11
s s

s
(4.4.14)

Substituting (4.4.14) into (4.4.4) we deduce

(“ (•) * «=«(•» U  -  E s { j [ y „ p s> ^ r ) ) +p ^ . ^ ! ^ 0 ( r ) ) ] d r )

s

(4.4.15)
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where

•£&,(•) + eu(-))|£=0 -  E (,(j[v s^ s/i!W a (r ) )d r
S

T  T

= E p { J < * ^ , p t)a(t)d t+Jti^P tC fflX pPuC O dt}  (4.4.16) 
s s

P(x,fi>) A p^v '^tC x,© ). (4.4.17)

Proof: It follows from (4.4.15) and the fact that processes

{ytk; s ^ t ^ T } ,  1 £  k £  d are ^ >T-adapted, £ -measure Brownian motions. QED 

Theorem 4.4.2

Let be a convex set Suppose u(«) is an optimal control for the problem

T

J(0(-)= Es ( pStT(s(x)) ♦ J p Sj ( I  “(r))dr)

dpM = L “(t)* pMd t+ i  Mk(t).(t)ps ,-dytk , p = p0 (4.4.18) 
k=l

Then there exists a measure-valued process Pt(x,fl))e (ft, 3 ^v  &) such that the minimum 

principle is given by

£ (u j( t)-u :( t)[  f  { .|l( t ,x ,u ( t) )+ JL .L u Pt(x,(S)} pt(x,&)dx] > 0 (4.4.19)
j= l J J RJ n 8 u j 9u j
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for all u e U ^  a.e t, a.s.. Suppressing the time variable s the Hamiltonian function

Ht(pt, Pt, ut) is expressed as

J L H t(p1,P 1,u t)= .iL  J [ i  « V(t)* L u(t)P,]ptd x - ^ .{ &  a(t),pl) ^ t,L "(t)* p t»
U U R n U

Furthermore, the measure-valued process defined by Ps>tAp~J v ”J %st(x,fi>)

satisfies the backward stochastic PDE

d . <1 _  . .
dPt(x,fi>) + A u(t) Pt(x,fl>)dt +31 u(t)dt + E  Mk(t)r *(fl>)dt + E  (Mk(t) Pt(x,0) - r ,  «&))dy, =0

k=l k=l
lim Pt(x,di)=K(x).
ttT (4.4.21)

Proof: The minimum principle (4.4.19) can be shown as in Theorem 4.3.2. The

definition of the Hamiltonian process follows from (4.4.19).

Next, we shall prove (4.4.21). Consider the composition p jJ  v '^ f ) -  It follows

from Theorem 4.2.3 that

t t

hi v >  =f * /d p s> s> >  * / p > v s> )
s s

d 1 *
=f -  £  J Mk(r) £ ( v s> ) - * y rk  - f i s f o s s 1  uw  Ps“>

s s

d 1 1
• f j M k(r) p ; j  vs‘j( f ) -d y rk - / L  “(r)

Differentiating with respect to t and defining Pt(x,fl>) v~J(f) we obtain
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d k
dPt(x,fi)) +L u(t)Pt(x,fi>) + JC Mk(t)Pt(x,fl>)*dyt = 0

lim Pt(x,®) = f(x) 
tis

which has a unique solution in the L2 sense (see, Kunita [96]) and is adjoint to the 

forward equation satisfied by the unnormalized conditional density. Results of this nature 

for state-valued processes are found in Kunita [95]. We now apply the Ito differential 

rule to Pt Xt(x»®) ^  firet writing the last term of (4.4.22) in terms of the Ito integral.

Thus,

d(Pt Oct(x,&))) = dPt(xt(x,fl>)) + Pt(dxt(x,©))

d .
= -  A u(t) P t( x t( x M d t - E  Mk(t) Pt(xt(x,«S))dytk

k=l
d d

-  Pt (vtpt( i  u(t))) + E Pt(G k(t)(fl»))dyt -  E M k(t)Pt(G k(t)(fi>))dt (4-4.23)
k=l k=l

where the last term is due to the quadratic variation of the composition Pt Xt(x>®) 

the operator Au(t) is given by

1 d 9
A u(t) = L u(t) + _L E Mk(t)

2 k=i

which is also defined in Section 4.1.

Since, by the definition of Pt,

Pt (vtpt(ji u(t))) =p‘ 1v “1(vtpt(3i u(t)) = n u(t) (4.4.23)

and, at the final time
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PTXx(a) = P^1Vj1VTp1«(x) =K(x), 

if we define Pt(x,<3>) A PtOct(x,<S)) then

d _  , d
dPt(x,ffi) = -  A u(t)Pt(x,ffl)dt - i  u(t)dt -  E  Mk(t)Pt(x,GJ)dyt -  E  Mk(t)Pt(Gk(fi))dt

k=l k=l
d k

+ E  Pt(Gk(fi>))dyt .
k=l

Define r tk(&) APt(G k(fi>))=pt_1 v ^ G ^ f f l) ) ;  then r k(fi>) is an -adaptedprocess which

can be verified since Pt satisfies (4.4.22), thus (4.4.21) follows. The existence and 

uniqueness of (4.4.21) can be shown as in Kunita [96]. QED

Remark 4.4.2 The principle of optimality of Theorem 4.4.2 given by (4.4.10) is

of the same exact form as the one given in Section 4.3 under Theorem 4.3.2. The adjoint

processes Pt of Theorem 4.3.2 and Pt of Theorem 4.4.2 have different representations. 

This is based on the different approach taken to arrive at the processes f*t, Pt . There is,

however a great deal of similarity between the adjoint process given by Bensoussan 

[9, Sect 4, p. 31, equation 4.17] for the case of completely observed state-valued control 

problem and the measure-valued process (4.4.1).

Remark 4.4.3 We believe that the method used to derive the result of this section 

can be extended to the case when the assumption (A 'l) through (ATO) are weakened to 

cover the case of stochastic differential equations with linear growth at least for the case 

when h(t, Xj) is a bounded function.
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C A S E n

The result established in this section can be modified to cover the case introduced 

in Section 1.2.2. The justification is already given in Section 4.3 under Case n .
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CHAPTER 5 

NONLINEAR DECISION PROBLEM

5.1 PRECISE PROBLEM STATEMENT

The objective of this chapter is to study the detection problem described in Section

filtering estimates. We believe that the theory presented in Chapter 2 along with the 

developments of this chapter allow for evaluating the likelihood function as well as the 

performance bounds of certain nonlinear systems that cannot be evaluated using 

traditional methods.

We shall study the following decesion problem: given a measurable space (Q, S T ^ , 

suppose two probability measures P0, P i are defined on it such that they describe the 

decesion problem

1.3 of the introduction from the point of view of stochastic PDE’s rather than optimal

(Q, STV P) H p
,dxtl = f(t, x jjd t + a !(t, x j jdwj  , x^  = x^ (5.1.1)

dyt = h ^ t, x*)dt + dbj , y ^  = °

(Q, P0) Hq:
.dx® = f°(t, x j ^ t  + c°(t, xt°)dwt° , x® = x j  (5 .1.2 )

dyt = h°(t, xf)dt + db° , = 0 .
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We shall make the following assumptions:

(Al) {wu!; 0 £  u £  t}, {bu*; 0 £  u ^  t} are independent Brownian motion processes in 
Rm, Rd, respectively, under measure Pj which are also independent of Xq for 
i = 0, 1;

(A2) {Xy1, Xy0, yu, 0 ^  u ^  t} is an increasing family of sub-G-fields on the
measurable space (£2, satisfying the usual conditions for all te  [0,T];

(A3) EjCxq)21” < «>, m £ 1 for i = 0, 1, where Ej denotes expectation with respect to 
measure Pj;

(A4) f1: [0,T] x Rn —> Rn is Borel measurable; continuous, continuously differentiable 
in x1 satisfying the Lipschitz and linear growth conditions of Theorem 7.C.1 for 
i=0,l;

(A5) a 1: [0,T]xRn—>Rn®Rm is Borel measurable, matrix-valued function, continuous, 
continuously differentiable in x1 and K1 is a constant such that

IKCt, x ‘) | |  + \ \ a x (t, x ‘X|  £  Kj1 for i = 0, 1;

(A6) hj: [0,TJxRn->Rd is Borel measurable, continuous, continuously differentiable in 
x1 and there exist a constant K2* such that

|h(t, x ‘) |2 £  K ^ l  + |x 112) for i = 0, 1.

Remark 5.1.1 The conditions stated would be sufficient to establish existence and

uniqueness of a weak solution {xt‘; O ^ t^ T }  for i=0, 1 as defined in Appendix 7.C.

Moreover, the process x*, i = 0, 1 as well as the process yt are semi-martingales for

all te[0,T].
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Remark 5.1.2 By Remark 5.1.1 it follows that w,1, P,) , i = 0 , 1.

The likelihood-ratio LR for the preceding problem has been shown by Duncan [45] and 

Kailath [80,81,82] to be

f[h I(t,xt‘) - i ! 0(t ,x ‘)]Tdyt - i . f [ | f i 1(t,x,l) |2 - | f i0(t,x |l) | 2]dt
0 1 0 K '

At  = c

where the estimate h *(t, x /) is the conditional mean defined by

h '(t, x t*) a Ej[h *(t, x t‘) | y(u), 0  £  u £  t] . C5*1-4)

The noisy observations of (5.1.4) generate the filtration SF*X . Having formulated the LR

above, the decesion problem is then the following:

1) Determine a system that provides the least-squares optimal estimates of the

signal h '(t, x t‘) so that a decision is made on which hypothesis to accept;

2) once the decision strategy of 1) is established, obtain the error performance 

of the LR test.

For both decision and error performance one chooses a threshold y  and performs the 

following test:
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Hi

At  > y . (5.1.5)

Ho

We wish to emphasize at this point that, in general, if the filtering equations of

(5.1.1), (5.1.2) are used to obtain the estimates h *(t, xt‘), the filtering equations represent

infinite-dimensional filters. Therefore one is usually led to a consideration of an 

approximation to h '(t, Xj1), called a sub-optimal estimate. This kind of approach was one

of the problems treated by Evans [ ] and Hibey [ ].

Before we proceed in solving the detection problem as stated above, using the 

modem approach to nonlinear filtering we shall prove that the LR (5.1.3) can be

expressed as a conditional expectation with respect to the filtration 3 ^  of some

likelihood-ratio 'Ey which is restricted to the G-algebra 3~t. This is the key element in our 

development since the LR 'Ey provides the connection between the estimation problem 

of Chapter 2 and the detection problem studied by Evans [ ] and Hibey [ ]. Furthermore, 

we shall see that our proposed method of solution will not require the knowledge of the

filtering equations for h l(t, xt‘) but rather the solution of a certain stochastic PDE. We

now present the theorem that provides the connection between the LR (5.1.3) to the LR 

'Ey defined on the oalgebra
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Theorem 5.1.1

The likelihood-ratio A j of (S. 1.3) can be expressed as

At = EoPFt I* * ]

where 'PT is given by

T T

J [h  !(t, x j )  -h ° ( t ,  x t° )]Tdyt - I J [ | h  *(t, * J )  |2 -  |h °(t, x t°) |2]dt

Proof: We start by establishing (5.1.6). First notice that

t
y t -  Jh°(s, x°)ds 6M 1oc(7 ; , Pq).

0

Since h ‘(t, x t*), i = 0 , 1, are predictable, we can define 

t
m ^ J t h ^ s ,  Xg)-h°(s, x°)]T[dys -h°(s, x^)ds]6M loc( ^ t, Q r f. (5.1.7) 

0

Therefore, defining VPT as a likelihood-ratio and using the exponential formula (Theorem 

7.E.1), we obtain

dPi mT -  _(m., m.)x /c i o\
•PT 4 E0[ ‘ | j r T ] = e  2 T (5 > «)

dP0

and, by (A4) - (A6), EqPPt ] = 1 so that P j «  PQ. The absolute continuity of P j with 

respect to P0 also follows from Remark 7.E.2 since, for some 8 > 0,
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sup E o l e T  m>*d'] < -  (51 -9)
te tO,n

Next substituting (5.1.7) into (5.1.8), we get

T T

J [ h  \ s ,  X * )-h °(s , x s° )]T [dys -h ° (s ,  x ° ) d s ] - I f  | h ^ s ,  x ‘) -h ° ( s ,  x J) |2ds
2 0

^ T = e

which can be rewritten as

1 1
J [ h 1(s ,x s) - h ° ( s ,  x^)]T dys - - l j ' [ | h 1(s, x j )  |2 -  |h °(s, x®) |2]ds

Y T = e
H  '     ' (5.1.10)

where ' F y e  M loc( ^ T, P q) .

t
Next, using the fact that y t -  j*h°(s, x^)ds and n^ of (5.1.7) are in the class

0

Mloc( ^  niartingale translation theorem gives

mt=|(dys-h0(s,x®)ds)-d((y.-Jh0(s)x°)ds),j(hl(s,xsV h 0(s,x®))T(dys-h0(s,xs0)ds))t.
0 0 0 (5.1.11) 

Therefore

t t
m t = J (d y s -  h°(s, x®)ds) -  J f l i ^ s ,  x*) -  h°(s, xj?))ds.
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But(m, rh)t = t and mteM i0C(.7j, Pj) are sufficient conditions for mt to be a Brownian 

motion as stated in Remark 7.B.4. Thus, (5.1.11) can be written as

dyt = h ^ t ,  Xj)dt + db*

with respect to (STV Pj), where the Brownian motion bt = mt a.s..

1 2Thus, under (&~t, Pq), the processes xt , x t , yt satisfy

(£2, Pq) Hg!

dXj1 = f  *(t, x*)dt + a*(t, Xj)dWj 

dx^ = f°(t, x^)dt + o°(t, x^dw ^ 

dyt = h°(t, x^Jdt + db^.

(5.1.12)

Now, to establish the relationship At  = E0(T,t | ^ j ) , we apply the Ito differential rule

(Thm.7.B.3) to 'PT in (5.1.10) and get

d'Ft='Ft(h1(t, x,1) -  h°(t, xt°))T (dyt -  h°(t, x t°) dt)

which is a local martingale under Pq). Therefore, by a  general martingale 

representation theorem as given by Lipster and Shiryayev [103], we deduce that

I
%  ‘  E o P P . I ^ ]  = EoIS-o] + J l s dvs (5.1.13)
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where vt is the innovations process under (SP V  Pq). Similar results in a filtering context

are found in Lipster and Shiryayev [103, Chp. 8, Lemma 8.2, p. 300] and van Schuppen 

[127, Him. 3.2.1, pp. 87]. The problem now remains to identify the adapted process 2̂ .

Using dvt = (h°(t, xj*) -  h°(t, x^))dt + db® , we find

dCF,-'*',)- ¥ , 01‘ft, x ‘)-h°(t,x°))Tdb°-X,dv,

= <F,(h ‘(t, x ‘)-h ° (t  x®))Tdv,->i't<hI<I, x ‘) - h V  x f y V t t ,  xf)-h°(t, x“))dt-X,dvt

and, by the Ito differential rule, obtain

t t t
CFt - ^ t)vt = 0FS -  * s)vs +JCFT -  ̂ d v ,  + JdCFt  -  * x)vx +Jd(T . -❖ .,v .)t

s s s
t t

= CPS -  t s) Vs .  J(Tt  -  ¥ x)dvT.  JdCT, -  V ,
s s

t t
+ J'PT(h1(t, x ^ - lA x ,  xx° ))d x -J ^ d x .

s s

Continuing,

t t
CP, -  t ,) v ,  = 0PS- ¥ s)vs . ] c ? t - ^ ( h V .  xt° )-h ° (t , x ^ J d ^ /O F x -^ d b ?

s s
t t

+ j v x^ \ x ,  x j)-h °(x , x J fld b J -J ^ L jd ^
s s

j V ^ f X ,  xx1)-h°(x , xx°)) dX -Jl^X . C5-1-14)+

s

Now, 4^ is locally integrable which can be shown by Jensen’s inequality as follows.
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B o t l * .  I) -  E o l E o t S ' . I ^ I S  E0(E0[ |> F t | | ^ ,J) = E o | V , | .

Thus, since 'Pj is locally integrable ^  is also locally integrable. By the local integrability 

of vt,

EolOPt v t l - ^  = 0  for a l l s  S t .  (5-1 1 5 >

Substituting (5.1.14) into (5.1.15), the first term is zero. The third term is also zero since 

t t
E „ [ / 0 P , - * T)dbtO| ^ ]  = E 0[E0( / ( ¥ , - < ? ' t ) d b ? |. r s) | . ? f ]  = 0 .

s s

The fourth and fifth terms cancel each other due to 

t
E q[Jvx V x( t i l (x , xx) -  h°(x, x £ ) )d b ° |.^ ]

s
t

= 3>[Eo(Jvt  'Pt (h(t, xt‘) -  h°(t. xTV b “ | ^ ) | ^ J
s

t
= Eq[ J v,  E ^ cA t, x,1) -  h°(t, xTV b t° | ^ ] | ^ ]

s
t

= Eq [J v x 51tdvx | .
s

Therefore we are left with the terms

t
0 = E0[ j* CPX -  t x)(h°(x, xx°) -  h°(x, xx°))]dx 

s
t t
J ^ X(h j (x, Xx ) -  h°(x, Xx°))d x  -  J Z ^ d x l ^ ] .
t

+
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Due to the integrability of the first two terms and the fact that h°(t, xj*) is ^ -ad ap ted

we obtain

2 , = EoICP.-^X hO ft, x^)-h°(t, x ^ ) ) |^ + E 0 ['F1(h 1(t, x,1) -h ° ( t ,  Xt° ) ) | ^ ]

= Eo[T th0(t, x“) | ^ f ] - 4 ' th°(t, x°) * h°(t, x ^ - t . f i V x " )

+ Ec [4 ', h ‘(t, x,1) | y | r] - E 0 [>P1 h°(t, x £ ) | ^ f ] .

Therefore the representation of 2^ is

2 , = EoIOP, h 'f t, x,‘) | J ^ ]  -  E0[M't | ^ f ]  E o t h V  x“) | ^ ] .  (5.1.16)

Since h*(t, x*) is an integrable function, using (7.E.6),

i l E o t h ^ t ,  x,1)
E j t h 1#, x ? ) | ^ f ]  = - 2 ----- ----- - — - — L _. (5.1.17)

E0 PPt l ^ f ]

Thus we can write (5.1.13) using (5.1.16), (5.1.17) as

t
E0 [>Pt | J ? f ] =  l . / f E o C P J J ^ )  xT' ) | * * )

0
-  E0CFt | ^ )  EodiOft. x?) |i^ ) ) d v T (5.1.18)

t
* 1+J E0C l ' , l ^ ) [ E | (h 1(x, x ^ l ^ - E ^ T ,  x " ) |^ ) ] d v r

0

Applying the Ito differential rule to In E0OFt | & f ) ,
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where d'i'j is the differential of (5.1.18). It then follows that

d(ln %) = [Ej(h*(t, xt‘) | J f ) - E #(h0(t. x °)|j> f)]d v t 

-  x ‘)|J > f)-E 0(h0(t, x“) | ^ f ) | 2dt

so that

j [ h l {x, x^) -h°(x, xJ)]dvt - I J | h l (x, x^) -h°(x, x j)  |2dx

Finally, substituting the innovations process dvt = dyt -  h°(t, x^)dt into (5.1.19), we

recover (5.1.6) which proves our theorem since 4*t is by definition equal to \  as given 

by (5.1.3). QED

Remark 5.1.3 It follows that if the detection problem (5.1.1) , (5.1.2) is modified 

so that under hypothesis Hg we only observe Brownian motion, (no signal present), then

(5.1.1) remains the same but (5.1.2) is replaced by

( Q ,  J ' J ,  P q )  H g :  {dyt = dbt .

The LR At  of Theorem 5.1.1 then becomes
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T  T

J  h(t, xt)dy, -  i .J |h (t , x,) |2 dt

A - T 'E o f e 0 °  l ^ f ]

where in this case yt€ M (^ |, Pq) is a standard Brownian motion and 'P j  is the likelihood- 

ratio used in nonlinear filtering.

5.2 EVALUATION OF LIKELIHOOD-RATIO

In this section we shall present the theory that allow us to evaluate the LR for the 

decision problem (5.1.1), (5.1.2). We shall show that the likelihood-ratio, as defined by 

(5.1.3) and related to 'F-p through Theorem 5.1.1 can be written as a ratio of two densities

1 Oxintegrated with respect to a new augmented state process xt A[xt x t ] over the space

R n ® R n . These two densities are related to the unnormalized conditional density 

considered in the development of Chapter 2. Furthermore, we shall show that our method

of solution will require no knowledge of the optimal filtering etimates for h ‘(t, xt*).

Thus, in certain applications which result in infinite coupled filtering equations, 

computing AT by (5.1.3) would not be possible but, as we shall now show, this approach 

will allow us to evaluate the two densities exactly so that AT can be computed.
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Theorem 5.2.1

In the likelihood-ratio test

H,

A(y.) = E o O P .I^ ) >  r .

Ho

the LR can be expressed as

A (yt) =

I I
E2 [exp {Jh ^ s, x*)dys -  1 J*|h1 (s, x*) |2ds) | ]

0 0
t t

E jIexpiJ h°(s, xj) dys -  I  J*|h°(s, x°) |2ds} \&*]
0 0

J  p1(x,t)dx
R n®Rn

"J p°(x, t)dx
R n®Rn

(5.2.1)

(5.2.2)

(5.2.3)

where E2 denotes expectation with respect to a measure P2< the Wiener measure pw(dy)

(see definition in Section 2.2.2) the process x t satisfies

(Q, Q2):  dxt -  f(t, xt)dt + <5(t, xt)dwt, Xq (5.2.4)

with

* t  *

1
x t

0 , f t 4 rO , s t a
0

0 , Wt 4
w 1

0
x t . f t . 0

*

w

and the density p (x, t) satisfies the stochastic PDE
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dp'(x,t) = L*(t)* p‘(x, t)dt + h ‘(t, x *) p‘(x, t)dy,

lim p‘(x, t) = p0(x) 
titQ

where

Lx(t)(*) 4 -I$ &T_fL(*) + f  T-J-, p0 = the initial density. 
2 gx2 dx

(5.2.5)

Proof: Starting with the likelihood-ratio of Theorem 5.1.1, by (7.E.6) 

if P2 is a new probability measure we must have

E o IT .I* ? ]  -

dPn y

0 1where the function *Ft is given by (5.1.6). Let us now define the processes x t , xt , yt 

on the probability space (Cl, &~t, P2) by

(Cl, & [, P2):

dxj = f*(t, x^Jdt + c ^ t ,  Xj)dWj , x^ 

dx® = f°(t, x t°)dt + o°(t, xj^dw® , x j
(5.2.6)

dyt = db" yo=0

Next we show that P0 «  P2. Using the same reasoning that led to the definition 

of mj in Theorem 5.1.1, we now define m 't as

m ' , 4  jh °(s, x“)dys ( j y / , ,  Pj)

and the exponential formula *P'T as
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dP0   m T ~ i  ^  m T̂ (5.2.7)UQ'n 111 T “
• F ' T . E . t  » | ^ T] = e  2

dP2

where E jC 'F 't]  = 1. Similarly as in Theorem 5.1.1 we have Pq «  P2 which follows 

from the weaker condition

P2 {J(m', m^dt < oo}=a.s..
0

given by Liptser and Shiiyayev [103, Chp. 6, Example 4, pp. 221] which is satisfied since 

h°(t,xt°) satisfies the condition of (A6).

The exponential martingale 'P 'T can be expressed as

J h°(s, x°)dys -  i. J| h°(s, x°) |2ds ^  ^

Y 't  = e° °

Therefore, by (5.1.6) and the fact that yt is a standard Brownian motion under (JTV P2), 

it follows that

E j t e x p t J  h ^ s , Xg)dys -  A  J l h ^ x ,  x*) |2ds} \ & f  ] 
=  0  0 ---------------------------------------------

E ^ e x p j J  h°(s, Xg)dys -  A J* |h°(s, x°) |2ds} |^f]
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which proves (5.2.2). Moreover, using the fact that yt is a Wiener process under (•Pj, P2) 

and m 't above is of class Mloc( ^ ,  P2), the martingale translation theorem, (Theorem

7.E.3) shows that

= yt -  d(y„ J  h°(s, x J ^ y ^ e M ^ ^ .P o ) -  (5>2‘9)
0

Again, as in Theorem 5.1.1, (m', m7t = It, thus m 't = b9 is a

standard Brownian motion and (5.2.9) can be written as

dyt = h°(t, x9)dt + db9

with respect to {&~v  Pq). Therefore, as a result of the measure transformation, under 

measure P0 the processes x®, x t\  y t satisfy (5.1.12). The equality between (5.2.2), (5.2.3)

follows from the proof of the unnormalized conditional density equation presented in 

Chapter 2. QED

Remark 5.2.1 The likelihood-ratio presented in Theorem 5.2.1 and expressed as 

a ratio of two densities is a generalization of the likelihood-ratio found in Van Trees [128, 

Chp. 2] and examples therein, where it is expressed as a ratio of two Gaussian densities.

dP, ,
This follows by defining the likelihood-ratio as Aj A Eg [------- | ^ T ] and the fact that

dP0

the Pj are Gaussian measures since the estimates ht* are treated as if they were 

nonrandom.
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5.3 PERFORMANCE BOUNDS

In this section we shall answer the second question associated with the detection 

problem of Section 5.1.1 using stochastic PDE’s. As mentioned in Section 1.3 the 

question of performance bounds was addressed by Evans [52] and Hibey [74,75] by 

expressing the Chemoff bound in terms of an evolution PDE having as coefficients the 

state and signal estimates. This PDE can be solved exactly only for the case of linear 

systems. Thus, for nonlinear systems, they were led to a consideration of sub-optimal 

estimates. Our approach relates the Chemoff bound to stochastic PDE’s similar to the 

ones given in Theorem 5.2.1 that can be solved exactly not only for linear systems but

also for some cases of nonlinear systems. We now present the theorem that provides

error bounds for Pp and PM*

Theorem 5.3.1

Consider the detection problem described by (5.1.1), (5.1.2). The Chemoff bound 

on PF given by (1.3.7) can be obtained from

PF < e Sb lYE2 [os(h1(t, X t V ^ d A t ,  x°))], s > 0 (5'3,1)

and the Chemoff bound on PM given by (1.3.10) can be obtained from

PM £ e Sln Y Ej [os+1(h1(t, x ^ a ^ d A t ,  xt°))], s < 0 (5 3 '2)

where

a(h ‘(t, xt‘)) a J  p‘(xt,t)dx (5 3 3)

R n®Rn
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and p (x, t) satisfies the stochastic PDE given by (5.2.5). The expectation E2 is with

respect to probability measure P2 which in this case is the Wiener measure pd (dy) on

the space C([0, T]; Rd).

Proof: From (1.3.7) arid Theorem 5.2.1 we have

- s l n y - s l n y
PF <!e E o t A p - e  Eq'

J  p x(x, t)dx

R n®Rn

J  p°(x, t)dx
R n®Rn

that is,

- s l n y  c ^ & x . 1)) 
PF S e  E0 {------------ * _ } .

^ ( h

(5.3.4)

By the definition of the likelihood-ratio given by (5.2.7) the unconditional 

expectation Eq(-) of (5.3.4) is related to the unconditional expectation E^-) through 

(7.E.5). Thus we can write (5.3.4) as

-  s ln y  dP0 x?))
Pp ^  e Eo }

dP2 <jS(h0(t, xf))

-  s ln y  - 1
= e

dp2 o V a  xt ))
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But a(h !(t, Xj1)), i=0,l is measurable with respect to therefore

-  s ln y  dP0 „ ^ ( h ^ t ,  x3 ))
PF S e  ® | * f ) --------_ L _ }

dp2 o V f c  X°))

“ slnY o o, */))= e E2«oOi0( t , x J ) ) - ----------- L_},
o f y 0#, xt° »

dPn y
The last equality follows from the result of Theorem 5.2.1 since E2 [ I *^[] is the

dP2

denominator of (5.2.3), which is by definition equal to o(h^°(t,xt0)), thus (5.3.1) is shown. 

The proof of (5.3.2) begins with

"  s ln Y s+1 
PM ^ e  E o t A j1]

and follows the same procedure as above.

Finally, the fact that P2 is a Wiener measure p^(dy) is due to a(h  '(t, xt‘)) , i=0,l

being -adapted processes. QED

Remark 5.3.1 We notice that the performance bounds for PF, PM given by (5.3.1),

(5.3.2), respectively, are a generalization of the performance bounds given by Van Trees 

[128, Chp. 2, equations 448,449]. For cases described by Remark 5.2.1. Thus, if the h* 

are known we can recover the performance bounds given by Van Trees by defining
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py|H.(Y|Hi) Aa(h'(t, Xj1)), where py|H.(Y|Hj) is the probability density of the

observations y under hypothesis Hj.

M  EXAMPLES

In this section we shall apply the results of Theorems 5.2.1,5.3.1 to four detection 

problems; both linear and nonlinear examples will be presented to demonstrate the 

approach.

Example 5.4.1 Linear Decision Problem.

We consider the following linear detection problem:

(£2, ^  Pj) H j:
U 1 T>1 J  1 1 1dxt = B xt dt + dwt , x^ = Xq

dyt = C !Xjdt + db * , y^ = 0

(£2, r v  Pq) Hq:

L, 0  D o 0 ,  , 0dxt = B xt dt + dwt 0 0 
’ xt0 = xO

dyt = C°x®dt + db® , y^ = 0

(5.4.1)

(5.4.2)

where x1, i=0,l are of dimension one and, Bl, C1, i=0,l are constants. Using the notation

of (5.1.1), (5.1.2) we define f ’ a B ’x,*, h ‘ a C ^ 1 and c ' a I .  Therefore, we have

n=m=d=l.

From Theorem 5.2.1 under measure P2 we have the augmented system
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dxt = Axtdt + Bdwt , x ^ x ^ ,  x£= xj

(Cl, P2): '
A = B 1 0 

0 B( • B  =  [ o i ] ' * > o  =

w

W.

(5.4.3)

The likelihood-ratio of Theorem 5.2.1 requires the solutions of p (x, t), i =0,1

of the Fisk-Stratonovich stochastic PDE’s

4-P(*’ 0dt
IL  - i- C B B V c s .t ) ) -  ® (Axpkx.O) 
2 9x dx

-  i.(C *x ^VCx, t) + C *x1 p'(x, t ) - ^ l  , p(x, t ^  = p0(x). 
I  dt

(5.4.4)

However, since we are required to solve (5.4.4) for i=0,l, we may avoid having to repeat 

the solution procedure twice by imbedding (5.4.4) into the more general stochastic PDE

4 -p ‘(S, 0  = I t  J L  (BB t  p'(x, 0) -  ® (Ax p'(x, t»  
dt 2 a*2 ax

-  I  x TC TC xp‘(x ,t )+ xTC T p'(x,t)* —
2 dt

(5.4.5)

where C = [o^C1 a°C °], a °= l, a 1̂  if i=0, and a°=0, 0^=1  if i= l.

We solve (5.4.5) by choosing a solution of the form

. “ - ^ ( x - pI)T x I (x - p[)
p‘(x, t) = k t‘ e , p‘(x, t^  = 8(x -  xq)

(5.4.6)
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where k t* is a scalar function, p | is a 2-dimensional vector, and Z| a 2x2 symmetric

i"1
matrix having inverse Zj . Substituting (5.4.6) into (5.4.5) we can identify the equations 

satisfied by p|, Zj, k t\  Thus, with dots denoting differentiation with respect to t, we find 

A p ‘(x,t) = k tlp,(x,t) + [i(x-pJ)TZ[ Z jlj (x-pJ) + (x -p j)TZj |ij]pI(x,t) (5-4.7)

(-JrP(*.t))T = -  (x -  pj)1! ; ' 1 p f o  t) (5-4.8)

J ? l .p I(x,t) = -Z [ p‘(x, t)+Z | (x -pJ)(x -p[)TZ{ p‘(x ,t). (5.4.9)

Substituting (5.4.7) , (5.4.8), (5.4.9) into (5.4.5) and equating coefficients of the state 

vector x , we find expressions for Zj, p|, k t* given by

Zj = A z | + zj A t  -  zj C TC zj + B B t  , Z^ = 0 (5.4.10)

4  = AM; - E , c Tc m * z ; c T - ^ i  , ^  (said

*.* ■ ^  -  > t 4 ‘ ‘p! - ! V b )  -  j

-  2. Ti(B t £ | ' I B) -  Tr(A). , -  Icq -  1 .

Writing (5.4.6) as
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-  -2(* - pt)T lt
. e (5.4.12)

p‘(x, t) = (2ti) (det E[)1/2 k t‘ ---------------------- ------------
(2ji) (det Z[)1/2

and using normalization, we deduce

J  p‘(x,t)dx = (2n)(det l | ) l/2 k,‘. (5.4.13)

R"®R

Thus, the likelihood-ratio test as given by Theorem 5.2.1 is evaluated by

l 1 H l
* *  h  i/7 k t >A(yt) = (- - - - ^ ) 1 /2 ( 4 > ;  t
* *  J?  k? H,,

where k t‘ are driven by the observation process {ys, £  s £  t} which is a Brownian

motion. It is important to note that 2 [,i= 0 ,l satisfies a Riccati equation with zero initial 

condition. On the other hand k t\  i=0,l satisfy a stochastic differential equation driven

by standard Brownian motion yt having a known initial condition k^  =k(J = 1, i= 0 ,l.

By Theorem 5.3.1, the Chemoff bounds for PF, PM are given by 

—s in y
PF <£ e E2{[2jt(det z j )1/2 k jY p tfd e t s j ) 1/2 k t°]1_s} , s > 0

_ s In y
PM £ e [2jt(det s j ) 1̂  kt3S+1 f2n(det 2 °)1/2 k°]~s} , s < 0.
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Remark 5.4.1 The general case xt!e R n, h l(t, xt!)e R d is handled similarly,

however it requires much more notation. For this reason we shall treat the 

multidimensional case last by considering a nonlinear detection problem. Next we treat 

the version of the above example when there is no signal present under hypothesis Hq. 

Example 5.4.2 Linear Decision Problem.

Consider the detection problem as stated in Remark 5.4.1.

Since there is no signal under hypothesis Hq,using the notation established in Example

to one, so, the likelihood-ratio of Theorem 5.2.1 is consistent with the one presented in

dxt = B x tdt + dwt , x^ = Xq (5.4.14)

(5.4.15)

5.4.1, C° = 0. The likelihood-ratio test of Theorem 5.2.1 is determined once the densities 

p*(x, t), i=0,l are determined, where

(5.4.16)

" i  x2 P1̂ ’ 9  +x P1̂ ’ 0 * -—• • P!(x» *6) = Po<x>2 dt

A p °(x ,t)  = 1  -2 — p°(x, t) -  JL (B  p°(x, t)) , p*(x, tQ) = p0(x). 
dt 2 ^ 2  dx.

The equation satisfied by p° (x, t) is a Fokker-Planck equation which integrates

Remark 5.1.3, as expected. Therefore, needing only to solve for p*(t, x), we assume a

solution of the form
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where

d  i d6t Z.
* P(X' °  “ ~ I  d a l;  P(K' t)

-  k t_1 k t p(x,t) + [ l ( x - p t)TZt" 1£ tZt" 1( x - p t) + ( x - p t)TZ ‘ 1jit]p (x ,t)

(JLp(x, t))T is given by (5.4.8), and 
dx

 p(x, t) is given by (5.4.9).
dx2

Substituting the above derivatives into (5.4.16) we obtain

" kt_1 k t +i  (x -Pt)T z t_1 ^ ( x - P t W x - p ^ Z ^ P t2 det Z|

= ~ j X t l + j  5l"1(x " ft) (x"Pt)T 2 t" 1-B + (x -p t)T Sj"1 B x - i  x 2 + x « i ^ .

Zt = 1 + 2 ZjB -  z j  ’ Zt0 = 0

dyt
pt = (B -  Zt)pt + Z ^ - -  , p^  = Xq

i d6t Z. 1 2  1 - 1  dy.
k t = k t( -  1  —  + JL uf + _ Z ,  + B - u t • _ )  , k, = 1.

1 ‘ 2 det Zt 2 2 ‘ Ht dt ^

The likelihood-ratio test is computed by
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A(yt) = ( k ^ 1 > 7  

Ho

where as before kj satisfies a stochastic differential equation driven by the observation 

process yt.

By Theorem 5.3.1 and (5.4.17) the performance bounds PF, PM are then given by

-  s ln y
PF £  e Hq [(kt)~s] , s > 0

-  s In y
PM <;e E0 [(ktr s“1] , s < 0

where *s a Wiener measure on the space C([0, T]; R1).

Remark 5.4.2 We note that the likelihood-ratio test of Example 5.4.1 as well as 

that of Example 5.4.2 depend on the observed process {ys, tg ^  s £  t}, in terms of 

diffemtial equations of Riccati type.

Example 5.4.3 Nonlinear Decision Problem.

This example is a special case of the nonlinear filtering problem treated by BeneS 

[5] . We model the detection problem as follows:

(£2, ^  Pj) Hi:
dx* = f*(x*)dt + dw* , x^ = Xq1 (5.4.18)

dyt = c ^ J d t  + db* , = 0
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(O, ^  Pq) %
,dxt° = f°(xt°)dt ’ \ s  *o  (5.4.19)

dyt = c ° x |)dt + dbj* , = 0

where x‘, i = 0 ,1  is of dimension one, c‘, i = 0 ,1  is a constant number. We shall assume 

that f V )  is the gradient of a potential function F(x*) given by

x 1
F(x1) = J  f*(u)du (5.4.20)

0

satisfying

| * £ l )  |2 + = t f x 1]2 * p x l * 8 . (5.4.21)
a x 1 a (x 1)2

The function f°(x°) is assumed to be linear in x°, thus we set f°(x°) a B°x°. Notice

that the function tanh(x*) satisfies (5.4.21).

As shown earlier, we need to solve the stochastic PDE

A p ‘(x,t) = Lx(t)* p‘(x, t) + c ix 1 pI( x , t ) * ^ i  (5.4.22)
dt dt

p‘(x, tg) = 5(x-Xo).

where

LjiO)* P'(x, t) = ZL {<5 &T  p‘(x, t)} -  J L  (f p‘(x,t)) -  i .  x Tc Tcxp(t ,x).
2 dx tix 2

The drift and diffusion coefficients f, d , respectively, are a consequence of the 

augmented system
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(£2, P2)'.

dxt = f (x,) dt + 6 dwt , x^ = xq

•0 * [0 0]f  A
f !(X!)

f°(Xo)

(5.4.23)

Here, we redefine x jAx1, i=0,l, c Afo^c1 OqC°] to avoid complicated notation. The

objective for using ctj, i = 0,1 and its importance was established in Example 5.4.1. We 

show in Appendix 7.H that the solution to (5.4.22) is given by

" F(Xl) ir- e p (x,t) = k t e 4
(5.4.24)

where

£[ = FS| + Z[FT -  S j(cTc + A) Sj + E E t = 0

pj = Fp[ -  S[(cT c + A)p| + ZjB + Zj c t  ,  p^ =  x q
dt

= "  y  1 +^t ̂  1 " - y  ^  + 6

qi
1 i T^i-1 iZ, EE X, |l, • V ' 1

where,

A = [o S ] - e = [ j  s ] T ’ 6  = - 1  - B °

(5.4.25)

(5.4.26)

(5.4.27)
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s ’* ] -

A simpler expression for kt* is given by

kt* = - I  pj (cTc+A)pjpj B - Z l (E ^ ^ E J+ D + p j c T.^ L .  (5.4.28)
21 2  d t

Next, we evaluate the integral

r  V- ,vt- f  ' 4 (* ' |1I)T4  (5.4.29)I p (x, t)dx = I e kt e 4 dx

R2 R2

by setting f^ x 1) = tanh(xj). It is shown in Appendix 7.H that (5.4.29) becomes

i .  t ° T4 g  , , iJ p ‘(x,t)dx=(2jc)(det ^ ) 1/2kt‘{e 2 ^  ^ c o s h ( p jTG + G Tpj)} (5.4.30)

R2

where GT = [1 0]. Hence, the likelihood-ratio test of theorem 5.2.1 can be evaluated by

det I,1 1/2 k,1 c o sd (p t'TG . o V )  (5.4.31)
A(yt) = ( _ _ l ) 1/2- l  e  * ------------

det5^ kt cosh-Lfyj* G+G^pj*)
2

where i j ,  k t\  pj, i = 0, 1 satisfy (5.4.25), (5.4.26), (5.4.28).

The performance bounds can also be evaluated by referring to Theorem 5.3.1, 

expressions (5.3.1), (5.3.2) which in this case are given by
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, „ . (1/2X3 T211G , t , ,  ,

mzy-W <k“ ) - >  ( e O / W X G c o ^ o ^ V M " 1

- s i n 7  ( d e t x ! ) (s* 1)/2 (k.1)5*1 ( e (1 /2 )°  ^ t ° c o s h ( p ? TG + G Tp ?)} s+ *
PM£ e  E ,[(2n)____- ________ !________________ „___ _ !_______1 ____ ].

( f a l f t *  (k ? ) s {eO /2 ) G T^ G c o Sh ( , f G * G M t0)}»

Here, as before, the probability measure P2 is the Wiener measure p^(dy).

Remark 5.4.3 The dimension of the state process x[* of Example 5.4.3 can also 

be extended to the n-dimensional case as long as f°(x^) is a linear combination of the

components of xj\ Notice that the LR (5.4.31) can be evaluated exactly, a situation that

does not arise if traditional methods were used.

Example 5.4.4 Nonlinear Decision Problem.

This example is a generalization of the multidimensional filtering problem treated 

by BeneS [4]. The two-dimensional case was presented by Zeitouni and Bobrovsky [135] 

whereas the n-dimensional case can be shown to have a finite-dimensional statistics using 

the estimation algebra. Here, we recognize that the n-dimensional filtering problem is a 

special case of the quasipotential of a dynamical system used to obtain certain 

approximations such as exit probabilities. We model the detection problem as follows.
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( to  S T  9 )  H  = VF(x*)dt + g(Xt) + ’ %  = *0 (5.4.32)
*’ v  dyt = Cxtdt + dbt , = °

(SI, Pq) Hq: {dyt = dbt , y ^  = °  (5.4.32)

where, XjG Rn, wte  Rn, yte  Rd. We shall assume

(i) BBT = In,

(ii) F(Xj) is a potential function,

(iii) < VF(xt), g(X|) >j = 0,

(iv) g(xt) an n-dimensional linear function of x,

(v) AF(x) + 11 VF(x) 112 = - lx  TA'x + B 'T + C'.
2

First, we shall present an expression for evaluating the likelihood-ratio presented 

by Theorem 5.2.1 which requires the solution of the stochastic PDE

^ ( x ,  t) = (L ( t )* - lx  TC TCx)p(x, t) +x TC Tp(x, t ) - ^ l  
9t 2 dt (5.4.33)

limp(x, t) = 8(x - xq) 
tJ-tQ

where L(t) is the backward Kolmogorov’s operator associated with the diffusion process 

(5.4.32). Proceeding in a similar fashion as in Appendix H, we define

-F(x) (5.4.34)
p(x, t) a e p(x, t)

where P(x,t) can be shown to satisfy the stochastic PDE
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By assumptions (iv), (v) we have

V2F(x) + 1 |VF(x) 112 +2Tr(dgfr>) +x TC TCx = x TAx +Bx +C (5.4.36)
dx

where we define the linear function g(x) A Ax. The solution P(x,t) of (5.4.35) is given 

by

- - W ^ ' V P . )  (5 4 3 7 )

The n-dimensional vector pt, nxn matrix 2^ and scalar function kj satisfy

£ t = AZt +ZtA T - Z tAZt +B B T , 2^=0 (5.4.38)

|i1 = ( A - I tA)Ml- i l 1BH.I1C T- ^ l , ^ = x 0 (5.4.39)

— 1 1 T y-1^ , y - 1  „  _ „ T y ~ l ,̂  1 U T y-l-U  ^ p T y “ l T y ~ ln  1
k T  2 d 5 ^  2 M‘ ‘ ^  "* ^  T  X> B 2 B T ^ 4 4 0 )

ktQ = L

Let us now assume that the potential function F(x) is given by
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J.x t Qx 
2

F(x) = J  tanh(u)du, and Q is a positive definite nxn matrix. Then

F(x)=ln cosh(-Lx TQx) 
2

and by (5.4.34) we deduce

- i f r - p / s r V p t )
p(x, t)=cosh(_x TQx)kt" 1( J _ ) ,^2(det 21)"1/2 e 

2 1 2jc

Again, using the methodology presented in Appendix 7.H,

(det21)~1/V 1 ~3 -(x -B1Pt)TQi~1(x-B 1pt) - I ( x - B 2pt)Q2' 1(x-B 2pt)
fp(x, t)dx=------------- _ ! _ [  f(e  +e )dx]

RJ„ 2(27t)n/2 RJn

where,

and

Q f^Q + Z t"1, Q ^ - Q ^ " 1, B2=Q2Z '1
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f p(x, t)dx=— I ! — '  [ f(e  x e  )dx
»n 2(2l t )nf2 J n

"■jPf'̂ t"1 +B2TQ2_lB2)Pt ~ ■i(x-B2pt)TQ21(x-B2Jit)
+ J  (e x e )dx]

R"

- | p tT( r 1- 1*B2TQ2- 1B2)pt
=_(detS t) “1/2[detQ 1e +detQ2 e ].

2 z (5.4.41)

Therefore, by Theorem 5.2.1, the likelihood-ratio test is evaluated by

A(yt)= _ (d e tS t) " 1/2k t" 1(detQ1e +detQ2 e )

and error probabilities PF>PM satisfy the inequalities

- s l n y  r  
PF^ e  EjK J  p(x,t)dx)s], s>0

R n

- s l n y  .  
p M ^e J P(x,t)dx)s+1], s<0.

R"

Remark 5.4.4 As stated at the beginning of Section 5.2, the bounds on the error 

probabilities derived using our approach preclude having to generate signal estimates h 1
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that may come from an infinite-dimensional filter because of the moment-closure problem. 

However, the need to perform an expectation with respect to measure P2, even though P2 

is a Wiener measure, still remains and may require numerical approximation in some 

cases. Whenever the stochastic PDE does not have a closed form solution, the need for 

approximations is required which is propagated to the last stage.
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CHAPTER 6 

CONCLUSION

6.1 SUMMARY AND MAIN CONTRIBUTIONS

In this thesis we presented results in nonlinear estimation, nonlinear stochastic 

partially observed control, and nonlinear decision using measure transformations.

6.1.1 The Nonlinear Estimation Problem

Several authors have previously addressed this problem, using either Lie algebraic 

methods or probabilistic methods. Our approach is basically probabilistic and relies 

heavily on gauge transformations and on the exact linearization of stochastic systems 

using diffeomorphisms and measure transformations. As pointed out by Brockett [27] 

diffeomorphisms and gauge transformations result in equivalent filtering problems. 

Therefore, by first linearizing the diffusion equation and measurement equation and then 

applying a gauge transformation we derive sufficient conditions for solving a 

Feynman-Kac formula, and this solution is related to the unnormalized conditional 

density. The above linearization techniques were also used by Cohen and Levine [34] 

who independently derived a set of sufficient statistics for obtaining the solution to the 

unnormalized conditional density for the global case. Their approach is completely 

geometric and does include provide our derivation of the initial-boundary value problem 

presented in Sections 2.5, 3.5 for the case when the linearization is only valid locally. 

Moreover, we provide lower and upper bounds on functions of state estimates which
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appear here for the first time. The extension of the Bobrovsky and Zakai [23, 24] lower 

bound to degenerate diffusions also appears here for the first time and is due to the 

linearization of nonlinear stochastic systems.

6.1.2 The Partially Observed Stochastic Control Problem

The stochastic control problem considered in Chapter 4 is treated here for the first 

time. The derivation of the stochastic PDE satisfied by the unnormalized conditional 

density is based on the derivations presented by Pardoux [114] and Kunita [96]. As 

pointed out in Section 4.1 this stochastic PDE has as a special case the stochastic PDE 

derived by Pardoux [114] who considered the case when the diffusion process is of 

nondegenerate form with an additional condition satisfied. The equations satisfied by the 

decomposed measure-valued processes in both forward and backward variables, and the 

equations satisfied by the inverse measure-valued process are extensions Gf the 

decomposition of Kunita [94, 96], who first provided the decomposition of the 

unnormalized conditional density which is our original motivation. The similarity 

between adjoint-processes in Euclidean space and in L2 space are exploited here for the 

first time. Both approaches in obtaining the minimum principle and equations satisfied 

by the adjoint-processes are new. Also the case when correlation is allowed between the 

state process and the observation process is addressed here for the first time. 

Furthermore, the case when no correlation is present but the diffusion process is allowed 

to depend on the control variable is also new, in that we present an explicit equation 

satisfied by the adjoint-process, whereas Elliott and Yang [50], who treated the same 

problem using different methods, do not provide an explicit equation for the adjoint-

235

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



process. Finally, our derivations are rigorous compared to the ones presented by 

Bensoussan [IS] in that no approximations are considered, whereas the above author is 

forced to approximate the Sobolev space by using a finite-dimensional basis to 

approximate and then derive the equation satisfied by the adjoint-process.

6.13 The Nonlinear Decision Problem

The derivations of the results for the decision problem in Chapter 5 appear to be 

new. Although similar results for error probabilities using Chemoff bounds have 

previously been established by Evans [52] and Hibey [74,75], who express these bounds 

in terms of the solution of a Feynman-Kac formula whose coefficients are the optimal 

estimates, expressing these bounds in terms of stochastic PDE’s are first presented here. 

Expressing the generalized likelihood-ratio in terms of a ratio of two stochastic PDE’s 

integrated over the whole space also appear here for the first time. Finally, to the best 

of our knowledge, the exact calculation of the generalized likelihood-ratio and error 

bounds (assuming the Wiener expectation can be performed exactly) for binary nonlinear 

decision problems appears here for the first time. Notice also that no approximations 

were considered, whereas if one uses traditional methods certain approximations involving 

suboptimal filtering estimates have to be introduced for the nonlinear decision problem 

only.
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6.2 TOPICS FOR FURTHER RESEARCH

1. A method for solving the initial-boundary value problem encountered in 

Chapter 3 would be very desirable. Furthermore, solving filtering problems that are 

defined locally instead of globally is a very interesting problem.

2. In Chapter 4 we have been exclusively concerned with control problems having 

bounded drift and diffusion coefficients. The extension to the linear case (i.e., when the 

drift and diffusion coefficients as well as the signal satisfy a linear growth condition) 

would be veTy interesting. Indeed we believe that the methodology used to derive the 

minimum principle and adjoint process can be extended to the case when assumption 

(A 'l) through (ATO) are weakened to cover the case of stochastic equations with linear 

growth, at least for the case when h(t, Xj) is a bounded function.

3. Recalling Approach 1 presented in Chapter 4, where we derived the necessary 

conditions of optimality using deterministic control ideas, it would be desirable repeat the 

same approach when constraints are incorporated (i.e„ terminal constraints).

4. A method of solving the control problem of Chapter 4 when the admissible 

control set is not convex would be very desirable.

5. Treating the control problem of Chapter 4 when the admissible controls are of 

wide sense would be a challenging problem.

6. Hibey [ 74, 75] derives Chemoff bounds for the case of discontinuous 

observations. It would be interesting to pursue the decision problem of Chapter 5 in this 

context when the observation process is a Poisson point process whose intensity is a given 

function of the unobserved state process. Filtering results for Poisson point processes
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using the unnormalized conditional density are found in Pardoux [114,115] and Gertner 

[64].

7. Asymptotic estimates to the solution of the DMZ equation when the noise 

terms are multiplied by a small nonrandom parameter and the time is a fixed interval 

were given by Hijab [76] in terms of the solution to a deterministic control problem. 

These bounds could be used to find asymptotic estimates for the error probabilities. It 

would be interesting to derive similar asymptotic estimates when the diffusion process is 

defined up to a stopping time x  and use then to obtain asymptotic estimates for the 

sequential decision problem.
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APPENDIX 7.A 
DIFFERENTIAL GEOMETRY AND RELATED TOPICS

In this section, we present only those concepts o f differential geometry that will 

be useful to us in Chapter 3, where linearization of stochastic differential equations is 

considered. For more detailed information on state-feedback linearization we refer to 

Isidori [79], Nijmeijer and Shaft [108] and Brockett, Millman and Sussmann [30], Su 

[124], Hunt, Su and Meyer [77], Cheng and Isidori [32] and Dayawansa, Boothby and 

Elliott [41]. For detailed information on differential geometry on manifolds, we suggest 

Boothby [25].

Throughout this section we define certain concepts of differential geometry and 

state the notation used for understanding the result of state-feedback linearization of 

control systems. We begin with the definition of a manifold, define the Lie bracket of 

vector fields and define the Lie bracket of a scalar field with respect to a vector field. 

Next, we give the characterization of a distribution, and definitions of involutive and 

integrable distribution. Finally, we present the famous Frobenius Theorem and its 

application to state-feedback linearization.

Definition: Manifold.

A manifold M of dimension n is a topological space having the following 

properties:

(i) M is Hausdorff;

(ii) M is Locally Euclidean;

(iii) M has a countable basis of open sets.
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Every open set containing an open neighborhood of the point x is referred to as 

a neighborhood of x.

Definition: Vector Field.

Let M be an n-dimensional manifold. A vector field f on M is a mapping 

assigning to each point xeM  a tangent vector f(x) in the tangent space o f M at x. 

Definition: Tangent Space to M.

The tangent space to M at x, denoted TXM, is the set o f all tangent vectors at x. 

Definition: Lie Bracket of Vectors Fields.

Suppose we arc given two vector fields on Rn (or any manifold M). The Lie 

bracket [f, g] is also a vector field on Rn(M) and defined as

[f, g] » | £  f  -  | L  g
OX o x

9e j fwhere _ _  denote n x n Jacobian matrices. It represents the Lie derivative of one 
dx dx

vector field with respect to another. It is also denoted by ad^ (g) and by induction we 

can define

adfk(g) = [f, adk-1(g)], adf°(g) = g.

For more information on the properties of Lie bracket, see Isidori [79, pp. 9]. 

Definition: Lie Derivative of a Function Along a Vector Field.

Let h: Rn —> R be a scalar field, with gradient denoted by dh which is a row 

vector field
, 9h 3h v

241

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



on Rn. The Lie derivative of h along a vector field f  = ( fj, fn )T, denoted by 

(dh, f  )j, is a scalar Held defined by

<dh' f>> = ^ f* + -  ^ f-  

The above definition is often written as Lfh. Also, it follows easily that

L g L , h = (Lf h) g,

and, by induction,

L*h = ^ - (L f  _1h)f. 
dx 1

Remark 7.A.1 If M is a smooth manifold of dimension n and x any point of M, 

the tangent space TXM to M at x is an n-dimensional vector space over the field R. If 

(U,<{>) is a local system of coordinates around x, then the tangent vectors

3 3{—— , ..., —— }x form a basis for T,M.
d<|>l d4>„ *

Definition; Distribution.

Suppose we arc given d vector fields fj, ..., fd, all defined on Rn. Then at any 

point xeR n, the vectors fj, ..., fd span a vector space (a subspace of Rn). A called a 

distribution and denoted by

A A span {flt ..., fd}.

242

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Remark 7.A.2 A distribution A defined on a manifold M is nonsingular if there 

exists an integer d such that dim(A) = d for all xeM , that is, the vector fields f j , f d 

are linearly independent V x e M

Definition: Involutive Distribution.

A distribution A = span { f j , f d) defined on Rn is called involutive if there exist 

scalar fields 7^  such that

d
[fj, fj] = £  Yijkfk> 1 ^  i» j  ^  d, i*j. 

k=l J
It can be shown that the distribution A is completely integrable if and only if there 

are n-d linearly independent scalar fields h j , h ^  such that

(dhj, fj)j = 0 , 1 £ i £  n - d ,  1 £ j £ d.

The concepts of involutiveness and complete integrability are connected by the 

Frobenius theorem.

Theorem 7.A.1 Frobenius Theorem.

A nonsingular distribution is completely integrable if and only if it is involutive.

Proof: See Boothby [ ].

We shall be interested in the application of the above concepts and definitions in 

a neighborhood of a given point. Concepts and definitions of this type will be called 

local.

Deterministic State-Feedback Linearization.

Consider a nonlinear control system of affine form

243

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



£ j: xt = f(xt) + g(xt)u (7.A.1)

where xeR n and f(x), g(x) are C°° vector fields on Rn (Rn can also be replaced by a C°° 

n-dimensional manifold M). State-feedback linearization characterizes the i = 1, 2 

equivalent class of systems which contains controllable linear systems. That is, the 

control system (7.A.1) can be transformed into the linear controllable system

1 ^ :  zt = Azt + Bv (7.A.2)

where A and B are, respectively, n x n and n x 1. The two operations leading to system 

(7.A.2) are state-feedback u = a(x) + P(x)v and coordinate transformation z = d>(x) with 

<b(x) being a diffeomorphism.

Definition: Locally Linearizable Systems.

The nonlinear control system (7.A.1) is said to locally linearizable at a given point 

x° if there exist a neighborhood U of x°, a feedback u = a(x) + P(x)v defined on U, and 

a coordinate transformation z = <$(x) also defined on U, such that the corresponding 

closed loop equation

x = f(x) + g(x) a(x) + g(x) p(x)v (7.A.3)

in the coordinate z = d>(x), is linear and controllable, that is, such that

(f(x) ♦ g(x) a(x)) 1 ^ . , ^  = Ax

^  (gW ) = B

for some matrix Ae R"*" and vector Be Rn satisfying the condition
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The previous definition implies that d> is a diffeomorphism onto an open set of 

Rn when defined on U. The equivalent definition of a globally linearizable system on M 

requires that there exists a C°° diffeomorphism <&: M —» Rn such that transforms 

system (7.A.1) to (7.A.2) and 4> is onto Rn; global results are presented by Dayawansa, 

Boothby and Elliott [41],

We are now in a position to state theorems regarding necessary and sufficient 

conditions for local and global state-feedback linearization of nonlinear control systems. 

Results on local linearization are found in Isidori [79] for systems with multiple inputs, 

and Su [124] for the single input case. Hunt, Su and Meyer [77] give a sufficient 

conditions for global linearizability, again for the single input case. For extending locally 

linearizable systems to globally linearizable system, see Boothby [25]. Results on global 

linearization for multiple inputs are found in Dayawansa, Boothby and Elliott [41].

Theorem 7.A.2

Suppose we are given the single input system Zj defined on a C°°-manifold M of 

dimension n, where f, g are C°° vector fields. Then (a) Z j is locally linearizable in a

neighborhood U of x® if and only if

(i) {g, adf (g), ..., adJ'V gM x0 = TxoM,

(ii) A = span[g, adf (g), ..., ad" 2(g))xo is involutive near x°,

Proof: See Isidori [79, Theorem 2.6, p. 165];
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and (b) Ej is globally linearizable if and only if

(i) (a)(i) is satisfied VxeM,

(ii) ti(ad1~1(f)g) = (-1)" Sjh, i£n, is closed

(iii) g,adjg,..., ad£-1(g) are complete where f  A f - L “_1(T|(f))g.

Proof: See Dayawansa, Boothby and Elliott [41, Thm. 4].

The procedure that leads to the local construction of the coordinate and feedback 

transformations z = d>(x) and u = a(x) + P(x)v, respectively, is as follows:

- Construct vector fields g, adf (g), ..., ad” -1(g) and check conditions (a)(i),

(a)(ii);

- If both are satisfied then, using Frobenius Theorem 7.A.1 there exists a scalar 

field h(x) such that

(dh(x), ad^(g))j = 0 , 0 ^  j < n - 2  around x°, and

Lf"h(x) i
- set a(x) =  ----------    , p(x) =

Lg L ?_1h(x) Lg L™_1h(x)

<I»(x) = (h(x), Lfh(x), ..., L f " 1 h(x))T; 

then the new coordinate system of (7.A.1) has the form
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0 1 0 ... o' o'
0 0 1 0  0 0

j j , B = I

1 0oiioo
. 1

The multi-input multi-output state-feedback linearization is found in Isidori 

[79, Thm. 2.4, pp. 250].

Remark 7.A.3 If condition (a)(i) of Theorem 7.A.2 is satisfied, then the nonlinear 

system under consideration is said to be controllable. Nonlinear controllability and 

observability is investigated by Hermann and Kroner [73].
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APPENDIX 7.B 
MARTINGALES AND RELATED TOPICS

In this section we borrow some concepts from the theory of martingales that are

of extreme importance in analyzing stochastic processes. Since some of these concepts

are quite technical, a complete introduction is not possible. Therefore, we present here

only those concepts that are suitable to our needs with references cited as needed.

However, for a detailed introduction to the theory, we refer to Liptser and Shiryayev

[103], Kallianpur [84], Wong and Hajek [132], Karatzas and Shreve [86], Elliott [47] and

van Schuppen [127]. For a first time exposure to this subject we suggest Oksendal [111].

Definition: Filtration.

Suppose (ft, ^  P) is a complete probability space. A filtration { ^ ,  t £ 0} of 

(ft, is a nondecreasing family of sub-a-fields t e  [0, T], of ̂ "such that ̂  c  ̂  for 

0 ^  s ^  t < oo.

Remark 7.B.1 The family of a-fields {& [ , t £  0} can be considered as describing 

the history of some phenomenon and is sometimes called the o-field of events prior 

to time t  Let us define to be the minimum a-field of events strictly prior to t > 0

and to be the a-field of events immediately after t £ 0. We say that the filtration

{& [}  (i) is right-(left-)continuous if = ^ + ( ^ _ )  holds for every t  > 0, and (ii)

complete if ^  contains all the P-null sets in Throughout this thesis, we will assume 

that conditions (i) and (ii) are satisfied by saying that ^  satisfies the usual conditions.

248

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Definition: Adapted Process.

A stochastic process xt, te [0, T], is said to adapted to the family te [0, T ]} 

if, for all te  [0, T], Xj is ^  measurable. We shall denote this by writing Xj ~ Note

that, x t -  3 ^  a c t  (xs, s £  t).

Stopping Times. A nonnegative random variable x: Q  -»  [0, «>], is called a 

stopping time of a given family te [0, «>), if {©eft; x(o>) £  t} e  for every te [0, °°). 

A similar notion is defined for a family te [0, T], by assuming xe [0, T].

The importance of stopping times is significant when we investigate the properties 

of a process defined only locally. For more discussion on stopping times we refer to 

Wong and Hajek [132], Kallianpur [84], and van Schuppen [127, Chp. 1].

Definition: Martingale.

A continuous stochastic process n^, te [0, T] is called a martingale with respect 

to a given family of c-fields te [0, T], satisfying the usual conditions if:

(i) nr̂  is adapted to 9"^ for all te  [0, T];

(ii) E |m t («*> for all te [0, T];

(iii) E[mt | ^ ]  = ms a.s for all s, te [0, TJ, s < t

We note that the above definition requires the specification of some family of o- 

fields and some measure say P. We shall denote the class of all martingales by M, 

and we emphasize the dependence on 9  by writing n^ e M ( J t, 9 ) .

Next, we introduce the following classes of martingales with continuous sample

paths.
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Definition: Local Martingale.

A stochastic process n^, te [0, °°), which is adapted to some increasing family of 

o-fields te  [0, °°), satisfying the usual conditions, is a local martingale with respect to 

& j, te  [0, <») if there is a sequence of stopping times such that converges to

«> a.s (or, in the case of the interval [0, T], converging to T a.s) and for each n, m*.-.

is a martingale with respect to STX.

The class of martingales defined above is denoted by MIoc and we shall use the 

notation ir^e Mloc( ^ ,  P).

Definition: Square and Locally-Square Integrable Martingales.

The class of square-integrable martingales, denoted by M2, is defined as

M2 a {mt g M ( / , ) ;  E |m t j2<oo}.

If the time interval [0, T] —» [0, °°) then E |m t |2 < °° -»  sup E |m t |2 < «>.
t

The class of locally square-integrable martingales, denoted by M21oc, is defined

as

M21oc a {mt e M loc(o7|); there exist a sequence

of stopping times such that x„ converges to <» a.s and for each

n, m ^  g M2( / , ) } .

Moreover, for continuous martingales we have Mloc = M21oc which can be shown 

by a stopping time argument
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Definition: Predictable Processes.

The quadratic variation process and the stochastic integration theory that we shall 

define later require the notion of a predictable o-field and predictable process. Suppose 

that we are given a family of a-fields te [0, «>) satisfying the usual conditions. The

smallest c-fields of subsets of [0, °°)x£2 with respect to which all processes xt(co) are

(i) adapted to and (ii) for each 0), is left-continuous a.s., is called a predictable a-field. 

A stochastic process xt, te  [0, «>) is called predictable if it is measurable with respect to

the predictable a-field that is, any process which is measurable with respect to 

([0, oo)xQ, > t ).

It follows that if xt ~ and its sample paths are continuous, a.s., then Xj is a 

predictable process with respect to & [. For more discussion on predictable processes, we 

refer to Kallianpur [84, pp. 48-49]. For discussion on processes that are not left- 

continuous having left-hand limits we refer to van Schuppen [127, pp. 7-9].

Theorem 7.B.1 The Quadratic Variation Process.

To every martingale n^e Mloc( ^ )  there corresponds a process 

<m, m>t - cm, m>n = a^ called the quadratic variation process of m, with the properties:

(i) aQ = 0 almost surely;

(ii) aj £ ag almost surely for t £ s;

(iii) at is continuous and ^[-adapted;

(iv) m2t - aj is a local martingale.
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Remark 7.B.2 Let € Mloc (.?[) with variation process <m, m>,. If E <m, m>t 

< oo, for any t € [0, T], then n^ e  M2 (i^ t) for t  € [0, TJ. Moreover, if m,, nj e  M2, ( ^ )  

then we define the quadratic covariation process

(m,n)> A-I((m +n, m +n)t -<m,m)-(n,n)t) .
2

Remark 7.B.3 If the two processes n^, take values in Rk and Rr, respectively, 

and rrij, sM 2 (^J), eM 2 (&~t)  then <m, n>t with <m, n>0 = 0 is a matrix with each 

element defined as <m \ i = 1, k and j  = 1,..., r.

Remark 7.B.4 The Wiener process x te  R n, te [0, T] defined above has E(xt) = 0

for all t and covariance function given by E(Xj Xg) = a  min (t, u) where a  is an n x n 

diagonal matrix. If <J = I, the identity matrix, then xte R n is called a standard Brownian 

motion. The following conditions given by Kunita and Watanabe [97, Them. 2.3] are 

sufficient conditions for a process to be a Wiener process: (i) xteM loc(« ^ )  and (ii)

<x, x>t = I t

All of the processes encountered in this thesis will be modeled as semimartingales 

(SM) or local semimartingales (SMloc), which are defined as follows.

Definition: SM and SMloc.

An n-dimensional continuous stochastic process te[0, T] of the form 

xt = Xq + aj + mj, where aQ = idq = 0 a.s, is called a continuous semimartingale if for

each i (i) E [xj] < <», (ii) the function at‘(tot) is, for almost all 0), continuous,

(iii) a‘t is of bounded variation, (iv) E j a 1 |t < °°, (v) the function t -»  mt!(co) is, for
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almost all CD, continuous, and (v) mt e  It is called a local semimartingale if

mt e M loc( ^ )  and (iv) is removed.

Stochastic Integration.

We shall be concerned with representing integrals when the integration is with 

respect to certain classes of martingales m, in either Ito or Fisk-Stratonovich (F-S) forms, 

in both forward and backward variables. Background materials on the subject can be 

found in Wong and Hajek [132], Liptser and Shiryayev [103], Karatzas and Shieve [86], 

Kallianpur [84], and Kunita [96]. A wonderful introduction on this subject for the case 

of continuous stochastic processes is found in Kunita [96]. (The martingales m that we 

shall consider will be Brownian motion process, adapted to increasing as well as 

decreasing filtrations).

In all that follows, we assume that we are given either an increasing family of a -  

fields te [0, T] with s a fixed time se [0, T] or a family of decreasing o-fields

ti * t,
, se [0, tj] with tj a fixed time tj€  [0, T], such that mt -  or mt ~ ^

t
respectively. We shall use the notation (h.m)t 4 Hq mQ+J* hu dmu to denote forward

0
li

integrals and the notation (h.m)s 4 htj + j  hu dmu to denote backward direction
s

integrals. We define the following two classes of integrand processes:

T

If m eM 2( ^ ) ,  then S£2((m,m)t ) 4 {ht; h t is predictable and E[J*|hu |2d(m, m)u] <°°}.
0

If me Mloc ) then (m, m)t) 4 |h t; h t is predictable and there exist an increasing
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sequence of stopping times {i„} converging to °o a.s. such for all

n, E [ J |h u|2d(m,m)u]<oo}.
0

Moreover, if hteM 21oc( ^ s ) we shall say that hj is locally in S fy  (<m, m>t).

The definition of the two classes of integrand processes above are given in terms 

of forward integrals. The definition of integrand processes with respect to a backward 

variable can be established similarly.

With the above definitions and notations in mind, we state the following properties 

of stochastic integrals.

Theorem 7.B.2 Stochastic Ito Integrals ££2-

If mte  M2( ^ ) and ht€ S£2((m, m)t) , then there exists a unique stochastic integral

(h. m)te M2( . ^ ) such that for all nte  M2( ^ ), {(h.m),n)t = (h.(m,n»t = hs(m, n)s 
t

+Jh„d(m , n)u .
s

Remark 7.B.5 If the martingales n^ and are in the class M21oc( ^ )  and ht is

locally in ££2((m, m)t) then there exists a unique stochastic integral (h.m)t eM 21oc( ^ )  

and the properties of Theorem 7.B.2 remain valid.

Remark 7.B.6 If xt s  SMJoc with the decomposition xt = Xg + where

n ^ e M j ^ ^ )  and h| is predictable and locally bounded, then we define

t
(h.x)t = J h u dxu as

s
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(h.x)t a IiqXo + (h .a )t + (h.m)t .

t
The integral (h . a)t A J  hu dc^ is a stochastic Stieltjes integral that is well-

s
defined because is of bounded variation. Furthermore, we have (h.x)t is adapted to 

The proof analogous results for the backward direction integrals are found in Kunita

[96].

Everything that we have said until now about Ito integrals remains valid for the 

case of Fisk-Stratonovich integrals. There is however an important difference: the latest 

integral is not always well-defined in that the limit does not always exist However even 

if it does exist it does not coincide with the value of the Ito integral. The Ito and F-S 

integrals are related by

t t
J*f(xr)»dwr a jf(x r),dwr + 1  ( (f(x), w)t -  <f(x), w)s ). (7.B.1)
s s

Proof: See Kunita [96].

We are now in the position to introduce the stochastic differential rules of Ito and 

F-S in the forward and backward direction.

Theorem 7.B.3 The Forward Ito Differential Rule.

Let Xj(x), te [s, T] be a real-valued continuous local semimartingale adapted to 

te[0, T], s fixed, xs = x having solution Xs t(x), and let f: Rn —» R1 be a twice
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dfcontinuously differentiable function with f j = ----- , 1 <. j £  n andf i i  = ___ _
x ^  j ^  i3xJ 9x‘ axJ

1 £  i, j  £ n. Then f(Xs t(x)), te [s, T] is again a local ^  -semimartingale and satisfies:

n K  i n 1
f(XSJ(x)) -f(x) = E  J > j  (XM(x)) d X ^ x ) * *  E j f ^ j  (Xs(x)) d ( X X ^ P - B - Z )  

j =  ̂ S *j  s

where d(X \  X-*)r =

Proof: See for example, Kallianpur [84].

Remark 7.B.7 By Remark 7.B.6 the differential form (7.B.2) for the case when 

f  also depends on t, is defined as,

m
df(Xs>t(x)) = L(t) f(Xs>l(x)) dt + E f  j (Xs t(x))dmtJ (7.B.3)

j=l
where

U t )  a E  a 1 JL + I  E — f — + JL.
j=l d x *  ^ >j 8x* 9x-i ^t

Theorem 7.B.4 The Backward Ito Differential Rule.

A
LetX s ti(x) , se [0, tj] be a real-value continuous backward local semimartingale

ti A
adapted to , se[0, t4] , tj fixed and Xtj = x, having solution Xs tj(x). Let f: R1• o n _>

R1 be a twice continuously differentiable function, with f j ,  f ^ j  as defined in Theorem
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A tl
7.B.3. Then f(Xs ti(x)) , se[0, tj] is again a local ^  - backward semimartingale for

se [0, tj] and satisfies:

ti q

J f x ^  j^ ^ c x ^ d C x  \ x % )
j-* s -  i j  s

where d(X‘, x \  = yj*.

Remark 7.B.8 Again, using Remark 7.B.6 the differential form of (7.B.4) for the 

case when f  depends on s also, is defined as
m

df(Xs.t (x)) = -  U s )  f(Xs t (x))ds -  E f  j (Xs t (x» am sJ (7.B.5) 
1 '1 j=l *

where L(s) is the same as defined in Remark 7.B.7 with the time derivative having 

opposite sign.

Theorem 7.B.5 The Fisk-Stratonovich Forward Differential Equation.

Let XjCx), te[s, T] be a real-valued continuous local semimartingale adapted to

te  [s, TJ, s fixed, xs = x, having solution Xs t(x). Let f: Rn -> R 1 be a three times 

continuous differentiable function, with f j ,  as defined before, then ffx,, .(x)), t e  [s, Tl 

is again a local ^-sem im artingale for te [s, T] and satisfies

*,.,,<*)-f&O-E jf ,j  (Xr,.,W>dXrV w 4 E
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Remark 7.B.9 The advantage of writing differential rules with respect to F-S 

integrals rather than Ito integrals is obvious from (7.B.6). That is F-S differential rules 

obey the classical rules of calculus and sometimes provides a more physical interpretation. 

However, the expectation of a F-S integral is not zero in general, and the moment or 

variance is not easily computed, unless it is transformed to an Ito integral. The above 

equation (7.B.6) can be transformed to an Ito equation via (7.B.1). The differential form 

of (7.B.6) is defined as

Theorem 7.B.6 The Fisk-Stratonovich Backward Differential Equation.

If Xs ti(x) be defined similarly as in Theorem 7.B.4, then the corresponding

function f(Xs t(x)) satisfies

Remark 7.B. 10 The differential form of (7.B.8) is defined as in Remark 7.B.8 by 

omitting the term resulting from the double summation. It is also related to Ito backward 

Integral form in a similar manner as (7.B.1) see Kunita [96].

df<Xs,,W ) = E  f5i CX„(x)) . <
j=l

(7.B.7)

(7.B.8)
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APPENDIX 7.C 
STRONG AND WEAK SOLUTIONS

We are now in the position to introduce the concepts of weak and strong solutions

of stochastic differential equations. Throughout, we shall assume that stochastic integrals

are well defined. Background information on this subject can be found in Kallianpur

[84, Chps. 5, 7], Liptser and Shiryayev [103, Chp. 4, pp. 126-151], Elliott [47] and

Karatzas and Shreve [86].

Definition: Strong Solution.

Let (£2, & ,& )  be a complete probability space with te [0, T] a family of sub-o- 

fields of &  satisfying the usual conditions. Further, assume wt is d-dimensional Wiener

process, wt eM (^J), and Tl an n-dimensional random variable, T] ~ We shall

say that an n-dimensional process te [0, T] defined on (£2, 9 )  is a strong solution

of the stochastic differential equation

d$t = a(t, 5t) dt + bCt, 4)t dwt (7.C.1)

with initial condition ^  = T] if for each te [0, T] the following assertions are satisfied:

(i) is continuous and ^-adapted  for each te [0, T]
T

(ii) 9  ( J |  a(t£) |dt < «>) = l  a.s.,
0
T

(iii) 9  (J* 11 b(t, £) 112 < oo) = l a.s. and
0

t t
(iv) = T] + Ja(s, 0  ds + Jb(s, £)dws w.p.l, 0 ^ t < T .

0 0
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Moreover, the stochastic differential equation (7.C.1) has a unique strong solution,

1 2if for any two strong solutions te[0, T] , te[0 , T], we have

P{ sup |5,‘ - ^ | > 0 1 = 0  
O S t S T

Remark 7.C.1 The definition of the strong solution assumes that a set up 

{(£2, 9 ),& [,? /, co, a,b} is given in advance. I f i n th i s c a s e ^ = ^ v,T1 Ao{'n,ws; 0 < s ^ t } ,

then the process te [0, T] is such that with each t the ^  is 3 ^ ' ^  -measurable (i.e ^  is

determined by the past trajectory of the Wiener process).

The simplest conditions guaranteeing the existence and uniqueness of strong 

solutions of (7.C.1) are given in the following theorem.

Theorem 7.C.1

Let the coefficient of (7.C.1) satisfy the following Lipschitz and growth 

conditions; there exists a positive constant K such that for all te[0, Tj, £, £ e R n,

|a(t4) -  a ( 0 ) |2 -  ||b(t,&) -  « t - S ) | | 2 £  K K - S l 2 

|a(t4)i2 * ||b (t,O I|2 £ K  (1 -H5I2)-

Then (7.C.1) has a unique, strong solution ~ for all te[0, Tj.

Proof: See Liptser and Shiryayev [103, Chp. 4, pp. 129-132].

The Lipschitz condition guarantees uniqueness whereas the linear growth condition 

guarantees existence (no finite explosion times).
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The other type of solution which has proven useful, especially in applications to 

stochastic control theory, is the so-called weak solution (or solution in a weak sense), that 

is, any two solutions which have the same finite dimensional distribution. For example, 

if Liptschitz conditions are not satisfied, then we consider weak solutions; see Karatzas 

and Shreve [86] for specific examples.

Definition: Weak Solution.

Suppose on some complete probability space (Q, 9 )  we can define an

increasing family of 0 -fields c  an n-dimensional random variable t\ with prescribed 

distribution function P(n), continuous processes te[0 , T], wt, te [0 , T], such that 

condition (ii), (iii) (iv) of the previous definition are satified, and

(i) w t 6 M ( J t, P ) , £t ~

Then, £t, te [0, T] is called a weak solution associated with the model (Q,

P, wt, £t).

Moreover, the stochastic differential equation (7.C. 1) is said to have a unique weak 

solution (solution in a weak sense), if for any two weak solutions £j, te [0, T] associated

with (Q‘, 3 ^ ,  9 \  wt‘, £|), (i=l, 2), te[0 ,T ] and £*, te[0 ,T ] have the same

distributions (i.e coincide), that is, if

P 1!©1; ^ V )  e A }  = p V ;  ^2(co2) eA }
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Remark 7.C.2 The definition of weak solution requires that the functions a(t, ^), 

b(t, be prescribed, and it is assumed that we can construct a probability space 

(co, &  P).

Next, we present a theorem that provides existence and uniqueness of weak 

solutions to stochastic differential equations via the Radon-Nikodym theorem.

Theorem 7.C.2 Let (C([0, T]; Rn), B ^ ) be a measurable space of the continuous

functions £t, te[0,T], = 0, A 0 ^  s < T) and let by Pw be a Wiener

measure on (C([0, TJ; Rn), B j ) .  Suppose that a(t, £) of (7.C.1) is such that

T
Pw{£; J  a2(t,£t) dt < oo} = 1 a.s.

0

t T
J a ( t , ^ )d w t -  i f  |a(t, |2dt
0 0

E w{e } = 1 a.s.

where Ew denotes expectation with respect to measure Pw. Then (7.C.1) has a unique

weak solution, provided b(t, is an n x n constant matrix.

Proof: See Liptser and Shiryayev [103, Thm. 4.11 pp. 147-148] or Kallianpur 

[84, Chp. 7, Thm. 7.4.1, pp. 180].

Remark 7.C.3 Theorem 7.C.2 has received significant attention in the theory of 

stochastic optimal control. In particular, suppose the dynamic programming equation is 

degenerate. Then no conclusion can be made as to whether there exists a twice
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continuously differential solution so, no existence of optimal control can be concluded 

using the verification theorem presented by Fleming and Rishel [56]. However, one can 

show existence of weak (generalized) solutions. That is, if the uncontrolled stochastic 

differential equation possesses a density in an Lp space, (i.e., unique in probability law) 

and if the partial derivatives of the solution to the dynamic programming equation are 

functions in Lp space, then there exists a control function minimizing the Hamiltonian 

function. Results of these nature were first derived by BeneS [3] and later by Rishel 

[118], Davis [36], Fleming and Rishel [56], Fleming and Pardoux [53].
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APPENDIX 7.D 
STOCHASTIC DIFFERENTIAL MAPS

In this section we shall introduce certain concepts of stochastic differential

geometry and their application to stochastic differential equations which are of primary

importance in pursuing the partially observed stochastic control problem of Chapter 4.

As a starting point we shall give the representation of stochastic differential equations

using the definition of vector fields defined on a manifold M. Although the concepts and

notation will appear to be complex, their importance in analyzing SDE’s is veiy

rewarding. For more detailed discussion as well as background material on this subject

we refer to Kunita [91, 92, 95, 96], Elworthy [51], Blagove&enskii and Friedlin [22],

Ikeda and Watanabe [78], Malliavin [104], Bismut [17, 18, 19].

Suppose we are given a continuous stochastic process Xj, te [0,T], xt e  SM having

a differential form

d£t = f(t£ t)dt + a(t,^)*dw t (7.D.1)

where wteR m is a vector Brownian motion, and ^ e R n is the solution of (7.D.1) with 

given initial condition ^=x. Furthermore, assume f, cj, j = 1,..., m are smooth vector 

fields on a manifold M and the solution ^  sometimes denoted by ^  t (x, to), is in M. 

Since the coefficients of (7.D.1) are vector fields on M assigning to each point xeM  the 

tangent vectors f  (x), Oj (x)e T XM, each vector field in T XM can be represented in terms

of the local coordinates ( x \ ..., xn) in a neighborhood of x. Thus, any vector field Xj can 

be represented by
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J t=i J 3x‘
If we denote the representation of f(x) by Xq, and that of Oj by Xj, we can write (7.D.1) 

as

d5, = X ^^d! .  E Xjfty-dwj. (7.D.2)
j - l

where f ^ X ^ ,  i = 1, n and a- A Xj1, i =1, n, j  = 1, m .

Remark 7.D.1 Let M = Rn, and let Xq (t, x ) , X m (t, x) be continuous in (t, x),

continuously differentiable in t, and twice continuously differentiable in x with first and 

second derivatives in x bounded. Then the existence and uniqueness of (7.D.2) follows 

from the existence and uniqueness of the Ito differential equation

m
d$, = Xo(t£t)dt + L  X j( ^ t)dwtJ , (7.D.3)

j=l

where

1 m d ax-
Xo(t,x) = XqCu ) + i -  E  £  Xj (t,x) — l a x )

2 j=i k=l J 9 x k

because the coefficient of (7.D.3) are Lipschitz continuous. Indeed, the F-S integral and 

Ito integral are related by 

t t
J  x/(r,y -dwrJ = J  x/(r4)dwrj * I  (X ^ ,) -  x /(s ,y , w,j - wj). (7.D.4)
s s
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Theorem 7.D.1

Let M = Rn. Suppose ^  t(x) ~ te[s,T] is the solution of (7.D.2) satisfying

the conditions of Remark 7.D.1 and let f: Rn -> R1 is a function of C^-class. Then

* m 1
(i) f(5Sit(x)) =f(x) »J X o ^ / x M  + £  J X / r l f ^ /x M - d w ,1. (7.D.5)

S J=1 s

Assume further that the coefficients XQ(t, x ) , ..., X ^ t ,  x) are of C^-class in x. Then the 

solution t(x) is a backward semimartingale adapted to se[0,t], for t fixed and

t
(ii) f(4s>t(x)) =f(x)+JXo(r)(f • 4r,t)(r,x)dr

s t (7.D.6)
m f  i

+ E  |Xj(r)(f-4j. t)(r^c)*dwr . 
j=1 s

where denotes composition.

Proof: See Kunita [95, 96].

Remark 7.D.2 A similar theorem holds for the Ito stochastic differential equation 

(7.D.3) which is also found in Kunita [96]. The backward SDE (7.D.6) is used by the 

above author to derive the backward Kolmogorov equation. Results of this nature are 

also given by Kunita [95, 96].

Theorem 7.D.2

Suppose the solution map 4s,t00 ° f  (7.D.2) is defined on an M-paracompact

connected C°°-manifold and the vector fields Xg, ..., Xm are of class C^, k ^  5. Further,
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let £st(x) be an ^ -a d a p te d  process with lifetime x (i.e., s £ t < x) and 

^ (• ,< o );Dst(co)->M ,D st(o» A {x; x(s,x,o>) > t}. Then the map £st(-, to) is a local C^'2 

diffeomoiphism map from D^co) into M for any t  a^~ If M is a compact manifold, then £st(-, to)

is a C^-diffeomorphism of M for all t  a.s. (i.e., Dsl(co) = M and £t0, to) becomes an

onto map or s < t). Furthermore, if denotes the differential map of t for any

feC°°(M), then f ( ^  t(x)) is a backward semimartingale with respect to s and satisfies the 

backward SDE
t

0) f « St,(x»=f(x) * /S m . W S m W)**

s . (7.D.7)m ‘

j = 1 S

the solution map ^  t(x,co) of (7.D.2) satisfies the backward SDE

m
(ii) a ^ t = -!js,t,(X0) ( ^ > iS- E ^ , ( X p ( 5 s,l)-aw J. (7.D.8)

j=l

Moreover, the inverse map l^(x,co) defined by t js t  A satisfies the backward

SDE
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m
'X o ^ /x M d s  * E X jO U ^ x B -a w '  (7 0.9)

j=l

with T], t(x) = x which is again an onto map if the set Ds*(w) of (7.D.9) is equal to M a.s 

for any s < t.

Proof: The proof of this theorem requires results from Kunita [92, 95], Malliavin

[104], Ikeda and Watanabe [78] and Bismut [17].

The following definition is from Kunita [95].

Definition: Differential Map - Stochastic Field.

Given a point x of D^co), the differential map (£s>t*)x of the map ^  t is defined

as a linear map from TXM into T ^ ^ M  such that

6s,t*)xXxf *Xx(f -5s,t) . for all Xxe T XM . (7.D. 10)

Given a vector field X on M, if we denote by R^Co) the range of the map ^(-, to) 

and by Xx the restriction of X at xeM, then the new stochastic vector field (£s t*)(x)

with domain Rsl(co) is defined for xeR sl by

^ ^ x  = X^-j(x)) (7.D. 11)

Finally, it can be shown using (7.D.10), (7.D.11) that

Ss,„<X)f(x) = X<f-$st) (^ |(x ) ) .  (70.12)
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Remark 7.D.3 If we apply identity (7.D.12) to the representation (7.D.7) we

deduce

Sw.CXoWW*)) * Xoff W fiw C w )

and thus (7.D.7) is equivalent to (7.D.6) as expected.

Remark 7.D.3 If the SDE (7.D.2) is defined on Rn with coefficient Xq, ..., Xm 

of class having bounded first and second derivatives, then the solution map co) 

is a diffeomorphism of C ^ -c la ss  for any t  a.s. The proof was first given by 

Blagove&enskii and Friedlin [22].
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APPENDIX 7.E
ABSOLUTE CONTINUITY OF MEASURES AND RELATED TOPICS

In this section we discuss some results on absolute continuity of measures and its 

widely used applications. The Radon-Nikodym derivative in the detection set-up is 

referred to as the likelihood-ratio. This transformation of probability measure involves 

martingales in a manner first introduced by Cameron and Martin [31] in the context of 

Wiener integrals and later for Wiener processes by Girsanov [67]. Extensive work on this 

topic is found in Liptser and Shiryayev [103, Chps. 4-7] and Kallianpur [84, Chp. 7]. 

The importance of this concept to detection problems is established by Duncan [45] and 

Kailath [80, 81, 82]. The significance of measure transformations to the field of 

stochastic control was first noted by BeneS [3] and then by Rishel [118] and Davis [36].

Theorem 7.E.1 The Exponential Formula.

Assume {Xj, 0 £  t < T] is a real-valued local martingale, with having Xq = 0 a.s. 

that is adapted to the family of a-fields te [0, T] satisfying the usual conditions. Then 

there exists a unique local martingale Lj ~ with values in Rl satisfying the stochastic 

differential equation

dLs = Lsdxs, (7.E.1)

x t -  i .  (x, x)t
Moreover, L t = L0 exp 2 , denoted by 2[xt) and P(Lt > 0, te [0,T]) = 1 a.s..

Proof: See van Schuppen [127].

We now present the result on absolute continuity of measures and its relation to 

martingales.
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Definition Absolute Continuity of Measures

Suppose we are given a measurable space (A, & )  and two probability measures 

P , P defined on i t  We say that measure P  is absolutely continuous with respect to 9

(i.e., 9  «  9 ), if for all A €  &  such that P(A) = 0 we have 9(A)  = 0.

A consequence of absolute continuity of measures is the existence of an integrable

function L(cd) such that 9(A) = J  L(to) P(dQ)), G>e A where L((o) is the Radon-Nikodym
A

d Pderivative sometimes denoted as L = ___
dP

Theorem 7.E.2 Measure Transformation (Girsanov’s Theorem).

1. Suppose we are given a probability space (A, 9 ) ,  a family of sub-a-fields

c  te [0, T] and a local martingale n^ e  ( & \ ,9 )  such that itiq = 0, (m, m)T < P-a.s,

dPte [0,T] satisfying E[3(xT)] = 1. Then, the formula #(xT) = E [—  | & ~j] introduces
dP

a new probability measure 9  on (A, such that 9 « 9 .  If we also have 

P{(m,m)t<<»}=l then P « P ,  thus, 9 - 9 .

2. Suppose we are given a measurable space (A, 3T) and two probability measures

9 ,  9  defined on i t  If we assume 9  and P equivalent measures, then ^  > 0 P-a.s.
dP

Let c  ^  te [0,T] be a family of sub-a-fields satisfying the usual conditions and define
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d&LT 4 E [_—• | & ? ] .  Then, there exists a processxte  & ), xq = 0, te[0, T]
Ur

such that Lt  = 2{xT) 9 -  a.s, te  [0,T].

Proof: See van Schuppen [127, pp. 38].

We now present the theorem which is a consequence of transformation of 

measures. As we shall see, each time Theorem 7.E.2 is applied, certain martingales need 

to be defined with respect to the new induced measure.

Theorem 7.E.3 Martingale Translation.

Suppose

1. (£2, 9 )  is a probability space, c  te [0, T];

2. yte  Mloc( ^ t, P), yte  Rn, y0= 0 a.s;

3. X jg M i^ ^ .P ) ,  xte R  such that Xq = 0, 9 -  a.s, EfLj.) = 1, where

LT 4 E [ ^ | j r T] = e K T ^ <X' K)T (7-E 2)T *

Then, y t€M loc(^ ,& ), yte R n is such that

yt = y t " v t> v t = x)t , i = 1, ..., n (7.E.3)

and (y, y)t = <y, y)t .

Proof: See Kallianpur [84, Theorem 7.1.2, pp. 168].

Remark 7.E.1 Suppose (£2, is a measurable space with $, 9  defined on it 

such that ~ 9 .  If the likelihood-ratio L j  is defined by
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where E denotes expectation with respect to measure P . Suppose f(co), toe Q  is an 

integrable function adapted to defined under measure P. Then we have

Remark 7.E.2 Suppose the Radon-Nikodyn derivative Lj- defined by (7.E.2) is

is satisfied then E[ Lj ]=1, te[0,TJ. Condition (7.E.7) is very important for our later 

work. It can be shown that if | a(t, lj) | £ k(l + | Ij |), | b(t, lj) | k <, ~  0f equation 

(7.C.1) are satisfied then (7.E.7) is satisfied. This result is found in Liptser and Shiryayev 

[103, Chp. 6, pp. 220-221, Chp. 4, Thm. 4.7, pp. 137-141], and in Gihman and Skorohod

[65].

E[f(<o)] = E[LTf(o>)] (7.E.5)

and

E [f(C D )|^s] =
E[f(co)LT | ^ s]

E [L t | ^ s]
, for any s ^te [0,T]. (7.E.6)

T
such that xT = t . If for some 8 > 0 the condition

0

sup E exp(8|f(t,co)|2) < «> P -a .s . 
te[0,T]

(7.E.7)
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Remark 7.E.3 Assume that the stochastic differential equation (7.C.1) is a 

diffusion process of dimension one and the solution t is an -adapted process for all

te [0,T], with ^) = 0. Then

T

1. P^ ( J  a2(t, £t)dt < oo) = l  a.s. (7.E.8)

2. Pw( J a 2(t, wt)dt < oo) = l a.s. (7.E.9)

imply that ~ Pw. The likelihood-ratios are given by 

dP„ 1 1
—rjr—- = e x p { - f a ( s ,y  d£s + 1  f  a2( s 4 )  ds] (7.E.10)
d 9 % JQ o

dP% --  exp{Ja(s,ws)dws - i .  Ja^s.w ^ds} . (7.E.11)
W 0 0

If we remove condition (7.E.8) we have Pw «  P^, similarly, if we remove condition 

(7.E.9) we only have P^ «  Pw. Here, Pw denotes the Wiener measure 

PW(B) = Pw(co; weB), P^ denotes the measure P^(B)=P^(co;£eB), and by the definition

of diffusion process both are defined on S?* -  a { ^ ;  0 £  s £  t} . The results above are

found in Liptser and Shiryayev [103, Chp. 7, Thm. 7.7, pp. 248]. The solution of (7.C.1) 

is described by its probability law P^ (i.e., weak solution) which is a consequence of 

Theorem
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Furthermore, suppose we assume condition (7.E.9) with P^ the weak solution to

(7.C.1). It then follows that Ew [. ^  . | &&] = 1.
dPw

The following theorem describes independecne of G-fields.

Theorem 7.E.4

We say that two a-fileds 9 ^ ,  9 ^  are conditionally independent given 9 [  if, and 

only if, for any B2e 9 ^

P(B2 | ^ , ^ )  = P(B2 |^ j )  a.s. 

with the superscripts 1 and 2 interchanged.

275

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX 7.F
MARKOV PROCESSES, BACKWARD AND FORWARD EQUATIONS 

Markov processes play an essential role in the theory of random processes. The 

most important feature of Maikov process is the evolutionary character of its behavior 

the state of the process at present completely determines its probabilistic behavior in the 

future. This feature allows us to derive evolutionary equations for the determination of 

the probabilistic characteristics of the process. Our main references for the material 

presented in this section are found in Gihman and Skorohod [66, Chp. 1, pp. 8 -16, 

Vol. 2], Dynkin [46] and Fleming and Rishel [56].

We begin with an introduction on transition functions of markov processes. We 

then present two families of operators which can be associated with transition 

probabilities and finally we give the backward and forward equations which are related 

to the above transition probabilities. This result are essential in understanding the proves 

given in subsequent development

Transition Functions of Maikov Processes

Suppose we are given a stochastic process [Xj, te[0,T]}, with state space some 

complete separable metric space X (the state space of the process xt). Denote by 

P(P,t; x,s) the probability of the event xt e  P given that xs = x, s < t where P c  B(X), 

(B(£) denotes the Borel set of £). The function

P(P,t;x,s) A Prob(xte P |x s = x) (7.F.1)

is called the transition probability of x{. If xt is a Markov process (without an after 

effect), from the properties of conditional expectations we have
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P(P,t;x,s) = J  P(P,t;y,u) P(dy,u;x,s), s £  u :£ t 
I

(7.F.2)

which is called the Chapman-Kolmogorov equation.

Definition: Maikov Process

A stochastic process {x^ te[0,T]}, with state space X, is a Markov process if:

1. P(xte P |x ti, xtm) = P(xt€ P | Xj^) where tj < ^  < ... < ^  < t is in

[0,T];

2. P(P,t; .,s) is B(Z) measurable for fixed s, t, P and P(., t; x,s) is a probability 

measure on B(X) for fixed s, x, t;

3. The Chapman-Kolmogorov equation holds for s < u < t in [0, Tj.

The Backward Equation

Suppose B(Z) denotes the space of all bounded, real valued, Borel measurable

functions f  on £, with the norm 11 f  11 = sup |f(x) | . For every fe  B (X) and s,t e  [0,T]
x e E

with s < t, let

Ts/ ( x )  a jf(y)P(dy,t;x,s) =E[f(xt) |x g = x ] . (7.F.3)

The family of operators Ts t determined by the above relation is called the 

semigroup of operators associated with the transition probability P(P,t;x,s). By the 

Chapman-Kolmogorov equation it follows easily that Ts t is a semigroup, i.e.,

Ts,t -  Ts>uTu>t s < u < t .  (7.F.4)
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Let us consider some fixed time ^ e  [0,t*] and define the infinitesimal operator L(s) on 

some subspace D of B(E) such that for each se (0,tj) the limit

Us)f(x) = UmTs-|- / (x)~f(x )| s s (0 ,t |)  (7.F.5)
h-lo h

exists and

= fw *

The limit is understood in a weak or strong sense. For more discussion on the limit see 

Dynkin [46, p. 19 - 22, Vol. 1]. The operator L(s) is well-defined only under suitable 

restrictions on the function f  for which the above limit exists. These functions are said 

to be in the domain D.

The semigroup Ts t is uniquely determined by the infinitesimal operator L(s) 

above. Moreover, for a diffusion process, L(s) takes the form of a second order partial 

differential operator in the sense that the domain D of L(s) contains all f of class C2 and

L(s)f a !  E  a ^ x )  - f f i . . .  -  £  b ^ x ) !  (7.F.6)
2 >j=i 3 x ‘9xj i=l 3 x ‘

where b, c  are drift and diffusion coefficients of the diffusion equation satisfied by the

process Xj with a=c a T. Finally, by combining (7.F.3), (7.F.5) it can be shown that

Ts tif(x) satisfies

.J-T  f(x) = -  Us)Tst f(x), se [0,tj]
3s M (7.F.7)
limTs .f(x) = f(x). 
s ttj  1
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The Kolmogorov’s backward equation is a special case of (7.F.7) and is obtained by 

letting f(y) —> i {qj; yep} in (7.F.6) so that TMjf(x)^P(p,t;x ,s) in (7.F.7).

The Forward Equation

Suppose we now define on B(Z) a probability measure PS(P) = Prob {xse P).

Then it follows from the general formulas of probability theory that the probability Ps(p)

of the event {x^ p} should be defined as

Pt(P) a Prob{xtep} a Jp(p,t;x,s)Ps(dx). (7.F.8)

If we denote by M the set of all finite measures on B(X) and define

"Vs * m ™
where

n \ s(P) = J  P(P,t;y,s)m(dy) , s £  t, PeB(E) (7.F.10)

then T*s is an operator which maps M into M . Again, using the Chapman-Kolmogorov

formula we can write

• . < " < « •  ( 7 R n )  

The operator T*s is now directed differently than Ts t. Using a similar approach as the

one presented for the backward equation one can show for s a fixed time s,te [0,T] thatT. „m(B) 

satisfies

i T u m (3) = L(t) 'V n ( P )  

limTs tm(P) = m(P).tis
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The Kolmogorov’s forward equation is a special case of (7.F.12) by letting m(P) -> 

1(d); xepj in (7.F.10) so that T^m(P)-»P(P,t;x,s) in (7.F.12).

Remark 7.F.1 The backward and forward equations are adjoint to each other. The 

time derivative of (7.F.7), (7.F.12) defined in an L2 norm is zero.
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APPENDIX 7.G
DERIVATION OF SUFFICIENT STATISTICS OF THEOREM  3.4.1 

Reffering to (3.4.15) and Theorem 3.4.1 we seek for the solution of

4 q (* 4 ) = L(t)*q(z,t) -  Q(t,z)q(z,t) (7.G.1)
at

with initial condition q(z,0) = p0(z). To solve, set

(Z-Pt) (7.G.2)
q(z,t) = k te

where zt, pt are n-dimensional vectors, and is an nxn symmetric matrix. 

Differentiating (7.G.2) with respect to time:

^ q (z ,t)  = k tq(z,t) + [(z-pt)TXt_1 ̂  + i .  (z-p t)TZt“1 t tZ ”1(z-p t)]q(z,t) (7.G.3)

Differentiating (7.G.2) with respect to z:

JLq(z,t) = -  Z "1̂  -  pt) q(z,t). (7.G.4)

Differentiating (7.G.4) with respect to z:

92.q(z,t) = -  Zt_1q(z,t) +Zt"1(z-p t)(z-p t)TZt"1q(z,t) (7.G.5)
9z

Since, L(t) is the forward operator associated with the diffusion process Xj of (3.4.9), and 

Q is given by (3.4.16) then
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4q(z,t) = i .B TiLq(z,t)B-q(2,t)Tr(A)-AzJLq(z,t)
31 2 d z 2 d z  (7.G.6)

-  ^ . ( z ^ z + B ^ + O + i - C j j + z ^ ^ z - y ^ - —z^
2 2 2

where, A,B, are the drift and diffusion coefficients of (3.4.9) respectively, and c the last

row of drift coefficient A. Therefore, by substituting (7.G.3) - (7.G.5) into (7.G.1),

k t + (z-p t)T2 t" 1|it + l ( z - p t)TZt" 1t tZt' 1(z-pt) =

_L{B T[-Z t_1 + 2 f  1(z-pt)(z-pt)T2 f  !]B} -Tr(A) + ( z - p /Z ^ A z  (7.G.7)

-  i ( z  TAz + B Tz + Q  + -Lcn + i z  Tc Tcz - y tZ2 -  —Zj.
2 2 2 2

and equating coefficients of zT(-)z, , zT(-), and z°Q we can obtain an equation for 

Sj, pt, k t , respectively.

= J-Z^BB TZf' 1 + - ! a '2 1 2 1 1 1 2

where

A'  = A + [o i - ,  ‘ T CTc'

Thus,

Zj = AZt +Z tA T - Z tA'Zt + B B T 
Zq = 0.

(7.G.8)

Next,
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s t~ v t -  -  i s r ' s f i ' V  -

-  - is f ‘bb v *  -  i ^ ' bb v *  -  a  Tsr ‘p, -  i s -

where

B ' = B + H t , H t  = [0 2 0 ... 0]T:

Thus,

V v

p, = - BB X ‘n  -  m  V m  -  y b '  •

Substituting (7.G.8) into the last equation, we have,

(7.G.9)jit = (A -  XjAOPt -  l l ^ B  -  IS jH  Tyt

PO = z(t=0).

T H Twhere H a ___
yt

Finally, an equation for kj can be obtained as above; however, since kt is cancelled 

during the normalization of density p(z,t), there is no need to simplify (7.G.7) further.
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APPENDIX 7.H
DERIVATION OF SUFFICIENT STATISTICS OF EXAMPLE 5.4.3

Reffering to Example 5.4.3, we shall show that the solution to stochastic PDE

(5.4.22) is given by a set of sufficient statistics Z|, pj, k t‘ satisfying

t\ = Fzj + zJf t -x|(c t c + A)sj + EE T ,2°=0

p| = Fp| -  e |(c Tc + A)pJ + EjB + Z|C T* ^ .  ,pt() = x0 (7.H.2)

V L f7 J 1 3 )

Define a new density 0 related to p though a gauge transformation

i -F fri)  ,
P (x,t) = e p(x,t).

From (5.4.22) we have

®(e F<X|)pi(x ,t) )= e  F(X|)i . p ia , 0
dt dt dt

= e - F(Xl)((Ls (t, - / (X' V ( M ) ) ^ Ta TeF(X‘W . . ) - ^ )
dt

- p (x i) T r a  T a  F(xt ) F (x t ) 3
= e { “ " ( w T i L  F(x,)e p ‘(x, t) + S<5rTe , ± p ‘(x ,t) )

2 dx dx dx

d -  F(x l> ; - r  3 F<xl> i-  Tr(-Z_f)e P (x, t) -  f  T^ 7F(x1)e p*(x, t)
dx dx

F(Xl)-T  a  1 T T F(xl) i T T F(xl> i dyt-  e f  (x )_ p (x , t) -  _ x  Tc cxe P(x, t) + x Tc Te P(x, t) • !}
dx 2 dt

After some algebra we obtain
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■4a<*. 0 = t) + (-  i j L f  ̂ xj) -  i ( f l(x1» 2)p‘(x, t)
dt L Z dXj Z

-  f° (xq^ - P \ ^  t) -  JL f^x^p 'C x, t) -  i x  Tc Tcxp,(x, t) + X Tc Tp'(x,
oxq  dXQ 2  dt

From (5.4.21) and the definition of f°, h we deduce

-ip(x,t) = 1  J L p '(x , t) -  i-Cyx2 + pxj + 5)p‘(x, t)
d t  2  d x \  2

-  B°x0-JL pi(x, t) -  B°pi(x, t) -  i x  Tc Tcxpi(x, t) (7-H'4)
oxq 2

+ x Tc V f U ) - ^ l .
K dt

We now define

and rewrite (7.H.4) as

jL p(x,t) = ^ ( E ^ . p i(x,t)E) - 4 - P iT(x,t)Fx + x T( - £ ^ £  -  A ^ p k x .t )  
a t 2  d x  d x  2 2 (7.H.5)

+ x TBpi(x, t ) + x Tc T p \ x ,  ty ^ L .
dt

To solve, we set

1,_ i.T i -1/-  k -  _ (x  -  pt) a t (x -  pt)

p‘(x, t) = k te ,p‘(x, t) = 8 (x  -  xq)

and assume Ej is a symmetric matrix of dimension 2x2.
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The partial derivatives satisfy

± p ( x ,  t) = k l p \ x ,  t ) + [l(x  -  pj)T2j " 'ijz j " \x  -  pj) + (x -  pi)Tl i " 1pj] p \ i ,  t)

A p '(x ,  t) = -  (x -p[)T2j P‘(x, t)

.iL p ^ x .t)  = -  Zj (3I(x,t)+2^ (x-pJ)(x-pj)T̂  p*(x,t) 
d x

Substituting into (7.H.S) and equating coefficients we derive the expressions 

(7.H.1)-(7.H.3).

Next, we shall evaluate the integration

r i r F(xi> i *rJ  p(x ,  t)dx = J  e P (x, t)dx, F(xj) = I tanh(u)du
xi 

/
R R 2 0

where x 1q denotes the value of state variable X | at time t  =  tg . Substituting 

F(xj) = In cosh(xj)

J  p'(t, x)dx = J  cosh(x1)p (x ,t)d x = k tI J  coshCx^pfx, t)dx. (7.H.6)
R 0R  R 0R  R 0R

At this point we concentrate in evaluating the integral

x, -Xi 4 M ) Ti ;  \ x - p l )
J c o s h ( x 1) P ( x , t ) d x =  J _________ e dx (7.H.7)

R2 R2 2

by using the property that any Gaussian density integrates to one.
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First, we define Xj a -Lg  tx +_Lx tG , Gt  = [1 0]. If we express the exponent of 

the integrand of (7.H.7) as a perfect square we have

:-l

j  cosh(xi)0(x, t)dx = I e  J e dx

R2 “ R2

T 1-W, g+gtii|-gt2̂ g) -I(x-(m;-x;g))t4  a-^-sta))
1 1  C

v  J '  ®i>2

I ( p j  G +G Tp|+G T^ G ) - I ( p j  G+G Tp |-G  Ts |g ) (7.H.8) 

= i.(27t)(detzj)1/2[e +e ].

Combining (7.H.6) and (7.H.8) we finally deduce

I g  tz |g
2 T

f p ^ O d x  = (2;t)(detzj)1/2ktie c o s h ( I (p | G + G Tp|)). (7-H.9)
R2 2
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