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ABSTRACT 

THE APPLICATION OF INNOVATIVE HIGH-THROUGHPUT TECHNIQUES TO 
SERUM BIOMARKER DISCOVERY 

Izabela Debkiewicz Karbassi 
Eastern Virginia Medical School and Old Dominion University, 2008 

Director: Dr. Richard R. Drake 

Time-of-flight mass spectrometry continues to evolve as a promising technique 

for serum protein expression profiling and biomarker discovery. As seen in our initial 

SELDI-TOF MS and MALDI-TOF MS profiling study of serum for the assessment of 

breast cancer risk, many profiling strategies typically employ single chemical affinity 

beads or surfaces to decrease sample complexity of dynamic fluids like serum. However, 

most proteins, captured on a particular surface or bead, are not resolved in the lower mass 

range where mass spectrometers are most effective. To this end we have designed an 

expression profiling workflow that utilizes immobilized trypsin paramagnetic beads in 

order to reduce large mass proteins into peptides that are in the ideal mass range for 

serum expression profiling as well as for direct LIFT-MS/MS sequence determinations. 

We demonstrate that this bead-based trypsinization is efficient in digesting large serum 

proteins in short incubation times and is highly reproducible and amenable to an 

automated platform. Additionally, we show that this workflow may be combined in 

tandem with many different types of bead fractionation surfaces. Furthermore, by 

utilizing two different pooled human serum sample cohorts as proof-of-concept 

experiments, we are able to demonstrate the reproducibility of this method in the 

profiling of clinical samples and the ease of differential peptide identity determination. 

Overall, this method is an attractive strategy for high-throughput serum profiling with the 

goal of detecting and identifying differential peptides. 
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CHAPTER I 

INTRODUCTION 

1.1 History of Proteomics and Evolution of Mass Spectrometry 

The term "proteome" was first coined in 1994 at a meeting in Siena, Italy and was 

defined as the protein complement to the study of the genome. Thus, the study of the 

proteome was termed "proteomics" (1). Currently, proteomics is thought of as the study 

of not only all the proteins of a certain system, but also their structure, isoforms, 

modifications, interactions with other proteins and almost everything "post-genomic" (2). 

The early goal of proteomics was the quick identification of all the proteins expressed by 

a cell or tissue. However, this lofty goal has yet to be achieved for any species. Current 

research is more varied and focused towards determining systematically the various 

properties of proteins (1). Many different technologies have been developed, and are 

constantly evolving, to achieve the goals of proteomic researchers. 

Two-dimensional electrophoresis 

Initial proteomic approaches relied on protein separation by two-dimensional gel 

electrophoresis, with identification of protein spots of interest (2). Two-dimensional gel 

electrophoresis (2DE) was developed independently by Klose (3) and O'Farrell (4) in the 

1970s. This is a gel electrophoresis method that separates proteins at high resolution, 

most commonly by first separating the proteins by their charge through isoelectric 

focusing in a first dimension, which is then followed by a separation of the proteins by 

their size in the second dimension via SDS polyacrylamide gel electrophoresis (SDS-

This manuscript is modeled after Cancer Research 
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PAGE). The separated proteins are then detected by a stain of choosing (i.e. Coomassie 

stain, silver stain, or a fluorescent stain) and the staining intensity provides an estimate of 

the amount of protein present in each spot. It was recognized that the spot patterns 

generated were relatively reproducible and could be overlaid and compared between 

samples (5). However, there are many disadvantages to this approach. One issue with 

2DE was discovered when upon sequencing of the protein spots it was found that the 

incidence of co-migration of proteins was more prevalent than originally thought (6). 

This was a draw-back since quantification of 2DE gels relies on the assumption that there 

is only one protein present in each spot (1). Another more commonly discussed problem 

with 2DE is that this is a very time consuming and labor-intensive process, i.e. as 

opposed to a one-dimensional gel only one sample may be run per 2DE gel. This 

problem was addressed by 2D-DIGE, or two-dimensional Fluorescence Difference Gel 

Electrophoresis. This system uses specially designed CyDye™ fluors, which are 

spectrally resolvable and size and charge-matched, to label samples. There are three 

fluors: Cy2, Cy3 and Cy5. These fluors have an NHS-ester reactive group, and thus are 

able to covalently attach to the amino group of lysine in proteins by an amide linkage. 

The lysine amino acid in proteins carries an intrinsic single positive charge at neutral or 

acidic pH and the fluors also carry a single positive charge. Therefore, when the fluor is 

coupled to the lysine it replaces the lysine's single positive charge with its own, thus not 

altering the pi of the labeled protein significantly from the same unlabelled protein. Cy3 

and Cy5 are typically used to label independent samples, while Cy2 may be used either as 

an internal control between gels or also to label a third independent sample. In this 

manner up to three samples may be simultaneously separated on a single 2DE gel and up 
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to three separate conditions may be compared in a single 2DE gel. Therefore, this system 

is less labor intensive as having to run several separate gels and also helps to remove gel-

to-gel variability, another common complaint with the 2DE system (7, 8). 

Early protein sequencing methods 

During the time that 2DE gels were first being implemented, Edman degradation 

was the method utilized to sequence the majority of proteins. This method, developed by 

Pehr Victor Edman in 1949, is a chemical process that removes amino acids from the N-

terminus one at a time (9). The automatic version was later introduced in 1967 by Edman 

and Begg (10). The Edman degradation procedure has three steps: coupling, cleavage 

and conversion. The coupling reaction consists of phenylisothiocyanate (PITC) 

modifying the free-amino terminal alpha-amino of a polypeptide to form a 

phenylthiocarbamyl (PTC) polypeptide. The PTC amino-terminal residue is rapidly 

cleaved with an anhydrous acid from the polypeptide chain in the cleavage step. This 

occurs through the formation of a five-membered heterocyclic derivative, 

anilinothiazolinone (ATZ) that is made by the sulfur atom of the derivatized amino 

terminus and the carbonyl carbon of the first peptide bond. Thus, the cleavage reaction 

yields an ATZ amino acid and a shortened polypeptide. The shortened polypeptide has a 

reactive-terminal alpha-amino group and thus can undergo more cycles of coupling and 

cleavage. The final conversion step relies on the hydrophobicity of the ATZ amino acid 

to separate it and extract it from the hydrophilic polypeptide by a nonpolar solvent. The 

unstable ATZ derivative amino acid is then converted to a more stable 

phenylthiohydantoin (PTH) derivative via treatment with an aqueous acid. Since this 
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procedure removes the PTH without destroying the remaining peptide, a sequential 

degradation of the peptide can be achieved. Each amino acid of the peptide chain may 

then be identified through one cycle of the Edman degradation technique followed by one 

cycle of high-performance liquid chromatography to analyze the PTH amino acid (11). 

The Edman degradation method was not the first and only foray into protein 

sequencing. There were several techniques that either came before, or were 

contemporaries, of the Edman degradation technique. A method that preceded Edman 

degradation, and which the Edman degradation method built upon, was the stepwise 

degradation through the use of phenylisocyanate (PIC). This method was developed in 

1930 by Abderhalden and Brockmann and was based on the ability of PIC to couple to 

amino groups and produce an intermediate that is rearranged under acidic conditions, 

thus cleaving the derivatized terminal amino acid from the parent peptide (12). Edman 

improved on this method by changing the coupling agent to PITC, which proved to be a 

more readily cyclized intermediate and thus a more easily cleaved amino-terminal acid. 

However, it was in 1954 that the first complete description of the chemical structure of a 

protein was successfully performed. This was done by Frederick Sanger, who was 

studying the pancreatic hormone, insulin, which is a low-molecular-weight protein, 

composed of fifty-one amino acids. Sanger was able to determine the composition of 

insulin by first breaking the two chains of insulin into peptides. The insulin peptides 

were sequenced using a DNP (dinitrophenyl)-labeling method which covalently modifies 

the end amino acid in a peptide. The DNP group behaves as a chemical marker that stays 

attached to the amino group after the peptides are hydrolyzed into their constituent amino 

acids. The hydrolyzed, and partially hydrolyzed, peptides are then separated using two-
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dimensional paper chromatography, also called partition chromatography, and the N-

terminus is identified by its color. By aligning the peptides a contiguous sequence may 

be determined (11). Still, such methods as Edman degradation are time consuming and 

require large amounts of sample. Thus, as mass spectrometry based sequencing methods 

have emerged over the last 15 years, they have rapidly evolved to replace methods like 

Edman degradation as the technique of choice for protein analysis. 

The Revolution of "Soft Ionization" Mass spectrometry 

Mass spectrometry is an instrumental approach that allows for the mass 

measurement of ions generated from molecules and is capable of forming, separating and 

detecting ions based on their mass-to-charge ratio (m/z). Mass spectrometers are made up 

of several modular sections: The ionization source, the mass analyzer, the detector and 

the data recorder/processor. The ionization source converts and transfers molecules into 

gas-phase ions, while the mass analyzer is the device that separates gas-phase ions, 

usually by electric or magnetic fields. The major types of mass analyzers are quadrupole 

(uses oscillating electrical fields to selectively stabilize or destabilize ions), ion-trap (is 

typically coupled with the quadrupole mass analyzer, but now allows the ions to be 

trapped and sequentially ejected), and time-of-flight (TOF) (uses an electric field to 

accelerate ions down a flight tube). The ions from the mass analyzer go on to strike the 

detector. Intensity (abundance) and the m/z values of the ions are based on the magnitude 

of the current produced at the detector as a function of time. This is collected by the data 

recorder and typically displayed as m/z on the x-axis and ion abundances on the y-axis 

(11). 
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To determine the m/z of a molecule in a mass spectrometer, the analyte is first 

ionized and then transferred into a high vacuum system. Traditionally, the ionization of 

molecules into the gas phase was accomplished by electron impact (EI) or chemical 

ionization (CI) (11). However, peptides and proteins are large molecules and are 

consequently difficult to ionize by this manner since it may destroy the molecule through 

extensive thermal decomposition. In the early 1980s "soft ionization" techniques were 

first discovered and helped revolutionize ionization of peptides and proteins and thus the 

detection and sequencing capability of mass spectrometry. "Soft ionization" techniques 

are accordingly named because they allow for ionization of large, nonvolatile, polar 

compounds such as proteins and peptides at high sensitivity, but without excessive 

fragmentation (1, 5, 11). One of the first "soft ionization" techniques was fast atom 

bombardment (FAB) developed in the early 1980s (13-15). In FAB, the analyte is 

dissolved in a nonvolatile liquid matrix and placed under vacuum. The sample is then 

"bombarded" with fast neutral atoms in order to eject analyte ions into the gas phase. 

Yet, it wasn't until the late 1980s that two "soft ionization" methods, electrospray 

ionization (ESI) and matrix-assisted laser desorption ionization (MALDI), were 

introduced commercially and thus made mass spectroscopy more routinely available to 

biological researchers (11). 

ESI was developed by Fenn et al (16) and is based on the application of a high-

voltage potential to a liquid as it passes through a small capillary. The ions are then 

desorbed into the gas phase after the evaporation of the droplet as it enters the capillary. 

A unique characteristic of ESI is that both singly and multiply charged ions can be 

formed from a single precursor. The composition and pH of the electrospray solvent, and 
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the chemical nature of the analyte, determine the extent of the multiple charging of an 

analyte. Typically peptides (<2000 daltons) yield singly or doubly charged ions, while 

proteins (>2000 daltons) give rise to multiply charged species. Multiple charged states 

are both a benefit and a drawback to the ESI technique. ESI is typically coupled with 

triple-quadrupole or ion-trap instruments (though recently hybrid quadrupole TOF 

spectrometers have become available). Thus, the benefit to multiple charging is that even 

simple quadrupole instruments, and other types of mass analyzers with limited m/z range, 

may be used to detect masses that exceed the m/z maximum of the instrument. The 

drawback is that the multiple charging may be very complex with overlapping ions, 

especially in the analysis of a mixture. Currently, though, all commercial ESI mass 

spectrometers are equipped with a deconvolution algorithm, which processes the charge 

state and isotopic envelope in order to provide a statistically averaged molecular mass 

(11). 

The MALDI platform was first developed by Karas and Hillenkamp (17) and is 

based on directing a pulsed laser light onto a matrix-embedded, crystallized sample 

(many sample sets may be spotted with matrix on AnchorChip™ plates thus adding to 

this method's relative high-throughput and automation capabilities). The interaction of 

the laser pulse with the sample results in ionization, typically protonation, of both matrix 

and analyte molecules by a transfer of energy from the matrix to the embedded analyte, 

instead of by direct laser ionization (11). Unlike ESI, MALDI typically produces singly 

charged ions, which are accelerated by an electric field into the analyzer (typically a TOF 

for MALDI), which is a chamber under vacuum. The ions drift through the analyzer with 

the kinetic energy obtained from the potential energy of the electric field and are 
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separated based on their m/z. The relation of m/z is proportional to the square of the 

flight time (t) and this information may be used to determine the related mass (their mass 

is thus based on the "time of flight" it takes to reach the detector). In addition to this 

standard "linear mode", the ions may also be deflected with an electrostatic reflector 

which works like an ion mirror. This technique is termed "reflectron mode" and it is 

based on the inversion of the ion trajectory in an oppositely polarized electric field. The 

reflectron mode thus provides a longer flight path allowing the masses of the ions 

reaching the detector to be determined with higher precision. A caveat to the MALDI 

platform is that the relative peak intensities may be influenced by ion suppression effects 

and in this way may mask peaks or at the least the spectrum may not correctly reflect the 

concentration of the detected peptides/proteins (18, 19). However, this may be overcome 

by coupling the MALDI platform to a front-end fractionation step such as a High 

Performance Liquid Chromatography (HPLC), termed LC-MALDI, or other 

chromatography-based fractionation method. 

Protein Identification using Mass Spectrometry 

There are two main methods that are used for protein sequencing without the need 

for de novo sequencing. The first is called peptide mass fingerprinting (PMF) or peptide 

mapping. This is the most popular method for the identification of spots from 2DE gels, 

since it essentially requires a pure target protein. Typically, PMF is carried out on 

MALDI-TOF mass spectrometers (5). In this method, an isolated protein (i.e. from an 

excised 2DE spot) is first digested with a protease (typically trypsin). The spectrum from 

the resulting peptide fragment masses is then compared against masses calculated from 
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the same proteolytic digestion of each entry in a sequence database to obtain the 

identification of the target protein (1). 

The other method is termed tandem mass spectrometry (MS/MS). Tandem mass 

spectrometry occurs when a specific ion (termed parent ion) is selected from a mixture on 

the basis of its m/z ratio and then fragmented within the instrument. MS/MS has allowed 

the identification of proteins without the need for purification or separating proteins by 

SDS-PAGE. The specificity of MS/MS-based protein identification is often times much 

higher than that of PMF, because a peptide sequence (thus the MS/MS spectrum of a 

peptide) can uniquely identify a protein. Since peptide ions fragment in a sequence-

dependent manner, the MS/MS spectrum is in theory the amino acid sequence of that 

peptide. In certain cases where PMF does not provide sufficient enough information for 

protein identification, a peptide from the PMF spectrum may be selected and subjected to 

MS/MS for improved protein identification (1, 19). In essence both ESI and MALDI 

methodologies have the capability of MS/MS. 

In regards to the ESI platform, the method of MS/MS was greatly improved with 

the introduction of nanospray-ESI. This technique sprays peptide mixtures into the mass 

spectrometer at low flow rates through very narrow capillary columns. The capillary 

column serves as the ionization source and the slow flow rate allows generation of 

fragment ion spectra of several of the observed precursor ions. This led to peptides being 

detected at sensitivities not previously achieved with ESI (11, 20). For ESI, the 

fragments from parent ions are generated by Collision Induced Dissociation (CID). CID 

involves the activation of selected ions through energetic collisions with a neutral target 

gas. This converts translational energy into internal energy and places the targeted ions 
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into an activated or excited state, which is followed by the unimolecular dissociation of 

the activated ions to yield fragment products (11). In the beginning the selection of 

precursor ions was performed by the operator, but most recently software is available for 

computer-controlled ion selection thereby automating the MS/MS process (1). 

Additionally, the ESI source is typically coupled to a Liquid Chromatography (LC) 

system for the improved identification of peptides in mixtures. However, even with 

automation, ESI is relatively low throughput as it is time consuming and only one sample 

may be run at a time. Furthermore, column contamination is sometimes observed and 

overly contaminated instruments are difficult to clean due to the instruments high 

sensitivity for certain compounds (11). 

MALDI, on the other hand, typically uses a tandem TOF, or TOF/TOF, method 

termed LIFT. The LIFT mode of the MALDI instrument (named so because it "lifts" the 

potential energy of ions) works by fragmenting a parent ion, re-accelerating the parent 

and fragment ions and focusing them on the detector thereby generating a MS/MS 

spectrum. The instrument also contains an additional device that suppresses precursor -

ions. Termed "post lift metastable suppressor", it is located between the LIFT device and 

the reflector, where it deflects any remaining intact precursor ions and also prevents 

unwanted fragment ion formation after post-acceleration. The MALDI platform may 

fragment the parent ion by either LID (Laser-Induced Dissociation) or CID. In terms of 

LIFT, LID is fragmentation induced by laser irradiation and it is typically used for 

protein identification, while the high-energy CID is typically used for de novo 

sequencing (due to its ability of differentiating between leucine and isoleucine) or for 



11 

glycan analysis (19, 21). The LIFT-MALDI-TOF/TOF instrument maybe Mly 

automated or may be operator controlled as needed (19). 

As ESI and MALDI increased in popularity the size of the sequence library 

available has also increased thereby improving the likelihood of a peptide identity match. 

Additionally, algorithms that match MS/MS spectra to sequence databases (22,23) have 

much improved protein identification by mass spectrometry. MS/MS spectra may also be 

used to search translated ESTs, or expressed sequence tags, and other sequence databases 

containing incomplete sequences. ESTs libraries were a product of mass DNA 

sequencing of cDNAs derived from large pools of mRNA in the early 1990s. A decade 

later an ultimate normalized sequence library was available which encompassed the 

complete human genomic sequence, and normalized it to account for the dynamic range 

of transcript numbers expressed in cells, thus including the low-abundant species as well 

(24,25). 

There are many search engines available to search these vast libraries. One such 

search engine is SEQUEST. SEQUEST, a commercially available product, is the 

prototypical algorithmic tool for scanning MS/MS spectra against comprehensive protein 

databases. This algorithm finds all peptides in the database that match the input mass and 

then theoretically calculates the expected fragment ion masses against the observed 

MS/MS spectrum. SEQUEST has been modified several times to include modifications 

in searches (22), and to allow searching of DNA databases (26), MALDI fragmentation 

data (27) and high-energy CID data (28). Another search engine is Mascot, which is a 

free web search service. It allows for uninterrupted MS/MS ion searches of data from 

various mass spectrometry instruments. It works by uploading fragment ion masses and 
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intensities and then selecting the most intense peaks. Mascot looks for the group that 

most clearly differentiates the top score of the matched protein and reports its results 

using a probability-based MOWSE (molecular-weight search) score and level of 

significance. Several variable modifications, as well as constant modifications, may be 

selected for each search. Mascot may also be used for PMF searches (29). In actuality 

Mascot is an extension of the original MOWSE search engine, in which the molecular 

weight of the protein was taken into account based on a normalized distribution 

frequency value calculated for different proteases. The MOWSE scoring system is based 

on the principle that larger peptides carry more scoring weight and thus compensates for 

the nonrandom distribution of fragment molecular weights in proteins of different sizes 

(11,30). 

Trypsin digestion in Mass Spectrometry 

As mentioned above both PMF and MS/MS are greatly facilitated by digesting 

samples with a known protease. This is true for both in-gel digestions (i.e. from one-

dimension or two-dimensional gels) or for in-solution digestion. The knowledge of the 

enzyme that created the peptide in question greatly aids in protein identification through a 

sequence database query. In general proteases like trypsin, which produce small 

peptides, are beneficial for mass spectrometry because the peptides fall within the 

optimal m/z range of most mass spectrometry instruments (11). 

One of the most commonly used and best-characterized proteases in proteomics is 

trypsin. Trypsin is a serine protease that cleaves at the carboxy side of lysine and 

arginine, except if either is followed by a proline. Typically, commercially available 
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trypsin is modified to render it resistant to proteolytic digestion, since proteolysis can 

generate a version of trypsin that has chymotrypsin specificity. Due to this, extra 

precautions are made and most trypsin products available for proteomics are treated with 

L-(tosylamido-2-phenyl) ethyl chloromethyl ketone (TPCK) to prevent chymotryptic 

activity (11). 

Traditional tryptic digestions can be tedious and require long incubation times, 

since using high concentrations of enzyme will create interfering auto-digestion peaks 

and this may also lead to ion suppression. This has led many researchers on a quest to 

develop a more efficient trypsin digestion method that will allow for more high-

throughput proteomic analysis. In this regard, it has been well documented that 

immobilizing enzymes can yield reactions that are faster, more efficient and have high-

throughput (31, 32). This is due in part to the increased stability of the immobilized 

enzyme and also to the ability of using a higher enzyme-to-substrate ratio. There have 

been many approaches to immobilize trypsin onto solid supports to increase its catalytic 

ability, thus minimizing the time needed for digestion and streamlining the trypsinization 

process. Innovative approaches such as trypsin adsorbed directly onto a metal MALDI 

plate (33, 34), linked to copolymer MALDI sample array chips (35) or immobilized onto 

different monolithic HPLC columns (32, 36) have been described (monolithic columns 

consist of one piece of continuous, porous material that is sealed against the wall of a 

tube, so that mobile phase can't bypass any significant length of this porous bed but 

instead must permeate through it (37)). Currently, trypsin is also commercially available 

bound to agarose beads and immobilized as individual spin columns. 



Quantification in Mass Spectrometry 

Another important question in proteomics, in addition to the knowledge of a 

certain peptide's or protein's identity, is whether, in a particular system being studied, 

there are any differentially expressed proteins in the sea of proteins with unchanged 

expression. Therefore, quantification is another important issue in mass spectrometry. 

However, peptides analyzed in a mass spectrometer will produce different intensities 

based on chemical composition, the matrix in which they are present and other poorly 

understood variables, thereby hampering quantification (1). Quantification may be 

thought of as relative or absolute quantification. Relative quantification looks at the 

amounts, or concentrations, of proteins between two conditions that are being compared. 

This is the basis for profiling in proteomics (i.e. profiling normal versus cancer). 

Profiling typically occurs on the MADLI platform, since, as mentioned above, this 

platform has the ability to read more than a hundred samples on a single target plate, thus 

using the same laser settings, matrix preparations and other conditions for all sample 

comparisons. For relative quantification using a MALDI instrument it is very important 

that there is a homogenous distribution of analyte in the cocrystallite composed of matrix 

and analyte. Hot-spot formation, the observation that at several points of the sample no 

analyte signals can be detected, while at other points strong signals can be seen, must be 

avoided. The phenomenon of hot-spot formation is hard to predict and is dependent on 

such properties as hydrophobicity, polarity, and H-bond-formation potential of the 

analyte, the matrix and the solvent used for the sample preparation. Hot-spots cause 

varying ion response on different positions of the sample spots, which leads to poor spot-
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to-spot and shot-to-shot reproducibility and is therefore one of the main reasons 

hampering quantitative MALDI-MS (38). 

Absolute quantification refers to the amount, or the concentration, of a protein of 

interest in a particular system. This type of quantification can be performed on either 

MALDI-TOF or ESI instruments using internal standards, or after measurement of a 

calibration curve with known amounts of the particular analyte (38). One type of 

internal standard techniques that is growing in popularity is the labeling of all proteins in 

a solution mixture with stable isotopes. These methods are used for the quantification of 

peptides after MS/MS fragmentation. One such method is termed Isotope-Coded Affinity 

Tags (ICAT) and it involves labeling the cysteine residues in one sample with dO-ICAT 

(polyether mass encoded linker with eight hydrogens) reagent and the cysteine residues in 

a second sample with d8-ICAT (polyether mass encoded linker with eight deuteriums) 

reagent. Deuterium is a stable isotope of hydrogen that has a neutron and thus is twice as 

heavy as hydrogen. This will give the peptides labeled with d8-ICAT reagent a mass 

difference compared to the peptides labeled with dO-ICAT reagent. After labeling, the 

samples are combined and digested. The biotinylated ICAT-labeled peptides are 

enriched on an avidin affinity column and analyzed by LC-MS/MS (1, 39). Another 

labeling strategy is termed isotope coded protein label (ICPL), which is based on stable 

isotope labeling of free amino groups in intact proteins. This labeling strategy is similar 

to ICAT as it also relies on heavy (isotope-encoded) and light (isotope-free) mass tags. 

Schmidt et al demonstrated that this approach may be multiplexed by adding different 

weighted deuterium atoms (i.e. 7, 3 or 0 deuterium atoms) (40). A slightly different 

approach to ICAT and ICPL is termed isobaric Tags for Relative and Absolute 
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Quantification (iTRAQ). The iTRAQ method labels peptides on lysine residues and on 

the N-terminus with cleavable multiplex isobaric tags to produce MS/MS signature ions 

with the relative peak area corresponding to the proportion of labeled peptides. This 

technique allows up to 4 samples to be labeled, mixed and analyzed at the same time due 

to the availability of 4 mass tags (114,115, 116,117) (41,42). Recently, Applied 

Biosystems, the manufacturer of iTRAQ, released an 8 tag version (8-plex with a mass 

tag range of 113-121) of this platform, therefore allowing the comparison of up to 8 

samples. 

SELDI platform 

Besides ESI and MALDI, another platform has been described termed Surface 

Enhanced Laser Desorption/ Ionization (SELDI) time-of-flight mass spectrometry. 

SELDI is essentially the MALDI process but with an incorporated surface capture 

chemistry on the spot plate surface, and refined to individual spots on a chip platform. 

SELDI-TOF MS technology has helped fuel large-scale clinical proteomic profiling, with 

its ability to separate and analyze complex mixtures of proteins in a relatively high-

throughput manner (43-45). The SELDI platform uses chips that contain specific 

surface-chemistries (with several different chemistries available i.e. ion-exchange, 

hydrophobic, normal-phase or metal chelate functional groups) for the affinity capture of 

proteins from biological samples. The captured proteins are then analyzed by TOF mass 

spectrometry to yield m/z and relative intensities of each ion (46). This technique 

garnered much excitement from the research community. However, soon papers 

emerged demonstrating the lack of analytical reproducibility of this method from 
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different institutions and diminished robustness of discovered biomarkers upon validation 

(47-49). Some of these problems have been addressed and shown to be based on study 

design bias, chance, overgeneralization of results, and sample processing issues and not 

actual problems with the instrument (48). Additionally, it has also been demonstrated 

that when careful study design and sample handling is applied along with instrument 

calibration, automation of sample preparation and supervised bioinformatics data 

analysis, serum expression profiling can be reproducible and portable across multiple 

laboratories (47, 50). Still, one of the main concerns with the SELDI platform is that, in 

contrast to MALDI-TOF-MS/MS, SELDI-TOF MS has the disadvantage that the peaks 

deemed differential can not be subjected to tandem mass spectrometry. Instead, 

alternative, and more time-consuming, processes must be utilized to identify the identity 

of any peptide or protein of interest (46). 

1.2 Profiling for Cancer Biomarkers using Proteomic Technology 

Cancer occurs when cells within the body divide aberrantly. These cells may then 

become metastatic by dislodging from the primary tumor and the disease may spread 

throughout the body via direct organ invasion, the lymphatic system, and/or the 

circulatory system (51). At least one in three people will develop cancer, of which one in 

four men and one in five women will die from this disease (52). 

The method by which cancer develops is a multifactoral process and includes both 

endogenous factors, such as genetic predisposition, and exogenous factors, such as 

exposure to environmental carcinogens and infectious agents. Another important factor 

for the development of cancer is age. There is an age-associated, organ-specific tumor 
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incidence. Most cancers maybe divided into three groups: 1) embryonic (i.e. 

neuroblastomas, retinoblastomas, and Wilms' tumors); 2) juvenile/young adulthood (i.e. 

certain leukemias and testicular cancer); and 3) those that have increasing incidence with 

age (i.e. prostate, breast, colon, and bladder cancers). There are several explanations as 

to why certain cancers are associated with aging. One such possible factor is the 

continuous exposure though-out life to low levels of exogenous carcinogens which would 

allow genetic alterations to accumulate over time. There may also be age-associated 

changes in some cells (whether caused by exposure to carcinogens or not), such as a 

decline in DNA repair capacity, that may lead to mutations that are favorable to tumor 

formation. Finally, with age there are alterations to the human body that may create a 

more permissive setting for cancer development, such as changes in the immune and 

hormonal environment. Typically, cells that divide are at a higher risk of acquiring 

mutations than cells that do not divide. Thus, cancer is generally rarer in tissues that do 

not divide, such as nerve tissue, but more common in breast, prostate, skin and colon, 

which divide frequently (52). 

The first large scale technique applied to search for biomarkers in the cancer field 

involved the use of DNA microarrays for mRNA expression profiling (53, 54). However, 

mRNA levels do not necessarily correlate with corresponding protein abundance. 

Additionally, proteins are subjected to post-translational modifications such as 

phosphorylation, acetylation, glycosylation and protein cleavages. These post-

translational modifications are not detected at the mRNA level (2). Thus, proteomics for 

biomarker discovery gained popularity as a complement to the genomic information 

gathered from past microarray data. 
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The use of blood for proteomic profiling 

Various tissues and biological fluids have been used in proteomic studies for 

biomarker discovery. However, plasma and serum have been especially appealing as 

sources for cancer biomarkers. This is because blood collection is minimally invasive, 

economical to perform, and has the ability to be portable to remote locations (55). In 

addition, the "leaky" nature of the newly formed blood vessels of a developing tumor and 

the increased hydrostatic pressure within tumor potentially leads to the escape of tumor 

molecules into the circulation (56). 

Cancer is as much a product of its microenvironment as the microenvironment is 

the product of the cancer. This is because the pre-cancerous cells interact with 

surrounding epithelial and stromal cells, vascular channels and with the immune system, 

which all may be involved in providing a favorable environment for the tumor to flourish. 

Conversely, tumors also affect their surroundings by partaking in abnormal cell growth, 

angiogenesis and cellular invasion, which are characterized by the release of proteases 

that digest normal tissue and blood proteins. Thus, these events may give rise to a unique 

cascade of events that will produce distinctive biomarkers (57). It is believed that full-

length cellular or tissue protein may be too large to enter the blood vessel wall passively 

and thus biomarkers shed into the circulation from the tumor microenvironment are 

predominately peptides and/or cleavage products. This led to the coining of a new 

"omics" term, peptidomics. A controversial facet to peptidomics is the knowledge that 

peptides are generated both in vivo and ex vivo. Ex vivo peptide production occurs in 

serum by undefined collections of proteinases present in the blood that act on degradative 

products of the clotting cascade (58). This is a point of contention, because many believe 



that ex vivo generation of peptides may falsely bias data, especially if the sample sets are 

handled by different individuals or are exposed to other variable conditions. It has even 

been demonstrated that the plasma type or type of serum separator used in a study is a 

source for profound variability in spectra (59, 60). However, there are also researchers 

that argue that the peptides generated ex vivo provide valuable insight into the nature of 

the proteinases that generated them. The rationale is that if the proteinases are altered 

between disease states, and/or hail from the tumor microenvironment, then the peptide 

patterns determined will reflect the activity of resident proteases in a given sample. One 

concept that receives universal agreement is that much care must be taken to attain 

uniformity in the collection and processing of blood samples (47, 56, 58-62). 

Fractionation Techniques 

The use of blood for biomarker discovery is hampered by the complexity and dynamic 

concentration range of this fluid. The potential biomarkers generated by a tumor are very 

dilute in the blood stream. Since, early-stage tumors might arise within a tissue volume 

of less than 0.1 mL then the dilution factor of the tumor-generated biomarkers would be 

50,000 (assuming that the biomarkers attributed to this tumor are uniformly dispersed in 

the 5,000 mL total blood volume) (56). Additionally, the concentration range of 

serum/plasma proteins spans about twelve orders of magnitude (63), in which twenty-two 

proteins constitute about 99% of the protein content of plasma/serum, with the remaining 

1% considered to be at low-abundance levels (Figure 1) (64). There are thought to be 

many proteins that are not detected in the convoluted serum proteome because they are 
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Figure 1. Pie chart representing relative composition of proteins within plasma. Twenty-two 
proteins make up ~ 99% of plasma (adapted from Tirumalai et al, 2003). 



overshadowed by high-abundant proteins, such as serum albumin. 

The current methods for evaluating the blood proteome, which includes two-

dimensional gel electrophoresis-based techniques and mass spectrometry-based 

techniques, are only capable of examining about three orders of magnitude (64, 65). 

Therefore, it appears to be highly unlikely that current proteomic approaches may be able 

to identify molecules in the concentration range of common tumor markers (ng/mL 

range) without first reducing the complexity of the plasma/serum proteome (63). 

One avenue for simplifying the proteome is the targeted capture of specific 

proteins. This capture may be for the purpose of depletion, for example the depletion of 

top-abundant proteins like albumin or immunoglobulins, so that the lower abundant 

proteins may be more readily accessible for analysis. However, the targeted capture may 

also be to study the captured proteins themselves. For example, one theory exists that 

biomarkers may be enriched in the circulatory system by accumulating on high-

concentration resident proteins (i.e. albumin), thus being protected from clearance by the 

kidneys (56). This has led to the study of the "albuminome" were albumin is captured 

(i.e. targeted capture via albumin antibodies) and the proteins bound to albumin are 

analyzed via mass spectroscopy (64, 66). 

The most common approach to reducing sample complexity is through the use of 

affinity-based chromatography columns (commonly used on the front-end of LC-MS/MS 

instrument). However, these columns are not ideal for large sample numbers and are not 

suited for automation. An alternative chromatography-based fractionation method that is 

more suited for high throughput analysis is SELDI-TOF MS, which as discussed 

previously, uses chips coated with different surface chemistries to fractionate samples. 
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However, because the surface area of the chips is small, this leads to a diminished 

binding capacity and thus competition among proteins. This greatly influences the 

spectrum of peptides and proteins detected (67-70). Chromatography columns or 

magnetic particles with higher surface area and binding capacities provide fractionation 

with less influence from competition over binding sites (70). 

MALDI-TOF MS analysis typically takes advantage of these higher surface area 

affinity-coated magnetic beads, which may be interfaced with robotic instruments (i.e. 

ClinProt robot from Bruker Daltonics) that utilize magnets to automate the front-end 

manipulation of samples. There are various magnetic bead types available that may be 

combined with the ClinProt robot and the MALDI-TOF/TOF instrument from Bruker 

Daltonics to produce an automated method that is high-throughput, reproducible, limits 

operator error and consumes small amounts of the patient's sample (Figure 2) (43, 62, 71, 

72). This leads not only to more significant results due to the increase in sample 

numbers, but may also provide an ideal technique that translates effectively into clinical, 

diagnostic laboratories. 

1.3 Breast Cancer 

Breast cancer is the most common cancer among women, and is the second 

leading cause of cancer mortality in women after lung cancer. According to the 

American Cancer Society, approximately 178,480 women in the United States were 

estimated to be diagnosed with invasive breast cancer and around 40,460 women were 

expected to die from the disease in 2007. Though predominately a female disease, breast 
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Figure 2. MALDI-TOF scheme with magnetic beads for automation. Serum proteins are first 
bound to magnetic beads that may be either chemically altered (such as cation/anion exchange) 
or conjugated to a protein (i.e. lectin or antibody). After incubation the unbound fraction is 
removed and the beads are washed to remove non-specifically bound proteins. The bound 
proteins are removed, diluted with matrix (i.e. CHCA), and spotted on a target plate. This entire 
process may be performed manually or robotically using a platform like the ClinProt robot from 
Bruker. The spotted samples are analyzed using the MALDI-TOF instrument. Adapted from 
Semmes et al, 2006. 
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cancer also affects men. In 2007 2,030 men were projected to de diagnosed with invasive 

breast cancer and 480 men were estimated to die from the disease (73). 

The breast is composed of several lobes separated by septa of connective tissue. 

Each lobe consists of several lobules. These lobules are made of connective tissues and 

contain clusters of alveoli (secreting cells of the gland) that surround small ducts called 

ductules. The ductules stem into ducts and then these ducts from the various lobules 

come together to form a single lactiferous (milk-carrying), duct for each lobe (15-20 for 

each breast). Each of these main ducts terminates in a tiny opening on the surface of the 

nipple. A comparatively large amount of adipose tissue is deposited around the surface 

of the gland and between the lobes. Breast size is determined mainly by this fat 

surrounding the glandular tissue and not by the glandular tissue itself. The glandular and 

connective tissues are supported by suspensory ligaments that help anchor the breast to 

the underlying fascia of the pectoral muscles (74). 

Estrogen and progesterone control breast development during puberty, with 

estrogen stimulating growth of the ducts of the mammary glands, while progesterone 

stimulates development of the alveoli (74). Initially, terminal ductal lobular units are 

formed. These are the most actively growing terminal ductal structures and are believed 

to contain stem cells that potentially give rise to breast cancer. Terminal ductal lobular 

units grow until they either regress to terminal ducts, or differentiate to aveolar buds and 

later to lobules during pregnancy's high branching period. The differentiated lobular 

structures rarely give rise to malignant tumors, thus partly explaining the protective 

effects of pregnancy against breast cancer (75, 76). 



There are several pathological types of breast cancers demonstrating the 

heterogeneity of this disease. Ductal carcinoma in situ (DCIS) is the most common type 

of noninvasive breast cancer, and is considered a precursor of breast cancer, potentially 

leading to invasive disease. DCIS is confined to the ducts and does not spread into the 

tissue of the breast. This type of breast cancer is best detected with a mammography and 

almost all women with cancer at this stage are cured. Lobular carcinoma in situ (LCIS), 

begins in the milk-producing glands, but does not infiltrate beyond the wall of the 

lobules. Having LCIS increases a woman's risk for being diagnosed with more invasive 

breast cancer later in life and thus women with LCIS are closely monitored. The most 

common invasive breast cancer, accounting for 80% of invasive breast cancers, is 

invasive (infiltrating) ductal carcinoma (IDC). IDC starts in a milk duct, metastasizes 

beyond the confines of the duct into the breast tissue from where it. can spread to other 

parts of the body. A less common invasive breast cancer is invasive (infiltrating) lobular 

carcinoma (ILC) and it accounts for about 10% of invasive breast cancers. This type of 

breast cancer starts in the milk glands, or lobules, and can metastasize to other parts of 

the body. Finally, the rarest, but also the breast cancer with the worst prognosis, is 

inflammatory breast cancer. Women presenting with this type of breast cancer have 

reddened-swollen breasts, due to the presence of cancer cells in the lymphatics of the 

skin, in addition to the presence of cancer cells in the ducts and lobules (77). 

Pain is typically the most frequent breast complaint that brings a patient to a 

doctor's office, yet this is an uncommon risk factor since breast cancer, especially in its 

early stages, is usually painless. Thus, in the past, the primary symptom of breast cancer 

was a palpable mass and was typically first detected by the patient. However, today there 



is an increased use of mammography, especially in screening programs, which has 

resulted in many cancers being found at a preclinical stage (78). 

Risk assessment models for breast cancer 

There are many factors that can put you at risk for developing breast cancer, some 

more significantly than others. Typically these risk factor are thought of as a culmination 

of risk up to a certain point in time, instead of one specific risk factor dictating whether a 

woman develops breast cancer or not. Some common risk factors are discussed below. 

As mentioned previously, age is a common risk factor for breast cancer, with 

breast cancer being more common in older women. Race is another risk factor, as 

African American and Hispanic women are more prone to present with advanced breast 

cancer than Caucasian women. However, though biological differences do play a part, it 

is also thought that this may also be based on certain socioeconomic conditions, such as 

access to the same quality health care and screening (79). Another risk factor is early 

menarche and/or late menopause as it appears that the number of ovulatory menstrual 

cycles a woman experiences correlates with breast cancer risk. This is supported by the 

finding that oophorectomy before the age of menopause lowers the risk of breast cancer 

by two thirds (80, 81). Other risk factors are benign breast lesions (i.e. atypical 

hyperplasia is associated with the most risk, resulting in a four to five fold increase in 

breast cancer, while non-proliferative lesions do not pose any risk for further breast 

cancer development), the aforementioned LCIS and DCIS, and prior history of invasive 

breast cancers (81). 
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A protective factor against breast cancer is pregnancy. Pregnancy at a young age, 

especially before the age of twenty, is associated with a striking reduction on breast 

cancer risk. However, being over thirty years old at first live birth or nulliparity (no 

pregnancy) are associated with a greater than two fold risk for developing breast cancer. 

Additionally, the "protective" effect of pregnancy is only seen in the birth of a viable 

fetus (80-82). This may be because the shedding of the placenta after delivery cuts off a 

major source of estrogen. This drastic drop in estrogen then stimulates the secretion of 

prolactin, which in turn stimulates alveoli to secrete milk. Additionally, the suckling 

movements of the baby stimulate the secretion of oxytocin, which stimulates the alveoli 

to eject milk into the ducts (74). The actions of these various hormones and also the 

differentiation of the branched breast structure are thought to add to the protective effect 

of pregnancy and breast feeding. 

Finally, another risk factor is familial or hereditary risk. Familial breast cancer 

risk occurs when one or more first- or second- degree relatives have breast cancer. On the 

other hand, hereditary breast cancer is a subset of familial breast cancers in which the 

incidence of breast cancer is related to an autosomal dominant susceptibility trait (81). 

The majority of hereditary cancers can be attributed to mutations in the BRCA1 gene 

(breast cancer predisposition gene 1), which was discovered in 1990 by Hall et al on 

chromosome 17q21 (83) and the BRCA2 gene which was mapped to chromosome 13ql2-

13 in 1994 (84). Subsequently, others found that germ line BRCA1 mutations 

substantially increase the risk not only of breast cancer but also of ovarian cancer, while 

BRCA2 mutations increase the likelihood of breast cancer development in females as well 

as in males (78). BRCA1 and BRCA2 are nuclear proteins that function in DNA repair 
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pathways. Loss of BRCA1 and/or BRCA2 function leads to the inability to repair 

damaged DNA. When damage occurs to critical checkpoint genes, such as p53, 

checkpoints such as p21 cannot be activated and cells proliferate (85). 

Based on this knowledge risk assessment models that determine the probability 

of developing breast cancer help health care providers determine an individual's best 

options for cancer screening, follow-up, and the use of risk management therapies. The 

most popular statistical model used is the Gail model which takes into account such risk 

factors as age, race, age at menarche, age at first live birth, the number of first-degree 

relatives with breast cancer, the number of previous breast biopsy examinations, and 

presence of atypical hyperplasia (81). However, this model has been shown to perform 

poorly on an individual basis and incorporating more epidemiological risk factors only 

modestly improves its discriminatory accuracy (86, 87). There are other models available 

that mainly look at heredity, i.e. models such BRCAPRO (88) are designed to predict 

who is a BRCA1 or BRCA2 gene mutation carrier. However, the use of such models is 

restricted to a small subset of the population as it is predicted that at most 5-10% of 

diagnosed breast cancers have BRCA1 or BRCA2 mutations (89). 

Intervention for people that are deemed at a high risk for breast cancer is very 

physically and emotionally draining. Current risk-reducing options include lifestyle 

modifications, chemoprevention with tamoxifen, prophylactic surgery and ovarian 

suppression. Prophylactic mastectomies provide the most breast cancer risk reduction 

(decreases the woman's breast cancer risk to 10% of the original risk). However, this 

radical option is very unattractive and very traumatic to women even with the current 

improvements in reconstructive options (89). This is also the case for prophylactic 



oophorectomies, which if performed on women in their thirties, can reduce their breast 

cancer risk by 60% (90). A less invasive therapy is the use of tamoxifen, a selective 

estrogen receptor modulator (SERJVI), which competitively binds estrogen receptors (ER) 

and is therefore prescribed to patients with ER+ breast cancers. However, as with most 

hormonally responsive cancers, they may develop hormone resistance (or independence) 

and thus will no longer respond to this type of treatment. Additionally, tamoxifen carries 

with it certain serious potential side effects such as development of endometrial cancer, 

stroke, and pulmonary embolism (which is more age dependent and seen typically in 

older women) (89). Since current therapies for risk-reduction carry heavy health and 

well-being burdens there is a need for complementary analysis tools, such as breast 

cancer associated biomarkers, that will aid in improving the current breast cancer risk 

assessment models. 

Biomarkers in Breast Cancer 

Recently, the American Society of Clinical Oncology released their 2O07 

recommendations for the use of tumor markers in breast cancer (91). CA 15-3 and CA 

27.29, which are well-characterized assays for screening MUC-1 antigen in peripheral 

blood, were approved for monitoring of patients with metastatic disease during therapy, 

but in conjunction with physical examinations and diagnostic imaging. MUC-1 is a type 

of mucin protein. Mucins are high molecular weight glycoproteins that provide a 

protective layer on epithelial surfaces and are involved in cell-cell interactions, signaling, 

and metastasis (92). Rising levels of MUC-1 as seen by CA 15-3 and CA 27.29, in the 

absence of measurable disease, would indicate treatment failure. The same is true for 
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another approved biomarker, carcinoembryonic antigen or CEA, though it is less 

sensitive than the MUC-1 test for detecting metastatic disease. Current established 

biomarkers that are used to initially screen breast cancers to aid in the determination of 

treatment options are the ER, progesterone receptor (PgR) and HER2/neu (c-erb-B2). ER 

and PgR content are associated with favorable prognosis and would benefit from 

hormonal treatments such as tamoxifen or hormone ablation therapy. HER2 is a member 

of the epidermal growth factor receptor family (93) and is amplified and overexpressed in 

15-30% of newly diagnosed breast cancers and is linked with more aggressive breast 

cancers (94). Additionally, circulating HER2 extracellular domain (ECD) levels, which 

can be detected in plasma or serum and are elevated in about 30% of metastatic breast 

cancer cases (91, 95, 96), have been proposed for the monitoring of patient response to 

certain therapies (91). An assay recently approved for the prediction of breast cancer 

recurrence in patients diagnosed with node-negative, ER positive breast cancer and 

treated with tamoxifen is the Onco^pe DX assay (from Genomic Health Inc, Redwood 

City, CA). Oncotype DX is a reverse transcriptase (RT)-PCR assay that measures the 

expression of 21 genes (16 cancer related genes and five reference genes). This 

information is then processed by an empirically derived algorithm to categorize patients 

into 3 risk groups of distant recurrence: low, intermediate and high. Thus, this assay is 

used to identify patients that would obtain the most therapeutic benefit from adjuvant 

tamoxifen and thus may not require adjuvant chemotherapy. However, patients with 

high-recurrence score would be best treated with chemotherapy rather than tamoxifen 

(91, 97). Finally, there are many biomarkers and novel techniques that are reported, but 

yet to be successfully validated and recommended for use on patients. One example is 



the use of circulating tumor cells (CTCs) as markers for breast cancer. CTCs are cells 

within blood that possess antigenic or genetic characteristics of a specific tumor type. 

Thus, the presence of CTCs in a breast cancer patient may predict the presence of an 

aggressive primary tumor or potentially micrometastasis. CTCs may be detected by 

positive cell selection using immunocapture (using imrnunomagnetic beads conjugated 

with an antibody specific for a cell surface, epithelial or cancer related antigen) and 

immunocytochemistry or by gene expression analysis for the presence of cytokeratins 

and rumor antigens. A reverse methodology is to first remove the leukocytes and then 

interrogate the remaining cells by immunocytochemistry or RT-PCR. Recently the US 

Food and Drug Administration approved a test for CTCs called CellSearch Assay 

(Veridex, Warren, NJ). However, this assay still needs to undergo additional validation 

to confirm clinical value of this test for use in patients (91). 

1.4 Prostate Cancer 

Prostate cancer (PCa) remains the most common malignancy and second-leading 

cause of cancer deaths among males in the United States, with an estimated 218,890 new 

cases in 2007, accounting for 29% of new male cancers (98). Early prostate cancers 

demonstrate few signs and symptoms and the presence of symptoms such as hematuria, 

obstructive voiding symptoms, and bone pain generally indicate advanced prostate 

cancer. 

Disorders of the prostate can be divided into three main categories: benign 

prostatic hyperplasia (BPH), prostate cancer (prostatic adenocarcinoma), and prostatitis 

(bacterial infections of the prostate). The prostate, a small glandular organ in men that is 
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located in front of the rectum and beneath the urinary bladder, has three distinct zones: 

transitional, central and peripheral. These zones have different histology, embryonic 

origins and give rise to different pathologic entities. The central zone extends from the 

bladder base and encircles the ejaculatory ducts. It contains roughly 25% of prostatic 

glandular elements and only 1-5% of prostate cancers stem from there. The transitional 

zone surrounds the proximal urethra and, in youth, contains 5-10% of the prostatic 

glandular tissue. BPH arises from the transitional zone, as well as 20% of prostate 

cancers. The peripheral zone comes from the mesoderm and accounts for the majority of 

the glandular tissue. This zone gives rise to about 70% of prostate cancers and is also the 

site of most prostatic infections (Figure 3) (99). 

Risk factors for developing prostate cancer include a family history of prostate 

cancer (which increases with the number of first-degree relatives affected), age (since 70-

80% of patients who have prostate cancer are 65 years old or older), and race (i.e. 

African-American men have the highest incidence of prostate cancer in the United 

States). Interestingly, African American men have higher levels of endogenous androgen 

than Caucasians, and it is these higher levels that are thought to play a role in the 

development of prostate cancer. The prostate is a hormone responsive glandular organ, 

similar to the breast, and therefore a typical treatment for advanced stage prostate cancer 

is androgen ablation. Androgen ablation may be performed through surgical or medical 

(chemical) castration. However, the use of androgen ablation, termed androgen 

deprivation therapy (ADT), leads to androgen-independent or hormone-refractory 

prostate cancer. Thus, most patients with metastatic prostate cancer will respond initially 

to this therapy, but eventually these patients will develop progressive disease despite 



Bladder Ejaculatory Ducts 

Transition Zone 

(BPHand20%ofPCa) 

Central Zone 
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Figure 3. Schematic depicting the zones of the prostate. The central zone extends from the 
bladder base and encircles the ejaculatory ducts accounts for only 1-5% of prostate cancers 
cases. The transitional zone surrounds the proximal urethra and gives rise to BPH as well as 
20% of prostate cancers. The peripheral zone, which contains the majority of the glandular 
tissue, gives rise to about 70% of prostate cancers and is also the site of most prostatic 
infections. 
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continued androgen suppression. Unfortunately, advanced prostate cancer patients on 

ADT have an average survival of twenty-four months and the five year survival is only 

20% (100). Additionally, ADT therapy has been linked with an increased risk of heart 

disease and diabetes (101). However, if the disease is caught early on it is far more 

manageable. Treatment for localized prostate cancer is either watchful waiting or 

surgery. Current surgical methods, such as laproscopic radical prostectomy, have 

improved in terms of becoming less invasive and the five year survival rates of men after 

radical prostectomy are around 80% (99). 

PSA as a Biomarker for Prostate Cancer 

Currently, one of the main pretreatment diagnostic screens used in the detection 

of prostate cancer is the presence of the biomarker Prostate Specific Antigen (PSA). 

PSA, a 240 amino acid serine protease, is a member of the human kallikrein gene family 

(102). The functional role of PSA is not entirely understood, but it is known that it is 

secreted in high concentrations in the seminal fluid where it acts to liquefy the semen. 

PSA is found in much lower concentrations in the serum (103). The elevation of this 

marker in blood, usually in conjunction with an abnormal digital rectal exam (DRE) will 

lead to a biopsy of the prostate for a definitive diagnosis (104). 

There is still a debate over the exact value that should serve as the threshold 

between normal and abnormal serum levels of PSA. Traditionally, the normal serum 

value for PSA was accepted to be 4.0 ng/mL or less. However, more recently, it has been 

suggested that men sixty years old and younger should not have a PSA value of 2.5 

ng/mL or higher (104, 105). This change was brought about by the Prostate Cancer 



Prevention Trial (PCPT), which was a randomized clinical trial to test the hypothesis that 

blockade of 5-alpha reductase activity with finasteride could prevent prostate cancer. The 

criteria for patient enrollment in this study were PSA levels of less than 3 ng/mL, normal 

results of a DRE and being at least fifty-five years of age. The patients were then 

randomly assigned to finasteride or placebo for seven years. At the end of the study all 

participants, regardless of PSA value, underwent an end-of-study biopsy. When the 

prevalence of prostate cancer among men in the placebo group was evaluated it was 

found that even in this very-low-risk group of men, the incidence of prostate cancer on 

sextant biopsy was 15.2%. Ultimately, it was determined that there is no single PSA 

value that will provide assurance that a man does not have prostate cancer (106). 

However, this study also found that as the PSA value increases, the likelihood that there 

is a detectable prostate cancer and more specifically a high-grade prostate cancer 

significantly increases (107). 

Ability of PSA to differentiate between BPH and Prostate Cancer 

Unfortunately, PSA is not a specific biomarker for prostate cancer since its serum 

level increases with BPH, and can also be affected by many other factors such as 

inflammation, prostatitis and even ejaculation. It has been estimated that two out of three 

men with abnormal results on routine PSA screening will not have prostate cancer (108). 

It is therefore critical to be able to distinguish between prostate cancer and BPH, since 

BPH is highly prevalent amongst older men. Histologically, 50% of men in the fifth 

decade of life demonstrate evidence of BPH at the time of their autopsies. In addition, it 

has been estimated that 18% of men in their forties, 29% of men in their fifties, 40% of 



men in their sixties, and 56% of men in their seventies have signs of BPH, such as 

decreased force of stream, nocturia, straining, urinary frequency, and urinary urgency. 

This data is based on the study of 7,588 men from nine Asian countries and these rates 

have been shown to be similar in Australia, America, and Europe (99,105). 

A step forward in improving the specificity of the PSA test for prostate cancer 

screening came about in the form of free PSA (fPSA). In serum, PSA exists in bound 

and unbound forms, with the bound form being more prevalent. Generally, the bound 

form consists of PSA being complexed to the anti-proteases, alpha-1-antichymotrypsin or 

alpha-2-macroglobulin. However, it is the fPSA that has been found to be lower in 

patients with cancer and seems to be less affected by benign hyperplasia than total PSA. 

The risk of cancer is high for those who have a free/total PSA (f/tPSA) of less than 15%, 

whereas BPH is more likely when f/tPSA is more than 25%. Unfortunately, for most 

patients, f/tPSA falls between these two values and is mainly used to evaluate the need 

for repeat biopsies when negative (105). Another method of improving the accuracy of 

PSA may be to not rely on an isolated PSA value, but rather study PSA trends. For 

example, many studies suggest that if a patient's serum PSA increases more than 0.75 

ng/mL per year, then there is an elevated risk for prostate cancer regardless of the 

absolute serum PSA value (99). A new diagnostic tool that is currently being evaluated is 

a test for the inactive precursor form of PSA (proPSA). The native form of PSA is 

designated as (-7), which is proPSA without 7 amino acids, while the proPSA form 

includes the truncated products of PSA, (-5), (-4), (-2) and (-1) forms (109, 110). 

ProPSA has been shown to increase the sensitivity of PSA and specificity of PSA in 

differentiating between PCa and BPH. The (-2)proPSA has been found to have the most 



significant correlation and is seen elevated in serum of PCa patients compared with 

serum of BPH patients. Further validation of this assay needs to be performed before it 

clinical utility is determined (111-113). 

The road to prostate cancer diagnosis is still very much littered with unnecessary 

biopsies and this leads to needless anxiety, in addition to expensive follow-up testing and 

procedures that carry further health risks (55). It is becoming very clear that PSA alone 

will not accurately predict the development and progression of this complex disease. 

Hence, the pursuit of new biomarkers that will complement and improve the current 

diagnostic tools continues. 



CHAPTER II 

DISSERTATION RATIONALE AND SUMMARY OF AIMS 

The goal of this research project is to develop techniques to address the 

requirements of serum protein expression profiling of cancer cohorts for the purpose of 

early detection and the prediction of cancer risk. To effectively profile serum for cancer 

biomarkers one must preserve the integrity of the proteome, have the capacity to 

reproducibly process many samples simultaneously for statistical validity, allow for 

several fractionation techniques to simplify the serum proteome and also possess the 

ability to determine the identity of differential peaks. 

MALDI-TOF MS is currently the platform of choice for expression profiling, due 

to its high-throughput nature and its capability to identify peaks of interest directly with 

the LIFT-MS/MS platform. Additionally, the MALDI instrument may be integrated with 

front-end automated fractionation processing of samples. However, the effective range 

for most MS instruments, including the MALDI platform, is in the low molecular weight 

range (less than 20kDa) and thus higher molecular weight proteins are typically excluded 

from high-throughput profiling studies. Hence, in addition to profiling these low-

molecular weight endogenous peptides and proteins, one may increase the mass range of 

the MALDI platform by trypsinizing fractionated serum and profiling the resulting tryptic 

peptides. Thus, the specific hypothesis of this dissertation is that development of 

integrated fractionation and digestion techniques will allow for more effective 

detection and identification of differential cancer biomarkers secreted or shed into 

the blood from the growing tumor or from the interaction of the cancer with the 



surrounding microenvironment. Different front-end fractionation schemes will be 

considered for their ability to increase the scope of the proteome under investigation and 

for their compatibility with the developed digestion protocol. Additionally, we will also 

investigate sample sparing techniques that will allow continued use of precious, limited 

samples, while preserving the quality of the proteome under investigation. 

During the course of this project we will use two model serum cancer cohorts to 

gauge the validity of the techniques laid out in this thesis dissertation. The first serum 

cohort is a group of patients that will or will not develop breast cancer within the next 5 

years. Biomarkers from such a study would be ideal for use in conjunction with current 

breast cancer risk assessment models such as the Gail method. The second serum cohort 

is a group of men that either have been diagnosed with either BPH or PCa, but have PSA 

levels in the non-discriminatory zone of 2-10 ng/mL. Results from this type of sample 

set would be instrumental in assessing the possibility for the development of early 

detection screens that would compliment the current PSA diagnostic tool in the 

differentiation between BPH and PCa afflicted males. 

The hypothesis of this dissertation was evaluated by addressing the following 

specific aims: 

Aim I: Development of precious sample sparing techniques for mass spectrometry 

analysis. This aim entails: 

A. Validating a "scrape" technique for the use of sparing precious samples unnecessary 

freeze-thaw cycles. 
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B. Application of the scrape technique to a large cohort of valuable serum samples that 

are in limited quantity and need to be preserved for further experiments. The cases in this 

sample cohort are of women who developed invasive breast cancer during the first 10 

years of follow-up and who had stored serum available that had been drawn between 1 

and 5 years prior to the diagnosis of breast cancer. The controls are matched to the cases 

on age and length of follow-up, who were not diagnosed with breast cancer during the 

first 10 years of follow-up. 

C. Utilization of SELDI-TOF MS and MALDI-TOF MS to investigate this cohort for the 

purpose of differentiating between women that will develop invasive breast cancer 1-5 

years into the future from women that will not develop breast cancer in that same time 

frame. IMAC (immobilized metal affinity capture) chips will be used prior to SELDI-

TOF/MS and magnetic bead (MB)-IMAC and MB-WCX (weak cation exchange) will be 

used prior to MALDI-TOF MS. 

D. Generating algorithm models, using Biomarker patterns software for SELDI-TOF 

data analysis or ClinProTools software for MALDI-TOF data analysis, for identification 

of differential peaks and assessing their ability to segregate the two groups. 

E. Validation of models using larger serum sample sets that are processed as described in 

B and C. The validation sample sets are both unblinded and blinded thus allowing for the 

alteration of models and the determination of the ability of these models to correctly 

classify samples groups. 
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Aim II. Increasing the effectiveness of the MALDI-TOF/TOF for analysis of large 

molecular weight proteins. This aim entails: 

A. Integrating a trypsin digestion step following standard chemical affinity fractionation 

of serum samples. The effect of buffer pH and protein concentration on digestion 

efficiency and sample clean-up prior to MALDI-TOF analysis will be evaluated. The 

protocol will take advantage of paramagnetic bead technology and will strive to make 

each aspect of the workflow compatible with future automation. 

B. Comparing the efficiency of the trypsin magnetic bead digestion of serum proteins 

with a standard soluble trypsin protocol. 

C. Assessing reproducibility of the trypsin bead digestion workflow, using MB-WCX as 

a representative initial serum fractionation step. 

D. Investigating a MB-WAX (magnetic bead weak anionic exchange) front-end 

fractionation step for its adaptability to the typsinization workflow. 

E. Performing and comparing sequence identifications of selected m/z peaks from the 

WCX and WAX fractionation/ trypsin bead digestion workflows using the LIFT-

MALDI-TOF/TOF. Additionally, tryptic peptide workflows will be compared against 

endogenous peptide results in terms of profiling and ability of peptide identification 

efficiency. 
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F. Performing proof-of-concept trypsin bead workflows on clinical samples in order to 

determine the ability of this method to detect and identify differential peptides in a 

reproducible manner. The two serum cohorts used in this effort will either investigate the 

ability to predict occurrence of breast cancer in the future (using the samples from Aim I) 

or will attempt to differentiate between BPH and PCa patients. 

Aim III. Development of integrated fractionation protocols for in-depth and automated 

MALDI-TOF/TOF analysis. This aim entails: 

A. Investigating whether workflows designed in Aim II (MB-WCX and MB-WAX initial 

fractionation followed by immobilized-trypsin digestion and MB-C18 capture) may be 

compatible if performed in tandem for the purpose of sample preservation and for further 

mining of the serum proteome. 

B. Determining if lectins immobilized on magnetic or agarose bead supports may be 

incorporated in the immobilized-trypsin bead workflow for the purpose of automated 

protocols. These protocols may be used to profile the serum proteome for differences in 

glycan moieties between captured glycoproteins. 

C. Designing schemes for the ClinProt robot to determine if the protocols developed in 

this dissertation may be automated in an effective and reproducible manner. 



CHAPTER III 

AIM I: DEVELOPMENT OF PRECIOUS SAMPLE SPARING TECHNIQUES 

FOR MASS SPECTROMETRY ANALYSIS 

3.1 Introduction 

Breast cancer is the most common malignancy in women and the second most 

common cause of cancer-related death according to the 2007 American Cancer Society 

report (73, 77). When treated early breast cancer is a manageable disease i.e. women 

presenting with localized disease have a greater likelihood of remaining disease-free after 

five years than women presenting with regional disease or metastatic disease (114). 

Thus, detecting a malignancy before its clinical appearance is the goal of cancer 

diagnosis and treatment (77). In response to this, risk assessment models that determine 

the probability of developing breast cancer have been developed to help health care 

providers determine an individual's best options for cancer screening, follow-up, and the 

use of risk management therapies such as chemoprevention with tamoxifen or surgical 

intervention. 

The most popular statistical model used is the Gail model which takes into 

account such risk factors as age, race, age at menarche, age at first live birth, the number 

of first-degree relatives with breast cancer, the number of previous breast biopsy 

examinations, and presence of atypical hyperplasia (81). However, this model has been 

shown to perform poorly on an individual basis and incorporating more epidemiological 

risk factors only modestly improves its discriminatory accuracy (86, 87). Therefore, 
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there is a need for complementary analysis tools that will aid in improving the current 

breast cancer risk assessment models. 

To this end, using proteomic technology, such as the surface-enhanced laser 

desorption/ionization time-of-flight (SELDI-TOF) and matrix-assisted laser 

desorption/ionization time-of-flight (MALDI-TOF) instrument, allows for the profiling of 

patient serum in a reproducible manner (18, 50, 115) with the potential to identify serum 

biomarkers that may differentiate between women who in the future will develop breast 

cancer and those who will not. 

Serum samples are collected and processed in specialized tubes, which allow for 

the clotting of the blood and the removal of blood cells and resulting fibrin clots from the 

fluid portion of the blood. If the serum samples are destined for a particular study then 

they will typically be aliquoted from these larger sample collection/serum storage tubes 

into smaller tubes and stored until the experiment is about to be performed. In this way 

the aliquots may be used for the study on an "as needed" basis, thus minimizing freeze-

thaw cycles. However, more often then not, studies are performed on samples that were 

collected and frozen for storage. This may be due to lack of freezer space or that the 

samples may be needed for another retrospective study down the line, beyond the goals 

of the original study design plan. 

Excess freeze-thaw cycles have been shown to effect the dynamic alterations of 

the serum proteome in the mass range of most mass spectrometry instruments (18). 

Additionally, adding extra freeze-thaw cycles allows for more sample handling and may 

introduce variability into the sample set. It has been found that the length of time that 

samples are left on ice or on the bench-top greatly influenced the peptide profile by mass 



spectrometry (18, 116). One reason for this may be the fact that there are still proteases 

in the serum that may lead to the production of ex-vivo peptides. Ex vivo generation of 

peptides may falsely bias data, especially if the sample sets are handled by different 

individuals or are exposed to other variable conditions. 

In Aim 1 we thus present a sample cohort utilized for the goal of predicting a 

women's chance of developing breast cancer within the next five years. This sample 

cohort was originally destined for a women's osteoporosis study in the San Francisco 

Bay area. During the course of this large study many women developed breast cancer, 

thus the serum cohorts were selected to compare samples from women who were going to 

develop breast cancer versus age-matched women who will not. Since, these samples are 

precious and repeated freeze-thaw will damage the quality of the proteome for future 

studies, we scraped the serum samples, while they were still frozen, with a sterile, blunt 

needle. This technique negated a freeze-thaw cycle for both the stock samples and 

aliquots to be analyzed. The scrape method is shown to be comparable in spectra quality 

to spectra generated from samples that are completely thawed before processing for mass 

spectrometry analysis. Additionally, SELDI-TOF MS and MALDI-TOF MS data of 

scraped samples, after weak cationic exchange (WCX) and immobilized metal affinity 

chromatography (IMAC) fractionation to reduce serum proteome complexity, is 

presented with the goal of finding discriminatory peaks that will aid in the prediction of 

breast cancer risk in the future. The discriminatory biomarkers for breast cancer risk can 

be developed into simple blood tests that can be combined with current statistical 

methods to improve risk assessment for breast cancer. 



3.2 Materials and Methods 

Sample Selection and Processing 

Serum samples were selected by Jeffrey Tice, M.D., from participants in the 

Study of Osteoporotic Fractures (SOF), which is a population based cohort study of risk 

factors for the development of osteoporotic fractures in postmenopausal women. Dr. 

Tice is a coordinator of the SOF study and an epidemiologist and breast cancer clinician 

from the University of California San Francisco. The original osteoporosis study had 

9704 women enrolled from four geographic regions (Baltimore, MD; Pittsburgh, PA; 

Minneapolis, MN; Portland, OR) between September 1986 and October 1988. African 

American women were excluded at baseline because of their low risk of hip fracture. For 

our breast cancer study, "cases" of women were selected at random who developed 

invasive breast cancer during the first 10 years of follow-up and who had stored serum 

drawn between 1 and 5 years prior to the diagnosis of breast cancer. "Controls" were 

chosen randomly which were matched to cases on age and length of follow-up, from the 

remaining participants in the SOF cohort who were not diagnosed with breast cancer 

during the first 10 years of follow-up. For the pilot study, 42 cases and 42 controls were 

selected. For the validation study, an additional 104 cases and 104 controls were 

selected. All serum samples selected came from post-menopausal women who were not 

using hormone replacement therapy. Institutional Review Boards at the four clinical sites 

and the coordinating center approved the study protocol and all participants signed 

informed consent at enrollment. The selected serum cases and controls were scraped 

without thawing and processed with IMAC chip surfaces for SELDI-TOF MS analysis 

and with MB-WCX (weak cationic exchange magnetic beads) and MB-IMAC 



(immobilized metal affinity chromatography magnetic beads) on the Bruker ClmProt 

robot for MALDI-TOF MS analysis. 

Scraping vs. Thawing serum processing techniques 

A traditional "thaw" technique was compared to a "scraping" technique. Initially, 

100 (iL was scraped from the top of each frozen sample (samples had been frozen at -

80°C) with a steel nail. The same frozen samples were then allowed to thaw to 

completion and 100 /xL of each sample was collected to compare against the "scrape" 

technique. For the large cohort processing, the steel nail was replaced with a sterile, 

blunted, thick steel needle. 

SELDI-TOF MS and data analysis 

Twenty microliters of each serum samples was diluted in a 1M urea, 0.125% 

CHAPS and phosphate-buffer saline buffer. These diluted samples were then robotically 

processed onto eight-spot copper activated immobilized metal affinity chromatography 

(IMAC-Cu or IMAC3) chip arrays (Ciphergen Biosystems, Freemont, CA) with a 

Biomek 2000 liquid handling system (Beckman Coulter, Fullerton, CA). The IMAC3 

chip arrays were air dried and overlaid with a saturated matrix solution containing 

sinapinic acid in 50-% (v/v) acetonitrile and 0.5% (vol/vol) trifluoroacetic acid. 

The IMAC3 chips with sample and matrix were run on a SELDI ProteinChip 

System (PBS-II, Ciphergen Biosystems). The mass spectrometer was externally 

calibrated using a mixture of known peptides. Blinded serum samples were randomized 

in blocks of seven to ensure that each chip included at least three cases and three controls. 
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Each sample was run in duplicate on separate chips and the results were averaged. 

Additionally, a standard serum sample (QC) was applied to one of the eight spots on each 

chip for quality control. Spectra generated were subjected to pattern recognition and 

sample classification analysis performed with the Biomarker Pattern Software (Ciphergen 

Biosystems). 

MALDI-TOF MS and data processing 

Samples were randomized (QC samples were included) and processed using the 

ClinProt robot (Bruker Daltonics, Bremen, Germany) using both MB-WCX and MB-

IMAC independently as per manufacturer's instructions (10 /iL magnetic beads incubated 

with 20 fxL serum sample). The eluted samples were mixed 1:10 with R-cyano-4-

hydroxycinnamic acid (CHCA) matrix solution (0.008 g CHCA prepared in 2mLs 

acetone and 2mL ethanol) and 0.8 fiL was spotted in duplicate robotically on an 

AnchorChip plate. The fractionated endogenous peptide profiles were generated from an 

average of four hundred laser shots in the linear mode by the MALDI-TOF Ultraflex I 

mass spectrometer (Bruker Daltonics) and analyzed with ClinProTools 2.0 (Bruker 

Daltonics). ClinProt software baseline subtracted and normalized the spectra (using total 

ion current). A k-nearest neighbor genetic algorithm contained in this software suite was 

used to generate prediction models to classify the groups analyzed. Twenty percent of 

the samples were left out of the model generation process and used to cross-validate the 

model within the software. 
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3.3 Results 

"Scrape" vs. traditional "Thaw" method 

The SOF study cohort is made up of 9,704 participants, thus making aliquoting 

these samples into multiple tubes not feasible at the main storage site. Additionally, each 

of these participants only has one available sample drawn at a given date. In order to 

utilize this expansive in participants, yet limited in individual sample quantity, serum 

cohort that would give us the potential of predicting whether a woman will develop breast 

cancer within the next five years, we had to evaluate a method to process the samples 

without thawing whole stock/storage vials. The method we developed in lieu of a freeze-

thaw cycle was a simple scraping of the frozen sample from the top of the vial. We 

determined the validity of this scrape method by comparing a traditional total thaw 

technique to a scraping technique. Initially, 100 [JL was scraped from the top of each 

frozen sample with a steel nail (later this was adapted to the utilization of a blunt sterile 

needle). The same frozen samples were then allowed to thaw to completion and 100 juL 

of each sample was collected to compare against the "scrape" technique. Samples were 

processed on IMAC chips and analyzed with SELDI-TOF MS. Spectra patterns and 

intensities were compared between the thawed and scraped samples and standard 

deviations were calculated for ten representative peaks. Since no difference in intensities 

and standard deviations was observed between scraped or thawed samples (Figure 4), we 

deemed that this scrape technique was compelling enough to continue and process the 

remainder of the cohort samples. 
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Analysis of samples processed with scrape method using SELDI-TOF MS 

We compared 84 samples (42 cases and 42 controls) using IMAC chips and the 

SELDI-TOF MS platform as described in Materials and Methods. In a classification and 

regression tree analysis using Biomarker patterns software (Ciphergen Biosystems), we 

generated a tree with a recognition capability of 85.7% of cases and 78.6% of controls of 

the test set. After cross-validation of the generated tree we could correctly classify 31 of 

the 42 cases (74% cases correctly classified) and 30 of the 42 controls (71% of controls 

correctly classified) (Table 1). Of the 11 peaks that were predictor variables used in the 

generation of the classification and regression trees, only the tree containing 4 terminal 

nodes was deemed optimal and thus was used for the analysis. Seven peaks were used in 

the generation of this tree with only 3 peaks used as splitting factors in this tree analysis. 

These peaks were m/z 7850.989, 9303.888, and 9190.488, with peak m/z 7850.989 being 

the most significant in differentiating between the two groups (p-value of 0.039). A list 

of peaks with significant p-values is provided in Table 2. Overall, sensitivity (correctly 

classified cases) and specificity (correctly classified controls) were similar and 

moderately impressive in predicting future breast cancer risk. Unfortunately, this 

SELDI-TOF MS data was re-analyzed by an independent institution with blinded-serum 

samples and was not found to have statistically relevant sensitivity and specificity. A 

peak probability contrast (PPC) procedure was utilized for this analysis (117). 
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Table 1. Classification and regression tree analysis of 84 serum samples processed 
on IMAC chips. 

Class 

Case 
Control 

N 
Cases 

42 
42 

N 
Misclassified 

11 
12 

N Correctly 
classified 

31 
30 

% Correctly 
classified 

73.8% 
71.3% 

Table 2. Significant peaks (p-value < 0.05) 
differentiating between cases and controls 
after SELDI-TOF MS analysis. 

m/z 

3992.462 

4184.852 

7850.941 

8157.624 

9190.488 

9303.888 

9439.381 

p-value 

0.003 

0.003 

0.039 

0.050 

0.005 

0.009 

0.031 
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Analysis of samples processed with scrape method using MALDI-TOF MS 

The 84 samples were also processed using the ClinProt robot with MB-WCX 

(found previously by our lab to yield the most robust peaks within the MALDI-TOF MS 

mass range) and robotically spotted on an AnchorChip plate with CHCA matrix. The 

resulting spectra were imported into ClinProTools 2.0 software and genetic algorithm 

models were generated. These models were then used to externally validate a set of 112 

samples (56 controls and 56 cases) run in duplicate. Though increasing the number of 

peaks in the genetic algorithm model beyond 5 peaks improved the internal cross-

validation, it resulted in lower sensitivity and specificity of the external validation (Table 

3). Additionally, the models that had less than 5 peaks also had decreased sensitivity and 

specificity compared to the 5 peak model. Thus, the genetic algorithm model containing 

5 peaks was deemed the most ideal and models containing more than 5 peaks were 

probably over-fitted to the sample set of 84. The genetic algorithm model containing 5 

peaks had a 100% recognition capability of the test set and yielded an overall 63.64% 

cross-validation with 59.87% correctly classified cases and 67.42% correctly classified 

controls. Additionally, of the 112 (224 total when in duplicate) samples used for external 

validation of this model, 60.7% were classified correctly as cases and 61.6% were 

correctly classified as controls using this 5 peak genetic algorithm model. Table 4 shows 

the peaks utilized in the genetic algorithm model and Table 5 shows the top significant 

peaks as determined by T-test/ANOVA. Figure 5 shows the cluster plot for the set of 84 

samples using the two peaks with the most significant p-values as determined by T-

test/ANOVA. Additionally, a set of 96 blinded samples was run through the genetic 
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Table 3. Cross-validation and External Validation of genetic 
algorithm models 

3 a. 5 peak genetic algorithm model 

Class 

Cases 

Controls 

Correct Classified 
(cross-validation) 

59.9 % 

67.4 % 

Correct Classified 
(external validation) 

60.7 % 

61.6% 

3b. 6 peak genetic algorithm model 

Class 

Cases 

Controls 

Correct Classified 
(cross-validation) 

64.5 % 

67.4% 

Correct Classified 
(external validation) 

62.5% 

45.5 % 

3 c. 7 peak genetic algorithm model 

Class 

Cases 

Controls 

Correct Classified 
(cross-validation) 

73.68 % 

68.54 % 

Correct Classified 
(external validation) 

53.6 % 

42.9 % 

Table 4. Masses used for the classification of 84 WCX fractionated serum samples 
using the 5 peak genetic algorithm model 

Mass (m/z) 

2139.38 
2675.72 

3542.28 

1781.11 

1501.3 

Weight (importance given in model) 

0.25 
0.09 

0.04 

0.13 

0.1 



Table 5. Significant peaks as determined by T-test/ANOVA (p-value < 0.05) for the 
84 serum sample set 

Mass (m/z) 
2178.28 

•2511.78 
7342.55 
2975.96 
3706.07 
3276.18 
•1716.00 
5700.62 
4742.36 
3366.19 
6524.28 
7117.81 
1911.81 
5262.98 
3839.32 
3492.29 
5247.62 
6906.83 
3352.33 
4350.35 
2578.2 
1487.85 
3120.22 
4370.59 
1377.35 
7055.13 
.1138.63 

P-value 
0.043 
0.043 
0.043 
0.043 
0.043 
0.046 
0.046 
0.046 
0.046 
0.046 
0.046 
0.046 
0.046 
0.046 
0.046 
0.046 
0.046 
0.046 
0.046 
0.046 
0.046 
0.046 
0.046 
0.046 
0.046 
0.046 
0.046 
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Figure 5. Cluster plot for the set of 84 WCX fractionated serum samples. The cluster 
plot was generated by the ClinProTools 2.0 software. The intensities of 2 peaks with 
the most significant p-values (as determined by T-test/ANOVA) are plotted on 2 axes. 
The more clustered the points are in relation to their group and the more separated the 
clusters are from each other then the more significantly distinct the 2 groups are in 
relation to each other. In this cluster plot the intensities of peak m/z 2178.28 are found 
along the "x" axis, while the intensities of peak m/z 2511.78 along the "y" axis. The 
control sample peaks are designated by "o" and the case sample peaks are designated by 
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algorithm model generated from the 84 samples. Of the 96 blinded samples, 52.1% were 

classified correctly with 51.0% of the cases correctly classified and 53.1% of the controls 

correctly classified. 

In order to evaluate if the classification of the unknowns may be improved, an 

additional model was generated using the 84 samples with the 112 samples (n=196 run in 

duplicate). The set of 96 blinded samples was run through the various genetic algorithm 

models generated from the 196 samples and the 5 peak model was found to have the best 

classification ability. The genetic algorithm model containing 5 peaks had a 100% 

recognition capability of the test set and the cross-validation yielded an overall 57.34% 

correct classification with 58.2% sensitivity and 56.4% specificity. Table 6 shows the 

peaks utilized in the genetic algorithm model (the top significant peaks as determined by 

T-test/ANOVA was m/z 7341.66 with a p-value of 0.04). Figure 6 shows the cluster plot 

for the set of 196 samples using the two peaks with the most significant p-values as 

determined by T-test/ANOVA. Of the 96 blinded samples, 52.1% were classified 

correctly with 58.3% of the cases correctly classified and 45.8% of the controls correctly 

classified. Thus, the sensitivity was slightly improved in the classification of the 

unknowns as compared to the genetic algorithm model generated from the 84 samples; 

however the specificity was slightly decreased. 

The 112 samples were also analyzed using MB-IMAC beads as a comparison to 

the IMAC chip SELDI data. A genetic algorithm model containing 5 peaks was found to 

have a 100% recognition capability of the test set and the best cross-validation with 

60.8% correctly classified cases and 61.8% correctly classified controls. However, the 

classification results of the 96 independently run blinded samples was disappointing. Of 
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Table 6. Masses used for the classification of 196 WCX fractionated serum samples 
using the 5 peak genetic algorithm model 

Mass (m/z) 

2757.08 

6056.85 

1733.82 

4144.51 

4642.61 

Weight (importance given in model) 

0.05 

0.03 

0.06 

0.01 

0.04 
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Figure 6. Cluster plot for the set of 196 WCX fractionated serum samples. The cluster 
plot was generated hy the ClinProTools 2.0 software. The intensities of 2 peaks with 
the most significant p-values (as determined by T-test/ANOVA) are plotted on 2 axes. 
The more clustered the points are in relation to their group and the more separated the 
clusters are from each other then the more significantly distinct the 2 groups are in 
relation to each other. In this cluster plot the intensities of peak m/z 7341.66 are found 
along the "x" axis, while the intensities of peak m/z 3051.22 along the "y" axis. The 
control sample peaks are designated by "o" and the case sample peaks are designated by 
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the 96 blinded samples, 43.3% were classified correctly with 40.6% of the cases correctly 

classified and 45.8% of the controls correctly classified. The cross-validation of the 

MAC sample set appeared to have a comparable sensitivity and specificity as the cross-

validation of the models from WCX samples; however this was not true for the 

classification of the blinded sample sets. Table 7 shows the peaks utilized in the 5 peak 

genetic algorithm model used for unknown classification (there were no significant 

peaks, p-value <0.05, as determined by T-test/ANOVA). There appeared to be no 

similarities between the peaks used for the tree analysis of the SELDI-TOF MS data and 

the peaks used for the genetic algorithm analysis of the MALDI-TOF MS data. Figure 7 

shows the cluster plot for the set of 112 samples using the two peaks with the most 

significant p-values as determined by T-test/ANOVA. 

3.4 Discussion 

We have demonstrated a profiling scheme on an interesting and novel sample set, 

which may prove helpful in finding biomarkers to predict a woman's risk of developing 

breast cancer. The cases in this sample cohort were randomly chosen from a group of 

women who developed invasive breast cancer during the first 10 years of follow-up and 

who had stored serum available that had been drawn between 1 and 5 years prior to the 

diagnosis of breast cancer. The controls were randomly selected, matched to cases on 

age and length of follow-up, from the remaining participants in the SOF cohort who were 

not diagnosed with breast cancer during the first 10 years of follow-up. Thus, this serum 

cohort contains proteomic information of women that will develop invasive breast cancer 
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Table 7. Masses used for the classification of 112 IMAC fractionated serum samples 
using the 5 peak genetic algorithm model. 

Mass (m/z) 

5916.51 

2549.66 

2606.95 

5336.53 

1548.85 

Weight (importance given in model) 

0.13 

0.14 

0.12 

0.07 

0.01 
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Figure 7. Cluster plot for the set of 112IMAC fractionated serum samples. The cluster 
plot was generated by the ClinProTools 2.0 software. The intensities of 2 peaks with the 
most significant p-values (as determined by T-test/ANOVA) are plotted on 2 axes. The 
more clustered the points are in relation to their group and the more separated the clusters 
are from each other then the more significantly distinct the 2 groups are in relation to each 
other. In this cluster plot the intensities of peak m/z 6560.83 are found along the "x" axis, 
while the intensities of peak m/z 1468.88 along the "y" axis. The control sample peaks are 
designated by "o" and the case sample peaks are designated by "x". 
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1-5 years into the future and how they may differ from women that will not develop 

breast cancer in that same time frame. 

The main success from Aim 1 is the validation of the scrape technique for the use 

of sparing precious samples unnecessary freeze-thaw cycles. The results showed that 

there was no significant difference in quality of data between scraping a frozen sample 

and thawing the whole sample. A main concern for the scrape technique would be the 

unequal distribution of proteins throughout the frozen sample, with a fractionation of 

proteins based on biochemical properties and/or with a predominance of ice crystals at 

the top of the frozen sample. The unequal distribution of proteins throughout the frozen 

sample and the predominance of ice crystals on the top of the sample are especially 

concerning for samples that are allowed to freeze slowly. Generally, slow freezing 

causes large, non-uniform ice crystals to form and freeze concentrations to occur, where 

solutes and protein molecules are pushed into non-frozen regions, producing a large 

increase of solute and protein concentrations. The faster the freezing process the more 

nucleation is promoted and the greater the number of ice crystals of smaller size that will 

result, thus making the frozen sample more uniform (118). However, we seemed to have 

avoided the problem of unequal distribution of proteins and solutes within the sample. If 

the top of the tube to be scraped mainly contained "sample" that was composed of ice 

crystals then we would have seen a very dilute amount of peptide/proteins in our SELDI-

TOF MS spectra, if we saw anything at all. Additionally, as stated before there seemed 

to be no significant changes between the spectra from the samples that were scraped first 

and the same samples that were subsequently thawed and mixed. This technique also 

illustrates the importance of storage and sample handling during the collection of 



65 

samples. MALDI-TOF MS (18, 115) and SELDI-TOF MS are reproducible (50) as far as 

instrumentation performance, however much thought into the standardization of protocols 

must occur for this to be correct for the true comparison of sample groups. McLerran et 

al found that initial discrimination, as seen by SELDI-TOF MS, between serum from 

patients that have been diagnosed with benign prostatic hyperplasia and those diagnosed 

prostate cancer may have been due to storage time variability between the two groups, 

thus leading to a general bias in the sample analysis process (119). 

In our study the initial modeling results from the scraped serum sample cohort 

were promising; with MALDI-TOF MS ClinProTools 2.0 software generating models 

with 100% recognition capability of the test set groups, cases and controls. SELDI-TOF 

MS had an overall 82.15% recognition capability of the test set groups. However, the 

cross-validation was less than ideal with the best SELDI-TOF MS regression tree 

algorithm having an overall 74.6% recognition capability between groups. The best 

MALDI-TOF MS genetic algorithm model was generated using the WCX fractionation 

scheme with the initial 84 sample set and yielded an overall 71.1% recognition capability 

between groups. This 7 peak genetic algorithm model proved to be over-fitted with the 

84 sample set and yielded low external validation sensitivity and specificity. The genetic 

algorithm model that performed the best in the external validation, with an overall 

recognition capability of 61.2% between cases and controls, was the 5 peak model 

generated from the 84 serum sample set. However, this model performed poorly when 

used again to identify case and control status of 96 blinded samples (overall recognition 

capability of 52.1%). Additionally, the SELDI-TOF MS data set was unable to correctly 

classify the majority of the blinded sample set as determined by an independent lab. 



66 

Interestingly, this epidemiology group also found that that the MALDI-TOF MS data was 

more reproducible between duplicate samples than the SELDI-TOF MS data. This 

analysis was performed using the peak finding and alignment algorithm from the PPC 

procedure. Briefly, for each pair of replicates, the peaks were aligned and deemed 

discordant or concordant peaks. If both spectra possess a peak at a specific point, then 

that site has a concordant peak. However, if only one spectrum has a peak at a particular 

sites and the other does not, then that site has a discordant peak. Thus, MALDI-TOF MS 

data was found to have a lower percentage of discordant peaks than SELDI-TOF MS 

data. 

Overall, this is a very difficult sample set since we are asking the peptide/protein 

profiles in the serum to predict the future, not the current state of the women at blood 

draw. Breast cancer is a clinically heterogeneous disease with histological type, grade, 

tumor size, lymph node involvement, ER and HER-2 receptor status all influencing 

prognosis and response to available therapies (120). Thus, to provide better risk 

assessment models we may need to interrogate the sample sets with more specific 

guidelines. In this study age was controlled for as all patients were age-matched and 

postmenopausal, both characteristics which are risk factors for breast cancer. 

Additionally, two other main variables were already taken out of the equation. African-

American women were excluded during the osteoporotic fracture study and thus were 

unavailable for our cohort. Additionally, women that were on hormone replacement 

therapies (HRT) were excluded from the selection process for the breast cancer prediction 

study. Race is a known risk factor for developing breast cancer, as African American and 

Hispanic women are more prone to present with advanced breast cancer than Caucasian 
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women. This is a complex issue involving both biological differences and certain 

socioeconomic conditions, such as access to the same quality health care and screening 

(79). HRT, especially in the long term, has also been recently implicated as a risk factor 

for breast cancer (121). Additionally, women that are postmenopausal and on HRT 

would more than likely have distinct peptide/protein secretion patterns compared to 

women that are postmenopausal and do not have stimulation of estrogen signaling 

pathways through HRT. Other variables that may be minimized to increase sensitivity 

and specificity of detecting a particular woman's risk of developing breast cancer is 

stratifying samples based on their BRCA and HER2 status. As discussed in Chapter I, 

mutations in the BRCA genes are known risk factors for breast cancer development and 

the presence of HER2 receptor fragments in serum has been shown to directly correlate to 

the aggressive nature of the breast cancer and its subsequent treatment. By stratifying 

samples according to these and other variables (which will be further discussed in the 

future directions section of Chapter VI) we may begin to focus more on biomarkers 

related to breast cancer risk then on biological variables compounded between various 

patients. 

One facet hampering the discovery of breast cancer biomarkers is the overall 

complexity and large dynamic range of the blood proteome and the relatively low 

abundance of these cancer biomarkers in the blood as compared to other proteins. For 

example, early-stage tumors might arise within a tissue volume of less than 0.1 mL, thus 

making the dilution factor of the tumor-generated biomarkers about 50,000 (assuming 

that the biomarkers attributed to this tumor are uniformly dispersed in the 5,000mL total 

blood volume) (56). In this study there may not even be an early-stage tumor in the 



classical sense, but rather a condition within the breast tissue that will promote the 

growth of said tumor. One approach that other researchers have taken is to work with 

proximal fluids that are regionally closer to the tumor such as nipple aspirate fluid (NAF) 

and proximal or tumor breast tissue (91, 122) in hopes of later being able to detect, or 

correlate, the discovered biomarkers in the blood for patient screening. However, for our 

study, in which a valuable and interesting cohort of serum is already available, and for 

individuals that are interested in discovery of biomarkers in the same fluid type as will 

later be used for patient screening, reducing the complexity of the serum proteome using 

various fractionation techniques is a pre-requisite. There are several fractionation 

techniques available to further dissect the proteome such as the depletion of the top most 

abundant proteins, lectin-capture strategies for the targeted capture of glycoproteins 

(since glycan changes in proteins have been linked to cancer disease states (71, 123, 

124)) and tandem fractionation techniques. These extensive fractionation techniques are 

more readily adaptable to the MALDI platform, which typically employs front-end 

fractionation with paramagnetic beads conjugated to various chromatography chemistries 

(either chemical or biological) and would allow in-tandem use of these bead types in an 

automated manner. However, as discussed in Chapter I, the SELDI-TOF MS utilizes flat 

chips coated with different surface chemistries that have smaller surface areas than the 

paramagnetic particles and thus lead to less efficient fractionation. 

Another problem facing researchers profiling for breast cancer biomarkers is that 

differential spectra patterns are not complete for validation purposes without the 

knowledge of the identity of the peptides/proteins behind the peaks. As discussed in 

Chapter I, the linear TOF mode typically utilized with the SELDI and MALDI platforms 



(as it was in this Aim), does not yield information about the identity of peptides/protems. 

Thus, profiling in the range of reflectron mode, which has the capability on the MALDI-

TOF/TOF for tandem-MS identification of peaks, may prove useful to ascertain 

additional, complementary information of a specific sample set. A caveat to this 

complementary technique is that endogenous peptides/proteins found in the range of the 

reflectron mode are sparse and not robust enough for useful, informative profiling. Thus, 

this problem will be addressed in the next Aim. 
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CHAPTER IV 

AIM II. INCREASING THE EFFECTIVENESS OF THE MALDI-TOF/TOF FOR 

ANALYSIS OF LARGE MOLECULAR WEIGHT PROTEINS 

4.1 Introduction 

Biomarker discovery is an ever evolving research area spurred by advances in 

technology and improvements in clinical study design and bioinforrnatics strategies 

(125). Typically, in order to reduce the sample complexity of high protein concentration 

fluids like serum and plasma, chemical affinity capture using beads or chip surfaces has 

been employed along with time-of-flight mass spectrometry to generate comparative 

spectral peak profiles. These approaches, also termed expression profiling, can be 

automated for relatively high throughput and generally consume small amounts of 

clinical sample (44, 45). Additionally, expression profiling can be reproducible and 

portable across multiple laboratories, especially when rigorous study design and sample 

handling are combined with carefully controlled instrument calibration, automated 

sample preparation, and supervised bioinformatic data analysis (47, 50, 62, 126). 

Nevertheless, the difficulty in determining the protein identities of potential biomarker 

peaks, and a concern that the sensitivity and dynamic range of prevalent proteins in 

serum or plasma prohibits identification of proteins associated with disease continues to 

hamper these expression profiling approaches (48, 49,127). Recently, however, the 

development of TOF/TOF technology has brought with it the capability of protein 

identification (4,000 m/z or less) through the generation of fragment ions and subsequent 

homology searching (19). 
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Most MALDI-TOF based expression profiling studies only examine endogenous 

low molecular mass constituents (1-20 kDa) of serum or plasma. Yet most proteins 

captured on a particular surface or bead are not effectively resolved in the MALDI 

instruments used due to their larger sizes (>20 kDa). In this regards, we report a work­

flow of magnetic bead-based chromatography surfaces and immobilized trypsin to 

generate peptide profiles reflective of the broader range of proteins captured in front-end 

purification and fractionation strategies applied to complex clinical fluids like serum or 

plasma. This is essentially a "bottom-up" approach (43), but tailored for the MALDI-

TOF as the generation of tryptic peptides increases the breadth of proteins detected and 

provides peak masses ideal for LIFT-MALDI-TOF/TOF sequencing identification. 

Using pooled human serum samples, two different workflow combinations of 

chromatography beads with the immobilized trypsin beads are described. We found that 

the bead-based trypsinization method was highly reproducible and efficient in digesting 

large serum protein fractions at short incubation times, and that the resulting peptides 

were readily able to be identified by LIFT-MALDI-TOF/TOF. Representative lists of 

proteins present in a pooled healthy serum sample are presented. Additionally, as a 

proof-of-concept for clinical application, the method was used in two serum profiling 

studies. One such study utilizes the aforementioned SOF sample cohort from Aim I. A 

separate serum study has the goal of detecting differences between individuals diagnosed 

with benign prostatic hyperplasia (BPH) and individuals diagnosed with prostate cancer 

(PCa). Similar to the SOF samples, which are designed to assist in the prediction of a 

woman's breast cancer risk years into the future, the question posed by the BPH/PCa 

sample set is also very difficult to answer. As discussed in more detail in the first 
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chapter, prostate specific antigen (PSA) is the current biomarker used in the diagnosis of 

PCa. Unfortunately, it is not a specific biomarker for prostate cancer since its serum 

level is affected by many other factors such as inflammation, ejaculation and'BPH. It has 

been estimated that two out of three men with abnormal results on routine PSA screening 

will not have prostate cancer (108). Thus, a diagnosis of BPH or PCa is often mistaken 

for the other, resulting in men being exposed to unnecessary medical intervention and 

anxiety. The PSA levels of the men in this study fall between 2 and 10 ng/mL, which is a 

particularly grey area for doctors, as these levels are considered elevated by today's 

standards, but are not high enough to for a confident PCa diagnosis. Using these two 

sample cohorts we demonstrate the reproducibility of the trypsin bead method with 

clinical samples and showcase typical workflow strategies that may be applied for the 

purpose of biomarker identification. 

4.2 Materials and Methods 

Serum Samples 

A pooled human serum sample collected from over 360 donors (50) was used for 

method development procedures. 

For the proof-of-concept tryptic analysis of clinical serum samples, pools of each 

group were generated. For the prostate cancer study, BPH and PCa confirmed-diagnosis 

patients with elevated levels of PSA (range 2-10 ng/mL) were pooled in the following 

manner: 10 pools for BPH and 10 pools for PCA with each pool containing 6 samples. 

For the SOF samples, the samples were pooled in the following manner: 12 pools for 

control and 12 pools for cancer with each pool containing 8 samples. 
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Magnetic bead-based fractionation 

Initial fractionation of serum was done with either MB-WCX (weak cationic 

exchange) or MB-WAX (weak anionic exchange) paramagnetic beads essentially as 

described by the manufacturer's protocols (Bruker Daltonics, Bremen, Germany). 

Briefly, 20 uL of serum was mixed with 40 uL of binding solution (the WAX protocol 

utilized a pH 5 binding solution) supplied with the beads and 20 uL MB-WCX or MB-

WAX beads (note that the WAX beads were equilibrated with activation solution prior to 

this step) for 15 minutes (mixing every 5 minutes). A magnetic bead separator was used 

to concentrate the beads and for the wash/rinse processes. Unbound serum proteins were 

removed and the beads were washed 3 times with 100 \xL of MB-WCX or MB-WAX 

wash solution. Bound serum proteins were eluted with 10 uL of MB-WCX or MB-WAX 

elution solution supplied by the manufacturer. Finally, 8 uL of HPLC water and 1 uL of 

MB-WCX stabilization solution were added to the WCX eluate (this step was added 

during method development and it is stated in the Results when it was incorporated into 

the protocol), and 11 uL of MB-WCX elution was added to the WAX eluate, to give a 

final sample pH of 7.5-8.5. 

For reduction and alkylation, 8 ug of the fractionated samples were reduced with 

8 mM DTT in 25 mM ammonium bicarbonate (pH 7.8) at 56 °C for one hour (24 uL total 

volume). The reduced samples were then alkylated with 17 mM iodoacetamide in 20 

mM ammonium bicarbonate total solution (29 uL total volume). 



Liquid and magnetic bead-based trypsinization 

Sequencing grade trypsin (Roche, Basel, Switzerland) was re-suspended in 50 

mM ammonium bicarbonate / 4% acetonitrile (ACN) to a final concentration of 40 

ng/uL. For each reaction in the comparative soluble trypsin study, 200 ng of trypsin was 

added to the reduced and alkylated samples yielding a 40:1 serum protein to trypsin ratio 

(other ratios were utilized and are indicated in the figure legends) and incubated for 30 

minutes and overnight at 37°C. Paramagnetic immobilized trypsin, EnzyBeads™ 

Trypsine (Agro-Bio, La Ferte Saint Aubin, France), were initially washed with 25 mM 

ammonium bicarbonate (pH 7.8). Twenty microliters of reduced/alkylated samples were 

trypsinized with 25 uL beads as described by the manufacturer for 30 min. at 37 °C. This 

is the equivalent of 3 units of enzyme activity per reaction, with one unit defined as the 

amount of EnzyBeads Trypsine required to hydrolyze lumole of chromogenic substrate 

in one minute at 25°C. Digested peptides were removed from the beads that were held in 

place by a magnetic separator. 

Sample clean-up and concentration 

Initially, ZipTipC18 cartridges (Millipore, Billerica, MA) were used to clean-up 

and concentrate the digested sample. The 10 uL of trypsinized sample was acidified with 

1 u.L of 1% TFA and allowed to bind to the CI8 cartridge. The CI8 cartridge was 

washed with 0.1% TFA and the sample was eluted in 5 uL of 50% ACN. Later, this 

method was adapted so that tryptic peptides were re-captured and concentrated with 

Hydrophobic Interaction Chromatography (HIC)-C18 paramagnetic beads (Bruker 

Daltonics, Bremen, Germany) as follows. Twenty microliters of the tryptic digest was 
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incubated with 10 uL HIC-C18 beads and 40 uL HIC-C18 binding buffer (or were noted 

with HIC-C8 beads and binding buffer). Bound peptides were washed with the 

manufacturer's wash solution and eluted in 10 \\L of 50% ACN as per the manufacturer's 

specifications. 

MALDI-TOF/TOF 

Two microliters of the tryptic peptide sample after HIC-C18 clean-up was mixed 

with 4 |iL of CHCA matrix solution (4 mL ethanol, 2 mL acetone, 0.008 g CHCA and 

0.1% TFA) and 1 uL of the mixture was manually spotted (or robotically spotted by the 

ClinProt robot where indicated) onto an AnchorChip plate using a dried droplet spotting 

technique. Also, where noted, a reverse thin-layer spotting technique was used where 1 

uL of the tryptic peptide sample was overlaid with 2 uL of CHCA matrix. The spotting 

techniques found ideal for untrypsinized samples were as follows: For untrypsinized 

WCX fractionated samples, the samples were mixed 1:15 with matrix and for 

untrypsinized WAX fractionated samples, the samples were spotted using the thin-layer 

method (1 uL sample overlaid with 2 uL matrix). Additionally, where noted, a matrix 

formulation (ACN, Acetone, 0.1% TFA, CHCA) was used for LIFT-MALDI-TOF/TOF 

analysis. 

UltraFlexI and UltraFlex III MALDI-TOF/TOF instruments (Bruker Daltonics) 

were used to analyze peptides in linear and reflectron modes. The resulting spectra were 

processed using FlexAnalysis and ClinProTools 2.0 software (Bruker Daltonics). The 

ClinProt software baseline subtracted and normalized the spectra using total ion current 

and an m/z starting point of 800. A k-nearest neighbor genetic algorithm contained in 
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this software suite was used to generate prediction models to classify the groups 

analyzed. Twenty percent of the samples were left out of the model generation process 

and used to cross-validate the model within the software. Peaks of interest were further 

analyzed on a separate platform using the LIFT function of a MALDI-TOF/TOF 

Ultraflex III instrument. The BioTools software and the MASCOT search engine 

(www.matrixscience.com) were used to compare the TOF/TOF spectra against primary 

sequence databases (SwissProt) to determine peptide sequence identities (unless 

otherwise noted the search criteria is as follows: carbamidomethyl and oxidation 

modifications; 100 ppm mass tolerance MS; 0.5 Da MS/MS tolerance). 

4.3 Results 

Integrating trypsin digestion into a bead-based affinity fractionation workflow 

The initial goal of this study was to integrate a trypsin digestion step following 

standard chemical affinity fractionation of serum samples, the latter being a common 

(off-line) first step in many serum/plasma proteomic profiling studies (50, 62, 125, 128, 

129). We hypothesized that inclusion of the trypsin digestion would facilitate more direct 

protein identifications of high mass novel proteins by generating peptides in an optimal 

mass range for detection and sequence identification by MALDI-TOF instruments (< 

4000 m/z). This approach could also broaden the dynamic concentration and mass range 

of detected proteins. 

The common approach to digestion of complex protein samples like serum is to 

perform an in-solution digest with added, soluble trypsin. A shortcoming of trypsin in-

solution protocols is long reaction times (4-16 hours) and the autocatalytic activity of the 

http://www.matrixscience.com
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trypsin may create contaminating trypsin cleavage products. One solution to this has 

been to use trypsin immobilized on a solid support, which acts to stabilize the trypsin and 

greatly increase the concentration of trypsin that can interact with substrate leading to a 

more rapid digestion (31). For these studies, we utilized a newly developed trypsin 

product immobilized on paramagnetic beads, EnzyBeads™ Trypsine, which can quickly 

and efficiently remove the trypsin from the digestion reaction by placing the reaction tube 

against a magnet. 

We first assessed the importance of initially reducing and alkylating the sample 

before the trypsinization step. We used the reducing agent DTT (dithiothreitol) and the 

alkylating agent iodoacetamide. DTT reduces disulfide bonds and maintains monothiols 

in a reduced state. After reduction, the sulfhydryls are then reacted with iodoacetamide 

to prevent reformation of disulfide linkages in a random manner (130). Figure 8 clearly 

shows that for these secreted proteins, which have disulfide bonds, reduction and 

alkylation improves the digestion efficiency. Thus, the reduction/alkylation step was 

included in the trypsin digestion protocol. 

Another observation that was made during the development phase of the trypsin 

digestion workflow pertained to the MALDI-TOF spectra. It was noted that the signal 

intensity was weak and that the matrix/sample spots on the target plate were not uniform 

(i.e. there was a propensity towards "hot-spot" formation), regardless of the spotting 

technique (i.e. dried droplet or reverse thin-layer technique). It is known that certain 

reagents negatively effect matrix crystallization and hinder ionization of the sample (11). 

Thus, we first investigated whether ZipTipsCl 8 would improve the spectra and the 

uniformity of the spot on the MALDI AnchorChip plate. These ZipTips have CI 8 (18 
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Undigested 40ng/uL 10ng/uL 40ng/uL 10ng/uL 
Control Trypsin Trypsin Trypsin Trypsin 

Figure 8. Improved trypsinization efficiency of WCX fractionated serum proteins 
after reduction and alkylation. A Biorad Criterion Tris-HCl 8-16% is shown. The 
lanes labeled 40 ng/uL of trypsin utilized a 1:30 soluble trypsin to protein ratio, 
while the lanes labeled 10 ng/uL of trypsin utilized a 1:120 soluble trypsin to 
protein ratio. Three micrograms of protein from each condition was loaded on the 
gel. The gel was silver stained using a Biorad reagent. 
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carbons) derivatized surfaces that bind peptides in aqueous solutions through 

hydrophobic interactions, allowing small interfering molecules (i.e.salts, buffers, and 

chaotropes) to be washed off. The peptides are then eluted with various organic solvents 

that are compatible with the MALDI-TOF technique (11). In Figure 9 the improvement 

in spectra quality in a sample with clean-up as compared to a sample without clean-up is 

shown. Hence, a final clean-up and concentration step was added into the trypsin digest 

workflow. 

Since, ZipTips are labor-intensive and would later be difficult to accommodate to 

an automated workflow, we investigated whether magnetic beads with immobilized 

carbons could substitute. We found no significant difference between the ZipTipC18 and 

the CI 8 treated magnetic beads (Bruker Daltonics). However, there are other 

hydrophobic interaction chromatography (HIC) magnetic beads available as well. In fact, 

various papers published by Bruker utilize the C8 magnetic bead-type for capture of 

peptides (131). Thus, we compared which bead type yielded the best results in terms of 

the capture and concentration of our trypsinized peptides. Simultaneously, we also 

assessed whether we would gain more peptide information through the sequential elution 

of the HIC-magnetic beads. Figure 10 shows the sequential elutions off of the CI 8 HIC-

magnetic bead versus the sequential elutions off of the C8 HIC-magnetic bead. When 

comparing the initial elution (which yielded the most robust spectra), using the 

FlexAnalysis software, for both bead types, the spectra of tryptic peptides after CI 8 

purification yielded 41 peaks between m/z 1000 and 4000, while the spectra of tryptic 

peptides after C8 purification yielded only 20 peaks between m/z 1000 and 4000. This 

mass range is most ideal for sequence identification using LIFT-MALDI-TOF/TOF and 
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Figure 9. Effect of ZipTipC 18 clean-up on MALDI-TOF spectra of WCX 
fractionated samples tryspinized with immobilized trypsin beads. The top panel 
showcases a sample that was concentrated and cleaned-up using ZipTipC 18, while 
the bottom panel shows the same tryptic digest not processed with ZipTipC 18. 
Samples were processed using MB-WCX fractionation and immobilized-bead 
trypsinization, spotted on an AnchorChip plate using a reverse thin-layer method 
and analyzed on the MALDI-TOF Ultraflex I in reflectron mode as stated in 
Materials and Methods. 
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2500 3000 

Figure 10. Comparison C8 and CI 8 HIC-magnetic bead sequential elutions. The panel on the 
left shows sequential elutions (15, 30 and 70% of ACN) off of the MB-C8 bead of tryptic 
peptides after MB-WCX fractionation and immobilized-trypsin bead digestion. The panel on 
the right shows sequential elutions off of the MB-C18 bead of tryptic peptides derived by the 
same protocol. Samples were analyzed on the MALDI-TOF Ultrafiex III in reflectron mode 
after being spotted (1:5 ratio of sample to CHCA matrix) by the ClinProt robot on an 
AnchorChip plate as described in Material and Methods. 
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Figure 11. Comparison of CI 8 and C8 HIC bead 15% acetonitrile elutions. (A) The top 
panel shows a 15% ACN elution off of MB-C18 beads, while the bottom panel shows a 
15% ACN elution off of MB-C8. (B) Peptides in the lower mass range (1000 - 1400 m/z) 
are seen captured by the CI8 bead type (denoted by arrows in the top panel), but are lost 
by the C8 bead type (bottom panel). Samples were analyzed on the MALDI-TOF 
Ultraflex III in reflectron mode as stated in Figure 9 and Materials and Methods. 
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also discounts most matrix peaks. As shown in Figure 11, it is clear that there are certain 

peptides that are not captured by the C8 bead, but are captured by the CI 8 bead. This is 

expected as peptides are small and polar and thus need more carbons for successful 

binding, while larger proteins have more hydrophobic areas and thus will bind 

tenaciously to the available carbons (i.e. C4 or C8) (11). Therefore, we decided that we 

would continue on with the CI 8-HIC magnetic bead type. Additionally, during the 

course of this comparison, we found that the reverse thin-layer method, which we had 

utilized after the ZipTipC18 purification, would be impractical for an automated 

approach and also yielded less compact and uniform spots when compared to the dried 

droplet method (as is performed by the ClinProt robot). The dried droplet method also 

yielded more resilient spots that could withstand larger quantities of laser shots, which is 

advantageous for both profiling and LIFT identification. 

During the optimization of the immobilized-trypsin bead method, we also 

determined the necessary protein concentration and pH of the fractionated sample for 

ideal trypsin efficiency and spectra quality. The SDS gel and spectra in Figure 12 

illustrates that 8 ug is an optimal concentration for efficient trypsin digestion with 

immobilized-trypsin beads. Additionally, we found that digesting 20 uL of the digested 

sample and diluting this sample 1:3 with matrix minimized contaminating matrix peaks, 

while still producing robust tryptic spectra on the MALDI-TOF instrument. Using these 

specifications, 82 peaks were counted, when excluding matrix peaks. This approach 

works well with the CI 8 beads since, unlike ZipTipsC18, which concentrate 10 uL of 

digested sample into 5 uL of eluted sample; CI8 HIC-magnetic beads concentrate 20 \iL 

of digested sample into 10 uL of eluted sample. The elution buffer is a volatile 50% 
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Figure 12. Concentration determination for ideal trypsinization using immobilized-trypsin 
beads. The gel shown is a NuPage 4-12% Bis-Tris with MES from Invitrogen. WCX 
fractionated sample was added varying amounts into reduction/alkylation and 
trypsinization reactions to generate the most efficient digestion. Lane 1: Undigested serum 
sample after WCX fractionation. Lane 2: 15.5 ug of sample reduced/alkylated and 5.2 ug 
was digested with immobilized-trypsin beads. Lane 3: 15.5 ug of sample 
reduced/alkylated and 10.4 ug was digested with immobilized-trypsin beads. Lane 4: 8 ug 
of sample reduced/alkylated and 5.5 ug (20 uL of reduced/alkylated sample) was digested 
with immobilized-trypsin beads. Lane 5: 24 ug of sample reduced/alkylated and 15.5 ug 
was digested with immobilized-trypsin beads. Equivalent to 5 ug of protein is loaded in 
each well. Gel was stained with a silver stain from Biorad. The lower panel shows the 
distribution of peaks from the best digest (Lane 4) and the worst digest (Lane 5). 



85 

acetonitrile solution, thus an elution with more volume allows for easier and more 

efficient handling that may be adapted to an automated workflow. 

Trypsin works optimally at a pH between 7 and 9, however Figure 13 also shows 

that adjusting the pH to ~8 prior to reduction and alkylation (not just at the point of 

trypsin digestion) improves the digestion efficiency. This is important to know because 

each WCX fractionation preparation may vary slightly in terms of protein concentration, 

thus one would be adding more of the basic elution buffer (pH ~11) into the reduction 

reaction if the preparation had a lower protein concentration. These small variations turn 

out to be enough to alter the reduction reaction solution pH so that it affects digestion 

efficiency. Using the specification listed thus far (Figure 14), we found that this trypsin 

bead based method yielded on average a total of 85 peaks, discounting the matrix peaks. 

This is compared to 20 peaks that are seen on average with undigested WCX fractionated 

serum in the ideal range of reflectron mode for peptide identification. This clearly shows 

that trypsinizing the sample prior to MS analysis yields more peptides in the range of 

optimal MALDI-TOF/TOF analysis and thus may lead to direct identification of peptides 

via LIFT. 

Comparison of free trypsin and immobilized trypsin digestions 

We then compared the efficiency of the trypsin bead digestion of serum proteins 

with a standard soluble trypsin protocol as described in Materials and Methods. Pooled 

healthy serum was incubated with MB-WCX paramagnetic beads to reduce sample 

complexity, and the eluate proteins were used in subsequent digestions using either 

immobilized-trypsin beads or soluble trypsin. These tryptic eluates were applied to CI8, 
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Figure 13. Effect of pH on ideal trypsinization using immobilized-trypsin beads. The 
gel shown is a NuPage 4-12% Bis-Tris with MES from Invitrogen. Lane 1: Undigested 
serum sample after WCX fractionation. Lane 2: 8 fig digested of serum sample after 
WCX fractionation and 20 uL (~5.5ug) digested with immobilized-trypsin beads. Lane 
3: Same as Lane 2 with the exception that after WCX fractionation the pH of the 
sample was adjusted to ~8. Lane 4: Increasing the amount of trypsin beads (from 25 uL 
to 35 uL) to improve digestion efficiency. Lane 5: Digesting less reduced/alkylated 
sample (-2.75 ug) to improve digestion efficiency. 
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Figure 14. Workflow designed for immobilized-trypsin beads for peptide 
profiling using MALDI-TOF/TOF. Serum/Plasma samples are first fractionated 
by a chromatography-based magnetic bead (i.e. WCX or WAX). The pH of the 
sample is adjusted to ~ 8 and 8 (xg of the fractionated sample is reduced and 
alkylated (final reaction volume is 29 uL). Twenty microliters of the 
reduced/alkylated sample is added to 25uL of immobilized-trypsin beads and 
allowed to incubate at 37°C for 30 minutes. The total tryptic digest is then 
removed from the beads and added directly to a MB-C18 clean­
up/concentration reaction. Two microliters of the CI 8 captured sample is then 
mixed with 4 uL CHCA matrix of which 1 uL is spotted on an AnchorChip 
plate and analyzed in reflectron mode of the MALDI-TOF/TOF Ultraflex III. 
Peaks of interest are subjected to MS/MS directly off of the profiled spot via the 
LIFT mode of the MALDI-TOF/TOF Ultrafelx HI. MS/MS is spectra is 
analyzed and identified using the BioTools software from Bruker along with the 
MASCOT search engine. 
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and then spotted 1:3 with CHCA matrix for MALDI-TOF analysis. Representative 

spectra from the three tryptic digests (digested with trypsin beads for 30 minutes and 

digested with soluble trypsin for 30 min and overnight) along with the undigested MB-

WCX eluate are shown in reflectron mode in Figure 15 and in linear mode in Figure 16. 

The trypsin beads were clearly more efficient for the conditions utilized and produced a 

greater number of lower mass peptides as compared to the standard soluble trypsin. 

However, the drawback with the trypsin-bound beads is that, as with most 

chromatography-based procedures, there is some extent of sample binding to the solid-

support (it is estimated that -1/6 of the sample binds to the solid-support). In terms of 

the soluble trypsin, it was noted that there were minimal differences between a 4 hour 

incubation time and an overnight incubation with the soluble trypsin. This is consistent 

with some trypsin digest protocols calling for the addition of more trypsin into the 

digestion reaction after the 4 hour mark or adding a higher starting concentration of 

trypsin to increase digestion efficiency (132, 133). As seen in Figure 17, there is already 

a certain level of contamination by trypsin peaks in the spectra and thus adding more 

trypsin to improve digestion efficiency would exacerbate this problem. 

Reproducibility of immobilized trypsin protocol 

The reproducibility of the MB-WCX and trypsin bead digest workflow described 

in Materials and Methods was applied to multiple aliquots of serum to determine the 

reproducibility of the technique. Six aliquots of the same serum samples were 

independently processed and spotted in triplicate for MALDI-TOF profiling. As shown 

in Figure 18, there was a high degree of reproducibility across the spectra, which is also 
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Figure 15. Reflectron mode MALDI-TOF comparison of WCX fractionated samples 
untrypsinized and trypsinized by either soluble trypsin or immobilized-trypsin. 
Samples were processed with 25 uL of trypsin beads for 30 minutes or with soluble 
trypsin (1:40 sample-to-trypsin ratio) for 30 minutes or overnight as described in 
Materials and Methods. The tryptic peptides were captured by MB-C18 beads from 
Bruker and the eluted peptides were mixed 1:3 with CHCA matrix. One microliter of 
the sample/matrix mixture was spotted on an AnchorChip plate and analyzed using 
the reflectron mode of the MALDI-TOF UltraFlex EL The spectra were compared 
using the FlexAnalysis 2.0 software from Bruker. 

http://WS8.ei711BB.7a4
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Figure 16. Linear mode MALDI-TOF comparison of WCX fractionated 
samples untrypsinized and trypsinized by either soluble trypsin or immobilized-
trypsin. Samples were processed with 25 uL of trypsin beads for 30 minutes or 
with soluble trypsin (1:40 sample-to-trypsin ratio) for 30 minutes or overnight 
as described in Materials and Methods. The tryptic peptides were captured by 
MB-C18 beads from Bruker and the eluted peptides were mixed 1:3 with 
CHCA matrix. One microliter of the sample/matrix mixture was spotted on an 
AnchorChip plate and analyzed using the linear mode of the MALDI-TOF 
UltraFlex III. The spectra were compared using the FlexAnalysis 2.0 software 
from Bruker. 
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Figure 17. Example of trypsin contaminant peaks in soluble trypsin digests. The 
top panel shows representative peaks seen when the Roche trypsin is spotted on an 
AnchorChip plate with CHCA matrix. The bottom panel is a soluble, overnight 
trypsin digest of WCX fractionated serum. The arrows point to peaks found in the 
trypsin only spectra that are contaminating the soluble trypsin digest spectra. 
Samples were analyzed using the refiectron mode of the MALDI-TOF UltraFlex III 
and the resulting spectra were compared using the FlexAnalysis 2.0 software from 
Bruker. 
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Figure 18. Reproducibility of immobilized trypsin bead method. Six aliquots of the same 
pooled serum sample were processed using the WCX fractionation and immobilized-trypsin 
digestion method as described in Figure 14 and Materials and Methods. Two microliters of 
each of the digested samples was mixed with 4 uL CHCA matrix and 1 \xL of this mixture 
was spotted on an AnchorChip plate in triplicate. Spectra were generated in reflectron mode 
of the MALDI-TOF UltraFlex III and analyzed using ClinProTools 2.0. The top panel 
shows a heat map of all the samples in triplicate in the 900-3500 m/z range. The bottom 
panel shows the peak distribution of each individual sample in triplicate in the 900-3500 m/z 
range. 



Table 8. Reproducibility of immobilized trypsin bead method as seen by the 
coefficient of variance (CV) of twelve representative peaks. 

Mass 

1124.81 

1585.99 

1667.97 

1670.92 

1694.93 

1717.04 

1885.02 

1932.26 

2017.31 

2383.24 

2425.80 

2636.63 

Manual run 

Intensity 

5.33 

10.15 

8.32 

19.48 

6.75 

10.8 

39.18 

13.92 

154.16 

28.00 

46.22 

16.65 

CV (%) 

8.41 

7.14 

4.96 

11.02 

13.65 

9.30 

8.88 

5.60 

11.34 

11.18 

11.49 

7.49 
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illustrated by the low coefficient of variance seen with twelve representative peak 

intensities (Table 8). 

Bead-based Workflow with MALDI-TOF/TOF Identification of Tryptic Peptides 

The WCX fractionation workflow was used in combination with trypsin beads for 

LIFT-MALDI-TOF/TOF sequencing identification of selected m/z peaks. Identified 

peptides are summarized in Table 9 and Figure 19 shows LIFT analysis for a 

representative peak. As expected, the protein identities represent common serum protein 

components from across all native mass ranges. Peaks with relatively low signal-to-noise 

ratio (S/N) values could be identified, in general, depending on whether any prevalent 

adjacent or co-migrating peaks were present to confound the LIFT fragmentation spectra. 

During this time we also examined two matrix formulations (a CHCA formulation in an 

EtOH/acetone solution and a CHCA formulation in an acetonitrile solution) and their 

effectiveness during the LIFT technique. Although both of these matrix formulations did 

not differ in spectra quality and LIFT results, it was found that the CHCA formulation in 

an acetonitrile solution was more resilient to the high laser energy needed for parent ion 

fragmentation and thus more shots per spot were able to be collected. However, this 

matrix would be difficult for large-scale spotting, either performed manually or 

robotically, due to the high content of acetonitrile, which is difficult to handle. Thus, the 

CHCA formulation used for the reproducibility study (EtOH/acetone based) was retained 

in the workflow for profiling and for direct LIFT application from the original spots used 

in profiling. Conversely, if sample quantities are limited and the LIFT procedure needs 
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Table 9. Peptides from immobilized-trypsin digest of WCX fractionated workflow 
identified by LIFT-MALDI-TOF/TOF. 

Mass 

1003.66 
1030.63 
1088.62 

1124.71 

1158.71 

1184.70 

1215.76 

1283.69 

1301.77 

1314.81 

1342.77 

1352.79 

1561.87 

1623.83 

1640.09 

1724.99 

1875.05 
1884.06 

1898.12 

2012.17 

2016.24 

2042.09 

2081.20 

2126.16 

2381.39 

2441.32 

2585.33 

2599.38 

2778.59 

2815.52 

Accession 
# 

P01042 
P01042 
P00747 

P04196 

P01042 

P02775 

P06727 

P02647 

P02647 

P04004 

P02768 

P06727 

P00734 

P02768 

P02768 

P02775 

P01042 
P00734 

P02775 

P00734 

P02765 

P02671 

P02765 

P00747 

000512 

P01042 

P02768 

P02768 

P02768 

P00751 

Peptide 
Identity 

Kininogen-1 
Kininogen-1 
Plasminogen 
Histidine-rich 
glycoprotein 
Kininogen-1 
Platelet basic 

protein 
Apolipoprotein 

A-IV. 
Apolipoprotein 

A-I 
Apolipoprotein 

A-I 
Vitronectin 

Serum 
albumin 

Apolipoprotein 
A-IV 

Prothrombin 
Serum 

albumin 
Serum 

albumin 
Platelet basic 

protein 
Kininogen-1 
Prothrombin 
Platelet basic 

protein 
Prothrombin 
Alpha-2-HS-
glycoprotein 
Fibrinogen 
alpha chain 

Alpha-2-HS-
glycoprotein 
Plasminogen 

B-cell 
lymphoma 9 

protein 
Kininogen-1 

Serum 
albumin 
Serum 

albumin 
Serum 

albumin 
Complement 

factor B 

Score 

27 
44 
32 

42 

44 

49 

62 

34 

33 

50 

67 

32 

68 

46 

66 

105 

76 
83 

99 

63 

115 

92 

83 

74 

34 

93 

75 

72 

32 

71 

Expect 
value 
0.02 

0.0014 
0.029 

0.0011 

0.0012 

0.00037 

1.6e-05 

0.014 

0.015 

0.00023 

6.2e-06 

0.015 

4.8e-06 

0.00084 

6.9e-07 

7.5e-10 

6.8e-07 
1.2e-07 

2.4e-09 

9.8e-06 

2.5e-ll 

1.7e-08 

le-07 

8.6e-07 

0.005 

l.le-08 

6. le-07 

1.2e-06 

0.0085 

l.le-06 

Peptide 

R.QWAGLNFR.I 
K.YFIDFVAR.E 
R.WELCDIPR.C 

R.DGYLFQLLR.I 

K.KYFIDFVAR.E 

R.KICLDPDAPR.I 

K.ALVQQMEQLR.Q 

K.WQEEMELYR.Q 

R.THLAPYSDELR.Q 

R.RVDTVDPPYPR.S 

K.AVMDDFAAFVEK.C 

R.RVEPYGENFNK.A 

R.TATSEYQTFFNPR.T 

K.DVFLGMFLYEYAR.R 

K.KVPQVSTPTLVEVSR.N 

K.GKEESLDSDLYAELR.C 

K.YNSQNQSNNQFVLYR.I 
R.TFGSGEADCGLRPLFEK.K 

K.GTHCNQVEVIATLKDGR.K 

R.TFGSGEADCGLRPLFEKK.S 

R.TWQPSVGAAAGPWPPCPGR.I 

K.QFTSSTSYNRGDSTFESK.S 

R.HTFMGWSLGSPSGEVSHPR.K 

R.ATTVTGTPCQDWAAQEPHR.H 

K.KPEGPIQAMMAQSQSLGKGPGP 
R.T + Oxidation (M) 

K.SLWNGDTGECTDNAYIDIQLR.I 
K.VHTECCHGDLLECADDRADLAK 

.Y 

K.QNCELFEQLGEYKFQNALLVR.Y 

R.LVRPEVDVMCTAFHDNEETFLK 
K.Y 

R.LLQEGQALEYVCPSGFYPYPVQT 
R.T 
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Figure 19. LIFT analysis of representative peak m/z 2016.24. The top panel shows the 
fragmented spectrum as is it is seen using FlexAnalysis. This MS/MS spectrum is then 
imported into the BioTools software program and MASCOT is used to search a selected 
database (SwissProt in this case) with the following criteria: carbamidomethyl and 
oxidation modifications; 100 ppm mass tolerance MS; 0.5 Da MS/MS tolerance. 



97 

to be repeated or performed on re-spotted sample, we recommend using the acetronitrile-

based CHCA matrix. 

The front-end bead fractionation may be varied for a more comprehensive sample 

analysis. Another front-end fractionation step easily adapted to this typsinization 

technique utilizes MB-WAX beads. Examples of the types of tryptic peptides generated 

from MB-WAX fractionated samples are listed in Table 10. There are some shared 

commonalities (i.e. apolipoprotein AIV, prothrombin, vitronectin and alpha-2HS-

glycoprotein), and there are also several differences between these WAX front-end 

fractionated tryptic peptides identified by LIFT-MALDI-TOF/TOF and those that were 

generated from WCX fractionated serum. For instance, the WCX fractionation workflow 

has such proteins as kininogen, histidine-rich glycoprotein, platelet-basic protein and B-

cell lymphoma 9 protein that among others are not seen in the WAX fractionation 

workflow spectra. Vice versa, haptoglobin, ceruloplasmin, apolipoprotein CIII, and 

complement C4-A are amongst the proteins represented in the WAX workflow protocol 

that are not seen in the WCX workflow spectra. Additionally, the predominant protein in 

the WCX workflow is serum albumin, while the predominant protein in the WAX 

fractionated sample is inter-alpha-trypsin inhibitor. This is one reason why the pH 5.0 

WAX binding buffer was utilized as specified in Materials and Methods. The average 

serum albumin pi is ~5.2 (main pi isoforms range from 4.7 to 5.6) (134), thus at the pH 

of the binding step the negatively charged (at neutral pH) serum albumin takes on an 

overall neutral charge and thus does not bind to the WAX bead. However, the other pH 

binding solutions (pH 7.4 and pH 9) would have made serum albumin negatively charged 
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Table 10. Examples c 
WAX fractionational 

Mass 

980.61 

1182.69 

1215.79 

1337.84 

1401.82 

1470.62 

1561.88 

1647.00 

1666.62 

1717.04 

1836.12 

2017.25 

2081.22 

2293.26 

2551.46 

2755.57 

2994.16 

Accession 
# 

P00738 

Q9HB96 

P06727 

P19823 

P02751 

P19827 

P00734 

P04004 

P04004 

P02656 

P01876 

P02656 

P02765 

P00450 

P0C0L4 

P01024 

P19827 

>f top peptides seen in the immobilized-trypsin digestion of 
ted serum. 

Peptide Identity 

Haptoglobin 
Fanconi anemia 
group E protein 
Apolipoprotein 

A-IV 
Inter-alpha-

trypsin inhibitor 
heavy chain H2 

Fibronectin 
Inter-alpha-

trypsin inhibitor 
heavy chain HI 

Prothrombin 

Vitronectin 

Vitronectin 

Apolipoprotein 
C-III 

Ig alpha-1 chain 
C region 

Apolipoprotein 

c-m 
Alpha-2-HS-
glycoprotein 

Ceruloplasmin 

Complement 
C4-A 

Complement C3 

Inter-alpha-
trypsin inhibitor 
heavy chain HI 

Score 

34 

37 

35 

44 

32 

80 

79 

70 

69 

62 

42 

73 

102 

43 

102 

114 

67 

Expect 
value 
0.01 

0.0062 

0.0064 

0.00064 

0.021 

2.3e-07 

3.5e-07 

2.2e-06 

9.1e-07 

1.3e-05 

0.00071 

5e-07 

l.le-09 

0.0011 

1.2e-09 

6.6e-ll 

1.3e-06 

Peptide 

R.VGYVSGWGR.N 

R.EEPWQGPDGR.L 

K.ALVQQMEQLR.Q 

K.FYNQVSTPLLR.N 

K.HYQINQQWER.T 

K.QYYEGSEIVVAGR.I 

R.TATSEYQTFFNPR.T 
R.DVWGIEGPIDAAFT 

R.I 
R.DWHGVPGQVDAA 

MAGR.I 
K.DALSSVQESQVAQQ 

AR.G 
R.QEPSQGTTTFAVTSI 

LR.V 
K.TAKDALSSVQESQV 

AQQAR.G 
R.HTFMGWSLGSPSG 

EVSHPR.K 
R.FNKNNEGTYYSPNY 

NPQSR.S 
R.TLEIPGNSDPNMrPD 

GDFNSYVR.V 
R.EGVQKEDIPPADLS 

DQVPDTESETR.I 

R.GMADQDGLKPTIDK 
PSEDSPPLEMLGPR.R 



and thus most amenable to binding to the WAX bead type. In addition to this 

observation, we also saw that compared to the other binding solution, pH 5.0 yielded 

the highest protein concentration, thus allowing the fractionated sample to be applied 

easily to the immobilized-trypsin workflow. 

Additionally, we attempted a LIFT of an untrypsinized sample of both WCX 

fractionated samples and WAX fractionated samples. Table 11 shows the identified 

peptides from both the WCX and the WAX untrypsinized samples. As discussed above 

for the WCX fractionated samples, the spectra of untrypsinized samples are sparse as 

compared to the spectra generated immobilized trypsin samples. This is also true for 

WAX fractionated samples (on average there are 55 peaks for trypsinized samples versus 

18 peaks for untrypsinized samples). Additionally, using WCX as an example, the peaks 

that qualify as good candidates for LIFT (i.e. good S/N ratio and not in the midst of a 

peak patch) are on average ~ 45 for the trypsinized samples as compared to ~12 for the 

untrypsinized samples. Furthermore, the lack of knowledge as to the identity of the 

enzyme that created the peptide of interest adds to the difficulty of identifying the 

endogenous peptide peaks in the untrypsinized samples. Of the 45 peaks that were 

subjected to LIFT-MS/MS from the serum samples processed with the 

WCX/immobilized-trypsin bead workflow, 30 peaks were successfully identified. 

However, of the 12 peaks that were subjected to LIFT-MS/MS from the untrypsinized 

WCX fractionated serum samples, only 5 peaks were successfully identified. This is true 

for the WAX workflow as well i.e. LIFT-MS/MS performed on 25 peaks from the 

trypsinized sample with 17 identified, while only 4 peaks were identified from the 10 

peaks fragmented by LIFT-MS/MS from the untrypsinized sample. Thus, it is easier to 
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Table 11. Peptides identified from untrypsinized WCX and WAX fractionated 
serum. 

WCX fractionated serum 

Mass 

1060.66 
1192.66 

1263.80 

1561.82 

1753.98 

Accession 
# 

P01042 
P01042 

Q14624 

P00734 

P02649 

Peptide Identity 

Kininogen-1 
Kininogen-1 
Inter-alpha-

trypsin inhibitor 
H4 

Prothrombin 

Apolipoprotein E 

Expect 
value 

2.8e-05 
0.014 

0.0059 

9.1e-06 

1.8e-05 

Peptide 

K.RPPGFSPFR.S 
R.RHDWGHEKQ.R 

R.MNFRPGVLSSR.L 

R.TATSEYQTFFNPR.T 
A.KVEQAVETEPEPEL 

R.Q 

Enzyme 
denotation 
Trypsin* 

No enzyme 

Trypsin* 

Trypsin 

No enzyme 

WAX fractionated serum 

Mass 

1206.72 

1465.82 

1616.84 

2193.34 

Accession 
# 

P02671 

P02671 

P02671 

P01024 

Peptide Identity 

Fibrinogen alpha 

Fibrinogen alpha 

Fibrinogen alpha 

Complement C3 

Expect 
value 

0.0015 

l.le-10 

2.4e-08 

0.012 

Peptide 

G.EGDFLAEGGGVR.G 

A.DSGEGDFLAEGGGV 
R.G 

T.ADSGEGDFLAEGGG 
VR.G + Phospho (ST) 

G.SPMYSHTPNILRLES 
EET.M 

Enzyme 
denotation 

Semi-
trypsin 
Semi-

trypsin 
Semi-

trypsin 

No enzyme 

f SwissProt database searched with the following criteria: oxidation modifications; 120 ppm mass 
tolerance MS; 0.5 Da MS/MS tolerance. * Indicates that without enzyme selection the peptide 
identification would not be significant. 



identify a peptide from the immobilized-trypsin workflow, (where we know that the 

enzyme that created that peptide is trypsin), than from the untrypsinized sample. 

Trypsin-bead workflow on clinical samples: SOF study revisited 

We next performed proof-of-concept trypsin bead workflows on clinical samples 

as described in Figure 14. The first set of samples utilized consisted of the scraped SOF 

serum samples from Aim 1. We processed these samples with the WCX fractionation 

and immobilized-trypsin digestion workflow as discussed in Materials and Methods in 

order to examine the reproducibility of this workflow with clinical samples and also to 

investigate whether there are any differential peptides that can be identified between the 

two sample sets (cases and controls). We made 24 pools (12 pools per group) with 8 

samples per pool. Two peaks that were deemed most significant using the ClinProTools 

software, m/z 2017 and m/z 2383 were included in the generation of a genetic algorithm 

model, along with another significantly differential peak, m/z 1030 (it should be noted 

that the values we list in the text are average of isotopic values generated by 

ClinProTools, but the values used for the LIFT identification are of the 1st isotopic peak). 

Figure 20 shows the cluster plot of peaks m/z 2017 and m/z 2383. These peaks were 

identified as alpha-2HS-glycoprotein (m/z 2017), B-cell lymphoma 9 protein (Bcl-9) (m/z 

2383), and kininogen (m/z 1031), which were all increased in patients that were going to 

develop breast cancer (cases). The genetic algorithm model had 100% recognition 

capability of the test set and the cross-validation yielded a sensitivity of 87.23% and a 

specificity of 77.36%. 
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Figure 20. Cluster plot of relative intensity distributions of peaks m/z 2017 and 2383 in 
the initial run of the SOF cohort. The cluster plot was generated by the ClinProTools 2.0 
software. The intensities of the 2 peaks, m/z 2017 and 2383, are plotted on 2 axes. The 
more clustered the points are in relation to their group and the more separated the clusters 
are from each other then the more significantly distinct the 2 groups are in relation to each 
other. In this cluster plot the intensities of peak m/z 2017 are found along the "x" axis, 
while the intensities of peak m/z 2383 along the "y" axis. The control sample peaks are 
designated by "o" and the case sample peaks are designated by "x". 
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We re-processed the 24 samples and analyzed them again in duplicate on the 

MALDI-TOF/TOF instrument. A genetic algorithm model was generated using the same 

peaks (m/z 1031, 2017, and 2383) as for the previous ran and was found to have a 

recognition capability of 100% of the test samples, with a cross-validation yielding a 

sensitivity of 70.83% and a specificity of 70.83%. A cluster plot using the peaks m/z 

2017 and m/z 2383 is shown in Figure 21. We then used this newly generated model to 

see if it could properly externally validate the samples analyzed in the original run. The 

genetic algorithm model that was designed specifically for the repeated sample set was 

able to validate the 1st group of samples with a sensitivity of 70.83% (17/24 correctly 

classified) and a specificity of 83.3% (20/24 correctly classified). The combined peak 

intensity distributions for these SOF runs and the respective p-values are shown for 

kininogen (Figure 22), alpha-2HS-glycoprotein (Figure 23) and Bcl-9 protein (Figure 24). 

Interestingly, an independent iTRAQ analysis that was performed in our lab using lectin 

capture and different SOF sample pools showed that there was a 2.33-fold increase of 

alpha-2HS-glycoprotein in cases as compared to controls (1.0 to 0.43 iTRAQ ratio of 

case to control). 

The results shown here are very promising in terms of the reproducibility of this 

method over time since there was a lengthy lapse between the analyses of these two SOF 

runs on the MALDI-TOF/TOF, during which time the instrument had been serviced by 

Bruker engineers. Yet the intensity and distribution patterns of the peaks used to 

construct our genetic algorithm models are still comparable enough to produce similar 

cross-validations between the two runs and also to allow for a good external validation of 

the first run by the genetic algorithm criteria set forth by the repeat run. 



Figure 21. Cluster plot of relative intensity distributions of peaks 2017 and 2383 in the 
repeat run of the SOF cohort. The cluster plot was generated by the ClinProTools 2.0 
software. The intensities of the 2 peaks, m/z 2017 and 2383, are plotted on 2 axes. The 
more clustered the points are in relation to their group and the more separated the 
clusters are from each other then the more significantly distinct the 2 groups are in 
relation to each other. In this cluster plot the intensities of peak m/z 2017 are found 
along the "x" axis, while the intensities of peak m/z 2383 along the "y" axis. The 
control sample peaks are designated by "o" and the case sample peaks are designated by 
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Figure 22. Box plot of relative intensity distributions of peak m/z 1031 in the SOF 
cohort. Relative intensities were plotted from both runs. The two runs were processed 
by the ClinProTools software independently with a 0.1% maximum peak shift 
tolerance and a beginning m/z cut-off of 800. The box denotes where the intensities of 
the majority of samples lie and the whiskers of the box plot demonstrate range of 
intensities of all samples that are not deemed outliers. All outliers are shown as 
individual points. The mean is depicted as a dotted line and the median is depicted as 
a solid line. For m/z 1031, the mean was 9.25 for cases and 7.67 for controls, while 
the median was 8.08 for cases and 7.63 for controls. Using a student t-test, the P-
value for this peak was determined to be 0.0064. Significance is < 0.05. 
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Figure 23. Box plot of relative intensity distributions of peak 2017 in the SOF cohort. 
Relative intensities were plotted from both runs. The two runs were processed by the 
ClinProTools software independently with a 0.1% maximum peak shift tolerance and 
a beginning m/z cut-off of 800. The box denotes where the intensities of the majority 
of samples lie and the whiskers of the box plot demonstrate range of intensities of all 
samples that are not deemed outliers. All outliers are shown as individual points. The 
mean is depicted as a dotted line and the median is depicted as a solid line. For m/z 
2017, the mean was 112.88 for cases and 94.36 for controls, while the median was 
108.81 for cases and 98.14 for controls. Using a student t-test, the P-value for this 
peak was determined to be 0.00095. Significance is < 0.05. 
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Figure 24. Box plot of relative intensity distributions of peak 2383 in the SOF cohort. 
Relative intensities were plotted from both runs. The two runs were processed by the 
ClinProTools software independently with a 0.1% maximum peak shift tolerance and 
a beginning m/z cut-off of 800. The box denotes where the intensities of the majority 
of samples lie and the whiskers of the box plot demonstrate range of intensities of all 
samples that are not deemed outliers. All outliers are shown as individual points. The 
mean is depicted as a dotted line and the median is depicted as a solid line. For m/z 
2383, the mean was 18.59 for cases and 14.19 for controls, while the median was 
17.03 for cases and 13.57 for controls. Using a student t-test, the P-value for this peak 
was determined to be 0.0046. Significance is < 0.05. 



Trypsin-bead workflow on clinical samples: Serum from patients diagnosed with 

Benign Prostatic Hyperplasia and Prostate Cancer 

In addition to the SOF sample cohort we also processed a set of serum samples 

through the workflow described in Figure 14 from individuals diagnosed with BPH and 

those diagnosed with prostate cancer (PCa) (all the patients had PSA levels between 2 

and 10 ng/mL). Twenty pooled samples (10 pooled samples per group) were run in 

duplicate as described in the Materials and Methods. We found that two peptides 

identified as Apolipoprotein AIV (ApoAIV) (m/z 1216 and 1353) were increased in 

patients that were diagnosed with BPH. In addition, a kininogen peptide (m/z 1031) was 

also noticeably increased in patients that had PCa. ClinProTools was used to generate a 

genetic algorithm model using these three peaks and this model was able to differentiate 

100% between the two test groups. Upon cross-validation this model was able to 

distinguish between sample groups with a sensitivity of 84.11% (correctly classified 

cases i.e. PCa) and specificity of 75% (correctly classified controls i.e. BPH). 

To determine the reproducibility of this method using clinical samples we 

randomly re-processed 12 of the samples (6 samples per group) with the front-end MB-

WCX fractionation and trypsinization scheme. These samples were blinded and analyzed 

in duplicate by the MALDI-TOF using the exact specification and setting used for the 

initial run. We utilized the model generated from the original 20 samples to classify the 

blinded samples. In this manner we were able to classify 10/12 correctly as BPH and 

10/12 correctly as PCa, giving us a specificity and sensitivity of 83.3%. A cluster plot 

was created using the ApoAIV m/z 1216 peptide and the kininogen peptide intensity 

distributions from both runs (Figure 25). Figure 26 is a box plot of the combined 
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Figure 25. Cluster plot of relative intensity distributions of peaks 1031 and 1216 in 
the PCa vs. BPH cohort. The cluster plot was generated by the ClinProTools 2.0 
software. The intensities of the 2 peaks, m/z 1031 and 1216, are plotted on 2 axes. 
The more clustered the points are in relation to their group and the more separated 
the clusters are from each other then the more significantly distinct the 2 groups are 
in relation to each other. In this cluster plot the intensities of peak m/z 1216 are 
found along the "x" axis, while the intensities of peak m/z 1031 along the "y" axis. 
The control sample peaks are designated by "o" and the case sample peaks are 
designated by "x". 
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Figure 26. Box plot of relative intensity distributions of peak 1031 in the PCa vs. 
BPH cohort after WCX fractionation. Relative intensities were plotted from both 
runs. The two runs were processed by the ClinProTools software independently with 
a 0.1% maximum peak shift tolerance and a beginning m/z cut-off of 800. The box 
denotes where the intensities of the majority of samples lie and the whiskers of the 
box plot demonstrate range of intensities of all samples that are not deemed outliers. 
All outliers are shown as individual points. The mean is depicted as a dotted line and 
the median is depicted as a solid line. For m/z 1031, the mean was 8.14 for PCa and 
6.34 for BPH, while the median was 8.32 for PCa and 6.61 for BPH. Using a student 
t-test, the P-value for this peak was determined to be 0.00024. Significance is < 0.05. 
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intensity distributions of kininogen and Figure 27 is the box plot of the combined 

intensity distributions of the two ApoAIV peaks between BPH and PCa using the WCX 

fractionation/immobilized-trypsin bead workflow 

Additionally, we knew that an ApoAIV peak is also found in the WAX 

fractionation workflow, we thus processed the 20 samples by that workflow and found 

that the peptide for ApoAIV (m/z 1216) was also increased in the BPH sample set using 

this fractionation scheme. Figure 28 shows the intensity distribution of the ApoAIV peak 

between BPH and PCa in the WAX scheme. 

We also compared the raw values of peak intensities between the first group of 

WCX processed and immobilized-trypsin bead digested samples and their repeated 

counterparts. These workflows are reproducible with clinical samples over-time when 

specific instrumental settings are utilized, since the intensities did not vary much between 

the same samples which were processed and analyzed weeks apart. For example, two 

BPH samples had an intensity (duplicates averaged) of 11.48 and 7.36, respectively at 

m/z 1216. The same samples re-processed and re-analyzed weeks later, had an intensity 

of 12.29 and 7.47, respectively at m/z 1216. On the PCa side, two PCa samples had peak 

intensities of 4.52 and 3.34 at m/z 1216. These same PCa samples were re-processed and 

re-analyzed weeks later and had intensities of 4.57 and 3.75 at m/z 1216. 

4.4 Discussion 

The development of new instrument configurations and continued improvement in 

existing proteomic mass spectrometry technologies has allowed for unprecedented 
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Figure 28. Box plot of relative intensity distributions of peak 1216 in the PCa vs. 
BPH cohort after WAX fractionation. Relative intensities were plotted after the 
spectra was processed by the ClinProTools software with a 0.1% maximum peak 
shift tolerance and a beginning m/z cut-off of 800. The box denotes where the 
intensities of the majority of samples lie and the whiskers of the box plot 
demonstrate range of intensities of all samples that are not deemed outliers. All 
outliers are shown as individual points. The mean is depicted as a dotted line and 
the median is depicted as a solid line. For m/z 1216, the mean was 7.69 for PCa 
and 10.15 for BPH, while the median was 7.24 for PCa and 9.75 for BPH. Using 
a student t-test, the P-value for this peak was determined to be 0.0042. 
Significance is < 0.05. 
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opportunities in biomarker protein discovery and analysis of complex biological 

proteomes. In particular, analysis of serum and plasma will always be a challenge both 

because of the inherent dynamic characteristics of the fluid and the persistent clinical 

variables that affect the quality of the starting material. Any proteomic study using 

clinically obtained samples will be influenced by issues involving sample collection, 

processing and storage, the level of epidemiological input and study design biases. The 

different sample processing workflows described in this Aim demonstrate the feasibility 

of sequential chromatographic fractionation and trypsinization protocols to elucidate 

proteomic differences in complex samples like serum and the peptides generated are ideal 

for direct MALDI-TOF/TOF sequence determinations. 

The technique described in this method paper is complementary to the mining of 

the low molecular weight (LMW) proteome in that it allows for the examination of 

peptides that may have been previously outside the m/z range of the mass spectrometer. 

In addition, the high-efficiency of the immobilized trypsin may allow for the release of 

less abundant proteins from carrier molecules or protein complexes. These newly 

created, low abundant peptides may be enriched by using various up-front fractionation 

methods. For example, many biological processes are influenced and identified through 

altered glycosylation events on proteins and may be targeted by using specific lectins, as 

will be demonstrated in Aim III, to capture specific carbohydrate moiety carrying 

proteins. Many other post-translational modifications and truncations are also possible. 

Thus, inclusion of the trypsinization step can facilitate detection of these modifications or 

truncations due to the altered spectra of the affected peptides. 
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The majority of the proteins identified in our cataloguing analysis have been 

reported previously in the serum after the use of techniques that enrich for LMW proteins 

(64). Many of the proteins we identified are found in the median concentration ranges of 

serum and plasma proteins. For example, the protein Platelet-basic protein(PBP)/beta-

thromboglobulin/NAP-2 belongs to a family of CXC cytokines and is reportedly found in 

serum as multiple isoforms in the ug/mL concentration range (135). Additionally, the 

differential protein Bcl-9 from the SOF study is a ubiquitously expressed, but low-

abundant, nuclear protein. It is unlikely that the WCX fractionation alone could account 

for the enrichment of some of these low-abundant proteins. However, as previously 

mentioned, it is possible that these proteins are enriched on carrier proteins or bound to 

other larger protein complexes become released during the efficient trypsinization 

process. Specifically, the aforementioned PBP/beta-thromboglulin/NAP-2 protein has 

previously been reported as albumin-associated (136). 

The trypsinization step which we have integrated after fractionation of serum is an 

effective means to profile serum and acquire identifications of peaks of interest given that 

the LIFT- MALDI-TOF/TOF is effective at the < 4,000 m/z range (19). Traditional in-

solution protein digestions can be tedious, require long incubation times, and the amount 

of trypsin included is limiting to minimize interfering auto-digestion peaks. The method 

we describe takes advantage of the fact that immobilizing enzymes can yield reactions 

that are faster, more efficient and have high-throughput (31, 32). This is due in part to 

the increased stability of the immobilized enzyme and also to the ability of using higher 

enzyme-to-substrate ratios. There have been other approaches to immobilize trypsin onto 

solid supports to increase its catalytic ability, thus minimizing the time needed for 
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digestion and streamlining the trypsinization process. Innovative approaches such as 

trypsin adsorbed directly onto a metal MALDI plate (33, 34), linked to copolymer 

MALDI sample array chips (35) or immobilized onto different monolithic HPLC 

columns (32, 36) have been described. Currently, trypsin is also commercially available 

bound to agarose beads or immobilized as individual spin columns. However, in terms of 

profiling studies, the method we describe is advantageous in that it allows for the total 

automation of the trypsin digest protocol, in a timely, efficient manner. Additionally, it 

may be effectively combined with various robotic fractionation techniques in tandem, 

creating workflows that allow for the effective chromatographic separation of large 

sample sets with minimal operator error for the purpose of exploring complex proteomes 

in greater detail. This robotic workflow will also be examined further in Aim III. 

Currently, we are using both the WCX/trypsin beads/Cl 8 scheme and the 

WAX/trypsinbeads/C18 scheme to profile different sample sets. A challenge when 

peptide profiling using the MALDI-TOF/TOF is that the spectrum is crowded in the 

<4000 Da mass range. Thus, there are peaks that are much more difficult to identify 

using LIFT due to other peptides over-shadowing their signal or fragmenting along with 

the peak of interest. Thus, one way to determine the identity of a peptide that is 

presenting in this manner is to employ an LC-MALDI-TOF/TOF to reduce the 

complexity of individual spots on the target plate, while retaining all the information in 

the increased number of elutions of a specific sample. 

Fortunately, in both our clinical cohort examples we were able to identify all 

major peaks of interest. In the SOF study, processed with the WCX 

fractionation/immobilized-trypsin bead workflow, the most compelling peptide in terms 
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of reproducibility and intensity was the m/z 2017 peptide from the alpha-2HS-

glycoprotein. This protein was elevated in individuals that will develop breast cancer in 

the future. The true biological role of alpha-2HS-glycoprotein is unknown, but it has 

been implicated as a negative acute-phase protein. It is highly expressed in developing 

fetal tissue, but is dramatically decreased in adults. Additionally, it has been found that 

normal circulating levels in adults (300-600 ug/ml) fall significantly during injury and 

infection (137). Interestingly, one group of researchers, using Lewis lung carcinoma cells 

as a cancer model, reported finding that the lack of the mouse form of alpha-2HS-

glycoprotein (fetuin-A) significantly protects those mice from developing tumors in vivo. 

Furthermore, according to the authors, fetuin-A is capable of promoting the growth of 

more aggressive tumor cells, but not benign and normal cells in vitro (138). Hence it 

would be plausible that the elevation of this protein, which is thought to act in the 

neutralization of inflammatory components, may yield a permissive microenvironment 

for breast cancer to develop without the intervention of the immune system. 

Another peptide that was elevated in women that develop breast cancer was m/z 

2383, a peptide from the Bcl-9 protein. The Bcl-9 protein, whose overexpression is 

associated with B-cell malignancies, is a coactivator (and also a nuclear shuttle protein) 

that binds unphosphorylated beta-catenin thereby aiding in the activation of Wnt target 

genes (139, 140). This Wnt signaling pathway is pathologically activated in many 

different types of human cancers and research has shown that resulting WNT proteins are 

overexpressed in different tumors (141,142). Interestingly, components of the Wnt/j8-

catenin pathway have also been found activated in up to 60% of breast carcinomas (143, 

144). 
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As for the BPH/PCa cohort, the most striking differential protein was ApoAIV. 

Two peptides from this protein, m/z 1216 and 1353, were increased in patients diagnosed 

with BPH as compared to patients diagnosed with PCa for samples processed with the 

WCX fractionation/immobilized-trypsin bead workflow. Additionally, the ApoAIV m/z 

1216 peptide was also increased in the BPH patients as compared to PCa patients as seen 

by the WAX fractionation/immobilized-trypsin bead method. ApoAIV is a plasma 

protein that circulates freely in solution or associates with chylomicrons and high-density 

lipoprotein (HDL) (145, 146). This apolipoprotein does not have a known function 

though it is thought to have a role in lipid absorption, transport and metabolism, and may 

act as a satiety signal. It has also been suggested that higher levels of ApoAIV leads to 

an increase of chylomicron formation, which is then responsible for a more efficient 

absorption and amplified lymphatic output of the cartenoid, lycopene (147). Lycopene is 

a powerful antioxidant that has been shown to scavenge oxygen free radicals and also to 

interact with reactive oxygen species thereby protecting cells from oxidative damage. 

Oxidative damage caused by free radicals to cellular proteins, lipids and DNA has been 

implicated as a possible mechanism for the propagation of cancer, including PCa (148). 

Additionally, lycopene has been implicated in the prevention of PCa by affecting various 

signaling pathways (i.e. insulin-like growth factor) (149). However, the extent of 

lycopene's ability in thwarting PCa is still very controversial with conflicting reports 

coming out regularly (150). 

One study recently found that plasma lycopene concentrations are decreased in 

subjects with localized and metastatic prostate cancer as compared to normal and BPH 

diagnosed subjects (151, 152). This is also validated by the finding that malodialdehyde 
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levels (which are used as an indicator of lipid oxidation) were increased in PCa patients 

as compared to BPH and normal individuals (152). Interestingly, ApoAIV has also been 

shown to be a potent inhibitor of lipid oxidation (153). Thus, a decrease of ApoAIV may 

lead to an elevated risk of PCa owing to the increase in lipid oxidation caused by the 

diminishment of antioxidant activity through lycopene and/or ApoAIV itself. 

In both serum cohorts that we examined, the protein kininogen-1 (represented by 

m/z 1031) was elevated in women that were going to develop breast cancer and also men 

that were diagnosed with PCa. It is interesting that kininogen-1 is increased in patients 

that have or will develop cancer. Kininogen-1, also known as alpha-2-thiol proteinase 

inhibitor, is a blood protein involved in the kallikrein-kinin system, which is involved in 

blood clotting. There are two types of kininogen, high molecular weight (HMW) and low 

molecular weight (LMW), which are both composed of a heavy chain and a light chain. 

HMW-kininogen (HK) and LMW-kininogen (LK) have an identical heavy chain 

sequence, but a differing light chain sequence. HK binds to endothelial cells where it can 

be cleaved by plasma kallikrein to release bradykinin (BK). The remaining portion of 

this protein is termed cleaved high-molecular-weight kininogen (HKa) (154). Recent 

studies have found that HKa is anti-angiogenic, while HK, BK and LK are pro-

angiogenic (155). The HKa anti-angiogenic properties, which include inhibition of 

endothelial cell migration and proliferation, have all been allocated to the D5 domain 

(located in the light chain). Whether HKa or HK are further proteolyzed in vivo to 

release D5 is unknown, but current in vitro data support this possibility (154). The 

peptide we found to be increased in patients that will develop or currently have cancer 
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could be a component of HK, LK or HKa (but is not part of D5 or BK), since it is located 

in the heavy chain region. 

In adults the vasculature is quiescent and tightly regulated by a balance of pro- and 

anti-angiogenic factors (156). Thus, it could be possible that in individuals at risk for 

cancer, or who have cancer, this system could be deregulated. For example, there may be 

an over-abundance of pro-angiogenic factors (HK, BK and LK), while the anti-

angiogenic factor, HKa, may be misfolded (hiding the D5 domain) or may be degraded or 

subjected to missed cleavage by proteases, rendering it incapacitated. Alternatively, 

since angiogenesis is a complicated process involving many factors, the kininogen 

protein may be elevated, but there may be contact or signaling problems downstream in 

the anti-angiogenic pathway, thus making the pro-angiogenic pathway dominant. 

However, a problem with analyzing the true importance of this protein in clinical sample 

studies is that HK (but not LK), as mentioned above, is part of the clotting cascade and 

thus must be looked at with caution, since improper sample handling and storage may 

affect its presence. 

These cohort studies demonstrate that it is unlikely that there will be one sole 

biomarker that will effectively (with perfect sensitivity and specificity) be used in the 

early detection of cancer, be it breast cancer or prostate cancer. As discussed in the 

introduction of this thesis, cancer is a very complicated state, with many elements 

working together and against each other to create a favorable tumor microenvironment. 

Thus, it is more reasonable that a panel of biomarkers, along with specialized algorithms, 

will assess an individual's risk of developing a certain type of cancer (or detect that 

cancer early in its development). 
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CHAPTER V 

AIM III: DEVELOPMENT OF INTEGRATED FRACTIONATION PROTOCOLS 

FOR IN-DEPTH AND AUTOMATED MALDI-TOF/TOF ANALYSIS 

5.1 Introduction 

In general serum expression profiling is reproducible and portable across multiple 

laboratories, especially when rigorous study design and sample handling are combined 

with carefully controlled instrument calibration, automated sample preparation, and 

supervised bioinformatic data analysis (47, 50, 62, 126). Furthermore, the recent 

development of TOF/TOF technology has brought with it the capability of protein 

identification (m/z 4000 or less) through the generation of fragment ions and homology 

searching. As discussed in Chapter IV, this has alleviated one common problem in 

expression profiling: the intricacy of determining protein identities of potential biomarker 

peaks. However, another difficulty that still remains in expression profiling, particularly 

for serum and plasma studies, is the issue of protein dynamic range and complexity, 

highlighting the need for new strategies to increase the utility of these techniques for 

clinical biomarker assay development (43, 47, 71, 125). 

The majority of the proteins that are seen as peptides by the WCX and WAX 

workflows described in Chapter IV are all high-abundant proteins, whose abundance may 

not necessarily be reflective of disease state in relation to cancer. These proteins are 

considered acute phase proteins, or host response proteins, that are mainly synthesized in 

the liver and reflective of the host immune response (157). Additionally, many criticize 
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the use of these host response proteins as biomarkers, since some are altered by the 

clinical processing of samples (especially serum samples) (57, 65). 

This issue may be addressed by using a targeted fractionation method, which 

involves using immobilized lectins to separate glycosylated proteins from non-

glycosylated proteins and even separate differentially glycosylated proteins. This is 

comparatively a more biologically relevant fractionation method since glycans participate 

in many biological processes such as cell adhesion, molecular trafficking and clearance, 

cell recognition and the immune response (124). Notably, it has been shown that 

glycosylation profiles in the cell change significantly during oncogenesis and that altered 

glycoforms may lead to cancer progression. Since, the blood is enriched for secreted and 

shed cell surface glycoproteins, it therefore contains many potential biomarkers that may 

reflect disease specific glycan differences (157). One example of a secreted glycoprotein 

is the aforementioned PSA, of which multiple glycoforms have been described (71,158, 

159). 

The "bottom-up" expression profiling approaches, described in Chapter IV and 

further elaborated on in this Chapter, typically utilize magnetic bead surfaces and are thus 

are designed to be compatible with automated robotic sample processing. Automation, 

using the ClinProt robot and the MALDI-TOF/TOF instrument from Bruker, would be 

advantageous because it is high-throughput, reproducible, limits operator error and 

consumes small amounts of the patient's sample (62, 71, 72). This leads not only to more 

significant results due to the increase in sample numbers, but may also provide an ideal 

technique that translates effectively into clinical, diagnostic laboratories. 



In this Chapter we revisit the immobilized-trypsin bead technique, developed in 

Chapter IV, and adapt it into two different approaches with the goal of a more 

comprehensive look at the serum profile. We began by first examining tandem bead 

approaches for the purpose of sample preservation and also to determine if more 

information may be garnished from an already fractionated sample through fractionation 

with another chemical-affinity bead type. We next explore lectin capture strategies with 

our established immobilized-trypsin bead workflow. All of these approaches are 

designed with the goal of automation since, as discussed previously, the benefit to robotic 

automation is that it allows for the opportunity of analysis of large numbers of samples 

comprising many clinical cohorts with limited operator variation. Thus, we end this Aim 

with a look at the automation of the WCX workflow that was performed manually in 

Chapter IV. Challenges of this automated workflow are discussed, with a final robotic 

schematic design presented. 

5.2 Materials and Methods 

Serum Samples 

A pooled human serum sample collected from over 360 donors (50) was used for 

method development procedures. 

Tandem-bead workflows 

Initial fractionation of serum was done with either MB-WCX (weak cationic 

exchange) or MB-WAX (weak anionic exchange) paramagnetic beads essentially as 

described by the manufacturer's protocols (Bruker Daltonics, Bremen, Germany). 
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Briefly, 20 uL of serum was mixed with 40 uL of binding solution (the WAX protocol 

utilized the pH 5 binding solution) supplied with the beads and 20 uL MB-WCX or MB-

WAX beads (note that the WAX beads were equilibrated with activation solution prior to 

this step) for 15 minutes (mixing every 5 minutes). A magnetic bead separator was used 

to concentrate the beads and for the wash/rinse processes. Unbound serum proteins were 

removed for processing with the opposite bead-type (if on WCX then added to WAX and 

vice versa) and the bound serum proteins (after washing) were eluted with 10 uL of MB-

WCX or MB-WAX elution solution supplied by the manufacturer. Eight microliters of 

HPLC water and 1 \xL of MB-WCX stabilization solution were added to the WCX eluate, 

and 11 uL of MB-WCX elution was added to the WAX eluate, to give a final sample pH 

of 7.5-8.5. Finally, the unbound serum proteins were processed with the opposite bead 

type using the same workflow as described above. The pH was adjusted according to 

their secondary fractionation bead type. 

Magnetic bead-bound lectin workflows 

Magnetic bead (MB)-ConA (concavalin A) and MB-WGA (wheat germ 

agglutinin), from Bruker Daltonics, were used to initially fractionate the serum according 

to the manufacturer's protocol (20 uL serum to 20 \xL lectin beads). These lectin beads 

were used either separately or together in a mixture, where the solutions (binding and 

wash) utilized were from the MB-ConA kit. 

Three separate schemes (discussed in Results) were tested to yield the best MS 

pattern: 1) Elution using acidic elution solution provided by manufacturer, 2) elution with 

competitive sugars, and 3) a tandem-bead approach after elution off of lectin beads. Ten 
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microliters of elution solution provided with the Bruker lectin kit was utilized to elute the 

bound glycoproteins. To make the pH fall into the ideal range for reduction, alkylation 

and trypsinization (pH 7-9), 10 uL of WCX elution solution was added to the lectin 

elution. Alternatively, between 1.5 and 2 uL of 1M NaOH was added to the 10 uL of 

lectin elution. Two competitive sugar elutions were also tested using MB-ConA as an 

example lectin (10 uL of 200 mM or 400 mM mannose was used to elute off of the ConA 

magnetic beads). For the tandem bead approach, each of the lectin bead types were 

eluted with 10 uL of Bruker elution solution, brought up to 20 uL with 25 mM 

Ammonium bicarbonate (pH 7.8), and then added directly to a MB-WCX reaction (20 uL 

sample, 40 uL binding solution and 20 uL beads). Additionally, 2 MB-WGA elutions 

were pooled into one sample, concentrated under reduced pressure, and reconstituted in 

their original volume with 25 mM Ammonium bicarbonate (pH 7.8). The entire lectin 

fractionated sample was then manually processed through the WCX fractionation 

protocol. 

Agarose bead-bound lectin workflow 

Serum was first depleted using ProteoPrep ImmunoAffmity Albumin and IgG 

Depletion Kit (Sigma, Saint Louis, MO). Three-hundered microliters of ConA/WGA 

agarose-bound lectins (E.Y. Labs, San Mateo, CA) were washed with binding buffer (25 

mM Tris, 150mM NaCl, ImM MnCL. and 1 mM CaCl2). The depleted serum was then 

incubated overnight at 4°C with the washed lectin beads in a total volume of 200 uL (the 

volume was adjusted using the binding buffer). The sample was eluted with 100 uL of 

the competitive sugar. This glycoprotein elution was subsequently acetone precipitated 



and the resulting pellet was reconstituted in 80 uL of 25 mM Ammonium bicarbonate 

(pH 7.8). Twenty-two microliters of sample was added into the reduction and alkylation 

reaction described below. 

Automated MB-WCX workflow utilizing the ClinProt robot 

The automated workflow for the MB-WCX beads was performed very similarly 

to the manual method described in Chapter IV. Briefly, 20 \iL of serum was mixed with 

40 uL of binding solution supplied with the beads and 20 uL MB-WCX (in the first 

automated run 10 |LIL of beads were added). A magnetic bead separator was used to 

concentrate the beads and for the wash/rinse processes. Unbound serum proteins were 

removed and the beads were washed 3 times with the MB-WCX wash solution. Bound 

serum proteins were eluted with 10 uL of MB-WCX elution solution supplied by the 

manufacturer. The final addition of the stabilization solution supplied with the bead kit 

was replaced with an addition of 8 uL of water. 

Manual and automated reduction, alkylation and digestion using immobilized-

trypsin beads 

For reduction and alkylation, ~ 8 )j,g of the fractionated samples were reduced 

with 8 mM DTT in 25 mM ammonium bicarbonate (pH 7.8) at 56 °C for one hour (24 JIL 

total volume). For the automated run, 8 ng was estimated as 10 p.L of the final WCX 

eluate. Also, apart from the agarose-bound lectin eluate, the rest of the lectin eluates had 

very low protein concentrations and therefore 10 uL of each of these eluates was added to 

their respective reduction reaction (as this was the maximum volume recommended). 
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The reduced samples were then alkylated with 17 mM iodoacetamide in 20 mM 

ammonium bicarbonate total solution (29 uL total volume). 

The resulting tryptic peptides were re-captured and concentrated with HIC-C18 

paramagnetic beads (Bruker Daltonics, Bremen, Germany) as follows. Twenty 

microliters of the tryptic digest was incubated with 10 uL HIC-C18 beads and 40 uL 

HIC-C18 binding buffer. Bound peptides were washed with the manufacturer's wash 

solution and eluted in 10 uL of 50% ACN as per the manufacturer's specifications. It 

should be noted that for the lectin capture studies we also attempted a C8 clean-up, 

however the results were similar to those seen for the WCX trypsinization workflow in 

Chapter IV, in that the CI8 bead type produced more robust spectra. Thus, MB-C18 was 

retained as the preferential bead-type for clean-up and concentration of peptides for 

analysis on the MALDI-TOF instrument. 

MALDI-TOF analysis 

The tryptic peptide samples (for the WCX and WAX tandem bead workflow and 

the automated WCX workflow) after HIC-C18 clean-up were mixed in a 1:3 dilution (for 

manual method of spotting) or 1:5 dilution (for automatic method of spotting) with 

CHCA matrix solution (4 mL ethanol, 2 mL acetone, 0.008 g CHCA, and 0.1 % TFA) and 

1 uL of the mixture was manually spotted (or robotically spotted by the ClinProt robot 

where indicated) onto an AnchorChip plate using a dried droplet spotting technique. The 

lectins were spotted using a reverse-thin layer spotting technique described in the 

Materials and Methods of Chapter IV. 
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The UltraFlex III MALDI-TOF/TOF instrument (Bruker Daltonics, Bremen, 

Germany) was used to analyze peptides in reflectron mode and the resulting spectra were 

processed using FlexAnalysis 2.0 or ClinProTools 2.0 (Bruker Daltonics, Bremen, 

Germany). Peaks of interest were further analyzed on a separate platform using the LIFT 

function of a MALDI-TOF/TOF Ultraflex III instrument. The BioTools software and the 

MASCOT search engine (www.matrixscience.com) were used to compare the TOF/TOF 

spectra against primary sequence databases (SwissProt) to determine peptide sequence 

identities (unless otherwise noted the search criteria is as follows: carbamidomethyl and 

oxidation modifications; 100 ppm mass tolerance MS; 0.5 Da MS/MS tolerance). 

5.3 Results 

Tandem-bead workflows 

We first investigated whether the workflows discussed in Chapter IV would be 

compatible if performed in tandem and if so would these types of new workflows yield 

any new protein observations. Figure 29 illustrates the workflows from Chapter IV and 

the tandem workflows that are described in this section. 

We first analyzed a tandem workflow that involved an initial WAX fractionation, 

with the unbound fraction going directly into a WCX fractionation reaction. After the 

WCX fractionation, the eluate was reduced, alkylated, trypsinized using immobilized-

trypsin beads, and the peptides were captured onto a CI 8 bead type. Unfortunately, the 

resulting spectra, compared to a WCX alone workflow, seemed to be enriched in serum 

albumin and only 1 peptide, alpha-lB-glycoprotein (peptide m/z 2295.98, 

R.TPGAAANLELIFVGPQHAGNYR.C, from protein P04217, with expect value of 

http://www.matrixscience.com
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Figure 29. Single bead and tandem bead workflows. A) Workflow depicting the use of 
one bead type (i.e. WCX or WAX) prior to trypsin digestion (as was described in Chapter 
IV). B) Workflows depicting utilization of tandem bead types where the unbound serum 
fraction from one bead type is introduced into another bead type workflow. 



4.2e-05) was able to be identified as a peptide that was not seen in the WCX or WAX 

alone schemes (Figure 30). 

We next tested another workflow that involved an initial WCX fractionation, with 

the unbound sample being directly WAX fractionated. After the WAX fractionation, the 

eluate was reduced, alkylated, trypsinized using immobilized-trypsin beads, and the 

peptides were captured onto a CI 8 bead type. This tandem bead workflow also did not 

yield more information as compared to the WAX single bead type workflow. In fact the 

sample appeared to be more enriched with Ig alpha-1 C chain region, with 3 of the most 

robust peptides originating from this protein. However, one peptide was represented in 

this WCX/WAX workflow that was not prominent in the WAX (or WCX alone) 

fractionation scheme and this was alpha-1-acid glycoprotein (Figure 31). 

In light of these results, we are not interested in further pursuing these tandem 

bead approaches for MALDI-TOF profiling. The resulting spectra did not yield enough 

novel peptides, as compared to the single front-end fractionation described in Chapter IV, 

to be deemed useful. In fact, both of these tandem workflow methods seemed to be 

enriched with proteins that are typically thought of as the most abundant in serum i.e. 

serum albumin and Ig-alpha. However, we have demonstrated that the buffers are 

compatible between the two fractionation methods; thus, this method may be utilized for 

samples that are limited in quantity (and thus two separate bead type runs are not an 

option). Using this approach one may pick the primary bead type of interest, generate 

spectra from that initial fractionation step, and then still be able to utilize the unbound 

sample for further analysis with another bead type. 
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Figure 30. Comparison of spectra from a tandem fractionation scheme and a single 
fractionation scheme of serum. The top panel illustrates a spectrum of the unbound from a 
MB-WAX fractionation scheme that was later subjected to MB-WCX/trypsin bead 
workflow. The bottom panel is a single fractionation of serum with MB-WCX followed by 
subsequent digestion with immobilized-trypsin beads. All samples were cleaned-up and 
concentrated with MB-C18 and spotted onto an AnchorChip plate. The samples were then 
analyzed by the MALDI-TOF/TOF UltraFlex III in reflectron mode and processed by the 
FlexAnalysis 2.0 software. The arrows denote serum albumin peaks, with the solid arrows 
indicating peaks that are not shared between the two spectra and the dashed arrows 
indicating peaks that are shared between the two spectra. 



Figure 31. Spectrum of a tandem fractionation scheme. Shown is a spectrum generated 
from the unbound of a MB-WCX fractionation scheme that was later subjected to MB-
WAX/trypsin bead workflow. The tryptic peptides were captured and concentrated 
using MB-C18 and spotted onto an AnchorChip plate. The samples were then analyzed 
by the MALDI-TOF/TOF UltraFlex IE in reflectron mode and processed by the 
FlexAnalysis 2.0 software.. The arrows indicate the 3 peaks, 1213.80, 1470.97, and 
1836.29, which were found to be from the protein Ig alpha-1 C region. Peaks 1213.8 
and 1470.97 are typically not seen in a WAX alone fractionation and digestion scheme. 
However, 1836.29 is seen in both the tandem fraction and single fractionation scheme. 
The star designates a peptide that is not prominent in a WAX alone fractionation and 
digestion scheme: alpha-1-acid glycoprotein 1 (expect value: 1.6e-05 and peptide 
R.YVGGQEHFAHLLILR.D). 



Targeted capture using immobilized-lectins 

Because tandem bead workflows using chemical affinity beads did not give us a 

more in-depth profile of the serum samples, we decided to take a targeted capture 

approach and interrogate the serum proteome profile with a lectin bead type. We first 

began with a magnetic bead approach that could be easily adapted to the ClinProt robot. 

To this end, Bruker lectin beads, MB-ConA and MB-WGA, were utilized individually or 

together. Unfortunately, it was discovered that the eluted samples had very low protein 

concentration. Given that the quantity and the type of proteins in solution play an 

important role in the ability to alter the pH of that solution; we encountered a problem of 

effectively being able to bring the eluted sample into the correct pH range for 

reduction/alkylation/trypsinization. Adding a dilute, but high pH base (i.e. WCX elution 

buffer) made the concentration of the eluted sample very low (i.e. -0.3 ptg/nL, compared 

to ~ 1.3 jttg/^L for WCX or WAX fractionation schemes after pH adjustment) and yielded 

spectra with very minimal peaks that were seen in the WCX or WAX scheme (Figure 

32). As a reference, the MB-WCX workflow utilized in Chapter IV yielded spectra with 

an average of 85 peaks in the m/z range ideal for TOF/TOF analysis. Conversely, the 

peak numbers seen after the lectin workflows were 22, 14, and 8 for ConA/WGA, ConA 

and WGA respectively. On the other hand utilizing a concentrated, high pH base yielded 

variable results with a danger of precipitating the proteins from solution. Thus, this was 

not an acceptable result since this step would not be able to be standardized. 

We next attempted to perform a competitive sugar elution off of the lectin Bruker 

beads (in lieu of the acidic elution solution). Using MB-ConA as an example lectin we 
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Figure 32. Spectra comparison of serum fractionated with MB-ConA/WGA, MB-
ConA, and MB-WGA and eluted with Bruker elution buffer. Samples were processed 
using either a mixture of ConA and WGA magnetic beads from Bruker or with a single 
bead type of ConA or WGA. The samples were eluted with the buffer provided by the 
manufacturer and the pH was adjusted for optimal trypsinization. The samples were 
then reduced, alkylated and digested with immobilized trypsin beads. The tryptic 
peptides were captured using MB-C18 and the resulting elutions were spotted using a 
reverse thin-layer spotting technique. The tryptic eluates were analyzed in reflectron 
mode using the MALDI-TOF UltraFlex III and spectra were processed using 
FlexAnalysis 2.0. The top panel shows a spectrum from a ConA/WGA fractionation 
scheme, the middle panel shows a spectrum from a ConA alone scheme and the bottom 
panel shows a spectrum from a WGA alone scheme. 
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found that 400 mM mannose slightly improved the amount of protein eluted and the 

robustness of the spectra. However, the resulting eluate again had a very similar minimal 

protein concentration. Thus after reduction/alkylation/trypsinization there was very little 

complexity (i.e peak number of 10) to the resulting spectra (Figure 33). An additional 

consideration with this approach is that the competitive sugars used to elute the 

glycoproteins are more than likely still in the trypsinized sample after MB-C18 clean-up. 

These carbohydrates bind the CI8 bead type and thus when eluted with the peptides may 

interfere with the generation of the spectra. We utilized a C8 bead type in hopes that a 

smaller amount of carbons may decrease the binding abilities of the elution sugars. 

However, using the C8 bead type did not improve the spectra and in fact resulted in 

reduced abundance of peaks (as it did for the WCX workflow in Chapter IV). 

Our final try at using the lectin-immobilized magnetic beads was to utilize a 

tandem workflow to nullify the elution solution pH concern (since WCX binding buffer 

has a pH ~ 4). This workflow used an initial lectin bead to capture glycoproteins from 

the serum and the subsequent elution was added to a MB-WCX fractionation reaction. 

This approach was moderately successful, but still produced rather sparse spectra. A 

comparison of the Bruker elution spectra (14 peaks recognized in spectra) and the tandem 

workflow spectra (20 peaks recognized in spectra) is shown in Figure 34 (using a MB-

ConA approach as an example). 

In order to demonstrate that these less-than-ideal spectra results are mainly due to 

low concentration of proteins eluted off of the lectin bead we dried down the 2 lectin 

elutions (using WGA eluted sample as an example since it yielded the weakest spectra 
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Figure 33. Spectra comparison of serum fractionated with MB-ConA and eluted either 
with Broker elution buffer or with a competitive sugar. Samples were processed using 
ConA magnetic beads from Broker. The samples were eluted with either the buffer 
provided by the manufacturer, in which case the pH was adjusted for optimal 
trypsinization, or with a mannose competitive sugar elution. The samples were then 
reduced, alkylated and digested with immobilized trypsin beads. The tryptic peptides 
were captured using MB-C18 and the resulting elutions were spotted using a reverse 
thin-layer spotting technique. The tryptic eluates were analyzed in reflectron mode using 
the MALDI-TOF UltraFlex III and spectra were processed using FlexAnalysis 2.0. The 
top panel shows a spectrum from a sample eluted with the manufacturer's elution buffer 
and the bottom panel shows a spectrum from a sample eluted with 400 mM of mannose. 
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Figure 34. Spectra comparison of serum fractionated with MB-ConA or MB-
ConA/WCX. Samples were first processed using ConA magnetic beads from Bruker. 
The samples were eluted with the buffer provided by the manufacturer and the pH was 
either adjusted for optimal trypsinization or the entire eluted sample was subjected to 
MB-WCX fractionation. The samples were then reduced, alkylated and digested with 
immobilized trypsin beads and the tryptic peptides were captured using MB-C18. The 
resulting elutions were spotted using a reverse thin-layer spotting technique and 
analyzed in reflectron mode using the MALDI-TOF UltraFlex III. The generated 
spectra were processed using FlexAnalysis 2.0. The top panel showcases a spectrum 
from a ConA alone scheme, while the bottom panel showcases a spectrum from a 
tandem ConA/WCX fractionation approach. 
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results) and reconstituted the eluted glycoproteins in 25 mM Ammonium bicarbonate (to 

yield the acceptable WCX binding pH). The entire glycoprotein solution was then added 

to a WCX fractionation reaction. Figure 35 shows the resulting WGA/WCX spectra, 

which has 45 peaks identified by the FlexAnalysis software, compared to the WGA alone 

scheme, which only had 8 peaks identified by FlexAnalysis. However, we discarded this 

approach for use with clinical samples because the drying down of samples during an 

automated procedure would not be very feasible. Additionally, this type of step 

performed with many samples would add unwanted variation into the protocol, seeing as 

reconstituting each sample reproducibly may pose a logistics problem. 

Since there is not enough material being eluted off of the Bruker magnetic lectin 

beads (for visualization by MALDI-TOF after trypsinization) and increasing bead volume 

to capture more glycoproteins would not be cost-effective and also beyond the volume 

capabilities of the liquid handling robot, we opted to use agarose bound lectins to capture 

glycoproteins in higher quantities. Our lab has previously worked out the protocol for 

agarose-bound lectin capture, which includes an initial serum albumin depletion step 

(71). Additionally, the most abundant elution comes from a combination capture using a 

mixture of ConA and WGA bead types. Figure 36 shows the spectra generated from the 

immobilized-trypsin digestion of the ConA/WGA lectin capture. This compares to the 

WCX workflow method optimized in Chapter IV (i.e. 88 peaks for the agarose-bound 

ConA/WGA scheme and 85 peaks for the MB-WCX scheme). Table 12 lists the 

identities of the top 10 peaks from these spectra. Although, the initial capture of these 

glycoproteins is not compatible with an automated system, the subsequent steps 

(reduction/alkylation, digestion with immobilized trypsin, MB-C18 clean-up and sample 



139 

904240 

1 1961.410 

326 

«981504 

-1 . .UJ.L .. . . . . . . . . ,. 
2157.872 

1179* 
8SS.511 '— 

13 

iiLl 

•a 

2 

"7S" 
1 

nswas 16SSS77 

1473.838 1 

JyJL LJJ 

773 

m 

J.W 

53-788 

jmi/i 

2S4.927 

2S7S Q%$ 

2S7S.573 

2341210 S1SS.7S3 

428S.13'S 
1 

. . . • n ^ L... 
1036 1583 S33 25S8 3053 3533 4003 

Figure 35. Spectra comparison of serum fractionated with MB-WGA or MB-
WGA/WCX. Samples were first processed using WGA magnetic beads from Bruker. 
The samples were eluted with the buffer provided by the manufacturer. One eluted 
sample had its pH adjusted for optimal trypsinization, while two of the eluted samples 
were pooled, dried down, resuspended with 25 mM ammonium bicarbonate and then the 
entire pooled elution was subjected to MB-WCX fractionation. All the samples were 
then reduced, alkylated and digested with immobilized trypsin beads and the tryptic 
peptides were captured using MB-C18. The resulting elutions were spotted using a 
reverse thin-layer spotting technique and analyzed in reflectron mode using the 
MALDI-TOF UltraFlex III. The generated spectra were processed using FlexAnalysis 
2.0. The top panel showcases a spectrum from a WGA alone scheme, while the bottom 
panel showcases a spectrum from a tandem WGA/WCX fractionation approach (using 
double the WGA fractionation sample for the subsequent WCX fractionation scheme). 
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Figure 36. Spectra of serum fractionated with ConA/WGA agarose immobilized lectins. 
Serum was first albumin and IgG depleted using Sigma immunocapture depletion 
columns. The depleted serum was incubated overnight with a mixture of agarose-bound, 
ConA and WGA beads. The sample was eluted with a competitive sugar, acetone 
precipitated and reconstituted in 25 mM Ammonium bicarbonate. Eight micrograms of 
the glycoprotein elute was then reduced, alkylated, and digested with immobilized trypsin 
beads. The tryptic peptides were captured on MB-C18 beads and after elution were 
diluted with CHCA matrix in a 1:3 ratio and spotted on an AnchorChip plate using a 
dried-droplet technique. Spectra were generated using the reflectron mode of the 
MALDI-TOF UltraFlex III. This spectrum had 88 peaks as recognized by the 
FlexAnalysis 2.0 software. 
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Table 12. Top 10 peptides seen in the immobilized-trypsin digestion of ConA/WGA 
fractionationated serum after serum albumin and IgG depletion. 

Mass 

980.50 

1117.66 

1160.61 

1642.95 

1753.01 

1825.00 

1834.98 

2016.12 

2097.19 

2109.11 

Accession 
# 

P00738 

P01876 

P02763 

P04217 

P02763 

P00739 

P00738 

P02765 

P02763 

P00738 

Peptide 
Identity 

Haptoglobin 
Ig alpha-1 

chain C region 
Alpha-1-acid 

glycoprotein 1 
Alpha-IB-

glycoprotein 
Alpha-1-acid 

glycoprotein 1 
Haptoglobin-
related protein 
Haptoglobin 
Alpha-2-HS-
glycoprotein 
Alpha-1-acid 
glycoprotein 1 

Haptoglobin 

Score 

58 

47 

62 

48 

46 

58 

59 

87 

31 

132 

Expect 
value 

6.10E-05 

0.00083 

3e-05 

0.00038 

0.00057 

4.4e-05 

4e-05 

4.2e-08 

0.016 

1.6e-12 

Peptide 

R.VGYVSGWGR.N 

R.GFSPKDVLVR.W 

K.WFYIASAFR.N 

R.ATWSGAVLAGRDAVLR.C 

R.YVGGQEHFAHLLILR.D 

R.ILGGHLDAKGSFPWQAK. 
M 

R.VMPICLPSKDYAEVGR.V 
R.TWQPSVGAAAGPVVPPC 

PGR.I 
R.YVGGQEHFAHLLILRDTK. 

T 
R.TEGDGVYTLNNEKQWIN 

K.A 



spotting on a target plate) are all designed to be able to be processed by the ClinProt 
robot. 

Automation of the immobilized-trypsin bead protocol 

Because the majority of the workflows described in this thesis were designed with 

automation in mind, we next decided to write parameters for the ClinProt robot (robotic 

sample handling system equipped with magnetic separation capabilities) to determine if 

the MB-immobilized-trypsin bead workflow could be reproducibly automated. The robot 

was first utilized to process aliquots of the same serum sample using the MB-WCX 

workflow. Since at this point we were only looking at the reproducibility of the 

immobilized-trypsin beads, we pooled the WCX fractionated serum and introduced 4 

aliquots into the trypsin-bead workflow as processed by the ClinProt robot. As with the 

manual method, the robot first reduced, alkylated and then added the reduced/alkylated 

samples to the trypsin beads (after first washing the trypsin beads to neutralize their pH). 

These 4 digested samples were then independently subjected to the robotic MB-C18 

workflow and spotted in duplicate. Figure 37, shows the reproducibility of this method 

visually and Table 13 lists the CVs of 12 representative peaks (these are the same 12 

peaks that were used to assess the reproducibility of the manual method in Table 8 of 

Chapter IV). 

Given that the immobilized-trypsin workflow can reproducibly digest the WCX 

fractionated sample using an automated workflow, we next attempted to completely 

automate the entire MB-WCX/immobilized-trypsin beads/MB-C18 workflow. Fifteen 

samples were processed as described in Materials and Methods and spotted in duplicate 

on an AnchorChip plate by the ClinProt robot. Figure 38 shows the resulting spectra in 
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Figure 37. Reproducibility of automated immobilized-trypsin/MB-C 18 workflow. 
Four aliquots of the same serum pool were processed with the MB-WCX workflow by 
the ClinProt robot. The eluates were pooled together and re-aliquoted into 4 separate 
samples and then reduced, alkylated and trypsin digested by the ClinProt robot. The 
robot next processed the tryptic peptides through a MB-C18 workflow and spotted the 
samples in duplicate on an AnchorChip plate. The samples were analyzed on the 
MALDI-TOF UltraFlex III instrument and the resulting spectra were analyzed by the 
ClinProTools 2.0 software. The top panel showcases a heatmap of the spectra and the 
bottom panel shows the individual spectra. 
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Table 13. Reproducibility of automated immobilized trypsin bead method as seen by 
the coefficient of variance (CV) of twelve representative peaks. 

Mass 

1124.81 

1585.99 

1667.97 

1670.92 

1694.93 

1717.04 

1885.02 

1932.26 

2017.31 

2383.24 

2425.80 

2636.63 

Automatic run 

Intensity 

2.28 

7.46 

6.09 

20.99 

13.92 

23.90 

29.19 

10.15 

211.19 

49.79 

96.94 

18.10 

CV (%) 

6.84 

7.30 

12.30 

7.04 

8.74 

9.07 

10.28 

6.38 

10.30 

3.71 

6.69 

6.03 



Figure 38. Reproducibility of the automated MB-WCX/immobilized-trypsin/MB-C18 
workflow. Fifteen aliquots of the same serum pool were processed with the MB-WCX 
workflow by the ClinProt robot. The eluates were then individually reduced, alkylated 
and trypsin digested by the ClinProt robot. The robot next processed the tryptic 
peptides through a MB-C18 workflow and spotted the samples in duplicate on an 
AnchorChip plate. The samples were analyzed on the MALDI-TOF UltraFlex III 
instrument and the resulting spectra were analyzed by the ClinProTools 2.0 software. 
The top panel showcases a heatmap of the spectra and the bottom panel shows the 
individual spectra. 
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Table 14. Reproducibility of immobilized trypsin bead method determined by the 
coefficient of variance (CV) of twelve representative peaks (with and without 
outliers). 

Mass 

1124.87 
1586.21 

1667.24 

1671.14 

1695.17 

1717.21 

1885.26 

1933.40 

2017.47 

2383.50 

2426.20 

2637.72 

15 samples 

CV (%) 

20.21 

27.91 

18.57 

26.52 

16.28 

21.79 

37.15 

21.28 

36.92 

35.68 

36.89 

32.57 

10 samples 

CV (%) 

15.54 

13.97 
16.36 

24.57 

12.28 

16.95 

32.67 

16.84 

32.15 

31.30 

32.08 

29.19 
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heatmap and individual spectra form. Additionally, Table 14 lists the CVs of the same 12 

representative peaks that were highlighted in Table 8 and Table 12. The CVs were 

improved on average by 5% if 5 sample "outliers" were removed, leaving 20 samples (10 

samples with duplicates) for CV determination (Table 14). Unlike the first automated run 

(where the WCX fractionated sample was initially pooled giving the digestion reaction a 

similar starting point) or the manual method described in Chapter IV (where protein 

concentrations were first determined before adding a set amount of protein into the 

reduction/alkylation/trypsinization reaction), this automated workflow was not as 

reproducible. This was mainly due to the ClinProt robot occasionally removing beads 

from the reactions and mishandling buffers, so that the eluted WCX fractionated samples 

had variable protein concentrations. 

5.4 Discussion 

The goal of most proteomic research is to extensively investigate the proteome of 

the system under investigation in a reproducible and high-throughput manner. Serum 

expression profiling is a valuable technique as one may compare up to 192 samples on 

one MALDI plate using the same settings, thus greatly reducing sample to sample 

variability. However, one drawback to this is that the each sample spot on the MALDI 

plate is dense with peptides/proteins and thus typically only highly abundant proteins are 

seen. There is much controversy as to whether these abundant proteins, which are 

considered acute phase proteins, are truly specific to the disease being profiled, especially 

when considering how dilute tumor-generated biomarkers are in the blood. Additionally, 

these acute phase proteins may be influenced by sample collection, processing, and 



storage and are therefore analyzed with caution. One way of overcoming this obstacle is 

to look beyond the abundant proteins through aggressive fractionation protocols. 

Another method is to use a targeted capture approach, such as a differential capture of 

glycan groups on proteins. In this manner the focus is not on the actual abundance of the 

protein, but on its carbohydrate decorations. As mentioned earlier, several disease, 

including cancer, have been associated with alterations in glycan moieties. 

In this Aim we have seen that tandem bead workflows may be performed as long 

as buffer compatibility is kept in mind and as long as the final protein yield is at least 5 

fig in a 10 /JLL volume (though 8 ptg is ideal). Although the tandem bead workflows 

described here did not give us a more encompassing look into the serum proteome, we 

did conclude that this is a good sample sparing technique (critical if your sample set is 

minimal and precious), in that one may generate both a WCX and a WAX profile from 

one sample aliquot. 

Additionally, a depletion step (of some of the abundant proteins) may be 

introduced into the tandem fractionation workflow in order to look at lower abundant 

proteins. This approach, however, is accompanied by many caveats. Firstly, most 

depletion kits commercially available target serum albumin and/or IgG (such as the 

Sigma kits used in the lectin workflow). Since serum albumin and IgG make up about 

50% of the blood proteome they are wise targets. However, once serum albumin is taken 

out of the picture some of the lower abundant proteins, such as beta-thomboglobulin 

(NAP2), which is a cytokine seen in our WCX workflow, would more than likely not be 

seen. As discussed in Chapter IV, serum albumin is a carrier protein, which when 

isolated has been shown to be rich of cellular peptides, cytokines and other lower 
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abundant proteins that typically would not be seen in the blood proteome (64, 136). 

Additionally, there are several other abundant proteins, which together with serum 

albumin make-up about 99% of the blood proteome. Thus, by removing serum albumin 

and IgG, we are simply making room for the other abundant proteins. A remedy to this 

would be to use a depletion step that removes the top (i.e. 20) most abundant proteins. 

However, most of these depletion kits are in single column form and therefore are not 

adaptable to a high-throughput workflow. Additionally, there may be an issue of sample 

cross-contamination if trying to process many samples in tandem through one column. 

The other goal of this Aim was to adapt our tryptic peptide profiling workflow to 

incorporate a targeted capture of glycoproteins, thereby turning the focus on glycan 

moiety differences, instead of strictly protein abundance differences. To this end we first 

investigated the feasibility of using lectins immobilized to magnetic beads, which would 

be amenable to a complete automated workflow. However, of these only a ConA/WGA 

lectin mix proved to be passably satisfactory. We demonstrated that the reason we were 

seeing weak spectra was mainly due to the low protein concentration of glycoproteins 

eluted off of the lectin beads. Unfortunately one remedy to this, pooling two eluates and 

concentrating them into one eluate, would be very low-throughput and highly susceptible 

to variation as discussed in the Results section. The other solution of increasing the lectin 

magnetic beads is impractical, as the robot can only handle a certain volume and also at a 

certain point this would no longer be a cost-effective experiment. A more high-

throughput solution involves using agarose-bound lectins. Thus, the front-end 

fractionation step would be manual, but the reduction, alkylation, trypsinization, MB-C18 
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clean-up and sample spotting on a MALDI plate could be performed on an automated 

platform. 

Finally, as the goal of all these workflows was to make this tryptic peptide 

workflow automated, we designed protocols that could be operated by the ClinProt robot. 

Using a front-end WCX fractionation for the method design, we examined the 

reproducibility of an automatic workflow starting from the reduction step and terminating 

with the robot spotting on a MALDI target plate after MB-C18 capture of tryptic 

peptides. Additionally, we also investigated performing a complete automatic workflow 

starting with the MB-WCX fractionation and ending with the MB-C18 protocol and 

spotting of peptides on a MALDI target plate. 

We found that the automated trypsin digestion/MB-C18 protocol was highly 

reproducible, given that the CVs for 12 representative peptides were under 13% (these 

were the same peptides analyzed for the reproducibility of the manual workflow). 

However, the robot had a very difficult time reproducibly processing the MB-WCX 

workflow, resulting in WCX fractionated elutions with varying concentrations. This led 

to the generation of spectra that were far less reproducible than the manual workflow 

described in Chapter IV and the automated trypsin bead/MB-C18 workflow described in 

this Aim (both of these protocols added a constant amount of WCX fractionated serum 

into the reduction reaction). The same peaks that were found to have CVs of 13% or less 

in both the manual workflow (Table 8) and the automatic trypsin bead/MB-Cl 8 

workflow (Table 13) had CVs ranging from 16% to 37% in the completely automated 

MB-WCX/tryspin bead digestion/MB-C18 workflow (without 5 sample "outliers" the 

CVs ranged from 12% to 33%). We therefore recommend (taking into account the high 
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reproducibility of this method performed both manually and robotically from the 

reduction step) that serum samples may be initially fractionated manually and then 

depending on the cohort size may be either further processed manually (if a small cohort) 

or robotically (if a large cohort). 

The importance of creating a workflow that is entirely automated is without 

question as it will allow for the processing of large numbers of samples that will satisfy 

statistical requirements of experimental data and will also limit operator interference, thus 

making the protocols less susceptible to variation between laboratories. However, we 

conclude that the ClinProt robot is not optimal the platform for automation of the 

workflows designed in this thesis. Our main concern with this platform is its habit of 

removing beads from samples during wash steps. This is a haphazard occurrence and 

therefore produces variation between the samples. Currently, our front-end fractionation 

methods performed manually produce much more consistent and reproducible results. 

We will discuss further alternatives to, and adaptations of, the ClinProt platform in the 

main Conclusions and Future Directions section. 



CHAPTER VI 

CONCLUSIONS AND FUTURE DIRECTIONS 

6.1 Aim I (Chapter III): Development of Precious Sample Sparing Techniques for 

Mass Spectrometry Analysis. 

A. The results indicated that there was no significant difference in quality of data 

between scraping a frozen serum sample and thawing the whole sample. Therefore, since 

our SOF cohort was a compelling, yet limited sample set, we decided to utilize the scrape 

technique for the processing of all SOF samples and thus preserve the samples for future 

use without the addition of unnecessary freeze-thaw cycles. 

B. SELDI-TOF MS analysis using MAC fractionation of 42 cases and 42 controls 

yielded 11 peaks that were predictor variables used in the generation of the classification 

and regression trees. A tree containing 4 terminal nodes, with 3 peaks used as splitting 

factors (m/z 7850.989, 9303.888, and 9190.488), was deemed optimal and possessed a 

recognition capability of 85.7% of cases and 78.6% of controls of the test set. Cross-

validation of the generated tree yielded correct classification of 31 of the 42 cases (74% 

cases correctly classified) and 30 of the 42 controls (71% of controls correctly classified). 

Unfortunately, this model did not prove successful in validating samples at an 

independent institution. 

C. The best MALDI-TOF MS genetic algorithm model generated using the WCX 

fractionation scheme with the initial 84 sample set yielded an overall 71.1% recognition 
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capability between groups. However, this 7 peak genetic algorithm model proved to be 

over-fitted for the 84 sample set and produced very low external validation sensitivity 

and specificity (overall recognition capability was below 50%). A 5 peak genetic 

algorithm model yielded the highest sensitivity and specificity comparatively during 

external validation of 112 samples, with an overall recognition capability of 61.2% 

between cases and controls. However, this model performed poorly when used again to 

identify case and control status of 96 blinded samples (overall recognition capability of 

52.1%). 

6.2 Future directions of Aim I 

The main success of this Aim is the knowledge that serum samples may be 

scraped without being thawed and will still produce comparable spectra to samples that 

were completely thawed. In this way the integrity of the serum proteome is conserved, 

while still retaining the convenience of retaining the samples in their original storage 

vials. Unfortunately, the classification success of the SELDI-TOF MS and MALDI-TOF 

MS analyses of the SOF sample set processed with the scrape technique left much to be 

desired. A very complex question was addressed in this sample set: Can serum protein 

profiles predict whether women will develop breast cancer in the future based on their 

serum profiles. This is a very difficult question to pose to two MS platforms that are 

limited in their ability to penetrate the immense concentration range of the serum 

proteome, especially for the SELDI-TOF MS due to its flat chip surface fractionation. 

However, MALDI-TOF MS would be amenable to several front-end fractionations 

performed in tandem or targeted capture (i.e. lectin capture of glycoproteins) for a more 
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encompassing examination of the serum proteome of these women. Additionally, as 

demonstrated in Chapter IV this cohort is being investigated on a small scale with pooled 

samples subjected to such bottom-up approaches as the immobilized-trypsin bead 

workflow and quantitative iTRAQ analysis. This will continue with the inclusion of 

more samples and fractionation techniques. In the future it would also be interesting to 

see what the albuminome of these patients holds in terms of predictive peptides/proteins 

for breast cancer risk. 

Another consideration in the interrogation of this sample set is that many of these 

women may not even have tumor development at the time of blood draw. Thus, there 

may not be tumor-specific biomarkers present in the blood. As mentioned several times 

in this dissertation, breast cancer is a very heterogeneous disease with many factors (i.e. 

ER and HER-2 receptor status) playing a role in influencing prognosis and response. 

Additionally, many genetic and environmental variables have been implicated as factors 

influencing breast cancer risk. Two such variables, race and hormone-replacement 

therapy, have been eliminated from the study. However, many other risk factors remain 

that may be used to stratify the samples. Certain factors such as ER status are beyond the 

scope of the current sample set, since the original goal of the SOF study was osteoporosis 

and not breast cancer risk evaluation. However, stratifying patients based on their serum 

levels of known breast cancer prognosis markers, such as HER-2 and MUC-1, is still an 

interesting possibility. Although, these biomarkers are typically assayed to determine 

breast cancer aggressiveness, progression and drug response it would still be interesting 

to determine if these biomarkers are altered pre-cancer diagnosis and thus underlying 

genetic factors in breast cancer risk. It may also prove useful to look into BRCA-1 and 
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BRCA-2 genetic status as a possible stratification factor (though BRCA mutations 

typically affect a small percentage of the breast cancer population) since mutations of 

these proteins leads to a high risk of developing breast cancer. Furthermore, depending 

on the information collected along with the original patient consent, we may be able to 

classify patients based on factors used to evaluate breast cancer risk in the Gail model. 

These would include age at menarche and age at first live birth, which may be known 

since these incidents also correlate to osteoporosis risk. Another factor that increases 

breast cancer risk is obesity and thus BMI (body mass index) may be an additional factor 

used to stratify the samples. However, this stratification may not be as relevant in 1980s, 

when this sample set was collected, as it would be today given the steady rise of obesity 

in the United States. According to the Centers for Disease Control and Prevention, in the 

1970s and early 1980s only 15% of the adult population was obese. However, by 2004 

33% of the adult population in the United States was considered obese and this situation 

is worsening with each passing year. 

By using these different variables to put patients into more specific groups we 

may begin to focus on biomarkers related to breast cancer risk, rather than to biological 

variation between patients that are as complex as the disease itself. These stratifications, 

along with novel MALDI-TOF technology and aggressive fractionation techniques 

discussed above, may allow for the discovery of predicative biomarkers for breast cancer. 

These biomarkers may be incorporated with current breast cancer disease progression 

biomarkers and risk models in order to design a more sensitive and specific diagnostic 

tool for physicians to predict an individual woman's breast cancer risk. 
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6.3 Aim II (Chapter IV). Increasing the Effectiveness of the MALDI-TOF/TOF for 

Analysis of Large Molecular Weight Proteins. 

A. The immobilized-trypsin beads are very efficient at digesting proteins in short 

incubation times (30 minutes compared to 4 hrs to overnight with traditional soluble 

trypsin protocols) and digestion efficiency is increased when proteins are reduced and 

alkylated. Adjusting the pH of the fractionated serum eluates to ~ pH 8 prior to reduction 

and alkylation also improves the digestion efficiency of the bead. We furthermore 

determined that for robust and reproducible spectra 8 |a.g is the ideal starting protein 

content for reduction and alkylation, with ~ 5 fxg of reduced/alkylated sample being 

digested with 25 uL trypsin beads. Additionally, since the trypsin is attached to 

paramagnetic beads it can be removed from the reaction by placing the reaction tube 

against a magnet, thereby not contaminating the spectra with autocatalytic trypsin 

peptides, a common draw-back to soluble trypsin digests. 

B. To create more uniform peptide/matrix spots, and make the peptide spectra more 

robust, a clean-up step using reverse-phase chromatography beads is necessary. Either 

ZipTipsCl 8 or MB-C18 may be used; however the latter is more adaptable to an 

automated platform. Additionally, it was found that MB-C18 produced more intense and 

full spectra as compared to MB-C8. 

C. A final immobilized-trypsin bead workflow was established that may be applied 

regardless of the front-end fractionation type: (1) Fractionate serum and adjust pH of 

eluate to ~8, add 8 jag of the eluate into a reduction reaction, (2) follow with an alkylation 



step (29 |iL total volume), (3) add 20 uL of the reduced/alkylated sample to 25 uL of 

washed immobilized-trypsin beads, (4) incubate together at 37 °C for 30 minutes and 

remove the digested sample, (5) add the 20 uL digest into a MB-C18 workflow, (6) elute 

the captured peptides off of the CI 8 beads and spot on an AnchorChip plate (1:3) with 

CHCA matrix using the dried droplet technique. 

D. This final immobilized-trypsin bead workflow was found to be reproducible with 

minimal intra-spectra variation of samples processed individually, but originating from 

the same pooled serum sample. 

E. Both MB-WCX and MB-WAX front-end fractionation workflows were incorporated 

successfully with the immobilized-trypsin bead scheme and using LIFT-MS/MS peptide 

identities were able to be determined for most of the top peaks in the respective spectra. 

We also demonstrated the minimal amount of information garnished in terms of 

visualized and identified peptides from undigested MB-WCX and MB-WAX workflows. 

F. The immobilized-trypsin workflow followed by ClinProTools analysis and peptide 

identification by LIFT-MALDI-TOF/TOF proved to be an effective and reproducible 

scheme for profiling clinical samples and directly identifying differential peptides. 

F.l. Pools of the SOF samples (described in Chapter III) were processed with this 

workflow and 3 peaks were found to be differential: m/z 1031 (kininogen-1), m/z 2017 

(alpha-2HS-glycoprotein), and m/z 2383 (Bcl9 protein). The forced peak genetic 

algorithm model that was generated using these three peaks had a 100% recognition 



capability of the test set and a cross-validation of 87.23% correctly classified cases and 

77.36% of correctly classified controls. These samples were re-processed months later 

and the same 3 peaks were used to generate a forced peak genetic algorithm model. This 

model once again had 100% recognition of the test set and cross-validation yielding 

70.83% for both sensitivity and specificity. Additionally, this model was used to 

externally validate the 1st data set and the result was 17/24 correctly classified cases 

(70.83% sensitivity) and 20/24 correctly classified controls (83.3% specificity). 

F.2. Pools of a BPH vs. PCa sample set were processed using the WCX/trypsin bead 

workflow and three peaks were determined to be differential between the two groups: m/z 

1031 (kininogen-1), m/z 1216 (apolipoprotein AIV) and m/z 1353 (apolipoprotein AIV). 

The forced peak genetic algorithm that was created using these 3 peaks had 100% 

recognition of the test set and a cross-validation that correctly classified 84.11 % of PCa 

and 75% of BPH. The samples were re-processed in a blinded manner and then this 

model was used to classify the blinded samples into their respective groups. The genetic 

algorithm model was able to correctly classify 10/12 PCa cases correctly and 10/12 BPH 

controls correctly. This outcome demonstrates the reproducibility of the immobilized-

trypsin bead method with clinical samples. 

6.4 Aim III (Chapter V). Development of Integrated Fractionation Protocols for In-

Depth and Automated MALDI-TOF/TOF Analysis. 

A. Tandem bead workflows (i.e. MB-WCX unbound fraction processed by MB-WAX 

and vice versa and subjected to immobilized-trypsin bead digestion) are a good way to 

maximize information generated from one sample aliquot. This is therefore a 



recommended process if the samples being interrogated are of limited quantity. 

However, this tandem workflow does not yield more revealing spectra results for peptide 

profiling than single bead front-end fractionation methods. In actuality, the tandem bead 

workflow tended to have a profile skewed slightly towards the two most abundant 

proteins, serum albumin and Ig alpha, as compared to single bead workflows. 

B. Bruker lectins were found to be successfully integrated into the immobilized-trypsin 

bead workflow if the eluates were concentrated (i.e. using a dry down method of pooled 

samples), followed by a MB-WCX fractionation workflow, or two lectin magnetic bead 

types were used simultaneously to capture glycoproteins (i.e ConA/WGA). All of these 

methods increased the eluted concentration of glycoproteins for further processing by the 

immobilized-trypsin beads. However, the most ideal glycoprotein output was generated 

with ConA/WGA lectins immobilized on agarose beads following albumin and IgG 

depletion. This lectin workflow generated tryptic peptides of the same quality and 

intensity as the WCX and WAX workflow results in Chapter IV. 

C. Because all of the workflows described in this thesis dissertation are either amenable 

to partial or complete automation, we assessed the reproducibility and feasibility of using 

the ClinProt robot for processing these workflows (using the MB-WCX scheme as a 

representative workflow. We found that the partial automation (starting at the reduction 

step and terminating at the MB-C18 and sample spotting step) is very reproducible as 

demonstrated by low coefficient of variance values. However, the complete automation 

(starting at the MB-WCX step and going through to the MB-C18 and sample spotting 



step) was not as reproducible, since the ClinProt robot generated initial WCX eluates 

with variable protein concentrations, which negatively impacted the rest of the protocol. 

This was mainly due to the robots tendency towards removing trace amounts of magnetic 

beads during wash steps and other manipulations leading to the elution. Therefore, we 

conclude that the ClinProt robot may be used for partial automation, but that it may not 

be the ideal platform for the automation of these workflows. 

6.5 Future Directions of Aim II and Aim III 

The immobilized-trypsin bead technique described in these Aims is effective at 

generating peptides that ionize in the ideal m/z peak range for most effective utilization 

of LIFT-MALDI-TOF/TOF for direct identification of differential peaks. Since the 

trypsin is immobilized onto paramagenetic beads, this scheme may be adapted to a 

robotic front-end processing system and allow for a relatively high-throughput, rapid and 

reproducible method for peptide profiling. This immobilized-trypsin technique may 

essentially be modified to suite any strategy that would normally utilize in-solution 

trypsin digestions. For example, we are currently looking into streamlining this method 

with comparative isotopic mass tagged quantitative approaches (160-162). Additionally, 

if one adheres to the basic scheme designed in this dissertation then this trypsin bead 

method may be made compatible with many fractionation workflows still to be 

envisioned. One such method may involve designing a depletion/capture strategy that is 

more amenable to high-throughput processing than current commercially available 

depletion kits. For example, antibodies to human serum albumin may be immobilized on 

magnetic beads and thus utilized to remove the serum albumin and by the same token 
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capture it for further analysis. Consequently, from one sample aliquot two separate 

fractions will be generated: 1) a depleted serum sample that may be further processed 

with other fractionation schemes to look at peptides and proteins that may have been 

overshadowed by the bulk of serum albumin, and 2) a serum albumin fraction, which 

may be used to profile the differences between sample groups based on peptides/proteins 

that are carried by this molecule. 

One obstacle that may be encountered when using this peptide profiling technique 

is that certain peaks of interest may not be able to be identified by LIFT. This may occur 

for a number of reasons, one being that a peak of interest may be embedded in a dense 

peak cluster, thus when the parent ion is fragmented the other contaminating peaks may 

be fragmented along side it. Another common reason for a peak of interest's inability to 

be identified by LIFT-MS/MS is that surrounding dominant peaks in the spectra may be 

suppressing the signal of the protein of interest. A possible solution to both of these 

problems is the use of LC-MALDI-TOF/TOF to fractionate the sample into many spots 

onto a MALDI AnchorChip plate based on the peptides chemical affinity properties. In 

this way the fractionated sample results in the deconvolution of the original tryptic 

peptide spectra that was crowded into a single spot on the MALDI plate. Thus, we are 

currently working on adapting the immobilized-trypsin beads for compatibility with the 

LC-MALDI-TOF/TOF platform. 

In our two cohorts investigated in Chapter IV, we discovered several potential 

biomarkers. It will be necessary to process larger samples sets with our workflow to 

assess the viability of these biomarkers and the genetic algorithm models using these 

biomarkers for classification. If these biomarkers hold true for the larger sample set, then 



we will be ready to independently validate the results. Therefore, another consideration 

that will be further investigated is the validation of discovered biomarkers. One approach 

would be to use commercially available Enzyme-Linked Immunosorbent Assays 

(ELISAs) to measure protein levels of the identified proteins in many serum samples. 

However, when a peptide is identified as differential between two sample sets, as in our 

workflow, it is not known if the entire protein expression level is elevated or if the 

increase is due to the elevation of an isoform, glycoform, or post-translational modified 

version of this protein. Initial validation of biomarkers using an ELISA would only look 

at the global change of the identified protein, thus all variations on that protein (if the 

epitope is present for detection by the antibody) would be incorporated in the expression 

levels without distinction. However, doing individual western blots for each sample 

would be tedious and labor-intensive. A remedy to this would be to use an immuno-

capture strategy with specific antibodies for the protein of interest immobilized on 

magnetic beads (43, 46). The captured proteins would be eluted, digested and analyzed 

by MALDI-TOF MS to determine if there are specific peptides generated that are 

elevated, while the other peptides from this molecule are comparable between groups. 

The identity of the differential peptide may then be identified using LIFT-MS/MS. 

However, if the post-translational modification is too complex or more specific 

information needs to be gleaned from the peptide, such as the site and composition of a 

glycosylation, multiple-reaction monitoring (MRM) may be utilized (163). A triple-

quadrupole linear ion trap instrument is available to our lab for performing such analysis 

if deemed necessary. Once the reason behind the protein level increase is elucidated, a 
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more specific ELISA may be designed and processed with many samples for true 

validation. 

Finally, we have demonstrated that by using the Bruker ClinProt instrument with 

the immobilized-trypsin bead workflow at least partial automation may be attained. The 

ClinProt robot's main problem is the premature, random removal of magnetic beads with 

bound protein. Thus, for the full automation capability of the developed workflows 

described in this thesis dissertation we would need to either evaluate other robotic 

platforms or look for ways to improve the ClinProt platform. There are other liquid 

handling robotic systems available, such as the Tecan Freedom Evo, which may be 

evaluated for their performance with our workflows. However, after observing the 

ClinProt robot we believe that a single modification in plastic ware may improve its 

performance. We will therefore evaluate the use of alternative 96-well work-plates than 

are currently used with this platform. The current work-plates end in a sharp point at the 

bottom of each well and overall the wells are very narrow. Both of these qualities allow 

the needles of the ClinProt robot to agitate the magnetic beads during the handling of the 

buffers, thus permitting beads to be aspirated along with the liquid. Additionally, a 

rounded 96 well plate may make for easier mixing of the samples, which currently tend to 

result in the uneven distribution of the magnetic beads throughout the solution due to the 

clumping of the beads (this especially true for the trypsin beads). Changing the velocity 

of mixing performed by the robot does not improve this issue. Unfortunately, changing 

the work-plates is easier said than done, given that the module which holds the plate in 

place is specifically tailored to this type of plate shape. However, it would be more cost-
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efficient to replace this component rather than the entire robot if it was indeed discovered 

that the work-plate shape influences the performance of the robot. 

6.6 Concluding Remarks 

SELDI and MALDI are reproducible and portable methods, however as 

demonstrated by McLerran et al (119), great care has to be put into standardizing sample 

collection, processing and storage of samples as each of these factors may add sample 

bias and lead to inaccurate conclusions. One main drawback to SELDI-TOF MS is that it 

does not possess the capability of identifying peaks found to be differentially expressed. 

Also, the chip-surface area utilized in SELDI-TOF MS analysis may not lead to efficient 

fractionation, which is needed for the simplification of the large dynamic range of serum 

proteome. Since MALDI-TOF MS is not limited by on-chip fractionation protocols it 

may allow for more extensive fractionation. These front-end fractionation techniques 

typically employ paramagnetic beads, which not only have more surface area than a flat 

surface chip, but also allow for in-tandem use of these bead types in an automated 

manner. 

Serum expression profiling typically occurs in the linear range, which is more 

sensitive in terms of peptide detection. However, it is the mass precision of the reflectron 

mode that is needed for MS/MS identification of peptide sequences. We have shown that 

common fractionation schemes such as WCX and WAX do not yield robust spectra 

necessary for endogenous peptide sequencing. Additionally, the peptides present are 

difficult to identify since the enzyme that generated each peptide is not known. Overall 

endogenous peptide profiling with MALDI-TOF is a step above SELDI-TOF MS 



profiling since some peptide identity information may be garnered from the spectra 

analyzed by the MALDI platform compared to no possibility for direct peptide 

sequencing by the SELDI platform. However, it is necessary to design a scheme that 

may be used as a companion to endogenous peptide profiling; one that will allow for the 

visualization of many peptides in the mass range of the reflectron mode and thus permit 

relatively easy identification by LIFT-MS/MS. 

Based on this necessity we tailored a workflow that utilizes immobilized-trypsin 

beads. We found that this technique is highly reproducible and may be adapted to many 

different front-end fractionation schemes performed individually or in tandem to reduce 

the complexity of the serum. Since this workflow utilizes paramagnetic beads it may be 

either partly or completely automated, though current robotic technology is only capable 

of reproducible and consistent partial automation. Using these workflows we were able 

to identify several promising biomarkers in two serum cohorts that are pending future 

analysis and validation. However, the most important discovery is that these workflows 

produce consistent results on clinical samples, yielding similar results and conclusions on 

independent runs. There are many exciting applications for these workflows, as 

described in the future directions section, and the fractionation schemes described herein 

are only the start of many different possibilities. We expect that work outlined in this 

dissertation may serve as a guide for all future analysis. 
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