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ABSTRACT

Supernatant proteins in Vibrio alginolyticus batch cultures were analyzed by 

SDS-PAGE before copper was added, 24 and 48 hours after the addition of copper, 

and in 24 hour control (no Cu) cultures. Two proteins, one 21 kilodalton (kDa) and 

one 19 kDa, were found to be copper-induced, and were designated copper-binding 

protein 1 (CuBPl) and CuBP2. CuBPl and CuBP2 became detectable in

supernatants during the Cu-induced lag phase, and increased in concentration over 

the following 48 hours. Chloramphenicol inhibited production of these proteins. 

Gel-to-gel variability was implicated as the dominant factor determining whether one 

or two Cu-induced proteins were detected in Vibrio alginolyticus supernatants, and ca. 

20 kDa Cu-induced proteins were quantitated together in subsequent analyses.

Experiments in continuous (chemostat) cultures of Vibrio alginolyticus 

demonstrated that the bacteria could survive copper stress in an open system. Cell 

numbers dropped at first, then re-equilibrated as copper concentrations were 

increased. Copper-resistant (Cu1) mutants were isolated from continuous cultures 

undergoing long-term copper stress (32 and 20 fxM Cu). Copper stress reversibly 

inhibited swarming in most colonies from long-term copper-stressed cultures, and 

permanent inhibition of swarming was observed in some isolates. Mutation to an 

oxidase negative phenotype, which was not reversible, occured at high frequency in 

copper-stessed continuous cultures.

The stability of two Cur mutants isolated from continuous culture was
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demonstrated by subculturing each isolate ten times on nonselective marine agar (10° 

MA), and comparing plate counts on unamended and 40/tM Cu-amended agar to 

corresponding plate counts of isolates freshly passed on Cu-amended agar. The 

oxidase negative mutant, Cu40Al, contained a majority of Cur cells after the 

nonselective subcultures, while Cu40B3 cultures contained < 1 % Cur cells whether 

it had been recently copper stressed or subcultured from 10° MA.

Supernatants of copper-resistant and copper-sensitive mutants of Vibrio 

alginolyticus were analyzed by SDS-PAGE for the presence and quantity of CuBP. 

One Cur isolate, Cu40B3, constitutively produced a ca. 21 kDa protein which 

displayed the same chromatographic behavior (immobilized metal ion affinity 

chromatography followed by reverse phase high performance liquid chromatography) 

as CuBP. After fifteen nonselective subcultures, a revertant Cu" derivative of 

Cu40B3 [Cu40B3(SW)] was isolated. Cu40B3(SW) lost the mutation to constitutive 

CuBP production and copper resistance simultaneously, indicating that constitutive 

CuBP production in Cu40B3 is necessary for maintenance of its copper-resistant 

phenotype.

Copper-sensitive Vibrio alginolyticus mutants displayed a range of alterations 

in supernatant protein profiles, and two of the seven mutants were indistinguishable 

from the wild-type in terms of supernatant proteins with and without copper stress. 

One Cus mutant was isolated which contained no CuBP in supernatants from 50 pM 

copper-stressed cultures.

These data support the hypothesis that the extracellular, ca. 20 kDa protein(s) 

of Vibrio alginolyticus are an important factor in survival and growth of the organism
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at elevated copper concentrations. The range of mutations observed in Cur and Cu* 

Vibrio alginolyticus indicate that altered sensitivity to copper can be caused by a 

variety of physiological changes. The production of extracellular metal chelators by 

marine bacteria has implications for the speciation and biogeochemical cycling of 

metals in the world oceans, and therefore merits complete study.
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STATEMENT OF THE PROBLEM

Reports of extracellular copper complexation and detoxification by microbial 

exudates have been appearing in the literature for over twenty years (Barber and 

Ryther, 1969; Hardstedt-Romeo and Gnassia-Barelli, 1980; Jardim and Pearson, 

1984; Mittleman and Geesey, 1985). While these reports are intriguing, they are 

generally descriptive in nature and have not attempted to identify the class of 

compound responsible for metal detoxification. Metallothioneins (MT), cysteine- 

containing, metal-induced intracellular proteins, have become established as the 

paradigm of biological metal detoxification. Thus, the emphasis of much of the 

research on metal detoxification by prokaryotes and eukaryotes has focused on 

mechanisms mediated by intracellular proteins.

Microorganisms have the ability to produce extracellular compounds that 

contribute to their survival in unfavorable environments, i.e. iron-scavenging 

siderophores, bacterocins and antibiotics for killing competing microorganisms, and 

extracellular enzymes such as proteases, chitinase, and DNAase which break down 

complex biomolecules into substrates that can be transported into the cell. Excretion 

of metal-binding compounds, or intracellular complexation followed by excretion of 

the chelator-metal complex is, therefore, theoretically a viable alternative to 

intracellular sequestration of toxic metals.

The results of many studies indicate that the microbiota play a role in

1
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determining the distribution and speciation of many metals, including copper, in 

natural waters (Bruland et al., 1991; Coale and Bruland, 1988; Smith et al., 1982; 

Wangersky, 1986; Zirino et a l,  1983). It is not known whether the contribution of 

the microbiota to metal speciation and partitioning in marine waters is dominated 

by passively mediated mechanisms, such as adhesion to microbial cell walls, or 

whether active, inducible processes play a major role. Our understanding of the 

biogeochemical cycling of metals will be insufficient to predict and model the effects 

of anthropogenic inputs of metals into marine waters until our knowledge of 

microbial-metal interactions in the oceans is significantly expanded. Thus, the 

reasonable and compelling hypothesis that marine microbes are capable of 

responding to altered concentrations of copper and other metals using physiological 

tools that affect metal speciation in the ocean merits investigation.

INTRODUCTION

Copper poses a physiological dilemma in biological systems. It is a component of 

metalloenzymes, including cytochrome oxidase, some forms of superoxide dismutase, 

and ceruloplasmin, an iron-storage protein (Sorenson, 1987; Wackett et al. , 1989). 

Copper is an important trace nutrient metal whose abundance in biological systems 

is exceeded only by that of iron and zinc (Cotton and Wilkinson, 1980). Copper, 

however, is toxic to bacteria at concentrations ranging from nanomolar to millimolar 

(Anderson and Morel, 1978; Brand et al., 1986; Rouche et a/., 1989; Schreiber et 

al., 1985), reflecting a diversity of physiological responses to the metal. The dual

2
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nutrient/toxicant role played by copper in bacterial physiology mandates cellular 

regulatory systems that can ensure copper availability while controlling its toxicity.

Copper acts as a required nutrient and as a toxicant in multicellular animals 

(Grant et al., 1989), including mammals (Auer et al., 1989), as well as in bacteria 

(Bitton and Freihofer, 1978; Schreiber et al., 1985; Zevenhuisen et al., 1979). 

Copper, like mercury and lead, is classified as a very toxic, relatively available 

element. (Forstner and Wittmann, 1981).

Copper Distribution and Speciation. Copper is one of the dominant heavy 

metal water pollutants, and worldwide concern is increasingly focused on the danger 

of the accumulation of toxic metals in the food chain (Abel, 1989; Nriagu and 

Pacyna, 1988). Major sources of copper emission to the atmosphere include mining, 

coal and oil combustion by electric utilities, and incineration of sewage sludge 

(Nriagu and Pacyna, 1988). In aquatic ecosystems, sources of copper pollution 

include domestic wastewater and sewage effluents, mining, manufacturing processes 

and atmospheric fallout. Agricultural applications are also a significant source of 

copper pollution (Abel, 1989), and contributions of copper from anti-biofouling 

applications in heavily populated coastal or estuarine environments could be 

significant (Wright and Zamuda, 1991). Of the trace metals, i.e. As, Cd, Cu, Hg, Mo, 

Ni, Pb, Sb, Se, V, Zn, the yearly anthropogenic input of copper is highest save for 

that of zinc (2150 vs. 2340 thousand tonnes yr.'1; Nriagu and Pacyna, 1988).

Total copper in unpolluted ecosystems is generally low, and the majority of 

the metal exists as organically complexed material (Bruland et a l ,  1991; Sunda and

3
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Hanson, 1987). In offshore ocean waters, where total copper is at nanomolar levels 

(Bruland and Franks, 1983; Chester and Stoner, 1974), organically complexed copper 

comprises greater than 90% of the dissolved copper in surface waters (Coale and 

Bruland, 1988; Sunda and Ferguson, 1983; Sunda and Hanson, 1987; Van den Berg, 

1982, 1984;). The average pCu (-log [Cu2+]) of surface ocean waters is estimated at 

12 (Brand et al. , 1986; Sunda and Ferguson, 1983). The concentration of free copper 

ions in solution is the major determinant of copper toxicity in aquatic environments 

(Schreiber etal., 1985; Sunda and Guillard, 1976; Zevenhuizen etal., 1979), therefore 

the pCu, rather than the total copper concentration, is biologically relevant.

Copper concentrations are not constant throughout the surface waters of the 

oceans, varying spatially and temporally, and are highest in the particulate-rich 

subsurface microlayer (Bruland et al., 1991; Wangersky, 1986). In the upper 150 m 

of northeast Pacific waters, nearly 100% of copper was organically complexed (pCu 

13) (Coale and Bruland, 1990). The percent of organically bound copper decreased 

with depth, so that pCu was 10 at 500 m. Upwelling ocean waters, which are rich in 

inorganic nutrients but are organically depleted (and thus, enriched in copper ions), 

did not support phytoplankton growth until artificial (EDTA) or microbially derived 

metal chelators were added (Barber and Ryther, 1969; Smith eta l., 1982). Copper 

has been implicated as a major source of the toxicity of upwelling ocean waters 

(Smith eta l., 1982). Laboratory results combined with field studies indicate that, 

over the range of free copper ions concentrations in the world ocean, copper may act 

as both a biolimiting nutrient and a toxicant (Bruland etal., 1991).

4
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The toxicity of copper to microbial species is determined by its chemical 

speciation, the dominant factor affecting its bioavailability (Morel and Morel- 

Laurens, 1983). Since copper forms relatively stable coordination complexes with 

organic material (Mantoura, 1981), copper speciation in natural waters is determined 

by a complex interaction of many environmental parameters. The abiotic 

components of the environment, i.e. organic and inorganic ligands, and the biota 

(Boyle and Edmond, 1975; Morel and Morel-Laurens, 1983; Leckie and Davis, 1979) 

contribute to the complexing capacity of the ecosystem. Chemical parameters such 

as the pH and ionic strength of the solution also affect copper speciation (Leckie and 

Davis, 1979).

Mechanism o f Copper Toxicity. The basis for copper toxicity lies in the 

reactivity of copper ions with cellular macromolecules and inorganic molecules, as 

it can act as an oxidant and also forms chelating complexes with organic and 

inorganic molecules (Thurman and Gerba, 1989). The physiological consequence of 

increased intracellular copper ion concentrations is damage to DNA, proteins and 

lipids (Tappel, 1973; Thurman and Gerba, 1989). Excess copper has been shown to 

cause lipid peroxidation (Tappel, 1973). Alterations in enzyme structure and function 

may occur as copper binds inappropriately to amino acids. Cysteine, histidine and 

methionine have particularly high affinities for copper (Rogers etal., 1991), and form 

the Cu ion binding site in several metalloenzymes, including plastocyanin (Colman 

et al. , 1978). Cu2+ may also replace the normal metals of enzyme prosthetic groups 

(Sterritt and Lester, 1980), altering or ablating their function. Enzymes of the

5
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electron transport chain may be particularly vulnerable to damage by copper (Domek 

et al. , 1984).

Chelation of phosphate groups by Cu2+ has been proposed as a mechanism 

for cupric ion interaction with nucleic acids (Thurman and Gerba, 1989). Interaction 

of DNA with copper may cause strands to become disordered, broken, stabilized, or 

destabilized (Ueda et al., 1980), thus disrupting DNA transcription and replication. 

In addition to direct Cu-DNA interaction, Cu2+ can act as an oxidant and Cu+ as a 

reductant, generating oxygen radicals such as the hydroxyl radical ( OH). Oxidation 

of cellular biomolecules by the highly reactive hydroxyl radical is a major mechanism 

of Cu-induced damage (Hanna and Mason, 1992). The reaction is analogous to the 

Haber-Weiss cycle, which is catalyzed by iron.

Cu(II) +  H20 2 Cu(I) +  H02 + H+

2H02 -» 20 2 + 2H+ -* H20 2 +  0 2 

Cu(II) +  0 /  -* Cu(I) + (02)

Cu(I) +  H20 2 -* Cu(II) +  OH + -OH 

(Hanna and Mason, 1992)

Copper can act as the primary effector of DNA damage, or it can exacerbate 

the effects of a second mutagenic agent. Copper has a comutagenic effect on E. coli 

subjected to UV irradiation, causing multiple strand breaks and increasing the rate 

of mutagenesis to three times that of UV light alone (Rossman, 1989; Rossman et 

al., 1989). Interaction of thiols with Cu2+ caused single-strand nicks in supercoiled

6
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plasmid DNA (Reed and Douglas, 1989).

The combination of copper and hydrogen peroxide generates hydroxyl and 

other oxygen radicals, which damage eukaryotic and prokaryotic DNA (Aruoma et 

a/.,1991; Dizdaroglu et a l ,  1991; Sagripanti and Kraemer, 1989; Yamamoto and 

Kawanishi, 1989) and proteins (Simpson e ta l ,  1988). Copper is a required trace 

metal, and hydrogen peroxide is a normal byproduct of aerobically respiring cells. 

The interaction of copper and H20 2 is therefore likely to have a deleterious impact 

on cellular physiology, particularly when intracellular Cu2+ concentrations rise above 

normal.

Although the effects of excess copper are generally considered to be cytotoxic 

(Freedman et al., 1989), evidence is accumulating that copper ions can act as 

mutagenic agents (Aruoma era/., 1991;Dizdaroglu etal., 1991;Rossman and Kneip, 

1989; Rossman, 1989; Sagripanti and Kraemer, 1989; Tkeshelashvili et al., 1991; 

Ulitzer and Barak, 1988; Yamamoto and Kawanishi, 1989). Evidence exists for 

mechanisms of metal-mediated mutagenesis of DNA including metal-base interaction, 

which impairs base pairing specificity, metal-DNA polymerase interaction, which 

interferes with DNA replication, metal-deoxynucleotide triphosphate interaction, and 

chelation of phosphate groups (Tkeshelashvili e ta l ,  1991). Copper was found to be 

a potent mutagen by a bacterial bioluminescence test (Ulitzur and Barak, 1988), 

although copper activity in systems designed to measure mutagenic potential had not 

been previously reported. In this study a solid agar diffusion method was used to 

overcome the disadvantages posed by the toxicity of copper to the reporter bacteria.

7
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Mercury (HgCl2) and silver (AgN03), which are also highly toxic but previously 

considered nonmutagenic, also displayed mutagenic activity in this test.

Several studies indicate that some DNA damage by copper is site-specific. 

The most common mutation in 0X174 viral DNA incubated with copper was C -> T 

transition. Mutation sites were clustered, rather than randomly spaced, suggesting 

interaction of specific DNA sequences with copper ions (Tkeshelashvili eta l., 1991). 

An in vitro study demonstrated preferential strand breakage at polyguanosine 

sequences by copper plus H20 2 (Sagripanti and Kraemer, 1989). Histones protected 

mammalian DNA from base modifications in the presence of H20 2 and copper 

(Dizdaroglu eta l., 1991). The frequency of cleavage at cytosine residues of cloned 

mammalian DNA was site-specific (Yamamoto and Kawanishi, 1989). Thus, a model 

is emerging in which copper ions bind to DNA sequences with some specificity. The 

copper ion then catalyzes an oxygen radical-producing reaction, whose product 

(currently thought to be primarily the hydroxyl radical) causes base modification and 

strand breakage.

Physiological Strategies for Metal Resistance. Copper, as a required trace metal, 

cannot be entirely excluded by living organisms, yet the toxicity and relative 

abundance of copper mandate that effective systems of intracellular copper 

management and, in some cases, resistance to elevated copper ion levels exist. The 

wide range of microbial copper tolerance indicates that some microbes have evolved 

strategies for copper detoxification.

Metal-inducible systems for metal detoxification have been identified in

8
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microbes and in higher organisms. Transcription of metallothioneins (MT), low 

molecular weight proteins present in organisms ranging from yeasts to humans (Kagi 

and Nordberg, 1979), is induced by a variety of metals, including copper (Butt etal., 

1984; Furst and Hamer, 1989). In the case of the yeast Saccaromyces cerevisise, 

copper ions bind cooperatively to the cysteine-rich DNA binding domain of ACE1 

transcription factor (Furst and Hamer, 1989). The resultant increase in production 

of MT mRNA insures a large increase in cellular copper complexing capacity in 

response to a small increase in the concentration of copper ions. This response is 

highly conserved in eukaryotes (Kagi and Norberg, 1979), indicating that the presence 

of potentially toxic metals in ecosystems exerts considerable selective pressure toward 

retention of an effective means of metal detoxification.

Several studies have suggested that MT-like systems for metal detoxication 

may exist in some prokaryotic species. Intracellular cadmium-induced proteins whose 

estimated molecular weights are similar to metallothioneins have been demonstrated 

in a Pseudomonas putida strain that accumulates the metal (Higham et al., 1984, 

1985). Cadmium also induced synthesis of an MT-like protein in the cyanobacterium 

Synechoccus (Olafson, 1986; Olafson et al., 1988.).

Mechanisms for bacterial resistance to most metals, including copper, have 

been described. Cadmium-resistant Staphylococcus aureus detoxifies cadmium via a 

plasmid-mediated, energy-dependent efflux mechanism (Tynecka etal., 1981a, 1981b). 

The genetic determinant is termed cadA, which also confers resistance to Zn2+ 

(Silver and Misra, 1988). At least five other bacterial cadmium resistance systems

9
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have been reported (see Silver and Misra, 1988 for review). Arsenate resistance in 

S. aureus and E. coli results from reduced accumulation mediated by an inducible 

efflux system (Silver and Misra, 1988). Bacterial mercury resistance carried on 

plasmid R100 (from a Shigella species) has been dissected at the genetic level to 

reveal an operon controlled by the merR product (a trans-acting inducer-repressor), 

an operator region for MerR binding, and five structural genes. The merT gene 

encodes the Hg2+ transport system, a transmembrane protein that delivers Hg2+ to 

the mercuric reductase dimer (merA). MerP is thought to be a periplasmic binding 

protein whose function is delivery of Hg2+ to the transport system (Silver and Misra, 

1988). Thus, Hg2+ is tightly bound in order to prevent cell damage until it can be 

delivered to the mercuric reductase enzyme, where Hg2+ is reduced to Hg°. 

Cadmium resistance in a soil bacterium was reported to be mediated by a 42,600 

dalton protein that bound cadmium in an insoluble precipitate (Kurek eta l., 1991).

There have been reports of nonspecifically produced microbial compounds 

that fortuitously mediate copper detoxification. Siderophores, which protect 

cyanobacteria from copper toxicity, were not induced by copper (Clarke etal., 1987). 

Constitutively produced polysaccharide capsule material (Bitton and Freihofer, 1978), 

and uncharacterized organic exudates from algae (Hardstedt-Romeo and Gnassia- 

Barelli, 1980) and bacteria (Mittelman and Geesey, 1985) decreased the toxic effects 

of copper.

Copper-inducible, plasmid-mediated systems of copper resistance have been 

described in terrestrial bacteria (Mellano and Cooksey, 1988; Rouche e ta l., 1989).

10
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Plasmid pRJ1004 carries the pco copper resistance determinant, which is composed 

of at least 4 genes (pcoA,B,C and R), whose induction is controlled at the 

transcriptional level. The model describing the mechanism of copper detoxification 

in E. coli pRJ1004 includes intracellular binding of copper by an inducible 26 

kilodalton (kDa) protein, followed by enhanced efflux and chemical modification of 

copper so that it cannot reenter the cell (Rouche et a l., 1989).

Studies on copper maintenance and transport in E. coli have demonstrated 

that the cut element is involved in regulating intracellular copper homeostasis 

(Rogers e ta l ,  1991). CutE mutants are both copper sensitive and copper dependent. 

CutE contains the putative copper-binding region His-X-X-Met-X-X-Met, which has 

been implicated in copper resistance in Pseudomonas syringae(Mellano and Cooksey, 

1988).

Copper resistance is plasmid mediated in a number of other systems, including 

the plant pathogen Pseudomonas syringae (Bender and Cooksey, 1986; 1987). A 

copper-binding motif of the general structure Asp-His-X-X-Met-X-X-Met with 

homology to the copper-containing enzymes azurin and plastocyanin was identified 

(Mellano and Cooksey, 1988). The four open reading frames (ORFs) of this element 

have been designated cop A, B, C and D (Cha and Cooksey, 1991). CopA and CopC 

are located in the periplasm, between the inner and outer membranes, and CopB is 

an outer membrane protein (Cha and Cooksey, 1991). CopA, a protein high in 

histidine residues, bound 11 copper atoms per protein molecule (Cha and Cooksey, 

1991). A putative copper-binding motif, Met-X-X-Met-X-His-X-X-Met common to

11
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CopA and CopC (which bound one Cu/protein molecule) was identified. The model 

proposed to explain the mechanism of resistance is sequestration of copper outside 

the cytoplasm by the Cop proteins (Cha and Cooksey, 1991). The plasmid-mediated 

copper resistance described in Mycobacterium scrofulaceum involves precipitation of 

copper as copper sulfide outside the cell (Eradi et al., 1987).

Current studies on copper detoxification in marine microorganisms have 

concentrated on extracellular complexation by phytoplankton (Clarke et al., 1987; 

Wangersky, 1986; Zhou and Wangersky, 1985). Recently, conditional stability 

constants of 109 to 1010 were measured for extracellular ligands from cultures of 

marine fungi (Sunda and Gessner, 1989). Most of these studies were not designed 

to test inducibility of the complexing material by copper. Indeed, increased 

production of a copper complexing compound upon addition of copper was 

demonstrated in only one case (Jardim and Pearson, 1984). The cyanobacterial 

copper complexing compound was not identified in the study, however, further work 

with cyanobacteria suggested that the compound might be a siderophore (Clarke et 

al., 1987).

COPPER DETOXIFICATION IN THE MARINE BACTERIUM Vibrio alginolyticus

Vibrio alginolyticus is a heterotrophic marine bacterium that is ubiquitously 

distributed throughout marine and estuarine ecosystems. The strain on which the 

following work is based was isolated from a stainless steel plate in Biscayne Bay, 

Miami during the course of a study on bacterial attachment (Gerchakov etal., 1976).

12
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Calorimetric studies of copper toxicity determined that heat production by Vibrio 

alginolyticus was inhibited by 50% (TC50) at 6.4/nM CuS04 under aerobic conditions 

in M9 medium modified to contain 21 g/1 NaCl (Schreiber et al., 1985). When 

organic chelators were used to control free copper levels, toxicity was directly related 

to the concentration of Cu2+, indicating that organically complexed copper is not 

toxic to V. alginolyticus.

Toxic levels of copper added to logarithmically growing cultures of V. 

alginolyticus cause a lag in growth that is proportional to the amount of copper added 

(Gordon and Millero, 1980; Howell et al., 1992; Schreiber et a l ,  1985). In 

experiments designed to measure the partitioning and speciation of copper in batch 

cultures of V. alginolyticus a significant amount of copper remained soluble through 

late stationary phase, however, growth of the culture was accompanied by a decrease 

in free copper ion levels (Schreiber et al., 1990). As the cells entered stationary 

phase, no polarographically labile (ionic) copper was detectable, indicating that all 

soluble copper in the culture was complexed (Schreiber et al., 1990). A copper- 

induced, ca. 30 kDa peak from supernatants fractionated by size exclusion HPLC 

(high performance liquid chromatography) contained 14C if 14C-glucose was added 

after copper was added, but not if 14C-glucose was added before copper challenge. 

These results indicate that the material in the peak was the result of biosynthetic 

activity after copper addition, and was not the lytic product of dead cells. Fractions 

from the ca. 30 kDa peak contained 35S-labeled material when 35S-methionine was 

added to the culture after copper addition, suggesting that the biomolecules,

13
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synthesized after copper addition, contained protein. Size exclusion HPLC with a 

different column separated two peaks from the void and inclusion volumes with 

relative molecular weights (Mr) of 28,000 and 26,000. These peaks were amplified 

7 .1-fold and 9.4-fold,respectively, in copper-challenged vs.control cultures (Schreiber 

et al. , 1990).

When copper-complexing activity was measured in gel permeation 

chromatography (GPC) fractions from control and 50 nM copper-challenged 

supernatants, a copper-induced peak was found in fractions corresponding to Mr 

20,000 (Harwood-Sears and Gordon, 1990a). Because there was some evidence that 

the copper-complexing molecules might be proteins (including approximate molecular 

weights and incorporation of 35S into copper-induced peak fractions), and because 

metallothioneins and many other agents of metal detoxification are proteins, we 

investigated the possibility that the extracellular copper-complexing activity of V. 

alginolyticus is mediated by a protein or proteins (Harwood-Sears and Gordon, 

1990a). The research described in this Dissertation includes experiments designed 

to determine the biochemical nature of the copper-complexing compound(s), their 

induction kinetics, and distribution of the compound(s) in copper-stressed V. 

alginolyticus cultures (Harwood-Sears and Gordon, 1990a).

After the proteinaceous nature of the compound(s) was established, copper- 

resistant (Cu1) and copper-sensitive (Cus) mutants of V. alginolyticus were isolated 

in order to solidify the link between the production of the copper-binding protein(s) 

(CuBP) and copper detoxification in this bacterium, and to further our general
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understanding of copper toxicity, copper tolerance and copper detoxification in the 

organism. As little is known about metal-inducible systems of metal detoxification 

in marine bacteria, this work will further our understanding of microbial-metal 

interactions in the oceans, as well as contributing to elucidation of the systems that 

regulate copper ion homeostasis in bacteria.
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CHAPTER 1: COPPER-INDUCED PRODUCTION OF COPPER-BINDING 

SUPERNATANT PROTEINS BY THE MARINE BACTERIUM VIBRIO 

ALGINOLYTICUS

MATERIALS AND METHODS

Bacteria and Medium. A strain of Vibrio alginolyticus originally isolated from 

the surface of a stainless steel plate immersed in Biscayne Bay, Miami (Gerchakov 

et al., 1976) was used in this study. All cultures were incubated at room temperature 

on a shaker. Cultures were grown in M9 minimal medium with 8 mM glucose 

modified to contain 21 g/1 NaCl (SWM9).

Copper Challenge. Except where noted, 0.5 ml of cells from an overnight 

culture of V. alginolyticus were used to inoculate 20 ml of medium. Copper was 

added to cultures when the optical density reached 40 Klett units in 20 ml cultures, 

or 0.08 absorbance units for 3 ml cultures whose optical density was measured in 

microtiter plates (see below). At this point in the growth curve, cells were doubling 

exponentially and cell numbers were approximately 1.8 X 108 cells*ml"1. Unless 

noted otherwise, cultures were harvested after a total of 24 hours. In the experiment 

designed to measure the level of CuS04 necessary to induce CuBP, 3 ml batch 

cultures were started from 50 pi of overnight broth cultures in sterile, 12-well tissue 

culture dishes (Costar, Cambridge, MA). The optical density of the 3 ml cultures
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was monitored by transferring 100 p\ aliquots to a 96-well microassay plate, which 

were read at 595 nm on a microplate reader (Bio-Tek Instruments). Cultures that 

were treated with chloramphenicol received 200 /xg/ml ten minutes before the 

addition of copper.

Sample concentration and preparation. Supernatants were collected by 

centrifuging cells from copper challenged and control cultures at 13,800 X g for ten 

minutes. The supernatant was filter sterilized with a 0.2 pm membrane filter. In 

cultures where cellular proteins were separated by SDS-PAGE, the cell pellet was 

resuspended to a tenfold concentrate with respect to the original volume in SWM9. 

The cells were frozen at -80° C, thawed at room temperature and sonicated for two 

1-minute bursts. This procedure was repeated twice, and the sonicate was

centrifuged at 13,800 X g for ten minutes. The cell lysate was then resuspended to 

the original volume in SWM9 and filter sterilized as above.

Supernatants were concentrated by lyophilization, by stirred cell molecular 

filtration, or by molecular filtration in microconcentrator tubes. Lyophilized samples 

were resuspended in distilled water to a tenfold concentration with respect to the 

original culture and dialyzed (Spectrapor, nominal molecular weight cutoff = 6,000-

8,000) against a P04-NaCl buffer (NaCl, 85.5 mM; Na2HP04 7H20 , 7.5mM;pH 7.5). 

Samples intended for column chromatography were concentrated tenfold by 

molecular filtration in a stirred cell (300 ml) using an Amicon PM 10 filter (nominal 

molecular weight cutoff = 10,000). In the [Cu] vs.CuBP induction experiment, 2 ml 

of supernatant obtained by filtering the culture through a 0.45 /*m filter was loaded
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in a microconcentrator tube with a 3 kDa nominal molecular weight cutoff (Amicon 

Centricon 3; Amicon, Beverly, MA). Tubes were centrifuged at 6500 X g for two 

hours to give a four to five fold concentration factor. In all cases where protein 

quantities in different samples were compared, (e.g. cellular vs. supernatant) values 

were corrected to reflect the concentration in the original culture.

Supernatant protein concentrations for samples concentrated in 

microconcentrator tubes were measured using a bicinchoninic acid assay (Pierce 

BCA, Rockford, IL). Standards were diluted in distilled water from a 200 /xg • ml'1 

stock in the range of 25 /xg • ml'1 to 150 /xg-ml'1. Samples were assayed following kit 

directions, and were incubated at 37° C for 30 min. Absorbance was read at 562 nm 

on a Shimadzu UV-160 spectrophotometer. CuBP concentrations were estimated by 

multiplying the densitometric calculation of the contribution of CuBP to total 

supernatant protein by the supernatant protein concentration. For example, if CuBP 

comprised 5% of the supernatant protein in a sample with 20 /xg • ml'1 supernatant 

protein, the calculated estimate of CuBP concentration would be 1 fig •ml'1.

Estimates o f standing stock. In order to normalize extracellular protein 

concentrations to cell numbers, or standing stock, cell numbers and/or cellular 

protein was estimated for cultures at the time of harvest. Cell numbers were 

estimated by using a previously calculated and reconfirmed relationship between 

optical density in a Klett-Sumerson colorimeter and acridine orange direct counts for 

V. alginolyticus (4.5 X 106 cells/Klett unit).

Cellular protein was measured by filtering 0.5 ml of culture onto a pre-treated,
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0.2 jxm HT-200 filter (25mm, Gelman, Ann Arbor, MI). The filters were pre-treated 

by incubation at 90° C for 30 minutes while submerged in 1 N NaOH. After pre

treatment the filters were washed several times and stored in sterile, distilled water 

at 4° C for up to several weeks. After cultures were filtered onto them, the filters 

were placed in scintillation vials and stored at -80° C until analyzed.

Cell digestion was accomplished by submerging the filtered samples in 1 ml 

of 1 N NaOH, and incubating the samples at 90° C for 30 minutes. A modification 

of the bicinchoninic acid assay (Pierce BCA, Rockford, IL) was used to assay the 

digested samples. Ten /xl of concentrated HC1 was added to each 100 /xl sample (and 

the blank) in order to neutralize the NaOH. The BSA standard included with the 

BCA kit was diluted tenfold with sterile, distilled water to a final concentration of 

200 /xg • ml'1. In order to approximate the sample solvent composition, the stock BSA 

solution was diluted with an approximately 1:1 solution of NaOH:HCl (10 ml of 1 N 

NaOH:l ml of concentrated HC1) to yield standards ranging from 25 /xg • ml'1 to 150 

/xg*ml''. In order to account for any background absorbance contributed by the 

filter, the assay blank was drawn from a pre-treated filter submerged in 1 ml of 1 N 

NaOH, and incubated at 90° C for 30 minutes. Samples and standards were 

prepared in duplicate, and incubated with 2 ml of the BCA reagent for 30 minutes 

at 37° C. Absorbance was read at 562 nm on a Shimadzu UV-160 

spectrophotometer.

Gel Permeation Chromatography (GPC). Supernatants concentrated by 

molecular filtration were eluted from a Sephadex G50-150 column 50 cm long by
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1.25 cm wide with HEPES-sodium nitrate buffer (HEPES, 1 mM; NaN03, 0.1 M; pH

7.1). 10 ml of supernatant was loaded on the column, and 10 ml fractions were 

collected at a flow rate of 3.25 ml/min. UV absorbance was monitored at 254 nm.

SDS-Polyacrylamide Gel Electrophoresis. SDS-PAGE was carried out in 1.5 

mm thick slab gels with a total acrylamide concentration of 12% (Laemmli, 1970). 

The gels were run at 60 mA constant current at 4° C. 100 pi of sample was loaded 

into each well. Protein molecular weight markers (Sigma Chemical Co., St. Louis, 

Mo.) were lysozyme (MW 14,400), trypsinogen (24,000), egg albumin (45,000) and 

bovine serum albumin (66,000). Gels were silver stained (ICN Biomedicals, 

Cleveland) and bands were quantitated with an LKB Ultroscan XL laser 

densitometer.

RESULTS

Supernatants from cultures challenged with 50 pM  copper were concentrated 

by molecular filtration and fractionated by GPC. When the fractions were run on 

an SDS-PAGE gel, a ca. 21 kDa protein (hereafter refered to as CuBPl, or Copper 

Binding Protein 1) appeared consistently in fraction 13 (Figure 1.1, lane 7). A ca. 

19 kDa protein (CuBP2) was also visualized on SDS-PAGE gels from some GPC 

runs (data not shown). No proteins in the 18-21 kDa range were found in 

supernatant fractions from control cultures. The lower molecular weight bands 

resolved in Figure 1.1 (lanes 3 and 4) were not consistently present in copper- 

challenged samples (see, for example, Figure 1.4).
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Figure 1.1. SDS-polyacrylamide gel electrophoresis of supernatants from Vibrio 

alginolyticus batch cultures. Lanes 1-4: induction kinetics of CuBPs.

Lane 1: before copper addition
Lane 2: 2 hours after copper addition
Lane 3: 24 hours after copper addition
Lane 4: 48 hours after copper addition
Lane 5: molecular weight standards
Lanes 6 and 7: GPC fraction 13 from supernatants -
Lane 6: no copper challenge
Lane 7: 50 /tM copper challenged
Lane 8: control (no added copper) supernatant from a 24 hour old culture
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Comparison of SDS-PAGE gels of unfractionated supernatants from copper- 

challenged and control cultures (Figure 1.1, lanes 3 and 8) which were 24 hours old 

demonstrated prominent CuBPl and CuBP2 bands in the copper challenged 

supernatants which were barely detectable in the control (Table 1). In terms of peak 

area, CuBPl was 25 times more concentrated in 24 hour copper challenged 

supernatants than in comparable controls, while in copper-challenged supernatants 

CuBP2 was 46 times more concentrated than in controls. After these values were 

normalized to cell numbers at the time of harvest the difference was even greater: 

CuBPl and CuBP2 were, respectively, 75 and 133 times more concentrated in copper 

challenged supernatants than in controls. CuBPl and CuBP2 in copper challenged 

and control supernatants were also compared based on their contribution to total 

supernatant protein (estimated by quantitating total supernatant peak area in SDS- 

polyacrylamide gels by densitometry). CuBPl in the 24 hour control was 0.9% of the 

area, and comprised 13.2% of the area in the 24 hour copper challenged supernatant, 

a 14.7 fold increase. The contribution of CuBP2 to percent area increased 26-fold 

from control to copper challenged cultures.

In an induction kinetics experiment, samples were taken from Vibrio 

alginolyticus cultures (1) before the addition of 50 /*M copper, (2) two hours after the 

addition of copper, while cells were still in the lag phase, (3) 24 hours after copper 

addition, when the cells were well into recovery and (4) 48 hours after copper 

addition (Figure 1.1). Proteins in these samples were concentrated by lyophilization, 

separated by SDS-PAGE and quantitated by laser densitometry (Table 1.1). In the
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sample taken before the addition of copper there were no detectable bands in the 

21 kDa region. Two hours after the addition of copper CuBPl was measured at 

0.071 AU*mm by densitometry. At 24 hours CuBPl had increased by sevenfold to 

0.499 Au*mm and CuBP2 was measured at 0.229 Au*mm. After 48 hours the 

concentration of CuBPl had increased to 0.699 Au*mm and CuBP2 to 0.359 Au*mm. 

There was a third band at 24 and 48 hours of 17.6 kDa which was not quantitated. 

This band is detectable in some copper challenged supernatants and not in others.

A corresponding pattern in the concentration of CuBPl and CuBP2 was 

evident when peak area of the proteins was normalized to cell numbers or expressed 

as the percent of peak area in lanes from Figure 1.1 (Table 1.1). When expressed 

as peak area •cell'1 CuBPl increased fivefold from two to 24 hours after copper 

addition. CuBP2 increased from undetectable at two hours to 53 Au*mm • cell'1 

twenty-four hours after copper addition. The concentration of the CuBPs also 

increased relative to other supernatant proteins in each sample. CuBPl was 4.7% 

of the peak area two hours after copper addition, 13.2% twenty-four hours after 

copper and 14.8% after 48 hours. CuBP2 was not detectable at two hours, was 6.0% 

of the peak area after 24 hours, and 7.6% after 48 hours.

Vibrio alginolyticus from an overnight culture was inoculated into SWM9 

amended with copper concentrations ranging from 0 - 5 0  fxM CuS04 in order to 

determine the concentration of copper necessary to induce CuBP expression. CuBP
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Table 1.1. Quantitation of CuBPl and CuBP2 in supernatants from 50 copper- 

challenged Vibrio alginolyticus cultures. Band density is expressed as peak 

area (Au*mm).

CuBPl CuBP2

Supernatant Peak
Area

Area *b 
Cell'1

Percent
Areac

Peak
Area

Area »b 
Cell1

Percent
Area0

Pre Cu NDa ND ND ND ND ND

2 Hours 0.071 23 4.7 ND ND ND

24 Hours 0.499 120 13.2 0.229 53 6.0

48 Hours 0.699 130 14.8 0.359 65 7.6

24 Hour 
Control

0.020 1.6 0.9 0.005 0.4 0.23

a ND denotes not detectable by SDS-PAGE and laser densitometry.

b Area'cell'1 is band density normalized to cell numbers in cultures at the time 
supernatants were harvested (X 1011).

c Percent of integrated area in respective lanes (Fig. 2, lanes 1-4 and 8).
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was not detectable by densitometry in the control culture, and was barely visible in 

the gel (Figure 1.2, lane 1). CuBP expression was induced at the lowest copper 

concentration, 1 ^M. As the concentration of copper increased from 1 - 50 /tiM, so 

did CuBP in terms of the absolute amount (Figure 1.2). When expressed as the 

percentage of supernatant protein, CuBP increased from 1.2 % in 1 yM  Cu- 

challenged cultures to 5% in 50 /xM Cu-challenged cultures, approximately a 400% 

increase (Table 1.2). The concentration of supernatant CuBP was normalized to 

standing stock using both optical density and cellular protein as estimates of cell 

concentrations (Table 1.2). In each case, the concentration of CuBP increased 

incrementally as a function of added copper.

In cultures where chloramphenicol was added ten minutes before copper 

addition CuBPl and CuBP2 were not detectable in the supernatant (Figure 1.3,lane 

3). Shown for comparison are a 50 yM copper-challenged culture and a culture to 

which chloramphenicol and 50 yM  copper were added.

The quantity of protein in the 19-25 kDa molecular weight range was 

compared in the supernatants and cell pellets of Vibrio alginolyticus cultures 

challenged with 25 yM  CuS04 (Table 1.3). Analysis of SDS-PAGE gels by 

densitometry showed that CuBPl was more concentrated in the supernatant than in 

the cellular fraction of these cultures. The proteins quantitated were 23.5,21 and 

19 kDa. The 23.5 kDa protein appears in some copper-challenged supernatants in 

varying density, and is not isolated by the IMAC column. The density of this protein 

in supernatants increased from 0.157 AU*mm at 24 hours to 0.324 AU*mm at 48

25
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Figure 1.2. Supernatants from Vibrio alginolyticus batch cultures challenged withO- 
50 pM  CuS04.

Lane 1: 0 pM  Cu 
Lane 2: 1.0 Cu 
Lane 3: 2.5 Cu 
Lane 4: 5.0 /nM Cu 
Lane 5: 10.0 pM  Cu 
Lane 7: 50.0 pM  Cu
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Figure 1.3. Effect of chloramphenicol on CuBP production. SDS-PAGE of V. 

alginolyticus supernatants:

Lane 1: 50 yM  copper-challenged without chloramphenicol
Lane 2: chloramphenicol-treated only
Lane 3: 50 yM  copper-challenged with chloramphenicol
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Table 1.2. Percent contribution of CuBP to total supernatant protein and [CuBP] vs. 

[Cu] in supernatants from broth cultures of Vibrio alginolyticus.

[Cu](/xM) % CuBP1 [CuBP]/OD2 [CuBP]/Protein3 
(X 103)

0 ND4

1.0 1.2 1.08 1.47

2.5 1.3 1.30 1.71

5.0 1.9 2.01 2.39

10.0 3.0 3.97 3.76

50.0 5.0 10.88 10.28

1 The percentage of supernatant protein comprised by CuBP was calculated by laser 
densitometry of SDS-PAGE gels.

2 [CuBP] is expressed in /xg* ml'1. OD (optical density) measured at 595 nm on a 
microtiter plate reader.

3 Protein in this equation is cellular protein (/xg-ml1).

4 Not detectable by densitometry of SDS-PAGE gels.
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Table 1.3. Comparison of supernatant and cellular proteins0 in the 19 to 25 kDa 
range from copper-challenged cultures of Vibrio alginolyticus. The 23.5 kDa 
protein, which was not consistently present in copper-challenged supernatants, 
included for comparison with the CuBPs.

Band Density* (Au-mm)

Protein Supernatant Supernatant Cellular
24 Hrs 48 Hrs 48 Hrs

23.5 kDa 0.157 0.324 1.125

CuBPl 0.279 0.327 0.208

CuBP2 0.042 0.110 0.360

0 Band density (Au • mm) was measured by laser densitometry of SDS-PAGE gels.
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hours, while at 48 hours the pellet concentration was 1.125 AU*mm. CuBPl 

increased from 0.279 AU*mm at 24 hours to 0.327 AU*mm at 48 hours, and was less 

concentrated at 48 hours in the cell pellet (0.208 AU*mm) than in the supernatant. 

CuBP2 also increased from 24 to 48 hours in the supernatant (from 0.042 AU*mmto 

0.110AU*mm), and was more concentrated in the pellet (0.360 AU*mm) than in the 

supernatant.

Since gel-to-gel variation can be a problem when comparing proteins 

separated by SDS-PAGE, an average molecular weight for CuBPl was estimated 

from 21 samples on 14 different gels. The mean molecular weight calculated was 

20.9 kDa with a standard deviation of .57 kDa. The molecular weight of CuBP2 was 

estimated at 19.1 kDa from 13 samples on 9 different gels.

At times CuBPl and CuBP2 were resolved as two bands by SDS-PAGE, and 

at other times one band of approximately 20 kDa was resolved. In order to 

determine whether sample processing techniques were causing protein breakdown, 

supernatant samples dialyzed for 16 h or 3 days were subjected to freeze-thaw cycles 

and compared to others stored at -80° C. Protein profiles for all treatments were 

indistinguishable (Figure 1.4). The calculated molecular weight of CuBPl from this 

gel was 22.4 kDa, and CuBP2 was 21.7 kDa. However, when the same samples were 

analyzed on replicate gels, samples from all treatments contained one band with a 

calculated molecular weight of 22.0kDa (data not shown; Gordon eta l., 1993).
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Figure 1.4. SDS-PAGE of unfractionated control and 50 /tM copper-challenged 

Vibrio alginolyticus supernatants subjected to different dialysis times and 

storage temperatures.

Lane 1: Control, 16 h dialysis, -20° C storage, 3 ml culture 
Lane 2: 50 M Cu, 16 h dialysis, -20° C storage, 3 ml culture 
Lane 3: Control, 3 day dialysis, -20° C storage, 3 ml culture 
Lane 4: 50 fiM Cu, 3 day dialysis, -20° C storage, 3 ml culture 
Lane 5: Control, 16 h dialysis, -80° C storage, 3 ml culture 
Lane 6: Molecular weight standards 
Lane 7: 50 /*M Cu, 16 h dialysis, -80° C storage, 3 ml culture 
Lane 8: Control, 3 day dialysis, -80° C storage, 3 ml culture 
Lane 9: 50 Cu, 3 day dialysis, -80° C storage, 3 ml culture 
Lane 10: Control, 16 h dialysis, -80° C storage, 20 ml culture1 
Lane 11: 50 nM Cu, 16 h dialysis, -80°C storage, 20 ml culture1

Samples were frozen and thawed five times before being analyzed.
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DISCUSSION

The presence of extracellular copper binding material in copper challenged 

Vibrio alginolyticus cultures was demonstrated by Schreiber et al. (1990). Coelution 

of copper-binding activity and a 21 kDa, copper-induced band (identified by SDS- 

PAGE) in GPC fractions were consistent with a model of copper complexation by 

extracellular protein(s) (Harwood-Sears and Gordon, 1990a). Supernatants from 

cadmium-stressed batch cultures contained ca. 20 kDa proteins that were not present 

in the control, suggesting that cadmium may induce a similar response (Gordon and 

Harwood-Sears, 1988). In this study, further evidence that the compound(s) 

responsible for extracellular copper binding are proteins was obtained, and their 

induction was studied as a function of time and of copper concentration.

In order to identity the copper-induced supernatant proteins of Vibrio 

alginolyticus with affinity for copper, gel permeation chromatography tractions were 

analyzed by SDS-PAGE. CuBPl coeluted with copper-induced, copper binding 

activity in GPC fractions (Harwood-Sears and Gordon, 1990a), and CuBP2 was also 

sometimes detectable. Neither the CuBPs nor a peak in copper binding were 

detectable in GPC fractions from control supernatants (Harwood-Sears and Gordon, 

1990a). When supernatants from 24 hour control cultures were compared to 

supernatants from 24 hour copper challenged cultures it was apparent that CuBPl 

and CuBP2 are present at very low concentrations in controls. The dilution effect 

inherent in gel permeation chromatography coupled with the low concentration of 

CuBPs in control supernatants explains the absence of CuBPs in control GPC
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fractions.

CuBPl was detectable in 50 /xM copper challenged supernatants as soon as 

two hours after the addition of copper. The concentrations of both CuBPl and 

CuBP2 (detectable by 24 hours) increased most dramatically within 24 hours, and 

continued to increase from 24 to 48 hours. In a direct comparison of CuBP 

concentration in 24 hour control vs copper challenged supernatants, CuBPl was 25 

times more concentrated and CuBP2 was 46 times more concentrated in copper 

challenged supernatants. These proteins were not detectable in supernatants from 

copper challenged, chloramphenicol-treated cultures, supporting both the contention 

that they are the product of de now  synthesis and that they are proteinaceous.

CuBP expression (CuBPl + CuBP2) was induced by copper concentrations 

as low as 1 jxM, and increased steadily with increasing copper concentrations. 

Estimated CuBP concentrations were normalized to the standing stock in the 

cultures, since cell numbers in batch and chemostat (Gordon et al. , 1993) cultures 

decrease as a function of copper levels. In each case, whether the concentration of 

CuBP was normalized to optical density (tenfold increase from 1 - 50 /xM Cu) or to 

cellular protein (tenfold increase), or was expressed as the percentage of supernatant 

protein (fourfold increase), the concentration of CuBP increased as a function of 

copper concentration.

Three ca. 20 kDa proteins (19 - 23.5 kDa) were quantitated and compared in 

the supernatants and cell pellets of 25 /xM copper challenged cultures. Only CuBPl 

was present at higher extracellular than intracellular concentrations. While this
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observation supports the hypothesis that CuBPl is an exported protein, it does not 

rule out the possibility that CuBP2 is also exported. CuBP2 was about three times 

more concentrated in the cell than in the supernatant, while there was seven times 

as much of the 23.5 kDa protein in the cell as outside the cell. The 23.5 kDa protein 

appeared erratically in supernatants from copper-challenged cultures, at varying 

concentrations or not at all.

The affinity of CuBPl and CuBP2 for copper has been confirmed by 

immobilized metal ion affinity chromatography (IMAC) (Harwood-Sears and 

Gordon, 1990a). A copper-charged IMAC column on a Fast Protein Liquid 

Chromatography (FPLC) system was used to concentrate and partially purify the two 

copper-induced proteins. The 23.5 kDa protein mentioned above had relatively little 

affinity for the IMAC column, and is therefore not likely to be a protein with high 

affinity for copper. Likewise, a 17.6 kDa protein was detectable in some copper 

challenged cultures and not in others, but was always at very low concentration. This 

protein had some affinity for the IMAC column under the loading conditions 

described, but was one of the minor bands eluted from the column when it was 

detected (Harwood-Sears and Gordon, 1990a).

The model for copper detoxification by Vibrio alginolyticus suggested by all the 

data obtained to this point implicates an extracellular, proteinaceous copper-binding 

compound(s). The protein(s) are produced at an increased rate during the copper- 

induced lag phase and during regrowth of the cultures, resulting in a substantial 

concentration of soluble, nontoxic copper (Schreiber et al., 1990). All proteins
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complex copper to some extent and thus, any expression of extracellular protein 

would partially ameliorate the effects of copper. CuBP is a candidate for a specific 

copper-complexing protein in view of its inducibility by copper, its affinity for copper, 

and its increased relative contribution to supernatant protein with increasing copper 

concentrations. The possibility that these proteins complex copper intracellularly and 

are then exported in a manner analogous to the E. colipco (Rouche et al., 1989) 

system has not been ruled out.
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CHAPTER II: CONTINUOUS CULTURE OF VIBRIO ALGINOLYTICUS IN THE 

PRESENCE OF COPPER: PHENOTYPIC AND GENETIC CHANGES

INTRODUCTION

Continuous culture of microorganisms is an alternative to conventional batch 

culture methods which can be advantageous in experiments designed to investigate 

the physiological effects of an environmental stress. During continuous culture, 

nutrient solution from a reservoir enters the system at flow rate f. Since the volume 

of the culture is finite, spent media containing cells must exit the system at the same 

value of f. The dilution rate, D, is determined by f/v, where v is the volume of the 

culture vessel. The rate of loss of cells (where x is the concentration of cells in the 

culture) can be expressed as:

dx = fix') =  D(x)
dt v

In a continuous culture that has reached equilibrium /n, the specific growth 

rate, is equal to D, the dilution rate, so that fix = Dx. Thus, the contribution of new 

cell growth to the standing stock in the culture is equal to the number of cells exiting 

the culture. The maximum specific growth rate (nm^) attainable in a given culture 

is determined by the minimum generation time (g) for the microorganism under the 

culture conditions, since n -  In 2/g (Brock and Madigan, 1991. p. 832). Among the
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variables that contribute to /xmax are the bacterium/strain being cultured, the 

composition of the medium, and temperature. If the flow rate in a continuous 

culture exceeds /xmax, the quantity /x(x) will become less than D(x), and washout will 

occur.

The obvious advantage of continuous culture over batch culture in studies 

designed to measure an environmental effect on cell physiology is the continuous 

state of exponential growth the cells achieve in continuous culture. Heterotrophic 

bacteria enter a lag phase when first inoculated into fresh batch culture, followed by 

a period of exponential growth. After nutrients in the batch culture are exhausted, 

bacteria enter a stationary phase that is followed by cell death. The physiological 

state of the bacteria can be eliminated as a variable in continuous culture, allowing 

the effects of the environmental factor in question (in this case, added copper) to be 

more readily isolated.

The open nature of continuous culture systems is advantageous for studies of 

copper/microbial interaction, allowing continuous exposure of the organism to a 

calculated input of copper per unit time. Copper stress can be applied and 

maintained, or varied, over long periods of time (months) to a single culture. Dead 

cells and products of cell lysis are washed out of the system, minimizing any 

contribution they might make to supernatant protein profiles and/or copper 

complexation in batch culture.

Chemostat studies of the growth of Vibrio alginolyticus during continuously 

applied copper stress were initiated (1) to determine whether the bacteria could
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survive in continuous culture during copper stress, (2) to test the hypothesis that cell 

numbers in copper-stressed cultures are significantly lower than their unstressed 

counterparts, which implies an energy-requiring mechanism of copper resistance, and 

(3) to determine whether CuBP is produced in continuous culture under copper- 

stressed conditions. We found that V. alginolyticus could survive long-term copper 

stress at levels of up to 33 /xM with a generation time of 2.7 hours, that cell numbers 

decreased significantly in copper-stressed vs. unstressed cultures as a function of 

copper concentration, and that a protein of the same molecular weight as CuBP 

which displayed identical chromatographic behavior was expressed only in copper- 

stressed chemostat cultures (Gordon etal., 1993).

This chapter describes the growth of Vibrio alginolyticus during short-term 

exposure (days) to increasing levels of copper in a continuous culture system. The 

possibility that the ca. 30 kilobase pair (kb) plasmid of V. alginolyticus is amplified 

during copper stress was explored by comparing plasmid DNA extracted from batch 

and chemostat cultures grown with and without copper stress (Harwood-Sears and 

Gordon, 1990b). Copper-resistant (Cu1) V. alginolyticus were isolated from a 

chemostat culture under long-term copper stress (Gordon et al., 1993). Their 

frequency (Cur cells/total culturable cells) was quantitated at several copper levels. 

Phenotypic variations from the wild-type (WT) V. alginolyticus and their relationship 

to the Cur phenotype were studied.
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MATERIALS AND METHODS

Continuous Culture. The effect of added copper on chemostat cultures of 

Vibrio alginolyticus in artificial seawater medium (ASWM) was followed by 

monitoring the cell density in cultures with and without addition of micromolar levels 

of copper to the medium reservoir. Vibrio alginolyticus was grown in a one liter 

chemostat (Bio-Flo III, New Brunswick Scientific) in ASWM composed of 20 g/1 

Instant Ocean (Aquarium Systems, Mentor, OH), 19 mM NH4C1, 0.15mM Na2HP04 

and 4 mM glucose, pH 7.5. The medium was filtered through a glass fiber filter 

before autoclaving; nutrients and glucose solutions were autoclaved separately. 

Copper (CuS04) was filter sterilized and added to the reservoir in copper-stressed 

cultures to a final concentration of 5,10, or 20 pM. Chemostat pH was regulated at

7.5 with 0.2 N NaOH. Air flow was set at one liter/min., agitation at 200 r.p.m.and 

temperature at 25°C. The dilution rate (D) was0.113/h (generation time (Tgen) =

6.1 h). Optical density was measured with a Klett-Summerson colorimeter. 

Absorbance on the meter was calibrated to cell numbers by acridine orange direct 

counts. Culture purity was monitored daily by streaking on Tryptic Soy Agar and 

Marine Agar 2216 plates (Difco).

Plasmid DNA was extracted from a chemostat culture before and after the 

addition of 20 /zM CuS04 to the medium reservoir. The culture had been 

equilibrated with copper for 14 days, and had recovered to within approximately 80% 

of its pre-copper cell concentrations when it was collected (Gordon eta l., 1993).

Batch cultures for plasmid DNA extraction. Batch cultures were grown in
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SWM9 broth as previously described (Chapter I) except that the culture volume was 

9 liters and cultures were aerated with a stainless steel air stone. The control culture 

was harvested after 24 hours. Copper (25 /tM) was added to the second culture 

during exponential growth. The copper-stressed culture was harvested after 48 hours.

Concentration o f cells for plasmid DNA extraction. Cells were concentrated 

from cultures by tangential flow filtration (TFF) with a Pellicon cassette system 

(Millipore). Cells from the chemostat culture (3 1) were collected on ice, 

concentrated with a 0.2 pm  (GVLP) filter cassette, and resuspended to a 1000X 

concentration in TE buffer (Tris HC1, lOmM; EDTA, 1 mM; pH 7.4). Batch cultures 

(8.51) were concentrated approximately 400X by TFF. Cell pellets were stored at - 

-20° C until plasmid DNA was extracted.

Plasmid DNA extraction and electrophoresis. Plasmid DNA was extracted by 

the alkaline lysis method (Ausubel,1987). Seven ml of concentrated cells from each 

culture were used for the plasmid preparations. Plasmid DNA was treated with 

DNAase-free RNAase for 2 hours at 37° C. Electrophoresis was carried out in a 

0.7% agarose gel run on a Fotodyne system. The gels were 9.5 mm x 7 mm x 1 mm, 

and were run at 59 V for 2 hours at room temperature. 10 p\ of each sample were 

loaded on gels with the exception of the control batch culture (2 p\ load), which was 

excessively viscous. Gels were stained inethidium bromide (5 ^g/ml) for 25 minutes, 

destained in distilled water for 10 minutes, and photographed.

Analysis o f copper-resistant cells in chemostat cultures. Copper-resistant cells 

in the chemostat were isolated on artificial seawater medium buffered with HEPES
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(Sigma) and supplemented with 20 /*M CuS04 (HASW). Instant Ocean (I.O.) 

solution with HEPES added was filtered through a 0.2 nm filter to remove fine 

particulates. The I.O./HEPES solution was adjusted to pH 7.5. Agar was added, the 

mixture was brought to a boil, and autoclaved. Sterile glucose, nutrient 

(Na2HP04/NH4Cl) and copper solutions were added after the media was cooled. 

Glucose was made as a 200 g*I'1 stock solution, then autoclaved. The nutrients were 

made as a 100X solution (Na2HP04, 15 mM; NH4C1, 1.9 M), then autoclaved. 

Copper was added from a filter-sterilized, 0.1 M stock solution. The composition of 

the medium less copper was as follows: Instant Ocean salts, 8 g/1; agar (Difco Bacto- 

agar) 15 g/1; glucose, 28 mM; HEPES, 25mM; NH4C1, 19 mM; Na2HP04, 0.15mM; 

pH 7.5.

Quality control for HASW plates included a positive control for both 

unamended and 40 /iM Cu-amended plates (WT V. alginolyticus and Cu40B3 

respectively), and a negative control for Cu-amended plates (WT V. alginolyticus). 

Controls were streaked from fresh (less than one week old) cultures, and growth was 

scored after two days (unamended) or four days (40 /xM Cu). The variability in 

culturable counts on HASW plates was assessed by calculating the coefficient of 

variation (standard deviation divided by the mean x 100; Khazanie, 1979) for 

replicate (n >  9) sets of plates. Only sample dilutions containing 20-300 colonies 

were counted. Results from plate counts on marine agar 2216 (Difco), a 

commercially prepared medium, were used for comparison.

Samples were collected aseptically from the chemostat with and without added
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copper. Serial dilutions of the samples were plated in triplicate on HASW with 20 

or 40 pM copper. A culturable cell count was obtained by plating the same sample 

in triplicate on marine agar (Difco 2216) or on HASW agar. HASW plates with 

copper were counted after 5 - 7  days, and marine agar plates were counted after 24 

and 48 hr. Only colonies larger than 1 mm diameter were counted on copper- 

containing plates. The number of these colonies, corrected for dilution, was 

designated as the number of copper-resistant cells in the culture. The percent 

copper-resistant cells was calculated from the ratio of colonies formed on copper- 

containing plates to those on marine agar or on HASW agar.

In one experiment, the ability of Cur isolates (Cu40Al and Cu40B3) to form 

colonies on HASW + 40 pM  Cu plates after 10 successive passages on marine agar 

(10° MA) was compared to that of recently Cu-stressed cultures. The inoculum for 

10° MA broth cultures for both mutants was obtained from the tenth successive 

subculture on a marine agar plate. 40 ml broth cultures of Cu40Al and Cu40B3 

were grown in unamended SWM9 for the 10° MA treatment. The inoculum for 

recently Cu-stressed broth cultures of Cu40Al and Cu40B3 was obtained from 

cultures growing on HASW +  40 pM  Cu. A Cu40Al broth culture was grown 

overnight in SWM9 +  50 pM  Cu, while Cu40B3 was grown in unamended SWM9 

(40 ml each). Broth cultures for both treatments were grown at room temperature 

on a shaker, serially diluted and plated on HASW agar with and without 40 pM  Cu. 

Plates were incubated at room temperature for four days (no Cu) or one week (40 

pM  Cu).
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Phenotypic determinations. The oxidase and swarming characteristics of V. 

alginolyticus from copper-stressed chemostat populations were scored for random 

samples isolated on marine agar, and for Cur colonies isolated on HASW +  40 pM  

Cu plates. Cur colonies were subcultured to marine agar for phenotypic 

determinations. Pathotec cytochrome oxidase test strips (Organon Teknika, Durham, 

NC) were used for the oxidase test. Swarming was scored visually after two days and 

five days, as some isolates swarmed more slowly than the wild-type.

RESULTS

Copper-stressed chemostat. In a short-term copper stress experiment, the 

chemostat culture was allowed to equilibrate for five days without added copper. 

When the medium reservoir was changed to HASW +  5pM  CuS04, cell numbers 

decreased from 9 x 108 cells/ml to 7.5 x 108 cells/ml (Figure 2.1). After two 

additional days of exposure to 5 pM copper, the cell numbers had increased slightly 

to 8.0 x 108 cells/ml. When a final concentration of 10 pM  CuS04 was added to the 

reservoir, cell numbers dropped to a low of 6.1 x 108 cells/ml, recovering slightly over 

the next two days. Increasing the total copper concentration to 20 pM  caused cell 

numbers to decrease to 3.2 x 108 cells/ml after five days.

Plasmid DNA. Control and copper-stressed batch and chemostat cultures of 

V. alginolyticus were screened for the presence of plasmid DNA. All of the 

treatments contained a plasmid DNA band of ca. 30 kb (Figure 2.2). The cultures 

were not at the same optical density when harvested, nor were concentration factors
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Figure 2.1. Short-term copper challenge of Vibrio alginolyticus in continuous culture. 

Optical density (O.D.) measured in Klett units.
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Figure 2.2. Plasmid DNA from control and copper-challenged Vibrio alginolyticus

cultures.

Lane 1: Control batch culture
Lane 2: 50 nM copper-challenged batch culture
Lane 3: Molecular weight standards
Lane 4: control continuous culture
Lane 5: 20 /xM copper-challenged continuous culture
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equal. These data are presented in Table 2.1. The quantity (cells/ml xCF) denotes 

the number of cells contributing plasmid DNA to the bands in Fig. 2.2.

Although the gel was not scanned, it is evident from visual inspection of Fig.

2.2 that the control batch culture sample contains the most plasmid DNA. Its 

copper-stressed counterpart has a faint plasmid band that is largely obscured by a 

smear which is probably chromosomal DNA fragments. The samples from the 

chemostat can be readily compared, as the plasmid bands are well resolved and 

plasmid DNA was extracted from similar cell numbers (Table 2.1). The plasmid 

band in the control chemostat sample is appreciably brighter than that from the 

copper-stressed chemostat culture, indicating that there was at least as much plasmid 

DNA/cell in the control chemostat culture as in its copper-stressed counterpart.

Copper-Resistant Mutants. Copper-resistant (Cu1) mutants of V. alginolyticus 

were isolated from long-term, copper-stressed continuous cultures. Copper-resistant 

(Cu1) mutants were selected by their ability to form colonies at least 1 mm in 

diameter on HASW agar plates supplemented with copper. Putative Cur isolates that 

could not form colonies 1 mm or greater when subcultured to copper-amended media 

were discounted. Cur variants of V. alginolyticus were indistinguishable from the wild 

type by gram stain and selected biochemical tests (API 20E), with the exception of 

the oxidase test (see below). All Cur V. alginolyticus isolates exhibited attenuated 

swarming on marine agar compared to the wild type, that is, they swarmed slowly or 

not at all. Copper concentrations in chemostat cultures and plates, and the frequency 

of colonies resistant to the stated concentrations of copper are given in Table 2.2.
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Table 2.1. Cell numbers and concentration factors in cultures for plasmid 

extraction/electrophoresis.

Culture Conditions Cells/ml CF1 Cells x CF (xlO11)

Control Batch 1.3xl09 327X 4.3

25 fj.M Cu Batch

00oXc
n 386X 1.7

Control Chemostat 7.2x10s 160X 1.2

25 /xM Cu Chemostat 6.8x10® 150X 1.0

’CF =  Concentration Factor
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Table 2.2. Frequency of Cur mutants in copper-stressed continuous cultures.

Culture Days' [Cu]
Chemostat

[Cu]
Plates

Cells/ml 
No Cu

Cells/ml 
+  Cu

F Cur 2

A 0 /zM 20 ix M 5.4xl08 8.0x10® 1.5x10s

A 14 20 fiM 20 ixM 2.4x10* 1.4x10® 5.8x10'

A3 21 0/zM 20 5.6x10® 7.5x10s 1.3x10®

B 27 20 fiM 20 fxM 2.9x10® 8.3x10* 2.8x10"

B 27 20 /zM 30 /zM 2.9x10® 5.5x10® 2.0x10 s

C4 20 32 /zM 40 /zM 1.9xl07 4.2xl06 2.2x10'

C 30 20 ix M 40 fxM 3.0x10® 6.5xl04 2.1x10"

C5 34 20 ixM 40 fxM 1.0x10® 1.4x10s 1.3x10*

C 36 20 /zM 40 /ttM 5.4x10® 1.0x10s 1.9x 10"

C 36 20 ixM 20 fxM 1.0x10® 0 < 1.9x 10"

C 42 20 ixM 40 pM 5.8x10® 3.4x10s 5.9 x 10"

C 42 20/zM 20 ixM 5.8x10® 6.5x10s 1.1x10®

D6 18 20 pM 4 0  ixM 5.6x10® 1.9xl07 3.4xl0'2

1 Number of days of exposure to copper.

2 Frequency Cur calculated by cell number on copper-amended media divided by 
cell number on nonselective media.

3 Cu-containing medium was replaced with medium with no added copper 7 days 
before the sample was taken.

4 Culture C had been exposed to 16 fxM copper for 13 days before the copper 
concentration was raised to 32 fxM. Time of exposure given is cumulative from 
beginning of exposure to 16 /zM Cu.

5 Cell numbers were dropping at the time this sample was taken. Later samples 
were collected after the culture had recovered.

6 Culture D was exposed to 5, 10, 15, then 20 /zM Cu in a stepwise manner. Time 
of exposure is cumulative over all Cu concentrations.
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Coefficients of variation within triplicate plate counts for marine agar, 

HASW and HASW +  Cu plates were calculated. The average coefficients of 

variation were: marine agar, 8.0 (n =9); HASW, 11.3(13); HASW +  Cu, 12.0(9). 

The frequency of Cur (20 /xM) cells in batch cultures averaged 4.7 x 10‘5 ±  7.1 x 

10'5, ranging over several orders of magnitude between cultures.

The addition of copper to continuous cultures resulted in increased 

frequencies of Cur colonies. The frequency of cells resistant to 20 /xM Cu 

[frequency Cur (20 /xM)] in a control chemostat culture (Culture A, Table 2.2) was

1.5 x 10'5. Fourteen days after the addition of 20 /xM Cu, the same culture 

contained a Cur (20 /xM) frequency of 5.8 x 10'!, a 39,000 fold increase. When 

copper-amended media was replaced with unamended media, the frequency of 

cells resistant to 20 /xM Cu decreased to 1.3 x 10'3.

In a second continuous culture (Culture B, Table 2.2), the frequency of 

cells resistant to 20 jxM Cu was 2.8 x 104 after 27 days of copper stress (20 jxM). 

The same sample contained a frequency of 2.0 x 10'5 cells resistant to 30 /xM Cu.

A third continuous culture (Culture C, Table 2.2) was stressed with 32 /xM 

Cu. This culture contained 22% cells resistant to 40 jxM Cu (frequency = 2.2 x 

10'1). No control (0 /xM Cu) data is available for this experiment, however, the 

frequency of cells resistant to 40 /xM Cu from control batch cultures ranged from 

6.7 x 10'8 to <3.1x 10‘9 ( Table 2.5). When copper in the reservoir was decreased 

to 20 jxM, the frequency of Cur (40 /xM) cells dropped to 2.1 x 104. Cell densities 

dropped precipitously in the culture around day 33 (post Cu addition) due to
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unknown factors. A sample taken while the density was dropping gave a 

frequency of 1.3 x 10'2 Cur (40 /xM) cells. After the culture had recovered to its 

pre-crash density, the frequency Cur dropped to 1.9 x 104. Cells from this sample 

were also spread on plates containing 20 /xM Cu. No colonies grew on the lowest 

dilution plated (104), resulting in a frequency Cur (20 jxM) of <1.9x 104. Six 

days later, the frequency Cur (40 /xM) was 5.9 x 104, and the frequency Cur (20 

pM) was 1.1 x 10‘3.

A fourth chemostat culture (D, Table 2.2) was stressed with incrementally 

increasing copper concentrations from 5 to 20 /xM (unpublished data). The 

culture was sampled after 11 days of exposure to 20 /xM Cu (18 days total 

exposure to elevated [Cu]). This culture was resistant to 40 /xM Cu at a frequency 

of 3.4 x 102.

Phenotypic changes in long-term copper-stressed continuous cultures. V. 

alginolyticus normally exhibits vigorous swarming motility on solid media 

containing relatively high Na levels, such as marine agar. Quality control for 

chemostat cultures in this lab includes streaking samples on marine agar (MA) 

and trypticase soy agar (TSA) to check culture purity. Over the course of long

term copper stress in chemostat cultures, nonswarming V. alginolyticus were 

consistently found among the swarming cells (Gordon et al., 1993), and were 

sometimes the dominant phenotype found in extremely stressed cultures. This 

phenomenon occurred in cultures exposed to copper concentrations as low as 15 

/xM (Figure 2.3). In most cases, the nonswarming colonies swarmed normally
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Figure 2.3. Vibrio alginolyticus colonies from a 20 /xM copper-challenged continuous 

culture plated on marine agar. Colonies are a mixture of swarming (S) and 

nonswarming (NS) phenotypes.
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Figure 2.4. Wild-type Vibrio alginolyticus colonies plated on marine agar. All are 

displaying swarming motility.
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when subcultured to a fresh marine agar plate, however some isolates did not 

regain the swarming phenotype even after repeated subculture on nonselective 

agar.

A second phenotypic deviation noted after long-term copper stress was the 

mutation from an oxidase positive to oxidase negative phenotype. Unlike the 

nonswarming variants, which tend to readily revert to swarmers, the oxidase 

negative mutants retain this phenotype after repeated subculture on nonselective 

agar. A possible correlation between the oxidase negative phenotype and copper 

resistance was investigated after it became apparent that a high percentage of the 

copper-resistant isolates from a 32 /iM copper-stressed culture (Culture C, Table 

2.2) were oxidase negative.

At the time these experiments were carried out, the copper concentration 

in the reservoir had been reduced to 20 nM. Of ten colonies isolated on marine 

agar, none were oxidase negative (Table 2.3). The culture was sampled several 

days later, just after cell numbers had "crashed". The culture had become 

dimorphic, consisting of normal-sized colonies ( 2 - 3  mm diameter), and smaller 

colonies about 1 mm in diameter. None of the colonies exhibited swarming 

motility. None of the normal colonies tested were oxidase negative (Table 2.3), 

however 100% of the small colonies were oxidase negative. When the oxidase 

negative colonies were subcultured to HASW +  40 nM Cu, 7 of 15 isolates 

showed minimal growth on the plates. After further subculturing on Cu-amended 

agar, 2 of the 15 (13.3%) were found to be copper-resistant, i.e. showed
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Figure 2.5. Growth of the copper-resistant mutant Cu40B3 plated on HASW + 35 

juM Cu compared to that of wild-type Vibrio alginolyticus.
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Table 2.3. Percent oxidase negative Vibrio alginolyticus in a copper-stressed 

chemostat culture.

Trial Nonselective Isolates (n)2 40 fiM Cu Isolates3

1 0% (10) 93% (14)

2 (>  2 mm)1 0% (12)

2 (1 mm)1 100% (15)

1 Colony diameter.

2 Colonies isolated on Marine Agar 2216.

3 Colonies isolated on HASW +  40 piM Cu, and subcultured to Marine Agar 2216 
for oxidase test.
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substantial growth on Cu-amended agar over several passages.

The occurence of a cytochrome oxidase negative phenotype was strikingly 

frequent among Cur V. alginolyticus isolates. Of 41 Cur isolates tested from batch 

and continuous cultures, 30 were oxidase negative (73%). When the oxidase test 

was carried out on copper-resistant isolates from continuous culture C, 93% were 

found to be oxidase negative. The sole oxidase positive, Cur isolate was 

designated Cu40B3. An oxidase negative isolate, isolated when the culture was 

stressed with 32 /*M Cu, was designated Cu40Al. Both of these isolates were 

nonswarming after serial passages on marine agar.

The stability of the Cur phenotype was tested by plating Cu40Al and 

Cu40B3 on HASW +  40 /tM Cu after 10 successive passages on marine agar. 

Their ability to form colonies on copper-amended plates was compared to that of 

cultures recently exposed to copper (Table 2.4). Wild-type V. alginolyticus from 

an unchallenged broth culture, plated for comparison with the variants, were 

resistant to this level of copper at a frequency of 6.7 x 10'8.

Eighty-six percent of the experienced (recently copper challenged) Cu40Al 

cells could form colonies on Cu-amended plates. A slightly smaller proportion 

(54%) were resistant after ten nonselective passes. Only 0.02% (2.4 x 104) of 

experienced Cu40B3 cells could grow on Cu-amended plates, and 0.05% (4.7 x 

10-4) could grow after ten nonselective passes. Thus, Cu40Al and Cu40B3 

populations contained essentially the same percentage of copper-resistant cells 

after extensive subculture on nonselective media as they did when recently
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Table 2.4. Comparison of the frequency of copper-resistant colonies and stability of 

the phenotype after 10 successive nonselective passages for copper-resistant

variants of Vibrio alginolyticus.

Isolate Culture
Conditions

Cell-ml'1 
HASW (No Cu)

Cell-ml1 
HASW+40 /xM 

Cu

Frequency
Cur

Wild-
Type

MA 1.0 x 109 67 6.6 x 10‘8

Cu40B3

<SoO

1.5 x 109 7.2 x 10s 4.7 x 104

Cu40B3 Recent Cu2 1.2 x 109 3.0 x 10s 2.4 x 10-4

Cu40Al 10° MA1 5.2 x 108 2.8 x 108 5.4 x 101

Cu40Al Recent Cu2 3.5 x 108 3.0 x 108 8.6 x lO'1

1Cu40B3 and Cu40Al colonies were taken from HASW + 40 /xM CuS04 plates, 
passed ten times on nonselective marine agar, and grown overnight in SWM9 broth. 
Stable Cur colonies were quantitated by spread plating the overnight culture on 
HASW +  40 /xM Cu.

2Cu40B3 and Cu40Al colonies were taken from HASW + 40 /xM Cu plates, grown 
overnight in a broth culture (SWM9 for Cu40B3; SWM9 + 40 /xM Cu for Cu40Al), 
and Cur colonies quantitated by spread plating on HASW + 40 /xM Cu.
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exposed to copper. Both mutants retained their oxidase phenotype through the 

nonselective passes.

In subsequent experiments, Cur individuals in Cu40B3 cultures comprised, at 

most, 34% of the total population (Table 2.5), and averaged 11.6%. In one 

experiment, Cu40B3 was grown in broth culture supplemented with 50 /xM Cu, then 

plated on HASW +  40 /xM Cu (Table 2.5). The frequency of Cur cells in this culture 

was 3.0 x 10'1 (30%) which, although high, was lower than the corresponding Cu40B3 

culture grown in broth without Cu. When this experiment was performed twice with 

Cu40Al, 79% and 86% of cells grown in copper-amended broth were copper- 

resistant. The measured frequency of Cur cells in Cu40B3 cultures is thus both lower 

and more variable than that in Cu40Al cultures.

After the fourteenth successive passage of Cu40B3 on marine agar, some 

colonies reverted to swarming motility. A concurrent decrease in the number of 

colonies on streak plates (HASW + 40 /xM Cu) was noted. After several successive 

subcultures of swarming colonies on MA, a pure culture of swarming segregants was 

obtained (Cu40B3 SW). No discreet colonies grew on Cu-amended streak plates of 

Cu40B3 SW.

The loss of copper resistance in Cu40B3 SW was confirmed by comparing the 

frequency of Cur (40 fiM) revertants against the frequency of Cur (40 /xM) Cu40B3 

(Table 2.5). In five experiments, the frequency of Cur revertants was never higher 

than 5.6 x 10'8. No Cur colonies were isolated from revertant cultures in 3 of 5 

experiments (Table 2.5). Nonswarming Cu40B3 (the phenotype originally isolated
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Table 2.5. Comparison of the ability of Cu40B3 (NS) and its swarming derivative 

 Cu40B3 (SW) to form colonies on 40 nM  Cu-supplemented media.

Isolate Culture
Conditions

Date Plate Count 
(0 ixM Cu)

Plate Count 
40 /lcM Cu 
(cells/ml)

Frequency
Cur

WT V. alg. MA-*SWM9 4-30-92 1.0 x 109 66 6.7 x lO'8

WT V. alg. MA->SWM9 5-13-92 1.0 x 109 0 <  1.6x lO'9

WT V. alg. MA->SWM9 7-22-92 1.6 x 109 0 <2.0x lO’9

WT V. alg. MA-*SWM9 7-28-92 2.7 x 109 0 <1.9x 10'9

WT V. alg. MA-*SWM9 8-11-92 3.2 xlO 9 0 <3.1x lO'10

Cu40B3 (NS) 10° MA-> 
SWM9

4-30-92 1.5 x 109 7.2 x 10s 4.7 x 10-4

Cu40B3 (NS) Cu-»SWM9 4-30-92 1.2 x 109 3.0 x 10s 2.4 x 104

Cu40B3 (NS) Cu-»SWM9 6-4-92 4 .1 x 107 1.7 x 106 4.2 x 10'2

Cu40B3 (NS) Cu-*SWM9 
+50 nM Cu

6-28-92 9.5 x 107 2.9 x 107 3.0 x 101

Cu40B3 (NS) Cu-*SWM9 6-28-92 8.5 x 107 2.9 x 107 3.4 x 101

Cu40B3 (NS) Cu-»SWM9 7-28-92 7.2 x 108 8.1 x 106 1.1 xlO '2

Cu40B3 (NS) Cu-»SWM9 8-11-92 1.6 x 109 5.5 x 107 3.4 x lO2

Cu40B3 (NS) Cu-»SWM9 
+ 50/iM Cu

9-16-92 4.0 x 107 3.0 x 107 7.5 x 101

Cu40B3 (NS) Cu->SWM9 9-16-92 4.1 x 108 1.4 x 107 3.4 x lO'2

Cu40B3 (Sw) MA^SWM9 6-4-92 1.4 x 109 0 <3.6x 10’9

Cu40B3 (Sw) MA->SWM9 7-12-92 8.3 x 108 0 <6.1x 10’9

Cu40B3 (Sw) MA-»SWM9 
+ 50 /tM Cu

7-12-92 9.5 x 106 0 <5.3x 10'7

Cu40B3 (Sw) MA-*SWM9 7-22-92 1.4 x 109 17 1.2 x 10’8

Cu40B3 (Sw) MA->SWM9 7-28-92 1.7 x 109 95 5.6 x 10’8
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from continuous culture) yielded comparatively high frequencies of Cur colonies, 

ranging from 2.4 x 10^ (10° MA) to 3.4 x 10'1 (Table 2.5). Cur (40 /zM) colonies 

from WT V. alginolyticus cultures were isolated from only one experiment out of four, 

where the frequency Cur (40 /zM) was 6.7 x 10'8. Thus, the frequency of Cur cells in 

swarming revertants of Cu40B3 is close to that of the wild-type.

When Cur (40 /zM) colonies were isolated from Cu40B3 SW cultures, they 

were subcultured on MA. Of seven isolates, two displayed wild-type swarming, and 

five were a mixture of swarming and nonswarming colonies. All formed discreet 

colonies when subcultured to copper-amended plates. When the secondary copper 

culture was subcultured to MA, all seven isolates contained a mixture of swarming 

and nonswarming colonies. The observed switch from swarming to nonswarming 

culture morphology in the Cu40B3 SW derivatives is consistent with the observations 

made for V. alginolyticus in copper-stressed continuous culture: exposure to toxic 

levels of copper inhibits swarming in some, but not all cells. In most isolates the 

phenomenon is readily reversible, but mothers, i.e.Cu40B3 and Cu40Al, the ability 

to swarm is permanently or semi-permanently ablated.

DISCUSSION

The short-term copper stress experiment (Figure 2.1), in which cell densities 

dropped, then equilibrated at a lower level with increasing copper concentrations, 

suggested that Vibrio alginolyticus overcomes the toxicity of copper by an energy- 

requiring mechanism. The short-term copper-stressed chemostat results were also

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



consistent with observations of decreased cell densities with copper stress in batch 

cultures (Howell et al., 1992). Studies of long-term copper stress in continuous 

cultures confirmed that, at equilibrium, the yield (Y = grams biomass/grams 

substrate) (Brock and Madigan, 1991) in copper-stressed cultures is significantly 

lower than in unstressed cultures, and is an inverse function of copper concentration 

(Gordon et al., 1993). CuBP, which was purified from copper-stressed continuous 

cultures by IMAC and RPHPLC, was not detected in control cultures, and the 

concentration of CuBP was shown to be a function of copper concentration (Gordon 

et al., 1993). When copper (20 /*M) was withdrawn from a copper-stressed culture 

for several days, then reapplied, the culture did not experience the precipitous drop 

in cell densities consistently observed with the application of 20 /zM Cu to a "naive" 

culture, indicating persistent copper resistance in the population in the absence of 

copper (Gordon et al., 1993).

The presence of a ca. 30 kb plasmid in the wild-type Vibrio alginolyticus strain 

was confirmed by plasmid DNA extraction and agarose electrophoresis. Metal 

(Silver and Misra, 1988) and copper (Bender and Cooksey, 1986;Rouche etal., 1989; 

Tetaz and Luke, 1983) resistance mechanisms are frequently plasmid-mediated, and 

metallothionein-mediated resistance to copper can be accomplished by gene 

amplification (Karin etal., 1984) and plasmid amplification (Jeyaprakash etal., 1991). 

Plasmid DNA content was compared in control and copper-challenged chemostat and 

batch cultures in order to determine whether plasmid amplification plays a role in 

copper detoxification in V. alginolyticus. Although the batch cultures were difficult
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to compare due to the smearing of DNA fragments in the Cu-challenged culture, the 

chemostat preparations, which were extracted from similar cell numbers, argue 

against plasmid amplification as a mechanism for copper resistance.

The location of the cbp gene and its associated regulatory unit remains to be 

determined. The V. alginolyticus plasmid is cryptic, that is, no physiological or genetic 

function has been identified. Many members of the genus Vibrio carry plasmids, i.e. 

pJMl, which encodes anguibactin, a siderophore, in Vibrio anguillarum (Actis et al., 

1986). V. cholerae carries a conjugative P plasmid which is not associated with 

virulence factors (Silverman et al., 1991), and V. salmonicida a plasmid whose 

function is thus far unknown (Valla et al., 1992). We have found no reports in the 

literature of plasmids native to V. alginolyticus. The plasmid described in this 

dissertation may prove useful in genetic manipulations of V. alginolyticus.

Plasmid-mediated copper resistance systems often confer resistance to very 

high (millimolar) levels of copper (Bender and Cooksey, 1986; Tetaz and Luke,

1983). Extrachromosomal elements such as plasmids are also relatively easily lost 

from bacterial genomes (Atlas and Bartha, 1992), and generally do not carry genetic 

systems that are required under normal environmental stresses. Thus, chromosomal 

location of the genetic system responsible for Cu detoxification in V. alginolyticus 

would be consistent with the hypothesis that this marine bacterium has evolved under 

conditions of transient copper stress from environmental sources such as upwelling 

deep ocean waters, which have acted as a strong selective pressure for retention of 

the system.
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Copper-resistant mutants, or variants of V. alginolyticus, could be isolated from 

long-term copper-stressed continuous cultures. The relatively high frequency of 

individuals resistant to 20 /xM Cu in a noncopper-stressed chemostat (1.5 x 10‘5) is 

unrealistically high for a spontaneous mutation rate at a single locus, suggesting 

either (a) that many different mutations can confer resistance to 20 /xM copper or 

(b) that a subpopulation of variant, relatively copper-tolerant individuals exists in 

each culture. The 10'5 frequency Cur (20 /xM) falls within the range of estimates 

from batch cultures, thus it is not a phenomenon associated only with continuous 

cultures. Copper stress (20 /xM) increased the number of resistant colonies to 5.8 x 

10'1, a 39,000 fold increase (Table 2.2). When copper stress was withdrawn from the 

system, the frequency of Cur colonies decreased almost 400 fold, although it was still 

100 fold higher than in the control. At least two alternative explanations for the 

decrease in Cur colonies with relief of copper stress are possible: (a) some of the 

colonies from the copper-stressed culture that grew on Cu-amended plates may have 

benefitted from induction of a copper resistance mechanism, allowing them to form 

colonies only when "pre-induced" by growth in Cu-containing liquid media; or (b) 

some or all of the Cur variants had a slower growth rate than WT V. alginolyticus in 

the absence of copper, and so were slowly out-competed by the wild-type in the 

noncopper-stressed chemostat environment.

The second chemostat experiment at 20 /xM Cu illustrates the great variability 

in the frequency of Cur mutants from one culture to the next. In this experiment, the 

frequency of cells resistant to 20 /xM Cu was 2.8 x 104. The frequency of cells
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resistant to 30 /tM Cu was 2.0 x 10'5, an order of magnitude lower than the Cur (20

/tM) frequency. Evidently, different mutation(s) are mediating resistance to 20 and 

32 /xM Cu. Thus, the culture-to-culture variability and the lower frequencies of

individuals resistant to higher copper levels suggest that the mutations which give rise

to copper-resistant populations can be different both within a culture, and from one

culture to the next.

At 20 /tM Cu in continuous culture, Vibrio alginolyticus are nearing their limit 

in terms of copper stress, and sometimes wash out of the system (Gordon et al., 

1993), i.e. the specific growth rate, /t, falls below D, the dilution rate, and cells exit 

the system faster than the rate of production of new cells. When a continuous 

culture was stressed at 32 /tM Cu, a very high level for this system, the frequency of 

cells resistant to 40 /tM Cu was 2.2 x 101. Unlike the relatively high frequency of 

cells resistant to 20 /tM Cu in control V. alginolyticus cultures, fewer than one in a 

billion (10'9) are resistant to 40 /tM Cu in HASW plates. The frequency Cur (40 /tM) 

individuals dropped 1000 fold when copper in the chemostat reservoir was decreased 

to 20 /tM; a change analogous to the decrease in frequency Cur (20 /tM) when copper 

was withdrawn from the 20 /tM Cu-stressed chemostat.

A noteable increase in the frequency Cur (40 /tM) cells (from 2.1 x 10"4 to 1.3 

x 10‘2) occurred when cell densities plunged while the continuous culture was stressed 

with 20 /tM Cu. Although the cause of the "crash" was never determined, it may be 

speculated that, given the rise in frequency of Cur cells at that time, the culture may 

have been responding to a sudden influx of copper caused by unequal mixing in the
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medium reservoir. Alternatively, if cell densities dropped due to factors not related 

to copper stress, fewer bacteria would be left to overcome the effects of a constant 

copper input (thus effectively raising the number of copper ions/bacterium). Copper 

is largely bacteriostatic, rather than bactericidal, to V. alginolyticus at low to mid 

micromolar levels, therefore the increase in Cu2+/cell would probably depress the 

growth rate of the wild-type to the point where remaining mutants would regain their 

physiological advantage, outgrowing the wild-type until the level of Cu2+/cell had 

equlibrated. Thus, the frequency of Cur cells in the culture would increase, at least 

transiently, in either case. The second scenario, in particular, argues that copper- 

resistant cells may grow significantly more slowly than the wild-type in media without 

copper, a characteristic which has been confirmed for Cu40B3 (Chapter 3).

Recovery of the culture was accompanied by a drop in the frequency of Cur 

(40 nM) cells, as would have been expected given previous results. The frequency 

of cells resistant to 20 /xM Cu was higher than the frequency of cells resistant to 40 

jiM Cu in a split sample, once again suggesting a heterogeneous population of Cur 

mutants/variants.

The fourth continuous culture, Culture D, had never been exposed to copper 

concentrations higher than 20 /xM, but contained a frequency of 3.4 x 10'2 cells 

resistant to 40 /xM Cu. Cell numbers in this culture had suffered a "crash" six days 

before sampling, when the outflow system malfunctioned and became stuck in the 

"on"position, pumping approximately 25% of the culture volume out. The culture 

was brought back to original volume with 20 /xM Cu-amended media, effectively
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raising Cu2+/cell. As predicted, cell numbers in the culture were seriously depleted, 

dropping to 20% of their pre-crash density. Data was not obtained earlier in the 

experiment, so no comparison of pre- and post-crash Cur frequencies can be made, 

however, the frequency Cur in this culture was very close to that of Culture C after 

its crash. Thus, the data from these continuous cultures supports the hypothesis that 

an effective rise in copper ions/cell will result in selection for a more copper- 

resistant organism, and suggest controlled studies of competition between copper- 

resistant and wild-type V. alginolyticus in continuous cultures.

The morphological variability in long-term copper-stressed Vibrio alginolyticus 

populations included attenuation or ablation of swarming motility. V. alginolyticus 

has a single, sheathed flagellum when grown in liquid culture (Baumann and 

Baumann, 1977). Swarming motility is accomplished by many unsheathed, 

peritrichous flagella whose synthesis is mediated by induction of the lateral flagellar 

genetic system {laf in V. parahaemolyticus', McCarter and Silverman, 1989) by surface 

contact. Marine agar streak plates from copper-stressed continuous cultures (15 /xM 

or higher) consistently display high numbers of nonswarming or very slowly swarming 

colonies. Many of these colonies swarm like the wild-type when subcultured to new 

plates, however some are apparently "stuck"in a nonswarming mode. Although both 

of the copper-resistant mutants from continuous culture that were selected for further 

study are nonswarmers, the majority of nonswarming colonies were not copper- 

resistant, and swarming, Cur mutants of V. alginolyticus have been isolated (Chapter 

3). Swarming Cu40B3 revertants lost copper resistance, and their Cur derivatives
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displayed a mixed swarming/nonswarming phenotype, indicating that there is an 

inverse correlation between swarming motility and copper resistance in Cu40B3. 

Thus, although the nonswarming phenotype appears to be necessary for copper 

resistance in one mutant, it is neither required by nor exclusive to copper resistance 

in V. alginolyticus populations.

The two classes of nonswarming colonies isolated from copper-stressed 

chemostats, i.e. stable nonswarmers and those which readily revert to swarming 

motility, suggest that different mechanisms are mediating these phenomena. Copper 

may be acting directly or indirectly as an environmental stimulus in the case of 

reversible inhibition of swarming. Copper can be a competitive inhibitor of uptake 

of physiolgical cations, i.e. Mn2+ and Zn2+ (Bruland et al., 1991). By creating a 

nutrient deficient environment in this or some other manner, copper may indirectly 

inhibit swarming. There are reports of interaction of copper and other metals with 

flagellar systems. Transcription of the fliC  gene, which encodes the flagellin of the 

polar Escherichia coli flagellum, is induced by copper, aluminum, iron and nickel 

(Guzzo et al., 1991). Transcription of the lafA gene of V. parahaemolyticus, which 

encodes the lateral flagellin subunit, is dependent on iron-limiting conditions 

(McCarter and Silverman, 1989). Thus, copper may interact directly with regulatory 

elements to block synthesis or function of lateral flagella, or may interact with 

sensory transduction pathways which monitor environmental stimuli such as metal ion 

levels.

The oxidase test is a relative measurement of cytochrome oxidase activity.
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Cytochrome oxidase, which is the terminal oxidoreductase in mitochondrial and some 

bacterial electron transport systems, contains two copper ions and two heme groups. 

The enzyme catalyzes the transfer of electrons from cytochrome c to oxygen to yield 

H20  (Stryer, 1988). Most Vibrio species, including Vibrio alginolyticus, are oxidase 

positive (Baumann and Baumann, 1977). The oxidase negative phenotypes noted in 

copper-stressed chemostat cultures were, apparently, due to mutations, as they were 

not reversible. Although not all oxidase negative mutants were copper-resistant, 73% 

of all copper-resistant V. alginolyticus mutants isolated to this date are oxidase 

negative. Additionally, 13.3% of oxidase negative colonies picked from nonselective 

agar proved to be copper-resistant in a sample in which 1.3% of all cells were 

copper-resistant. Thus, the oxidase negative colonies were resistant to 40 /xM Cu at 

ten times the frequency of the total chemostat population.

The data presented here suggest that the oxidase negative phenotype may 

contribute to copper resistance in V. alginolyticus. The situation is complicated, 

however, by the fact that many of the isolates were obtained from the same copper- 

stressed chemostat. These isolates may all be "daughters" or clones of Cu40Al, the 

oxidase negative mutant that was isolated relatively early in the study. The oxidase 

negative phenotype of Cu40Al may contribute to its resistance to copper, however, 

the resistance mechanism has not yet been determined. Lack of functional 

cytochrome oxidase could be advantageous to copper-stressed bacteria if, in the 

presence of increased intracellular copper, the enzyme catalyzes the production of 

oxygen radicals. 0 2 is bound between the Fe2+ and Cu+ ions of cytochrome during
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electron transfer (Stryer, 1988). If cytoplasmic Cu2+ ions interfered with proper 

binding and only one electron was transferred (instead of 4 e' +  4 H+), a superoxide 

anion would result. Alternatively (or additively), Cu2+ might interfere with the 

normal process of superoxide neutralization after superoxide dismutase (SOD) had 

catalyzed the reduction of superoxide to hydrogen peroxide (H2 O2 ). Cu2+ could 

theoretically regenerate superoxide as follows (A. S. Gordon, personal 

communication):

SOD
3 0 2* +  4 H+ -» 2 H20 2 +  02

H20 2 +  2 Cu2+ -» 0 2* + 2 H+ + 2 Cu+

The stability of copper resistance in two chemostat-derived mutants, Cu40Al 

(oxidase negative) and Cu40B3 (oxidase positive) was demonstrated by comparing 

the frequency of Cur cells after serial subculture on nonselective agar (fNS) to the 

frequency of Cur cells in cultures that had been recently exposed to copper (fCu). 

The frequency of Cur cells for both treatments was similar: fNS/fCu for Cu40Al was 

0.628, and was 2.5 for Cu40B3. Thus, for Cu40B3, a higher percentage of cells were 

Cur after ten nonselective passes than in a recently Cu-stressed culture. An intriguing 

aspect of Cu resistance in Cu40B3 cultures was that such a low percentage in the 

population was resistant (fCu = 2.4 x 104; fNS = 4.7 x 104), while most of the 

Cu40Al individuals were resistant in both treatments. Subsequent experiments with 

Cu40B3 have yielded Cur (40 /xM) frequencies ranging from 1.1 x 10'2 to 3.4 x 101 

(Table 2.5), however the majority of individuals in all cultures tested were not
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copper-resistant, leading to the hypothesis that the Cur individuals in this mutant 

strain somehow protect the nonresistant cells from the effects of copper.

This study of V. alginolyticus populations in long-term copper-stressed 

chemostat cultures showed that increased copper concentrations in the medium 

reservoir increase the frequency of copper-resistant cells, as measured by growth of 

colonies on Cu-amended agar plates. The data suggest that the level of copper 

ions\cell (Cu concentration normalized to cell numbers) may play a major role in 

determining the frequency and level of copper resistance in continuous culture. 

Relief of copper stress caused a decrease in the frequency of Cur cells, however the 

frequency of Cur cells remained elevated compared to frequencies in cultures that 

had never been exposed to copper. In fact, the remnant population of resistant cells 

and/or their excreted products was enough to protect the culture when copper was 

reapplied (Gordon et al., 1993). The phenotypic variations noted, nonswarming 

motility and oxidase negativity, were not definitely correlated to copper resistance, 

however the oxidase negative phenotype may confer some advantage to cells under 

chronic copper stress. Copper resistance in two Cur mutants was retained under 

nonselective culture conditions. Most of the cells in Cu40Al cultures proved to be 

copper-resistant, however the majority of cells in Cu40B3 cultures and in copper- 

stressed chemostat populations were not copper-resistant, suggesting that a minority 

of copper-resistant individuals may protect the remainder of the culture from the 

toxic effects of copper.
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CHAPTER HI: CHARACTERIZATION OF SUPERNATANT PROTEINS IN 

COPPER-RESISTANT AND COPPER-SENSITIVE VIBRIO ALGINOLYTICUS AND 

VIBRIO PARAHAEMOLYTICUS

INTRODUCTION

The evidence presented thus far for CuBP-mediated copper detoxification in 

Vibrio alginolyticus supports the hypothesis that it is an extracellular, copper-induced 

protein which is produced during the copper-induced lag phase, and which 

accumulates as cells resume growth in the presence of copper (Schreiber et al. , 1990; 

Harwood-Sears and Gordon, 1990a). CuBP expression in supernatants of copper- 

stressed chemostats is also copper-induced, and its concentration increases with 

increasing copper concentrations (Gordon etal., 1993). Although the data presented 

in the preceeding chapters are consistent with our model of involvement of a specific 

extracellular protein in copper detoxification, showing a very strong correlation 

between copper stress and extracellular CuBP expression, we have no direct evidence 

that CuBP is necessary or advantageous to cells in the presence of excess copper. 

The argument that CuBP is an integral element in the copper 

management/detoxification system of V. alginolyticus would therefore benefit from 

the demonstration of a direct link between CuBP and alleviation of copper toxicity.

Mutagenesis experiments were designed with the aim of isolating mutant V.
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alginolyticus with altered sensitivity to copper. These mutants were screened for 

altered CuBP production, with the rationale that some copper-resistant (Cu1) mutants 

might overexpress CuBP, and some copper-sensitive (Cu") mutants might lack 

extracellular CuBP. Transposon insertion was selected as a preliminary mutagenic 

strategy. The advantages of mutagenesis with some commonly utilized transposons 

(miniMu, Tn5), i.e. the presence of antibiotic markers, known sequences amenable 

to probe techniques for gene localization, and no tendency to insert in "hot spots", 

combined with the proven utility of PI-vectored transposon systems in marine Vibrio 

species (Belas et al., 1984), made this technique the best initial candidate for 

mutagenesis. The success of genetic exchange with transposons can vary widely from 

one species to the next, or within strains of the same species. When neither Tn5-132 

nor miniMu could be transferred to WT V. alginolyticus, mutagenesis with a plasmid- 

vectored miniMu transposon (Ostling et al., 1991) was attempted. Although this 

system had been used successfully with other marine species, including a Vibrio 

species in which the PI/miniMu system did not work, attempts to transfer the 

element to V. alginolyticus were unsuccessful. Chemical mutagenesis with 

nitrosoguanidine (N-methyl-N’-nitro-N-nitrosoguanidine), an alkylating agent which 

causes point mutations and deletions (Brock and Madigan, 1991, p. 240) proved 

successful.

Vibrioparahaemolyticus BB22 was screened for production of copper-induced, 

extracellular proteins in the 20 kDa range. This organism can be mutagenized with 

the Pl/Tn5-132 and Pl/miniMu systems (Belas etal., 1984). V.parahaemolyticus is
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very closely related to V. alginolyticus (Dorsch et al., 1992), therefore we reasoned 

that it would be useful for genetic analysis of cbp and its regulatory elements if it 

exhibited a similar response to copper.

Plasmids are frequently associated with bacterial copper resistance (Bender 

and Cooksey, 1986; Rouche et al., 1989). The cryptic, ca. 30 kb plasmid isolated 

from WT V. alginolyticus may be involved in copper resistance, however it was not 

amplified during copper stress in batch and chemostat cultures (Chapter II). In order 

to assess the contribution of the plasmid to copper resistance, plasmid curing with 

acridine orange was attempted. Acridine orange, like other intercalating dyes such 

as ethidium bromide, has been used in sub-lethal concentrations to selectively 

interfere with plasmid replication (Blumenthal et al., 1985,Brock and Madigan, 1991, 

p. 256).

MATERIALS AND METHODS

Bacterial strains. Vibrio alginolyticus (Gerchakov etal., 1976) without mutations 

will be referred to as wild-type (WT) V. alginolyticus. V. parahaemolyticus BB22 was 

obtained from Dr. Robert Belas, Center for Marine Biotechnology, Baltimore, MD. 

E. coli C600 (PI c/rl00CM::Tn5-132) and MC4100 [miniMu[Tet,](Pl clr 100 CM)] 

were obtained from Dr. Michael Silverman, Agouron Inst., La Jolla CA. Vibrio 

a streptomycin-resistant derivative of a marine Vibrio, was obtained from Dr. J. 

Ostling, University of Goteborg, Goteborg, Sweden. The copper-resistant mutants 

Cu40B3 and Cu40Al were isolated from a chronically copper-stressed continuous
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culture (Gordon et al., 1993). All other mutants were isolated during this study 

(Table 3.1).

Copper-resistant isolates. Spontaneous copper-resistant mutants of V. 

alginolyticus were isolated from overnight broth cultures by plating serial dilutions on 

marine agar or HASW plates amended with inhibitory concentrations of copper (20 - 

40 fiM). Copper-resistant cultures of V. parahaemolyticus BB22 were obtained by 

plating broth cultures on HASW plates amended with 100 -150 /xM Cu. Plates were 

incubated at room temperature for up to two weeks, although most colonies 

appeared between four and seven days.

Except where noted otherwise, culture conditions were as follows: overnight 

broth cultures grown in SWM9 +  2.5 /xg/ml FeCl3 were used to inoculate 3 ml batch 

cultures in SWM9. Three ml cultures were grown in sterile, 12-well tissue culture 

dishes (Costar, Cambridge, MA). Generally, 50 /xl of overnight culture served as the 

inoculum, however this volume was increased for isolates with a slower growth rate. 

For the experiment in which CuBP in replicate control cultures was compared, each 

culture was started from a separate overnight culture. Broth cultures were incubated 

at room temperature (approximately 25° C) on a shaker (100 rpm). The optical 

density of 3 ml cultures was monitored by transferring 100 /xl aliquots to a 96-well 

microassay plate, which were read at 595 nm on a microplate reader (Bio-Tek 

Instruments).

Copper was added to broth cultures of Cus and Cur isolates in mid-log phase 

(approximately 0.080 AU) in order to compare their response to that of WT V.
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alginolyticus. Control (no Cu) cultures were harvested after 24 h. Cu-stressed 

cultures were generally harvested after 24 h., although some were harvested after 

48h. or 4 days where noted.

In an experiment designed to measure supernatant [CuBP] vs. [Cu] in the Cur 

mutant Cu40 B3, copper was added to 3 ml cultures growing in 12-well tissue culture 

dishes during mid-log phase. CuS04 was added from a 10 mM stock solution to a 

final concentration of 1.0,2.5,5.0,10.0 and 50.0 ^iM. No copper was added to the 

control culture. Two ml of supernatant obtained by filtering the culture through a 

0.45 /xm filter was loaded in a microconcentrator tube with a 3 kDa nominal 

molecular weight cutoff (Centricon 3; Amicon, Beverly, MA). Tubes were 

centrifuged at 6500 X g for two hours to give a four to five fold concentration factor. 

Supernatant and cell protein was measured by the BCA assay (Chapter I). In all 

cases where protein quantities in different samples were compared, (e.g. cellular vs. 

supernatant) values were corrected to reflect the concentration in the original 

culture.

Copper distribution. Copper distribution in supernatants and pellets of V. 

alginolyticus and V. parahaemolyticus BB22 was compared by inductively coupled 

argon plasma spectroscopy (ICP). Forty ml cultures were grown in SWM9. Fifty #xM 

Cu was added to V. alginolyticus and V. parahaemolyticus cultures during mid-log 

phase, and some V. parahaemolyticus cultures were stressed with 100 /xM Cu. 

Cultures to which no copper was added were used as controls. Two replicate 

cultures for each treatment were analyzed, except that only one V. parahaemolyticus
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+  50 /xM Cu supernatant was analyzed due to a laboratory accident. Supernatant 

and cellular fractions from each culture were analyzed in duplicate.

Control cultures were harvested after 24 h, and Cu-stressed cultures after 48 

h by centrifugation (15,300 x g). The cell pellet was washed twice with 35 ml 

phosphate buffered saline (PBS), resuspended in PBS, and 1.5 ml aliquots were 

transferred to microcentrifuge tubes. Samples were centrifuged at maximum rpm in 

a microcentrifuge (Eppendorf 5415) for 5 minutes. In order to lyse cells, the pellets 

were resuspended in 400 /xl lysozyme buffer (glucose, 50 mM; Tris base, 25 mM; 

EDTA, 10 mM; lysozyme, 4 mg/ml; pH 8.0) and incubated for 30 minutes at room 

temperature. 800 /xl SDS solution (SDS, 1%; NaOH, 0.2N) was added to each tube, 

which was held on ice for 5 minutes. At this point, the solution cleared. Pellets were 

resuspended to their original volume in SWM9. The pH was adjusted to < 2 with 

concentrated nitric acid. Each supernatant was filtered through a 0.45 /xm filter, 

divided into two 15 ml aliquots, and the pH was adjusted to <  2 with concentrated 

nitric acid.

Total copper in supernatant and cell fractions was analyzed by ICP on an 

Applied Research Lab (Fision) 3410 instrument at a wavelength of 325 nm. ICP 

analysis was performed at the Applied Marine Research Lab (AMRL), Norfolk, VA. 

Sample Cu concentrations were corrected for background Cu in an SWM9 blank.

Supernatant proteins o f Vibrio parahaemolyticus. V. parahaemolyticus BB22 

cultures were grown in two liters of SWM9. The Cu-stressed culture received 100 

/txM CuS04 at mid-log phase. Supernatants from control cultures were harvested
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after 24 h, and supernatants from Cu-stressed cultures after 48 h, by tangential flow 

filtration (TFF; see below). A 30 ml aliquot of each supernatant was lyophilized, 

dialyzed against a sodium phosphate/ NaCl buffer (Chapter l),and analyzed bySDS- 

PAGE. The remaining supernatant was concentrated and partially purified by 

immobilized metal ion affinity chromatography (IMAC) followed by reverse phase 

high performance liquid chromatography (RPHPLC) (see below).

Chromatography. Culture supernatants were separated from cells by TFF 

using a Pellicon cassette system (Millipore) with a 0.2 /xm (GVLP) filter. Twenty ml 

of Vibrio parahaemolyticus BB22 supernatant from copper-stressed cultures was 

loaded onto an H10/2 chelating Superose column charged with 3 ml of 10 mM 

CuS04 at 0.5 ml • min'1 for immobilized metal ion affinity chromatography. Due to 

the viscosity of the sample, only 14 ml of control supernatant could be loaded on the 

column. The column was coupled to a Fast Protein Liquid Chromatography (FPLC) 

system (Pharmacia). The column was washed with buffer A (0.05 M NaCOOCH3. 

0.1 M NaCl, pH 7.0) and bound proteins were eluted with 100% buffer B (10 mM 

glycine, 0 .1M NaCl, pH 9.0) at a flow rate of 1 ml • min1. Absorption was monitored 

at 280 nm.

Supernatants from two liter cultures of Cu40B3 were separated by TFF and 

concentrated by IMAC by the method above, except that 175 ml was loaded on the 

IMAC column. IMAC fractions from the major peak were pooled and frozen at -80° 

C for further analysis. Immediately before reverse phase high performance liquid 

chromatography (RPHPLC) was performed on the fraction, 0.1% trifluoracetic acid
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(TFA) was added. IMAC fractions (10 ml) were injected onto a Macrosphere C4 

column (Alltech 150 x 4.6 mm) on an ISCO HPLC. Solvent systems were: (A) 0.1% 

TFA; (B) 0.1% TFA in 100% acetonitrile (CH3CN). A linear gradient from 0 to 

100% buffer B was run over a 37 minute period at 1.0 m l‘m l1 to elute proteins. 

Absorbance was monitored at 280 nm.

Fractions from IMAC/RPHPLC chromatograpahy of V. parahaemolyticus 

BB22 and Cu40B3 supernatants were analyzed on 12% acrylamide SDS- 

polyacrylamide gels (Laemmli, 1970).

Transposon mutagenesis. Unsuccessful attempts were made to transfer Tn5- 

132 and miniMu to V. alginolyticus using bacteriophage PI as the vector (Belas etal.,

1984). The procedure as detailed in Martin et al. (1989) was followed. Transfer of 

miniMu via an IncP-1 plasmid vector were also unsuccessful. This procedure 

(Ostling e ta l,  1991) was performed as previously published. Spontaneous rifampicin- 

resistant (rif) mutants of V. alginolyticus were obtained by plating undiluted overnight 

cultures on LM plates (tryptone (Difco), 10 g/1; yeast extract (Difco) 5 g/1; NaCl, 20 

g/1; agar (Difco) 15 g/1, pH 7.6) amended with 150 /tg/ml rifampicin. R if mutants 

were plated on LM agar containing 150 /ig/ml rifampicin and 200 jug/ml 

streptomycin to select for rif  strepr mutants for filter-mating with E. coli.

Chemical mutagenesis. Mutagenesis in batch cultures of Vibrio alginolyticus 

was accomplished with the chemical mutagen nitrosoguanidine (N-methyl-N’-nitro-N- 

nitrosoguanidine). The procedure detailed by Adelberg et al. (1965) was followed 

with minor adjustments. Twenty ml cultures of V. alginolyticus were grown overnight
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at room temperature in SWM9 broth supplemented with 2.5 /zg/ml FeCl3. Flasks 

(250 ml) were shaken at 100 rpm. The final optical density of the overnight cultures 

was approximately 300 KU. A flask containing 20 ml LB 15 medium (tryptone 

(Difco) 10 g/1; yeast extract, 5 g/1; NaCl, 15 g/1; pH 7.6) was inoculated with 0.5 ml 

overnight culture, and was grown at room temperature on a shaker (100 rpm). 

Growth was monitored on a spectrophotometer set at 600 nm (Spectronic 21, Bausch 

and Lomb). When the culture reached mid-log phase (ODm  =  0.85, cuvette 

diameter 15 mm), 10 ml was filtered onto a 0.45 pm filter. The filter was washed 

twice with 10 ml of Tris-maleic acid (TM) buffer (Tris base (Sigma) 6.1 g/1; maleic 

acid, 5.8 g/1; NaCl, 23.4 g/1; MgS04-7 H2Q, 0.1 g/1; (NH4)2S04, 1.0 g/1; sodium 

citrate, 0 .6g/1; pH 6.0; sterilize by autoclaving) and cells were resuspended in 20 ml 

TM buffer. Two mg NTG was added to the cells as a solid (final concentration = 

100 pg/ml. After swirling the flask to dissolve NTG, the culture was incubated for 

30 minutes at room temperature on a shaker. Serial dilutions of the culture were 

spread on HASW plates, and incubated overnight at room temperature.

Selection for copper-sensitive mutants. Putative copper-sensitive mutants were 

identified on HASW plates amended with bromcresol purple (10 /xg/ml) and 15 pM  

CuS04 (BPHASW +  Cu). Spread plates with 10 - 40 colonies from NTG-treated 

cultures were chosen for filter transfer to BPHASW +  Cu plates. Filter transfer was 

accomplished by laying a 0.45 pm, 85 mm nitrocellulose transfer membrane 

(NitroPlus, MSI, Westboro, MA) on the surface of a plate with colonies growing on 

it. The filter was left on the plate long enough to become wet (about 30 s.) and was
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carefully transferred with sterile tweezers to a BPHASW +  15 nM Cu plate. The 

filter was oriented so that it was between the colonies and the agar (colonies on top). 

Plates were incubated at room temperature overnight. By the next day, most 

colonies and the agar beneath them had turned yellow. Colonies that remained 

purple were designated putative Cu5 and transferred to marine agar plates for further 

study.

The copper sensitivity of the NTG isolates was confirmed by streaking the 

isolates from marine agar to BPHASW +  15 ptM Cu and to HASW +  15 /*M Cu. 

The HASW plates were used to rule out the possibility that putative Cus isolates 

were sensitive to bromcresol purple rather than copper. Colony growth and acid 

production (yellowing of plates) were compared to that of WT V. alginolyticus 

inoculated at the same time after one, two and four days incubation. Isolates with 

significantly fewer and smaller colonies than WT V. alginolyticus after four days were 

designated Cu\ Broth cultures of several isolates were diluted and plated on 

BPHASW and BPHASW +  15 /xM Cu. The plate count on unamended and Cu- 

atr ,nded media were compared in order to confirm copper sensitivity.

The copper-sensitive V. parahaemolyticus, BBT50S3, was isolated by plating 

a TN5-132 mutagenized culture on HASW with tetracycline (12 /xg • ml"1) and 50 /xM 

Cu. Areas where no visible colonies were growing were swabbed onto an HASW + 

tetracycline (HASWT) plate. Copper sensitivity of these isolates was confirmed by 

plating on HASWT + 50 and 75 /xM Cu, which is not inhibitory to V. 

parahaemolyticus BB22.
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Plasmid curing. WT V. alginolyticus grown overnight in SWM9 was used as

inoculum for three ml cultures grown in LM medium in 12-well tissue culture dishes.

Inoculum was added in a 1:20(150 /d) or 1:50(60 jtil) ratio. Acridine orange (AO)

was diluted from a stock solution (1 mg/ml) to a final concentration of 5,10, or 20

/ig/ml in cultures, which were incubated overnight at room temperature on a shaker 

(100 rpm). The 10 fig/ml and 5 jtg/ml AO-treated cultures were chosen for plating

based on the limited amount of growth that had taken place overnight. Serial

dilutions of these cultures were spread on HASW plates and incubated at room

temperature for 48 h. Colonies from plates with 20 - 50 colonies (10 s dilution) were

filter-transferred to BPHASW + 15 fiM Cu plates, which were incubated overnight

at room temperature. The copper sensitivity of putative Cu9 colonies was confirmed

as above.

One Cu9 isolate was confirmed from the acridine orange experiments, and 

designated VA15S13. WT V. alginolyticus,a. non copper-sensitive, AO-treated isolate, 

and VA15S13 were grown overnight at room temperature in 50 ml LM broth 

cultures. Cells were concentrated by centrifugation at 10,000rpm (15,300 xg) for 15 

minutes. The supernatant was decanted off, and the entire culture (48 ml, or 

approximately 7.5 x 1010 cells) was used for plasmid DNA extraction by the alkaline 

lysis method (Ausubel eta l., 1987).

Plasmid DNA was stored at -20° C in TE buffer (lOmM Tris*Cl; 1 mM 

EDTA; pH 7.5) until it was analyzed by agarose electrophoresis. Some samples were 

treated overnight with RNAase A (1.67/ig/ml) at 37° C. Sample and 10X loading
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buffer (glycerol, 25%; bromphenol blue, 0.025%; SDS, 1%; H20 , 73.975%) were 

mixed in a 9:1 ratio for WT V. alginolyticus and VA15S13, and a 4:1 ratio for the 

second AO-treated V. alginolyticus. The supercoiled plasmid ladder standard (0.19 

mg • ml'1) was diluted 2:1 with loading buffer. 10 pX of each sample and 6 p\ standard 

were loaded on a 1% agarose gel (SeaKem LE Agarose, FMC Bioproducts, 

Rockland ME) in a TAE buffer system (0.004 M Tris* acetate; 0.002 M EDTA; pH 

8.5). Gels were run at low voltage (Fotodyne power supply; approximately 79 V) for 

45 minutes, then at high voltage (approximately 138 V) for 25 minutes. Gels were 

stained in ethidium bromide (5 pg/ml) for 25 minutes, and destained in distilled H20  

for two hours. Plasmid DNA in agarose gels was visualized and photographed on a 

UV transilluminator (Foto/phoresis, Fotodyne, New Berlin, WI).

Supernatant protein in Cu? and Cur Vibrio isolates. Cell-free supernatants for 

SDS-PAGE were obtained by filtering each culture through a 0.45 pm  filter. Two 

ml of filtrate was centrifuged in a microconcentration tube with a 5 kDa nominal 

molecular weight limit (NMWL) (Ultrafree-CL PLCC, Millipore) or a 3 kDa NMWL 

(Centricon 3, Amicon). Centrifugation time was two hours at 4170 x g (5500 rpm; 

Ultrafree) or 5520 x g (6000 rpm; Centricon 3) in a JA14 rotor (Beckman), which 

concentrated the samples 3.3 - 5 fold. The concentrated supernatants were analyzed 

by SDS-PAGE on 12% acrylamide gels (see Chapter 1), visualized with silver stain 

(Rapid Ag Stain, ICN Radiochemicals) and quantitated by laser densitometry. 

Supernatant and cellular protein concentrations were determined by the bicinchoninic 

acid assay (BCA, Pierce) as detailed in Chapter I.
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Phenotypic Characterization. The following tests were carried out on cultures 

on Marine Agar: gram stain, oxidase test (Pathotec cytochrome oxidase test strips, 

Organon Teknika Corp.), and API20E biochemical profile (Analytab). Colonies were 

suspended in an Instant Ocean solution (21 g/1) for the API test, and incubated for 

24 h at room temperature.

RESULTS

Copper-resistant isolates. Spontaneous copper-resistant mutants of Vibrio 

alginolyticus were obtained from control broth cultures and Cu-stressed chemostat 

cultures. Isolates were chosen for further characterization based on the stability and 

magnitude of copper resistance exhibited by each isolate. Biochemical tests 

(API20E) were used to confirm their species and to determine whether other 

phenotypic changes had occured. Results were identical to the wild type with the 

exception of the oxidase test for Cu40Al. Cu20A6, which was isolated from a batch 

culture spread on 20 /xM Cu-amended plates (Table 3.1), has exhibited resistance to 

copper concentrations as high as 100 /xM. This isolate was passed repeatedly on 

nonselective agar without losing its Cu-resistant phenotype. Cu40Al and Cu40B3 

were isolated from a Cu-stressed continuous culture (Chapter II) on 40 /xM Cu- 

amended plates. The stability of the Cur phenotype in these isolates was 

demonstrated by their ability to form colonies on 40 /xM Cu-amended plates after ten 

passages on nonselective agar (Chapter II).

Copper-resistant strains were maintained on HASW or BPHASW agar +  40
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Table 3.1. Bacterial Strains

Species/
Isolate

Cu
Sensitivity

Oxidase
Phenotype

Stability' Source Reference

V. alginolyticus

Wild-type Normal + N/A Gerchakov
1976

Cu20A6 Resistant + + Batch This study

Cu40Al Resistant - + Chem2 Gordon
19934

Cu40B3 Resistant + + Chem3 Gordon
19934

VA15S7 Sensitive + + NTG5 This study

VA15S8 Sensitive + + NTG This study

VA15S9 Sensitive + + NTG This study

VA15S10 Sensitive + + NTG This study

VA15S11 Sensitive + + NTG This study

VA15S12 Sensitive + + NTG This study

VA15S13 Sensitive + +

O<

This study

V. parahaem.

BB22 Normal + N/A Belas eta l., 
1984

BBT50S3 Sensitive + + Tn5 This study

BB100 series Resistant + - Batch This study

BB150 series Resistant + - Batch This study

'isolates scored (+ ) retained their variant phenotype with respect to copper 
resistance when subcultured on nonselective media. Isolates scored (-) lost their 
resistance to copper when subcultured on nonselective media.

isolated from a continuous flow culture stressed with 32 nM CuS04.
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isolated from the same continuous flow culture as Cu40Al after the copper 
concentration had been lowered from 32 to 20 fiM CuSO4.

4Gordon eta l., 1993.

isolated from NTG-mutagenized cultures, 

isolated from acridine-orange treated culture.
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yM  Cu. WT V. alginolyticus cannot form colonies on these media amended with 25

/xM or higher Cu concentrations (see Figure 2.5). Cu40B3 plated on BPHASW + 

40 /xM Cu was subcultured from a Cu-amended plate (Figure 3.1 A) and a marine

agar plate (Figure 3. IB). The decreased number of colonies observed after the

nonselective passage occurs fairly consistently, however the cultures on Cu-amended

agar must be subcultured fairly frequently (one week) to maintain high viability.

CuBP expression in control and 50 /xM Cu-stressed batch cultures of Cur 

mutants was analyzed by SDS-PAGE (Figure 3.2). WT V. alginolyticus supernatants 

were included for comparison (arrow at CuBP bands). While Cu20A6 and Cu40Al 

supernatant protein profiles proved quite similar to those of the wild-type, the 

Cu40B3 control supernatant contained a substantial quantity of a protein or proteins 

of the same molecular weight as CuBP (Figure 3.2). A quantitative determination 

of the amount of CuBP (CuBPl + CuBP2) in unchallenged culture supernatants of 

V. alginolyticus variants and wild-type was carried out in three replicate cultures of 

each isolate. From SDS-PAGE gels, the relatively high concentration of CuBP-like 

protein in Cu40B3 supernatants was obvious (Figure 3.3), with over ten times the 

amount found in unchallenged WT V. alginolyticus supernatants (Table 3.2). There 

was significantly more CuBP in Cu40B3 supernatants normalized to total supernatant 

protein (Figure 3.3; p<  0 0.05 by Student’s t-test) than in the other isolates’ 

supernatants.

Since supernatant protein normalized to total cellular protein was also greater 

in Cu40B3 than in the unchallenged cultures of the other isolates, the contribution
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Figure 3.1. The copper-resistant mutant, Cu40B3, plated on HASW +  40 /xM Cu. 

The plate was streaked from cultures growing on HASW + 40 pM Cu (A) 

and marine agar (B).
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Figure 3.2. Supernatant proteins of unchallenged and 50 /xM copper-challenged wild- 

type (WT) and variant V. alginolyticus.

Lane 1: Control WT V. alginolyticus
Lane 2: 50 /xM Cu-challenged WT V. alginolyticus, 24 h
Lane 3: 50 /xM Cu-challenged WT V. alginolyticus, 48 h
Lane 4: Control Cu20A6
Lane 5: 50 /xM Cu-challenged Cu20A6, 48 h
Lane 6: Molecular weight standards
Lane 7: Control Cu40B3
Lane 8: 50 /xM Cu-challenged Cu40B3, 24 h
Lane 9: 50 /xMCu-challenged Cu40B3, 48 h
Lane 10: Control Cu40Al
Lane 11: 50 /xM Cu-challenged Cu40Al, 24 h
Lane 12: 50 /xM Cu-challenged Cu40Al, 48 h
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Figure 3.3. Replicate unchallenged supernatants from batch cultures of wild-type 

(WT) V. alginolyticus and Cur variants. A supernatant from a 50 /xM Cu- 

challenged WT V. alginolyticus culture is included for comparison.

Lanes 1-3: Cu20A6
Lanes 4-6: Cu40B3
Lanes 7,9 & 10: Cu40Al
Lane 8: molecular weight standards
Lane 11: Cu-challenged WT V. alginolyticus
Lane 12-14: WT V. alginolyticus
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Table 3.2. Percent CuBP in supernatants from control batch cultures of wild-type 

Vibrio alginolyticus and copper-resistant variants.

Isolate %
CuBP

Supernatant 
Protein ( f i g )

CuBP
( M 8 )

Supernatant 
Protein - CuBP

Wild-Type 1.14 28.34 0.32 28.02

Cu40B3 14.65 24.06 3.52 20.54

Cu40Al 2.09 18.96 0.40 18.56

Cu20A6 1.36 30.73 0.42 30.31
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of CuBP to total supernatant protein was estimated (Table 3.2). CuBP made up 

14.7% of the supernatant protein in Cu40B3 cultures, and only 1.1% in control WT 

V. alginolyticus cultures. After CuBP was subtracted from supernatant protein and 

the values were normalized to cellular protein, the calculated values of supernatant 

protein in cultures of the wild-type and Cu40B3 were nearly identical (Table 3.2).

In order to investigate the relationship between [Cu] and [CuBP] in Cu40B3 

supernatants, copper was added to cultures in increments from 1 to 50 /xM. Data 

from WT V. alginolyticus cultures, which received identical treatments, are included 

for comparison (Figure 3.4; discussed in Chapter I). Unlike the wild-type, percent 

CuBP in Cu40B3 supernatants did not increase incrementally from 0 to 50 jxM Cu 

(Table 3.3). Control Cu40B3 supernatants were comprised of 4.5% CuBP, which 

changed little except for a spike in % CuBP and [CuBP] with the addition of 5 nM 

Cu. When [CuBP] was normalized to cell numbers (OD) or protein, a trend of 

increasing CuBP with copper concentration was more evident. Note that in the case 

of Cu40B3, the values for [CuBP]/OD do not closely reflect the values for 

CuBP/Protein, as in the case of WT V. alginolyticus. The discrepancy is probably due 

to the increased tendency of Cu40B3 to clump, or form aggregates, in Cu-amended 

broth culture, a characteristic which is seen in WT V. alginolyticus to a lesser degree.

In addition to its induction by copper and molecular weight, CuBP can be 

identified by its two-dimensional chromatographic behavior as it is separated by
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Figure 3.4. Unfractionated supernatants from WT Vibrio alginolyticus and Cu40B3 

batch cultures challenged with 0 - 5 0  /zM CuS04.

Lane 1: Control WT Vibrio alginolyticus 
Lane 2: 1 fiM Cu-challenged Vibrio alginolyticus 
Lane 3: 2.5 /zM Cu-challenged Vibrio alginolyticus 
Lane 4: 5 f i M  Cu-challenged Vibrio alginolyticus 
Lane 5: 10 /xM Cu-challenged Vibrio alginolyticus 
Lane 6: N/A
Lane 7: 50 /xM Cu-challenged Vibrio alginolyticus
Lane 8: Control Cu40B3
Lane 9: 1 /zM Cu-challenged Cu40B3
Lane 10: 2.5 /zM Cu-challenged Cu40B3
Lane 11: 5 /zM Cu-challenged Cu40B3
Lane 12: 10 /zM Cu-challenged Cu40B3
Lane 13: 50 /zM Cu-challenged Cu40B3
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Table 3.3. [CuBP] vs. [Cu] in WT V. alginolyticus and Cu40B3.

[Cu](/*M)
WT V. alginolyticus

%
CuBP1

[CuBP]
(/ig/ml)

[CuBP]/OD2 [CuBP]/Protein3 
(x 103)

0 ND4 ND ND ND

1.0 1.2 0.34 1.08 1.47

2.5 1.3 0.43 1.30 1.71

5.0 1.9 0.61 2.01 2.39

10.0 3.0 0.98 3.97 3.76

50.0 5.0 1.67 10.88 10.28

[Cu](MM)
Cu40B3

%
CuBP1

[CuBP]
Otg/ml)

|CuBP]/OD [CuBP]/Protein3 
(x 103)

0 4.5 0.88 3.12 3.58

1.0 4.2 0.69 2.45 3.29

2.5 3.8 0.83 3.03 4.65

5.0 9.0 2.20 11.28 14.1

10.0 5.7 1.05 9.30 6.65

50.0 5.1 0.84 14.67 5.43

1 % CuBP calculated by laser densitometry of SDS-PAGE gels.

2 [CuBP] is expressed in /tg* ml'1. OD (optical density) measured at 595 nm on a 
microtiter plate reader.

3 Protein in this equation is cellular protein (/ngTnl'1).
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IMAC followed by RPHPLC (Gordon etal., 1993). Supernatants from control CuBP 

cultures were concentrated and purified by IMAC followed by RPHPLC (Table 3.4). 

Their chromatographic behavior, confirmed by SDS-PAGE of fractions, was 

indistinguishable from that of CuBP purified from Cu-stressed chemostat cultures of 

WT V. alginolyticus (Gordon et a l , 1993).

The ability of Cu40B3 and WT V. alginolyticus to grow in SWM9 broth 

amended with 50 /xM Cu was compared by calculating the ratio of cell protein in 

control vs. Cu-stressed cultures of each isolate. Two of the Cu40B3 cultures were 

harvested after 24 h and two were harvested after 48 h. The ratio of cell protein in 

Cu-stressed vs. control Cu40B3 cultures was 0.77 + 0.21. Two of the WT V. 

alginolyticus cultures were harvested after 24 h and one was harvested after 48 h. 

The ratio of cell protein for the wild-type was 0.647 ±  0.03. The means were not 

significantly different (Student’s t-test, p < 0.05).

Copper-resistant Vibrio parahaemolyticus BB22 isolates were obtained by 

replica plating colonies from nonselective plates to Cu-amended plates. Since BB22 

proved inherently less copper-sensitive than V. alginolyticus, 100 and 150 /xM Cu- 

amended plates were used to isolate Cur BB22 colonies. Unlike the Cur V. 

alginolyticus mutants (see Chapter II), none of the BB22 isolates were oxidase 

negative, and all lost the ability to grow on copper-amended plates after one passage 

on nonselective agar (Table 3.1).

Copper distribution. V. alginolyticus and V. parahaemolyticus BB22 cultures 

were grown in broth cultures with and without 50 /xM Cu, divided into cellular

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3.4. Chromatographic behavior of CuBP for WT V. alginolyticus and Cu40B3.

Isolate [Cu]GiM) Retention Time 
IMAC1

Retention Time 
RPHPLC'

WT V. alg. 20 11 - 13 26 - 282

BB22 100 18 26.9

Cu40B3 0 11 - 13 27.5

1 Retention time is reported in minutes.

2 Gordon et al. , 1993
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and supernatant fractions, and assayed for total copper by ICP spectroscopy. BB22 

was also stressed with 100 pM Cu. The distribution of copper between cellular and 

supernatant fractions was similar for the two organisms (Figure 3.5). Copper in 

control samples was evenly distributed between fractions, comprising a total 

background copper concentration of approximately 5 ^M. Supernatants from 50 pM  

Cu-challenged cultures of both organisms contained more copper than the 

corresponding cellular fractions. There was slightly more copper in 50 ^Mcopper- 

challenged supernatants of V. alginolyticus than BB22, and the difference was 

significant (p <  0.05; Student’s t-test). There was no significant difference between 

copper concentrations in V. alginolyticus vs. BB22 cellular fractions. In BB22 cultures 

challenged with 100 pM  Cu, more copper was found in the supernatant than in the 

cellular fraction, however this distribution was probably due to the fact (determined 

after these experiments were completed) that copper precipitates out of SWM9 

above approximately 60 pM  Cu.

Vibrio parahaemolyticus supernatant proteins. Protein profiles of whole 

supernatants and IMAC peak fractions from control and 100 pM  Cu-challenged V. 

parahaemolyticus cultures were analyzed by SDS-PAGE. Control BB22 cultures 

contained relatively little supernatant protein (Figure 3.6). The 100 pM  Cu- 

challenged supernatant contained a ca. 20 kDa protein (estimated molecular weight 

23 kDa) that was absent from the control, as well as several high molecular weight 

proteins. Copper affinity chromatography purified primarily the 23 kDa protein 

(Figure 3.6), demonstrating its affinity for copper under these conditions. Its
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Figure 3.5. Copper in supernatant and cellular fractions of control and copper-

challenged Vibrio alginolyticus and Vibrio parahaemolyticus cultures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[C
u]

 
(yu

M)
 

by 
ICP

 
Sp

ec
tr

os
co

py

Figure 3 . 5

50

40

□ □  V. parahaem olyticus 

H i V. alginolyticus

30

20

j £ I J C
0  fM  Cu 5 0  /tiM Cu 100  0  yuM Cu 5 0  /j,M Cu

S u p e r n a t a n t  S u p e r n a t a n t  Super .  Pe lle t Pelle t

100 /iM Cu 
Pelle t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 3.6. FPLC-IMAC fractions and unfractionated supernatants from control and

100 pM  Cu-challenged Vibrio parahaemolyticus BB22 cultures.

Lanes 1 & 6: Control supernatants, unfractionated
Lanes 2 & 7: 100 pM  Cu supernatants, unfractionated
Lanes 3 & 8: Control supernatants separated by IMAC
Lanes 4 & 9: 100 uM Cu supernatants separated by IMAC
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retention time on the IMAC column was 18 minutes, compared to an average 12-13 

minutes for V. alginolyticus CuBP (Table 3.4). When concentration by IMAC was 

followed by an RPHPLC purification step, the 23 kDA protein of BB22 was eluted 

within the range of fractions observed for CuBP (Table 3.4).

Transposon mutagenesis. No tetracycline-resistant V. alginolyticus were isolated 

from repeated attempts to insert Tn5-132 and miniMuCTet1) into the genome, 

indicating that transposition was unsuccessful. V. parahaemolyticus BB22, which was 

used as a positive control, incorporated the Pl-vectored Tn5-132 and miniMuCTet1) 

the first time the experiments were attempted. One copper-sensitive Tn5::BB22 

isolate was isolated, and was denoted BBT50S3. BBT50S3 was unable to form 

colonies on 50 pM  Cu-amended plates, unlike WT BB22, which can form colonies 

on 75 pM  Cu-amended plates.

Supernatant protein profiles in 50 pM  Cu-stressed cultures of BBT50S3, WT 

BB22 and WT V. alginolyticus were compared in order to determine whether copper 

sensitivity in BBT50S3 might be the result of a defect in CuBP production. Analysis 

of supernatant proteins by SDS-PAGE and densitometry indicated that the response 

of BBT50S3 to copper stress in terms of CuBP production was similar to that of wild- 

type V. alginolyticus and V. parahaemolyticus BB22 (Table 3.5).

Copper-sensitive Vibrio alginolyticus mutants. In order to screen large numbers 

of colonies from mutagenized bacterial cultures, a filter transfer technique using 

HASW plates amended with bromcresol purple and 15 pM  Cu (BPHASW +  15 ^M 

Cu) was developed. Colonies plated on HASW agar plates were filter-transferred
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Table 3.5 Percent CuBP in supernatants of BBT50S3 (Cu5) compared to WT BB22 

and WT V. alginolyticus.

Isolate [Cu] GtM) Time1 (h) Percent CuBP

WT V. alginolyticus 0 24 2.1

WT V. alginolyticus 50 24 3.7

WT V. alginolyticus 50 96 7.8

WT BB22 50 24 3.1

WT BB22 50 96 5.5

BBT50S3 50 24 3.0

BBT50S3 50 96 5.5

‘Total incubation time. Copper was added during mid-log phase, between four and 
six hours after the culture was started.
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to BPHASW + 1 5  /zM Cu, where colonies with normal sensitivity to Cu maintained 

sufficient metabolic activity (acid production) to lower the pH in the surrounding, 

bromcresol purple-amended medium and create a yellow zone. Colonies with 

heightened sensitivity to copper were metabolically inhibited, remaining purple, but 

could be retreived by subculture to HASW or marine agar after 24 h exposure to Cu.

Six Cu5 mutants were isolated from NTG-mutagenized batch cultures, and 

were designated VA15S7 - S12. Copper sensitivity of all the mutants was confirmed 

by comparing streaks of the mutants to WT V. alginolyticus on HASW +  15 /zM Cu 

and BPHASW + 15 jzM Cu. All confirmed Cus mutants formed fewer and smaller 

colonies on Cu-amended agar than the wild-type, and acid production, indicated by 

color change in BPHASW +  Cu from purple to yellow, was delayed or did not occur. 

A comparison ofWT V. alginolyticus{Figure 3.7),VA15S8 (Figure 3.8) and VA15S12 

(Figure 3.9) on BPHASW +  15 /xm Cu plates is shown.

Approximately 1000 colonies were screened to obtain the six Cua mutants. 

Thus, approximately 0.5% of the recoverable colonies from NTG treatments were 

Cus. Of 33 colonies identified as putative Cu8 isolates, six, or 18%, were confirmed 

Cus.

Broth cultures of several Cu8 isolates were diluted and plated on BPHASW 

+ 15 /zM Cu. Their ability to grow on these plates was compared with that of WT 

V. alinolyticus (Table 3.6). While 86.8% of WT V. alginolyticus were able to form 

colonies on 15 /zM Cu-amended agar, the Cu8 isolates were unable to form colonies 

after six days incubation.
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Figure 3.7. Wild-type Vibrio alginolyticus plated on BPHASW +  15 /nM Cu.
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Figure 3.8. VA15S8 plated on BPHASW + 15 /xM Cu.
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Figure 3.9. VA15S12 plated on BPHASW +  15 fiM Cu.
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Table 3.6. Growth of Cus V. alginolyticus and WT V. alginolyticus on 15 fxM Cu- 

amended plates.

Isolate Colonies • ml'1 
Nonselective

Colonies • ml'1 
15 /zM Cu

% Growth 
(15/zM)

WT V. alginolyticus 3.8 x 109 3.3 x 109 86.8

VA15S7 1.1 x 109 <  1 x 106 <0.03%

VA15S8 2.46 x 109 < l x  104 <0.0004

VA15S9 2.50 x 108 < l x  104 <0.005

VA15S11 1.35 x 108 < l x  104 <0.007
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Total supernatant protein was measured in control and Cu-stressed cultures 

of Cus mutants (15 yM  Cu), WT V. alginolyticus (15 and 50 yM) and Cu40B3 (50 yM  

Cu), then normalized to cellular protein (Figure 3.10). When the meansupematant 

protein concentrations of control mutant cultures were compared to that of control 

WT V. alginolyticus by paired t-tests, there was no significant difference between any 

mutant (Cus or Cu1) and the wild-type (p < 0.05). Similarly, there was no significant 

difference in supernatant protein between any Cu-stressed mutant and Cu-stressed 

wild-type cultures.

Supernatant proteins of Cu' mutants were separated by SDS-PAGE in order 

to determine if any of them were deficient in extracellular CuBP. Supernatants from 

VA15S7 cultures stressed with 15 and 50 yM  Cu were consistently indistinguishable 

from the wild-type (Figure 3.11). CuBP in the other Cu9 mutants was quantitated 

from SDS-polyacrylamide gels (Figures 3.12 and 3.13) in order to compare their 

CuBP production with that of WT V. alginolyticus (Table 3.7).

VA15S8, VA15S9, VA15S11 and VA15S12 stand out from the isolates in 

Table 3.7 as possibly aberrant in CuBP production, while CuBP expression in 

VA15S10 is very similar to WT V. alginolyticus {Figures 3.11,3.12,3.13). VA15S8was 

generally depressed in extracellular protein expression (Figure 3.11,3.12). No CuBP 

was detected in 15 yM  Cu-stressed supernatants of VA15S9, however this isolate also 

appears have a general deficiency in extracellular protein production (Figures 3.11, 

3.13). VA15S11 control supernatants contained a protein of the same molecular 

weight as CuBP which decreased in concentration with added Cu (Figure 3.11,3.13).
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Figure 3.10. Supernatant protein normalized to cell protein for WT Vibrio 

alginolyticus, Cu40B3 (Cu1) and Cua mutants.
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Figure 3.11. Supernatant protein profiles of WT Vibrio alginolyticus and copper-

sensitive mutants from control and Cu-challenged cultures.

Lane 1: Control WT Vibrio alginolyticus
Lane 2: 15 /xM Cu-challenged Vibrio alginolyticus
Lane 3: Control VA15S11
Lane 4: 15 /xM Cu-challenged VA15S11
Lane 5: N/A
Lane 6: molecular weight standards
Lanes 7 - 10: N/A
Lane 11: Control VA15S10
Lane 12: 15 pM  Cu-challenged VA15S10
Lane 13: Control VA15S7
Lane 14: 15 /xM Cu-challenged VA15S7
Lane 15: 50 juM Cu-challenged VA15S7
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Figure 3.12. Supernatant protein profiles of WT Vibrio alginolyticus and copper-

sensitive mutants from control and Cu-challenged cultures.

Lane 1: 15 /zM Cu-challenged WT Vibrio alginolyticus
Lane 2: 50 /zM Cu-challenged WT Vibrio alginolyticus
Lane 3: Control Cu40B3
Lane 4: 50 /zM Cu-challenged Cu40B3
Lane 5: Control VA15S8
Lane 6: Molecular weight standards
Lane 7: 15 /zM Cu-challenged VA15S8
Lane 8: 50 jzM Cu-challenged VA15S8
Lane 9: Control VA15S10
Lane 10: 50 /zM Cu-challenged VA15S10
Lane 11: Control VA15S12
Lane 12: 15 /zM Cu-challenged VA15S12
Lane 13: 50 /zM Cu-challenged VA15S12
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Figure 3.13. Supernatant protein profiles ofWt Vibrio alginolyticus, copper-sensitive

mutants, Cu40B3 (Cu1) and it copper-sensitive revertant, Cu40B3(SW).

Lane 1: Control WT Vibrio alginolyticus
Lane 2: 15 yM  Cu-challenged WT Vibrio alginolyticus
Lane 3: Control VA15S9
Lane 4: 15 /xM Cu-challenged VA15S9
Lane 5: Control VA15S10
Lane 6: 15 /xM cu-challenged VA15S10
Lane 7: Molecular weight standards
Lane 8: Control VA15S11
Lane 9: 15 yM  Cu-challenged VA15S11
Lane 10: Control VA15S12
Lane 11: 15 y M Cu-challenged VA15S12
Lane 12: Control Cu40B3 (Cu1)
Lane 13: 50 /xM Cu-challenged Cu40B3 (Cu1)
Lane 14: Control Cu40B3(SW) (Cus)
Lane 15: 50 yM  Cu-challenged Cu40B3(SW) (Cu8)
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Table 3.7. CuBP in supernatants of Cus V. alginolyticus mutants and WT V. 

alginolyticus.

Isolate [Cu](/iM) % CuBP [CuBP] (/*g • ml'1)

WT V. alginolyticus 0 ND1 ND

WT V. alginolyticus 15 0.68 0.16

WT V. alginolyticus 50 5.05 1.65

VA15S8 0 ND ND

VA15S8 15 ND ND

VA15S8 50 2.21 0.47

VA15S9 0 ND ND

VA15S9 15 ND ND

VA15S10 0 ND ND

VA15S10 15 1.58 0.32

VA15S10 50 4.77 1.55

VA15S11 0 0.52 0.13

VA15S11 15 0.25 0.006

VA15S12 0 ND ND

VA15S12 15 0.99 0.18

VA15S12 50 ND ND

‘Not detected by densitometry.
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VA15S12 supernatants from cultures stressed with 15 pM. Cu contained 

approximately the same of CuBP concentration as the wild-type, but when 50 /zMCu 

was added no CuBP was detected in supernatants (Figure 3.12).

Plasmid curing. WT V. alginolyticus broth cultures were treated with acridine 

orange in an attempt to selectively inhibit plasmid replication, with the goal of 

assessing the contribution of the cryptic V. alginolyticus plasmid to copper tolerance. 

The strategy was to treat the cultures with acridine orange, isolate Cus colonies, by 

the filter transfer technique used above, and screen the Cus isolates for plasmid 

DNA. One Cus isolate, VA15S13, was obtained from the treatment. Plasmid DNA 

from this isolate, an AO-treated isolate with normal Cu sensitivity, and WT V. 

alginolyticus was extracted and purified on an agarose gel (Figure 3.14). All the 

isolates contained the ca. 30 kb plasmid previously observed in the wild-type, 

therefore acridine orange treatment failed to cure the plasmid.

Loss o f copper resistance in Cu40B3. After the fifteenth passage on 

nonselective agar, Cu40B3, a nonswarming mutant, began to exhibit a high 

percentage of swarming colonies. A concommitant decrease in the number of cells 

from these plates able to form colonies on HASW +  40 pM  Cu plates was noted, 

while Cu40B3 cultures that had recently been exposed to copper continued to grow 

well on the plates. In order to investigate the possible link between the regained 

ability to swarm, CuBP production in nonstressed cultures, and copper resistance, 

broth cultures of nonswarming, Cur Cu40B3 and the swarming derivative of Cu40B3 

[Cu40B3(SW)] were plated on nonselective and 40 pM  Cu-amended HASW agar.
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Figure 3.14. Plasmid DNA from WT Vibrio alginolyticus, NA15S13 and an acridine

orange (AO)-treated isolate with normal sensitivity to copper.

Lane 1: WT Vibrio alginolyticus
Lane 2: WT Vibrio alginolyticus treated with RNase
Lane 3: VA15S13 treated with RNase
Lane 4: Supercoiled molecular weight standards
Lane 5: AO-treated Vibrio alginolyticus treated with RNase
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A high percentage of Cu40B3 cells formed colonies on Cu-amended plates, while 

Cu40B3(SW) cells were able to form very few colonies(Table 3.8).

The copper-resistant colonies isolated from Cu40B3(SW) cultures consistently 

contained swarming and nonswarming individuals when subcultured on MA. Figure 

3.15 demonstrates the swarming phenotype of Cu40B3(SW), and Figure 3.16 the 

mixed swarming/nonswarming phenotype of Cur colonies obtained from Cu40B3(SW) 

cultures. One Cur, consistently swarming derivative of Cu40B3(SW) was isolated and 

designated CuSWA3.

Densitometric analysis of SDS-polyacrylamide gels (Figures 3.12and 3.13) was 

used to quantitate CuBP concentrations in supernatants ofCu40B3(SW) and Cu40B3. 

CuBP was not detectable in control Cu40B3(SW) supernatants, but comprised an 

average 9.2% of Cu40B3 supernatant protein (Table 3.9). Fifty copper elicited 

CuBP expression in Cu40B3(SW) comparable to that observed in WT V. alginolyticus. 

Thus, Cu40B3(SW) appears to be a revertant from the observed Cur, nonswarming 

phenotype of Cu40B3 to a swarming phenotype with wild-type CuBP expression and 

sensitivity to copper.
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Figure 3.15. Cu40B3(SW) plated on marine agar.
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Figure 3.16. Mixed swarming and nonswarming colonies streaked from a copper- 

resistant colony derived from Cu40B3(SW).
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Table 3.8. Comparison of the ability of Cu40B3 (NS) and its swarming derivative 

Cu40B3 (SW) to form colonies on 40 fiM Cu-supplemented media.

Isolate Culture
Conditions

Date Plate Count 
(0 fxU Cu)

Plate Count 
40 (iM Cu 
(cells/ml)

Frequency
Cur

WT V. alg. MA->SWM9 4-30-92 1.0 x 109 66 6.7 x 10'8

WT V. alg. MA-»SWM9 5-13-92 1.0 x 109 0 <  1.6x 10’9

WT V. alg. MA-*SWM9 7-22-92 1.6 x 109 0 < 2 .Ox 10'9

WT V. alg. MA-*SWM9 7-28-92 2.7 x 109 0 <  1.9x 10'9

WT V. alg. MA-»SWM9 8-11-92 3.2 x 109 0 <3.1x 1010

Cu40B3 (NS) 10° MA-* 
SWM9

4-30-92 1.5 x 109 7.2 x 10s 4.7 x 10-4

Cu40B3 (NS) Cu->SWM9 4-30-92 1.2 x 109 3.0 x 10s 2.4 x lO4

Cu40B3 (NS) Cu-*SWM9 6-4-92 4.1 x 107 1.7 x 106 4.2 x 10'2

Cu40B3 (NS) Cu-»SWM9 
+50 fiM Cu

6-28-92 9.5 x 107 2.9 x 107 3.0 x 101

Cu40B3 (NS) Cu-»SWM9 6-28-92 8.5 x 107 2.9 x 107 3.4 x lO’1

Cu40B3 (NS) Cu-»SWM9 7-28-92 7.2 x 108 8.1 x 106 1.1 x 102

Cu40B3 (NS) Cu-*SWM9 8-11-92 1.6 x 109 5.5 x 107 3.4 x lO'2

Cu40B3 (NS) Cu-*SWM9 
+  50/xM Cu

9-16-92 4.0 x 107 3.0 x 107 7.5 x 101

Cu40B3 (NS) Cu-*SWM9 9-16-92 4 .1 x 108 1.4 x 107 3.4 x lO’2

Cu40B3 (Sw) MA-»SWM9 6-4-92 1.4 x 109 0 <3.6x 10‘9

Cu40B3 (Sw) MA-»SWM9 7-12-92 8.3 x 108 0 <6.1x 109

Cu40B3 (Sw) MA-+SWM9 
+  50 pM  Cu

7-12-92 9.5 x 106 0 <5.3x 10’7

Cu40B3 (Sw) MA-+SWM9 7-22-92 1.4 x 109 17 1.2 x 108

Cu40B3 (Sw) MA->SWM9 7-28-92 1.7 x 109 95 5.6 x 108
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Table 3.9. CuBP in supernatants of the copper-resistant mutant, Cu40B3 vs. CuBP 

in supernatants of its swarming, copper-sensitive derivative [Cu40B3 (SW)]. 

Results for WT V. alginolyticus are included for comparison.

Isolate [Cu] QjlM) % CuBP [CuBP] fag/ml)

WT V. alginolyticus 0 ND ND

WT V. alginolyticus 50 5.05 1.65

Cu40B3 0 9.25 2.16

Cu40B3 50 7.85 2.15

Cu40B3 (SW) 0 ND ND

Cu40B3 (SW) 50 3.41 0.85
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DISCUSSION

Cur isolates. The correlation between extracellular CuBP expression and 

exposure to/ recovery from copper stress (Harwood-Sears and Gordon, 1990; Gordon 

et al., 1993) coupled with the data indicating that Cu2+ becomes complexed in 

supernatants of copper-stressed V. alginolyticus cultures by a copper-induced protein 

of ca. 20-30 kDa (Schreiber et al., 1990; Harwood-Sears and Gordon, 1990), 

constitutes strong indirect evidence that CuBP is involved in copper detoxification by 

V. alginolyticus. Direct evidence of the link between CuBP expression and Cu 

tolerance was obtained by the classic microbial genetics technique of isolating 

mutants with altered sensitivity to copper and analyzing their supernatants for altered 

expression of extracellular proteins in the 19-22 kDa molecular weight range.

Spontaneous copper-resistant mutants could be isolated from batch cultures 

(Cu20A6) and Cu-stressed continuous cultures (Cu40Al, Cu40B3). The mechanism 

of copper resistance in the oxidase positive Cu20A6 is not evident from experiments 

conducted to date. Both the induction pattern and supernatant protein profile 

appear similar to that of the wild-type (Figure 3.2). SDS-PAGE gels of unchallenged 

vs. 50 [iM Cu-challenged Cu20A6 suggest that this variant may have more CuBP 

and/or total supernatant protein in copper-challenged cultures than the wild-type, but 

this observation has not been confirmed by analysis of replicate cultures, and no 

statistically significant differences in total supernatant protein measurements between 

WT V. alginolyticus and its mutants (Cu8 and Cu1) were found. Alternatively, the 

CuBP of Cu20A6 may have a higher affinity for copper than that of WT V.
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alginolyticus, ox some unrelated mechanism may be involved.

Clearly, Cu40B3 constitutively produces ca. 20 kDa supernatant proteins in 

cultures that have not been copper-stressed, and their level in control and Cu- 

stressed cultures, while somewhat variable, meets or exceeds the level of CuBP in 

Cu-stressed wild-type Vibrio alginolyticus cultures. Constitutive transcription of the 

metallothionein gene in Saccaromyces cerevisiae resulted in cadmium and copper 

resistance, indicating that constitutive production of metal binding proteins is one 

physiological avenue for metal resistance (Tohoyama eta l., 1992). .

The greater frequency of Cur individuals in the oxidase negative Cu40Al 

cultures compared to the CuBP-constitutive Cu40B3 cultures may well reflect a 

fundamental difference in their respective mechanisms of copper detoxification. The 

frequency of oxidase negative isolates among Cur V. alginolyticus suggests that 

decreased cytochrome oxidase activity could lead indirectly to greater copper 

tolerance, perhaps by reducing the level of oxygen free radicals with which 

intracellular Cu could interact. In this case, each mutant or variant cell would offer 

its neighbor no protection from copper, while a variant which overexpressed an 

extracellular, copper-complexing protein would decrease the free copper in the 

media, benifiting both itself and surrounding cells. Thus, not every cell in a Cu40B3 

population on (or in) copper-containing media would have to overexpress CuBP to 

survive.

Decreased growth efficiency in the presence of copper was demonstrated in 

continuous cultures of V. alginolyticus (Gordon eta l., 1993). While Cu40B3 clearly
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displays greater resistance to copper on solid media than WT V. alginolyticus 

(Chapter II) its resistance to copper in liquid culture is less obvious. Optical density 

is not an accurate estimate of Cu40B3 cell numbers in broth culture due to its 

increased tendency to form aggregates, therefore cell protein was used as an estimate 

of culture biomass. While the mean for the ratio of protein in Cu-stressed cultures/ 

protein in control cultures was higher for Cu40B3 than for WT V. alginolyticus, the 

difference was not significant. The slower growth rate of Cu40B3 complicates a time- 

based comparison, and Cu40B3 cultures harvested at 24 h had probably not yet 

reached stationary phase. Even after these complications are considered, the 

difference in efficiency between Cu40B3 and the wild-type is less than one might 

expect based on the plate count results.

A model for a possible explanation of the greater observed copper resistance 

of Cu40B3 on solid compared to broth media is shown in Figure 3.17. The mutant 

phenotype of Cu40B3 has two important characteristics which must be considered in 

a model: (1) constitutive CuBP production and (2) increased production of CuBP 

when challenged with copper. Constitutive CuBP production has been consistently 

observed, while overproduction in Cu-challenged cultures is more variable. Thus, 

while both attributes will be considered in the model, the lack of induction time 

necessary for CuBP production in Cu40B3 probably offers at least as great an 

advantage as overproduction of protein.

The major differences apparent between broth and solid media include cell 

density, diffusion of CuBP away from resistant individuals, and diffusion of copper
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Figure 3.17. Cu40B3 in copper-stressed conditions in liquid and solid media: a 

model for the interaction of copper, CuBP and Cur and Cus bacteria in the 

cultures.
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into proximity with the bacteria. Broth cultures contain fewer individuals per unit 

area than colonies growing on agar. Broth cultures are shaken, therefore mixing and 

diffusion of solute molecules is relatively free. Thus, in broth culture, rapid mixing 

and diffusion of CuBP away from resistant individuals, coupled with mixing and 

diffusion of Cu2+ among the cells, could decrease the advantage that bacteria which 

constitutively produce CuBP display over the wild-type on solid media.

Constitutive producers of CuBP which find themselves on solid media would 

have the immediate advantage of no lag in CuBP production, and mixing would not 

be a factor in increasing dissemination of CuBP away from the bacteria and of Cu2+ 

into proximity with the bacteria. After only ten divisions, there would be over 1,000 

cells in a very small area, all of which would be producing CuBP and some of which 

would be overproducing CuBP. Excess CuBP would diffuse away from the culture, 

complexing Cu2+ diffusing toward the colony before it could contact the bacteria.

The cytotoxic effects of copper on V. alginolyticus depend partly on the time 

of exposure, as Cus V. alginolyticus and V. parahaemolyticus can be retreived from 

inhibitory agar if they have not been exposed for more than a day or two. 

Experience with these isolates and with WT V. alginolyticus plated on copper 

concentrations just above inhibitory levels has shown that what is initially a cytostatic 

effect will become cytotoxic, and colonies will become nonculturable much more 

quickly than if they were on minimal agar without copper. Cu40B3 viability on Cu- 

amended plates decreases dramatically after ten days, probably due to continued 

copper diffusion after colonies have ceased growing. Bacterial survival in the
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presence of excess copper may thus be framed as a race between the damage 

inflicted by copper and bacterial growth/ protein production, a race where conditions 

should favor a constitutive producer of copper-binding protein.

Vibrio parahaemolyticus. The similarity in the response of V. parahaemolyticus 

and V. alginolyticus to copper first became apparent in growth curves (Howell et al. , 

1992), which displayed the characteristic Cu-induced lag phase, albeit at a higher 

copper concentration. The majority of added copper was recovered from the 

supernatants of both organisms after they were grown in the presence of 50 pM. Cu; 

the cellular fractions contained less than 50% of recovered copper. Production of 

an extracellular protein which has similar chromatographic behavior and the same 

molecular weight as CuBP suggests that copper detoxification is accomplished by a 

similar mechanism in V. alginolyticus and V. parahaemolyticus.

Because Cur variants of V. alginolyticus and V. parahaemolyticus BB22 arose 

at approximately the same frequency on plates amended with 30 pM  and 150 pM 

copper, respectively (Harwood et al., 1992), the possibility that their increased 

resistance to copper is mediated by the same mechanism(s) was investigated. The 

observation that increased copper resistance is not stable in BB22, i.e. one passage 

on nonselective media eliminated the ability of putative Cur isolates to grow on Cu- 

amended plates, argues against the possibility that a mutation was involved. 

Although the frequency of Cur individuals (defined as colonie forming units on 

HASW + 40 pM  Cu) varied from culture to culture in mutants such as Cu40B3 (see 

Table 3.8), some individuals retained the copper-resistant phenotype after ten
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nonselective subcultures, indicating that a genetic change had occured. Heightened 

copper resistance in BB22 may be mediated by an induced compound,rather than a 

genetic mechanism.

Cu* isolates. Tn5-132 and miniMufret1) are genetically engineered 

transposons which encode tetracycline resistance (Belas et al., 1984), providing a 

selectable marker which facilitates genetic studies. V. alginolyticus, like most 

naturally-occuring Vibrio species, is sensitive to tetracycline, which inhibits protein 

synthesis at the translational level (Ausubel et al., 1987). Resistance to tetracycline 

was deliberately chosen for genetic work with Vibrio species, which very rarely mutate 

to a Tetr phenotype (Belas et al., 1984). PI, the bacteriophage vector used in this 

mutagenesis system, is a coliphage (originally from E. coli), and although it can insert 

DNA into a range of gram negative bacteria, it has has failed to transfer miniMu 

(Tef) to marine vibrios in other investigators’ hands (Ostling et al., 1991). In fact,

many strains of V. parahaemolyticus were screened before a susceptible isolate

(BB22) was found (Bob Belas, personal communication). Mutagenesis with lysates 

from E. coli C600 (Tn5-132) and E. coli MC4100 [miniMuCTet1)] was unsuccessful 

after many attempts with V. alginolyticus. Transposition into BB22 was successful for 

both Tn5-132 and miniMu the first time it was attempted in this lab.

Since V. alginolyticus did not seem susceptible to DNA transfer by PI,

transposition using a plasmid vector system was attempted. This system had been

successfully applied to marine Vibrio species (Ostling et al., 1991), although it was 

noted that the frequency of transposition was very low. In this lab, transposition in
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Vibrio S141, the positive control, did not occur at detectable levels (<  lO ^m l'1). An 

additional problem occured as E. coli J100, which harbors pRK2013:: miniMu(Tet1) , 

the plasmid carrying miniMu, mutated to a streptomycin resistant (Sm1) phenotype 

at a frequency of 10'9. Since streptomycin resistance is used to differentiate between 

E.coli and Vibrio S141 (or V. alginolyticus) after the filter mating, the Smr mutation 

rate for E. coli J100 was unacceptably high.

Chemical mutagenesis with NTG was employed to obtain Cu8 V. alginolyticus 

after transposon mutagenesis proved unsuccessful. While less elegant and less 

amenable to further genetic manipulation than transposon insertion, chemical 

mutagenesis has been successfully used to investigate the genetics of collagenase (an 

extracellular protein) production in Vibrio alginolyticus (Robbertse eta l., 1978).

The screening method utilizing bromcresol purple developed for isolating Cu8 

mutants proved useful, and eliminated the need to pick individual colonies to replica 

plate arrays or to use velveteen replica plating devices, which frequently result in 

false negative scores and colony smearing. Although this method was limited to one 

transfer, i.e. from one nonselective plate to one selective plate, if the template was 

allowed to grow overnight after filter transfer a second transfer was possible.

Because of the limitation on serial transfers of the same template, the highest 

concentration of HASW + Cu on which the majority of wild-type V. alginolyticus 

could form colonies was determined and used as the selective medium. The filter 

transfer method proved more sensitive than a copper-impregnated filter disk assay 

developed at about the same time. The copper-disk assay could differentiate
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between copper sensitivity in V. alginolyticus and V. parahaemolyticus, but not 

between V. alginolyticus and Cu40B3 or the other Cur and Cu" mutants. The filter 

transfer technique can also be used to isolate Cur mutants by transferring colonies 

to plates containing copper concentrations inhibitory to the wild-type, and selecting 

yellow colonies for further testing. This technique was used to isolate relatively 

copper-resistant bacteria from Chesapeake Bay sediments (unpublished data).

Although there seemed to be a trend toward decreased total supernatant 

protein in Cus mutants, no significant difference was found between supernatant 

protein normalized to cell protein for any isolate, including Cu40B3 (Cu1), compared 

to V. alginolyticus. SDS-PAGE of some isolates indicated very little protein (i.e. 

VA15S9) although normal amounts of protein were measured. A possible 

explanation for this phenomenon is that excessive protease activity in supernatants 

reduced the proteins to small fragments which could not be resolved on 12% 

polyacrylamide gels. CuBP, which was not detected in VA15S9 supernatants, would 

be expected to be destroyed by elevated protease activity along with other 

supernatant proteins.

VA15S7 and VA15S10 supernatants were indistinguishable from the wild-type 

in control and Cu-stressed (15 and 50 ^M) cultures. VA15S11 expressed an 

abnormal amount of a protein of the same molecular weight as CuBP in control 

supernatants, but the concentration of this protein decreased with added Cu. If this 

protein is CuBP, the copper sensitivity of VA15S10 suggests that other functional 

elements, perhaps a regulatory region or an intracellular chaperone or membrane
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protein, are involved in the copper detoxification system.

VA15S12 appears similar to WT V. alginolyticus in all respects, except that it 

does not produce CuBP during 50 /xM copper stress. VA15S12 is one of the most 

copper sensitive mutants isolated during this study, and does not grow on HASW + 

15 nM  Cu, unlike some of the less sensitive isolates, i.e. VA15S10, whose growth is 

slowed but not completely inhibited by 15 /xM Cu. Supernatant protein (absolute and 

normalized to cell numbers) was not significantly different from the wild-type. Why 

VA15S12 expresses a CuBP-like protein when stressed with 15 /xM Cu and not with 

50 /xM Cu stress has not been determined. Perhaps there is a deficiency in the rate 

of CuBP production, which could be caused by mutations in the CuBP regulatory 

region, so that a successful response only to the lower concentration of copper is 

possible.

Plasmid DNA. Acridine orange did not cure the V. alginolyticus plasmid, 

therefore the possible contribution of this plasmid to copper resistance in the 

organism could not be determined. However, the micromolar levels of copper used 

in this study are low compared to levels of plasmid-mediated copper resistance 

reported in the literature (Bender and Cooksey, 1984; Rouche eta l., 1989). If the 

CuBP system is involved in copper ion homeostasis under normal levels as well as 

in copper detoxification at higher Cu levels, it is likely to be chromosomally encoded 

in order to ensure genomic stability. The development of a probe to the cbp gene 

is planned which will allow the location of the gene to be determined, obviating the 

need for plasmid curing.
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Cm1 revertants. The gene(s) and regulatory elements of cbp have yet to be 

identified. CuBP expression may be regulated by a metallothionein-like mechanism, 

in which copper ions bind to and activate the transcriptional regulatory protein ACE1 

(Furst and Hamer, 1989). Constitutive metallothionein production in yeast is thought 

to be due to a novel transcriptional factor (Tohoyama et al. , 1992), a mechanism 

which could mediate constitutive CuBP production in V. alginolyticus. Alternatively, 

CuBP induction may be mediated by a second messenger or by the physiological 

effects of copper toxicity in a manner analogous to induction of the heat shock 

response, which is not a response to heat per se but to the presence of damaged 

proteins (Anathan et al., 1986; Craig and Gross, 1991). Heat shock transcription 

factor (o32) can activate CUP1 (metallothionein) transcription (Silar etal., 1991; Yang 

et al., 1991).

Reversion of Cu40B3, a nonswarming, Cur, constitutive producer of CuBP, to 

a swarming, Cus phenotype in which CuBP expression must be induced by copper 

Cu40B3(SW), indicates that constitutive CuBP production is required for the copper- 

resistant phenotype of Cu40B3. The apparent correlation between swarming motility 

and reversion to copper sensitivity has no obvious explanation. Some swarming Cur 

mutants have been isolated, i.e. Cu20A6 and CuSWA3, therefore swarming motility 

does not preclude copper resistance. Copper resistance in Cur derivatives of 

Cu40B3(SW) was correlated with the nonswarming phenotype, suggesting that some 

physiological change(s) associated with swarming may inhibit constitutive expression 

of CuBP in Cu40B3.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Metals, including copper (Guzzo et al., 1991) and iron (McCarter and 

Silverman, 1989) have been shown to have a regulatory effect on flagellar production 

in bacteria. If copper directly inhibits lateral flagella production by binding to a 

regulatory locus or transcription factor, thus causing the reversible inhibition of 

swarming observed in plated chemostat populations, it is possible that an altered 

regulatory locus or transcription factor in nonswarmers such as Cu40B3 binds copper 

with unusually high affinity. The altered regulatory element could then bind and 

hold copper ions even under normal intracellular copper levels, resulting in a mutant 

nonswarming phenotype. In this scenario the laf genes which encode lateral flagella 

would be negatively regulated by copper ions. The cbp system should be positively 

regulated by copper ions, therefore it is difficult to reconcile direct interaction (as in 

CUP1 activation by o32) between one mutated regulatory element or transcription 

factor and the laf and cbp systems. If two mutations occured, one which negatively 

regulates the laf gems and another which positively (and constitutively) regulates cbp, 

back mutation of the mutated laf regulatory element might preclude constitutive 

expression of cbp.

Alternatively, copper may activate a second messenger system which inhibits 

swarming, and it may be component(s) of this system which have been altered in 

nonswarming mutants. If the same second messenger system that shuts down lateral 

flagellar production also acts to induce CuBP production, the nonswarming 

phenotype would be coupled to constitutive CuBP production.

The isolation of a Cur mutant that apparently has alterations in the cbp
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regulatory locus not only supports the hypothesis that CuBP is an important factor 

in the response of V. alginolyticus to copper, but also provides opportunities for 

further genetic study. Thus, the defective regulatory locus could be cloned and 

identified by its ability to confer Cu resistance and constitutive CuBP expression 

upon V. alginolyticus. The Cu‘ mutants also provide opportunities for genetic study, 

as restoration of the wild-type phenotype by clones from a genetic library could lead 

to indentification of cbp and other physiological systems that participate in the 

homeostatic regulation of copper in V. alginolyticus.
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SYNOPSIS

Vibrio alginolyticus is the only marine bacterium whose response to toxic levels 

of heavy metals has been investigated at the biochemical and genetic level. The 

biota is a dominant component of the factors that control metal speciation, residence 

time and turnover in the oceans, therefore the investigation of microbial/metal 

interactions in the ocean is critical to our understanding of the complex, interacting 

physical, chemical and biological systems involved in determining the fate of metal 

ions once they enter the world Ocean.

The extracellular location of the copper-induced protein we have designated 

CuBP is unusual in light of the metal detoxification models common in the literature, 

i.e. intracellular metallothioneins and the intracellular/periplasmic mer system 

involved in mercury detoxification. However, there are reports in the literature of 

extracellular deposition of copper (Eradi e/o/. ,1987; Rouche et al. , 1989) and of the 

involvement of extracellular proteins in cadmium detoxification (Francis and Bollag, 

1991).

The extracellular, ca. 20 kDa copper-binding protein(s) of V. alginolyticus can 

be resolved by SDS-PAGE as two bands differing in apparent molecular weight by 

approximately two kDa, or as one band of intermediate molecular weight, depending 

upon the quantity of protein (more protein = one band) and gel-to-gel variability. 

It is not known whether the two bands represent entirely different proteins, or
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whether the larger band is an incompletely processed form of the smaller band, 

although the latter hypothesis seems more plausible. Work in progress on the amino 

acid composition of CuBP will contribute to the resolution of this question, as will 

the planned synthesis of oligonucleotide probes for the cbp gene and generation of 

antisera specific to CuBP.

At present, CuBP can be identified by electrophoretic mobility on SDS- 

polyacrylamide gels, two-dimensional chromatographic behavior and its induction by 

copper. On the basis of these criteria, CuBP has been shown to be present in 

supernatants from copper-stressed chemostats as well as batch cultures. It has been 

shown to be absent in supernatants from 50 copper-stressed cultures of a copper- 

sensitive mutant (VA15S12) which was otherwise similar to the wild-type in all 

measured characteristics. When CuBP expression was altered from copper-induced 

to constitutive, the resultant mutants (Cu40B3) were copper-resistant compared to 

WT V. alginolyticus. The revertant derivative of Cu40B3 [Cu40B3(SW)] was no 

longer copper-resistant, and CuBP expression reverted to a copper-inducible 

characteristic.

These results support the hypothesis that CuBP is an important component 

in the response of V. alginolyticus to increased copper concentrations. CuBP 

expression is induced by copper concentrations as low as 1 nM, and the lower limit 

of copper required to induce the response has not been determined. Although low 

compared to the millimolar metal concentrations at which many plasmid-mediated 

metal detoxification systems are capable of operating, one g.M Cu is comparatively
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high with respect to normal ocean/estuarine copper concentrations (total copper = 

nanomolar; see Introduction). The system may have evolved to operate at much 

higher than normal copper levels due to transient surges in metal concentrations 

encountered under conditions such as upwelling, metal-rich waters. CuBP expression 

and survival of V. alginolyticus at high copper concentrations may also be an artifact 

of laboratory culture conditions, where bacterial numbers are high and dilution of 

copper-binding material is limited. In marine waters, bacterial numbers are several 

orders of magnitude lower than in laboratory broth cultures, populations are 

heterogeneous, and dilution is practically infinite. Therefore, the effect of a very low 

concentration of free copper in the ocean would have a relatively large effect on an 

individual bacterium, which would need to produce more CuBP per copper ion in 

order to reduce [Cu2+] to nontoxic levels.

The copper-resistant (Cu20A6, Cu40Al) and copper-sensitive (VA15S7, 

VA15S10) mutants isolated during the course of this study in which supernatant 

protein production was not apparently different fromWT Vibrio alginolyticus indicate 

than both increased sensitivity and increased resistance to copper can result from 

different mutations. Respiratory systems, cell walls and DNA are all potential targets 

of mutation which, if altered, could result in greater or lesser sensitivity to copper 

than the wild-type. Like all thoughtful research, this investigation has raised many 

more questions than it has answered. Answers to the questions of whether copper 

is acting as a mutagen or purely as a selective agent, definition of the regulatory 

elements of cbp and its possible associated proteins, elucidation of the frequency and
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distribution of cbp-like systems in populations of marine bacteria, and the structure 

of CuBP and its copper-binding regions are fertile areas for future research.
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