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ABSTRACT

RECOGNITION OF QUADRIC SURFACES FROM RANGE DATA:

AN ANALYTICAL APPROACH

Ivan X. D. D ’Cunha 
Old Dominion University, 1992 
Director: Dr. Nicolas Alvertos

The problem of recognizing and positioning of objects in three-dimensional space 

is important for robotics and navigation applications. In recent years, digital range 

data, also referred to as range images or depth maps, have been available for the 

analysis o f three-dimensional objects owing to the development of several active range 

finding techniques. The distinct advantage of range images is the explicitness of the 

surface information available. Many industrial and navigational robotics tasks will be 

more easily accomplished if such explicit information can be efficiently interpreted.

In this dissertation, a new technique based on analytic geometry for the recogni

tion and description of three-dimensional quadric surfaces from range images is 

pressented. Beginning with the explicit representation of quadrics, a set of ten 

coefficients are determined for various three-dimensional surfaces. For each quadric 

surface, a unique set of two-dimensional curves which serve as a feature set is 

obtained from the various angles at which the object is intersected with a plane. 

Based on a discriminant method, each of the curves is classified as a parabola, circle,
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ellipse, hyperbola, or a line. Each quadric surface is shown to be uniquely character

ized by a set of these two-dimensional curves, thus allowing discrimination from the 

others.

Before the recognition process can be implemented, the range data have to 

undergo a set of pre-processing operations, thereby making it more presentable to 

classification algorithms. One such pre-processing step is to study the effect of median 

filtering on raw range images. Utilizing a variety of surface curvature techniques, reli

able sets of image data that approximate the shape of a quadric surface are determined. 

Since the initial orientation of the surfaces is unknown, a new technique is developed 

wherein all the rotation parameters are determined and subsequently eliminated. This 

approach enables us to position the quadric surfaces in a desired coordinate system.

Experiments were conducted on raw range images of spheres, cylinders, and 

cones. Experiments were also performed on simulated data for surfaces such as hyper

boloids of one and two sheets, elliptical and hyperbolic paraboloids, elliptical and 

hyperbolic cylinders, ellipsoids and the quadric cones. Both the real and simulated 

data yielded excellent results. Our approach is found to be more accurate and compu

tationally inexpensive as compared to traditional approaches, such as the three- 

dimensional discriminant approach which involves evaluation of the rank of a matrix.

Finally, we have proposed one other new approach, which involves the formula

tion of a mapping between the explicit and implicit forms of representing quadric sur

faces. This approach, when fully realized, will yield a three-dimensional discriminant, 

which will recognize quadric surfaces based upon their component surface patches. 

This approach is faster than prior approaches and at the same time is invariant to pose 

and orientation of the surfaces in three-dimensional space.
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CHAPTER ONE

INTRODUCTION

1.1 Introduction

One of the most important tasks in computer vision is that of three-dimensional 

object recognition. Success has been limited to the recognition of symmetric objects. 

Recently, research has concentrated on the recognition of small numbers of asymmetric 

objects as well as objects placed in complex scenes. Unlike the recognition procedure 

developed for intensity-based images, the recent development of active and passive 

sensors extracting quality range information has led to the involvement of explicit 

geometric representations of the objects for the recognition schemes [1, 2]. Location 

and description of three-dimensional objects from natural light images are often 

difficult to determine. However, range images give a more detailed and direct 

geometric description of the shape of the three-dimensional object. A brief introduc

tion to range images and the laser range-finder is presented in Section 1.2. In Section 

1.3, a precise global definition of the object recognition problem is discussed. The 

objective of this dissertation and its relevance to the global three-dimensional problem 

is presented in Section 1.4.

1.2 Range Image and Data Acquisition

Range images share the same format as intensity images, i.e., both of these 

images are two-dimensional arrays of numbers, the only difference being that the 

numbers in the range images represent the distances between a sensor focal plane to 

points in ^pace. The laser range-finder or tracker [3] is currently the most widely used 

sensor. The laser range-finder makes use of a laser beam which scans the surfaces in

l
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the scene of observation from left to right and top to bottom. Thus the distances 

obtained measure both depth and scanning angle. The principle of triangulation is util

ized to obtain the three-dimensional coordinate of each pixel. Unless a specific algo

rithm demands a special form of the range images, it is usually this depth information 

which is utilized for the recognition process. Active triangulation techniques use an 

extra source of light to project some pattern onto the objects to be measured, thereby 

reducing complexity of the stereo matching problem [4, 5]. Many industrial and navi

gational robotic tasks such as target identification and tracking, automated assembly, 

bin picking, mobile robots, etc., will be better accomplished if such explicit depth 

information can be efficiently obtained and accurately interpreted.

Modeling human vision is a complex process. To date, machine vision systems 

can hardly perform a fraction of the capabilities o f the human visual system. An 

efficient mechanism which can acquire relevant information from the three-dimensional 

world and subsequently form models of the real world will, to some extent, bridge the 

gap between machine and human capabilities.

1.3 Definition of the Object Recognition Problem

Three-dimensional object recognition is vast problem. In the course of the 

succeeding text, we will give a somewhat precise definition of this problem.

In the real world, the things human see and feel are primarily solid objects. 

When people view objects for the first time, they attempt to collect information from 

various aspects of the object. This process of collecting and forming information 

about unknown objects is known as model formation [8]. After gaining familiarity 

with many objects, we are able to identify objects from any arbitrary viewpoint 

without further investigation.

The human vision system has the capability o f analyzing and determining not 

only the color but also the spatial orientation of objects relative to a fixed coordinate
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system. Since we are interested in an automatic, computerized process to recognize 

objects, the input data we use must be compatible with available digital computers. 

Hence, two-dimensional matrices of numerical values usually known as digitized sen

sor data, constitute the information that is processed to describe or recognize three- 

dimensional objects. The sensor used for this process can be a passive sensor, like a 

camera, or an active sensor, such as a laser range mapper. Summarizing, the three- 

dimensional recognition problem constitutes a detailed completion of model formation 

o f the object leading to an in-depth knowledge of its shape and orientation with respect 

to a fixed view of the real world.

1.4 Objectives and Organization of the Dissertation

An approach based on two-dimensional analytic geometry to recognize a series of 

three-dimensional objects is presented in this dissertation. Among the various three- 

dimensional objects considered are the hyperboloids of one and two sheets, ellipsoids, 

spheres, circular and elliptical quadric cones, circular and elliptical cylinders, parabolic 

and hyperbolic cylinders, elliptic and hyperbolic paraboloids, and parallelepipeds.

The difficulties in recognizing three-dimensional objects stems from the complex

ity of the scene, the number of objects in the database and the lack of a priori infor

mation about the scene. Techniques vary based upon the difficulty of the recognition 

problem. In our case we attempt to recognize segmented objects in range images.

Location and orientation of three-dimensional objects has always been the most 

complex issue in many computer vision applications. Algorithms for a robust three- 

dimensional recognition system must be view-independent. Herein, we have developed 

a technique to determine the three-dimensional object location and orientation in range 

images. Once the object lies in a desired stable rest position, our proposed recognition 

scheme quickly and accurately classifies it as one of the objects mentioned above. In 

comparison to most of the present day methods utilized for range image object
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recognition, our proposed approach attacks the problem in a different manner and is 

computationally inexpensive.

Chapter Two reviews some of the earlier and current work in this area. It 

includes a review of some of the mathematical concepts associated with three- 

dimensional object recognition. A mathematical quadric classification method based 

on a three-dimensional discriminant is discussed while in this chapter. In chapters 

Three and Four we discuss, in detail, our proposed three-dimensional approach. 

Chapter Three addresses the various pre-processings steps involved prior to the appli

cation of the recognition algorithm. Median filtering, segmentation, three-dimensional 

coefficient evaluation, and rotation alignment being some of them. The demerits of 

existing schemes in the area of three-dimensional object recognition and the unique

ness and improvizations brought about through our recognition procedures are also dis

cussed in Chapter Three. In Chapter Four, after a brief discussion of the practical 

merits of using planar intersections, characteristic feature vectors are obtained for each 

of the quadric surfaces under investigation. Results are summarized in Chapter Five. 

A large set of real range images of spheres, cylinders, and cones were utilized to test 

the proposed recognition scheme. Results obtained for simulated data of other quadric 

surfaces, namely, hyperboloids and paraboloids are also tabulated in Chapter Five. 

Chapter Six concludes with a discussion of possible areas for future investigation.
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CHAPTER TWO

BACKGROUND 

2.1 Introduction

Past and present research in the field of three-dimensional object recognition is 

reviewed in Section 2.2. Surface curvatures which are widely utilized in this research 

area are briefly reviewed in Section 2.3. Section 2.4 investigates a three-dimensional 

approach to classification and reduction of quadrics as presented by Olmstead [24], 

wherein various invariant features of the quadratic form under translation and rotation 

are discussed.

2.2 Literature Review

Many of the currently available techniques for describing and recognizing three- 

dimensional objects are based on the principle of segmentation. Segmentation is the 

process in which range data is divided into smaller regions (mostly squares) [4]. 

These small regions are approximated as planar surfaces or curved surfaces based upon 

the surface mean and Gausssian curvatures. Regions sharing similar curvatures are 

subsequently merged. This process is known as region growing. Other approaches 

[6-10] characterize the surface shapes while dealing with the three-dimensional recog

nition problem. Levine et al. [11] briefly review various works in the field of segmen

tation, where segmentation has been classified into region-based and edge-based 

approaches. Again surface curvatures play an important role for characterization in 

each of these approaches.

Grimson et al. [12] discuss a scheme utilizing local measurements of three- 

dimensional positions and surface normals to identify and locate objects from a known
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set. Objects are modeled as polyhedra with a set number of degrees of freedom with 

respect to the sensors. The authors claim a low computational cost for their algorithm. 

Although they have limited the experiments to one model, i.e., data obtained from one 

object, they claim that the algorithm can be used for multiple object models. Also, 

only polyhedral objects with a sufficient number of planar surfaces can be used in their 

scheme.

Another paper by Faugeras et al. [13] describes surfaces by curves and patches 

which are further represented using linear parameters such as points, lines and planes. 

Their algorithm initially reconstructs objects from range data and consequently utilizes 

certain constraints of rigidity to recognize objects while positioning. They arrive at the 

conclusion that for an object to be recognized, at least a certain area o f the object 

should be visible (approx. 50%). They claim their approach could be used for images 

obtained using ultrasound, stereo, and tactile sensors.

Hu and Stockman [14] have employed structured light as a technique for three- 

dimensional surface recognition. The objects are illuminated using a controlled light 

source of a regular pattern, thereby creating artificial features on the surfaces which are 

consequently extracted. They claim to have solved the problem known as "grid line 

identification." From the general constraints, a set of geometric and topological rules 

are obtained which are effectively utilized in the computation of grid labels which are 

further used for finding three-dimensional surface solutions. Their results infer that 

consistent surface solutions are obtained very fast with good accuracy using a single 

image.

Recognition of polyhedral objects involves the projection of several invariant 

features of three-dimensional bodies onto two-dimensional planes [15]. Recently, 

recognition of three-dimensional objects based upon their representation as a linear 

combination of two-dimensional images has been investigated [16]. Transformations 

such as rotation and translation have been considered for three-dimensional objects in
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terms of the linear combination of a series of two-dimensional views of the objects. 

Instead of using transformations in three-dimensions, it has been shown that the pro

cess is the equivalent of obtaining two-dimensional transformations of several two- 

dimensional images of the objects and combining them together to obtain the three- 

dimensional transformation. This procedure appears computationally intensive.

Most of the techniques and algorithms mentioned above have a common criterion 

for classifying the three-dimensional objects in the final phase. They have a database 

of all the objects they are trying to recognize and hence try to match features from the 

test samples to the features of the objects in the database.

Fan et al. [17] use graph theory for decomposing segmentations into subgroups 

corresponding to different objects. Matching of the test objects with the objects in the 

database is performed in three steps: the screener, which makes an initial guess for 

each object; the graph matcher, which conducts an exhaustive comparison between 

potential matching graphs and computes three-dimensional transformation between 

them; and finally, the analyzer, which based upon the results from the earlier two 

modules conducts a split and merge of the object graphs. The distinguishing aspect of 

this scheme is that the authors used occluded objects for describing their proposed 

method.

As has been mentioned, most of the present research on three-dimensional objects 

utilize range imagery rather than stereo images. But at the same time, it should be 

noted that it was stereo imagery which, to a large extent, was initially used to investi

gate the problem of three-dimensional object recognition.

Forsyth et al. [18] use stereo images to obtain a range of invariant descriptors in 

three-dimensional model-based vision. Initially, they demonstrate a model-based 

vision system that recognizes curved plane objects irrespective of the pose. Based 

upon image data, models are constructed for each object and the pose is computed. 

However, they mainly describe three-dimensional objects with planar faces.
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Lee and Hahn [19] have actually dealt with an optimal sensing strategy. Their 

main objective is to obtain valuable and effective data or information from three- 

dimensional objects, which subsequently could be used to describe and recognize 

natural quadric surfaces. Other works on stereo vision can be found in references 20, 

21, 22 and 23.

The visible-invariant surface characteristics mentioned before are the Gaussian 

curvature (K) and the mean curvature (H), which are referred to collectively as surface 

curvatures. Mean curvature is an extrinsic surface property, whereas Gaussian curva

ture is intrinsic. In the following section we briefly describe these two widely used 

invariant surface characteristics for three-dimensional objects.

2.3 Differential Geometry of Surfaces: Mean and Gaussian Curvatures

Mean and Gaussian curvatures [8] are identified as the local second-order surface 

characteristics that possess several desirable invariance properties and represent extrin

sic and intrinsic surface geometry, respectively. The explicit parametric form of a gen

eral surface S in E3 (three-dimensional Euclidean space) with respect to a known 

coordinate system is given as

where D is any surface patch and is a subset of E2.

However if the depth maps are assumed to be in the form of a graph surface 

(Monge patch surface) [8], then S can be written as

(2 .1)

S =|(x,y,z(x,y)), (x,y) e D j, 

where z(x,y) is the depth at a point (x,y) in a given range image.
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The representations for the Gaussian and the mean curvatures are as follows:

Gaussian curvature, K, is defined by,

92z 92z

(2.2)

92z
dxdy

dx2 dy2

1 + (f )2 + (f )2'

Mean curvature, H, is defined by, (2.3)

92z ( d2z ( 92z dz

d2z 

2 . dy2 '

dz
dx

0 dz dz d2z 
dx dy dxdy

dx2 dy2 dx2 . d y . 2r
dz
dx^

+ dz

. d y .

j3/2

Both of these curvatures are invariant to translation and rotation of the object as long 

as the object surface is visible.

Based upon the sign of the Gaussian curvature, individual points in the surface 

are locally classified into three surface types as shown in Figure 2-1:

(a) K > 0 implies an elliptic surface point,

(b) K < 0 implies a hyperbolic surface point, and

(c) K = 0 implies a parabolic surface point.

Besl and Jain in their paper [8] have shown that the Gausssian and mean curva

tures together can be utilized to give a set of eight different surfaces as shown in Fig-

ure 2-2 :

1) H < 0 and K > 0 implies a peak surface.

2) H > 0 and K > 0 implies a pit surface.

3) H < 0 and K = 0 implies a ridge surface.

4) H > 0 and K = 0 implies a valley surface.
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(b) Hyperbolic point (K < 0)

(a) Elliptic point (K > 0) (c) Parabolic point (k = 0)

Figure 2-1. Shape o f a surface in the vicinity of an elliptic, hyperbolic, and parabolic 
point.
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Peak Surface H < 0, K > 0 Flat Surface H = 0, K = 0

Pit Surface H > 0, K > 0 Minimal Surface H = 0, K < 0

Ridge Surface H < 0, K = 0 Saddle Ridge H < 0, K < 0

Valley Surface H > 0, K = 0 Saddle Valley H > 0 , K < 0

Figure 2-2. A set of eight view-independent surface types for a visible surface.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

5) H = 0 and K = 0 implies a flat surface.

6) H = 0 and K < 0 implies a minimal surface.

7) H < 0 and K < 0 implies a saddle ridge surface.

8) H > 0 and K < 0 implies a saddle valley surface.

2.4 Three-Dimensional Discriminant

In this section we investigate a three-dimensional approach to classification and 

reduction of quadrics as presented by Olmstead [24], which looks into the invariants of 

the quadratic form under translation and rotation of three-dimensional objects.

The general quadric surface of second degree in the three variables x, y, and z 

can be written in the form

F(x,y,z) = ax2 + by2 + cz2 + 2fyz + 2gzx + 2hxy + 2px + 2qy + 2rz + d = 0 

Associated with F(x,y,z) are two matrices: e and E, where

e =
a h g 
h b f 
R f c

and

a h g P
h b f q
g f c r

Lp q r d.

E =

Let the determinant of E be denoted by A, and the determinant of e be denoted 

by D. Also let the cofactors of each element of A be denoted by the corresponding 

capital letters. Three-dimensional surfaces are classified as singular or non-singular, 

based upon E being singular or non-singular. Examples of non-singular surfaces are 

ellipsoids, hyperboloids, and paraboloids. The other quadrics are singular.
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Let us now consider the two basic transformations, namely translation and rota

tion, and try to arrive at some invariant features. Consider the two rectangular right- 

handed coordinate systems as shown in Figure 2-3. Any point in space has two sets of 

coordinates, one for each set of axes. The problem is to find a relationship between 

these two sets of coordinates so that one can convert from one coordinate system to 

the other.

2.4.1 Translation

Inspecting Figure 2-4, we see that the coordinates of O ' and P  in the xyz sys

tem are (x0y0>z0) and (x,y,z), respectively, and the coordinates of P in the x'y 'z' sys

tem are (x',y',z'). The two sets of coordinates of P  are related by the following trans

lation equations:

The set of equations, (2.4), (2.5), and (2.6) relate the coordinates of a point in the 

x 'y 'z ' system to its coordinates in the xyz system. Direct substitution of equations 

(2.4) - (2.6) into F(x,y,z) results in the following theorem:

Theorem 2.1. For any quadric surface, the coefficients o f the second degree terms, 

and therefore the matrix e, are invariant under translation.

2.4.2 Rotation

Consider the two rectangular coordinate systems as shown in Figure 2-5. With 

respect to the x 'y 'z ' system, let the direction cosines of the x, y, and z axes be 

(X^o^Vj), (X2,U2,V2)> and (X3,1)3^ 3), respectively. Then with respect to the xyz sys

tem, the direction cosines of the x', y', and z' axes are (X1; X2, X3), (Oj, u 2, U3), and 

(vl5 v2, v3), respectively.

x = x + x0.

y =  y' +  y0-
z = z' + z0.

(2.4)

(2.5)

(2.6)
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Figure 2-3. Two right-handed rectangular coordinate systems.

Figure 2-4. Relation between the coordinates of P upon translation.
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Figure 2-5. Two rectangular coordinate systems having the same origin.
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For any point, P, whose coordinates in the two systems are (x,y,z) and (x',y',z'), 

the following two sets of rotation equations are obtained:

x = ^ jx ' + "Ojy' + Vjz', 

y = X2x + u 2y' + V2Z'> 
z = A.3x' + \)3y' + v3z',

x ' = Xxx + X2y + X,3z, 

y ' = t^ x  + u 2y + t)3z, 

z ' = Vjx + v2y + v3z,

which gives rise to the rotation matrix

Ul Vl
A = X2 ^2 v2

^3 % v3
(2.7)

where the elements of the rows (or columns) are direction cosines of perpendicular 

directions. Direct calculation results in the following theorem:

Theorem 2.2. The determinant D o f the rotation matrix A is equal to 1.

Before arriving at a particular set of invariant features of a quadric, we first 

describe a plane of symmetry of a certain type, called a principal plane.

Definition 2.1 A principal plane is a diametrical plane that is perpendicular to the 

chord it bisects [24].

Consider the matrix e again:

e =
a h g 
h b f 
.g f  c

The eigen-values of the matrix e can be calculated from
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a -  k h g
h b - k  f
g f  c -  k

= 0.

This cubic equation in k is called the characteristic equation of the matrix e. Its 

roots are called the characteristic roots of e. The quantities given below are found to 

be invariant as a consequence of the following theorem [25].

Theorem 2.3 I f  the second degree equation F(x,y,z)=0 is transformed by means o f a 

translation or a rotation with fixed origin, the following quantities are invariant:

D, A, p 3, p4, I, J , kj, k2, and k3, where D, A are the determinants of the matrices e 

and E, respectively; and p3 and p4 are the ranks of the matrices e and E, respec

tively. Also

I = a + b + c,

J  = ab + ac + be -  f2 -  g2 -  h2, 

and finally k ls k2> and k3 are the characteristic roots of e.

Based upon the above set of invariants, surface classifications are listed in Table

2 - 1.

In Chapters Three and Four, we discuss our proposed recognition scheme in

detail.
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Number Surface P3 P4 Sign of A k’s same sign

1 Real ellipsoid 3 4 ” yes

2 Hyperboloid of one sheet 3 4 + no

3 Hyperboloid of two sheets 3 4 “ no

4 Real quadric cone 3 3 no

5 Elliptic paraboloid 2 4 - yes

6 Hyperbolic paraboloid 2 4 4- no

7 Real elliptic cylinder 2 3 yes

8 Hyperbolic cylinder 2 3 no

9 Parabolic cylinder 1 3

Table 2-1. Surface classification using the three-dimensional discriminant approach. 
p3 is the rank of matrix e and p4 is the rank of matrix E. The characteristic roots of 
the matrix e are referred by k ’s.
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CHAPTER THREE

QUADRIC SURFACE REPRESENTATION

3.1 Introduction

Section 3.2 considers the various three-dimensional quadric surfaces used in the 

recognition process. While describing each of these objects, we will be considering 

the surfaces with their centers aligned to the origin of our coordinate system. Section

3.3 explains our quadric recognition algorithm in detail. This section also addresses 

the acquisition o f range data and the necessary pre-processing steps, the representation 

of quadric surfaces by a second degree polynomial, and the rotation alignment algo

rithm whereby each of the quadric surfaces are placed in a coordinate system of our 

choice. The merits of the proposed technique are addressed while considering the 

improvizations brought about in the recognition of three-dimensional objects (espe

cially quadrics) in Section 3.4.

3.2 Quadric Surface Description

In this section by means of Figures 3-1, 3-2, and 3-3, we illustrate and represent 

the following three-dimensional quadric surfaces which are considered for the recogni

tion process: ellipsoids, the hyperboloids of one and two sheets, quadric cones, elliptic 

paraboloids, hyperbolic paraboloids, elliptic cylinders, hyperbolic cylinders, parabolic 

cylinders, and parallelepipeds.

Most three-dimensional objects of practical use consist of at least one of the sur

faces described above. All the representations of surfaces which were described above 

hold true under ideal conditions, i.e., when the source data is perfect, exact pose and 

orientation of the objects are known, the system is noiseless, etc. However in the real

19
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R eal Ellipsoid: —  + + -
a2 b2 c

= 1 x? y2
Hyperboloid of one sheet: — + 7 7 =  -1

V Ẑ  X? V2
Hyperboloid of two sh eets: —- + —  - —-  =  - l  Real quadric cone: —- + —  -  — -  =  0

a2 b2 c2 a2 b c2

Figure 3-1. Quadric representations of Real ellipsoid, Hyperboloid of one sheet, 
Hyperboloid of two sheets, and real quadric cone.
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x2 v 2Elliptic paraboloid: —  + ^ -  + 2z = 0 
a2 b

Hyperbolic paraboloid:
x2 v 2

2 2

Elliptic cylinder: —  + -  l
a2 b2

Parabolic cylinder: x2 + 2rz = 0

Figure 3-2. Quadric representations of Elliptic paraboloid, Hyperbolic paraboloid, 
Elliptic cylinder, and Parabolic cylinder.
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x  y 2
Hyperbolic cylinder: ~ 2 -  = -1

Parallelepiped

Figure 3-3. Quadric representations of Hyperbolic cylinder and Parallelepiped.
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world, practically none of these conditions hold true. Any set of data, whether it is 

derived or generated from a passive (camera) or an active sensor (laser range mapper), 

can at best be approximated to a second-degree polynomial. Whether this polynomial 

accurately represents a surface or not, and if so, how these coefficients (representa

tion) can be chosen to come close to recognizing a three-dimensional object, is the 

whole issue of the recognition problem.

In the next few sections, while formulating our recognition scheme, we describe 

one such technique which generates ten coefficients (which are sufficient under ideal 

conditions) to describe all the objects of interest [26].

However, before elaborating on the recognition scheme, an overview of the tech

nique is presented. The recognition scheme utilizes a two-dimensional discriminant 

(which is a measure for distinguishing two-dimensional curves) to recognize three- 

dimensional surfaces. Instead of utilizing the ten generated coefficients and attempting 

to recognize the surface from its quadric representation, the quadrics are identified 

using the information resulting from the intersection of the surface with different 

planes. If the surface is one of those listed above, there are five possible two- 

dimensional curves that may result from such intersections, (i) a circle, (ii) an ellipse, 

(iii) a parabola, (iv) a hyperbola, and (v) a line. Thus, a feature or pattern vector 

with five independent components can be formed for characterizing each of the sur

faces.

3.3 Recognition Scheme

Our recognition scheme consists of the following steps:

(1) acquisition of the range data and conducting the pre-processing steps,

(2) description and representation of objects as general second degree surfaces,

(3) determination of the location and orientation of the objects with respect to a 

desired coordinate system,
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(4) performance of the rotation and translation transformations of the object so as to 

place it in a stable desired coordinate system,

(5) use of the principle of two-dimensional discriminants to classify the various curves 

obtained by intersecting the surfaces with planes, and

(6) acquisition of an optimal set of planes sufficient enough to distinguish and 

recognize each of the quadric surfaces. Angular bounds within which every 

surface yields a distinct set of curves are determined in step 6.

The range data, as mentioned in Chapter One, is a pixel-by-pixel depth value 

from the point of origin of the laser to the point where the beam impinges on a sur

face. The objects are scanned from left-to-right and top-to-bottom. A grid frame may 

consist o f 256 x 256 pixels. Before this range data is applied to the object classifier, it 

has to undergo the following pre-processing steps:

a) median filtering, and

b) segmentation.

3.3.1 Median Filtering

Conventionally, a rectangular window of size M x N is used in two dimensional 

median filtering. As in our case [27], experiments were performed with square win

dows of mask sizes 3 x 3  and 5 x 5 .  Salt and pepper noise in the range images used 

in this research was uniformly distributed throughout. Irrespective of the mask size, 

the range information at every pixel in the image is replaced by the median of the pix

els contained in the M x M window centered at that point. Referring to Figure 3-4 

and keeping in mind that the black pixels correspond to the background and the white 

pixels to the object, black pixels inside the object are referred to as pepper noise and 

white pixels in the black background are referred to as salt noise. Figure 3-5 is 

obtained as a result of a 3 x 3 mask being moved over the entire image. The image 

looks as sharp as the original image though some of the noise still exists. A 5 x 5 and
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Figure 3-4. Raw range image of the sphere.

Figure 3-5. 3 x 3  median filtered image of the raw sphere.
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a 7 x 7 mask removes all of the visual salt and pepper noise, but the images as seen in 

Figures 3-6 and 3-7 respectively, to some extent, have lower contrast than the original 

image.

Once a range image is filtered using a median filter of different masks, the next 

concern is to study the changes to the original data which have been brought about by 

filtering. Evaluating curvatures is one good way of distinguishing similarities and dis

similarities among the filtered images and the original range data.

First and second order derivatives are evaluated along the x and y axes to check 

the uniformity of the original and the filtered images. Approximating, the first-order 

derivative for a pixel (Ajj) centered at i j  is given as:

dA 1
3 7  = ~ Ai>j+1) + (Ai+l j -  Ay)]

and

3A 1
f r = i F [(Ai+i'j+i “  Ai+,-j) + (Ajj+i _ Ai-j)]-

Similarly approximating, the second order derivatives for a pixel centered at A y is 

given as:

d2A  1

d x2 £*•
^2”[Ai-l,j 2 A y  +  A;+y ]

and

d2A 1 ... .  .
2 ~  o i.j-1 “  i.j A y+i]>dy^ £“

where £ represents the spacing between picture cell centers.

A sign map, which shows the relationships among two neighboring pixels with 

respect to the depth value, was also generated to check the effect of median filtering 

on the original data. Sign maps of some of the experimented quadric surfaces are 

illustrated in Chapter Five.
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Figure 3-6. 5 x 5  median filtered image of the raw sphere.

Figure 3-7. 7 x 7  median filtered image of the raw sphere.
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3.3.2 Segmentation

Since isolated objects instead of complex scenes are considered, a simple thres

holding whereby the object is separated from the background is utilized for the seg

mentation process. In the case where objects are irregular or a scene consists of a 

cluster of objects, Gaussian and mean curvatures have to be utilized to sub-divide the 

scene into planar or curved surfaces. Each surface is then recognized separately. 

Range image segmentation has been extensively studied by Levine et al. [9].

Now that the available range data has been processed to eliminate salt and pepper 

noise, we can now utilize the image data to obtain the quadric surface which best fits 

the data. To achieve this goal, we need to determine the coefficients of a second 

degree polynomial representation for the three-dimensional surface.

3.3.3 Three-Dimensional Coefficients Evaluation

Our objective is to obtain a surface described by Equation (3.1) from a given set 

of data (range) points. We assume that the data is a set of range-image samples 

obtained from a single surface which can be described by a quadric equation.

F(x,y,z) = ax2 + by2 + cz2 + 2fyz + 2gzx + 2hxy + 2px + 2qy + 2rz + d = 0. (3.1)

We shall therefore define the best description to be the one which minimizes the 

mean-squared error (MSE) between the range data and the quadric [26].

Equation (3.1) in vector notation becomes

F(x,y,z) = aTp = 0, (3.2)

where aT = [ a b c 2f 2g 2h 2p 2q 2r d ] and pT = [ x2 y2 z2 yz zx xy x y z 1 ].

The error measure for any data point (x,y,z) can be measured by evaluating 

F(x,y,z). If this point lies exactly on the surface then, F(x,y,z) = 0, meaning that the 

error is zero.
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The mean-squared error, E, is defined as

E = min £ l lF l l2. (3.3)
a s

In vector notation, Equation (3.3) becomes

E = min £ a TppTa = min aTRa, (3.4)
a s a

where R is the scatter matrix for the data set equal to

R = E PPT. (3.5)
s

Minimizing E leads to a trivial solution of a = 0, implying all the coefficients are zero.

We therefore attempt to find the minimum of aTRa with respect to a, subject to some

constraint K(a) = k.

Let

G(a) = aTRa (3.6)

and

K(a) = aTKa, (3.7)

where K is another undetermined constant matrix. Using Lagrange’s method [28], we

write the function

U = G(a) -  XK(a), (3.8)

where X again is an undetermined constant. To find a minimum solution for U, we

form

7\ t  t

4 ^ -  = 2(R -  XK)a = 0. (3.9)
da
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Solving 0 and K(a) = k simultaneously, we find a and X to give a minimum

solution. We wish to evaluate the constraint K(a) such that it gives a non-zero solu

tion for a for all the quadric surfaces of interest.

In order to determine the function of the coefficient vector a which is invariant to 

translation and rotation, we write the quadric equation as

After carrying out the transformations, translation and rotation, it is observed that the 

second-order terms and the eigen-values are the only invariants of D under translation 

and rotation, respectively.

We now derive a function of the eigen-values of D, i.e., f(X), which will allow us 

to obtain all of the quadrics of interest. The constraint should be in a quadratic form, 

such that when we substitute it in

F(x,y,z) = F(v) = vlDv + 2vlq + d = 0, (3.10)

where

x
v =  y 

.z.
(3.11)

a h g 
D = h b f 

.g f c
(3.12)

and

P
q = q (3.13)

r

^=- = 2(R -  A.K)a = 0, (3.14)

we get a linear equation from which we can solve for a.
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From reference 29, a good choice for the constraint f(X) is

f(k) = 2 > i 2 =  1,

i.e.,

2 > i2 = tr(D2) = a2 + b2 + c2 + 2f2 + 2g2 + 2h2. 

Writing it in the form of equation K(a) = aTKa:

tr(D2) = aT
K2 0 

0 0 a,

where the constraint matrix K2 is

K9 =

1 0 
0 1 
0 0

Equation Ra = XKa, can now be written as

0 0 0 0
0 0 0 0
1 0 0 0
0 1/2 0 0
0 0 1/2 0
0 0 0 1/2

as

c B P

1

to P
b t A a

= X 0 0 a

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

where C is the 6 x 6 scatter matrix for the quadratic terms a, b, and c; B is the 6 x 4 

scatter matrix for the mixed terms 2f, 2g, and 2h and A is the 4 x 4 scatter matrix for 

the linear and constant term, i.e., 2p, 2q, 2r, and d. (3 is the 6 x 1 vector of the qua

dratic coefficients and a  is the 4 x 1 vector of the linear and the constant coefficients. 

Solving Equation (3.19), we get

Cp + Bot = ?iK2p (3.20)
and
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BTp +  A a  =  0.

From Equation (3.21) we get

a  =  -  A _1Bt (3.

Substituting a  in Equation (3.20), we have

( C -  B A _1B t  )p  = ?lK 2(3.

Labeling ( C -  B A -1BT) as M, we have

M p = MC2p,

which appears similar to an eigen-value problem. Writing K2 as H2 , where,

1 0 0 0 0 0
0 1 0 0 0 0
o n 0 1 0 0 0
o p 0 0 lhl2 0 0
0 0 0 0 1/V2 0
0 0 0 0 0 1/V2

1 0 0 0 0 0
0 1 0 0 0 0

1 _ 0 0 1 0 0 0
0 0 0 V2 0 0
0 0 0 0 V2 0
0 0 0 0 0 V2

We can write M p  = A.K2p as MP = XHHp, or H ^ M H ^ H p  = XHp.

Let P' = HP and M ' =  H -1M H -1, where M ' is a real symmetric matrix, then

M 'p ' = XB'.

M ' has six 2.j’s and six corresponding Bfs.

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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For the minimum error solution, we choose the eigen-vector corresponding to the 

smallest eigen-value, i.e.,

Pi = (3.28)

Solving for a , = -A - 1BTBi, we have our solution.

Once the procedure described in Section 3.3.3 has been performed, the median 

filtered range data can be described as

F(x,y,z) = ax2 + by2 + cz2 + 2fyz + 2gzx + 2hxy + 2px + 2qy + 2rz + d = 0, (3.29)

where the values of the coefficients a, b, c, f, g, h, p, q, r, and d are known. Generally

speaking, all of the objects in the experiments generate all ten coefficients as is shown

in Chapter Five. The question now is: How can we distinguish one object from the 

another and how accurately can we describe the recognized object? In the following 

sections of this chapter and Chapter Four, we describe the necessary scheme to solve 

the recognition problem of quadric surfaces.

3.3.4 Evaluation of the Rotation Matrix

The determination of the location and orientation of a three-dimensional object is 

one of the central problems in computer vision applications. It is observed that most 

of the methods and techniques which try to solve this problem require considerable 

pre-processing such as detecting edges or junctions, fitting curves or surfaces to seg

mented images and computing high order features from the input images. Since 

three-dimensional object recognition depends not only on the shape of the object but 

also the pose and orientation of the object as well, any definite information about the 

object’s orientation will aid in selecting the right features for the recognition process.

In this research we suggest a method based on analytic geometry, whereby all the 

rotation parameters of any object placed in any orientation in space are determined and
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eliminated systematically. With this approach we are in a position to place the three- 

dimensional object in a desired stable position, thereby eliminating the orientation 

problem. We can then utilize the shape information to explicitly represent the three- 

dimensional surface.

Any quadric surface can be represented by Equation (3.29) in terms of a second 

degree polynomial of variables x, y, and z.

Let (x,y,z) describe the coordinates of any point in our coordinate system. As 

shown in Figure 3-8(b), consider a rotation of angle a  about the z axis, i.e. in the 

xy-plane. Then the new coordinates in terms of the old are represented as

x = x 'cosa + y 'sina

and

y = -x 's in a  + y'cosa;
i.e., the rotation matrix is

Ra -
cosa sina 0 
- s in a  cosa 0 

0 0 1

Next, as shown in Figure 3-8(c), consider a rotation about the x' axis by an angle (3, 

i.e., in the y'z plane, of the same point. The resultant coordinates and the old coordi

nates are now related by the following equations:

y' = y"cos(3 + z'sin|3

and

z = -y"sin(3 + z'cos(3,

where the rotation matrix is
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Rp =

1 0 0 
0 cos(3 sinP 
0 -sin(3 cosp_

Finally as shown in Figure 3-8(d), consider a rotation about the y" axis by an angle 

y, i.e., in the x Y  plane, then

z' = z"cosy + x"siny

and

x = - z  siny + x cosy. 

The rotation matrix for the above transformation is

Ry =
cosy 0 -siny 

0 1 0 
siny 0 cosy_

Observing that

X
r t r
X

y -  RaRpR7 y"
ZjV. J _z"_

we obtain the following:

x = x"(cosacosy + sinasin|3siny) + y"sinacosP + z"(-sinycosa + cosysinasinP), 

y = x"(-cosysina + sinysinPcosa) + y"cospcosa + z"(sinysina + cosysinPcosa)

and

z = x"sinycosp -  y"sinp + z"cosycosP.

After substituting the new x, y, and z coordinates into Equation (3.29), we get an 

entire set of new coefficients for x"2, y"2, z"2, y"z", x 'z " ,  x"y", x", y", and z".
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X

(a)

.T

X
I

V X
I

(b) (c)

i

' X
I I

(d)

Figure 3-8. Rotation transformation of the coordinate system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



37

These new coefficients are listed below.

a" = cos2y [a-cos2a  + b-sin2a] + s in^sin2/  [a-sin2a  + b co s2a]

+ 2sinasinpsinycosacosy (a -  b) + c-sin2ycos2p 
+ sin2a  [h-sin2Psin2y] + sin2y [-f-sinacosp + g-cosacosP 

+ h-cos2asinp -  h-sinPsin2a  ]+ sin2Psin2y (f-cosa + g-sina) -  h-sin2occos2y.

(3.30)

b" = (a-sin2a  + b-cos2a)cos2p + c-sin2P + sin2P [-f-cosa -  g-sina ] 
+ h-sin2acos2p. (3.31)

c" = sin2y (a-cos2a  + b-sin2a )  + (a-sin2a  + b-cos2a)cos2ysin2p 

+ 2sinasinPsinycosacosy (b -  a) +  c-cos2ycos2P + sin2a  [h-cos2ysin2P -  h-sin2y] (3.32) 

+ cos2ysin2p [f-cosa + g-sina] + sin2y [f-sinacosP -  g-cosacosP- h-cos2asinP],

2f" = 

+

(b-cos2a  + a-sin2a  + h-sin2a -  c)sin2P + (2g-sina + 2f-cosa)cos2p cosy

((b -  a)sin2a -  2h-cos2a)cosp + (2g-cosa -  2f-sina)sinPj siny.

2g" = sin2y -cos2a (a  -  b-sin2p) -  sin2a(-a-sin2P + b) + c-cos2pj

+ sin2y sin2P(f-cosa + g-sina) + h-sin2a ( l  + sin2P)

+ cos2y sin2asinp(a -  b) + 2h-sinpcos2a  + cosP(2g-cosa -  2f-sina)

(3.33)

(3.34)

2h" = sin2Psiny[a-sin2a  + b-cos2a  -  c + h-sin2a] +cos2Psiny[2g-sina + 2f-cosa]

+ cosPcosy[sin2a(a  -  b) + 2h-cos2a] + sinPcosy[2f-sina -  2g-cosa]. (3.35)

2p"  = 2cosy [p-cosa -  q-sina] + 2sinPsiny [p-sina + q-cosa] + 2rsinycosp. (3.36)

2q" = 2cosp [p-sina + q-cosa] -  2r-sinp. (3.37)

2r"  = 2cosysinP [p-sina + q-cosa] + 2siny [-p-cosa + q-sina] + 2r-cosycosp. (3.38)

d"  = d. (3.39)
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As seen from the above expressions, all of the coefficients are affected by the rotations 

a , P, and y except for the constant d".

In order to eliminate the product terms 2f", 2g", and 2h", expressions (3-33) - 

(3.35) must be set equal to zero and solved simultaneously. As seen from these three 

expressions, each of them is a function of the rotation angles a , p, and y. It is not 

possible to analytically find the rotation angles which eliminate the product terms. 

Instead, in the next section we present an iterative technique which performs the elimi

nation of the product terms.

3.3.5 Product Terms Elimination Method

The product terms yz, xz, and xy in F(x,y,z), denote the rotation terms which are 

to be eliminated. Elimination of all these rotation terms will place the three- 

dimensional surface on a coordinate system plane parallel to our coordinate system.

Observe that in the presence of a single rotation term, say yz, Equation (3.29) 

takes the form

F(x,y,z) = ax2 + by2 + cz2 + 2fyz + 2px + 2qy + 2rz + d = 0.

The equation of the trace of the surface in the yz plane is obtained by setting x = 0. 

An appropriate rotation about the origin in the yz plane by an angle P will eliminate 

the yz term.

However, in the presence of two or more rotation terms, trying to eliminate a 

second rotation term will force the previously eliminated rotation term to reappear. 

Therefore, there will be at least two rotation terms present. The approach we propose 

is an iterative process, whereby at each stage the object is rotated in each of the coor

dinate planes, sequentially. The procedure is repeated until all the product terms are 

eliminated, i.e., the coefficients f, g, and h converge to zero in the limit.
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Since our aim is to eliminate the rotation terms xy, yz, and xz, let’s exclusively 

consider the coefficients of these rotation terms, namely f, g, and h evaluated in Sec

tion 3.3.4. In our iterative procedure we are able to eliminate all of the product terms. 

For example, suppose we wish to eliminate the term xy. By a specific rotation of a  

about the z axis, we will be able to accomplish our goal. However, while executing 

this process, the orientation of the object about the two planes yz and zx, i.e., the 

angles the object make with these two planes have been changed. If we wish to elim

inate the yz term, the object has to be rotated about the x axis by an angle (3. How

ever, in this instance, while performing the process, the previously eliminated xy term 

reappears though the magnitude of its present orientation has been reduced. Hence by 

iterating the above process, an instance occurs when all the coefficients of the product 

terms converge to zero in the limit.

Consider the Equations (3.33), (3.34), and (3.35). First eliminate the coefficient h, 

i.e, the xy term. This can be accomplished by rotating the object about the z axis by 

an angle a , whereas (3=y=0. Under these circumstances the new coefficients are as 

shown below.

2fn  = 2g-sina1 + 2ficosa],

2gn  = 2g-cosa1 -  2f-sina1,
and

2hn  = (a -  b)sin2a 1 + 2h-cos2a 1 = 0 ,

where cot2a i = -  - — .
1 2h

As seen above, the coefficient h has been forced to 0. The first digit of the subscript 

refers to the iteration number, whereas the second digit of the subscript denotes the 

number of times the object has been rotated by a specific angle. The remaining 

coefficients a, b, c, p, q, and r also reflect changes brought about by the above rotation.
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The new coefficients are

aH = a-cos2^  + b-sin2ot] -  2h-sina1co sa1, 

bn  = b -co s^ j + a-sin2a ] + 2h-sina1co sa1,

Cll = c ,

2pn  = 2p-cosa! -  2q-sina1,

2qn  = 2p-sina1 + 2q-cosai,

and

2rn  = 2r.

The new quadric equation is

F(x,y,z) = a^ x 2 + bu y2 + c n z2 + 2fn yz + 2gn xz + 2pn x + 2qn y + 2rn z + d = 0.

Consider the second step wherein the coefficient corresponding to the yz term is 

forced to zero. In this particular case, the object has to be rotated by an angle (3 

about the x axis, where a=y=0. Under these circumstances, the new rotation 

coefficients (signifying the product terms) become

2f i2 = (t>i2 “  c 12)sin2Pj + 2f1]-cos2(31 = 0, 

where cot2pj = 11 ■■ 11,
2tn

2§12 = 2g n 'c0SPi>

and

2h12 = - 2gn -sinp,.
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A t the sam e tim e the o th er c o e ffic ie n ts  b eco m e

a 12 -  a n ,

b12 = c^-sin2^! + bi r cos2p! -  2^ -s in P ^ o s p i,  

ci2 = b11*sin2P1 + Cn’cos2^! + 2f11-sinP1cospi,

= 2p n ,

2Qi2 = 2qn-cosp1 -  2rn -sinp1,

and

2r12 = 2q11-sinp1 + 2r11-cosP1.

The new quadric equation is:

F(x,y,z) = a12x2 + b12y2 + c12z2 + 2gn xz + 2h12xy + 2p12x + 2q12y + 2r12z + d = 0.

In the final step of the initial iteration, the coefficient corresponding to the xz term is 

forced to zero. In this case, the object is to be rotated by an angle y  about the y 

axis, whereas a=P=0. Under these circumstances, the new rotation coefficients beco- 

men

2fi3 = 2h12-sinyi = —2g11*sinP1sin71, 

2gi3 =(ai3 ~ Ci3)sin2Y! + (2gn -cosaj -  f11-sina1)cosp1cos2y1 = 0 ,

C]2 — a12
where cot2yi = ------------- ,

2gl2

and

2h13 = 2h12-cosy1 = -^gn-sinP^osy!.
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L et’s now carefully analyze the coefficients of xy, yz, and zx obtained in the final step 

of the first iteration. Consider, for instance, the coefficient corresponding to the yz 

term. It is observed that while proceeding from one step to the other, the new 

coefficients are getting multiplied by the sine or cosine of the concerned angle. This 

implies that in every succeeding step these coefficients are decreasing in their magni

tude. To justify the above statement, let us now consider all the coefficients obtained 

in the second iteration.

At the end of stage 1 of the second iteration, the rotation coefficients become 

2f2] = 2f13-cosa2 = -^gjj-sinPjsinYjCoso^,

2g21 = - 2f13-sina2 = 2g11-sinp1siny1sina2,

and

bn  -  a13
2h21 = 0, where cot2oc2 =

2h13

At the end of the second stage of the second iteration, the rotation coefficients 

become

c21 — b2,
2f22 = 0 where cot2p2 =

and

2f2]
2g22 = 2g11-sinp1siny1sina2cosP2,

2h22 = - 2g1ysinP1siny1sina2sinP2.

Similarly at the end of the final stage of the second iteration, the rotation coefficients 

reduce to

2f23 = -2 g 11-sinP1siny1sina2sinp2siny2,
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2g23 = 0 where cot2a2 =
bi3 -  a13

2h13

and

2h 23 =  - 2 g 11-sin p 1sinY1s in a 2sin P 2cos72.

The terms a 2, P2, and y2 are the respective rotation angles along the z, x, and y axes 

in the second iteration. Hence it is observed with each iteration that the rotation 

coefficients get smaller and smaller in magnitude and eventually disappear in the limit.

We are now in a position to formulate a rotation matrix whose elements 

correspond to the directional cosines of the x, y, and z axes of the rotated object.

The rotation matrix = RyRpRa ,

where

Ra -
cosa sina 0 
-s in a  cosa 0 

0 0 1

and

Rr

1 0 0 
0 cos|3 sin(3 
0 -sinP cosp_

Ry =

cosy 0 -siny 
0 1 0 

siny 0 cosy
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Subsequently,

where

cosacosy -  sinasin(3siny cosysina + sinysinpcosoc -sinycosp 
-cosPsina cosPcosa sinP

sinycosoc + cosysinasinP sinasiny-cosysinpcosa cosPcosy
(3.40)

a  = £ a ;, P = £Pi> anc* y = XTi • n corresponds to the iteration where all the rota-
i=l i=l i=l

tion terms go to zero in the limit.

Once the rotation terms, i.e., xy, yz, and xz are eliminated, the three- 

dimensional surface has the representation of

F(x,y,z) = Ax2 + By2 + Cz2 + 2Px + 2Qy + 2Rz + D = 0, (3.41)

where A, B, C, P, Q, and R are the coefficients resulting after the elimination of the 

rotation terms. A natural question to ask is: Can the terms of the first degree be elim

inated by means of a translation? The answer is sometimes they can and sometimes

they cannot. The case, where the term can be eliminated, is supported by the follow

ing theorem.

3.3.6 Translation of the Rotated Object

Theorem 3.2. The terms o f the first degree o f an equation o f  a quadric surface 

can be eliminated by means o f a translation if  and only if  the surface has a center, in 

which case the first degree terms are eliminated i f  and only if  the new origin is a 

center [24].

The method of completing squares is the easiest to determine the coordinates of 

the new origin. Consider Equation (3.41). Grouping the like terms:

Ax2 +2Px +By2 + 2Qy + Cz2 + 2Rz + D = 0 =>
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x2 +  2 P — + B
y 2 + 2 Q b -

+ c z2 + 2R-r- + D = 0.

Upon completing squares, we get

- 2 - 2 2

M
+ B + C

N
+ D -

P2 | Q2 R2 
A B + C

where -P/A, -Q/B, and -R/C are the coordinates of the new origin.

= 0, (3.42)

3.4 Summary and Problem Identification

All of the above procedures performed until now result in a second degree poly

nomial describing an unknown object, the center of the object lying at the origin of 

our coordinate system. Had the test data been simulated, the three-dimensional 

discriminant approach which was mentioned in Chapter One could be used to describe 

and recognize the object. Since the test data is not simulated, we should utilize a 

recognition algorithm which will distinguish and recognize each of the test surfaces 

from one another.

The intersection of a surface with a plane generates a curve. The nature of this 

curve depends solely on what type of object is intersected and with which particular 

plane and in which orientation. Since we have no knowledge of the surface type, a 

priori, one approach is to intersect the surface with a series of planes. We need to 

determine the optimum number of planes which will uniquely characterize each of the 

quadric surfaces.

Our goal is to derive a consistent method for determining the minimum number 

of planes necessary to intersect a given quadric surface so that the generated conics 

uniquely characterize the surface. This goal includes the derivation and formulation of 

the angular bounds for which a particular plane intersecting a surface generates the 

same two-dimensional curve. In summary, each of the quadric surfaces is represented
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by a unique five-tuple, whose elements signify the presence or absence of the follow

ing curves: circle, ellipse, hyperbola, parabola, and a line.

Chapter Four covers the description and recognition of each of the three- 

dimensional surfaces we have above mentioned in Section 3.2. A distinct pattern vec

tor is obtained for each of the surfaces.
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CHAPTER FOUR

QUADRIC SURFACE CHARACTERIZATION AND RECOGNITION

4.1 Introduction

Our proposed method utilizes a two-dimensional discriminant which is a measure 

for distinguishing curves. Since the ten generated coefficients described in Section 

3.3.3 of Chapter Three give a three-dimensional representation of the surfaces, we pro

pose to identify the quadrics using the information resulting from the intersection of 

the surface with different planes. If the surface is one of those considered for the 

recognition process (see figures 3-1, 3-2, and 3-3), there are five possible two- 

dimensional curves that may result from such intersections: (i) a circle, (ii) an ellipse, 

(iii) a parabola, (iv) a hyperbola, and (v) a line. Thus, a feature or pattern vector with 

five independent components can be formed for characterizing each of the surfaces.

The two-dimensional discriminant criteria we use to recognize each of the two- 

dimensional curves created by planes intersecting the various quadric surfaces is dis

cussed in Section 4.2. In Section 4.3 the results of Chapter Three are used to com

pletely implement our recognition algorithm. Concomitantly, we derive a consistent 

method for determining the minimum number of planes that are necessary to intersect 

a given three-dimensional surface so that the generated conics uniquely characterize 

the surface. The formulation of a three-dimensional discriminant similar to the two- 

dimensional discriminant is presented in Section 4.4. The mapping between the expli

cit and implicit representations of quadric surfaces is also examined in this section.

47
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4.2 Two-Dimensional Discriminant

Given a conic of the form

F(x,y) = Ax2 + Bxy + Cy2 + Dx + Ey + F = 0, 

the discriminant 5 = B2 -  4AC characterizes it as one of the following [30]:

If 5 = B2 -  4AC < 0, then the conic is an ellipse or a circle.

If 5 = B2 -  4AC = 0, then the conic is a parabola.

If 5 = B2 -  4AC > 0, then the conic is a hyperbola.

Our objective is to derive a consistent method for determining the minimum 

number of planes required to intersect a given three-dimensional surface so that the 

generated conics uniquely characterize the surface. This includes the derivation and 

formulation of the angular bounds for which a particular intersecting plane yields the 

same two-dimensional curve.

The three-dimensional surfaces (objects) to be recognized are listed below:

(a) an ellipsoid,

(b) a circular cylinder,

(c) a sphere,

(d) a quadric cone,

(e) a hyperboloid of one sheet,

(f) a hyperboloid of two sheets,

(g) an elliptic paraboloid,

(h) a hyperbolic cylinder,

(i) a parabolic cylinder,

(j) a hyperbolic paraboloid, and 

(k) a parallelepiped.
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4.3 Q uadric Surface Description and Representation

As discussed in Section 3.2 of Chapter Three, we now assume that the three- 

dimensional objects have undergone two basic transformations, rotation and translation. 

Consequently the product terms in the representation F(x,y,z) for a particular surface 

have been eliminated and the center of the surface lies at the origin of our specified 

coordinate system. As illustrated in Figure 4-1, all of the surfaces are contained in the 

xy plane with their centers at O (the origin). For each surface, the characterization is 

performed in two steps. Initially we consider the intersection of each object with two 

planes (horizontal and vertical). This step does not require that the surface undergoes a 

translation transformation. We refer to plane 1 as the one that intersects the object 

parallel to the xy plane, i.e., z constant. Also refer to plane 2 as the one that inter

sects the object parallel to the xz plane, i.e., y constant. In the second step, the 

minimum set of intersecting planes needed to yield a unique feature vector (the various 

curves serve as features) is determined. In this step we assume that the object has 

undergone the translation transformation. The following sections describe the 

representation procedure for each of the quadric surfaces listed in Section 4.2.

4.3.1 Ellipsoid

Step 1:

Consider the equation of an ellipsoid resting on a plane parallel to the xy plane 

and its axis of revolution parallel to the z axis. Equation (3.1) reduces to the form

F(x,y,z) = ax2 + by2 + cz2 + 2px + 2qy + 2rz + d = 0, (4.1)

which further reduces to
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Figure 4-1. Quadric surfaces from left to right and top to bottom: ellipsoid, 
quadric cone, hyperboloid of one sheet, elliptic cylinder, hyperboloid of two 
sheets, hyperbolic cylinder, hyperbolic paraboloid, elliptic paraboloid, and 
parabolic cylinder.
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' 2 * 2
x + — r

z + —
a b c

— + -

b

-  1 = 0, (4.2)

2 2 2d q rwhere a > 0, b > 0 , c > 0  and we have assumed the scaling d = —— I— -— I----------1.
a b c

It should be noted that the coefficients a, b, c, p, q, r, and d are all known; A/ —,
” a

V S  and are the semi-major and minor axes of the ellipsoid, respectively; and 

[-p/a, -q/b, -r/c] are the coordinates of the center of the ellipsoid.

Consider the intersection of the ellipsoid with plane 1, i.e., z = k, where

—  -  < k < —  + a / - ^ ,  then,
c V c c V c

(y +  f )2 ( X  +  £-)2

1  _  (ck + r)2 
b

+ a

be
1  _  (ck + r)2 
a

- 1 = 0,

ac

(4.3)

which is the equation of an ellipse.

Let’s now consider the intersection of the ellipsoid with plane 2, i.e., y = k,

where

(X  +  £ ) 2
a (z +  1 )2c

1 (bk + q)2 1 (bk + q)2
a ab c be

- 1 = 0 , (4.4)

which is again the equation of an ellipse. For the case when the two minor axes are 

equal, the surface is called a spheroid. Also, when all the axes are equal, i.e., a = b = 

c, the surface is a sphere. Intersection of the sphere with planes is discussed in Sec

tion 4.3.3.
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Step 2:

As mentioned before, we assume that the ellipsoid has undergone a translation, 

such that its center aligns with the origin of our desired coordinate system as shown in 

Figure 4-2. Hence its representation can be assumed as

X2 Y2 Z2 1
"77 + 7 7  + 7 7  = (4.5)A2 B2 C2

where A, B, and C are the major and minor semi-axes, respectively, of the ellipsoid.

As seen in step 1, intersection of the ellipsoid with any Z = I k I, -C  < k < C, will be 

an ellipse. Let us now determine the bounds within which inclined sub-planes of Z =

I k I still result in an elliptic intersection with the ellipsoid.

Consider the points E(A,0,0), F(0,B,0), and G(0,0,K), where K > 0. The equa

tion of the plane containing these points is:

BKX + AKY + ABZ -  ABK = 0.

Solving for Z and substituting in Equation (4.5) yields the curve of intersection:

X2(B2C2 + B2K2) + Y2(A2C2 + A2K2) + 2AK2BXY + • • • = 0. (4.6)

In the above equation only terms which are necessary to determine the intercepted 

curve are retained. Proceeding with the discriminant test,

5 = 4A2B2[-C 4 -  2C2K2].

Since the discriminant is always negative, the intercepts are ellipses. Angular bounds 

in terms of an angle are not needed in this case, since the only occasion the intercepts 

are different than ellipses is when two of the semi-axes are equal. Under that cir

cumstance, we arrive at a circular intercept. Figure 4-3 illustrates vertical planes inter

secting the ellipsoid. Table 4-1 summarizes the result obtained above.
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DETAILED VIEW: HORIZONTAL INTERSECTIONS

z

Figure 4-2. The plane parallel to the x-axis and all its inclined sub-planes generate 
ellipses. In the case of a spheroid all intersections are ellipses except when the 
plane is parallel to one of the axes under which case the intersection is a circle.
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DETAILED VIEW: VERTICAL INTERSECTIONS

z

Figure 4-3. The plane parallel to the z-axis and all its inclined sub-planes generate 
ellipses. In the case of a spheroid all intersections are ellipses except when the 
plane is parallel to one of the axes under which case the intersection is a circle.
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PLANE INTERSECTION

Z = K Ellipse

Y = K Ellipse

Any inclined sub-planes to Z=K, Y=K Ellipse

Table 4-1. Intersection of ellipsoid with planes.

4.3.2 Circular (elliptic) cylinder 

Step 1:

Consider the general representation of a circular cylinder resting on a plane paral

lel to the xy plane and its axis of revolution parallel to the z axis. It’s representation 

then reduces to

F(x,y,z) = bx2 + by2 + 2px + 2qy + d = 0,

which is the same as

(4.7)

F(x,y,z) =

b

+

x +  P

b

- 1 = 0 ,

2 2
only if d = -7-  + - —  1 and also b > 0 . 

b b

In the case of the elliptic cylinder, Equation (4.7) becomes 

F(x,y,z) = ax2 + by2 + 2px + 2qy + d = 0, 

which further reduces to

(4.8)
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Intersection of the circular or elliptic cylinder with plane 1 would not affect its 

representation, since it is independent of the variable z. Hence the resultant curve 

intercepted is the same as represented by Equations (4.7) or (4.9), which is an equation 

of a circle or an ellipse, respectively.

Consider the case where the circular cylinder is intersected with plane 2, i.e., y =

k, where Then,

x +
b

bk + q (4.10a)

Solving for x generates the equation of a pair of parallel lines. A similar result is 

obtained when the elliptic cylinder is intersected with plane 2, namely

x + P
2

_ J_ _ Jb bk + q
a a a b

(4.10b)

Step 2:

As with the ellipsoid, consider the elliptic cylinder to have undergone the transla

tion transformation. Its center is aligned with the origin of the coordinate system as 

shown in Figure 4-4. Let the height of the cylinder be 2L. The representation of the 

elliptic cylinder can be assumed as

X Y 2
o ■* T ~A2 B2

(4.11)
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where A and B are the major and minor semi-axes of the cylinder. Intersection of the 

cylinder with any plane Z = I k I, - L  < k < L, is an ellipse. The angular bounds 

within which an inclined plane will still result in an elliptic intersection is determined 

next.

Consider the intersection of the plane passing through the points E(A,0,0), 

F(-A,0,K), and G(0,-B,0) with the cylinder as shown in Figure 4-4. The equation of 

the plane containing these points is:

BKX -  AKY + 2ABZ -  ABK = 0.
Solving for X,

X  =  A K Y  “  2 A B Z  +  A B K
BK

Substituting X in Equation (4.11) results in

2K2Y2 + 4B2Z2 -  4BKYZ +... = 0.

The discriminant results in a quantity less than zero. Hence the intersection is an 

ellipse.

Given any two planes, a ^  + bjy + Cjz + dj = 0, and a2x + b2y + c2z + d2 = 0, 

the angle of intersection is given as

' a i a 2 +  b i b 2 +  C j c 2 l
COS0 =

V a 2 + b 2 + c 2-\/a2 + b 2 + c 2

Hence, in the above case the intersections with respect to the plane z = 0 and all the 

planes inclined to it (which we will refer to as inclined-sub planes), yield ellipses for

2AB
COS0 <

V(A2K2 + 4A2B2 + B2K2) ’
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DETAILED VIEW: HORIZONTAL INTERSECTIONS

plane 2

plane 1
G

plane 3

Figure 4-4. Plane 1 and the planes parallel to it within the range -L to L 
(length of the cylinder) intersect the cylinder in parallel lines. Plane 2 and 
plane 3 are the inclined sub-planes of plane 1 which determine the maxi
mum range or inclination (with plane 1) wherein similar curves ( ellipses) 
are generated. 0 is the angular bound for the inclination in terms of an 
angle.
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The angular bounds with respect to the plane X = K ,-A  < K < A, and its inclined 

sub-planes is determined next.

Intersection of the plane X = K or Y = K and the cylinder results in an inter

section of a pair of straight lines. The equation of the plane passing through the points 

H(0,B,-L), I(0,-B,-L), and J(K,0,L), I K I > 0, as shown in Figure 4-5, is

KZ -  2LX + LK = 0.

Solving for X,

v  K(Z + L)
X ------- 2 L ~ '

Substituting in Equation (4.11), yields the interception

K2(Z + L)2 =
4L2A2 + B2 ~

which is an ellipse.

All intersections of the inclined plane X = K, IK I > 0, yield degenerate ellipses. 

In terms of the angle of intersection,

a 2L
COS0 <  - - . =  ==. = r .

V a2 + 4K2

Figure 4-6 illustrates a lateral view of all the possible curves intercepted by the inter

section of the cylinder and the planes. Table 4-2 summarizes the results obtained 

above.
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DETAILED VIEW : VERTICAL INTERSECTIONS

plane 3 plane 1 plane 2

y
A

Figure 4-5. Plane 1 and the planes parallel to it within the range -a to a 
intersect the cylinder in parallel lines. Plane 2 and plane 3 are the inclined 
sub-planes of plane 1 which determine the maximum range or inclination 
(with plane 1) wherein similar curves (degenerate ellipses) are generated. 
Sis the angular bound for this inclination in terms of an angle.
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LATERAL VIEW

INTERSECTION OF A PLANE AND A QUADRIC CYLINDER

Figure 4-6. Plane P I and its inclined sub-plane generate ellipses. Though plane P2 
generates a pair of lines, its inclined sub-planes start generating degenerate ellipses 
as the inclination start to increase.
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PLANE INTERSECTION

Z = K 

X = K

Inclined sub-planes of Z=K 

Inclined sub-planes of X=K

Circle, Ellipse 

Lines 

Ellipse 

Lines

Table 4-2. Intersection of quadric cylinder with planes.

4.3.3 Sphere 

Step 1:

As mentioned in Section 4.1., the sphere is a special case of an ellipsoid, where 

the three semi axes are all equal. Equadon (4.1) thus reduces to

F(x,y,z) = ax2 + ay2 + az2 + 2px + 2qy + 2rz + d = 0, (4.12)

which further reduces to

‘ 2 ' 2 * 2
x + -P y + - z + —

a a a
=-------- : — + -

a a a

only if d = —  + —  + - —  l. 
a b a

Consider the case when the sphere is intersected with plane 1, i.e., z = k, where

—  -  A p -  < k < —  + a / X  Then, 
a V a a N a
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x + £
a

2
y + i

a

2

1 ak + r
2 1

1 ak + r
2

a a J a a

- 1 = 0, (4.14)

which is the equation of a circle.

A similar equation results when the sphere is intersected with plane 2, in which

case y = k, where —  -  A / — < k < —— + ' V —, and subsequently Equation3 ’ 3. 3 ’ 3

(4.13) becomes

x  + z + — 
a

r  > 2 1 -I —--------

1 ak + q 1 ak + q
a a

.  •
a a

1 = 0. (4.15)

Step 2:

Figure 4-7 illustrates the sphere which has undergone translation and has its 

center aligned with the origin of our desired coordinate system. The representation of 

the sphere thus becomes:

X2 Y2 Z2 
A2 + A2 + A2

1, (4.16)

where A is the radius of the sphere. As seen in step 1, intersection of the sphere with 

any Z = I K I, -A  < K < A, will be a circle. Next, we determine the bounds within 

which inclined sub-planes of the Z = I K I plane still result in circular intersections 

with the sphere.
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Consider the points E(0,0,K), F(A,0,0), and G(0,-A,0), where K > 0. The equa

tion of the plane passing through these points is

-Y K  + AZ + KX -  AK = 0.

Solving for Z and substituting in Equation (4.16), yields the equation of the intercept 

as

(A2 + K2)X2 + Y2(A2 + K2) -  2K2XY + • • • = 0 ,

where only the necessary terms to determine the nature of the intercepted curve are 

retained. Proceeding with the discriminant test,

§ = -4A 2[1 + 2K2].

Since the discriminant is negative, the intercepts are ellipses or circles. Angular 

bounds are not needed since none of the other curves are ever intercepted. Similar 

results are obtained while considering inclined sub-planes of X = I K I or Y = I K I. 

Figure 4-7 shows a lateral view of all the curves intersected in a sphere by various 

planes. Table 4-3 summarizes the various results obtained above.

PLANE INTERSECTION

Z = K Circle

Y = K Circle

X = K Circle

Any inclined sub-planes to X=K, Y=K, and Z=K Ellipse

Table 4-3. Intersection of sphere with planes.
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INTERSECTION OF A PLANE AND A SPHERE

CIRCULAR INTERSECTION

Figure 4-7. The intersection of plane and a sphere results in a circular 
line of intersection.
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4.3.4 Q uadric circular (elliptic) cone 

Step 1:

The general representation of a circular cone on a plane parallel to the xy plane 

and its axis of revolution parallel to the z axis is

F(x,y,z) = bx2 + by2 + cz2 + 2px + 2qy + 2rz + d = 0,

2 2 2 
where be < 0 and d = -7-  + —  + — .

b b c

From Equation (4.17), upon completing squares, we have

(4.17)

F(x,y,z) = b x  + + b y + + c z +
2 2 2

+ d _  = 
b b c

2 2 2 
Since d = -7-  + -3— + — , Equation (4.18) becomes 

b b c

(4. IS)

F(x,y,z) =

2 ’ 2 ■ 2

y  +  i 1 Z +  —
b 3 b c

 ̂ ,4 L , -i L . J
_1_
b b

=  0 . (4.19)

In the case of the elliptic cone, Equation (4.17) reduces to

F(x,y,z) =

x + P 
a

2

y + >

2

z + — 
c

1 1 -1
a b c

=  0 , (4.20)

where ab > 0, ac < 0, and be < 0. If c < 0, i.e., b > 0, the intersection of the cone

represented by Equation (4.19) with plane 1, i.e., z = k, where - r

< k <• -r I -1
~  + \  — » would generate 
C '  c
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x +  P 
b

2 2

k + -  
c

*■ L J —  - L J

b b c

(4.21)

where —  is a positive quantity. The above equation is that of a circle. The elliptic 
c

cone on the other hand which is represented by Equation (4.20), upon intersection with 

plane 1, i.e., z = k, where —  -  y  ~ ~  < k < —  + ' \ l  —  , would generate
C ’ C C ’ G

x +  P 
a

2 2

k +  -  
c

1
1

1 1

a b c

(4.22)

which is an ellipse. The intersection of the circular cone with plane 2, i.e., y=k, 

where ~  v ~ < k <  +  v  7- ,  would generate
b '  b b ’ b

2 2

x +  P 
b

z +  —  
c

k + 4
b

b
-1
c b

(4.23)

1 .
where —  is a positive quantity. Equation (4.23) represents a hyperbola. A similar

G

result is obtained when the elliptic cylinder is intersected with plane 2.

Step 2:

The quadric representation of the elliptic cone illustrated in Figure 4-8 is

X2 Y2 Z2 .
—r  H-------- 1------r  =  0.
A2 B2 C2

(4.24)
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Intersection of the cone with horizontal planes z  = k, where -c  < k < c, generates 

ellipses as intercepts. Let us consider the horizontal plane Z = -C and determine the 

various intercepts formed by its inclined sub-planes. The equation of the plane passing 

through the points E(A,0,-C), F(0,-B,-C), and G(0,0,L) where -C < L < C, is

-A(C+L)Y + ABZ + B(C+L)X -  ABL = 0.

Substituting Z in Equation (4.24) results in

B2[C2 -  (C+L)2]X2 + A2[C2 -  (C+L)2]Y2 -  2AB(C+L)2XY + .... = 0,

thereafter,

5 = 4A2B2[(C+L)4 -  (L2+2LC)2].

Analyzing 5 leads to the following bounds:

For L > 0 the intersections are hyperbolas.

C
For all values of L, -C < L < O, except for L=-C+-^=-, the intersections are 

ellipses.

Q
For the one particular case where L=-C+-^=-, the intersection is a parabola. In

terms of 0, the angle between the Z = -C plane and its inclined sub-plane is

ABcos0 =
V(A2(C+L)2 + A2B2 + B2(C+L)2) ’

Next, consider the intersections formed by the plane X = 0 and its sub-planes. 

Substituting X = 0 in Equation (4.24) leads to the intersection

Y2 Z2 
B2 C2 ~ ° ’

which is a degenerate hyperbola. For all -A < X < A, the intercepts are hyperbolas.
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DETAILED VIEW : HORIZONTAL INTERSECTIONS

• e

P 2

Figure 4-8. Plane PI and planes parallel to it within the range -c to c (except 
the one passing through the origin) generate ellipses. Plane P2 is the inclined 
sub-plane which denotes the maximum inclination or range (of plane PI) wit
hin which ellipses are generated. 0 is the angular bound in terms of the angle.
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The equation of the plane passing through the points H(0 ,-B,-C), I(0,B.-C), and 

J(L,0,C), where L > 0 is

LZ -  2CX + LC = 0.

Solving for Z and substituting in Equation (4.24) leads to the representation of the 

intercept as

X2[L2 -  4A2]B2 + L2A2Y2 + 4A2B2XL + • • • = 0 . (4.25)

Solving L2-4A 2, indicates the following conditions for the various intercepts:

For L = 2A, the intercept is a parabola.

For all values of L, -2A < L < 2A, the intercepts are hyperbolas.

For all L > 2A, the intercepts are ellipses.

Figure 4-9 illustrates all of the above results. The angle between the X = 0 plane 

and its inclined sub-planes for the above obtained interceptions is

+2C
cos0 < —7 -   .

'V(L2 + 4C2)

Figure 4-10 shows a lateral view of all possible curves intercepted in a quadric cone 

by the various planes. Table 4-4 summarizes all of the results obtained in this section.

4.3.5 Hyperboloid of one sheet

Step 1:

The general representation of a hyperboloid of one sheet resting on a plane paral

lel to the xy plane and its axis of revolution parallel to the z axis is

bx2 + by2 + cz2 + 2px + 2qy + 2rz + d =0, (4.26)

where base of the cylinder is circular and be < 0 .
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DETAILED VIEW : VERTICAL INTERSECTIONS

P 3

Figure 4-9. Plane PI and planes parallel to it within the range -b to b generates 
degenerate hyperbolas. Plane P2 is the inclined sub-plane which shows the outer 
region or the maximum inclination (of plane PI) within which hyperbolas are int
ercepted. 9is the angular bound in terms of the angle. Plane P3 is the only exce
ption where the intersection is a parabola. In this case the inclination of the plane 
P3 is equal to the base angle of the cone.
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LATERAL VIEW 

INTERSECTION OF A PLANE AND A CONE

P  4

P 2

Figure 4-10. PI, P2, P3, and P4 are the four planes which generate all the 
intersections with the quadric cone. Plane PI which has the same base angle 
as that of the cone intercepts a parabola. Plane P2 intercepts a hyperbola. 
Plane P3 intercepts a circle and finally plane P4 intercepts an ellipse. (The 
quadric cone under question has a circular base).
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PLANE INTERSECTION

Z = K Circle, Ellipse

X = K Hyperbola

Inclined sub-planes of Z=K, L>0 Hyperbolas

Inclined sub-planes of Z=K, -C < L < 0 Ellipses

r
Inclined sub-planes of Z=K, L=-C+-^=- Parabola

Inclined sub-planes of X=K, L = 2A Parabola

Inclined sub-planes of X=K, L < 2A Hyperbolas

Inclined sub-planes of X=K, L > 2A Ellipses

Table 4-4. Intersection of quadric cone with planes.
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Equation (4.26) upon completion of squares reduces to

(x + | - ) 2 (y + h 2 - (z  + - ) 2 
F(x,y,z) = ----   + ------  +  _ l °- = 1,

b b c

p2 a2 r2where d = -7-  + -7-  + ---------1.
b b c

If c < 0, i.e., b > 0, intersection of the hyperboloid with plane 1, i.e., z  = k, where 

-r/c - a / ”  < k < -r/c results in

(y +  (* + £ ) 2 (k + i ) 2
— ^  + — ^ = 1  + - ^ - ,  (4.27)

b b c

where -1/c is a positive quantity. Equation (4.27) represents a circle. For a hyper

boloid with elliptic base, this intersection will be an ellipse.

Intersection of the hyperboloid with plane 2, i.e., y = k, where -q/b - ' \ j ~ j~ < 

k < -q/b + ' \ j  generates

(x + £ ) 2 (z + - ) 2 (k + £ ) 2
b__________ c _  _ . ________b _

1  zL zL ’
b e  b

where -1/c is a positive quantity. This equation is that of a hyperbola. Similar results 

are obtained when the hyperboloid has elliptic bases.
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Step 2:

As in the case of the other quadric surfaces, the elliptic hyperboloid of one sheet 

shown in Figure 4-11 is assumed to have undergone translation such that its center is 

aligned with the origin of the coordinate system. The axis of the hyperboloid coincides 

with the z  axis. Under these conditions the quadric representation of the hyperboloid 

is

■y2 y/2

T T  +  h  ~ To. =  h ( 4 2 8 )A2 B2 C2

The intersection of the hyperboloid with horizontal planes ranging from Z = 0 to Z 

= IK [ are ellipses, where -C < K < C and A, B, and C are the semi-axes of the sur

face. The angular bounds of the various sub-planes with respect to the Z = 0 plane 

which intersects the hyperboloid in ellipses is determined next.

As shown in Figure 4-11, the equation of the plane passing through the points 

D(A,0,0), E(0,-B,0), and F(K,0,C) where IK I > 0 is

-ACY + B(A-K)Z -  BCX -  ABC = 0.

Solving for Z and substituting in Equation (4.28) results in

X2[B2(A -K )2 -  A2B2] + Y2[A2(A -K )2 -  A4] -  2A3BXY + • • • = 0 . 

Proceeding with the discriminant test,

5 = 4A2B2[A2 + K2 -  2AK][A2 -  K2 + 2AK].

Since A and K are always positive, based upon the term

[A2 -  K2 + 2AK],
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DETAILED VIEW : HORIZONTAL INTERSECTIONS

z=o

z ▲

plane 2

plane 1

plane 3

Figure 4-11. Plane 1 (z = 0) and all sub-planes parallel to it intersect the 
hyperboloid in ellipses. Plane 2 and plane 3 denote the maximum bound 
or inclination, within which the hyperboloid still intercepts ellipses.
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a decision can be made whether the intersection is an ellipse, a hyperbola or a para

bola. Solving for K, we determine that for

K = A(-V2 + 1), the intersection is a parabola,

K > A(-V2 +1 ) ,  the intersection is an ellipse, and

K < A(-V2 + 1), the intersections are hyperbolas. The inclination of the plane at 

each of these intersections is given as

B(A -  K)
COS0 =

V b 2( A - K ) 2 +  a 2c 2 +  b 2c 2

Next, consider intersection of the plane Z = -C with the hyperboloid as shown 

in Figure 4-12. Substituting Z = -C in Equation (4.28) results in the intersection

4 +4 =2,
A2 B2

which is an ellipse as expected. To determine the bounds at which the inclined Z = 

-C plane still generates ellipses, consider the plane passing through the points 

G(L,0,-C), H(0,-B,-C), and I(M,0,K), where -C < K < C, I L I > I A L The equation of 

the plane results in

B(C + K)X -  L(C + K)Y -  B(L -  M)Z -  (2BCL + BLK -  BCM) = 0.

Solving for Z and substituting in Equation (4.28) results in the intersection

X2[C2B2(L -  M)2 -  A2B2(C + K)2] + Y2[C2B2(L -  M)2 -  A2L2(C + K)2]

+ 2LBA2(C + K)2XY + • • • = 0 .

Evaluating the discriminant leads to the following:

6 = 4A2B2[L2A2(C + K)4 -  [C2(L -  M )2 -  A2(C + K)2][C2(L -  M )2 -  L2(C + K)2]] 

The bounds for the various intercepts are obtained as follows:

M = L, the intersection is a parabola,
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DETAILED VIEW: HORIZONTAL INTERSECTIONS

Z = -c

z 4
plane 2

plane 1

Figure 4-12. Plane 1 (z = -c) and all sub-planes parallel to it intersect the 
hyperboloid in ellipses. Plane 2 denotes the maximum bound or inclination, 
within which the hyperboloid still intercepts ellipses.
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M > L, the intersection is a hyperbola, and 

M < L, the intersection is an ellipse.

In terms of the angle,

cose= ,  B(L- M)
Vb2(C + K)2 + L2(C + K)2 + B2(L -  M)2 '

Next, consider the various intersections of the plane X = 0 and its inclined sub

planes as shown in Figure 4-13 with the hyperboloid. As seen before, for 

-K  < X < K, the intercepts are hyperbolas. The equation of the plane passing through 

the points J(0,B,-C), M(0,B,-C), and N(K,0,C) is

-K Z  + 2CX -  KC = 0.

Solving for Z and substituting in Equation (4.28) results in the intersection

X2(K2 -  4A2) + A2K2Y2 + —  + • • • = 0 .
K

It is observed that for all K < 12A t the intersections are hyperbolas. However for the 

case K = 2A, the intersection takes the form

A2K2Y2 + —  + • • • = 0 ,
K

which is a parabola. Similarly for the case K > 12A I the intersections are ellipses. In 

terms of the angle, the bounds for the plane X = 0 are

a 2C COS0 <
V k2 + 4C2

Figure 4-14 shows the lateral view of the various curves intercepted in a hyperboloid 

by various planes. Table 4-5 summarizes the results obtained in this section.
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DETAILED VIEW : VERTICAL INTERSECTIONS

plane 2

plane 3

Figure 4-13. Plane 1 and all sub-planes parallel to it intersect the hyperboloid in 
hyperbolas. The inclined sub-planes of plane 1 which are denoted in the above 
figure by plane 2 and plane 3 determine the maximum range or bound wherein 
hyperbolas are still intercepted. Beyond this range the hyperboloid intersects 
various planes in ellipses except the case when the plane makes an angle of 5, 
under which case the intercepted curve is a parabola.
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LATERAL VIEW

INTERSECTION OF A PLANE AND HYPERBOLOID OF ONE SHEET

P2

Figure 4-14. Plane PI intersects the hyperboloid in a parabola, plane P2 
and all planes parallel to it intersect the hyperboloid in hyperbolas. Plane 
P3 and all planes parallel to it in the range -c to +c intersect the hyperbo
loid in ellipses.
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PLANE INTERSECTION

Z = K Circle, Ellipse

X = K Hyperbola

Inclined sub-planes of Z=0, K=A(-V2 + 1 ) Parabola

Inclined sub-planes of Z=0, K>A(-V2 + 1) Ellipse

Inclined sub-planes of Z=0, K<A(-V2 + 1) Hyperbola

Inclined sub-planes of Z=-C, 1Z 1 < C Ellipse

Inclined sub-planes of Z=-C, 1Z 1 > C Hyperbola

Inclined sub-planes of X=K, K < 12A 1 Hyperbola

Inclined sub-planes of X=K, K = 2A Parabola

Inclined sub-planes of X=K, K > 1 2A 1 Ellipses

Table 4-5. Intersection of hyperboloid of one sheet with planes.

4.3.6 Hyperboloid of two sheets 

Step 1:

Unlike the hyperboloid of one sheet, the hyperboloid of two sheets consists of 

two separate pieces. The quadric representation of a hyperboloid of two sheets lying 

on a plane parallel to the xy plane is

bx2 + by2 + cz2 + 2px + 2qy + 2rz + d = 0, (4.29)

where the base of the hyperboloid is circular, be < 0. Completing squares results in
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(x + -E-)2 (y + ^-)2 - (z  +
F(x,y,z) = ----   + ------  +  _ 1 -  = - 1,

b b c

2 2 2 
-  £ 1  4 . 3L ■ rwhere d = + — + 1, and -1/c is a positive quantity. Intersection of the

b b c

object with the plane 1, i.e., z = k, where k I > V—1/c, results in

(x + £ ) 2 ( Y + h 2 (k + —)2
 ± -  + - - - - - - - - - = + ----- S _ ,

1 1 zL
b b c

where -1/c is a positive quantity. This equation is of a circle. For a hyperboloid with 

an elliptic base, this intersection will be an ellipse. However, when I k I = V ( — 1/c), the 

intersection will result in a point.

Consider the case when the object is intersected with the plane 2, i.e., y = k, 

where - q/b - < k < -q/b + This intersection results in

-(x + -E-)2 - (z  + - ) 2  (k + £)2

b c b

which is an equation of a hyperbola. Similar results are obtained for a hyperboloid 

with an elliptic base.

Step 2:

As in the case of the hyperboloid of one sheet, the elliptic hyperboloid of two 

sheets is assumed to have undergone translation so that its center is aligned with the 

origin of the coordinate system as shown in Figure 4-15. The axis of the hyperboloid 

coincides with the z axis. Under these conditions the quadric representation of the 

hyperboloid is
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y 2 y 2 y 2
+ (4.30)

A2 B2 C2

The intersection of the hyperboloid with the horizontal plane Z = K, I K I < C, is an 

imaginary ellipse. For I K I > C, the horizontal plane will intersect ellipses as seen 

from Equation (4.30).

Consider the case where Z = -T, where T refers to the length of segment OG. 

Substituting in Equation (4.30) leads to the intersection

X2 y 2 _  T2

A2 B2 C2

which is an ellipse. Let us now determine the bounds wherein the inclined sub-planes 

of the plane Z = - T still intersect the hyperboloid in an ellipse. Equation of the 

plane passing through the points D(A,0,-T), E(0,-B,-T), and G(0,0,L), where -T < L < 

T is

ACT + L)Y -  ABZ -  B(T + L)X + ABL = 0.

Solving for Z, and substituting in Equation (4.30) yields

B2(C2 -  (T + L)2)X2 + A2(C2 -  (T + L)2)Y2 + 2AB(T + L)2XY+ • • • = 0 . 

Discriminant

5 = 4A2B2[(T+L)4 -  [(C2 -  (T+L)2)2]].

The bounds for the various curves are obtained as follows:

C
For L = -j=- -  T, the intersection is a parabola,

C
for L > -j=- -  T, the intersection is a hyperbola, and 

C
for L < -j=- -  T, the intersection is an ellipse.
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DETAILED VIEW : HORIZONTAL INTERSECTIONS

plane

plane 1

Figure 4-15. Plane 1 (z=-k, 1 k 1 > 1 c 1) and all its inclined sub-planes 
which span angle 0 intersect the hyperboloid (of two sheets) in ellipses.
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Angle 0 at each of these values of L is determined as

AB
COS0 =

V -A 2(-T+C )2 + A2B2 + B2(-T+C )2 ’

Next, consider the vertical plane X = 0 and its inclined sub-planes. Substituting X 

= 0 in Equation (4.30) yields the equation of a hyperbola.

To determine the angular bounds of the various intercepts formed through the 

intersection of the inclined sub-planes and the hyperboloid, consider the plane shown 

in Figure 4-16. The equation of the plane passing through the points H(0,B,-T), 

I(0,-B,-T), and J(L,0,T) is

LZ + 2TX + LT = 0.

Solving for Z  and substituting in Equation (4.30) yields

X^. Ŷ _ _ [2TX + LT]2 _
A2 + B2 L2C2

Expanding and re-arranging the terms, leads to the equation of the intercept as

B2(L2C2 -  4A2T2)X2 + A2L2C2Y2 + 4T2A2B2LX -  A2B2L2(C2-T 2) + • • • = 0 .

Based upon the term L2C2 -  4A2T2 which is the coefficient of X2, a decision can be 

made about the nature of the intercept. Since C < T, for all values L < 2A, the inter-

2ATcept will be a hyperbola. The coefficient of X2 will disappear when L = which

case the intersection is a parabola. For all other cases, i.e., L > 2A, the intersections 

are ellipses.

In terms of 0, where hyperbolas are intersected, the angle between the two planes

is

2T
COS0 =

V l2 + 4T2
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DETAILED VIEW : VERTICAL INTERSECTIONS

/plane 2

plane 1

Figure 4-16. Plane 1 (x=0) and all its inclined sub-planes, plane 2 being 
one of them, spans angle 0 while intersecting the hyperboloid (of two 
sheets) in hyperbolas.
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Figure 4-17 shows the lateral view of all the curves intercepted in a hyperboloid of 

two sheets by various planes. Table 4-6 summarizes the results obtained above.

PLANE INTERSECTION

Z = K Circle, Ellipse

Z = K, 1K 1 > c Circle, ellipse

Z = K, 1 K 1 = c Point

Z  = K, 1 K 1 < c Imaginary ellipse

Z  = -T Ellipse

X II X Hyperbola

Inclined sub-planes of Z=-T, L = -C Hyperbola

c
Inclined sub-planes of Z=-T, L = -j=- -  T Parabola

Inclined sub-planes of Z=-T, L > ■—  -  T Hyperbola

Inclined sub-planes of Z=-T, L < —  -  T Ellipse

Inclined sub-planes of X = K, L<2A Hyperbola

2AT
Inclined sub-planes of X = K, L < - ^  ■ Parabola

Inclined sub-planes of X = K, L>2A Ellipse

T able 4-6. Intersection of hyperboloid of two sheets with planes.
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LATERAL VIEW

INTERSECTION OF THE HYPERBOLOID OF TWO SHEETS 

WITH PLANES

P  2

Figure 4-17. Plane PI intersects the hyperbolid in a parabola, plane P3 and 
all planes parallel to it intersect the hyperboloid in ellipses, and finally, plane 
P2 and all planes parallel to it intersect the hyperboloid in hyperbolas.
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4.3.7 Elliptic paraboloid 

Step 1:

The quadric representation of the elliptic paraboloid resting on a plane parallel to 

the xy plane is

ax2 + by2 + 2px + 2qy + 2rz + d = 0. (4.31)

Equation (4.31) upon completing squares, reduces to the form

(x + £ ) 2 (y + -3-)2

b 2r

, .. , are the semi-major and minor axes of the para- 
a b > a N b

boloid, whereas l /2r is the height of the paraboloid.

Consider the intersection of the elliptic paraboloid with the plane 1, i.e., z = k, 

where 0 < k < l/2r. The equation of the intercept is

only if d = —  + -7—. \  —,

(x + £ ) 2 (y + -3-)2
a b -k

a b 2r

(4.32)

“1c
where -y ^ -  is a positive quantity. Equation (4.32) is that of an ellipse.

Consider the intersection of the surface with the plane 2, i.e., y = k, where ——
b

-VT<k<?  +VI-+ v t -  The curve intercepted is the parabola

(x  +  £ )2 
a

1/a l /2r

(k +  h 2
b

1/b

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



91

Step 2:

Unlike step 1, the elliptic paraboloid in this section has undergone translation. 

Hence, its center is aligned with the origin of the coordinate system as shown in Fig

ure 4-18. The axis of the paraboloid coincides with the z axis. Thus, the quadric 

representation of the surface is

Intersection of the elliptic paraboloid with planes X = K and Y = K where 

-A  < K < A, and -B  <K < B, respectively, will yield parabolas as discussed in step 

1. Also, the planes Z = K, where K < 0, intersect the paraboloid in ellipses. Con

sider the intersection of the horizontal plane Z = -L (where L is the length of the seg

ment OG) and its inclined sub-planes with the paraboloid. The equation of the plane 

passing through the points D(A,0,-L) (where L is the length of the segment OG, and 

"a" is the semi-minor axis), E(0,-B,-L), and F(0,0,K), I K I > 0, is

-A(K+L)Y + ABZ + B(L+K)X -  ABK = 0.

Solving for Z and substituting in Equation (4.32) yields the equation of the intercept 

as

Substituting K = -L will intercept the ellipse

Consider the case where K = 0. Under this condition the resultant intercept is

which is an ellipse. Hence in the range -L  < Z < 0, the inclined sub-planes of

(4.33)

A(K+L)Y -  B(K+L)X + ABK 
AB

) = 0.
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DETAILED VIEW : HORIZONTAL INTERSECTIONS

Figure 4-18. Plane PI and planes parallel to it intersect the paraboloid in 
ellipses. Plane P2 is one of the inclined sub-planes which determines the 
maximum inclination or range (of plane PI) within which ellipses are still 
generated. 0 is the angular bound in terms of the angle.
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Z = -L, intercept ellipses. Analyzing the discriminant 8 leads to the following 

bounds:

n a . AB0 < cosG <    — ----------   —.
V(A2(K+L)2 -  A2B2 -  B2(L+K)2)

Next, consider the various intersections made by the plane X = 0 and its 

inclined sub-planes as illustrated in Figure 4-19. The plane X = 0 generates the 

intercept

Y2
- V  + 2Z = 0,
B2

which is a parabola. Consider the plane passing through the points H(0,-B,-L),

I(0,B,-L), and J(N,0,M), where -L < M < 0, and 0 < N < A. The equation of the

plane is found to be

NZ -  (L+M)X + LN = 0.

Solving for X and substituting in Equation (4.32) yields the intercept

N2Z2 2LN2Z ^  A Y2 _ .
(L+M)2A2 A2(L+M) B2

which represents ellipses, except when N = 0.

Hence all inclined sub-planes of the plane X = K, where -A < K < A, yield 

intercepts as ellipses. In terms of 0,

cos0 < +(Lt M) —  (4 .34)
v(N2 -  (L+M)2)

Equation (4.34) denotes the angular bounds within which the intersections are all 

ellipses. Table 4-7 summarizes the various conics obtained when various planes inter

sect the elliptic paraboloid.
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DETAILED VIEW : VERTICAL INTERSECTIONS

Figure 4-19. Plane PI (x=0) and all planes parallel to it intersect the paraboloid in 
parabolas. The inclined plane P2 determines the range within which parabolas are 
still intersected. After an angular span of 0, the plane intersects the paraboloid in 
ellipses.
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PLANE INTERSECTION

Z = K 

X = K  

Y = K

Inclined sub-planes of Z = - L 

Inclined sub-planes of X = 0

Ellipse

Parabola

Parabola

Ellipse

Ellipse

Table 4-7. Intersection of elliptic paraboloid with planes.

4.3.8 Hyperbolic paraboloid 

Step 1:

Unlike the elliptic paraboloid, the hyperbolic paraboloid is symmetrical with 

respect to the xz plane, the yz plane and the z axis. Its representation is as follows:

ax2 + by2 + 2px + 2qy + 2rz + d = 0. (4.35)

In this case, however, ab < 0. Upon completing squares we have

(x + (y + -S-)2

T 2 I ± ~ + j T  = 0
a b 2r

only if  d = and is a positive quantity.

Intersecting the surface with plane 1, i.e, z = k, results in

(x + -E-)2 (y + -E-)2
a b _  -k

1  _ ±  ~  _ L
a b 2r
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where -1/b is a positive quantity. This equation is that of a hyperbola. In the case 

when z = k = 0, it results in a pair of parallel lines which is a degenerate case of a 

hyperbola.

Consider the case when the object is intersected with plane 2, i.e., y = k, then

(x + -E-)2 (k +  - i )2
a z a

I  _ L  ~  _ I  ’
a 2r b

which is an equation of a parabola. The two planes considered in step 1 by them

selves prove sufficient enough to distinguish the hyperbolic paraboloid from all the 

other quadric surfaces considered for the recognition process. Hence, angular bounds 

to extract the regions where a unique set of features (curves) is obtained are not 

necessary in the case of this quadric surface. However, Figures 4-20 and 4-21 illus

trate the regions, if necessary, where extra features (curves) can be evaluated. Table

4-8 summarizes the curves intercepted by planes 1 and 2 with the hyperbolic para

boloid.

PLANE INTERSECTION

Z = K 

X = K 

Y = K

Hyperbola

Parabola

Parabola

Table 4-8. Intersection of hyperbolic paraboloid with planes.
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DETAILED VIEW: HORIZONTAL INTERSECTIONS

x

Figure 4-20. Planes parallel to the xy-plane (z=k) and all its inclined sub-planes 
intersect the hyperbolic paraboloid in hyperbolas.
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DETAILED VIEW : VERTICAL INTERSECTIONS

▲ Z

Figure 4-21. Planes parallel to the xz-plane (y=k) and all its inclined sub-planes 
intersect the hyperbolic paraboloid in parabolas.
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4.3.9 Hyperbolic cylinder 

Step 1:

As in the case of a regular circular or elliptic cylinder, the surface of the hyper

bolic cylinder is parallel to the z axis. Subsequently, the variable z is not present in 

its quadric representation. It’s general representation when resting on a plane parallel 

to the xy plane is

ax2 + by2 + 2px + 2qy + d = 0, (4.36)

where ab < 0. Completing squares

(x + £ ) 2 (y + £ ) 2

- f — i - + , - °
a b

p 2 q 2
only if d = + -g- + 1. Also, -1/b is a positive quantity. Intersection of the

cylinder with plane 1, i.e., z = k, generates a hyperbola. Since Equation (4.36) is 

independent of the variable z, the curve intercepted is the one represented by Equation 

(4.36).

Intersection of the hyperbolic cylinder with plane 2, i.e., y = k results in the

eq u ation

(x + £-)2 (k + •3-)2 
a _  a .

1  ~  z L
a b

which when solved results in a pair of straight lines. As in the case of the hyperbolic 

paraboloid, angular bounds to extract the regions where a unique set of features 

(curves) are determined are not necessary, since the two planes considered in step 1 

by themselves prove sufficient to distinguish this surface from all the other quadric
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surfaces considered in the recognition process. A follow-up on the various inclined 

sub-planes of the z = k and y = k planes leads to a similar set of intercepts as with 

the x = k plane. Figures 4-22 and 4-23 illustrate the regions, if required, where extra 

features (curves) can be determined. Table 4-9 displays the intercepts formed when 

the hyperbolic cylinder is intersected with the two planes.

PLANE INTERSECTION

Z = K 

X = K 

Y = K

Hyperbola

Lines

Lines

Table 4-9. Intersection of the hyperbolic cylinder with planes.

4.3.10 Parabolic cylinder 

Step 1:

Unlike the two quadric cylinder considered before, i.e., the circular (elliptic) and

the hyperbolic, this surface is parallel to the y axis. Hence the variable y is not

present in its quadric representation. It’s general representation when resting on a 

plane parallel to the xy plane is

f(x,y,z) = ax2 + 2px + 2rz + d = 0. (4.37)

Upon completing squares it reduces to

(x + £ ) 2
+ — r  = 0 (4.38)

1/a l/2r
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DETAILED VIEW : HORIZONTAL INTERSECTIONS

X

Figure 4-22. Planes parallel to the xy-plane (z=k) and all its inclined sub-planes 
intersect the hyperbolic cylinder in hyperbolas.
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DETAILED VIEW : VERTICAL INTERSECTIONS

Figure 4-23. Planes parallel to the xz-plane (y=k) and all its inclined sub-planes 
intersect the hyperbolic cylinder in lines.
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only if  d = Intersection of the parabolic cylinder with plane 1, i.e., z = k, 0 < 
&

k < 2r/ab, where b is any finite positive quantity signifying the width of the base of 

the cylinder, yields

1  _ L ’
a 2r

which, when solved, results in a pair of parallel lines.

Consider the intersection of the parabolic cylinder with plane 2, i.e., y = k. 

Since Equation (4.37) is independent of the variable y, the resultant curve intersected 

is the same as Equation (4.37), which is a equation of a parabola. As in the case of 

the hyperbolic paraboloid and the hyperbolic cylinder, angular bounds to extract the 

regions wherein a unique set of features (curves) are determined are is not necessary. 

The two planes considered in step 1 by themselves proved sufficient enough to distin

guish this surface from all the other quadric surfaces considered from the recognition 

process. Figures (4-24) and (4-25) illustrate the regions, if  required, where extra 

features (curves) can be determined. Table 4-10 displays the intercepts formed when 

the parabolic cylinder is intersected with the two planes.

PLANE INTERSECTION

Z = K 

Y = K

Lines

Parabola

Table 4-10. Intersection of the parabolic cylinder with planes.
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DETAILED VIEW : HORIZONTAL INTERSECTIONS

Figure 4-24. Planes parallel to the xy-plane (z=k) and all its inclined sub-planes 
intersect the parabolic cylinder in lines.
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DETAILED VIEW : VERTICAL INTERSECTIONS

Figure 4-25. Planes parallel to the xz-plane (y=k) and all its inclined sub-planes 
intersect the parabolic cylinder in parabolas.
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4.3.11 Parallelepiped

Since planar surfaces cannot be represented with quadratic equations, we con

sider a plane of the parallelepiped. The general equation of a plane from Equation 

(4.1) is of the form

2px + 2qy + 2rz + d = 0. (4.39)

Intersection with plane 1, i.e., z = k, will generate

2px + 2qy + d + 2rk = 0,

which is the equation of a line. Similarly, intersection of the plane denoted by Equa

tion (4.39) with plane 2 will generate the line

2px + 2rz + d + 2qk = 0.

Table 4-11 summarizes the short results obtained for the parallelepiped.

PLANE INTERSECTION

Z = K Line

X = K Line

ii Line

Table 4-11. Intersection of the parallelepiped with planes.
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Table 4-12 summarizes the various curves (conics) derived from intersecting each 

of the eleven surfaces with the two planes z = k and y = k. These observations fol

low the results obtained in step 1 of each of the quadric surfaces. As seen from 

Table 4-12, the quadric cone and the hyperboloid of one and two sheets all generate 

similar curves. However, after using the results of step 2 (where angular bounds have 

been determined), we are able to distinguish each of the quadric surfaces from one 

another. Each of the quadric surfaces can be represented by a binary five-tuple, where 

the numeral 1 indicates the presence of a particular curve and the numeral 0 refers to 

the non-existence of that curve. Table 4-13 below presents the feature vector for each 

of the quadric surfaces.

Quadric surfaces which seem to have identical feature vectors in the table above, 

get differentiated when the angular bounds theory as defined and derived for each of 

the surfaces (step 2) is applied. The next section briefly presents one other surface 

recognition approach which is very similar to the two-dimensional discriminant 

approach utilized to distinguish two-dimensional curves. It is one of our primary areas 

for future investigation.

4.4 Mapping of Explicit to Implicit Representations for Quadric Surfaces

Another objective which should be discussed is the formulation of a three- 

dimensional discriminant similar to the two-dimensional discriminant described earlier 

as means of recognizing three-dimensional objects. Consider the general quadratic 

representation of quadrics again, i.e.,

F(x,y,z) = ax2 + by2 + cz2 + 2fyz + 2gzx + 2hxy + 2px + 2qy + 2rz + d = 0. (4.40)

This equation can be written implicitly, such that

z = F(x,y) = Ax2 + By2 + Cxy + Dx + Ey + F. (4.41)
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OBJECT PLANE 1 : x = k PLANE 2 : y = k

Ellipsoid Ellipse Circle

Circular cylinder Circle Line

Sphere Circle Circle

Quadric cone Circle Hyperbola, Parabola

Hyperboloid of one sheet Circle Hyperbola, Parabola

Hyperboloid of two sheets Circle, Point Hyperbola, Parabola

Elliptic paraboloid Ellipse Parabola

Hyperbolic cylinder Hyperbola Line

Parabolic cylinder Line Parabola

Hyperbolic paraboloid Hyperbola Line

Parallelepiped Line Line

Table 4-12. The various curves intercepted by the quadric surfaces when intersected 
with the planes z = k and y = k.
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3-D SURFACE CIRCLE ELLIPSE PARABOLA HYPERBOLA LINE

Ellipsoid 1 1 0 0 0

Circular cylinder 1 1 0 0 1

Sphere 1 0 0 0 0

Quadric cone 1 1 1 1 1

Hyperboloid of one sheet 1 1 1 1 0

Hyperboloid of two sheets 1 1 1 1 0

Elliptic paraboloid 1 1 1 0 0

Hyperbolic cylinder 0 0 0 1 1

Parabolic cylinder 0 0 1 0 1

Hyperbolic paraboloid 0 0 1 1 1

Parallelepiped 0 0 0 0 1

Table 4-13. Feature vectors (representing the prescence or absence of curves) for each 
of the quadric surfaces.
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Equation (4-40) characterizes the complete surface through its representation, whereas 

Equation (4-41) characterizes surface patches on three-dimensional surfaces. As dis

cussed in Chapter Two, where surface curvatures are utilized to describe surface 

patches as being planar or curved (hyperbolic, parabolic, or elliptic), we wish to utilize 

the ten coefficients of Equation (4.40) in the form of a discriminant to represent 

patches on three-dimensional surfaces. In case we justify the existence of the implicit 

form, we would like to derive a mapping from F(x,y,z) to F(x,y); i.e., we would like to 

investigate the relations between A, B, C, D, E, and F and a, b, c, d, p, q, r  and d. If 

this is possible, then we can attempt to derive a discriminant using A, B, C, D, E, and 

F, the combination of which can distinguish three-dimensional objects.

We approach this problem in two directions. In the first approach we would 

numerically solve and derive relations for each coefficient in Equation (4-41) in terms 

of the coefficients of Equation (4-40). For example, while solving for F we arrive at its 

representation as

„  -2 r  ± V4r2 -  4cd
F =  2c-----------'

Similarly, expressions for the coefficient B have been found to be

B -  + ^ 2  (f+g+r)2 -  4c (a+b+2h+2p+2q+d)
~ 4c

Each of the above coefficients were derived while setting the variables x and y as 

zero. Similarly the remaining coefficients can be derived after solving several linear 

and non-linear equations. In the second approach, derivatives are utilized to obtain a 

pattern vector based on the coefficients of Equation (4-40). Rewriting Equation (4-40) 

in terms of a quadratic of z,

-[cz2 4- 2fyz + 2rz + 2gxz] = f(x,y) = ax2 + by2 4- 2hxy + 2px + 2qy + d, (4.42)
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which is similar to Equation (4-41), i.e., to

z = F(x,y) = Ax2 + By2 + Cxy + Dx + Ey + F.

Differentiating Equation (4-42) with respect to each of the variables, x, y, and z, 

yields the following equations:

= 2fz = 2by + 2hx + 2q,
dy

dF—— = 2gz = 2ax + 2hy + 2p, 
dx

and

dF
-r— = 2cz + 2fy + 2r  + 2gx = 0 . 
dz

Each of these expressions are utilized individually in Equation (4-40) to yield an 

expression of the form

Ax2 + C2 + Bxy + Ex + Fy + D = 0,

from which the discriminant B 2 -  4AC again produces results which are either less 

than zero, equal to zero, or greater than zero. A list of pattern vectors which seem to 

be invariant has been derived for some of the quadric surfaces. Much more work has 

to be done on simulated as well as real data before arriving at definite conclusions.

The theory developed in chapters Three and Four were experimented with several 

sets of real and simulated range data. Results of which are summarized in Chapter 

Five.
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CHAPTER FIVE

EXPERIMENTAL RESULTS

5.1 Introduction

Section 5.2 discusses our study of median filtering on range images. Section 5.3 

explains the process whereby filtered range images of spheres, cylinders, and quadric 

cones undergo the recognition criterion. Subsequently, Section 5.4 discusses the appli

cation of the rotation alignment algorithm to the processed as well as simulated range 

images. Section 5.5 briefly presents the results obtained while using the three- 

dimensional discriminant approach to simulated and real range data.

Range data obtained using a laser radar three-dimensional vision system is similar 

to intensity images obtained from a normal camera. However, instead of intensity 

(brightness) information, range (depth) information is available. Thus it is possible to 

interpret intensity information as range information when a range image is displayed 

on a image processing monitor. The nearer the object, the brighter it appears on the 

screen.

The experimental work was performed in the following order :

(i) The effect of median filtering on range images was studied.

(ii) The proposed recognition scheme was applied to filtered range images.

(iii) The quadric alignment algorithm was applied to simulated and real data.

(iv) The three-dimensional discriminant approach was tested with simulated data.

112
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5.2 Median Filtering on Range Images

Range images of objects like spheres, cylinders and cones were segmented in 

order to separate the object from its background. The resulting image, which is 

referred to as the raw image, was then median filtered with mask sizes 3 x 3, 5 x 5 

and 7 x 7 .

Consider Figure 5-1 which is the actual range image of a sphere with its back

ground. Figure 5-2 is the image after segmentation. The effect of median filtering on 

Figure 5-2 can be observed in Figure 5-3 ( 3 x 3  mask), Figure 5-4 ( 5 x 5  mask), and 

Figure 5-5 ( 7 x 7  mask). The curvature sign map, which is discussed in Chapter 

Three, was then utilized to study the effect of median filtering on the original range 

image shown in Figure 5-2. Evaluating the first and second derivatives with respect to 

the x and y axes and comparing each of these maps determines whether or not the 

median filtering has altered the original range data to any extent. Figures 5-6a, 5-6b,

5-6c, and 5-6d are the first and second derivatives with respect to the x and y axes, 

respectively, for figure 5-2. Similarly figures 5-7a, 5-7b, 5-7c, 5-7d; figures 5-8a, 5- 

8b, 5-8c, 5-8d; and figures 5-9a, 5-9b, 5-9c, 5-9d are the first and second derivatives 

for the images in figures 5-3, 5-4, and 5-5, respectively.

In all of these figures, "+" is assigned to a particular pixel position if the magni

tude of the derivative (first or second) of that pixel is greater than the magnitude of the 

derivative (first or second) of the pixel to its right. Similarly is assigned to a par

ticular pixel position if the magnitude of the derivative (first or second) of that pixel is 

less than the magnitude of the derivative (first or second) of the pixel to its right. In 

the case when the magnitudes of the derivatives (first or second) of either pixels is the 

same, a blank is assigned.

Sign maps are also generated to check the integrity of the image data before and 

after the filtering process. Based on the magnitude of the depth value of a pixel and
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Figure 5-1. Raw range image of the sphere with its background.

Figure 5-2. Range image of the sphere after segmentation.
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Figure 5-3. 3 x 3  median filtered image of the raw sphere.
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Figure 5-4. 5 x 5  median filtered image of the raw sphere.

Figure 5-5. 7 x 7  median filtered image of the raw sphere.
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Figure 5-6a. Second derivative w.r.t x-axis of the original sphere.
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Figure 5-6b. First derivative w.r.t y-axis of the original sphere.
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Figure 5-6d. Second derivative w.r.t y-axis of the original sphere.
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Figure 5-6d. Second derivative w.r.t y-axis of the original sphere.
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Figure 5-7a. First derivative w.r.t x-axis of the sphere filtered with a mask size 
of 3 X 3.
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Figure 5-7b. First derivative w.r.t y-axis of the sphere filtered with a 
mask size of 3 X 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



123

-+++++++++++++++
+++++++++++++++++H+++++++++++++++++++++++++++++-+++++++++++++++

h-+++++++++++++++ 
h-+++++++++++++++ 

-+++++++++++++++ 
i* ”+++++++++ + + + +++ 
h“+++++++++++++++ 
r-+++++++++++++++ 
r-+++++++++++++++ 
h“+++++++++++++++

+++h*'{--{--m-++++++++++++++++++++++++++++++++++++++-+++++++++-*•+++++
h“+++++++++++++++ 
r“+++++++++++++++

 + ------------------------------------ +
  +
 +  +
 + + +
 + ------------------------------------ +
 +--------------------------
 + +-------------------------------------------------------------------------
++++-4
+ + + + + + + + + 4  h+ + + + + + + + + + + + + + + + + + + + + “ 4
++++++++++++++++-++++++++++++++++++++++-+++++++++++++++++++++++
++++++++++++++++++++++-++++++++++++++++++++++-+++++++++++++++++

r-+++++++++++ 
h-+++++

+  +  +  - H

h“++++++++++++++++
“ +---- + + + +
 + + +
 + +------------------------------------------------------------

++++++-
+ + + + + + + + + ++ + —t
+++++++ + +++ + +++ + + H 1"+++++ + + + + ++++ + + + ++ + + + + + + + ++++ + + + + + “ + +++ + + + +
 + + + -+- + +
 +  + -----------------
 +------------------------------------------------------------------------------------------4--------------------------------------------------------+ -+ -+  —

4-4-4-4--

- + ---------------------+--------4--------------------------------------------------------------------------------------------4---------------------+
 + -  + — + + -  +--------4- + -  +-----------------------------------------------------------------------+ -  +

------------+ -  + — + + - - + — 4- + + -  + -------------------------------------------  +
 +-  + — +-------------- +  +  + + -+ +  +
 + — + - +-------- +-+ +------ + + -  + -  +--------- +
 + —  + _ + ------------------+  + ---------+ -  + - -  +
 + —  +  -  + ---------------------------+  +  +

Figure 5-7c. Second derivative w.r.t x-axis of the sphere filtered with a 
mask size of 3 X 3.
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Figure 5-7d. Second derivative w.r.t y-axis of the sphere filtered with a 
mask size of 3 X 3.
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Figure 5-8a. First derivative w.r.t x-axis of the sphere filtered with a 
mask size of 5 X 5.
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Figure 5-8b. First derivative w.r.t y-axis of the sphere filtered with a 
mask size of 5 x 5.
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Figure 5-8c. Second derivative w.r.t x-axis of the sphere filtered with a 
mask size of 5 X 5.
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Figure 5-8d. Second derivative w.r.t y-axis of the sphere filtered with a 
mask size of 5 X 5.
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Figure 5-9a. First derivative w.r.t x-axis of a sphere filtered with a 
mask size of 7 x 7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



130

+ + +
- - + + + + + + +  

++++ + +  + + + + +  - -  + +
-+-+ +-+-+-

+ +

+

+  +

+ — ++ + ++ +
+  -  +

+ + + +  ++ +  - - -
++++ + - - - - +  + -  

-  +++ +++ ++ ++ -  - 
+ ++ + + +++++ + + - -  -++

- -      - - + +  ++ - - - +  - -

+ - -  - +  + - + ++ + 
- - -  -  - — ++ + + + + + - -  -  — - 

- - +++ + ++ - — -  — -  - -

++ + + +++ +   + + + + + + + + -  -  - -

— + - + + + + + + + + + + + + + + + +  + — + + - + + + + + - + + - + + + + + + + + + + + + + + + + + + + + + ++H
+ + + + + ++ ++++++++++++

+++++++++-

h-++++-
 — — — + +  *"++ + +++++++++ + +++ + ++++H— “ + +++++++ + + + +++ + +++++ + +

 +++-+++-+++++++++++ ++++++++++++++++++++++ +++++++-

 — — —----- 1------ +  I---( - + + + + + +  +  +  +  +  +  +  — — —---------F + + + + + + + + + + + + + + + + + + + + +
 +------+ + +++-+- +++
+ + -------------------------------------------------------------------------------------------------------------------------------------------

+  ++ + + + + + + + + +- + ++----+-----------------------------------------------------------

+  +  + - -  +  + - -++++++-

-++++++++ 
 + + ++++++++++++++++++--------

— — — — — — — —— — — — — — 4. — — — — + —-----------—--------.-------+ —   — —------——————

- + +++ +-------------- + + +------------------------
h_ +-------------- ++++------------

 + + + + -
_ — — — — —  — — — —  —  — — F+++++--- —----- —---—++ + ++H— “ + + ++ — — — — — — — — —

++++++--

Figure 5-9b. First derivative w.r.t y-axis of a sphere filtered with a 
mask size of 7 x 7.
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Figure 5-9c. Second derivative w.r.t x-axis of the sphere filtered with a 
mask size of 7 x 7.
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Figure 5-9d. Second derivative w.r.t y-axis of the sphere filtered with a 
mask size of 7 x 7.
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its adjacent neighbor, a "+" or or " " (blank) is assigned to the pixel location in the 

sign map. Figure 5-10 is the sign map generated for the original raw image data of the 

sphere. Similarly figures 5-11, 5-12, and 5-13 are the sign maps generated for the 3 x 

3, the 5 x 5 ,  and the 7 x 7  filtered images of the sphere. A careful observation of 

these sign maps suggests that only a small variation has been brought about due to the 

filtering process.

The prime objective of median filtering is to remove salt and pepper noise in the 

range images and thus present a noise free range image for the evaluation of the 

objects coefficients [27]. It can be seen from figures 5-3, 5-4, and 5-5 that these filters 

met the objective. However, looking at the curvature maps it is observed that as the 

filter size increases, the apparent curvature is distorted relative to the original curva

ture. The 3 x 3  filtered image, being the closest to the original raw image, can be 

utilized for further processing and for describing the surface features. The validity of 

the curvature map calculations were checked using a "best fit" analysis.

Once the data files were obtained for each of the filtered images, the depth infor

mation of each of these files was converted into rectangular coordinates. The opera

tion manual for the laser radar three-dimensional vision system [31] describes the 

equations used for the transformations of the range information from spherical coordi

nates to rectangular coordinates:

X = (R -  L)sin9f, (5.1)

£
Y = (R  0<- L)sin0„cos0f, (5.2)

cos b
and

£
Z = (R --------- 0r- L)cos0„cos0f, (5.3)

cos b

where 0f is the horizontal scanning angle and 0g is the vertical scanning angle.
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Figure 5-10. Sign map generated for the original raw image of the sphere taking into 
consideration the magnitude of the depth value at a particular pixel and its neighboring 
pixel.
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Figure 5-11. Sign map generated for the 3 x 3 filtered image of the sphere taking 
into consideration the magnitude of the depth value at a particular pixel and its 
neighboring pixel.
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Figure 5-12. Sign map generated for the 5 x 5 filtered image of the sphere taking 
into consideration the magnitude of the depth value at a particular pixel and its 
neighboring pixel.
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Figure 5-13. Sign map generated for the 7 x 7 filtered image of the sphere taking 
into consideration the magnitude of the depth value at a particular pixel and its 
neighboring pixel.
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0f = 25° -  (horizontal pixel #) (0.1961 deg/pixel). (5.4)

0g = (vertical pixel #) (0.1961 deg/pixel) -25°. (5.5)

L = 0.362m. (5.6)

R is Range in meters = (0.00459 m/pixel)(Range pixel) + (n -  1/2), (5.7)

where n is the electronic range in meters set by the operator. The cartesian coordi

nate information was then utilized for determining the coefficients which describe each 

of the three-dimensional surfaces.

Experiments were conducted on range data for spheres and cylinders. Results of 

median filtering for one such set of range data is presented.

Figure 5-14 is the actual range image of a cylinder. Figure 5-15 is the range 

image after segmentation. Similarly, figures 5-16 and 5-17 illustrate the 3 x 3  and the 

5 x 5  median filtered images of the cylinder range data.

Curvature maps for studying the effect of median filtering on the range data are illus

trated in figures 5-18(a,b,c,d), figures 5-19(a,b,c,d), and figures 5-20(a,b,c,d), which are 

the first and second derivatives with respect to the x and y axes for the original 

cylinder image, the 3 x 3  filtered cylinder image, and the 5 x 5  filtered cylinder 

image, respectively.

Sign maps similar to the ones derived for the sphere are generated for the 

cylinder and are shown in figures (5-21), (5-22), and (5-23). The figures correspond to 

the original, the 3 x 3  filtered image, and the 5 x 5  filtered images of the cylinder, 

respectively. Analyzing the curvature maps for the cylinder indicates the filtering pro

cess removed the noise and smoothed the image data without effecting significant dis

tortions. The sign maps, much like the curvature maps, seem not much affected by the 

filtering process other than some information (range data) being lost at the edges. 

Listed in tables 5-1 and 5-2 are the coefficients obtained for the original range images,
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Figure 5-14. Raw range image of the cylinder with its background.

Figure 5-15. Range image of the cylinder after segmentation.
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Figure 5-16. 3 x 3  median filtered image of the raw cylinder.

F igure 5-17. 5 x 5  median filtered image of the raw cylinder.
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Figure 5-18a. First derivative w.r.t x-axis of the original cylinder.
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Figure 5-18b. First derivative w.r.t y-axis of the original cylinder.
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Figure 5-18c. Second derivative w.r.t x-axis of the original cylinder.
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Figure 5-lBd. Second derivative w.r.t y-axis of the original cylinder.
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Figure 5-19a. First derivative w.r.t x-axis of the cylinder filtered with a 
mask size of 3 X 3.
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Figure 5-19b. First derivative w.r.t y-axis of the cylinder filtered with 
a mask size of 3 X 3.
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Figure 5-19c. Second derivative w.r.t x-axis of the cylinder filtered with a 
mask size of 3 X 3.
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Figure 5-19d. Second derivative w.r.t y-axis of the cylinder filtered with 
a mask size of 3 X 3.
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Figure 5-20a. First derivative w.r.t x-axis of the cylinder filtered with a 
mask size of 5 X 5.
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Figure 5-20b. First derivative w.r.t y-axis of the cylinder filtered with 
a mask size of 5 X 5.
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Figure 5-20c. Second derivative w.r.t x-axis of the cylinder filtered 
with a mask size 5 X 5 .
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Figure 5-20d. Second derivative w.r.t y-axis of the cylinder filtered with 
a mask size of 5 X 5.
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Figure 5-21. Sign plot for the original cylinder. The sign "+" or is 
assigned depending whether the adjacent pixel has a range value lesser 
or greater than the pixel to its left.
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Figure 5-22. Sign plot for the 3 x 3  filtered image of the cylinder. The sign 
"+" o r i s  assigned depending whether the adjacent pixel has a range value 
lesser or greater than the pixel to its left.
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Figure 5-23. Sign plot for the 5 x 5 filtered image of the cylinder. The sign 
"+" o r i s  assigned depending whether the adjacent pixel has a range value 
lesser or greater than the pixel to its left.
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the 3 x 3  filtered images, the 5 x 5  filtered images and finally the 7 x 7  filtered 

images of a sphere and a cylinder.

These tables show that none of the coefficient sets describe a real sphere or 

cylinder with any certainty. The following procedure was utilized to determine which 

particular set of coefficients best describes the original range data of the object. A 

small surface patch of the object is chosen. In the quadratic form,

F(x,y,z) = ax2 + by2 + cz2 + 2fyz + 2gzx + 2hxy + 2px + 2qy + 2rz + d = 0,

the coefficients a, b, c, d, f, g, h, p, q, and r are inserted and for each (x,y,z) of the 

object patch, the error is evaluated for each set of coefficients. A plot is generated in 

which every point of the surface patch is replaced with the numerals 1, 3, 5, and 7 

signifying that the minimum error was obtained for that particular set of coefficients. 

Figure 5-24 is one such plot for the raw segmented image of the sphere. Numeral 1 

refers to the situation when the original set of coefficients fits best, and similarly 

numerals 3, 5, and 7 are used depending whether the 3 x 3  or the 5 x 5  or the 7 x 

7 set of coefficients, listed in Table 5-1, of the sphere fits best. As seen from Figure 

5-24, the presence of excess number of the numeral 3 confirms the results obtained 

from the curvature maps for the sphere range data. Figure 5-25 is the plot using the 

coefficients listed in Table 5-2 for the cylinder. Both of these plots validate our 

findings from the analysis of the curvature maps.

The experiments mentioned above were performed on a large number of real 

range data sets for spheres, cylinders, and cones, the results of which are shown in 

appendix A.

5.3 Application of the Recognition Process to the Processed Image Data

The next objective was to apply our recognition schemes to the processed images 

of a sphere, a cylinder and a quadric cone. Each of the processed images of the 

sphere, the cylinder, and the cone were intersected with two planes (one parallel to the
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4444444444444444333333333333333333333131133333313111112122212 
4444444444444444333333333333333333333131333331313111112131212

4545544444444443333551155113313113333333333131111111111331312 
4444444445444434333333313333333333333331311111111131111111122 
4444444444444435333333313333333333333331313111111331113111122 
4544444545454545555535111333311113313111111113313131111111111 
4444444445454435353335333333313113333111111133333131111131211

5545444445443333333333333333333333333331311111111111111111111

4545554444443335353333333331311111311111313111311111111111111 
5545544444333335333333333331311113313111333333313111113111111 
5555454555453555533333333333333333333333311333333133313133333

Figure 5-24. Best fit plot for the sphere raw image.
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1111111113111111337
1111333111131153337
1111111111111153537
1135335115311111137
1155151175711111117
1111111177111777757
1111111177111777777
1155557777177777711
1355555777711777717
1111111111777777137
1131111113377777117
1131113111111111137
1131351111131111737
1131155357511117111
1131355557711355311
1111111333131133155
1131131333131133155
3113311353133315315
3115111157111111117
1355355157771137317
1135555137771177117
1131155111777777115
1131135311177777135
1135311315777777135
1135313513577777135
1131331353177177115
1131331333137177711
1111333771111117773
1111155777111111175
1355557777771177711
1555557777771177735
1531113777111777115
1333133177711777111
7315533577777771113
7513551577777777775
1351155317771171111
1155555111777771113
1135355337777777111
1111151117771177111
1355555777777777773
1555555777777777775

Figure 5-25. Best fit plot obtained for the cylinder belonging to set A. Numerals 
"1, 3, 5, 7" denote the original image, the 3 x 3  image, the 5 x 5 image, and the 
7 x 7  image respectively.
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COMPARISON OF COEFFICIENTS EVALUATED FOR THE ORIGINAL

AND THE PROCESSED IMAGES OF A SPHERE

COEFFICIENT RAW IMAGE 3 X 3  FILT. IMAGE 5 X 5  FILT. IMAGE 7 X 7  FILT. IMAGE

A, COEFF. OF X1 0.3026 0.2211 -0.3260 0.4242

B, COEFF. OF Y2 0.2734 0.2802 -0.4860 0.2178

C. COEFF. OF Z2 0.6545 0.7747 -0.3338 0.5845

F, COEFF. OF YZ 0.5310 -0.5348 0.4834 -0.3417

G, COEFF. OF XZ 0.6357 -0.4860 0.7194 -0.7452

H, COEFF. OF XY 0.3524 0.2339 -0.5801 0.4353

P, COEFF. OF X 0.3036 0.1999 -0.3159 0.3127

Q, COEFF. OF Y 0.4199 0.4401 -0.3524 0.1996

R, COEFF. OF Z -0.8172 -1.0163 0.3191 -0.5858

D, CONSTANT 0.2847 0.3717 -0.0973 0.1516

Table 5-1. Comparison of the coefficients evaluated for the original and the processed 
images of a sphere.
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COMPARISON OF COEFFICIENTS EVALUATED FOR THE ORIGINAL

AND THE PROCESSED IMAGES OF A CYLINDER

COEFFICIENT RAW IMAGE 3 X 3  FILTERED IMAGE 5 X 5  FILTERED IMAGE

A, COEFF. OF X2 0.8338 0.6636 0.0572

B, COEFF. OF Y2 0.0041 0.0209 0.599

C, COEFF. OF Z2 0.059 -0.0923 0.4416

F, COEFF. OF YZ -0.00103 -0.0219 -0.807

G, COEFF. OF XZ -0.636 -0.7604 0.459

H, COEFF. OF XY 0.4437 0.7727 -0.149

P, COEFF. OF X -0.0141 0.4242 -0.5915

Q, COEFF. OF Y -0.189 -0.2155 1.089

R, COEFF. OF Z 0.193 0.374 -1.019

D, CONSTANT -0.1341 -0.253 0.664

Table 5-2. Comparison of the coefficients evaluated for the original and the 
processed images of a cylinder.
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xy plane, the other parallel to the xz plane). The results obtained for the sphere are 

tabulated in Table 5-3. A decision on the curve being an ellipse or a circle was made 

based upon the parity and disparity of the x2, y2, and z2 coefficients.

Sphere Images

plane 1, y = k Ellipse Ellipse Ellipse

plane 2, z = k Ellipse Ellipse Circle

Table 5-3. Curves intercepted by the two planes, z = k, y = k, with real raw and 
processed range data of the sphere.

Experiments conducted with the raw and the processed images of the cylinder led 

to the results tabulated in Table 5-4.

Cylinder Images

plane 1, y = k Ellipse Line Line

plane 2, z = k Ellipse Ellipse Ellipse

Table 5-4. Curves intercepted by the two planes, z = k, y = k, with real raw and 
processed range data of the cylinder.

As seen from the tabulated results, the raw images come close in generating the 

desired curves for each of the objects, but at the same time a 5 x 5 filter in either case 

generates the exact two-dimensional curves.

Experiments conducted with the raw and the processed images of the quadric 

cone led to the results tabulated in Table 5-5.
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Quadric cone Images

plane 1, z = k Ellipse Ellipse Ellipse

plane 2, y = k Ellipse Hyperbola Hyperbola

Table 5-5. Curves intercepted by the two planes, z = k, y = k, with real raw and 
processed range data of the quadric cone.

As seen from the tabulated results, the raw images do not come close in generating the 

desired curves for each of the objects, but at the same time the 3 x 3  as well as the 

5 x 5  filter in either case generates the exact two-dimensional curves. Coefficients 

generated for the raw image data of the cone as well as the 3 x 3  and 5 x 5  median 

filtered image data of the quadric cone are listed in Appendix B.

5.4 Application of the Rotation Alignment Algorithm

The rotation alignment algorithm which determines the orientation of the quadric 

surfaces in space and then aligns them in accordance to our desired coordinate system 

was applied to simulated data as well as real data.

Consider tables 5-6, 5-7, and 5-8, which compare the coefficients of the sphere 

range data before and after rotation alignment.

Each of the image data sets, i.e., the original raw image of the sphere and the 3 

x 3 and the 5 x 5  median filtered images of the sphere, required three iterations to 

eliminate the product terms. Since a sphere is symmetric about all coordinate axes, no 

rotation alignment should be needed. The alignment algorithm was performed just to 

see how the coefficients relate to each other before and after the rotation. The 

coefficients were basically invariant as expected.

Similarly, tables 5-9, 5-10, and 5-11, show the coefficients obtained before and 

after the rotation alignment for the cylinder range data. However, in these cases, each 

of the image data sets, i.e., the original raw image of the cylinder, the 3 x 3  and the
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COEFFICIENT
BEFORE AFTER ALIGNMENT

A, COEFF. OF X2 0.3026 0.3206466

B, COEFF. OF Y2 0.2734 0.184263

C, COEFF. OF Z2 0.6545 0.7999953

F, COEFF. OF YZ 0.5310 0.0

G, COEFF. OF XZ 0.6357 0.0

H, COEFF. OF XY 0.3524 0.0

P, COEFF. OF X 0.3036 0.252

Q, COEFF. OF Y 0.4199 0.41686

R, COEFF. OF Z -0.8172 -0.8623

D, CONSTANT 0.2847 0.2847

Table 5-6. New coefficients of the raw image data of sphere after alignment.

COEFFICIENT BEFORE AFTER ALIGNM ENT

A, COEFF. OF X2 0.264 0.249

B, COEFF. OF Y2 0.129 0.1311

C, COEFF. OF Z2 0.5738 0.634

F, COEFF. OF YZ -0.6275 0.0

G, COEFF. OF XZ -0.783 0.0

H, COEFF. OF XY 0.4014 0.0

P, COEFF. OF X 0.4826 0.4405

Q, COEFF. OF Y 0.3670 0.3746

R, COEFF. OF Z -0.7218 -0.7401

D, CONSTANT 0.2210 0.2210

Table 5-7. New coefficients of the 3 x 3 median filtered image data of sphere 
after alignment.
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COEFFICIENT BEFORE AFTER ALIGNMENT

A, COEFF. OF X2 0.303 0.3765

B, COEFF. OF Y2 0.392 0.372

C, COEFF. OF Z2 0.6526 0.6417

F, COEFF. OF YZ -0.4487 0.0

G, COEFF. OF XZ -0.8376 0.0

H, COEFF. OF XY 0.2416 0.0

P, COEFF. OF X 0.4047 0.4259

Q, COEFF. OF Y 0.2214 0.2184

R, COEFF. OF Z -0.7089 -0.7423

D, CONSTANT 0.1913 0.1913

Table 5-8. New coefficients of the 5 x 5 median filtered image data of sphere 
after alignment.

COEFFICIENT BEFORE AFTER ALIGNMENT

A, COEFF. OF X2 0.8338 0.9812

B, COEFF. OF Y2 0.00411 -0.1143

C, COEFF. OF Z2 0.059 0.03255

F, COEFF. OF YZ -0.00103 0.0

G, COEFF. OF XZ -0.636 0.0

H, COEFF. OF XY 0.4437 0.0

P, COEFF. OF X -0.0141 -0.0876

Q, COEFF. OF Y -0.189 -0.2478

R. COEFF. OF Z 0.193 -0.01125

D, CONSTANT -0.1341 -0.1341

Table 5-9. New coefficients of the raw image data of cylinder after alignment.
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COEFFICIENT BEFORE AFTER ALIGNMENT

A, COEFF. OF X2 0.6636 0.9235

B, COEFF. OF Y2 0.0209 -0.2967

C, COEFF. OF Z2 -0.0923 -0.00207

F, COEFF. OF YZ -0.0219 0.0

G, COEFF. OF XZ -0.7604 0.0

H, COEFF. OF XY 0.7727 0.0

P, COEFF. OF X 0.4242 0.1923

Q, COEFF. OF Y -0.2155 -0.5368

R, COEFF. OF Z 0.374 0.05379

D, CONSTANT -0.253 -0.2533

Table 5-10. New coefficients of the 3 x 3 median filtered image data of cylinder 
after alignment.

COEFFICIENT BEFORE AFTER ALIGNMENT

A, COEFF. OF X2 0.0572 -0.07251

B, COEFF. OF Y2 0.599 0.977

C, COEFF. OF Z2 0.4416 0.1930

F, COEFF. OF YZ -0.807 0.0

G, COEFF. OF XZ 0.459 0.0

H, COEFF. OF XY -0.149 0.0

P, COEFF. OF X -0.5915 -0.1764

Q, COEFF. OF Y 1.089 1.5696

R, COEFF. OF Z -1.019 -0.1902

D, CONSTANT 0.664 0.664

Table 5-11. New coefficients of the 5 x 5 median filtered image data of cylinder 
after alignment.
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5 x 5  median filtered images of the cylinder, required four iterations to eliminate the 

product terms. Except for the coefficients of the raw image data, both the 3 x 3  and 

5 x 5  filtered coefficients after alignment yielded the desired curves when intersected 

with various planes. Making use of the coefficients of the 5 x 5 filtered image, the 

diameter of this particular cylinder was calculated to be 4.99 centimeters. The actual 

diameter of the cylinder was 5 centimeters. Appendix C contains more results 

obtained while carrying out the rotation alignment algorithm for other cylinder range 

images.

The rotation alignment technique was utilized for a large group of simulated data. 

Listed in tables 5-12, 5-13, and 5-14 are several upon which the utilization of our 

recognition scheme correctly identified the surfaces. Upon application of our recogni

tion scheme the quadric surfaces represented in Tables 5-12, 5-13, and 5-14 were 

correctly recognized as an ellipsoid, a hyperboloid of one sheet, and a hyperbolic 

cylinder, respectively.

All the simulated data sets of quadric surfaces could be recognized after conduct

ing the rotation alignment technique on the original quadratic representation. The 

three-dimensional discriminant approach which was described in Chapter Two was 

applied to several simulated data of quadrics.

5.5 Application of Three-Dimensional Discriminant Technique

Results for the simulated data are illustrated in Table 5-15 and are very effective 

as predicted by the theory. Object (1) refers to a parabolic cylinder, (2) refers to a 

hyperbolic paraboloid, (3) refers to a hyperboloid of one sheet, (4) refers to an ellip

soid, (5) refers to a hyperbolic cylinder, (6) refers to a quadric cone, (7) refers to a 

hyperboloid of two sheets, and (8) refers to an elliptic paraboloid. A listing of a sam

ple data file is included in Appendix D. However, as expected, unsatisfactory results 

were obtained while experimenting with real data. A listing of all the programs
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COEFFICIENT BEFORE AFTER ALIGNMENT

A, COEFF. OF X2 103 49.84

B, COEFF. OF Y2 125 96.887

C, COEFF. OF Z2 66 145.3905

F, COEFF. OF YZ -60 0.0

G, COEFF. OF XZ -12 0.0

H, COEFF. OF XY -48 0.0

P, COEFF. OF X 0.0 0.0

Q, COEFF. OF Y 0.0 0.0

R, COEFF. OF Z 0.0 0.0

D, CONSTANT -294 -294

Table 5-12. New coefficients of an unknown simulated data obtained after alignment.

COEFFICIENT BEFORE AFTER ALIGNMENT

A, COEFF. OF X2 0.0 2.0

B, COEFF. OF Y2 2.0 -4.0

C, COEFF. OF Z2 1.0 -1.0

F, COEFF. OF YZ -4.0 0.0

G, COEFF. OF XZ -4.0 0.0

H, COEFF. OF XY 0.0 0.0

P, COEFF. OF X 0.0 0.0

Q, COEFF. OF Y 0.0 0.0

R, COEFF. OF Z 0.0 0.0

D, CONSTANT -4.0 -4.0

Table 5-13. New coefficients of an unknown simulated data obtained after alignment.
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COEFFICIENT BEFORE AFTER ALIGNMENT

A, COEFF. OF X2 0.0 3.0

B, COEFF. OF Y2 0.0 0.0

C, COEFF. OF Z2 0.0 -3.0

F, COEFF. OF YZ -1.414 0.0

G, COEFF. OF XZ 0.0 0.0

H, COEFF. OF XY 1.0 0.0

P, COEFF. OF X 0.0 0.0

Q, COEFF. OF Y 0.0 0.0

R, COEFF. OF Z 0.0 0.0

D, CONSTANT -3.0 -3.0

Table 5-14. New coefficients of an unknown simulated data obtained after alignment.
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SURFACE CHARACTERIZATION USING THREE-DIMENSIONAL DISCRIMINANT APPROACH FOR
SIMULATED DATA

COEFFICIENTS OF THE SIMULATED OBJECTS

A, COEFF. OF X2 1 0 0 1 0 0 1 3

B, COEFF. OF Y2 4 1 0 3 0 0 0 0

C, COEFF. OF Z2 9 20 0 2 6 1 3 2

F, COEFF. OF YZ -6 -4.5 1.5 -1 1.5 3 1 0

G, COEFF. OF XZ 3 -2.5 1 0 1 -2 -1 -2

H, COEFF. OF XY -2 0.5 0.5 1 0.5 1 0 0

P. COEFF. OF X 1 0.5 -1 2 -2 2 0 0

Q, COEFF. OF Y 7 0 0 5 3 3 1 1

R, COEFF. OF Z 0 0 3 0 0 0 3 0

D, CONSTANT 10 0 0 8 0 12 9 19

OBJECT IS 0 ) (2) (3) (4) (5) (6) (7) (8)

Table 5-15. Surface characterization using three-dimensional discriminant approach 
for simulated data.
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utilized in this research is included in Appendix E. The program that generates the ten 

coefficients for quadric surfaces and the program which aligns the quadric surfaces to a 

desired coordinate system are among those listed.
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CHAPTER SIX

CONCLUSIONS

6.1 Overview

We have presented a new approach based on two-dimensional analytic geometry

to recognize a series of three-dimensional objects. Among the various three-

dimensional objects considered are the hyperboloids of one and two sheets, the ellip

soids, the spheres, the circular and elliptical quadric cones, the circular and elliptical 

cylinders, the parabolic and hyperbolic cylinders, the elliptic and hyperbolic para

boloids, and the parallelepipeds.

Our proposed method utilizes a two-dimensional discriminant which is a measure 

for distinguishing curves. Instead of evaluating the ten generated coefficients and 

attempting to recognize the surface from its quadric representation, we can identify 

the quadrics using the information resulting from the intersection of the surface with 

different planes. If the surface is one of those listed above, there are five possible 

two-dimensional curves that may result from such intersections: (i) a circle, (ii) an

ellipse, (iii) a parabola, (iv) a hyperbola, and (v) a line. Thus, a feature or pattern

vector with five independent components can be formed for characterizing each of the 

surfaces.

Although all of the quadric surfaces considered have been symmetric, our recog

nition system can be extended to other three-dimensional objects. Figures 6-1, 6-2, 

and 6-3 are examples of these surfaces which exist in the real world. To recognize 

complex objects a suitable segmentation technique is required for the isolation of each 

individual surface.
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Figure 6-1. This delta rocket is composed of cylindrical and conical shapes (Courtesy 
NASA).
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Figure 6-2. Conical domes and cylinderlike body make up this space probe (Courtesy

Figure 6-3. Cylindrical space station with a half sphere dome top (Courtesy NASA).
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6.2 Advantages of the Recognition Scheme

Some of the advantages of our recognition scheme are listed below:

(1) Recognition systems using the curvature approach (evaluation of the mean and 

Gaussian curvatures) are very computationally intensive. These approaches never 

really describe the quadric surface in question. Our proposed recognition system is 

computationally efficient. All of the quadric surfaces are recognized as well as 

described in terms of their dimensions.

(2) The three-dimensional discriminant approach discussed in Chapter Two works 

only on ideal or simulated data. It is not useful for real range data. Our recognition 

system is shown to work for both simulated and real range data.

(3) The best-fit plot technique used for analyzing processed range images is a new 

and efficient technique to determine the validity and integrity of the processed range 

images.

(4) The rotation alignment technique is a new method which systematically and 

effectively eliminates the product terms and aligns the quadric surfaces in our desired 

coordinate system through an iterative technique.

(5) The curvature analysis technique and the best-fit plot can be used to determine 

performances of various laser range mappers.

The equations of the planes which determine distinct feature vectors for each of 

the quadric surfaces are very sensitive to the quality of the digitized range data. In 

case the coefficient determining algorithm does not perform as expected, errors might 

be encountered while forming the feature sets. Active sensors like laser range mappers 

have only recently been developed. Much improvement is expected in the quality of 

range images in the near future. This will make the various recognition schemes much 

more reliable and flexible.
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6.3 Future Goals and Research Directions

As seen from the best-fit plot in Chapter Five, regions within the range images 

have been marked to indicate which particular filter size (median) fits the image data 

the best at a particular pixel. While arriving at the coefficients of a second degree 

polynomial which describe a quadric surface, the range data considered were either the 

original, the 3 x 3, the 5 x 5, or the 7 x 7 median filtered range images. A filter 

whose mask size varies from region to region could possibly be a more effective filter 

which would not significantly distort the images.

Though experiments were performed on a large sample of range images belong

ing to spheres, cylinders, and cones, the effectiveness and accuracy of the developed 

recognition system can be tested further by using real range images of paraboloids, 

hyperboloids and cylinders (hyperbolic and parabolic). The recognition algorithm, 

however, has been very accurate when applied to simulated data.

We propose to extend our recognition algorithm to recognize quadric surfaces 

from complex scenes (scenes composed of more than two objects). This can be 

achieved by first utilizing an effective (existing) segmentation process, whereby range 

data of various surfaces will be separated. We could extend our recognition system to 

recognize irregular surfaces which are made up piece-by-piece of regular quadric sur

faces.

Finally, we would like to investigate fully the mapping of the extrinsic and intrin

sic representations of quadric surfaces. This process will lead to a three-dimensional 

discriminant analogous to the two-dimensional discriminant, which will distinguish all 

of the quadric surfaces considered for the recognition process in the course of this 

research. The development of such a discriminant will not only reduce the computa

tional complexity, but will also eliminate the process of eliminating the product terms 

(rotation parameters) from the representation of the quadric surfaces. This approach 

will be invariant to pose and orientation.
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APPENDIX A

Appendix A consists of the ten coefficients generated for the original and pro

cessed range images of a sphere and a cylinder whose data is mapped using a different 

type of laser range mapper. Files with extension *.cod refer to the range data con

verted into cartesian coordinates, and files with extension *.coe consist of the 

coefficients generated for each of the images.
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The input file was "spavgmedl.cod " 
The output file is "spavgmedl.coe " 
The coeff of x-squared is 0.2963710 
The coeff of y-squared is -7.1920902E-03 
The coeff of z-squared is 0.6404306
The coeff of yz is -0.2438449
The coeff of zx is -0.9575970
The coeff of xy is 0.1657399
The coeff of X is 0.5431624
The coeff of y is 0.1216914
The coeff of z is -0.6774822
The constant d is 0.1

Coefficients for an averaged sphere image.
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The input file was "SPAMED31. COD 
The output file is "SPAMED31.COE 
The coeff of x-squared is 0.1939911 
The coeff of y-squared is -6.4082608E-02 
The coeff of z-squared is 0.7181194
The coeff of yz is -0.1474224
The coeff of zx is -0.9272834
The coeff of xy is 5.9526406E-02
The coeff of X is 0.6028971
The coeff of y is 6.9603384E-02
The coeff of z is -0.8269780
The constant d is 0.2249310

Coefficients for a 3 x 3 median filtered averaged sphere image.
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The input file was "SPAMED51.C0D 
The output file is "SPAMED51.C0E " 
The coeff of x-squared is 0.2154791 
The coeff of y-squared is 0.1832946 
The coeff of z-squared is 0.6808279
The coeff of yz is 0.8267535
The coeff of zx is -0.2360811
The coeff of xy is -0.4166962
The coeff of X is -0.2436151
The coeff of y is -0.4302364
The coeff of z is -0.4764909
The constant d is 9.0547577E-02

Coefficients for a 5 x 5 median filtered averaged sphere image.
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The input file was "stavgmedl.cod " 
The output file is "stavgmedl.coe "
The coeff of x-squared is -0.1682273 
The coeff of y-squared is 4.3279368E-02 
The coeff of z-squared is 0.7034476
The coeff of yz is 4.8151415E-02
The coeff of zx is 0.9669251
The coeff of xy is 0.1127514
The coeff of X is -0.7436121
The coeff of y is -8.4567606E-02
The coeff of z is -1.537530
The constant d is 0.7877931

Coefficients for an averaged cylinder image.
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The input file was "STAMED31.C0D ' 
The output file is "STAMED31.COE 
The coeff of x-squared is 0.2759137 
The coeff of y-squared is 2.7527343E-02 
The coeff of z-squared is 0.7029013
The coeff of yz is 0.1449835
The coeff of zx is -0.9098228
The coeff of xy is -9.6383080E-02
The coeff of X is 0.5634921
The coeff of y is -8.9731783E-02
The coeff of z is -0.8506840
The constant d is 0.2536311

Coefficients for a 3 x 3 median filtered averaged cylinder image.
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The input file was "STAMED51.C0D 
The output file is "STAMED51.COE 
The coeff of x-squared is 0.1115851 
The coeff of y-squared is 3.1368352E-02 
The coeff of z-squared is 0.8936580
The coeff of yz is 0.1347357
The coeff of zx is -0.5961419
The coeff of xy is -4.8396215E-02
The coeff of X is 0.4117958
The coeff of y is -9.9320240E-02
The coeff of z is -1.295335
The constant d is 0.4731036

Coefficients for a 5 x 5 median filtered averaged cylinder image.
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APPENDIX B

This appendix consists of the ten coefficients generated for the original and pro

cessed range images of a quadric cone. Files with extension *.cod refer to the range 

data converted into cartesian coordinates, and files with extension *.coe consists of the 

coefficients generated for each of the images.
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The input file was "coner.cod "
The output file is "coner.coe "
The coeff of x-squared is 0.9966836 
The coeff of y-squared is -4.400091E-03 
The coeff of z-squared is -1.723930E-03 
The coeff of 
The coeff of 
The coeff of 
The coeff of 
The coeff of 
The coeff of 
The constant

yz is 2.299275E-02
zx is -0.1116501
xy is -1.4285150E-02
x is 9.4580045E-04
y is -4.7494676E-03
z is 1.7082826E-03
d is -2.6372296E-04

■ a raw quadric cone image.
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The input file was "conep.cod "
The output file is "conep.coe "
The coeff of x-squared is 0.9950956 
The coeff of y-squared is -3.4555167E-02 
The coeff of z-squared is -8.4933117E-03
The coeff of yz is 5.0487362E-02
The coeff of zx is -0.1104977
The coeff of xy is -4.7736488E-02
The coeff of x is 9.5897805E-04
The coeff of y is -1.6880523E-02
The coeff of z is 6.8076607E-03
The constant d is -1.0696481E-03

Coefficients for a median filtered quadric cone image.
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APPENDIX C

This appendix consists of a sample executed file generated using the surface 

alignment algorithm. The coefficients considered are that of a 3 x 3 filtered image of 

a raw cylinder.
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OUTPUT DATA FILE OF THE SURFACE ALIGNMENT PROGRAM 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

THE COEFFICIENTS CONSIDERED ARE OF THE 3 X 3  FILTERED IMAGE OF THE RAW 
CYLINDER.

THE NUMBER OF ITERATIONS COMPLETED IS : 3
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

COEFF. OF X  SQUARE TERM IS : -0.5819000 
COEFF. OF Y  SQUARE TERM IS : -2.5060000E-02 
COEFF. OF Z SQUARE TERM IS : -0.4078000 
COEFF. OF YZ SQUARE TERM IS : -9.1289997E-02 
COEFF. OF XZ SQUARE TERM IS : 0.9860000 
COEFF. OF XY SQUARE TERM IS : 8.9539997E-02 
COEFF. OF X TERM IS : -0.3951000 
COEFF. OF Y TERM IS : 4.5000002E-02 
COEFF. OF Z  TERM IS : 0.3026000
CONSTANT OF PROP. IS : -4.4810001E-02

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * *

-0.5854765 -2.1506138E-02-0.4078000 -1.2481645E-02 0.9838626
O.OOOOOOOE+OO-0.3974287 1.320853 IE-02 0.3026000

-0.5854765 -2.1405339E-02-0.4079008 O.OOOOOOOE+OO 0.9837343
-1.5888708E-02-0.3974287 8.3200261E-03 0.3027738
-0.9965052 -2.1405339E-02 3.1279027E-03 -1.0188361E-02 0.0000000E+00
-1.2192142E-02 -0.4991140 8.3200261E-03 -2.2511929E-02
-0.9965433 -2.1367228E-02 3.1279027E-03 -1.0188161E-02 -6.3691252E-05
O.OOOOOOOE+OO -0.4990523 1.1440012E-02 -2.2511929E-02

-0.9965433 -2.2384373E-02 4.1450467E-03 O.OOOOOOOE+OO-6.2458355E-05
-1.2471168E-05 -0.4990523 6.8105781E-03 -2.4316186E-02
-0.9965433 -2.2384373E-02 4.1450476E-03 3.8919640E-10 O.OOOOOOOE+OO
-1.2471168E-05 -0.4990530 6.8105781E-03 -2.4300613E-02
-0.9965433 -2.2384373E-02 4.1450476E-03 3.8919640E-10 2.4912431E-15
O.OOOOOOOE+OO -0.4990530 6.8137725E-03 -2.4300613E-02

-0.9965433 -2.2384373E-02 4.1450476E-03 O.OOOOOOOE+OO 2.4912431E-15
-1.8273728E-23 -0.4990530 6.8137725E-03 -2.4300613E-02
O.OOOOOOOE+OO O.OOOOOOOE+OO O.OOOOOOOE+OO 0.0000000E+00 0.0000000E+00 
0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * *  
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * *  
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * *

THE NEW COEFF. OF X  SQUARE TERM IS : -0.9965433 
THE NEW COEFF. OF Y  SQUARE TERM IS : -2.2384373E-02 
THE NEW COEFF. OF Z SQUARE TERM IS : 4.1450476E-03 
THE NEW COEFF. OF X  TERM IS : -0.4990530 
THE NEW COEFF. OF Y  TERM IS : 6.8137725E-03 
THE NEW COEFF. OF Z TERM IS : -2.4300613E-02 
THE NEW CONSTANT OF PROP. IS : -4.4810001E-02

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * *
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * *  
A B C F G H P Q

-0.58548 -0.02151 -0.40780 -0.01248 0.98386 0.00000 -0.39743 0.01321
-0.58548 -0.02141 -0.40790 0.00000 0.98373 -0.01589 -0.39743 0.00832
-0.99651 -0.02141 0.00313 -0.01019 0.00000 -0.01219 -0.49911 0.00832
-0.99654 -0.02137 0.00313 -0.01019 -0.00006 0.00000 -0.49905 0.01144
-0.99654 -0.02238 0.00415 0.00000 -0.00006 -0.00001 -0.49905 0.00681
-0.99654 -0.02238 0.00415 0.00000 0.00000 -0.00001 -0.49905 0.00681
-0.99654 -0.02238 0.00415 0.00000 0.00000 0.00000 -0.49905 0.00681
-0.99654 -0.02238 0.00415 0.00000 0.00000 0.00000 -0.49905 0.00681
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

f t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * *

Alpha Beta Gamma

4.567488 0.9253277 39.88381
-0.3581797 -11.29185 -1.7880693E-03
-3.6674985E-04 4.202751 IE-07 0.0000000E+00

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * *  

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * *

ALPTOT BETTOT GAMTOT 
4.208942 -10.36652 39.88202
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * *  

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * *  

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * *  

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * *  
THE ROTATION MATRIX IS :

0.7640848 -7.1428910E-02 -0.6411492
7.9622917E-02 0.9966942 -1.6149314E-02
0.6401832 -3.8710725E-02 0.7672463

R

0.30260
0.30277

-0.02251
-0.02251
-0.02432
-0.02430
-0.02430
-0.02430
0.00000
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APPENDIX D

This appendix consists of a sample data file which is generated while executing 

the 3-D discriminant algorithm. The unknown quadric surface is later classified as a 

parabolic cylinder.
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s a m p l e  DATA OF 3-D d i s c r i m i n a n t  p r o g r a m

Coeff. of xA2 (A): 
A =

1

Coeff. of yA2 (B): 
B =

4

Coeff. of zA2 (C): 
C =

9

Coeff. o f yz (F):
F =

-6

Coeff. of xz (G): 
G =

3

Coeff. o f xy (H): 
H =

-2

Coeff. o f x (P):
P =

1

Coeff. o f y (Q):
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Q =

7

Coeff. of z (R): 
R =

0

Constant of prop. (D): 
D =

10

e =

1 -2 3
-2 4 -6
3 - 6  9

EE =

1 -2 3 1
■2 4 -6 7
3 -6 9 0
1 7 0 10

dt_e = 

0

dt_EE = 

0
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K_K =

- 0.0000
0.0000
14.0000

rho_3 =

1

rho_4 =

3

s_d_EE = 

0

s i  =

-1

s2 =

1

s3 =

1

flag =

0
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The sign of the ch. roots are not the same 

The rank of EE is : 1.0000

The rank of e is : 3.0000

The sign of the determinant of EE i s : 0.0000

The characterstics roots have the same sign? : 

The object is a PARABOLIC CYLINDER

0.0000
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APPENDIX E

This appendix consists of the listings of the following programs:

1. Program "Median Filtering", which performs the 3 x 3 and 5 x 5  median filtering 

on range images.

2. Program "Derivatives" that evaluates the first and second derivative with respect 

to x and y axes of the data files and then transforms it into a sign map.

3. Program "Rangediff1 that generates the sign map for each of the range images 

based upon the magnitude of the range value of neighboring pixels.

4. Program "Surface" that generates the ten coefficients which describe each of the 

range images.

5. Program "Surface Alignment" which eliminates the product terms from the 

representation of quadric surfaces thereby aligning them according to a desired 

coordinate system.

6. Program "3-D discriminant" which implements the classification of the quadrics 

based upon the discriminant procedure.
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C PROGRAM MEDIAN FILTERING 
PARAMETER (N=512)
INTEGERS A(N,N),MED(N,N)
CHARACTER* 12 INFILE,OUTFILE

C
C MAIN PROGRAM 
C

WRITE(*,123)
123 FORMAT(5X,’INPUT FILE NAME : INFILE’) 

READ(*,*)INFILE 
WRrTE(*,223)

223 FORMAT(5X,’OUTPUT FILENAME : OUTFILE’) 
READ(*,*)OUTFILE

OPEN (UNIT = 1 ,FILE=INFILE,RECL=2048,STATUS=’ OLD ’) 
READ (1,9)((A(I,J),J=1 ,N),I=1 ,N)

9 FORMAT(512I4)
M=3

c CLOSE(l,DISPOSE=’SAVE’)
CALL MEDFLT(A,MED,N,M)
OPEN (UNIT=2,FILE=OUTFILE,RECL=2048,STATUS=’NEW’)

WRITE (2,11)((MED(IJ)J=1,N),I=1,N)
11 FORMAT(512I4)
c CLOSE(2,DISPOSE=’SAVE’)

STOP
END

CC
CC SUBROUTINE MEDIAN FILTER
CC

SUBROUTINE MEDFLT(A,MED,N,M)
INTEGER*2 A(N,N),MED(N,N),SORT(50)
LOGICAL NEXCHAN

C
C
c

MM=M ** 2
X=(M+l)/2
Y=X-1
Ml=(MM+l)/2 
DO 7 I=X,(N-Y)
DO 9 J=X,(N-Y)
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K1=0
DO 11 K=(I-Y),(I+Y)
DO 13 L=(J-Y),(J+Y)

K1=K1+1
SORT(Kl)=A(K,L)

13 CONTINUE 
11 CONTINUE

DO 15 I1=1,(MM-1)
DO 17 K1=1,(MM-I1)

IF (SORT(Kl).GT.SORT(Kl+l)) THEN
TEMP=SORT(Kl)
SORT(Kl)=SORT(Kl+l)
S ORT (K1+1 )=TEMP 
END IF 

17 CONTINUE 
15 CONTINUE

MED(I,J)=S ORT(M 1)
9 CONTINUE
7 CONTINUE

DO 19 1=1,Y 
DO 21 J=1,N 
MED(I,J)=A(I,J)
MED(N+1-I,J)=A(N+1-I,J)
MED(J,N+1 -I)=A(J,N+1 -I)
MED(J,I)=A(J,I)

21 CONTINUE 
19 CONTINUE 

RETURN 
END
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C***** PROGRAM DERIVATIVES
C***** This program determines the derivative along the x and the 
C***** y axes. A group of files can be compared to see whether a 
C***** a particular location has the same curvature or not.

INTEGER*2 I1,J1,T1,P1,K,L,I,J 
REAL DX1 ,DX2,DX3,DY 1 ,DY2,DY3
REAL DX11 ,DX22,DX33,DY 11 ,DY22,DY33
REAL D(70,350),E(70,350),A(1000,3),AA(60,50)
REAL D1 (70,350) ,E1(70,350)
INTEGER*2 STREC.ENDREC
CHARACTER* 12 INFILE 1JNFILE2JNFILE3,POINT 
CHARACTER*2 GRAPH1(70,100),GRAPH2(70,100),GRAPH3(70,100) 
CHARACTER*2 GRAPH4(70,100)
WRITE(*,20)

20 FORMAT(5X,’INPUT FILE NAME : INFILE 1’)
READ(*,*)INFILE1
OPEN(UNIT=l, FILE=INFILE1, STATUS=’UNKNOWN’)
DO 100 1=1,969 
READ(1,*)(A(I,J),J=1,3)

100 CONTINUE
DO 811 K=l,51 
DO 815 L=l,19 
AA(K,L)=A(L+(19*(K-1)),3)

815 CONTINUE 
811 CONTINUE

300 FORMAT (51214)

C** TO FIND THE DERIVATIVE ALONG X-AXIS 

C l l l l  WRITE(*,908)
C908 FORMAT(’INPUT THE STARTING RECORD NUMBER: STREC)
C READ(*,*)STREC
C9008 FORMAT(TNPUT THE ENDING RECORD NUMBER: ENDREC’)

OPEN(UNIT=2,FILE=’FILEl.X’,STATUS=’UNKNOWN’)
OPEN(UNIT=3,FTLE=,FILEl.Y,,STATUS=’UNKNOWN’)
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OPEN (UNIT=4,FILE=’ FILE 1 .XX \S T  ATU S=’ UNKN OWN’) 
OPEN(UNIT=8,FILE=’FILEl.YY\STATUS=’UNKNOWN’)

11178 DO 110411=1,51 
DO 1204 Jl=l,19
D(I1,J1)=0.5*((AA(I1,J1+1)-AA(I1,J1))+(AA(I1+1,J1+1)-AA(I1+1,J1)))

D1(I1,J1)=(AA(I1,J1-1)-2*(AA(I1,J1))+AA(I1,J1+1))

E ia iJ D K A A d l+ lJ D ^ ^ A A d lJ l^ + A A d l- lJ l ) )  
Edl,Jl)=0.5*((A A dl,Jl+ l)-A A dU l+l))+(A A dl,Jl)-A A dl+l,Jl))) 

1204 CONTINUE 
1104 CONTINUE 
1965 DO 11104 11=1,51

WRITE(2,*)(D(11, J1) ,J 1=1,19)
W R ITE(3*)(E dlJl)Jl= l,19)
WRITE(4,*)(D 1 (11, J1), J 1=1,19)
W RITE(8,*)(Eldl,Jl),Jl=l,19)

11104 CONTINUE 
CLOSE(2)
CLOSE(3)
CLOSE(4)
CLOSE(8)

OPEN(UNIT=2,^LE=’FILEl.X,,STATUS=,UNKNOWN,) 
OPEN(UNIT=3,FILE=’FILEl.Y’,STATUS=’ UNKNOWN’) 
OPEN(UNIT=4,FILE=’FILEl.XX’,STATUS=’UNKNOWN’) 
OPEN(UNrr=5,FILE=’FILEl.YY’,STATUS=’UNKNOWN’)
DO 324 11=1,51,1 
READ(2,*)(Ddl,Jl),Jl=l,19)

324 CONTINUE
DO 325 11=1,51,1 
DO 326 Jl= l,19
IF (Ddl,Jl).GT.Ddl,JI+l))THEN 
G RAPH ldl,Jl)=
ENDIF
IF (Ddl,Jl).LT.Ddl,JI+l))THEN 
G RA PH ldl,Jl)= ’+’

ENDIF
IF (DdUl).EQ.Ddl,JI+l))THEN 
G RA PH ldl,Jl)= ’ ’
ENDIF 

326 CONTINUE
325 CONTINUE
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DO 328 11=1,51,1 
READ(3,*)(D1(I1,J1),J1=1,19)

328 CONTINUE
DO 329 11=1,51,1 
DO 330 Jl= l,19

IF (D1 (11,J1) .GT.D 1 (11,JI+1 ))THEN 
GRAPH2(U,J1)=
ENDIF
IF (D1(I1,J1).LT.D1(I1,JI+1))THEN
GRAPH2(U,J1)= V
ENDIF
IF (D1(I1,J1).EQ.D1(U,JI+1))THEN 
GRAPH2(U,J1)= ’ ’
ENDIF 

330 CONTINUE
329 CONTINUE

DO 332 11=1,51,1 
READ(4,*)(E(I1 ,J 1), J1=1,19)

332 CONTINUE
DO 333 11=1,51,1 
DO 334 Jl= l,19

IF (E(I1,J1).GT.E(I1JI+1))THEN 
GRAPH3(U,J1)=
ENDIF
IF (E(U,J1).LT.E(I1,JI+1))THEN 
GRAPH3(U,J1)= ’+’
ENDIF
IF (E(11 ,J 1 ).EQ.E(11,JI+1 ))THEN 
GRAPH3(U,J1)= ’ ’
ENDIF 

334 CONTINUE
333 CONTINUE

DO 336 11=1,51,1 
READ(5,*)(E 1 (11, J1), J 1=1,19)

336 CONTINUE
DO 337 11=1,51,1 
DO 338 Jl= l,19

IF (E1 (11,J 1) .GT.E 1 (11,JI+1 ))THEN 
GRAPH4(U,J1)=
ENDIF
IF (E1 (11,J 1) .LT.E 1 (11,JI+1 ))THEN 
GRAPH4(U,J1)= ’+’
ENDIF
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IF (E1 (11 ,J 1).EQ.E 1 (11,JI+1 ))THEN 
GRAPH4(I1,J1)= ’ ’
ENDIF

338 CONTINUE 
337 CONTINUE 
1324 CONTINUE

OPEN(UNIT=13>FILE=,GRAPH.X, ,STATUS=’UNKNOWN’) 
OPEN(UNIT=14,FILE=’GRAPH.Y’,STATUS=,UNKNOWN’) 
OPEN^NnWS.FILE^GRAPH.XX’jSTATUS^UNKNOWN’) 
OPEN(UNTr=16,FILE=’GRAPH.YY\STATUS=,UNKNOWN’) 
DO 21104 11=1,51,1
WRITE(13,1234)(GRAPH1(I1,J1),J1=1,19)
WRITE(14,1234)(GRAPH2(11 ,J 1), J1=1,19) 
WRITE(15,1234)(GRAPH3(I1,J1),J1=1,19) 
WR1TE(16,1234)(GRAPH4(I1,J1),Jl=l,19)

21104 CONTINUE 
1234 FORMAT(30X,20A1)
C WRITE(*,21)
C GOTO 64

END
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C***** PROGRAM RANGE SIGN MAP (RANGEDIFF)
C***** THIS PROGRAM GENERATES A SIGN MAP FOR DATA FILES 
€***** BY TAKING INTO CONSIDERATION THE ABSOLUTE 
C * * * * *  DIFFERENCE IN RANGE VALUE OF NEIGHBORING PIXELS.

INTEGERS A(0:511,0:512),D(100,100)
INTEGERS II,J1,T1,P1,ZZ,XX
CHARACTER* 12 INFILE 1 ,INFILE2,INFILE3,POINT
CHARACTER*2 GRAPH1(100,100)
WRITE(*,20)

20 FORMAT(5X,’INPUT FILE NAME : INFILE 1’)
READ(*,*)INFILE 1
OPEN(UNIT=l, FILE=INFILE1, STATUS=’UNKNOWN\ RECL=2048)
DO 100 1=1,511
READ(1,300)(A(I,J),J= 1,512)

100 CONTINUE 
300 FORMAT(51214)

ZZ=1 
C XX=1

DO 43 1=165,215 
XX=1
DO 53 J=260,278 
D(ZZ,XX)=A(I,J)

C ZZ=ZZ+1 
XX=XX+1 

53 CONTINUE 
C XX=1

ZZ=ZZ+1 
C XX=1 
43 CONTINUE

WRrrE(*,*)XX,ZZ
OPEN(UNIT=2,FILE=’rangeval.dat’,STATUS=’UNKNOWN’) 
OPEN(UNrr=3,FILE=’rangediff.dat’,STATUS=’UNKNOWN’) 

c OPEN(UNIT=4,FILE=’FILEl.XX’,STATUS=’UNKNOWN’)

DO 325 I=1,ZZ-1 
DO 326 J=1,XX-1 
IF (D(I,J).GT.D(I,J+1))THEN 
GRAPH1(I,J)= ’+’
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ENDIF
IF (D(I,J).LT.D(I,J+1))THEN 
GRAPH1(I,J)=
ENDIF
IF (D(I,J).EQ.D(I,J+1))THEN 
GRAPH1(I,J)= ’ ’
ENDIF 

326 CONTINUE 
325 CONTINUE

DO 21104 I=1,ZZ-1
WRITER, 1234)(GRAPH 1 (I,J),J=1 ,XX-1) 
WRITE(2,3000)(D(I,J),J=1 ,XX-1)

21104 CONTINUE 
1234 FORM AT(35X,20A1)
3000 FORMAT(I4)

STOP
END
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C Program Surface
C 4» 4» •[* 4* 4* •!• 4* ̂  4* 4* 4* 4« 4* 4« 4* 4* 4* 4> 4* 4* 4* 4* 4* 4* 4  4* 4* 4* 4* 4* 4* 4* 4# 4* 4# 4* 4* 4* 4* 4* ■** »>* 4» 4> 4« -*• j .  j .  »i. if> .*. .t-•)* *** t» *r* v 'r  v  *1* »T» *t* "T* 4' »P *7* 'I* /X% *P v* »> 4* v  rj* rf* 4* '** v *1* 4* v 'J* 4* v v v 'T* *r* 4» *(» ̂  *T* *p *T* «T» v 'p *T* 4* v v  4* ̂  *T* 4* 4* 4 »

C This program approximates the coefficients of a surface 
C generated by given data points. The input file consists of 
C the rectangular coordinates of points on some surface.
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

integer ij,k ,ip
real x(9000),y(9000),z(9000),x_2(9000)
real y_2(9000),z_2(9000),p(9000,10)
real yz(9000),zx(9000),xy(9000),p_ptr(9000,10,10),sc(10,10)
real a(4,4),b(6,4),b_tr(4,6),c(6,6),h(6,6),h_inv(6,6)
real ris(4,8),a_inv(4,4),ba_inv(6,4),ba_invbt(6,6),m(6,6)
real h_invm(6,6),m_pr(6,6),ai(6,6),bi(6 ,6),ci(6 ,6)
real eigval(6,6),eigvec(6,6),ei_vec(6),a_invbt(4,6)
real alpha(4),beta(6),a_vect(10)
character* 18 infile,outfile
Type*,’ Enter coordinates file
Accept*,infile
Type*,’ Enter output coefficients file :’
Accept*,outfile
open(unit= 1 ,file=infile, status=’ old ’) 
open(unit=2 ,file=outfile, status=’ new ’) 

c****** The constraint matrix h and h_inv is created *********

write(*,3)
3 format(5x,’Input total points not exceeding 7750: ip=’)

read(*,*) ip 
root=l/(sqrt(2.)) 

do 24 i= l ,6 
do 26 j= l ,6 

h(i,j)=0 
26 continue
24 continue 

h ( l,l)= l 
h(2,2)=l 
h(3,3)=l 
h(4,4)=root 
h(5,5)=root 
h(6,6)=root
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rootl=sqrt(2.) 
do 20 i= l ,6 

do 22 j= l ,6 
h_inv(i,j)=0 

22 continue 
20 continue 

h_ inv(l,l)= l 
h_inv(2,2)=l 
h_inv(3,3)=l 
h_inv(4,4)=rootl 
h_inv(5,5)=rootl 
h_inv(6,6)=rootl

Data is read here ***********************************

do 30 i=l,ip 
read(l,*) (x(i),y(i),z(i))

30 continue

c ****** the vector P for scatter matrix is formed here *****

do 32 i=l,ip 
x_2(i)=x(i)**2 
y_2(i)=y(i)**2 
z_2(i)=z(i)**2 
yz(i)=y(i)*z(i) 
zx(i)=z(i)*x(i) 
xy(i)=x(i)*y(i)

32 continue
do 34 i=l,ip 

p(i»l)=x_2(i) 
p(i,2)=y_2(i) 
p(i,3)=z_2(i) 
p(i,4)=yz(i) 
p(i,5)=zx(i) 
p(i,6)=xy(i) 
p(i,7)=x(i) 
p(i»8)=y(i) 
p(i,9)=z(i)
P(i.l0)=l 

34 continue 
do 36 i=l,ip 

do 38 j= l,10 
do 40 k= 1,10 

P—pti'(i 0 »k)=p (i j ) *p (i ,k)
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40 continue
38 continue
36 continue

do 42 j= l,10 
do 44 k=l,10 

sc(j,k)=0 
44 continue
42 continue

c**** The Scatter Matrix is formed here *******************

do 46 j= l,10 
do 48 k=l,10 

do 50 i=l,ip 
sc(j,k)=sc(j,k)+p_ptr(i,j,k)

50 continue
48 continue
46 continue

c******* The Scatter matrix sc is decomposed into a,b,b_tr,c **

do 52 i= l ,6 
do 54 j= l ,6 

c(i,j)=sc(i,j)
54 continue
52 continue

do 56 i= l ,6 
do 58 j= l,4  

b(i,j)=sc(i,j+6)
58 continue
56 continue

do 60 i= l,4 
do 62 j= l ,6 

b_tr(i,j)=sc(i+6,j)
62 continue
60 continue

do 64 i= l,4 
do 66 j= l,4  

a(i,j)=sc(i+6,j+6)
66 continue
64 continue

do 68 i= l,4 
do 70 j= l,4  

ris(i,j)=a(i,j)
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70 continue 
68 continue

call invers(ris,4,4,8) 
do 72 i= l,4 

do 74 j= l,4  
a_inv(i,j)=ris(i,j)

74 continue
72 continue
c *************** Now to compute M jjc jf* s)c ijc 3(j ?jc rf« #Jfi 5j« ift ?Jc Jj* 3jc *jc

do 76 i= l ,6 
do 78 j= l,4  

ba_inv(i,j)=0 
78 continue
76 continue

do 80 i= l ,6 
do 82 j= l,4  

do 84 k=l,4  
ba_inv(i,j)=ba_inv(i,j)+b(i,k)!f:a_inv(k,j)

84 continue
82 continue
80 continue

do 86 i= l ,6 
do 88 j= l ,6 

ba_invbt(i,j)=0 
88 continue
86 continue

do 90 i= l ,6 
do 92 j= l ,6 

do 94 k=l,4 
ba_invbt(i,j)=ba_invbt(i,j)+ba_inv(i,k)!i!b_tr(k,j)

94 continue
92 continue
90 continue

do 96 i= l ,6 
do 98 j= l ,6 

m(i,j)=c(i,j)-ba_invbt(i,j)
98 continue
96 continue
c

Now to compute M ’
c

do 100 i= l ,6 
do 102 j= l ,6
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h_invm(i,j)=0 
102 continue
100 continue 

do 104 i= l ,6 
do 106 j= l ,6 

do 108 k = l ,6 
hjnvm (ij)=hjnvm (ij)+h_inv(i,k)*m (k,j)

108 continue 
106 continue
104 continue 

do 110 i= l ,6 
do 112 j= l ,6

m_pr(i,j)=0 
112 continue
110 continue 

do 114 i= l ,6 
do 116 j= l ,6 

do 118 k = l ,6 
m_pr(i,j)=m_pr(i,j)+hjnvm(i,k)*h_inv(k,j)

118 continue 
116 continue
114 continue 
c
c ********* Now to find the eigen values of M ’ ********** 
c

nd=6
call eig(nd,m_pr,eigval,eigvec)

c
e ******* To find the smallest eigen value and its corresponding ** 
g ******* eigen vector ***************************************** 
c

s_eig=eigval(l,l) 
kount=l 

do 120 i=2,6 
if (s_eig.gt.eigval(i,i)) then 

s_eig=eigval(i,i) 
kount=i 

endif 
120 continue 

do 122 i= l ,6 
ei_vec(i)=eigvec(i,kount)

122 continue 
do 124 i= l ,6
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beta(i)=0 
do 126 j= l ,6

beta(i)=beta(i)+h_inv(i,j)*ei_vec(j)
126 continue 
124 continue 

do 128 i= l,4  
do 130 j= l ,6 

a_invbt(i,j)=0 
do 132 k=l,4 

a_invbt(i,j)=a_invbt(i,j)+a_inv(i,k)*b_tr(k,j) 
132 continue 
130 continue
128 continue

do 134 i= l,4  
alpha(i)=0 
do 136 j= l ,6 

alpha(i)=alpha(i)+a_invbt(i,j)*beta(j)
136 continue

alpha(i)=-alpha(i)
134 continue

do 138 i= l ,6 
a_vect(i)=beta(i)

138 continue
do 140 i=l,4 

a_vect(i+6)=alpha(i)
140 continue
c do 142 i=l,10

write(2,*) ( ’ The input file w a s i n f i l e , ’"’) 
write(2,*) ( ’ The output file is "\outfile,”” ) 
write(2,*) (’ The coeff of x-squared is ’,a_vect(l)) 
write(2,*) ( ’ The coeff of y-squared is \a_vect(2)) 
write(2,*) ( ’ The coeff of z-squared is ’,a_vect(3)) 
write(2,*) ( ’ The coeff of 
write(2,*) ( ’ The coeff of 
write(2,*) ( ’ The coeff of 
write(2,*) ( ’ The coeff of 
write(2,*) ( ’ The coeff of 
write(2,*) ( ’ The coeff of 
write(2,*) ( ’ The constant 

c l42  continue
close(unit=2,dispose=’save’) 
close(unit=l,dispose=’save’) 
end

yz is ’,a_vect(4))
zx is \a_vect(5))
xy is \a_vect(6))
X is ’,a_vect(7))
y is \a_vect(8))
z is ’,a_vect(9))
d is ’,a_vect(10))
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Subroutine Invers(ris,N,Nx,Mx) 
Dimension ris(Nx,Mx)
N1=N-1 
N2=2*N 

Do 2 i= l,N  
Do 1 j= l,N  

jl= j+ N
1 ris(i,jl)=0. 

jl= i+N
2 ris(i,jl)= l.

Do 10 k= l,N l
C=ris(k,k)
If (Abs(C)-O.OOOOOl) 3,3,5

5 k l= k+ l
Do 6 j=kl,N 2

6 ris(k,j)=ris(k,j)/C 
Do 10 i=kl,N

C=ris(i,k)
Do 10 j=kl,N2 

ris(i,j)=ris(i,j)-C*ris(k,j)
10 Continue

N pl=N +l
If (Abs(ris(N,N))-0.000001) 3,3,19

19 Do 20 j=Npl,N2
20 ris(N,j)=ris(N,j)/ris(N,N)

Do 200 1=1,N1
k=N-l 
k l= k+ l 

Do 200 i=Npl,N2 
Do 200 j=kl,N  

200 ris(k,i)=ris(k,i)-ris(k,j)*ris(j,i)
Do 250 i=l,N  
Do 250 j= l,N  

jl= j+ N  
250 ris(i,j)=ris(i,jl)

Return
3 Type*,’Singularity in row found’ 

Return
End

Subroutine eig(nd,ai,bi,ci) 
dimension ai(nd,nd),bi(nd,nd),ci(nd,nd)
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integer n l,m l,n 2,m2 
nl=nd 
M l=nd 
n2=nd 
m2=nd 

ANorm=0.0 
Sn=Float(N2)

Do 100 i=l,N2 
Do 101 j=l,N2 

If (i-j) 72,71,72
71 Bi(i,j)=1.0 

Goto 101
72 Bi(i,j)=0.0 

ANorm=ANorm+Ai(i,j)*Ai(i,j)
101 Continue
100 Continue

ANorm=Sqrt(ANorm)
FNorm=ANorm*(l .0E-O9/Sn)
Thr=ANorm 

23 Thr=Thr/Sn
3 lnd=0

Do 102 i=2,N2 
il= i- l
Do 103 j= l,il  

If (Abs(Ai(j,i))-Thr) 103,4,4
4 Ind=l 

Al=-Ai(j,i)
Am=(Ai(j,j)-Ai(i,i))/2.0
Ao=Al/Sqrt((Al*Al)+(Am*Am))

If (Am) 5,6,6
5 Ao=-Ao
6 Sinx=Ao/Sqrt(2.0*(1.0+Sqrt(1.0-Ao*Ao))) 

Sinx2=Sinx*Sinx 
Cosx=Sqrt(1.0-Sinx2)
Cosx2=Cosx*Cosx

Do 104 k=l,N2 
If (k-j) 7,10,7

7 If (k-i) 8,10,8
8 At=Ai(k,j)

Ai(k,j)=At*Cosx-Ai(k,i)*Sinx
Ai(k,i)=At*Sinx+Ai(k,i)*Cosx

10 Bt=Bi(k,j)
Bi(k,j)=Bt*Cosx-Bi(k,i)*Sinx
Bi(k,i)=Bt*Sinx+Bi(k,i)*Cosx
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104 Continue 
Xt=2.0*Ai(j,i)*Sinx*Cosx 
At=Ai(j j )
Bt=Ai(i,i)
Ai(j,j)=At*Cosx2+Bt*Sinx2-Xt
Ai(i,i)=At*Sinx2+Bt*Cosx2-fXt
Ai(j,i)=(At-Bt)*Sinx*Cosx+Ai(j,i)*(Cosx2-Sinx2)
Ai(ij)=Ai(j,i)
Do 105 k=l,N2 

Ai(j,k)=Ai(k,j)
Ai(i,k)=Ai(k,i)

105 Continue
103 Continue 
102 Continue

If (Ind) 20,20,3 
20 If (Thr-FNorm) 25,25,23
25 Do 110 i=2,N2

j=i
29 If ((Abs(Ai(j-1 ,j- l)))-(Abs(Ai(j,j)))) 30,110,110
30 A t=A i(j-l,j-l)

Ai(j-l,j-l)=Ai(j,j)
Ai(j,j)=At

Do 111 k=l,N2 
At=Bi(k,j-l)
Bi(k,j-l)=Bi(k,j)
Bi(k,j)=At

111 Continue
j=j-l
If (j-1) 110,110,29 

110 Continue
do 112 i=l,N2 

do 114 j= l,N 2 
ci(i,j)=bi(i,j) 
bi(i,j)=ai(i,j)

114 continue
112 continue 

return
end
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C**** PROGRAM SURFACE ALIGNMENT

C**** This program is used to eliminate the product terms 
C**** from the quadratic representation of any 3D surface.
C**** The new coefficents generated consisits of the square terms, 
C**** the x, y, z, and the constant term.

REAL AA,BB,CC,DD,FF,GG,HH,PP,QQ,RR,D,Test_f,Test_g,test_h 
REAL A(50,50),B(50,50),C(50,50),F(50,50)
REAL G(50,50),H(50,50),ALPHA(100),BETA(100)
REAL RESULT(200,200),P(50,50),Q(50,50),R(50,50)
REAL AAA,BBB,CCC,DDD,EEE,FFF,GGG,HHH,m,ROT(3,3)
REAL DELI,DEL2,DELS,A_A,B_B,C_C,F_F,G_G,H_H,GAMMA(100) 
REAL VV,VVV,VVVV,VVWV,THRESHLD,INITMIN,ABSA,ABSB,ABSC 
REAL A_AA,B_BB,C_CC,D_DD,P_PP,Q_QQ,R_RR 
REAL ABSF,ABSG,ABSH,ABSP,ABSQ,ABSR,RRR(50),alptot,bettot 
REAL gamtot 
INTEGER N,M,I,J

C F(X,Y,Z)=Ax**2+By**2+Cz**2+2Fyz+2Gxz+2Hxy+2Px+2Qy+2Rz4D 
C =0
C PARAMETER (THRESHLD= 0.00000000000000001)

OPEN(UNrr=l,FILE=’CONVERGENCE.DAT,,STATUS=’NEW’)
TYPE*,’ENTER VALUE FOR THRESHLD:’
ACCEPT*,THRESHLD

Type*,’Enter coef. of x ** 2 :’
Accept* ,AA
Type*,’Enter coef. of y ** 2 :’
Accept* ,BB
Type*,’Enter coef. of z ** 2 :’
Accept* ,CC
Type*,’Enter coef. of yz :’
Accept* ,FF
Type*,’Enter coef. of xz :’
Accept* ,GG
Type*,’Enter coef. of xy :’
Accept* ,HH
Type*,’Enter coef. of x :’
Accept* ,PP
Type*,’Enter coef. of y :’
Accept* ,QQ
Type*,’Enter coef. of z :’
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Accept*,RR
Type*,’Enter constant of prop. 
Accept* ,D

A(1,1)=AA
B(1,1)=BB
C(1,1)=CC
F(1,1)=FF
G(1,1)=GG
H(1,1)=HH
P(1,1)=PP
Q (U )= Q Q
R(1,1)=RR
ABSA=ABS(AA)
ABSB=ABS(BB)
ABSC=ABS(CC)
ABSF=ABS(FF)
ABSG=ABS(GG)
ABSH=ABS(HH)
ABSP=ABS(PP)
ABSQ=ABS(QQ)
ABSR=ABS(RR)
RRR(1)=ABSA 
RRR(2)=ABSB 
RRR(3)=ABSC 
RRR(4)=ABSF 
RRR(5)=ABSG 
RRR(6)=ABSH 
RRR(7)=ABSP 
RRR(8)=ABSQ 
RRR(9)=ABSR 
DO 3980 1=1,9 
IF (RRR(I).EQ.0)THEN 
RRR(I)=10000 
ENDIF 

3980 CONTINUE
INITMIN=AMIN 1 (RRR( 1) ,RRR(2) ,RRR(3) ,RRR(4) ,RRR(5) ,RRR(6) ,RRR(7) 

+ ,RRR(8),RRR(9))
WRITE(*,*)INITMIN 
IF (AB S (IN1TMIN) .LT. 1.0)THEN 
A( 1,1 )=A( 1,1 )/INITMIN 
B(1,1)=B(1,1)/INITMIN
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C(1,1)=C(1,1)/INITMIN
F(1,1)=F(1,1)/INITMIN
G(1,1)=G(1,1)/INITMIN
H(1,1)=H(1,1)/INITMIN
P( 1,1 )=Pf 1.1VINITMIN
Q(1,1)=Q(1,1)/INITMIN
Q( 1,1)=Q( 1,1 yiNITMIN
DD_D=D/INITMIN
ELSE
GOTO 3405 
ENDIF 

3405 A(1,1)=AA 
B(1,1)=BB 
C(1,1)=CC 
F(1,1)=FF 
G(1,1)=GG 
H(1,1)=HH 
P(1,1)=PP 
Q(U)=QQ 
R(1,1)=RR

345 if (b (l,l).eq .a(U )) then

goto 1167 
else 

c goto 57
c endif
c else

goto 57 
endif

57 alpha(l)=(0.5*ATAND((H(l,l)/(B(l,l)-A(l,l)))))
A(l,l)=A(U)*COSD(ALPHA(l))*COSD(ALPHA(l))+B(l,l)*

+ SIND(ALPHA(1))*SIND(ALPHA(1))- H(1,1)*SIND(ALPHA(1))* 
+ COSD(ALPHA(l))

B(l,l)=B(l,l)*COSD(ALPHA(l))*COSD(ALPHA(l))+A(l,l)*
+ SIND(ALPHA(1))*SIND(ALPHA(1))+H(1,1)*SIND(ALPHA(1))* 
+ COSD(ALPHA(l))

C(1,1)=C(1,1)
F(l,l)=G(l,l)*SIND(ALPHA(l))+F(l,l)*COSD(ALPHA(l))
G (l,l)=G (l,l)*COSD(ALPHA(l))-F(l,l)*SIND(ALPHA(l))
H(1,1)=0
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P(1,1)=P(1,1)*C0SD(ALPHA(1))-Q(1,1)*SIND(ALPHA(1))
Q(1,1)=Q(1,1)*C0SD(ALPHA(1))+P(1,1)*SIND(ALPHA(1))

R(1,1)=R(1,1)

IF (ABS(F(1,1)).LT.THRESHLD)THEN
GOTO 1005
ELSE
GOTO 1167 
ENDIF

1005 IF (ABS(G(1,1)).LT.THRESHLD)THEN 
GOTO 1812 
ELSE
GOTO 1167 
ENDIF

1167 IF (C(1,1).EQ.B(1,1))THEN 
GOTO 1169 
ELSE
GOTO 1200 
ENDIF

1200 BETA(1)=(0.5*ATAND((F(1,1)/(C(1,1)-B(1,1)))))
A(1,2)=A(1,1)
B(l,2)=B(l,l)*COSD(BETA(l))*COSD(BETA(l))+C(Ll)*

+ SIND(BETA(l))*SIND(BETA(l))-F(l,l)*SIND(BETA(l))*COSD(BETA(l))

C(l,2)=C(l,l)*COSD(BETA(l))*COSD(BETA(l))+B(l,l)*
+ SIND(BETA(l))*SIND(BETA(l))+F(l,l)*SIND(BETA(l))*COSD(BETA(l)) 

F(l,2)=0
G(l,2)=G(l,l)*COSD(BETA(l))
H(1,2)=-G(1,1)*SIND(BETA(1))
P(1,2)=P(1,1)
Q(l,2)=Q(l,l)*COSD(BETA(l))-R(l,l)*SIND(BETA(l))

R (l)2)=R(l,l)*COSD(BETA(l))+Q(l,l)*SIND(BETA(l))
IF (ABS(H(1,2)).LT.THRESHLD)THEN
GOTO 1007
ELSE
GOTO 1169 
ENDIF

1007 IF (ABS(G(1,2)).LT.THRESHLD)THEN
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GOTO 1812 
ELSE
GOTO 1169 
ENDIF

1169 IF (C(1,2).EQ.A(1,2))THEN 
GOTO 67 
ELSE
GOTO 1235 
ENDIF

1235 GAMM A( 1)=(0.5* AT AND((G( 1,2)/(C( 1,2)-A(1,2)))))
A(l,3)=A(l,2)*COSD(GAMMA(l))*COSD(GAMMA(l))+C(l,2)*

+ SIND(GAMMA(1))*SIND(GAMMA(1))-G(1,2)*SIND(GAMMA(1)) 
+ *COSD(GAMMA(l))

B(1,3)=B(1,2)
C(l,3)=C(l,2)*COSD(GAMMA(l))*COSD(GAMMA(l))+A(l,2)*

+ SIND(GAMMA(1))*SIND(GAMMA(1))+G(1,2)*SIND(GAMMA(1)) 
+ *COSD(GAMMA(l))

F(1,3)=H(1,2)*SIND(GAMMA(1))
G(l,3)=0
H(l,3)=H(l,2)*COSD(GAMMA(l))

P(l,3)=P(L2)*COSD(GAMMA(l))-R(l,2)*SIND(GAMMA(l))
Q(1,3)=Q(1,2)
R(l,3)=R(1.2)*COSD(GAMMA(l))+P(l,2):i:SIND(GAMMA(l))

IF (ABS(F(1,3))-LT.THRESHLD)THEN
GOTO 1009
ELSE
GOTO 67
ENDIF

1009 IF (ABS(H(1,3)).LT.THRESHLD)THEN 
GOTO 1812 
ELSE 
GOTO 67 
ENDIF

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



221

67 DO 10 1=2,100
C DO 20 J=1

71 if((b(i-1,3).eq.a(i-1,3)))then
goto 167 

C else
c if(h(i,3).eq.0)then

c goto 67
c else
c goto 67
c endif

else
goto 177 
endif

177 alpha(I)=(0.5*ATAND((H(I-l,3)/(B(I-l,3)-A(I-l,3)))))
A(I,l)=A(I-l,3)*COSD(ALPHA(I))*COSD(ALPHA(I))+(B(I-l,3))* 

+ SIND(ALPHA(I))*SIND(ALPHA(I))- H(I-1,3)*SIND(ALPHA(I))* 
+ COSD(ALPHA(I))

B(I,l)=B(I-l,3)*COSD(ALPHA(I))*COSD(ALPHA(I))+A(I-l,3)*
+ SIND(ALPHA(I))*SIND(ALPHA(I))+H(I-1,3)*SIND(ALPHA(I))* 
+ COSD(ALPHA(I))

C(I,1)=C(I-1,3)
F(I,l)=F(I-l,3)*COSD(ALPHA(I))
G(I,1)=-F(I-1,3)*SIND(ALPHA(I))
H(I,1)=0
P(I,l)=P(I-L3)*COSD(ALPHA(I))-Q(I-l,3)*SIND(ALPHA(I))
Q(I,l)=Q(I-l,3)*COSD(ALPHA(I))+P(I-l,3)*SIND(ALPHA(I))
R(I,1)=R(I-1,3)

IF (ABS(F(I,1)).LT.THRESHLD)THEN
GOTO 1011
ELSE
GOTO 167
ENDIF

1011 IF (AB S(G(1,1)).LT.THRESHLD)THEN 
N=I
GOTO 666 
ELSE 
GOTO 167 
ENDIF

167 if((c(i,l).eq.b(i,l)))then
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goto 69 
else 

c goto 59
c endif
c else

goto 59 
endif

59 BETA(I)=(0.5*ATAND((F(I,1)/(C(I,1)-B(I,1)))))
A(I,2)=A(I,1)
B(I,2)=B(I,l)*COSD(BETA(I))*COSD(BETA(I))+C(I,l)*

+ SIND(BETA(I))*SIND(BETA(I))-F(I,l)*SIND(BETA(I))*COSD(BETA(I))

Ca2)^a4)*CO SD (BETA (I))*CO SD (BETA (I))+B(I,l)*
+ SIND(BETA(I))*SIND(BETA(I))+F(I,l)*SIND(BETA(I))*COSD(BETA(I)) 

F(I,2)=0
G(I,2)=G(I,l)*COSD(BETA(I))
H(I,2)=-G(I,1)*SIND(BETA(I))
P(I,2)=P(I,1)
Q(I,2)=Q(I,l)*COSD(BETA(I))-R(I,l)*SIND(BETA(I))

R(I,2)=R(I,l)*COSD(BETA(I))+Q(I,l)*SIND(BETA(I))

IF (ABS(G(I,2)).LT.THRESHLD)THEN
GOTO 1013
ELSE
GOTO 69
ENDIF

1013 IF (ABS(H(I,2)).LT.THRESHLD)THEN 
N=I
GOTO 666 
ELSE 
GOTO 69 
ENDIF

c69 if(g(i,2).eq.0)then 
69 if((c(i,2).eq.a(i,2)))then

goto 10 
else 

c goto 63
c endif
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c else
goto 63 
endif

63 GAMMA(I)=(0.5*ATAND((G(I,2)/(C(I,2)-A(I,2)))))
A(I,3)=A(I,2)*COSD(GAMMA(I))*COSD(GAMMA(I))+C(I,2)*

+ SIND(GAMMA(I))*SIND(GAMMA(I))-G(I,2)*SIND(GAMMA(I)) 
+ *COSD(GAMMA(I))

B(I,3)=B(I,2)
C(I,3)=C(I,2)*COSD(GAMMA(I))*COSD(GAMMA(I))+A(I,2)*

+ SIND(GAMMA(I))*SIND(GAMMA(I))+G(I,2)*SIND(GAMMA(I)) 
+ *COSD(GAMMA(I))

F(I,3)=H(I,2)*SIND(GAMMA(I))
G(I,3)=0
H(I,3)=H(I,2)*COSD(GAMMA(I))

P(I,3)=P(I,2)*COSD(GAMMA(I))-R(I,2)*SIND(GAMMA(I))
Q(I,3)=Q(I,2)
R(I,3)=R(I>2)*COSD(GAMMA(I))+P(I,2)*SIND(GAMMA(I))

IF (ABS(F(I,3)).LT.THRESHLD)THEN
GOTO 1015
ELSE
GOTO 10
ENDIF

1015 IF (ABS(H(I,3)).LT.THRESHLD)THEN 
N=I
GOTO 666 
ELSE 
GOTO 10 
ENDIF

20 CONTINUE
10 CONTINUE
1812 N=1
666 WRITE(*,*)N

WRITE(* 123)
123 *********

+ & & ̂  ^

WRITE(*,*)(THE NUMBER OF ITERATIONS COMPLETED IS:’,N)
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M=N*3
DO 1000 1=1,N
DO 1001 J=l,3
RESULT(3*(I-1)+J,1)=A(I,J)
RES ULT(3 * (I-1)+J,2)=B (I, J)
RESULT(3*(I-1)+J,3)=C(I,J)
RES ULT(3 * (I-1)+J,4)=F(I, J)
RESULT(3*(I-1)+J,5)=G(I,J)
RESULT(3*(I-1)+J,6)=H(I,J)
RESULT(3*(I-1)+J,7)=P(I,J)
RESULT(3*(I-1)+J,8)=Q(I,J)
RESULT(3*(I-1)+J,9)=R(I,J)

1001 CONTINUE 
1000 CONTINUE

WRITE(1 ,*)(’THE NUMBER OF ITERATIONS COMPLETED IS :\N ) 
WRITE(1,123)

WRITE(1 ,*)(’COEFF. OF X SQUARE TERM IS : AA)
198 WRITE(l,*)(’COEFF. OF Y SQUARE TERM IS : BB)
298 WRITE(l,*)(’COEFF. OF Z SQUARE TERM IS : \  CC)
398 WRITE(l,*)(’COEFF. OF YZ SQUARE TERM IS : FF)
498 WRITE(1 ,*)(’COEFF. OF XZ SQUARE TERM IS : ’ ,GG)
598 WRITE(l,*)(’COEFF. OF XY SQUARE TERM IS : ’ ,HH)

WRITE( 1,*)( ’ COEFF. OF X TERM IS : \  PP)
WRTTE(1 *)(’COEFF. OF Y TERM IS : QQ)
WRTTE(1 ,*)(’COEFF. OF Z TERM IS : \  RR) 
WRITE(l,*)(’CONSTANT OF PROP. IS : D)

write(l,123)
write(l,123)
write(l,123)
DO 2000 1=1,M
WRITE(1,*)(RESULT(I,J),J=1,9)

2000 CONTINUE

A_AA=RESULT(M-2,1)
B_BB=RESULT(M-2,2)
C_CC=RESULT(M-2,3)
P_PP=RESULT(M-2,7)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



225

Q_QQ=RESULT(M-2,8)
R_RR=RESULT(M-2,9)
D_DD=D

do 30001 i=l,3 
write(l,123)

30001 continue
WRITE(1,*X’THE NEW COEFF. OF X SQUARE TERM IS : A_AA)
WRITE(1,*)(’THE NEW COEFF. OF Y SQUARE TERM IS : B_BB)
WRITE(1,*)(’THE NEW COEFF. OF Z SQUARE TERM IS : \  C_CC)
WRITE(1,*)(’THE NEW COEFF. OF X TERM IS : \  P_PP) 
WRITE(1,*)(’THE NEW COEFF. OF Y TERM IS : ’, Q_QQ) 
WRITE(1,*)(’THE NEW COEFF. OF Z TERM IS : R_RR)
WRITE(1,*)(’THE NEW CONSTANT OF PROP. IS : \D_DD)

do 3001 i=l,3 
write(l,123)

3001 continue

write(l,1278)
1278 format(6x,’A’,9x,’B’,9x’C’,9x,’F’,9x,’G ’,9x,’H’,9x,’P \

+ 9x,’Q ’,9x,’R ’) 
write(l,1897)

1897 format(5x,’............................... ---------------- ---------------------
+  ’)

DO 2001 1=1,M
WRITE(1,1234)(RES ULT (I, J), J= 1,9)

2001 CONTINUE 
1234 format(9F10.5)

DO 3000 1=1,5 
WRITE(1,123)

3000 CONTINUE 
write(l,1908)

1908 format(6x,’Alpha’,9x,’Beta’,9x,’Gamma’) 
write(l,1897)
DO 4000 1=1,N
WRITE(1,*)ALPHA(I),BETA(I),GAMMA(I) 

4000 CONTINUE
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alptot=alpha(l)+alpha(2)+alpha(3)
bettot=beta(l)+beta(2)+beta(3)
gamtot=gamma(l)+gamma(2)+gamma(3)
write(l,123)
write(l,123)
write(l,1998)

1998 format(6x, ’ ALPTOT’ ,9x, ’BETTOT ’ ,9x, ’G AMTOT’) 
write(l ,*)alptot,bettot,gamtot 
write(l,123)

c***** To evaluate coeff. of yz, xz, and xy once alpha, beta 
c***** and gamma are evaluated.

write(*,*)alpha( l),beta( 1 ),gamma( 1) 
AAA=BB*cosd(alpha(l))*cosd(alpha(l))+(AA*sind(alpha(l))

+ *sind(alpha( 1 )))+((HH/2)*sind(2*alpha( 1 )))-CC 
BBB=gg*sind(alpha(l))+(ff*cosd(alpha(l))) 
CCC=((aa-bb))*sind(2*alpha(l))+(hh*cosd(2*alpha(l))) 
DDD=gg*cosd(alpha(l))-(ff*sind(alpha(l))) 
EEE=aa*(cosd(alpha(l))*cosd(alpha(l))-(sind(alpha(l))

+ *sind(alpha( 1 ))* sind(beta(l ))*sind(beta( 1))))
FFF=bb*(sind(alpha(l))*sind(alpha(l))-(cosd(alpha(l))

+ *cosd(alpha(l))*sind(beta(l))*sind(beta(l))))
GGG=cc*cosd(beta( 1)) *cosd(beta( 1))
HHH=(gg/2)*sind(alpha(l))*sind(2*beta(l))+((ff/2)*cosd(alpha(l))*

+ sind(2*beta(l)))
III=(hh/2)*sind(2*alpha(l))*(l+sind(beta(l»*

+ sind(beta(l)))

Test_F=(AAA*sind(2*beta(l))+BBB*cosd(2*beta(l)))*
+ cosd(gamma(l))+(CCC*cos(beta(l))-DDD*sind(beta(l)))
+ *sind(gamma(l))

Test_G=(EEE+FFF-GGG-HHH-III)*SIND(2*GAMMA(l)) +
+ (CCC*SIND(BETA(l))+COSD(BETA(l))*DDD)*COSD(2*GAMMA(l))

TEST_H=(CCC*COSD(BETA(l))-DDD*SIND(BETA(l)))*COSD(GAMMA(l)) - 
+ (AAA*SIND(2*BETA(l))+BBB*COSD(2*BETA(l)))*SIND(GAMMA(l))

c write(l,123) 
write(l,123)
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c write(l,124)
c
c write(l,*)test_f,test_g,test_h

write(l,123) 
write(l,123) 
write(l,124)

124 format(5x,THE ROTATION MATRIX IS : ’) 
c**** To evaluate the rotation matrix

rot(l,l)=cosd(alpha(l))*cosd(gamma(l))-(sind(alpha(l))* 
+ sind(beta( 1 ))*sind(gamma( 1)))

rot(l,2)=-sind(alpha(l))*cosd(gamma(l))-(cosd(alpha(l))* 
+ sind(beta(l))*sind(gamma(l)))

rot(l,3)=-sind(gamma(l))*cosd(beta(l))

rot(2,l)=sind(alpha(l))*cosd(beta(l))
rot(2,2)=cosd(beta(l))*cosd(alpha(l))
rot(2,3)=-sind(beta(l))

rot(3,l)=cosd(alpha(l))*sind(gamma(l))+(sind(alpha(l))* 
+ sind(beta( l))*cosd(gamma( 1)))

rot(3,2)=cosd(alpha(l))*cosd(gamma(l))*sind(beta(l))
+ -(sind(alpha(l))*sind(gamma(l))) 

rot(3,3)=cosd(gamma( 1 ))*cosd(beta(l))

DO 989 1=1,3
WRITE(l,*)(ROT(I,J),J=l,3)

989 CONTINUE 
stop

end
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C * * * * *  PROGRAM 3-D DISCRIMINANT 
C ***** Implementation of the 3-D discriminant approach 
C***** Implemented on MATLAB 
diary on
input(’Coeff. o f xA2 (A): ’);
A=ans
input(’Coeff. o f yA2 (B): ’);
B=ans
input(’Coeff. o f zA2 (C): ’);
C=ans
input(’Coeff. o f yz (F): ’);
F=ans
input(’Coeff. o f xz (G): ’);
G=ans
input(’Coeff. o f xy (H): ’);
H=ans
input(’Coeff. o f x (P): ’);
P=ans
input(’Coeff. o f y (Q): ’ );
Q=ans
input(’Coeff. o f z (R): ’);
R=ans
input(’Constant o f prop. (D): ’ );
D=ans
F=F/2;
G=G/2;
H=H/2;
P=P/2;
Q=Q12;
R=R/2;

e=[A H G 
H B F 
G F C ]

EE=[ A  H G P 
H B F Q 
G F C R 
P Q R D ]

dt_e=det(e)
dt_EE=det(EE)

K_K=eig(e)
rho_3=rank(e)
rho_4=rank(EE)
s_d_EE=sign(dt_EE)
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sl=sign(K_K(l))
s2=sign(K_K(2))
s3=sign(K_K(3))
flag=0
if  s i =  s2;
flag=flag+l
end;
i f  s i =  s3; 
flag=flag+l 
end;
i f  flag == 2; 
an_w=l;
fprintfC\n\n The sign of the ch. roots are the same \n ’)
else;
an_w=0;
end;
fprintfCNnNn The sign of the ch. roots are not the same Nn’)
fprin tf(’\n\n The rank o f EE is : %9.4f Nn rho_3 )
fprintfCNnNn The rank of e is : %9.4f \n rho_4 )
fprintfCNnVi The sign of the determinant o f EE is : %9.4f \n\s_d_EE )
fprintfCNnNn The characterstics roots have the same sign? : %9.4f Nn’ , an_w)

i f  rho_3=3 
i f  rho_4=4 
i f  s_d_EE==-l 
i f  an_w==l
fprin tf(’\nVi The object is an ELLIPSOID Nn\n’)
end
end
end
end
if  rho_3==3 
i f  rho_4— 4 
i f  s_d_EE==l 
i f  an_w=0
fprintfCNnNn The object is a HYPERBOLOID OF ONE SHEET Vn\n’)
end
end
end
end
if  rho_3==3 
if  rho_4==4 
i f  s d” EE==-1

if  an_w=0
fprintfCNnNn The object is a HYPERBOLOID OF TWO SHEETS \n ’)
end
end
end
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end
if  rho_3=3 
if  rho_4=3 
if  an_w=0
fprin tf(’\n\n The object is a REAL QUADRIC CONE V )
end
end
end
if  rho_3=2 
if  rho_4=4 
if  s_d_EE==-l 
i f  an_w=0
fp rin tff’NnNn The object is an ELLIPTIC PARABOLOID W )
end
end
end
end
if  rho_3==2 
if  rho_4==4 
if  s_d_EE==l 
if  an_w=0
fprintfCViNn The object is a HYPERBOLIC PARABOLOID \n ’)
end
end
end
end
if  rho_3==2 
i f  rho_4— 3 
i f  an_w = l
fprintfCNnNn The object is an ELLIPTIC CYLINDER \n ’)
end
end
end
i f  rho_3=2 
i f  rho_4=3 
i f  an_w=0
fp rin tff’NnNn The object is a HYPERBOLIC CYLINDER V )
end
end
end

if  rho_3==l 
i f  rho_4=3
fprintfCNnNn The object is a PARABOLIC CYLINDER Nn’)
end
end
diary o ff
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