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ABSTRACT

ROLE OF LIPOLYSIS OF LIPOGENESIS IN THE 
DEVELOPMENT OF DIET-INDUCED OBESITY

Michael J. Davies 
Old Dominion University and Eastern Virginia Medical School

2000
Director: Thomas J. Lauterio, Ph.D.

Obesity is an increasingly common public health problem with approximately 

one-half of the American adult population overweight and one-quarter considered obese. 

This alarming trend has led researchers to determine potential causative factors of excess 

weight gain in humans. However, it is difficult to discern whether perturbations that 

result in obesity are the cause or simply the result of the obese state. Diet-induced 

obesity is one of the animal models that allow researchers to address temporal issues. 

Our laboratory utilizes a diet-induced obesity model in which Sprague-Dawley rats are 

placed on a purified moderately high fat diet and ultimately diverge into two distinct 

populations based on body weight gain. Approximately 50% of the rats gain more body 

weight and fat and are considered obesity-prone (OP), whereas the other half (obesity- 

resistant -  OR) are similar in body composition to rats fed a low fat diet. Interestingly, 

rates of body weight gain and food consumption are greater for OP rats than OR rats 

during early phases o f the dietary challenge, but not during later phases. Moreover, 

weight gain is associated with excess fat accretion in OP rats. These data led us to 

examine the potential causes of increased fat weight gain during the early phases. The 

major site of lipid storage is the adipose tissue. Two major processes occurring in 

adipocytes are lipolysis (lipid mobilization) and lipogenesis (lipid formation), which are 

controlled by different metabolic hormones. Potential differences in these processes or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



hormone sensitivity may predispose OP rats to develop obesity or protect OR rats from 

the obese state. In experiment 1, in vivo lipolysis was measured in outbred OP and OR 

rats prior to exposure to an obesity-inducing diet. In vitro lipolysis was assessed in 

various adipocytes from inbred OP and OR rats in experiment 2. Early effects of 

moderately high fat feeding on insulin-stimulated glucose uptake and metabolism and 

body composition were examined in another set o f experiments. Results demonstrated 

that in vivo lipolytic responses were not a causative factor in excess body weight and fat 

accretion in OP rats. Next, in vitro responses to various lipolytic agents were reduced in 

visceral adipocytes of inbred OP rats, which were already fatter than inbred OR rats. In 

the last set of experiments, MHF-feeding reduced insulin-stimulated glucose uptake and 

metabolism in adipocytes vs. LF feeding. Epididymal fat cells of OP rats synthesized 

more fatty acids from glucose than those of OR rats after short-term exposures to the 

same MHF diet. It may be speculated that altered lipolysis is not a causative factor for 

excess adiposity in OP rats. Moreover, increased insulin responsiveness (via lipid 

synthesis) may promote excess fat accretion in OP rats. As obesity develops, adipocytes 

of OP rats may become less responsive to lipolytic agents, which may exacerbate visceral 

fatness.
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1

CHAPTER I 

INTRODUCTION

BACKGROUND AND SIGNIFICANCE

Obesity in Humans

With the prevalence of overweight adults increasing dramatically over the last 

two decades in the United States, obesity has become a major public health problem. 

According to the third National Health and Nutrition Examination Survey (NHANES), 

54% of the United States adult population is overweight (body mass index 

(BMI) > 25 kg m'2) and 22% are obese (BMI > 30 kg m'2) (93,94). When comparing the 

increase in obesity between the 1976-80 and 1988-94 surveys, the number of obese men 

has increased by nearly 100% and the number of women has increased by 50% (53). In a 

recent study, Mokdad et al. (120) found that the prevalence of obesity among adults in 

the United States increased from 12.0% in 1991 to 17.9% in 1998. Moreover, a multi

state phone survey revealed that the number of overweight adults was increasing at a rate 

of 0.9% per year (61). Foreyt and Goodrick (55) have proposed that if these trends 

continued, the entire U.S. adult population would be overweight by 2230. The epidemic 

of overweight and obesity is also a global problem and not just limited to the United 

States (92). These alarming statsitics have researchers focusing on the primary causes of 

obesity.

The model journal used for this dissertation was the American Journal o f Physiology
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Obesity is a complex, multifactorial disease influenced by genetic, cultural, and 

environmental factors (20). Bouchard and colleagues (18) attempted to quantify the 

relative contribution of biological inheritance on the amount or distribution of body fat in 

a French Canadian cohort. Estimates of the variance contributed by transmissible 

(genetic or cultural factors) and nontransmissible (environmental components) were 

variable and dependent upon the outcome variable. Regardless of outcome variable (e.g., 

BMI, fat mass, ratio of subcutaneous fat to fat mass), environmental factors appear to 

explain a greater percentage of the total variation than genetic and cultural factors (18).

In other words, an individual with an obesity-susceptible genotype may have an increased 

risk but it only becomes manifest when nurtured in a certain environment. A classic 

example of this is noted with the Pima Indian (133). Pima Indians are traditionally 

located in Northwestern Mexico, but another group of Pima Indians resides on 

reservations in southwestern areas of the United States. A majority of the U.S. Pima 

Indians are obese and Type II diabetics (non-insulin dependent diabetes mellitus), 

whereas their Mexican counterparts remain lean or normal weight. Introduction to and 

increased availability of the typical Western (i.e., increased dietary fats and simple 

sugars) diet to the U.S. Pima Indians have been suggested as the “environmental culprits” 

(133). These data reveal that members of the Pima Indians have the genotype to develop 

obesity, but phenotypic expression of obesity appears only in an obesity-inducing setting 

(e.g., exposure to higher-fat Western diet).

Although primary metabolic perturbations that cause obesity have not been 

completely elucidated, overeating, reduced physical activity, and exposure to calorie- 

dense diets are recognized as the three main determinants of obesity (72). Recently, the
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Pound of Prevention study confirmed that these three factors were indeed related to body 

weight changes (142). Obesity research, however, is complicated by the fact that obesity 

is a component of the metabolic syndrome (syndrome X or insulin resistance syndrome), 

which includes insulin resistance, hypertension, dyslipidemia, and cardiovascular disease 

(130,134). Consequently, obesity studies must also address these and other factors (e.g., 

pituitary and stress-related hormones). Another major obstacle with this research is the 

metabolic abnormalities associated with obesity are usually studied in humans or animals 

only after establishment of the obese state. This scenario makes it difficult to determine 

underlying causes. Drug and dietary interventions have been shown to be effective 

treatments for obesity (20). On the other hand, with the direct costs associated with 

obesity accounting for 5.7% of the National Health expenditure in the United States (161) 

and with long-term success for weight loss programs and regimens being limited (1), 

prevention may be the most effective treatment of obesity. Therefore, elucidation of the 

primary causes of obesity should be in the forefront of biomedical science research.

Animal Models o f Obesity

Researchers have attempted to determine causative factors for human obesity.

For example, early controlled overfeeding studies in normal weight subjects 

demonstrated that individuals predisposed to obesity or increased weight gain were 

unable to increase fat oxidation in response to energy dense diets (7). However, ethical 

issues pervade obesity research in humans. Researchers cannot make humans obese in 

order to study the basic mechanisms of obesity development for obvious reasons. 

Therefore, selectively bred animal models (e.g., ob/ob and db/db mice and Zucker rats) 

were developed to address this problem and identify the underlying mechanisms of
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obesity (29,169). These genetic models normally have a singular genetic defect, which 

result in massive obesity. Another model is hypothalamic obesity, which allows 

researchers to address the role of the central nervous system on regulating food intake 

and energy expenditure (19,21). Although these models provide insight to the 

developmental causes of obesity, their applicability to humans is questionable because of 

the polygenic nature of human obesity. In contrast, animal models of diet-induced 

obesity appear to be more relevant with regard to human obesity. In these animal models 

obesity develops following administration of at least three different dietary regimens. 

High fat feeding is the most common dietary approach (26, 137). Other researchers have 

added either a sucrose solution (87, 88) or snack foods (140) to a regular chow diet to 

produce obesity. Similar to humans, rodents demonstrate divergent responses to high-fat 

or energy-dense (high fat and sucrose) diets. On comparable diets, some individuals 

become obese, whereas others maintain their ideal body weight. Schemmel et al. (137) 

demonstrated variance among seven rat strains in their propensity to develop diet-induced 

obesity on a high fat diet. Moreover, divergent weight gain patterns were noted within a 

single strain of outbred male Wistar rats fed “cafeteria” or semi-purified high fat diets 

(11, 26,125). These early researchers have utilized diets with relatively high levels of 

dietary fat (>45% kcal as fat), which exceed those normally found in human diets.

Levin et al. (110, 111) noted that outbred Sprague-Dawley (SD) rats fed a semi

purified high-energy diet (HE = 31% kcal as fat) diverged into two distinct groups. 

Approximately half the SD rats (diet resistant -  DR) on the HE diet gained weight at a 

similar rate as rats (controls) fed a standard chow-diet (5% kcal as fat), whereas the other 

half (diet-induced obese -  DIO) accumulated more body weight and carcass adiposity
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compared to DR and control rats. Semi-purified diets have also received criticism 

because development of obesity on these diets can only be attributed to the diet and not 

specific contents of the diet (e.g., saturated fat content or sucrose content). Conversely, 

purified diets allow researchers to examine the influence of different dietary components 

on body weight and fat gains.

To this end, Lauterio et al. (99) examined the development of diet-induced obesity 

in response to a purified moderately high fat (MHF) diet, which has a dietary fat level 

(32% kcal as fat) similar to the typical Western diet. The research with this diet and 

outbred male SD rats yielded similar results as Levin et al. (111) in that the body weight 

gain pattern was bimodal. Moreover, body weight and carcass adiposity were greater for 

obesity-prone (OP; similar to DIO from Levin’s studies) rats compared to obesity- 

resistant (OR; similar to DR from Levin’s studies) rats and control rats fed a low fat (or 

chow) diet (40,99,101). This diet-induced obesity model allows researchers to address 

the developmental aspects of obesity, as well as the influence of certain dietary 

components. Researchers are, however, restricted to plasma, urinary, and in vivo dialysis 

measurements because classification of rats as OP and OR can occur only after 

commencement of the dietary period and development of excess weight.

Predicting Development o f Obesity - Outbred Rats 

As useful as the diet-induced obesity model is to address the aforementioned 

measures, pre-obese comparisons of cellular mechanisms are limited. Obviously, rats 

must be killed to harvest tissues, but their classifications are unknown without the dietary 

challenge. The ability to predict which rats will become obese as a result of exposure to 

these diets would allow researchers to focus on metabolic events within rats prior to
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changes in body composition. Berthoud et al. (11) reported that saccharin-induced 

insulin rise (termed cephalic phase, reflex insulin secretion) can be utilized to predict 

obesity susceptibility. These researchers noted that Wistar rats predisposed to obesity 

(termed high responders) had an elevated insulin response to saccharin compared with 

normal rats (termed low responders). Moreover, high and low responders did not differ 

in body weight or glucose-stimulated insulin response prior to exposure to a high-fat 

cafeteria diet (11). Similar findings were also observed in obese and lean Zucker rats. 

Obese Zucker (fa/fa) rats have a significantly stronger cephalic phase of insulin secretion 

than lean Zucker (FA/?) rats (80). This altered cephalic insulin response may predispose 

obese animals to increase glucose and lipid storage in different tissues in response to a 

meal.

Another prediction model developed by Levin (105) showed that obesity 

susceptibility can be predicted by measuring 24-hr urinary catecholamine output prior to 

exposure to an obesity-inducing diet. Rats destined to become obese on a HE diet had 

increased 24-hr urinary norepinephrine output compared with their lean counterparts. 

Catecholamine resistance may be present and/ or end-organ responsiveness may be 

reduced (e.g., catecholamine-stimulated lipolysis in adipocytes) in DIO rats. Potentially, 

a reduced lipolytic response in adipocytes may allow for increased lipid accretion and 

thus, obesity. However, reproducibility is a major problem with this prediction method 

because numerous researchers have been unable to replicate these findings.

Recently, our laboratory reported that plasma leptin concentrations or body 

weight gains after one week on a MHF diet were significant predictors of overall weight 

gain on a 14-week dietary challenge in outbred SD rats (Boozer & Lauterio, submitted).
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Similar results using body weight gain data were found for Wistar rats (125). These data 

demonstrated that the majority of rats defined as OP and OR after 1 week usually 

remained within their grouping throughout the dietary challenge. Although these animals 

are exposed to moderately high fat diets, early prediction models allow researchers to 

address some of the early events associated with or preceding excess weight gain.

Predicting Development o f Obesity - Inbred Rats

One major drawback with the outbred model is that rats must be exposed to a high 

fat diet before determining resistance or susceptibility to obesity. This limits 

investigations to those in diet-exposed rats. To circumvent this, Levin et al. (107) 

developed and characterized a sub-strain of SD rats that are selectively bred for DIO and 

DR traits. Briefly, adult male and female outbred SD rats were fed a HE diet for one 

month. At this time, the males gaining the most weight in response to the diet were bred 

with females gaining the most weight (i.e., selected for obesity response). Similarly, 

male and female rats exhibiting the lowest weight gain were bred to form the obesity- 

resistant group. This procedure was repeated for F2 generation after a two week exposure 

to the diet. By the third generation (F3), separation of DIO and DR rats was firmly 

established. Analysis of the Fs generation revealed that DIO males and females had 

significantly greater body weights than DR males and females of the same age.

Moreover, DIO rats consumed more energy (kcal) and gained more body weight than DR 

after one week on a chow diet. However, feed efficiency (body weight gain per energy 

consumed) on chow was not significantly different among the DIO and DR male and 

female rats. Increased chow intake appeared to be a function of increased metabolic 

mass (107).
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In contrast to feeding these rats a chow diet, 2-wk (males) or 3-wk (females) on a 

HE diet revealed that DIO male and female rats gained more body weight, consumed 

more energy, and had greater feed efficiency than DR rats. DIO male rats were weight- 

matched with DR male rats and fed a chow diet for one week. DIO and DR rats 

consumed the same amount of food and had similar feed efficiency, but DIO rats had 

109% heavier retroperitoneal adipose depots than DR rats (107). The combination of 

greater adiposity and increased feed efficiency (or increased energy storage) on HE diets 

noted in the DIO rats suggests that there are potential mechanistic perturbations occurring 

in adipose tissue in response to an energy dense diet.

Adipocyte Biology

Until recently, adipocytes were thought to be a passive participant in energy 

storage. The landmark discovery of leptin and its effects have led researchers to redefine 

their positions about adipose tissues (IS). Leptin is a 16-kDa protein that is encoded by 

the obese gene and is mainly expressed and synthesized in adipose tissue (166). Plasma 

leptin concentrations are related to fat mass in rodents and humans (30, 38). Plasma 

leptin levels decrease with fasting and increase with food intake, suggesting that leptin 

acts as a signal of energy stores (IS). The various effects o f leptin appear to be mediated 

through its action on the hypothalamus. Leptin administration decreased food intake and 

stimulated energy expenditure in leptin-deficient ob/ob mice (70). In the arcuate nucleus, 

neuropeptide Y (NPY: potent stimulator o f food intake and inhibitor o f energy 

expenditure) expression and secretion were both inhibited by exogenous leptin (138,

14S). Conversely, injecting leptin into the third ventricle increased corticotrophin 

releasing hormone (CRH: inhibitor of food intake) gene expression in the paraventricular
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nucleus (138). Furthermore, leptin affects energy expenditure by increasing 

thermogenesis and physical activity via activation of the sympathetic nervous system 

(IS). The recent leptin data seem to confirm the early lipostat theory of Kennedy (89), 

that adipose tissues regulate their mass by secreting a factors) that regulates food intake 

and energy expenditure.

Although adipose tissue as an endocrine organ has recently gained acceptance, 

body fat distribution was reported to influence certain metabolic diseases over four 

decades ago. Vague (1SS) reported that an upper body (truncal) fat distribution was 

associated with an increased incidence of diabetes mellitus and atherosclerosis. 

Specifically, intra-abdominal visceral adiposity is associated with insulin resistance and 

altered blood lipid profiles (91). Released free fatty acids from adipose tissue were 

increased in obese subjects when compared with lean ones and this augmented release 

was associated with the aforementioned metabolic complications (82). Free fatty acids 

interfere with hepatic insulin extraction and numerous actions o f insulin including 

suppression of lipolysis and gluconeogenesis, recruitment of glucose transporters (e.g., 

GLUT4), and stimulation of glucose metabolism (141). Moreover, body fat distribution 

is different between genders. Males tend to have adiposity centered around the abdomen 

(android), whereas fat on women is located in the gluteo-femoral (gynoid) region and not 

in the truncal region (14,155). Steroid hormones influence fat distribution patterns and 

its effects appear to be permissive (17). Androgens levels are associated with increased 

truncal fat and reduced subcutaneous fat in limbs of men. Conversely, subcutaneous fat 

is evenly distributed between trunk and limbs in women and is related to estrogen status. 

Regional differences in lipid accumulating and mobilization processes are also influenced
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by sex steroids (17). For example, testosterone inhibits lipoprotein lipase (LPL) activity 

in abdominal subcutaneous fat, but not in femoral subcutaneous fat. On the other hand, 

estrogen stimulates LPL activity in gluteo-femoral subcutaneous fat, but not abdominal 

fat (14, 17). In summary, adipose tissue is an active endocrine organ that contributes to 

metabolic health. Elucidation of mechanisms regulating its size and distribution is 

important to reducing the complications associated obesity.

Additionally, because adipocytes are not homogeneous in their responses to 

stimuli, regional variations also need consideration when studying adipocyte biology. In 

humans, basal lipolytic activity is increased in subcutaneous fat cells vs. intra-abdominal 

(omental and mesenteric) fat cells (44a), but visceral adipocytes are more responsive to 

lipolytic, as well as, lipogenic stimuli (2 ,44a). Catecholamine sensitivity is further 

increased in visceral adipocytes and reduced in subcutaneous fat cells with the obese state 

(3). This shift in lipolytic patterns within obese humans may contribute to the increased 

subcutaneous adiposity and metabolic perturbations associated with increased free fatty 

acid flux from visceral adipocytes (141). Similarly, visceral adipocytes are more 

responsive to lipolytic agents and insulin than subcutaneous adipocytes in rats (60,151). 

Therefore, it is of interest to examine the two major metabolic processes occurring in 

adipocytes for possible differences in obesity-prone and obesity resistant rat populations. 

Adipocytes regulate their size by lipolysis (lipid mobilization) and lipogenesis (lipid 

accumulation via de novo synthesis or re-esterification) (73). These two processes are 

under strict control by several metabolic hormones. Catecholamines and growth 

hormone (GH) are the major regulators o f lipolysis, whereas insulin controls lipogenesis.
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Hormone-stimulated Lipolysis

Catecholamine-induced lipolysis is influenced by regional and sex-specific 

differences in adrenergic receptor populations (Pi, P2, P3 and 012) in human and other 

animal models (96). Norepinephrine and epinephrine are catecholamine hormones that 

are secreted by the adrenal medulla (both) and postganglionic sympathetic neurons 

(norepinephrine) (65). The lipolytic properties of catecholamines and related compounds 

are mediated through P-adrenergic receptors, whereas activation of a 2-adrenergic 

receptors inhibits lipolysis (3). For lipolysis, catecholamines act via binding to P- 

adrenergic receptors and activating a stimulatory G-protein-related second messenger 

system that subsequently phosphorylates hormone-sensitive lipase (HSL) via a cAMP- 

dependent protein kinase A (PKA) mechanism (146). Upon phosphorylation, activated 

HSL is the rate-limiting step in the hydrolysis of triglycerides of intracellular lipid 

droplets to yield glycerol and fatty acids (164). PKA activity is also modulated by 

forskolin, which bypasses receptors to directly activate adenylyl cyclase (115). This 

compound is used to examine lipolytic mechanisms beyond receptor activation. In the 

basal state, non-activated HSL still has the capacity to hydrolyze triglycerides but at a 

much lower rate than activated HSL. Moreover, unphosphorylated perilipins are reported 

to protect the lipid droplet from HSL. However, isoproterenol-stimulated PKA activation 

results in translocation of activated HSL from the cytosol to the lipid droplet and 

phosphorylation of perilipins, which causes the perilipins to expose more of the lipid 

droplet for HSL-stimulated lipolysis (28). Differential sensitivity or responsiveness to 

catecholamines may predispose OP rats to or protect OR rats from accumulating lipids 

and increased adiposity.
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At the adipocyte level, GH is known to have two different effects; transient 

insulin-like effects and delayed anti-insulin-like effects (33). GH induces insulin-like 

effects (anti-lipolysis and glucose uptake) in normal rat adipocytes that have not been 

exposed to GH for three hours (25,44,66). Exposing these cells to GH results in a net 

dephosphorylation of HSL and consequently, reduced lipolysis (13). The antilipolysis 

effect appears to reflect a GH-mediated activation of cGMP-inhibited cAMP 

phosphodiesterase, which results in increased degradation of cAMP (46). On the other 

hand, GH stimulates lipolysis in adipocytes indirectly and directly after a lag period (48). 

The indirect mechanisms by which GH stimulates lipolysis occur via increased mRNA 

expression and protein synthesis of p-adrenergic receptors and HSL (36,162). 

Glucocorticoids act synergistically with GH to enhance lipid mobilization (50).

Recently, Yip and Goodman (165) demonstrated that GH plus dexamethasone disrupts 

the translocation of the a-subunit of the inhibitory G-protein, thus blocking its inhibitory 

effects on adenylyl cyclase activation. The direct effects of GH on lipolysis have not 

been completely elucidated.

Steroid hormones also affect lipid mobilization, but their effects are considered 

permissive. Glucocorticoids stimulate lipolysis by indirect and direct mechanisms. 

Adrenalectomized rats have diminished lipolytic responses in adipocytes, but 

dexamethasone treatment reverses these alterations by increasing p-adrenergic receptor 

numbers (35). Dexamethasone also augments HSL mRNA expression in vitro (144). 

Moreover, dexamethasone alone was shown to stimulate lipolysis (50,51), but its direct 

effect on HSL activation is not well understood. The indirect and directs effects of 

glucocorticoids appear to be mediated by glucocorticoid receptors found in rat adipocytes
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(127). Conversely, excess cortisol levels in Cushing’s Disease patients are associated 

with elevated truncal fat mass (135). Increased LPL activity and diminished lipolytic 

response are the mechanisms for increased truncal fat in these patients (14). Sex steroids 

also appear to influence lipid breakdown. Testosterone upregulates P-adrenergic receptor 

expression and works synergistically with GH to increase isoproterenol-stimulated 

lipolysis in adipocytes (163). Ovariectomized rats had impaired p-adrenergic receptor 

stimulation and adenylyl cyclase activity in parametrial fat cells, but not subcutaneous fat 

cells (95). Therefore, the effects of these steroids should be considered when evaluating 

differences in hormone-stimulated lipolysis.

Altered catecholamine or GH signaling, and thus reduced lipid mobilization, may 

result ir^xcess lipid accumulation in adipocytes and predispose rats to obesity. For 

examples, GH may have increased insulin-like effects (i.e., glucose uptake) or reduced 

anti-insulin-like effects (i.e., lipolysis) at the adipocyte level in OP rats compared to OR 

rats. Furthermore, reduced expression of P-adrenergic receptors and consequently, 

lipolytic responsiveness may accompany reduced GH secretion noted in outbred OP rats 

before and after exposure to the MHF diet (98,101). Moreover, OP rats also have 

increased urinary norepinephrine output when exposed to a novel environment, indicating 

increased sympathetic activation (111). It is possible that an overactive sympathetic 

nervous system in OP rats may affect lipolytic responses in adipocytes via altered 

receptor levels or post-receptor mechanisms. The lipolytic role of stress hormones 

(dexamethasone) can also be examined in adipocytes. The experiments in this proposal 

may help address these questions.
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Insulin-stimulated Metabolism

Lipid storage in adipose tissue relies on many insulin-stimulated mechanisms. 

Insulin mediates glucose and free fatty acid uptake from bloodstream, stimulates 

synthesis of long-chain fatty acids from glucose (lipogenesis) and formation of 

triglycerides from fatty acid and glyceride-glycerol moieties (esterification), and inhibits 

breakdown of triglycerides (lipolysis) in adipocytes (65). All of these actions require 

different pathways and enzymes, but all rely on insulin binding to its receptor. Plasma 

insulin concentrations are low during the fasted state, but are elevated with feeding.

There is an initial rise in insulin prior to or right at the beginning of the meal (cephalic 

phase insulin response). During this phase, insulin secretion is regulated by 

neurotransmitters released by the parasympathetic fibers of the vagus nerve that innervate 

pancreatic islet cells (11). The cells of origin for the cephalic phase insulin response are 

located in the dorsal motor nucleus of the medulla (12). After the initial insulin rise 

produced by this response, plasma insulin concentrations drop but as blood glucose levels 

rise during absorption, pancreatic P-cells secrete insulin to enhance substrate removal. 

Reduction in plasma glucose is stimulated by insulin via increased glucose uptake 

primarily into muscle (for muscle glycogen and energy needs) and adipose tissue (for 

triglyceride formation and energy needs) via receptor-mediated events (65). Insulin also 

stimulates enzymes that regulate glycogen and fatty acid synthesis in hepatocytes. 

Glucose transporters (GLUT) mediate glucose uptake across plasma membranes via 

formed channels. There are five isoforms of GLUT that are expressed in various cell 

types. GLUT1 is present in most cell types, whereas GLUT2 are found in liver and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

pancreatic P cells and GLUT4 are located in pools of intracellular vesicles within fat and 

skeletal muscle cells (24).

For brevity, this review of insulin action will focus on the effects of insulin on 

adipose tissues. On fat cells, insulin binds to the extracellular domain of its receptor 

(tyrosine kinase receptor family), which results in phosphorylation of tyrosine residues on 

the intracellular portion of the receptor (63). These phosphotyrosines attract and activate 

other second messengers, which initiate cascades of phosphorylations and 

dephosphorylations that activate or deactivate numerous enzymes and transcription 

factors. Insulin receptor substrate-1 (IRS-1) is recruited by phosphotyrosines and is 

thought to mediate many of the activities of insulin binding (103). IRS-1 activates and 

recruits GLUT4 from intracellular pools, which fuse with the plasma membranes to 

increase glucose uptake (24). Insulin also stimulates the synthesis of fatty acids by 

increasing glucose uptake (substrate availability) and the activity of enzymes necessary 

for fatty acid synthesis (e.g., fatty acid synthase and acetyl CoA carboxylase) (6, 57). In 

contrast, insulin inhibits lipolysis to enhance lipid storage. This is achieved by inhibiting 

the formation of and accelerating the breakdown (via increased phosphodiesterase) of 

cAMP, which is necessary to activate PKA and subsequently hormone sensitive lipase 

(65).

Adipocyte uptake o f circulating free fatty acids is controlled by LPL, which is 

secreted from adipocytes and adheres to the vascular endothelium near the cells (31). 

Very-low density lipoproteins (VLDL) and chylomicrons containing triglycerides are 

transported in the bloodstream and release free fatty acids upon hydrolysis by LPL. The 

released free fatty acids are transported into adipocytes and re-esterified to triglycerides
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(43). LPL expression and secretion are also regulated by insulin in adipocytes (57). 

Possibly, increased sensitivity to insulin or alterations in expression, synthesis, or 

activation of the above enzymes and proteins may predispose animals or humans to 

obesity.

Summary

Obesity is a major contributor to many of the metabolic perturbations found in 

humans and animals. It is of the utmost importance to determine and understand the 

mechanisms regulating body weight gain, specifically fat weight. Body weight is 

regulated by energy consumed and energy utilized. Calories consumed beyond energy 

requirements are stored in fat cells. Adipose tissue is not a passive storage site, but rather 

an important endocrine organ whose secreted hormones and metabolites regulate 

numerous metabolic processes. Moreover, adipose tissue is composed of adipocytes that 

are expanding, contracting, and proliferating as energy stores dictate. Two major 

processes occurring in adipocytes are lipolysis and lipogenesis. These processes are 

under the strict control of different metabolic hormones. Alterations in one or both of 

these processes may be predispose OP rats (or humans) to or protect OR rats from 

developing obesity.

PURPOSE

Overall Objective

The overall objective of these experiments was to determine whether lipolysis, 

insulin-stimulated glucose uptake and metabolism or both were altered in vivo or in 

isolated adipocytes of OP and OR outbred or inbred SD rats prior to or during exposure
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to an obesity-inducing diet. Lipid accumulation in adipocytes is balanced by the intricate 

interplay between lipolysis and lipogenesis, which are influenced by different metabolic 

hormones. Recently, we reported that although outbred OP rats were more efficient at 

storing energy than outbred OR rats throughout the dietary challenge, relative food 

consumption and relative growth were greater in OP rats compared to OR rats only 

during the early phase of the dietary challenge (100). Therefore, dysregulation of 

lipolysis, lipogenesis, or both may predispose OP rats to develop obesity or protect OR 

rats from it. The animal model o f diet-induced obesity allowed the opportunity to 

examine these processes at various time points during the development of obesity. 

Exposure to a MHF diet resulted in approximately one half of a SD rat population to 

become obese (OP), whereas the other half (OR) gains weight at a similar rate as rats fed 

a chow diet (low fat) (40,98,99,100,101). Earlier research with this model showed that 

plasma GH was reduced in outbred OP rats compared to outbred OR rats prior to and 

after the onset of obesity (98,101). Hyperinsulinemia, hyperleptinemia, and 

dyslipidemia were noted in outbred OP rats compared with OR rats after the onset of 

obesity (40,100). All of the above hormones and metabolites influence adipocyte 

biology. Utilizing both outbred and inbred SD rats, we determined whether lipid- 

regulating mechanisms in adipocytes were different between OP and OR rats. The 

following aims were conducted to achieve these goals:

Specific Aim I

Specific Aim I determined whether basal and hormone-stimulated lipolysis was 

different between outbred or inbred OP and OR rats. In experiment 1, in vivo lipolytic 

responses were measured in outbred rats prior to a dietary challenge to ascertain whether
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these responses predicted obesity-susceptibility or resistance. This was accomplished 

with a whole body lipolytic challenge and a local lipolytic challenge via microdialysis of 

an individual fat depot prior to the MHF dietary challenge. After divergence, glycerol 

release variables were compared retrospectively between outbred OP and OR rats. Since 

weight-matched inbred OP and OR rats were reported to have differential body 

composition (107), these inbred rats were used to compare in vitro lipolytic 

responsiveness in adipocytes of OP and OR rats in experiment 2. Fat cell type and size 

also influence lipid mobilization. Therefore, this experiment enabled us to address these 

issues.

Specific Aim II

Specific Aim II focused on the role of insulin sensitivity on the early development 

o f diet-induced obesity. Insulin regulates glucose transport and metabolism (including 

lipogenesis) in adipose tissue among other tissues. Increased insulin sensitivity was 

reported in adipose tissues of rats with hypothalamic obesity and genetically obese rats 

and mice early in obesity development. The role of insulin-stimulated glucose uptake 

and metabolism on excess fat accretion was investigated in adipocytes of outbred OP and 

OR rats during the early stages of obesity development. Moreover, dietary fat levels 

influence insulin sensitivity and responses in adipocytes and other cell types. The above 

comparisons were also performed in adipocytes of moderately high fat and low fat-fed 

rats. Similar to hormone-stimulated lipolysis, insulin-stimulated glucose metabolism is 

influenced by cell size. Therefore, adipocyte profiles were measured and compared 

among groups. Expression of fatty acid synthase mRNA, a key enzyme for fatty acid 

synthesis was determined in the proposed experiments.
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CHAPTER H 

MATERIALS AND METHODS

Experiment 1 investigated the question as to whether lipolytic responses prior to a 

dietary challenge predicted obesity-susceptibility in outbred rats as measured in vivo 

(specific aim I). Experiment 2 examined in vitro lipolysis in inbred SD rats to determine 

if differences in visceral and subcutaneous adipocyte lipolytic responses contributed to 

obesity susceptibility or resistance (specific aim I)-

Experiment 3 determined whether insulin-stimulated glucose uptake was different 

between epididymal adipocytes of OP and OR rats during an early phase of a MHF 

dietary challenge (specific aim II). Additionally, the responses of adipocytes from rats 

fed either a moderately high fat diet or low fat diet (controls = C) were also compared. 

Experiment 4 evaluated insulin-stimulated glucose metabolism in epididymal adipocytes 

of OP and OR rats during early phases of a MHF dietary challenge (specific aim II). 

Comparisons were also made with rats fed a low fat diet. Experiment 5 compared fatty 

acid synthase messenger ribonucleic acid (mRNA) expression in pooled epididymal fat 

tissue of OP, OR, and C rats (specific aim II).

ETHICAL TREATMENT OF ANIMALS

All rats were housed in facilities approved by the American Association for the 

Accreditation of Laboratory Animal Care. These studies were approved by the Animal 

Care and Use Committee of Eastern Virginia Medical School and carried out according 

to NIH Guidelines.
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METHODS: EXPERIMENT 1

Animals

Thirty (30), cannulated male Sprague-Dawley (250 to 300 g, Charles River, 

Waltham, MA) rats were obtained and housed in individual stainless steel hanging cages 

in a temperature-controlled room (22 ± 2°C) with a 12 light-dark cycle. Rats were fed a 

standard rat chow diet (Harlan Teklad, Madison, WI) ad libitum during a one week 

acclimation period. Rats were handled daily to assess and maintain patency of jugular 

cannulae. A baseline blood sample (one ml) was collected after the acclimation period 

and prior to lipolytic challenges for plasma hormone analyses.

Whole Body Lipolytic Challenge

Rats were subjected to a whole body lipolytic challenge after removing food in 

the morning or approximately 3 to 4 hours prior to the following procedures.

Experimental procedures were performed in a sampling area within the same room that 

they were housed. Each rat had a remote catheter fixed to the cannula to reduce handling. 

Following 10-min acclimation period in sampling area, basal blood samples (two 500 pi 

samples) were drawn five minutes apart. After the second basal blood draw, 

isoproterenol (20-pg/kg; (4)) was injected via cannula. Isoproterenol was chosen as the 

lipolytic agent because it is a non-selective P-adrenergic receptor agonist, which has 

more potent lipolytic properties than epinephrine and norepinephrine (48). Repeated 

blood sampling occurred at 5,10,15, and 25 min after isoproterenol injection. After each 

blood draw, an equal volume of normal saline was injected into the animal to minimize 

volume depletion effects. Blood samples were centrifuged for 20 minutes at 1500 rpm at 

4°C. Plasma was transferred to a labeled microfuge tube and frozen at -20°C until
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glycerol analysis. Glycerol was used as an index of lipolysis instead of free fatty acids 

because glycerol must exit adipocytes due to reduced glycerol kinase levels (156).

Plasma Glycerol Assay fo r Whole Body Lipolytic Challenge

Plasma glycerol was measured with the Sigma Kit #337-40A (Sigma Chemical,

St. Louis, MO) according to supplied protocol. Basal and peak glycerol release were 

compared within and between groups.

Local Lipolytic Challenge via Microdialysis

Rats were allowed to recover for at least one week after whole body challenge. 

During this week, rats were familiarized with the Awake Animal System (CMA 177, 

Carnegie Medicin, Worcester, MA). After recovery, local lipolytic responses were 

determined in the epididymal adipose pad using microdialysis according to published 

procedures (4). This visceral fat pad was chosen for size and location. Surgery at this 

site was less invasive resulting in less trauma to the rat than surgery on other visceral fat 

pads (mesenteric and retroperitoneal). Microdialysis works by inserting a probe into the 

tissue of interest and then infusing that tissue with the drug or hormone of interest. These 

probes are bi-directional in that they allow for infusion through one tube and collection of 

dialysis perfusate via another tube, which is then analyzed for the metabolite or hormone 

of interest.

Prior to insertion, individual microdialysis probes (CMA/20) were perfused with 

2-ml of Ringer solution at a rate of 15-pl/min with the microinfusion pump (CMA'100) 

to remove any glycerol in the probe membrane. On the day of probe insertion, rats were 

anesthetized with an interperitoneal injection of ketamine (67 mg/kg) and xylazine (13 

mg/kg) and placed on a heated operating surface. Surgical areas (lower abdomen and
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back of neck) were shaved and washed with betadine solution. An incision was made in 

the abdomen above the scrotal area and the left epididymal fat pad was exteriorized onto 

a moist sterile gauze pad. A trocar needle and sheath were inserted into the midpoint of 

the fat pad. After placement of sheath, the trocar needle was removed and the 

microdialysis probe was inserted into the sheath. The sheath was then removed after the 

probe was secured by suturing the probe to an adjacent tissue (e.g., abdominal muscle 

wall). The probe tubes were tunneled subcutaneously with a tunnel trochar, exteriorized 

through the back of the neck, and secured with a restraining collar. Internal incisions 

were sutured and external incisions were closed with surgical clips. Rats were allowed to 

recover on a heated source. Lipolytic tests were performed after an overnight recovery 

period.

On the day of local lipolytic challenge, food was removed early in the morning or 

approximately 3 to 4 hours before the following procedures. Rats were placed in an 

Awake Animal System, which does not restrict animal movement. In this system, probe 

tubing is connected to a swivel and thus it allows rats to be tested in the conscious state 

and relatively undisturbed. Other components of the system included two microdialysis 

pumps (1 for vehicle and 1 for drug) and three liquid switches (CMA 110), which were 

connected by tubing. Prior to connecting the pump tubing to the probe tubing of the rats, 

pump tubing was flushed (10 pl/min) with 1 ml of Ringers to ensure that it was 

functional and to remove any air bubbles and glycerol. This set-up enabled simultaneous 

testing of three rats. After connecting rats to the pump tubing, rats were acclimated to the 

Awake System for 60-min. Ringer’s solution was infused at a rate of 5-pl/min to check 

the integrity of the connections between the pump and probe tubing during this period.
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After 60-min acclimation period, basal dialysis perfusate samples were collected in ten 

minute intervals in labeled collection tubes. To start isoproterenol (10 pM) infusion, a 

liquid switch was turned and drug was infused at a rate o f 5 pl/min for 30 min. The 

dialysis perfusate collection tubes were changed every ten minutes and stored on ice. At 

the end of the infusion period, rats were disconnected from the pump tubing and quickly 

anesthetized with halothane to remove the microdialysis probe. Wounds were closed 

with surgical clips.

Microdialysis Glycerol Assay

Due to the small volumes collected during the experiment, a highly sensitive 

glycerol assay was necessary. Therefore, samples were analyzed using the CMA 600 

microanalyzer at Carnegie Medicin (Worcester, MA). Basal and peak glycerol release 

were compared within and between groups.

Dietary Challenge

After completing the whole body and local lipolytic challenges, surviving rats 

(n = 24) were placed on a moderately high fat (MHF = 31.8% kcal as fat; Research Diets, 

New Brunswick, NJ, (99)) diet for 14 weeks. At the end of 14 weeks, rats were classified 

as obesity-prone (OP) or obesity-resistant (OR) based on body weight gain (99, 111). 

Body weight and food intake were measured weekly. These data were used to calculate 

feed efficiency, relative growth, and relative food consumption. Feed efficiency is 

calculated as body weight gain (g) divided by energy consumed (MJ) for a given week 

and represents storage of energy as body weight. Relative food consumption is 

determined by dividing weekly food consumption (g) by the mean body weight for that 

week and indicates consumption of food as a function of body mass. Relative growth is
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calculated by dividing weekly body weight gain by the mean body weight for that week 

and depicts weight gain as function of body mass. Rats were killed by decapitation and 

trunk blood was collected for plasma. Epididymal and retroperitoneal fat pads were 

harvested and weighed for each rat. Fat pad weight was used to calculate adiposity 

index, a measure of fatness (42).

Plasma Hormone Measurements

Plasma leptin and insulin concentrations were determined by radioimmunoassay 

(RIA) according to supplied protocols (Linco Research, Inc., St. Louis, MO).

Statistics

Glycerol release data from either the whole body or local lipolytic challenge were 

compared between groups with Student’s t-test. Total body weight gain, visceral fat pad 

weight, cumulative food intake data were all compared with Student’s t-tests. Pre- and 

post-dietary plasma leptin and insulin concentrations were analyzed with 2 x 2  repeated 

measures analysis of variance (ANOVA). Repeated measures ANOVA were also used to 

compare weekly data (body weight and food intake-related data). Comparisons of 

weekly means for each variable were made with Student’s t-test corrected for Type I 

error rates (Tukey-Kramer test). A correlation (Pearson) matrix was generated to 

evaluate relationships among certain variables. All data are expressed mean ± standard 

error of the mean (SE) and level of significance was set at p < 0.05 for all comparisons. 

METHODS: EXPERIMENT 2

Animals and Dietary Challenge

Inbred OP and OR male SD rats (n = 6 per group) were used for the experiments 

in this section. Rats were purchased at approximately 4 weeks of age from Columbia
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University, which received breeder pairs from the original stock of Levin et al. (107).

Rats were individually housed in hanging stainless steel cages in a temperature-controlled 

room (22 ± 2°C) with a 12 h light-dark cycle. Rats were acclimated to new surroundings 

before conducting any experiments and fed a standard rat chow (Chow = 4.5% kcal as 

fat; Harlan Teklad, Madison, WI) ad libitum for four weeks. Body weight, naso-anal 

length and food intake were measured over the last 2 weeks to evaluate feed efficiency on 

a chow diet. Feed efficiency was calculated as body weight gain (g) divided by energy 

consumed (kcal) for 2 weeks. At 8 weeks of age, OP and OR rats were killed by 

decapitation and trunk blood was collected in EDTA-coated glass tubes. Visceral fat 

depots (epididymal and retroperitoneal) were excised and weighed and a sample of 

subcutaneous fat from the inguinal region was also removed for analysis.

Retroperitoneal, epididymal, and subcutaneous adipose tissues were placed in warm PBS 

buffer (37°C) after dissection.

Adipocyte Isolation

Adipose tissues from the same depot and group (e.g., OP epididymal) were 

pooled and collagenase digested according to the method of Rodbell (136). 

Approximately 5-g of each pooled fat depot were minced and placed in 50-ml centrifuge 

tubes containing 5-mg of collagenase (Type I; Worthington Biochemical Corp., 

Lakewood, NJ) and 5-ml o f Krebs-Ringers-Hepes-Bicarbonate-Albumin (KRBH-A) 

buffer plus 50-pl of 50 mM glucose. Tubes were shaken (60 cycles/min) at 37°C for 1-hr 

and adipocytes were separated from cellular debris and undigested tissue by filtering over 

250-fim nylon mesh. Adipocytes were washed several times with collagenase-free 

KRBH-A buffer to remove collagenase and centrifuged to separate adipocytes from
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preadipocytes, stromal cells, and vascular membranes. Adipocytes were diluted to a final 

concentration of 10% cells (e.g., 2-ml of packed adipocytes in 18-ml of KRBH-A buffer), 

which is approximately 100,000 cells/ml. Tnis cell suspension was utilized for the 

procedures outlined below.

Cell Diameter and Size

Cell diameter (pm) of approximately 1,200 cells (-200 cells per fat pad per rat) 

was measured with the Image 1 Analysis System (Universal Image Corporation, West 

Chester, PA). The 10% cell suspension was used for the cell diameter measurements. 

Briefly, one slide with two vacuum grease wells was made and 3-4 drops (-100 pi /well) 

were placed in each well. Six slides per fat pad per group were used to measure 

approximately 200 cells per slide. The Image 1 Analysis System allowed for images to 

be stored and analyzed at a later time. Mean cell diameter was used to estimate mean cell 

volume (64) and cell surface area (167). Cell size (pg lipid/cell) was calculated by 

multiplying cell volume (pi) by lipid density (lipid density is approximately 0.915 g/ml) 

(39).

Cell Lipid Content

Cell lipid content was determined according to the method of Dole (41). The 

10% cell suspension (1-ml per sample) was utilized to determine cell lipid content. Six 

replicates of cell suspension were added to 5 ml of lipid extraction solution (2-propanol: 

heptane: sulfuric acid). Tubes were vortexed and 3 ml of distilled water and heptane 

were added. After vortexing and centrifuging, the upper heptane phase containing lipids 

was quantitated and recorded. Duplicate, 1.5-ml samples of this phase were evaporated 

(heptane) on tared aluminum weigh boats. Weigh boats were re-weighed after
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evaporation and the difference was equal to the lipid weight (mg). Cell lipid content and 

cell size were used to calculate cell number (39), which was used with cell surface area 

(167) to normalize glycerol release data.

In vitro Lipolysis Assay

Studies of hormone-stimulated lipolysis were performed on isolated cells with 

various concentrations of hormone, drug, or both. In plastic tubes (17 x 100 mm), 160-pl 

of 10% cell suspension were incubated with 60-pl of lipolysis buffer (UPO  buffer: 

adenosine deaminase, PBS and KRBH-A buffer) and 25-pl of various concentrations of 

either isoproterenol (final concentrations = 10'8 to 10*6 M, Sigma, St. Louis, MO), bovine 

growth hormone (GH; final concentrations = 10*8to 10-6 M, Monsanto, St. Louis, MO), 

or forskolin (final concentration = 10'5 M, Calbiochem, La Jolla, CA). Preliminary 

research in our laboratory revealed that isoproterenol and GH-stimulated lipolytic 

responses were not present at hormone concentrations below 10'8 M (Davies and 

Lauterio, unpublished observations). Moreover, the findings of Tavemier et al. (151) 

revealed that 10"6 M isoproterenol is a maximal dose for all types of adipocytes.

Therefore, the dose range of 10'8 to I O'6 M was chosen for both isoproterenol and GH. 

They (151) also showed that forskolin at 10~s M is a maximum dose. Dexamethasone (5- 

pl: final concentration = 2.5x1 O'7 M, Phoenix Pharmaceuticals, St. Joseph, MO) was also ■ 

added to tubes alone or with GH (50). KRBH-A buffer (5-pl) was added to non- 

dexamethasone tubes for proper dilution. Basal (control) tubes contained 160-pl of 10% 

cell suspension, 60-pl of LIPO and 30-pl of KRBH-A buffer. Six replicate tubes were 

utilized for each condition with visceral adipocytes and 4 replicates with subcutaneous 

cells due to lack of cells. Tubes were incubated at 37°C in a shaking water bath for 4 hr.
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The 4 hr incubation period was chosen because the effects of GH on lipolysis are 

reported to occur after a lag period of approximately 2 hr (SO). Standardization of the 

time periods also allowed for comparisons among all test conditions. After incubation, 

200-pl o f media below cells were deproteinized with 200-pl o f cold 0.6SN perchloric 

acid (PCA) in a separate tube, vortexed and frozen at -20°C until glycerol analysis (60).

Glycerol Assay fo r In vitro Lipolysis Assay

Thawed samples were centrifuged at maximum speed (13,000 rpm) for 20 

minutes, after which, PCA was neutralized with SO pi of imidazole buffer (0.4 M 

imidazole, 2 N KOH, 0.4 M KC1) in the same microfuge tube (60). Glycerol was 

measured in 100 pi of the neutralized sample according to the Sigma Glycerol Kit (Sigma 

#337-40A, St. Louis, MO) protocol with slight modifications and calculated by an 

equation determined by a standard curve. Glycerol was used as an index of lipolysis 

instead of free fatty acids because glycerol must exit adipocytes due to reduced glycerol 

kinase levels (1S6). Glycerol release was expressed per cell surface area per 4 hr to 

account for cell size differences (167) and as fold increase above basal to assess 

responsiveness (condition -  basal/ basal).

Plasma Profiles

Plasma glucose was measured immediately after plasma separation with the 

Sigma Glucose kit (St. Louis, MO). The remaining plasma was stored at -20°C until 

specific hormone analyses. Plasma insulin concentrations were measured with a rat- 

specific RIA kit according to the provided protocol (Linco Research, Inc., St. Louis,

MO). Plasma leptin concentrations were measured with a murine leptin ELISA
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according to the provided protocol (Diagnostics System Laboratory Inc., Webster, TX). 

This ELISA has been reported to have 100% cross-reactivity with the rat leptin species.

Statistics

Glycerol release normalized to cell surface area was compared between different 

adipocyte populations for OP and OR with appropriate statistical tests (ANOVA, 

Student’s t-tests). Cell sizes and diameters from each fat depot were compared between 

OP and OR with Student’s t-tests, as needed. Body weight, feed efficiency, fat pad 

weight, plasma leptin and insulin concentrations were all compared between groups with 

Student’s t-tests, as needed. All data are expressed mean ± SE and level of significance 

was set at p < 0.05 for all comparisons.

METHODS: EXPERIMENTS 3,4, & 5

Animals and Dietary Challenge

Sixty, outbred male Sprague-Dawley rats (175 - 200 g) were used for 

Experiments 3,4, and 5. Rats were individually housed in hanging stainless steel cages 

in a temperature-controlled room (22 ± 2°C) with a 12 h light-dark cycle and allowed to 

acclimate to their new surroundings for one week. After initial weight and length 

measurements, six rats were randomly selected and killed to determine baseline data from 

rats fed a chow diet (Harlan Teklad, Madison, WI) ad libitum. Of the remaining animals, 

twelve rats were randomly selected to remain on a purified low fat (LF = 10.6% kcal as 

fat; Research Diets, New Brunswick, NJ) diet and the other rats (n = 42) were challenged 

with the MHF (MHF = 31.8% kcal as fat; Research Diets) diet for 1 or 3 (see Experiment

4) weeks. All rats were fed ad libitum. Body weight and food intake (corrected for 

spillage) were measured weekly and used to calculate feed efficiency, relative growth,
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and relative energy consumption. Feed efficiency was calculated as body weight gain (g) 

divided by energy consumed (kcal) for a given week. Relative energy consumption was 

determined by dividing weekly energy consumption (kcal) by the mean body weight for 

that week. The term, relative energy consumption, is used in the present experiments 

instead of relative food consumption because rats consumed diets (MHF and LF) with 

different energy densities. Relative growth was estimated by dividing weekly body 

weight gain by the mean body weight for that week.

After 1-wk of dietary challenge, rats with greatest (n = 6) and least (n = 6) amount 

of body weight gain were killed to examine the early effects o f diet and weight gain on 

insulin-stimulated glucose uptake in isolated epididymal adipocytes (Experiments 3,4, &

S). Six rats consuming the LF diet for 1 week were also killed and served as controls (C). 

The remaining rats continued their diets for 2 more weeks, after which the 6 highest and 

6 lowest weight gainers on the MHF diet along with the other 6 C rats were examined for 

insulin responses in isolated adipocytes (Experiment 4). High weight gainers were 

referred to as OP and low weight gainers, OR. Remaining rats were not utilized in these 

experiments. Rats were killed in the postprandial rather than fasting state because 

lipogenic enzyme activity is increased during the former period (149). They were killed 

by decapitation and blood was collected in EDTA-coated glass tubes. Plasma was 

separated by centrifugation and used to determine plasma hormone and metabolite 

concentrations. Epididymal fat and retroperitoneal fat were excised and weighed. 

Retroperitoneal fat was snap-frozen in liquid nitrogen. Epididymal fat tissues were 

placed in 37°C PBS after dissection.
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Adipocyte Isolation

A piece of epididymal fat tissue was weighed for each animal and then pooled 

according to group and fat depot. Pooled fat was minced and then collagenase digested 

to isolate adipocytes according to the method of Rodbell (136). Approximately S-g of 

each pooled fat were placed in 50-ml centrifuge tubes containing 5-mg of collagenase 

and S-ml of KRBH-A buffer plus 50-pl of 50 mM glucose. The KRBH-A buffer also 

included an adenosine analog, (-J-N^-phenylisopropyl adenosine (PIA), to minimize 

lipolysis (60). These tubes were shaken (60 cycles/min at 37°C) for 1-hr and adipocytes 

were separated from cellular debris and undigested tissue by filtering over 250-pm nylon 

mesh. Adipocytes were washed several times with collagenase-ffee KRBH-A buffer to 

remove collagenase and centrifuged to separate adipocytes from preadipocytes, stromal 

cells, and vascular membranes. Adipocytes were diluted to a final concentration of 10% 

cells (e.g., 2-ml of packed adipocytes in 18-ml of KRBH-A buffer), which is 

approximately 100,000 cells/ml. This cell suspension was utilized for the procedures 

outlined below.

Cell Diameter and Size

Cell diameter of approximately 1,000 cells (-200 cells per fat pad per replicate) 

was measured with the Image 1 Analysis System. The 10% cell suspension was used for 

the cell diameter measurements. Briefly, one slide with two vacuum grease wells was 

made and 3-4 drops (-100 pi /well) were placed in each well. Five slides per group were 

used to measure approximately 200 cells per slide. The Image I Analysis System 

allowed us to store images for later review and analysis. This facilitated concurrent cell 

profiling with in vitro experimentation. Mean cell diameter was used to estimate mean
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cell volume (64). Cell size was calculated by multiplying cell volume (pi) by lipid 

density (lipid density is approximately 0.9IS g/ml) (39).

Cell Lipid Content

Cell lipid content was determined according to the method of Dole (41). The 

10% cell suspension (1-ml per sample) was utilized to determine cell lipid content. Five 

replicates of cell suspension were added to S ml of lipid extraction solution (2-propanol: 

heptane: sulfuric acid). Tubes were vortexed and 3 ml of distilled water and heptane 

were added. After vortexing and centrifuging, the upper heptane phase containing lipids 

was quantitated and recorded. Duplicate, 1.5-ml samples of this phase were evaporated 

(heptane) on tared aluminum weigh boat. Weigh boats were re-weighed after 

evaporation and the difference was equal to the lipid weight (mg). Cell lipid content and 

cell size were used to calculate cell number (39), which was used to normalize glucose 

uptake and metabolism data.

Glucose Uptake Assay (Experiment 3)

Glucose uptake assay was used as an index of insulin sensitivity and performed 

according to the method of Livingston and Lockwood (114), as modified by Fried et al. 

(60). This assay measured the total uptake of radiolabeled 2-deoxyglucose (>4C-2-DG, 

Sigma, St. Louis, MO) instead of glucose. This isoform (2DG) is preferable as it is 

transported and phosphorylated by the same processes as glucose, but it cannot be further 

metabolized (159), thus providing a reliable endpoint. Five replicates were run for each 

condition with cells from week 1 only. 250-pl aliquots of the 10% cell suspensions were 

added to plastic test tubes (17x100 mm) containing 0.1,1.0 or 3.5 (maximal dose) nM of 

insulin (in 3 pi). Tubes without insulin (Humulin R, Lilly, Indianapolis, IN) served as
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basal glucose uptake. Phloretin (3 nM in 3-pl, Sigma, St. Louis, MO)-treated cells were 

used to assess non-specific glucose uptake. Afier incubation in shaking water bath at 

37°C for 15-min, 50-pl of a cocktail containing 0.1 mM cold 2-DG and I4C-2-DG (0.16 

pCi per SO pi) were added to each tube. Incubation was stopped after 2 minutes by 

centrifuging tube contents through 100-pl of silicon oil. Centrifuge tubes were cut 

through the silicon layer and fat cell pellets were dropped into scintillation vials. Ten ml 

of scintillation fluid were added to each vial and radioactivity was counted in a liquid 

scintillation counter.

Total counts per minute (CPM) for 25 pi of the radioactive cocktail were used to 

calculate specific activity by dividing CPM by 2500 to yield CPM per picomole (pmol). 

Sample counts minus blanks were divided by specific activity and cell number to obtain 

relative rates of glucose uptake (pmol/106 cells/2 min). Basal glucose uptake, condition 

minus basal glucose uptake to account for differences in basal values and percent 

increase above basal to assess insulin responsiveness were compared among groups.

Lipogenesis Assay (Experiment 4)

The lipogenic effects of insulin were determined by measuring glucose 

incorporation into lipids. Aliquots of pooled epididymal cells were incubated with 

radiolabeled glucose in the absence or presence of insulin (0.1,1.0 and 3.5 nM in 10-pl 

for the cells from week 1) according to the protocol of Lavau et al. (102). Due to insulin 

sensitivity issues, comparisons at week 3 were made only with insulin at 3.5 nM 

(maximum concentration). In polypropylene scintillation vials, 500-pl of 10% cell 

suspension were added to 500-pl of a cocktail containing 5mM glucose and [U-14C]- 

glucose (0.5 pCi per tube, Sigma, St. Louis, MO). Basal glucose metabolism was
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measured by incubating cells without insulin. Blanks were run in parallel with each 

experiment by incubating buffer alone (no cells) with radiolabeled cocktail to account for 

non-specific radiolabelling. Five replicates were measured for each condition. Prior to 

incubation, cells were gassed with 95% C02:5% 0 2 for 30-seconds and capped with a 

stopper that was equipped with a center well (Kimble-Kontes, Vineland, NJ) containing a 

strip of Whatman #3 filter paper (Whatman, Maidstone, England). After 2-hr incubation, 

the reaction was terminated by adding 0.5 ml of 6N sulfuric acid (Labchem Inc, 

Pittsburgh, PA) to the cells at the bottom of the vial and 0.3 ml o f Hyamine hydroxide 

(Packard, Meriden, CT) to the center well to trap radiolabeled carbon dioxide (C02).

Vials were re-capped and incubation was allowed to continue for an additional 90 min to 

capture radiolabeled C 02. Radioactive counts were measured in two 25-pl aliquots of the 

radioactive cocktail to determine specific activity. Specific activity was used to convert 

counts per minute (CPM) to glucose (pmoles).

The following sections address the individual procedures utilized to measure the 

various products of glucose metabolism.

Total Lipids (Triglycerides)

Incorporation of 14C into total lipids was determined by isolating lipids from the 

media and cells at the bottom of the vials by method of Dole (41). First, 5-ml of lipid 

extraction solution were added to the media and cells at the bottom of the vials. After 

transferring to 15-ml Falcon tubes and vortexing, 3 ml o f distilled water and heptane 

were added and tubes were vortexed and centrifuged. After centrifugation, lipids in the 

upper heptane phase (i.e., lipid extract) were quantitated by evaporating 1-ml of this 

phase in tared scintillation vials. After evaporation, the scintillation vials were re
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weighed and the difference was equal to the lipid content (mg/ml). Scintillation fluid was 

added to the vials and radioactivity was counted. After subtracting radioactivity 

associated with the blank, radioactivity (CPM) was converted to pmoles of glucose 

incorporated into lipids and this value was normalized for mg of cellular lipids and cell 

number, thus both cell size and cell number adjustments were performed.

Fatty Acid Moities of Triglycerides

To determine incorporation of l4C into fatty acids (FA), two ml of the 

aforementioned lipid extract were saponified with 40% KOH in ethanol and then 

acidified with 3N HC1 (102). FA moieties were separated by adding heptane and then 

centrifuged. Two ml samples of the upper heptane phase containing FA were added to 

scintillation vials and allowed to dry overnight. After drying, scintillation fluid was 

added and radioactivity was measured in a scintillation counter. After subtracting blank, 

the radioactive counts associated with FA moiety were determined and this was 

calculated as a percentage of total lipids. This percentage was then used to estimate 

pmoles of glucose incorporation by multiplying it by the pmoles of glucose associated 

with total lipids.

Glyceride-glycerol Moiety of Triglycerides

Since triglycerides are composed of FA and glycerol, incorporation of I4C into 

glyceride-glycerol moiety was assumed to be the difference between total lipids and FA.

Carbon Dioxide

Incorporation of l4C into CO2 was determined by clipping the center wells into 

scintillation vials containing scintillation fluid and allowing vials to set for 24-hr in the
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dark. After 24-hr, radioactive counts were measured, converted to pmoles of glucose and 

normalized to cell number.

Plasma Profiles

Plasma glucose was measured immediately with a Sigma kit (Glucose HK, St. 

Louis, MO). The remaining plasma was stored at -20°C until specific hormone analyses. 

Plasma insulin and leptin concentrations were measured with rat specific R1A kits (Linco, 

Inc, St. Louis, MO). Plasma free fatty acids (FFA) concentrations were measured with 

the NEFA C kit (Wako Chemical, Richmond, VA). Plasma and lipoprotein triglyceride 

and cholesterol concentrations were measured with Sigma kits (Sigma Chemical, St.

Louis MO). Lipoprotein fractions were obtained as previously described (40).

Statistics (Experiments 3 & 4)

Body weights, fat pad weights, cell size, plasma leptin, insulin, FFA, and glucose 

concentrations were all compared among groups with either one-way ANOVA (Tukey- 

Kramer for post-hoc test) or Student’s t-tests, as needed. Feed efficiency, relative 

growth, and relative energy consumption were calculated as described earlier and 

compared among groups with one-way ANOVA. Glucose uptake expressed as either 

relative to cell number, as condition minus basal or as percent increase above basal were 

compared among groups or between OP and OR with either one-way ANOVA or 

Student’s t-tests, as needed. Insulin-stimulated uC-glucose metabolism (CO2, lipids 

including fatty acids and glycerol) expressed as either relative to cell number, as 

condition minus basal or as percent increase above basal were compared among groups 

or between OP and OR with either one-way ANOVA or Student’s t-tests, as needed. Due 

to the large differences between adipocyte glucose metabolism responses between MHF
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and LF fed rats, initial data analyses included all three groups to account for dietary 

differences and then a secondary analysis was performed on OP and OR data. All data 

were expressed mean ± standard error of the mean and level of significance was set at 

p < 0.05 for all comparisons.

FAS mRNA Expression via RT-PCR (Experiment 5)

Total RNA was isolated from pooled epididymal fat tissue of OP, OR, or C rats 

from week 1 according to the method of Chomczynski and Sacchi (27). RNA yields and 

quality were assessed by measuring absorbance at 260 and 280 nm and by electrophoresis 

on 1.0% agarose gels. cDNAs were synthesized by reverse transcription (RT) of total 

RNA according to the protocol provided with the First Strand cDNA Synthesis kit 

(Promega, Madison, WI). RNA (1 pg in a volume of 7.5 pi) was heated at 70°C for 5 

min and then placed ice on for 2 min. RT reaction mixture containing IX RT buffer, 1 

mM dNTP, 5 mM MgCh, 20 U RNasin, 20 U AMV reverse transcriptase, 0.5 pg oligo 

(dT)is, and 2 pi of nuclease-free water in a total volume of 12.5 pi was added to RNA to 

yield a final reaction volume of 20pl (47). After brief centrifugation, reaction tubes were 

incubated at 42°C for 45 min, then at 95°C for 5 min. Reaction tubes were stored at 

-80°C overnight or used for polymerase chain reaction (PCR) immediately.

The cDNA equivalent of 250 ng (for fatty acid synthase) or 50 ng (for P-actin) of 

starting RNA was amplified by PCR with published oligonucleotide primers (Life 

Technologies/ Gibco BRL, Rockville, MD) specific for fatty acid synthase (FAS; (5)) and 

P-actin (45). The specific primer sequences and product sizes are listed in Table 1. PCR 

mixes contained IX Reaction buffer (Promega), 200 pM dNTP, 0.2 pM of forward and 

reverse primers for FAS or 0.1 pM of forward and reverse primers for P-actin, one TAQ
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Hot Start bead (Promega) and RT mix in a final volume of SO pi. The thermocycler was 

programmed for 95°C for 2 min followed by 36 cycles at 95°C for 45 sec, 45 sec at 55°C 

(annealing temperature), and 45 sec at 72°C (47). Following PCR, amplification 

products were visualized on 1.5% agarose gels and a digital photograph was recorded 

with the Eagle Eye Q Still Video System and Software (Stratagene, La Jolla, CA). Band 

intensities for each ampiicon were measured using the SigmaGel (Jandell Corporation, 

San Rafael, CA) program. FAS/p-actin ratios were calculated to control for variations in 

RNA loading.

Statistics (Experiment 5)

Data were expressed as percent of control (C = 100%) and compared between 

groups. No formal statistics were performed because total RNA was isolated from 

pooled tissues, which essentially yields only one data point per group.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39

Table 1. Primer sequences and PCR product sizes fo r fatty acid synthase (FAS) 

and P-actin

Sense Primer Antisense Primer Product size

FAS

P-actin

S ’-ctgaatctgagtatcctgctg-3’ 

5 ’-ctctttaatgtcacgcacgat-3 ’

5 ’-tgttgatgatagactccaggc-3 ’ 

5 ’ -agtgctgtgggtgtaggtact-3 ’

838 bp 

534 bp
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CHAPTER III

IN VIVO LIPOLYTIC RESPONSIVENESS IS NOT A PREDICTOR 

OF OBESITY SUSCEPTIBILITY IN OUTBRED 

SPRAGUE-DAWLEY RATS

INTRODUCTION

Landerholm and Stem (97) reported that epinephrine-stimulated lipolysis in vitro 

was a predictor of obesity susceptibility in female Sprague-Dawley (SD) rats. In their 

study, excised subcutaneous adipose tissue was incubated with epinephrine prior to an 

11-wk very high-fat (84% kcal) dietary challenge. Glycerol release was measured for 

each animal and data were separated into quartiles. Rats in the lowest quartile (i.e., 

lowest lipolytic response) were compared with rats in the highest quartile. Although 

initial body weights did not differ, the lowest lipolytic responders had significantly 

elevated body weights and carcass adiposity compared to the highest lipolytic responders 

after the dietary challenge (97). Moreover, preliminary data from Brown et al. (23) noted 

similar findings for male Holtzman rats. In their study, epididymal fat tissue examined in 

vitro for catecholamine-stimulated lipolysis prior to a high fat dietary challenge. These 

researchers found that body weight gained on a high fat diet and mesenteric depot weight 

were negatively correlated with catecholamine-stimulated lipolysis (23). These data 

suggested that reduced lipolytic responsiveness to catecholamines predisposed rats to 

obesity.

In the Landerholm and Stem study (97), lipolytic responsiveness was assessed in 

excised subcutaneous adipose tissue, which is less sensitive to lipolytic agents than
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visceral adipose tissues in rats (60,151). Since the intent of their experiment was to 

develop a rapid screening tool for a large group o f rats, invasive surgery to remove 

visceral fat was not warranted. It was of interest to determine whether these in vitro data 

could be replicated in vivo because of the difficulty extrapolating in vitro responses to 

actual in vivo conditions (4). Therefore, we attempted to confirm these results by 

examining lipolysis in vivo by two separate methods; whole body and local approaches. 

The whole body approach addressed overall responsiveness to a lipolytic agent via 

plasma sampling, whereas the local approach allowed for evaluation of an individual 

adipose (epididymai) depot via microdialysis. Visceral fat was chosen for study because 

of its association with the metabolic syndrome (91,134,141). Finally, to determine 

whether lipolytic sensitivity predicted obesity-susceptibility, rats were challenged with a 

moderately high fat (MHF) diet for 14 weeks. After the dietary period, rats were 

classified as OP or OR and pre-diet lipolytic responses (i.e., glycerol release) were 

compared retrospectively between groups.

RESULTS

Body Composition and Plasma Hormone Profiles

After a 14 wk dietary challenge, rats were classified as obesity-prone (OP; n = 8) 

or obesity-resistant (OR; n = 8) based on body weight gain. The middle eight rats were 

not used for analyses. OP and OR rats did not differ in body weight prior to the MHF 

diet. Body weights differed significantly between OP and OR rats after two weeks on the 

MHF diet and this remained throughout the study (Figure 1). As a result of the diet, OP 

rats gained more body weight and accumulated more visceral fat, expressed as total fat 

and as an index of adiposity, than OR rats after the 14-wk period (Table 2).
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Fig. 1. Weekly body weights of obesity-prone (OP; solid line) and obesity-resistant (OR; 
dashed line) rats fed a moderately high fat diet for 14 weeks. Data are represented as 
mean ± SE. ‘ Difference between OP and OR rats at a given time point (p < 0.0S or less).
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Table 2. Adiposity variables andfood intake data o f obesity-prone (OP) and obesity- 
resistant (OR) rats fed  a moderately high fa t diet fo r 14 weeks

OP (n = 8) OR (n = 8)

Total visceral fat (g) 67.0 ±2.8* 42.5 ± 3.3b

Adiposity index (%) 8.8 ± 0.32* 6.7 ± 0.42b

Cumulative energy intake (kcal) 11186 ±287* 9698 ± 208b

Cumulative feed efficiency (g/MJ) 8.1 ±0.1* 6.3 ± 0.03b

Data are presented as mean ± SE.
Adiposity index = visceral fat (g)/ [carcass wt -  visceral fat] (g) * 100% (42) 
Feed efficiency = total body weight gained (g)/ total energy intake (MJ) 
Different letters within row denote significant differences (p < 0.01 or less)
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Baseline plasma leptin and insulin concentrations were not different between 

groups. However, there was a significant group (OP and OR) by time (pre and post) 

interaction (p = 0.004) for leptin. Both groups significantly increased plasma leptin 

concentrations from pre- to post-diet, but the increase for the OP rats was significantly 

greater than that for OR rats (Table 3). Similar findings were noted for plasma insulin 

concentrations, except pre- and post-dietary plasma insulin concentrations for OR rats 

were not different (Table 3). Moreover, plasma leptin concentration was positively 

correlated with fat mass (r = 0.71, p < 0.0S), thus group differences for plasma leptin may 

have resulted of fat mass differences. To account for this, plasma leptin concentrations 

were normalized to visceral fat mass (i.e., relative leptin). OP rats still had significantly 

(p < 0.05) increased relative leptin when compared to OR rats (0.79 ± 0.11 vs. 0.52 ±

0.03 ng/ml/g, respectively), indicating increased leptin secretion per unit fat mass.

Rates o f Food Consumption and Growth

Although rats consumed the same diet, OP rats had greater feed efficiency (i.e., 

the ratio of body weight gained for the amount of energy consumed) throughout the 

dietary challenge, except at weeks 3 and 12 (Figure 2). OP also consumed greater 

cumulative amounts of energy for the 14 weeks (Table 2). Interestingly, relative food 

consumption (i.e., ratio of food consumed (g) by the average body weight (g) for a given 

week) was increased in OP rats only during the first two weeks of the MHF diet (Figure 

3). Additionally, OP rats grew at a greater rate (i.e., ratio of body weight gained (g) by 

the average body weight (g) for a given week) than OR rats only for the first two weeks 

of the MHF diet (Figure 4).
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Table 3. Pre- and post-diet plasma hormone profiles o f obesity-prone (OP) and obesity- 
resistant (OR) rats fed  a moderately high fa t diet fo r  14 weeks

OP (n -  8) OR(n = 8)

Pre-diet plasma insulin (ng/ml) 0.7 ±0.1* 0.9 ±0.2*

Post-diet plasma insulin (ng/ml) 5.1 ± 1.0* 2.0 ± 0.3b

Pre-diet plasma leptin (ng/ml) 1.2 ±0.1“ 1.2 ±0.1*

Post-diet plasma leptin (ng/ml) 52.3 ± 6.2* 22.1 ± 2.1b

Data are presented as mean ± SE. (See text for pre and post-diet comparisons) 
Different letters within row denote significant group differences (p < 0.05 or less)
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Fig. 2. Weekly feed efficiency of obesity-prone (OP; solid line) and obesity-resistant 
(OR; dashed line) rats fed a moderately high fat diet for 14 weeks. Data are represented 
as mean ± SE. * Difference between OP and OR rats at a given time point (p < 0.0S or 
less).
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Fig. 3. Relative food consumption (RFC) of obesity-prone (OP; solid line) and obesity- 
resistant (OR; dashed lines) rats fed a moderately high fat diet for 14 weeks. Data are 
represented as mean ± SE. * Difference between OP and OR rats at a given time point 
(p < 0.05 or less).
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Fig. 4. Relative growth of obesity-prone (OP; solid line) and obesity-resistant (OR; 
dashed line) rats fed a moderately high fat diet for 14 weeks. Data are represented as 
mean ± SE. * Difference between OP and OR rats at a given time point (p < 0.05 or 
less).
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Glycerol Release in vivo

As expected, basal and peak glycerol release were greater for the whole body 

method compared to that measured from one epididymal fat pad via the microdialysis 

method. For the whole body method, basal and peak glycerol release did not differ 

between groups (data not shown). Isoproterenol injections increased plasma glycerol 

concentrations by approximately 65% over basal levels, but the differences (peak -  basal) 

in isoproterenol response were similar between OP and OR rats (Figure 5). Comparable 

findings were also obtained from measuring local lipolytic responses in epididymal fat 

pad via microdialysis. Basal and peak glycerol concentrations did not differ between OP 

and OR rats (data not shown). The isoproterenol response (peak -  basal) was not 

different in epididymal fat of OP and OR rats (Figure 6).

DISCUSSION

As in previous experiments utilizing this model, Sprague-Dawley (SD) rats 

diverged into two distinct populations (obesity-prone, OP and obesity-resistant, OR) 

based on body weight gain while consuming a moderately high fat (MHF) diet for 10 to 

14 weeks (40,98,101,105,106, 108,110,111). Weight gain was associated with 

increased fat accretion in these studies. This experiment and those that follow largely 

were designed to determine how this divergence occurs. Decreased lipid mobilization 

within fat stores may predispose rats to accumulate excess adiposity. The first study 

utilized the universal lipolytic agent, isoproterenol, to determine if lipolytic responses 

predicted obesity susceptibility in outbred SD rats. Lipolysis was assessed in vivo by two 

separate methods, plasma sampling (whole body challenge) and microdialysis in 

epididymal adipose depot (local challenge). Glycerol release was used as an index of
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Fig. 5. Isoproterenol-induced responses (peak minus basal plasma glycerol release) 
during a whole body lipolytic challenge in obesity-prone (n = 8; solid bars) and obesity- 
resistant (n = 8; striped bars) rats prior to a 14 week dietary challenge.
Data are represented as mean ± SE. Different letters denote significant differences 
(p < 0.05 or less).
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Fig. 6. Isoproterenol-induced responses (peak minus basal plasma glycerol release) 
during a local lipolytic challenge via microdialysis in the left epididymal fat pad of 8 
obesity-prone (solid bars) and 8 obesity-resistant (hatched bars) rats prior to a 14 week 
dietary challenge. Data are represented as mean ± SE. Different letters denote 
significant differences (p < 0.05 or less).
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lipolysis instead of free fatty acids because glycerol must exit adipocytes due to reduced 

glycerol kinase levels (156). Since the lipolytic and anti-lipolytic regulators exist in vivo, 

it was necessary to examine lipolysis in the intact animal to assess the net effect of 

isoproterenol as it existed in the intact animal. However to sort out isoproterenol-specific 

effects, as well as other lipolytic regulators, an in vitro analyses were also necessary (see 

Chapter IV).

After lipolytic challenges, rats were placed on a moderately high fat (MHF) diet 

for 14 weeks to obtain group classifications (i.e., OP or OR). The main finding was that 

in vivo basal and isoproterenol-stimulated glycerol release did not differ between OP and 

OR rats prior to dietary challenge, regardless of method. In agreement with these data, 

outbred SD rats predicted to become obese or remain lean based 24-urinary 

norepinephrine output prior to a high energy diet (111) had similar hormone-stimulated 

lipolysis in isolated adipocytes (Dr. Susan Fried, Rutgers University, personal 

communication). Moreover, Levin et al. (108) reported that in vivo basal and 

norepinephrine-induced thermogenesis (via oxygen consumption measurements) were 

not different between OP and OR rats before exposure to a high-energy diet. These data 

indicated that end organ responses to (i-adrenergic agonists were not altered in outbred 

OP and OR rats prior to the obese state. It is, however, not known whether lipolytic 

responsiveness is altered with the obese state in these rats. Interestingly, catecholamine- 

induced lipolysis was blunted in obese humans compared with lean ones (3). If similar 

events occurred in these rats, reduced honnone-stimulated lipolysis would allow OP rats 

to maintain their increased adiposity, but it was not a primary cause of the obese state.
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In the present study, isoproterenol (20 pg/kg) produced a 60 to 70% increase in 

whole body glycerol release. This isoproterenol dose was chosen because it elicited at 

least a 100% increase in glycerol release in similar size rats (4). Peak values in the whole 

body study were similar but slightly higher than that found by Amer (385 [OR] and 435 

[OP] vs. 375 pmol/L (4), respectively). Additionally, our basal values were also greater 

than that previously observed (276 [OR] and 303 [OP] vs. 175 pmol/L, respectively).

One limitation of our study was that only one dose was evaluated in the rats. The 

possibility still exists for different effects with other doses. However, we were 

attempting to measure lipolytic responses via two different methods before the rats 

reached a certain age and weight. Additional doses and days would have interfered with 

the start date of the dietary challenge. Moreover, differences between studies may be 

related the state of consciousness. Our rats were conscious and placed in a small 

sampling area, whereas they were sedated in the Amer study (4). Anesthesia is known to 

cause acute stress. Anesthetic drugs are also lipophilic and alter somatostatin, which may 

add other confounding factors since endpoints include fat and somatostatin-regulated 

hormones. Although conscious rats may experience increased stress during plasma 

sampling, extension catheters were added to minimize handling and reduce stress. 

Increased stress from the plasma sampling and inadequate habituation time may have 

accounted for the increased basal lipolysis, which may have reduced the effect of 

isoproterenol. Stress hormones, however, were not measured in this study.

In the second part of Experiment 1, local lipolytic responses were measured in 

epididymal fat pads via microdialysis and compared between OP and OR rats. 

Microdialysis allows one to assess individual tissues for different metabolic responses.
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Epididymal fat was chosen to represent visceral fat, which is strongly associated with 

many metabolic perturbations (91). Hyperinsulinemia and hyperleptinemia are examples 

o f these perturbations and both were present in our OP rats. Confirming the whole body 

data, local lipolytic responses were similar at basal and peak between OP and OR rats. 

These data suggested that P-adrenergic receptor populations or responsiveness were not 

altered in epididymal adipose tissues of outbred OP and OR rats. Previous studies have 

shown that body composition profiles were not different between outbred OP and OR rats 

prior to an obesity-inducing diet (105,106) and this may be related to the similar lipolytic 

responses in OP and OR groups. However, these findings do not preclude possible 

differences in epinephrine-stimulated lipolysis between groups as found previously (97). 

Epinephrine stimulates both anti-lipolytic mechanisms via ct2-adrenergic receptors and 

lipolytic mechanisms via P-adrenergic receptors (96). Although ot2-adrenergic receptor 

mRNA expression is low in rat epididymal fat (151), differential regulation of fat <*2- 

adrenergic receptor expression may contribute to divergent responses noted with MHF 

feeding. Moreover, other fat depots (e.g., mesenteric, retroperitoneal, or subcutaneous) 

should be evaluated to confirm our findings.

For comparison, our basal values were approximately 2.5 times greater than 

published values (4) utilizing similar methodology and microdialysis equipment. Peak 

glycerol values were similar between OP and OR rats and that found by Amer (4) when 

compared at the same isoproterenol concentration (10 pM). Due to basal differences, 

isoproterenol-stimulated response was approximately 10-fold greater in the Amer study 

vs. our data (250% vs. 23%, respectively). Using only one dose was a limitation to our 

study but as mentioned earlier, we were trying to perform two different experiments
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within a short amount of time. The major differences between Amer and our study are 

fat depot and sedation state. Dorsal subcutaneous fat was examined in the Amer study, 

whereas epididymal fat was probed in the present study. In another study examining 

gonadal fat responses via microdialysis, Darimont et al. (32) showed that glycerol release 

from parametrial fat was increased approximately 25%, which was similar to the 23% 

increase found within 30-min in the present study. Similar to whole body results, stress 

and anesthesia may have played a role in the disparate results between studies. In the 

present study rats were placed in an Awake System, which allowed for unrestrained 

movement. Moreover, rats had 1 hr to acclimate to the system prior to sampling. This 

time period might not have been sufficient to allow rats to re-establish basal stress and 

lipolytic levels although turnover and plasma half-lives for these neurohormones are 

short. To minimize these stress-related effects, all rats were familiarized with the system 

in the week preceding this set of experiments.

In summary, the present study was the first one to attempt predicting obesity- 

susceptibility utilizing in vivo approaches. Our data contrasted with earlier research that 

demonstrated in vitro glycerol release was significantly reduced in rats destined to 

become obese (23,97). Methodological issues could account for the differences among 

the studies. In vivo approaches were employed in the present study, whereas in vitro 

analyses were performed by previous researchers (23,97). Landerholm and Stem (97) 

also measured epinephrine-stimulated glycerol release from subcutaneous adipose tissue 

of female SD rats. Although Brown et al. (23) measured glycerol release in epididymal 

fat tissue of male Holtzman rats, their results did not agree with the in vivo microdialysis 

results of the present study. Strain-related differences may have accounted for the
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divergent results between studies. In conclusion, in vivo lipolytic responses, as assessed 

by two distinct methods, were not predictive of obesity susceptibility in male SD rats.

Although OP and OR rats did not differ in body weights and in vivo lipolytic 

responses prior to the MHF diet, numerous differences were found throughout the dietary 

challenge. Feed efficiency was increased in OP rats throughout the dietary challenge and 

this increased efficiency was associated with excess fat accretion (100). Interestingly, 

relative rates of food consumption and growth were greater in OP compared to OR rats 

during the early phase (i.e., first two weeks) of the dietary challenge, but were similar 

during the late phases (100). These results suggested that there were two phases 

(dynamic and static) occurring throughout the dietary challenge, which confirmed earlier 

findings in rats with hypothalamic obesity (17). The dynamic phase is represented by 

marked hyperphagia, hyperinsulinemia, and increased body weight gain (78). 

Hyperinsulinemia has been implicated as the primary event in obesity development with 

hypothalamic lesions (79). In the present study, plasma insulin concentrations did not 

differ between groups prior to the MHF dietary challenge and were not measured during 

the early phase of this challenge. On the other hand, OP rats consumed more energy and 

gained more body weight than OR rats upon introduction of a highly palatable diet. 

Consistent with these findings was the increased hypothalamic neuropeptide Y (NPY, a 

potent stimulator of food intake) mRNA expression found in outbred OP rats vs. OR rats 

prior to and after two weeks on a high energy diet (106). After the dynamic phase, both 

OP and OR rats grew and ate at similar relative rates (static phase) for the remainder of 

the dietary period. In agreement with these data, we reported that NPY mRNA 

expression was similar in OP and OR rats after 14 wk on a MHF diet (100). Moreover,
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NPY expression and synthesis are regulated by leptin and insulin (139). Plasma leptin 

and insulin concentrations were greater in OP rats than in OR rats, but NPY expression 

was similar between groups after the dietary challenge. It appeared that augmented levels 

of these hormones were necessary to regulate NPY expression in OP rats, suggesting both 

leptin and insulin resistance in these rats (100).

Other early diet-induced differences have also been reported for OP and OR rats. 

OR rats responded to a high fat diet by lowering 24-hr respiratory quotient with respect to 

OP rats at week 4, indicating increased fat oxidation for OR rats (26). Lipoprotein lipase 

(LPL) mRNA expression and activity were up-regulated in epididymal fat and down- 

regulated in the gastrocnemius muscle of OP rats after 1 wk on a high fat diet (125). This 

scenario possibly allowed for increased uptake of dietary fatty acids in adipose tissue and 

ultimately increased fat pad size. Therefore, processes other than lipolysis appeared to 

contribute to the increased adiposity and weight gain found in outbred OP rats during 

exposure to a MHF diet. These findings also indicated that the early phase of the dietary 

challenge should continue to be the research focus.
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CHAPTER IV

ASSESSMENT OF THE LIPOLYTIC RESPONSES IN ISOLATED 

ADIPOCYTES OF INBRED OP AND OR RATS

INTRODUCTION

As noted in Experiment 1, relative food consumption and growth were greater in 

OP rats compared to OR rats during the early phase of a dietary challenge but were 

similar during later phases (100). Furthermore, feed efficiency was augmented 

throughout the dietary challenge (100). Early weight gain in OP rats was associated with 

increased adiposity (40). Lipid mobilization (lipolysis) and responsiveness to lipolytic 

agents are possible factors contributing to the excess fat accretion in OP rats. Previous in 

vitro findings indicated that reduced lipolytic sensitivity in excised adipose tissues was 

associated with obesity susceptibility in male and female rats (23,97). However, results 

from Experiment 1 revealed that in vivo lipolysis as measured by two distinct methods 

was not a predictor of obesity susceptibility in outbred rats. In agreement, predicted OP 

and OR outbred rats (based on pre-dietary 24-hr urinary norepinephrine output (111)) did 

not differ in the lipolytic effect to (3-adrenergic agonists in vitro (Dr. Susan Fried, Rutgers 

University, personal communication). Although the above results may contrast, one 

consistent finding was that rats had similar body weights or body compositions at the 

time of the lipolytic assessment, regardless of future grouping (i.e., OP or OR).

Recently, Levin and colleagues developed inbred strains of Sprague-Dawley rats 

that were bred for obesity-prone or obesity-resistant traits (107). Moreover, Levin et al. 

(107) reported that weight-matched, inbred OP rats were fatter than OR rats, indicating
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that OP rats were already obese. OP rats were reported to have increased feed efficiency 

and insulin resistance in response to a high-energy diet and might be related to the 

increased adiposity found in OP rats (107). The exact reasons for these physiological 

differences have not been completely elucidated. Catecholamine-induced lipolysis is 

blunted in obese humans compared to lean ones in vivo and in isolated subcutaneous fat 

cells (3). On the other hand, visceral adipocytes from obese individuals are reported to 

have increased catecholamine sensitivity (3). Differences in lipolytic responses have not, 

however, been addressed in isolated adipocytes with this inbred rat model. Additionally, 

a major advantage with these rats is that group assignments (i.e., OP and OR) are known 

and physiologic comparisons can be made without dietary intervention.

Furthermore, earlier studies compared responses from a single fat pad or lipolytic 

agent (23,97, experiment 1). Tavemier et al. (151) noted that rat adipocytes from 

different fat pads had variable responses to lipolytic agonists. They also found that 

visceral adipocytes (e.g., epididymal and retroperitoneal) had increased numbers of Pi/p2 

adrenoceptors, adrenoceptor mRNA expression, and hormone sensitive lipase activity 

and expression when compared to subcutaneous adipocytes (151). Isolated adipocytes 

approximate the in vivo condition because cells have equal exposure to hormone or drug, 

whereas cells within excised tissues have different exposure levels to these agents due to 

diffusion issues. Therefore, lipolytic responses to isoproterenol, forskolin, and growth 

hormone (GH) were investigated in various types of isolated adipocytes from weight- 

matched, inbred OP and OR rats. Dexamethasone was also examined alone or with GH 

because it acts synergistically with GH to increase lipolysis (50).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

RESULTS

Body Composition, Plasma Hormone Profiles and Food Consumption

Although 8-wk old, inbred OP and OR rats had similar body weights, OP rats 

have 33% more visceral adiposity than OR rats while consuming a chow diet (Table 4). 

This was comparable to the 52% difference in carcass adiposity reported for weight- 

matched, inbred OP and OR rats (2.5 mo-old) on chow (107). Body lengths did not differ 

between groups (data not shown). Feed efficiency, energy intake, and body weight gain 

were similar between OP and OR rats in the present study (Table 4), which was 

consistent to that reported for weight-matched OP and OR rats after 1 week on a chow 

diet (107). Post-absorptive, plasma insulin, glucose, and leptin concentrations were not 

different between groups in our study (Table 5). In contrast, Levin et al. (107) found that 

post-absorptive plasma insulin and glucose levels were increased in young inbred OP 

rats, but were not different from OR rats in the fasted state.

Cell Size and Diameter

Cell sizes of isolated adipocytes from OP and OR inbred rats are located in Figure 

7. Briefly, mean cell size and diameter (56.6 ± 0.6 vs. 34.4 ± 1.9 pm, respectively) from 

RP fat cells were significantly increased in OP vs. OR rats. Groups did not differ in 

mean cell size and diameter (data not shown) of EPI fat cells. Mean cell sizes of 

subcutaneous (SC) fat from the inguinal region were not statistically different between 

OP and OR rats (p = 0.052), whereas cell diameter was significantly larger in OP 

compared to OR rats (58.0 ± 0.7 vs. 44.3 ± 3.7 pm, respectively).
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Table 4. Body composition and food intake data o f 8 wk old inbred Sprague-Dawley 

obesity-prone (OP) and obesity-resistant (OR) rats

OP (n = 6) OR (n = 6)

Body weight (g) 264.5 ± 6.6* 261.3 ±8.1*

Epididymal fat (g) 2.82 ±0.15* 2.16±0.09b

Retroperitoneal fat (g) 2.55 ± 0.22* 1.89 ± 0.1 lb

Adiposity index (%) 2.03 ±0.12* 1.55 ± 0.06b

Energy Intake (kcal) 1085.7 ±24.1* 1076.6 ± 30.0*

Feed efficiency (g/kcal) 0.094 ± 0.002* 0.098 ± 0.0031

Data are presented as mean ± SE.
Adiposity index = visceral fat (g)/ [carcass wt -  visceral fat] (g) * 100% (42) 
Feed efficiency = body weight gained (g)/ energy intake (kcal)
Different letters within row denote significant differences (p < 0.0S or less)

Table 5. Plasma profiles o f inbred obesity-prone (OP) and obesity-resistant (OR) rats at 
8 weeks o f age

_______________________ OP (n = 6)________ OR (n = 6)_________

Plasma glucose (mg/dl) 156.8 ±5.9* 145.7 ±5.0*

Plasma insulin (ng/ml) 1.1 ± 0.2* 1.0 ± 0.1*

Plasma leptin (ng/ml) 2.5 ± 0.3* 2.8 ± 0.2*

Data are presented as mean ± SE.
Different letters within row denote significant differences (p < 0.05 or less)
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Fig. 7. Mean cell size (fig lipid/ cell) of epididymal (EPI), retroperitoneal (RP), and 
subcutaneous (SC) adipocytes of 8 wk old inbred obesity-prone (OP; solid bars) and 
obesity-resistant (OR; striped bars) rats. Data are presented as mean ± SE.
Different letters within specific cell type indicate significant differences (p < 0.05). 
**p = 0.052 for SC.
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Glycerol Release in vitro

Since there were cell size differences and cell size influences lipolytic responses 

(10,67,104, 121, 131, 158, 168), glycerol release data were normalized to cell surface 

area to account for these differences (167). Cell surface area adjustments were performed 

on all cell types for comparisons among cell types. There were group and site-specific 

differences in hormone-stimulated lipolysis in response to various lipolytic agents in 

pooled RP, EPI and SC adipocytes from OP and OR rats. The following sections are 

arranged according to cell type and agonists.

Retroperitoneal Adipocytes and Isoproterenol & Forskolin

After adjusting for cell size differences, basal glycerol release was still 

significantly increased in RP adipocytes of OP rats vs. those of OR rats (Figure 8). 

Compounds that stimulate lipolysis via activation of the protein kinase A pathway were 

evaluated in RP adipocytes from OP and OR rats. Isoproterenol stimulated glycerol 

release in RP fat cells o f OP and OR rats, but all doses produced maximal or near 

maximal glycerol output. Absolute glycerol release was significantly reduced in RP fat 

cells of OP compared with OR rats (Figures 8). Group differences in glycerol release 

were also found with forskolin in RP adipocytes (Figures 8). To evaluate responsiveness 

to lipolytic agonists and to control for differences in basal responses, data were expressed 

as fold increase over basal. Pooled RP cells of OP rats were significantly less responsive 

to isoproterenol and forskolin than those of OR rats (Figures 9).
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Basal 10 100 1000 Forskolin
Isoproterenol (nM)

Fig. 8. Absolute rates of glycerol release in pooled retroperitoneal adipocytes of 6 inbred 
obesity-prone (solid bars) rats and 6 inbred obesity resistant (striped bars) rats in response 
to isoproterenol and forskolin (10 pM). All stimulated values are significantly greater 
than basal unless indicated in the text. Data are expressed as mean ± SE.
Different letters at specific concentration indicate significant differences (p < 0.0S).
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Fig. 9. Fold increase over basal glycerol release in response to isoproterenol and 
forskolin (10 pM) in pooled retroperitoneal adipocytes of 6 inbred obesity-prone (solid 
bars) rats and 6 inbred obesity resistant (striped bars) rats. Data are expressed as mean ± 
SE. Different letters at specific concentration indicate significant differences (p < 0.05).
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Epididymal Adipocytes and Isoproterenol & Forskolin 

Basal glycerol release was significantly reduced in EPI adipocytes of OP rats vs. 

those of OR rats (Figure 10). Isoproterenol stimulated glycerol release in EPI fat cells of 

OP and OR rats, but all doses produced maximal or near maximal glycerol output. 

Glycerol release, however, was significantly reduced in EPI fat cells of OP compared 

with OR rats (Figures 10). Group differences in glycerol release were also found with 

forskolin in EPI adipocytes (Figures 10). To evaluate responsiveness to lipolytic agonists 

and to control for differences in basal responses, data were expressed as fold increase 

over basal. Pooled EPI cells of OP rats were significantly less responsive to 

isoproterenol and forskolin than those of OR rats (Figures 11).

Subcutaneous Adipocytes and Isoproterenol & Forskolin 

Basal glycerol release was similar between SC adipocytes from OP rats and OR 

rats (Figure 12). Compounds that stimulate lipolysis via activation of the protein kinase A 

pathway were evaluated in SC adipocytes from OP and OR rats. Isoproterenol stimulated 

glycerol release in SC fat cells of OP and OR rats, but all doses produced maximal or 

near maximal glycerol output. Absolute glycerol release was not significantly different 

between SC fat cells of OP and OR rats, except at 100 nM isoproterenol (Figures 12). 

Group differences in glycerol release were also found with forskolin in SC adipocytes 

(Figures 12). To evaluate responsiveness to lipolytic agonists and to control for 

differences in basal responses, data were expressed as fold increase over basal. Pooled 

SC cells of OP and OR rats responded similarly to isoproterenol and forskolin, except at 

the lowest concentration of isoproterenol (Figures 13).
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Fig. 10. Absolute rates of glycerol release in pooled epididymal adipocytes of 6 inbred 
obesity-prone (solid bars) rats and 6 inbred obesity resistant (striped bars) rats in response 
to isoproterenol and forskolin (10 pM). All stimulated values are significantly greater 
than basal unless indicated in the text. Data are expressed as mean ± SE.
Different letters at specific concentration indicate significant differences (p < 0.05).
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Fig. 11. Fold increase over basal glycerol release in response to isoproterenol and 
forskolin (10 pM) in pooled epididymal adipocytes of 6 inbred obesity-prone (solid bars) 
rats and 6 inbred obesity resistant (striped bars) rats. Data are expressed as mean ± SE. 
Different letters at specific concentration indicate significant differences (p < 0.0S).
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Fig. 12. Absolute rates of glycerol release in pooled subcutaneous adipocytes of 6  inbred 
obesity-prone (solid bars) rats and 6  inbred obesity resistant (striped bars) rats in response 
to isoproterenol and forskolin (10 pM). All stimulated values are significantly greater 
than basal unless indicated in the text. Data are expressed as mean ± SE.
Different letters at specific concentration indicate significant differences (p < 0.0S).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

eiM
01

J 3
im
4)
>O
4i «n ea
4*b
Wa

£

10 100 1000 
Isoproterenol (nM)

Forskolin

Fig. 13. Fold increase over basal glycerol release in response to isoproterenol and 
forskolin (10 pM) in pooled subcutaneous adipocytes of 6  inbred obesity-prone (solid 
bars) rats and 6  inbred obesity resistant (striped bars) rats. Data are expressed as mean 
± SE. Different letters at specific concentration indicate significant differences 
(p < 0.05).
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Retroperitoneal & Epididymal Adipocytes and
Growth Hormone & Dexamethasone

Hormones that stimulate lipolysis via pathways distinct from isoproterenol and 

forskolin were evaluated in RP and EPI adipocytes from OP and OR rats. Responses 

were not measured in SC fat due to insufficient cell amounts. GH alone did not stimulate 

glycerol release above basal values in either group or fat cell (data not shown). DEX- 

induced glycerol release was not different in RP cells of OP and OR rats (Figure 14). 

Since dexamethasone (DEX) and GH have synergistic effects on lipolysis (SO), the 

combination of these two lipolytic agents was evaluated in vitro. DEX and GH did not 

increase glycerol release beyond DEX alone in RP cells of OP rats (Figure 14). There 

was a significant increase in glycerol release when DEX and GH was compared with 

DEX alone in RP cells of OR rats. In EPI cells, there was a group difference in DEX- 

stimulated glycerol release (Figure IS). Similar to RP cells, DEX and GH-induced 

glycerol release was not different from that of DEX alone in EPI cells of OP rats (Figure 

IS). There was a significant increase in glycerol release when DEX and GH was 

compared with DEX alone in EPI cells of OR rats, but not at the lowest GH concentration 

(Figure 15).

When expressed as fold increase over basal, pooled RP cells of OP rats were 

significantly less responsive to DEX than those of OP rats (2.4S ± 0.13 vs. 6.16 ± 0.92 

fold increase, respectively). Similar DEX results were noted in EPI cells of OP and OR 

rats (2.1 ± 0.4 vs. 3.8 ± 0.1 fold increase, respectively). Since fat cells of OP rats did not 

respond to the DEX and GH combination, it is not surprising that responsiveness 

measures were less in OP than OR rats (data not shown).
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Basal DEX 10 100 1000
GH (nM) + 250 nM DEX

Fig. 14. Absolute rates of glycerol release in pooled retroperitoneal adipocytes of 6  

inbred obesity-prone (solid bars) rats and 6  inbred obesity resistant (striped bars) rats in 
response to Dex alone (250 nM) and growth hormone plus dexamethasone (DEX). All 
stimulated values are significantly greater than basal unless indicated in the text.
Data are expressed as mean ± SE. Different letters at specific concentration indicate 
significant differences (p < 0.05).
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GH (nM)+250 nM DEX

Fig. IS. Absolute rates of glycerol release in pooled epididymal adipocytes of 6  inbred 
obesity-prone (solid bars) rats and 6  inbred obesity resistant (striped bars) rats in response 
to Dex alone (250 nM) and growth hormone plus dexamethasone (DEX). All stimulated 
values are significantly greater than basal unless indicated in the text. Data are expressed 
as mean ± SE. Different letters at specific concentration indicate significant differences 
(p < 0.05).
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DISCUSSION

In the present study, we attempted to ascertain whether lipolytic responses were 

altered in weight-matched OP and OR inbred rats. Visceral adiposity was increased in 

OP rats even though body weight was similar to OR rats. This is in agreement with 

Levin et al. (107). Elevated visceral fatness may be related to the major finding in the 

present study that responses to lipolytic agents, except GH alone, were reduced in 

isolated visceral adipocytes of OP rats. Similarly, obese humans have differential 

responses to catecholamines compared with lean ones in vivo and in vitro (3). 

Subcutaneous fatness was not measured in the present study. However, it may not be 

different because lipolytic responsiveness to isoproterenol and forskolin were comparable 

between groups. No differences in response to isoproterenol were found in abdominal 

and femoral subcutaneous adipocytes of obese and lean men (119). Reduced hormone- 

induced lipid mobilization may have contributed to the 33% increase in visceral fatness 

within inbred OP rats. Alternatively, increased hormone-stimulated lipolysis may have 

protected OR rats from increased visceral adiposity. Unfortunately, definitive 

conclusions cannot be drawn because differences in hormone-stimulated lipolysis and 

adiposity are both present in the inbred OP and OR rats. Future studies are necessary to 

confirm these differences and explore the underlying mechanisms for them.

Previous in vitro findings indicated that reduced lipolytic sensitivity in excised 

adipose tissues was associated with obesity susceptibility in outbred male and female rats 

(23,97). Conversely, hormone-stimulated lipolysis was similar in isolated adipocytes of 

outbred OP and OR rats predicted to become obese or remain lean based 24-urinary 

norepinephrine output prior to a high energy diet (Dr. Susan Fried, Rutgers University,
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personal communication). In experiment 1, in vivo lipolysis was also not different 

between OP and OR rats prior to dietary challenge. Regardless of outcome, outbred OP 

and OR rats do not differ in body composition prior to a high energy diet (111), which is 

not the case with inbred rats in the present study. Therefore, comparisons among these 

studies are difficult because inbred OP and OR rats have differential body composition.

In addition to the general reduction in lipolysis found in inbred OP rats, there 

were hormone-dependent and site-specific differences in the lipolytic responses from 

adipocytes o f OP and OR rats. The following sections are divided into basal and 

hormone-stimulated responses, which was subdivided into lipolytic agents with similar 

mechanisms for activating lipolysis.

Basal Lipolysis

Basal lipolysis is proportional to fat cell size in rats (10, 104,121, 131,158,168). 

Basal lipolysis displayed marked variations for both fat depot and group in the present 

study. RP cells of OP rats had increased basal lipolysis when compared to OR rats even 

after accounting for ceil size differences, suggesting mechanisms other than cell size 

accounting for this discrepancy. Recently, Berger and Barnard (10) showed that high fat 

feeding increased both omental cell size and basal lipolysis in 2-mo old female Fischer 

rats. They also found that basal hormone-sensitive lipase (HSL) activity was increased in 

larger fat cells (10). Another mechanism for increased basal lipolysis in larger fat cells is 

related to reduced intracellular phosphatidlycholine concentrations, which protects lipid 

droplets from HSL (154). These factors may account for the increased basal glycerol 

release from RP cells of OP rats in the present study.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



76

Conversely, EPI cell size was not different between OP and OR rats, but basal 

glycerol release was diminished for OP rats, which agreed with reported findings (67). 

Subcutaneous cell size tended to be increased in OP rats compared with OR rats, but 

basal lipolysis was equal between groups. In another study, Obst et al. (124) compared 

cell sizes from various fat depots between young Osbome-Mendel and S 5B/P1 rats, 

which are dietary obesity susceptible and resistant, respectively. Their results for RP,

EPI, and SC cell size differences between groups prior to dietary challenges paralleled 

those found in the present study. These observations suggested cell size may influence 

basal lipolysis differently across fat depots, but it was not the only factor influencing 

basal adipocyte metabolism. Since perilipins are shown to protect lipid droplets from 

unstimulated HSL (i.e., basal activity) (28,115), differences in perilipin concentrations 

among cell types and groups could contribute to these results.

In retroperitoneal fat, the combination of increased basal lipolytic activity and fat 

pad mass may contribute to the altered metabolic profiles found in inbred and outbred OP 

rats. At basal conditions, elevated free fatty acids (FFA) via lipolysis in RP fat are 

drained by the hepatic portal vein into the liver (2). Excess FFAs serve as substrate for 

hepatic triglyceride synthesis, thus possibly promoting dyslipidemia noted in OP rats 

(40). FFA may also disrupt hepatic extraction of insulin, thereby contributing to 

hyperinsulinemia (100,107, 109) and hyperglycemia (107) noted in inbred and outbred 

OP rats. Increased free fatty acid turnover may also decrease glucose utilization by the 

Randle cycle and increase endogenous glucose production via elevated gluconeogenic 

substrates (e.g., excess glycerol release via lipolysis) (132). In weight-matched OP and 

OR inbred rats, Levin et al. (107) found that post-absorptive plasma insulin and glucose
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levels were increased in young inbred OP rats. We, however, did not find group 

differences in these variables. OP rats in the Levin study were slightly older and had 

47% more RP fat mass than the ones utilized in the present study. Since increased fat 

mass is associated with insulin resistance, differences in fat mass may account for 

differential findings between studies. Moreover, two weeks on a high energy diet 

(similar to the MHF diet) resulted in impaired glucose tolerance, as measured by an oral 

glucose tolerance test, for OP rats vs. OR rats (107). Hyperinsulinemia also influences 

vasoconstriction and blood pressure (141). Outbred OP rats have increased systolic 

blood pressure compared with OR rats after 10 wk on a MHF diet (40). These data 

demonstrate the complex interaction between adipocyte metabolism and variables 

associated with the metabolic syndrome.

Isoproterenol and Forskolin-stimulated Lipolysis

Obesity and increased adiposity are associated with blunted in vivo 

catecholamine-induced lipolysis in humans (3). In the present study, isoproterenol- 

stimulated glycerol release expressed relative to cell surface area was reduced in visceral 

adipocytes of OP rats. Comparable results were found with forskolin, a direct activator 

of adenylyl cyclase, suggesting that group differences were related to post-receptor 

mechanisms. Moreover, isoproterenol and forskolin-stimulated lipolytic responsiveness 

(expressed as fold increase over basal) were reduced in RP and EPI cells o f OP rats, but 

the reduction was not as great in EPI cells. This may be related to the lack of EPI cell 

size differences between groups. In agreement, Portillo et al (131) showed that high fat 

feeding increased cell diameter of pooled visceral fat by only 7.7% and reduced lipolytic 

responsiveness to Pi and P3 adrenoceptor agonists modestly but significantly. Portillo et
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al. (131) and our data are in contrast to the findings of DiGirolamo et al. (38) and Berger 

et al. (10) that showed either omental or EPI adipocytes of comparable size have 

comparable basal and hormone-stimulated lipolytic capacity regardless o f nutritional 

state (e.g., obese vs. lean or high-fat vs. low-fat fed).

In the present study, inbred OP rats were already obese when compared with OR 

rats of the same age and body weight. Therefore, it is interesting to compare our lipolytic 

response data with results from other genetically obese animal models, which display 

increased adiposity for a given size (169). Genetically obese Zucker rats and leptin- 

deficient ob/ob mice have reduced responsiveness to catecholamines when compared to 

their lean littermates (77,85, 104,158, 168). Mild hypothyroidism in obese Zucker rats 

has been implicated as a mechanism for reduced responsiveness to isoproterenol in EPI 

cells (104). Hypothyroidism is associated with reduced intracellular cAMP content and 

adenylyl cyclase activity in fat cells (104). Hollenga et al. (77) also observed that 

maximum stimulation of adenylyl cyclase was similar in EPI cells of obese and lean rats, 

but the relationship between cAMP production and lipolytic response was shifted to the 

right for obese Zucker rats. This indicated that more cAMP was necessary to achieve a 

given response in adipocytes of obese rats. Similar results were observed between 

adipocyte responsiveness of older and younger rats (76), a model of large and small 

adipocytes. Although (3-adrenergic receptor amounts were increased in older rat 

adipocytes, the ability to produce cAMP in response to (3-adrenergic agonists was 

severely diminished, thus lowering glycerol production (76). Since cAMP is the direct 

activator of protein kinase A, which phosphorylates and activates HSL, it is possible that 

reduced cAMP production may explain differences found in the present study. This
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would agree with the speculated post-receptor defect in the present study because 

isoproterenol and forskolin responses are comparable.

The hormone-stimulated results in SC adipocytes from OP and OR rats were not 

quite as clear as the ones from visceral adipocytes. OP SC cells had reduced glycerol 

release when exposed to forskolin and 100 nM isoproterenol. Conversely, 

responsiveness of SC cells did not differ between groups when expressed as fold increase 

over basal, except that OP was more responsive than OR at 10 nM isoproterenol. The 

exact reason for this last finding was not clear. Future studies should clarify this result.

In agreement, Portillo et al. (131) found that responsiveness to various lipolytic agents 

was similar in SC adipocytes of rats fed high and low fat diets for one week, even though 

cell size was increased in high fat-fed rats. Altogether, it appeared that isolated 

adipocytes from visceral fat but not subcutaneous fat of OP and OR inbred rats differed 

in their responses to lipolytic agents, which activated adenylyl cyclase via different 

mechanisms.

Growth Hormone and Dexamethasone-stimulated Lipolysis

Growth hormone (GH) is a metabolic hormone reported to reduce body fat by 

increasing lipolysis and decreasing lipogenesis in vivo (33). GH-deficient individuals 

have increased visceral adiposity compared to normal ones, but this difference was 

reversed with GH treatment (9). Dexamethasone (DEX) is a synthetic glucocorticoid, 

which has permissive effects on glucose and lipid metabolism (14). Adrenalectomized 

rats have diminished lipolytic responses in pooled visceral adipocytes, but 

dexamethasone treatment reversed these alterations by increasing components of the (5- 

adrenergic receptor system (35). Moreover, Fain and colleagues (49,50, 51) showed that
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DEX potentiated the lipolytic response to GH in parametrial adipocytes and adipose 

tissue via increased RNA and protein synthesis. In the present investigation, adipocytes 

were.incubated in the presence of GH alone, DEX alone or together. Similar to reported 

findings with isolated adipocytes or adipose tissues of rats and humans (44,49,117), GH 

alone failed to induce lipolysis above basal levels after 4 hr regardless of cell type (EPI 

and RP) or group (OP and OR). A possible explanation for these findings was that 

adipocytes needed to be incubated with GH prior to metabolic experiments. Pre

incubation with GH increased responsiveness to catecholamines in human fat cells (117). 

Similarly, priming rat fat cells and tissues with GH enhanced the lipolytic action of GH 

(44). Additionally, GH acted by increasing GH and (i-adrenergic receptors and hormone 

sensitive lipase gene expression in adipose tissue (33,36, 157, 162).

When DEX alone was incubated with EPI and RP cells, there were significant 

increases above basal lipolysis noted for both groups. There were group differences in 

this response for EPI cells only. In previous studies, DEX alone increased lipolysis in 

excised adipose tissue (51), 3T3-F442A adipocytes (36), and EPI adipocytes (144) during 

short (4 hr) or long (24 hr)-term incubations. DEX also stimulated hormone-sensitive 

lipase expression in fat cells after 24 hr (144). These effects may be mediated by 

glucocorticoid receptors located in rat adipocytes (127). The differential responses to 

DEX in EPI cells o f OR and OP rats may be due to augmented levels of glucocorticoid 

receptors, but this needs further examination. The direct effects o f DEX on activation of 

the lipolytic cascade are not clear, but Fain et al. (51) attributed the increased fatty acid 

release to the inhibitory effects of DEX on glucose metabolism, thus reducing re- 

esterification. However, glucose was not present in the media in our study. Therefore,
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the exact intracellular mechanisms for the elevated lipolytic response to DEX were 

unclear.

Adrenal glucocorticoids play a role in the development of hypothalamic obesity, 

gold thioglucose-induced obesity, and dietary obesity (19). Adrenal glucocorticoids were 

shown to be necessary for the development of diet-induced obesity in rodents and obesity 

in humans. Adrenalectomy prevented rats from becoming obese in response to a high fat 

diet and DEX replacement reversed this effect (116). Moreover, excess cortisol 

production was found in patients with Cushing’s Disease, who tended to have increased 

truncal fatness (135). Diminished lipolytic and increased LPL activity were the 

mechanisms for increased truncal fat in these patients (14). Plasma corticosterone 

concentrations were not measured in the present study. In another model of diet-induced 

obesity, corticosterone levels were similar between OP and OR rats after 1,2, and 5 

weeks on a high fat diet (62). This indicates that corticosteroids do not play a primary 

role in the early stages of diet-induced obesity, but are necessary for its development, 

indicating the permissive nature of this hormone.

After accounting for DEX-stimulated glycerol release, the combination of GH and 

DEX increased glycerol release from EPI and RP cells of OR rats only, except at the 

lowest GH concentration in EPI cells. The combination had no effect on lipolysis in the 

adipocytes of OP rats. GH and DEX together were reported to interfere with mechanisms 

associated with the inhibitory G-protein (GO, which inhibits adenylyl cyclase activity and 

promotes anti-lipolysis. GH and DEX disrupted translocation of the ot2-subunit of the Gi 

in adipocytes, thus diminishing the anti-lipolytic effects of G; (165). Alterations in this 

response may be related to the present findings with GH and DEX. The differential
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responses to GH and DEX may also be related to the GH status of the rats. 

Hypophysectomy reduced lipolytic responses in isolated adipocytes, but GH replacement 

normalized the lipolytic actions of catecholamines by increasing (3-adrenoceptor number 

(162). Furthermore, GH ablation decreased GH receptor expression in rat adipose tissue, 

which was restored with GH treatment (157). Recently, Lauterio et al. (98,101) reported 

that the GH status of outbred OP rats was compromised before, as well as, after exposure 

to a MHF diet. Outbred OP rats also have reduced GH storage and sensitivity to GH 

releasing hormone in cultured somatotrophs after 14 weeks on MHF diet (101). GH 

influences both somatic and metabolic processes (33,65). Body length did not differ 

between groups, suggesting that possible GH differences did not disrupt linear growth. 

Although GH status was not measured in inbred SD rats, it was possible that reduced GH 

status of inbred OP rats influenced certain metabolic processes that affected lipolytic 

responses in visceral adipocytes and accounted for increased adiposity.

Unfortunately, comparisons cannot be made between this experiment and earlier 

research because these inbred OP and OR rats were already physically different at 8  

weeks of age. The differences in adiposity and lipolytic responsiveness occurred without 

placing rats on a high fat diet, suggesting that they may be the result of the inbreeding 

process. Moreover, lipolytic responses to isoproterenol, forskolin, and growth hormone 

plus dexamethasone were reduced in visceral adipocytes of OP rats. Adipocytes were not 

responsive to GH alone, regardless of group or cell type. The finding of similar 

responses in subcutaneous adipocytes revealed that there were depot-specific differences 

within these rats. It should be pointed out these findings were for in vitro conditions. 

Although OP rats have reduced lipolytic responsiveness in isolated adipocytes, OP rats
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also have more adiposity, thus more fat cells to possibly compensate for reduced cellular 

responses in vivo. Extrapolation to the in vivo environment should be done with caution. 

In conclusion, the lipolytic effect of drugs acting on p-adrenergic receptors and at post

receptor levels was impaired or not present in isolated visceral adipocytes of inbred obese 

rats.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



84

CHAPTER V

ASSESSMENT OF INSULIN-STIMULATED GLUCOSE UPTAKE 

IN ISOLATED ADIPOCYTES FROM AN EARLY PHASE 

OF WEIGHT GAIN IN OP AND OR RATS

INTRODUCTION

Researchers have reported that adipose tissue of rats with ventromedial 

hypothalamic lesions had normal to increased insulin sensitivity prior to the onset of 

obesity or during the early stages of obesity, whereas insulin sensitivity of skeletal 

muscle was normal during these time periods in vivo (128, 129). Similar results have 

been reported for young Zucker rats (69). Eberhart et al. (42) reported that epididymal 

adipocytes of obesity-prone mice (AKR/J) were more sensitive to insulin-mediated 

glucose uptake than cells of obesity-resistant mice (SWR/J) alter one week of a high fat 

diet. Moreover, Levin and Dunn-Meynell (106) reported that outbred DIO rats were 

hyperinsulinemic but euglycemic compared to DR rats after only two weeks on a high- 

energy diet. Experimental chronic hyperinsulinemia with euglycemia was shown to 

promote increased glucose uptake via up-regulation of GLUT4 and glucokinase protein 

and mRNA expression (6 ). In summary, early stages of obesity development are 

associated with reduced sensitivity to insulin-stimulated actions in skeletal muscle, 

whereas sensitivity in adipose tissue may be normal to increased. This time course in the 

development of differential insulin sensitivity and resistance and potentially favors the 

shunting of glucose and fatty acids into the insulin-responsive adipose tissue.
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As found in Experiment 1, feed efficiency was increased in OP rats compared to 

OR rats throughout a 14 week dietary challenge (100). Conversely, relative growth and 

relative food consumption were increased in OP rats compared to OR rats only during the 

first two weeks of the dietary challenge (100). These data suggest that this early 

divergent growth period (i.e., dynamic phase) was important in terms of obesity 

development. As previously reported, rats that demonstrated the greatest body weight 

gains after only one week on a MHF diet were found to be obese by the end of the study 

(Boozer and Lauterio, submitted). Increased insulin sensitivity in adipocytes of OP rats 

may play a role in increased body weight and fat accretion during this early divergent 

period.

Moreover, insulin sensitivity is influenced by cell size. Numerous researchers 

have reported that smaller cells were more responsive to insulin compared with larger 

cells (37,74, 81,102, 113). Insulin binding was not responsible for the differences in 

insulin sensitivity (54, 102, 113). In our laboratory, we examined insulin-stimulated 

glucose uptake in epididymal adipocytes of 5-6 wk old rats vs. those of 20 wk old rats 

(OP or OR rats on a moderately high fat (MHF) diet for ~10 wk). We found that glucose 

uptake in larger adipocytes of older rats fed a moderately high fat diet was approximately 

1-fold over basal with maximal insulin stimulation (3.5 nM) compared to a 4 to 7-fold 

increase in glucose uptake in smaller adipocytes of younger rats (Davies & Lauterio, 

unpublished observations). Our results demonstrated that regardless of nutritional state 

(i.e., obese or lean), adipocytes of older rats lose their responsiveness to insulin, which is 

consistent with results of Dr. Susan Fried (Rutgers University, personal communication). 

Therefore, insulin-stimulated glucose uptake was measured in younger OP and OR rats
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after only one week on a MHF diet in the present study. Moreover, dietary effects on 

insulin-stimulated glucose uptake were compared between MHF-fed and low fat-fed rats. 

RESULTS

Body Composition, Plasma Hormone Profiles and Food Consumption

Rats were classified as OP or OR based on body weight gain after 1 week on a 

MHF diet. Body composition data are located in Table 6 . Initial body weights and 

lengths did not differ among OP, OR, and C rats. OP rats gained significantly more body 

weight than OR and C rats after 1 week on the MHF diet (Table 6 ). Relative growth was 

also greater for OP vs. OR and C rats. OP rats had significantly more visceral fat than 

OR rats, but the difference was not significant between OP and C rats (Table 6 ). When 

expressed as an adiposity index, the difference was still significant between OP and OR 

rats (Table 6 ). Similar to visceral fat, plasma leptin concentrations were greater for OP 

vs. OR rats (p = 0.054), while there was a trend for plasma leptin to be increased in OP 

compared to C rats. There were no differences among groups for plasma glucose, 

insulin, and free fatty acid (FFA) concentrations (Table 7). Plasma and lipoprotein 

triglycerides tended to be increased in OP rats vs. OR rats but large standard errors for 

OP resulted in non-significant differences (Table 7). Cholesterol did not differ between 

OP and OR, C not determined at week 1 (data not shown).

OP rats consumed more energy than OR rats, which in turn consumed more 

energy than C rats after 1 week of either MHF or LF diet (Table 8 ). When energy 

consumption was expressed relative to body weight, OP rats were still greater than OR 

rats, while OR rats were greater than C rats. Feed efficiency was similar between OR and 

C rats but both were significantly reduced when compared to OP rats.
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Table 6 . Body composition data o f obesity-prone (OP), obesity-resistant (OR), and 
control rats after 1 week on a moderately high fa t (OP & OR) or low-fat diet

Variable OP(n = 6) OR (n = 6) Control (n = 6)

Body weight 0 (g) 245.2 ± 3.2* 240.3 ± 4.2* 236.7 ± 2.6*

Body weight 1 week (g) 282.7 ± 3.6* 260.8 ± 4.5b 255.4 ± 2.8b

Body weight gain (g) 37.5 ± 0.6* 20.4 ± 0.4b 18.7 ± 1.5b

Relative growth (%) 14.2 ±0.1* 8 .2 ± 0 .1b 7.6 ± 0.6b

Visceral fat* (g) 4.44 ±0.16* 3.39± 0.27b 3.77 ± 0.28*b*

Adiposity Index (%) 1.59 ±0.05* 1.32 ± 0.1 lb 1.50 ± 0.1 l*b

EPI Cell size (pg lipid/cell) 0.129±0.005* 0.080±0.005c 0.106±0.002b

Visceral fat = epididymal + retroperitoneal fat depots
Adiposity index = visceral fat (g)/ [carcass wt -  visceral fat] (g) * 100% (42)
Data are presented as mean ± SE.
Different letters within row denote significant differences (p < 0.05 or less) 
*OP > C; p = 0.064
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Table 7. Non-fasted plasma profiles o f obesity-prone (OP), obesity-resistant (OR), and 
control (C) rats after I week on a moderately high fa t (OP & OR) or low-fat diet (C)

Variable O P(n = 6 ) O R (n = 6 ) C (n = 6 )

Plasma leptin (ng/ml) 2.91 ± 0.52* 1.67 ±0.23** 2.30 ±0.30*

Plasma insulin (ng/ml) 0.99 ±0.11* 0.93 ±0.16* 1.06 ±0.25*

Plasma glucose (mg/dl) 127.3 ± 2.2* 117.3 ±3.3* 131.2 ±12.4'

Plasma FFA (mEq/L) 0.64 ±0.07* 0.54 ±0.05* 0.50 ±0.05*

Plasma triglycerides (mg/dl) 95.8 ± 19.6* 65.5 ± 4.0* ND

VLDL triglycerides (mg/dl) 69.6 ±22.1* 33.6 ± 3.7* ND

FFA = free fatty acids, VLDL = very low density lipoproteins 
Data are presented as mean ± SE
Different letters within row denote significant differences (p < 0.05 or less) 
*OP > OR; p = 0.054 
ND = not determined

Table 8 . Energy intake data o f obesity-prone (OP), obesity-resistant (OR), & control (C) 
rats after 1 week on a moderately high fa t (OP & OR) or low-fat diet (C)

Variable OP (n = 6 ) OR (n = 6 ) n a II

Energy intake (kcal) 589.3 ± 14.7* 510.8 ±12.0b 434.5 ± 11.0C

Feed efficiency (g/kcal) 0.064 ±0.001* 0.040 ±0.001b 0.043 ±0.003b

REC* (kcal/gBW) 2.23 ± 0.04* 2.04 ± 0.04b 1.77 ± 0.05c

* Relative energy consumption = energy consumed (kcal)/ body weight (g) 
Data are presented as mean ± SE
Different letters within row denote significant differences (p < 0.05 or less)
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Cell Size o f Epididymal Adipocytes

Mean cell sizes of pooled EPI adipocytes from OP, OR, and C rats are located in 

Table 6 . Mean cell size was greater for OP rats than C rats, which in turn was greater 

than OR rats. Mean cell sizes for all three groups were larger than that of chow-fed 

baseline rats (0.0S8 ± 0.003 pg lipid/cell).

Insulin-stimulated 2-deoxyglucose Uptake

Insulin-stimulated (>4C)-2-deoxyglucose (2DG) uptake was measured in pooled 

EPI cells of OP, OR, and C rats after 1 week of a dietary challenge. 2DG and glucose are 

transported into adipocytes by similar mechanisms and thus 2DG serves as a surrogate 

for glucose uptake (159). When compared with values from baseline chow-fed rats, all 

three groups had significant reduction in responsiveness to insulin. There was 

approximately a 9.5 ± 1.2 (mean ± SE) fold-increase in 2DG uptake in response to 

maximal dose of insulin (3.5 nM) in EPI cells of baseline rats not exposed to high fat 

diets (data not shown). This was in stark contrast to that found with EPI cells of OP (0.86 

± 0.04 fold increase), OR (0.66 ± 0.11 fold increase), and C (3.5 ± 0.4 fold increase) at 

the maximal insulin concentration. Clearly, short-term exposure to moderately high or 

low fat diets (MHF = 32% fat and LF = 11% fat) reduced insulin sensitivity, as measured 

by 2-deoxyglucose uptake, in EPI cells compared to a chow diet (approximately 5% kcal 

as fat).

When comparing insulin-stimulated responses in EPI cells of rats fed different 

diets for one week, there were diet-induced effects on 2DG uptake. Basal 2DG uptake 

was significantly increased in EPI cells of OP and OR rats compared with those of C rats, 

but there were no differences between OP and OR (Figure 16). Due to increased basal
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Fig. 16. Basal and insulin-stimulated rates of (l4C)-2-deoxyglucose uptake in epididymal 
adipocytes of obesity-prone (black bars), obesity-resistant (striped bars), & control (gray 
bars) rats after 1 week on a moderately high fat (OP & OR) or low-fat diet (C). Different 
letters within specific concentration denote significant differences (p < 0.05 or less).
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levels found in EPI cells of OP and OR rats, absolute rates of 2DG uptake did not differ 

among groups, except for insulin at 1.0 nM (Figure 17). In contrast, relative rates 

(insulin-stimulated minus basal) of 2DG uptake were significantly greater in EPI cells of 

C rats than that found in OP and OR rats when accounting for differences in basal 

glucose uptake (Figure 18). Similarly, when expressed as percent increase over basal, C 

rats were still increased when compared to OP and OR rats (Figure 18).

DISCUSSION

It is well established that high fat feeding reduces insulin-stimulated glucose 

uptake in adipose tissue or adipocytes (75,102, 112, 147,148). However, insulin 

sensitivity (i.e., glucose uptake) was elevated in adipocytes young obesity-susceptible 

rodents (42,69). Epididymal (EPI) fat cells of AKR/J (diet-sensitive) mice have 

increased insulin-stimulated glucose uptake compared with SWR/J (diet-resistant) mice, 

regardless of diet (high or low fat diets) (42). Obese Zucker rats also have elevated basal 

and insulin-stimulated glucose transport in inguinal adipocytes compared to lean Zucker 

rats (69). Therefore, we examined whether insulin-stimulated glucose uptake was 

different between rats fed a moderately high fat (OP and OR) or low fat (C) diet and also 

between rats classified as OP and OR after 1 week of a dietary challenge. Basal 2- 

deoxyglucose (2DG) uptake was increased in EPI cells of OP and OR rats when 

compared with cells of C rats in the present study. Previous researchers showed that 

basal 2DG uptake tended to be greater in adipocytes of rats fed a high fat diet than in fat 

cells o f rats fed a high carbohydrate diet (160). Additionally, basal glucose uptake has 

also been reported to be greater in larger fat cells than smaller ones (114). This 

contrasted other findings that showed depressed basal 2DG uptake in EPI cells of rats fed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.1 1.0 3.5
Insulin (nM)

Fig. 17. Relative rates of insulin-stimulated (minus basal) (uC)-2-deoxyglucose uptake 
in epididymal adipocytes of obesity-prone (black bars), obesity-resistant (striped bars), & 
control (gray bars) rats after 1 week on a moderately high fat (OP & OR) or low-fat diet 
(C). Different letters within specific concentration denote significant differences 
(p < 0.05 or less).
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Fig. 18. Insulin-stimulated (l4C)-2-deoxyglucose uptake expressed as percent increase 
over basal in epididymal adipocytes of obesity-prone (black bars), obesity-resistant 
(striped bars), & control (gray bars) rats after 1 week on a moderately high fat (OP & 
OR) or low-fat diet (C). Different letters within specific concentration denote significant 
differences (p < 0 .0 S or less).
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a high fat diet (102). The value for C rats was similar to the baseline value of chow fed 

rats in the present study (6.9 ± 0.4 vs. 6.5 ± 0.2 pmol/106 cells/2 min, respectively). Thus 

differences would not be due to methodological error. Differences were unrelated to cell 

size because the group order for EPI cell size was OP, C, and OR (highest to lowest) in 

our rats afler 1 week. It should be pointed out that C rats were a combination of OP and 

OR rats and may have contributed to differences in cell size measurements. Moderately 

high fat feeding was found to increase basal glucose uptake in adipocytes in the present 

study, but the exact mechanism was unclear.

In agreement with other research (75,102, 112), feeding rats a MHF diet for only 

one week reduced insulin sensitivity (expressed as percent increase over basal or insulin- 

stimulated condition minus basal) in isolated adipocytes. EPI cells of rats fed a high fat 

diet experienced less than a 1-fold increase in insulin-stimulated glucose uptake vs. the 

greater than 3-fold increase noted in C rats at all insulin concentrations. These effects 

appeared to be independent of cell size because OR cells were smaller than C cells and 

smaller cells were shown to be more insulin responsive (37,74). Interestingly, maximal 

insulin stimulation was also dramatically reduced in EPI cells of C rats vs. those of chow 

fed rats (3.5-fold vs. 9.5 fold increase). The low fat diet had approximately 11% fat 

compared with 5% fat found in the chow diet, indicating even a modest increase in 

dietary fat content compromised insulin sensitivity. In another study, AKR/J (i.e., OP) 

mice were still more responsive to the stimulatory effects of insulin than SWR/J (i.e.,

OR) after consuming a diet similar in composition to our diet (42). The AKR/J mice, 

however, were also more responsive to insulin prior to the diet, suggesting these obesity- 

susceptible mice had a genetic predisposition to enhanced insulin responsiveness.
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Reduced insulin sensitivity in adipocytes with high fat feeding is related to altered 

mechanisms beyond the insulin receptor. Lavau et al (102) found that insulin binding 

was not affected with high fat feeding. Moreover, Livingston et al. (113) showed that 

insulin receptor number was not depressed in adipocytes of insulin resistant individuals.

It has been shown that high fat feeding affects glucose transporters 4 (GLUT4). GLUT4 

are stored in large intracellular pools within adipose and muscle tissues and mediate 

insulin-stimulated glucose transport (8). Hissin and colleagues (74,75) reported that 

obese rats and rats fed a high fat diet have relatively depleted intracellular pools of 

GLUT4 in isolated adipocytes. Similar effects of GLUT4 expression and recruitment 

were found in skeletal muscle of rats fed a high diet (68,71, 86). Since no differences in 

glucose uptake were found between OP and OR EPI cells, it seemed that MHF feeding 

impaired insulin-stimulated glucose uptake mechanisms within adipocytes equally for 

both groups. These data indicated that glucose delivery and uptake were not related to 

the differences in epididymal fat weights between OP and OR rats. However, glucose 

metabolism may be altered in EPI fat cells of OP and OR rats.
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CHAPTER VI

ASSESSMENT OF INSULIN-STIMULATED GLUCOSE METABOLISM 

IN ISOLATED ADIPOCYTES FROM EARLY PHASES 

OF WEIGHT GAIN IN OP AND OR RATS

INTRODUCTION

Insulin stimulates glucose metabolism within adipocytes, in addition to promoting 

glucose uptake. Levin et al. (106) reported that OP rats were hyperinsulinemic but 

euglycemic compared to OR rats after only two weeks on a high-energy diet. 

Experimental chronic hyperinsulinemia with euglycemia promoted excess lipid accretion 

via up-regulaiion of certain lipogenic enzymes (acetyl CoA carboxylase and fatty acid 

synthase) in adipose tissue (6). Differential lipogenic responses to insulin were reported 

in other animal models of obesity. Hypothalamic obesity was associated with increased 

insulin-stimulated lipogenesis in vivo 1 week post-lesions (128,129). Young obese 

Zucker rats have increased lipogenic enzyme activity in adipose tissues with marked 

insulin resistance in skeletal muscles (22,69). Therefore, adipocytes of obesity-prone 

(i.e., OP) Sprague-Dawley rats may have an increased capacity for insulin-stimulated 

lipogenesis at the onset of a hypercaloric diet, thus promoting excess lipid accumulation.

Furthermore, Fried et al. (60) found regional variations in insulin-induced glucose 

metabolism in rat adipocytes. They reported that epididymal (EPI) adipocytes were more 

responsive than retroperitoneal adipocytes to insulin, whereas effect of insulin on isolated 

subcutaneous adipocytes was low. These regional variations in glucose metabolism were 

related to differential lipogenic enzyme content (60). High fat feeding also influences
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glucose metabolism in adipocytes among other cells in humans and animals (112). 

Lipogenic enzyme activity was reduced in adipocytes of high fat-fed rats within 1 week 

(102,149). Since EPI adipocytes were the most responsive to insulin and high fat 

feeding rapidly reduced insulin-stimulated actions in adipocytes, we examined EPI 

adipocytes to determine potential differences in insulin-stimulated glucose metabolism 

among OP, OR, and C rats. Furthermore, fatty acid synthase (FAS) activity is 

upregulated in hepatocytes and adipocytes from Zucker rats, rats with hypothalamic 

obesity, and diet-induced obese rats (22, 118, 143, 1S2,153). FAS gene expression is 

regulated at the transcriptional level by hormonal and nutritional controls, which suggests 

that enzyme activity is related to mRNA expression (16). Therefore, to help explain 

potential differences in lipogenic responses among groups, FAS mRNA expression was 

measured in total RNA from EPI adipose tissue of OP, OR and C rats.

RESULTS

Body Composition, Plasma Hormone Profiles and Food Consumption (Week 1)

Rats were classified as OP or OR based on body weight gain after 1 week on a 

MHF diet. Body composition data are located in Table 6 (see Chapter V). Initial body 

weights and lengths did not differ among OP, OR, and C rats. OP rats gained 

significantly more body weight than OR and C rats after 1 week on the MHF diet (Table 

6). Relative growth was also greater for OP vs. OR and C rats. OP rats had significantly 

more visceral fat than OR rats, but the difference was not significant between OP and C 

rats (Table 6). When expressed as an adiposity index, the difference was still significant 

between OP and OR rats (Table 6). Similar to visceral fat, plasma leptin concentrations 

were greater for OP vs. OR rats, while there was a trend for plasma leptin to be increased
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in OP compared to C rats. There were no differences among groups for plasma glucose, 

insulin, and free fatty acid (FFA) concentrations (Table 7). Plasma and lipoprotein 

triglycerides tended to be increased in OP rats vs. OR rats but large standard errors for 

OP resulted in non-significant differences (Table 7). Cholesterol did not differ between 

OP and OR, C not determined at week 1 (data not shown).

OP rats consumed more energy than OR rats, which in turn consumed more 

energy than C rats after one week of either a MHF or LF dietary challenge (Table 8). 

When energy consumption was expressed relative to body weight, OP rats were still 

greater than OR rats, while OR rats were greater than C rats. Feed efficiency was similar 

between OR and C rats but both were significantly reduced when compared to OP rats. 

Body Composition, Plasma Hormone Profiles and Food Consumption (Week 3) 

Rats were classified as OP or OR after based on body weight gain after 3 week on 

a MHF diet. Physical characteristics for OP, OR, and C rats are located in Table 9. 

Although initial body weights and lengths did not differ among OP, OR and C rats, OP 

rats had gained significantly more body weight than OR and C rats after 3 weeks, body 

lengths did not differ among groups (data not shown). Relative growth was also greater 

for OP rats vs. OR and C. OP rats had significantly more visceral fat weight than OR and 

C rats. When visceral fat was expressed as an adiposity index, OP rats were still greater 

than OR and C rats. Plasma leptin concentrations were greater for OP vs. OR and C rats. 

There were no differences among groups for plasma glucose, insulin, and FFA 

concentrations (Table 10). Plasma and very-low density lipoprotein triglycerides were 

significantly increased in OP rats vs. OR and C rats (Table 10).
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Table 9. Body composition data o f obesity-prone (OP), obesity-resistant (OR), and 
control (C) rats after 3 weeks on a moderately high fa t (OP & OR) or low-fat diet (C)

Variable OP (n = 6) OR (n = 6) n B II

Body weight 0 (g) 250.5 ± 3.3* 238.0 ±4.3* 243.0 ±2.2*

Body weight 3 wk (g) 323.2 ±3.7* 293.8 ± 5.5b 302.4 ± 2.3b

Body weight gain (g) 72.7 ± 1.6* 55.9 ± 1.3b 59.4 ± 1.5b

Relative growthA (%) 25.3 ±0.58* 21.0± 0.22b 21.8 ± 1.01b

Visceral fat* (g) 6.39 ±0.36* 4.37 ± 0.36b 4.81 ± 0.41b

EPI cell size (pg lipid/cell) 0.122±0.005* 0.096±0.002c 0.l08±0.003b

Adiposity Index (%) 2.02 ±0.11* 1.50± 0.10b 1.62 ± 0.13b

ARelative growth is calculated over three week dietary period.
"Visceral fat = epididymal and retroperitoneal fat depots.
Adiposity index = visceral fat (g)/ [carcass wt -  visceral fat] (g) * 100% (42) 
Data are presented as mean ± SE
Different letters within row denote significant differences (p < 0.05 or less)
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Table 10. Non-fasted plasma profiles o f obesity-prone (OP), obesity-resistant (OR), and 
control (C) rats after 3 weeks on a moderately high fa t (OP & OR) or low-fat diet (C)

Variable OP (n = 6) OR (n = 6) C (n = 5)

Plasma leptin (ng/ml) 3.82 ±0.43* 2.61 ± 0.22b 2.44 ± 0.30b

Plasma insulin (ng/ml) 1.16 ±0.19* I.19±0.1l* 0.80 ± 0.06*

Plasma glucose (mg/dl) 133.8 ±3.5* 134.7 ± 3.3* 130.0 ±5.0*

Plasma FFA (mEq/L) 0.58 ± 0.05* 0.57 ± 0.03* 0.55 ± 0.04*

Plasma triglycerides (mg/dl) 234.0 ±17.6* 170.0±17.7b 171.0 ± 8.1b

VLDL triglycerides (mg/dl) 172.0 ±3.0* 112.5 ±6.7b 123.0 ± 10.71

FFA = free fatty acids, VLDL = very low density lipoproteins 
Data are presented as mean ± SE
Different letters within row denote significant differences (p < 0.05 or less)
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After 3 weeks on either a MHF or LF diet, OP rats consumed more energy than 

OR and C rats (Table 11). Feed efficiency was similar between OR and C rats but both 

were significantly reduced when compared to OP rats. When energy consumption was 

expressed relative to body weight, OP rats were still greater than OR, whereas there was 

a trend for relative energy consumption to be greater in OP vs. C rats (p = 0.07).

Cell Size o f Epididymal Adipocytes

Mean cell sizes of pooled EPI adipose tissue from either OP, OR, or C rats from 

weeks 1 and 3 are located in Table 6 and 9, respectively. Mean cell size was greater for 

OP rats than C rats, which in turn was greater than OR rats at week 1. Similar results 

were also found after week 3.

Insulin-stimulated Glucose Metabolism

Insulin-stimulated glucose metabolism was measured in pooled EPI cells of OP, 

OR, or C rats after 1 or 3 weeks of a dietary challenge. When comparing lipogenic 

responses (specifically fatty acid synthesis) between baseline and diet-challenged rats,

EPI cells of baseline chow-fed rats were more responsiveness (S.O ± 0.1-fold increase) to 

the maximum insulin concentration than cells of OP, OR, and C rats at 1 week (0.7 ±0.1, 

0.4 ± 0.03, and 2.7 ± 0.2, respectively). Short-term (1 week) and long-term (3 weeks) 

exposure to diets relatively high in fat (MHF = 32% fat and LF = 11% fat) compared with 

standard rat chow (approximately 5% kcal as fat) reduced the capacity of EPI cells to 

synthesize lipids from glucose in response to insulin (data not shown).

The remainder o f this section will be subdivided into the different products of 

glucose metabolism measured in the experiments. Moreover, data from weeks 1 or 3 

weeks were compared among groups in separate sections. Due to the age-related
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Table 11. Energy intake data o f obesity-prone (OP), obesity-resistant (OR), & control 

(C) rats after 3 weeks on a moderately high fa t (OP & OR) or low-fat diet (C)

Variable OP (n = 6) OR (n -  6) O s II &

Energy intake (kcal) 

Feed efficiency (g/kcal) 

REC* (kcal/gBW)

1503.0 ±30.5* 

0.048 ± 0.003* 

5.24 ±0.06*

1330.4 ±36.0b 

0.042 ± 0.001b 

5.00 ± 0.05b

1389.6 ± 17.0b 

0.043 ± 0.002b 

5.10± 0.04*b

* Relative energy consumption 
Data are presented as mean ± SE
Different letters within row denote significant differences (p < 0.0S or less)
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reductions in adipocyte responsiveness to insulin regardless of diet, week 3 experiments 

were performed with the basal and maximal insulin concentration conditions only. The 

first section will focus on the conversion of glucose into lipids (triglycerides). The 

second and third sections will address the two components of triglycerides; fatty acids 

and glyceride-glycerol. The last section will contain carbon dioxide (CO2) production 

(via glucose oxidation) data from week 1 only.

Week 1 Data

(uC)-Glucose Incorporation into Total Lipids (Triglycerides)

Absolute rates of basal glucose incorporation into total lipids did not differ among 

groups after 1 week on their respective diets (Figure 19). In the presence of insulin, 

moderately high fat feeding significantly reduced absolute rates of glucose incorporation 

into total lipids for EPI of both OP and OR rats compared to C rats (Figure 19). To 

examine the effects of insulin on glucose incorporation into lipids more directly, basal 

rates were subtracted from insulin-stimulated glucose incorporation rates (relative rates). 

Data were also expressed as percent increase over basal (i.e., insulin-stimulated minus 

basal/ basal *100%) to control for basal responses. As expected, relative rates and 

percent increase over basal data were still increased for C when compared with OP and 

OR (Figures 20 and 21). When comparing the responses of OP and OR EPI cells, 

relative rates of glucose conversion to lipids were increased at the submaximal doses of 

insulin (0.1 and 1.0 nM) for OP rats vs. OR rats (Figure 20). At the maximal 

concentration (3.5 nM), relative rates of glucose incorporation into lipids tended to be 

increased for OP vs. OR (p = 0.073). When expressed as percent increase over basal, EPI 

cells of OP rats more responsive to insulin than those of OR rats (Figure 21).
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Fig. 19. Basal and insulin-stimulated rates of ( ,4C>ghicose incorporation into total lipids 
of epididymal adipocytes from obesity-prone (black bars), obesity-resistant (striped bars), 
& control (gray btus) rats after 1 week on a moderately high fat (OP & OR) or low-fat 
diet (C). Different letters within specific concentration denote significant differences 
(p < 0.05 or less). Data are presented as mean ± SE.
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Fig. 20. Relative rates o f insulin-stimulated (minus basal) (>4C)-glucose incorporation 
into total lipids of epididymal adipocytes from obesity-prone (black bars), obesity- 
resistant (striped bars), & control (gray bars) rats after 1 week on a moderately high fat 
(OP & OR) or low-fat diet (C). Different letters within specific concentration denote 
significant differences (p < 0.05 or less). * p = 0.07; OP > OR. Data are presented as 
mean±SE.
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Fig. 21. Insulin-stimulated (14C)-glucose incorporation into total lipids expressed as 
percent increase over basal in epididymal adipocytes from obesity-prone (black bars), 
obesity-resistant (striped bars), & control (gray bars) rats after I week on a moderately 
high fat (OP & OR) or low-fat diet (C). Different letters within specific concentration 
denote significant differences (p < 0.05 or less). Data are presented as mean ± SE.
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(14C>Glucose Incorporation into Fatty Acids

Basal glucose incorporation into fatty acids was significantly different among 

groups on their respective diets (Figure 22). Insulin-stimulated glucose incorporation 

into fatty acids was reduced for EPI of OP and OR rats compared to C rats, whereas the 

insulin response was greater for OP rats than OR rats (Figure 22). Relative rates and 

percent increase over basal data were still increased for C when compared with OP and 

OR (Figures 23 and 24). When comparing the responses of OP and OR EPI cells, 

relative rates of glucose conversion to fatty acids were increased at all insulin 

concentrations for OP rats vs. OR rats (Figure 23). When expressed as percent increase 

over basal, EPI cells of OP rats were more responsive to insulin than those of OR rats 

(Figure 24).

(uC)-Glucose Incorporation into Glyceride-glycerol

Basal glucose incorporation into glyceride-glycerol did not differ among groups 

on their respective diets (Figure 25). MHF feeding significantly affected insulin- 

stimulated glucose incorporation into glyceride-glycerol for EPI cells of OP and OR rats 

compared to C rats (Figure 25). Relative rates and percent increase over basal data were 

still increased for C when compared with OP and OR (Figures 26 and 27). When 

comparing the responses of OP and OR EPI cells, relative rates of glucose conversion to 

glyceride-glycerol were only increased at the lowest concentration of insulin (0.1 nM) for 

OP rats vs. OR rats (Figure 26). At the other concentrations, relative rates of glucose 

incorporation into glyceride-glycerol tended to be increased for OP vs. OR, but these 

differences were not significant. When expressed as percent increase over basal, the 

insulin effects were greater in EPI cells o f OP rats than in those of OR rats (Figure 27).
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Fig. 22. Basal and insulin-stimulated rates of (l4C)-glucose incorporation into fatty acid 
moieties o f lipids in epididymal adipocytes from obesity-prone (black bars), obesity- 
resistant (striped bars), & control (gray bars) rats after 1 week on a moderately high fat 
(OP & OR) or low-fat diet (C). Different letters within specific concentration denote 
significant differences (p < 0.05 or less). Data are presented as mean ± SE.
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Fig. 23. Relative rates of insulin-stimulated (minus basal) (l4C)-glucose incorporation 
into fatty acid moieties of lipids in epididymal adipocytes from obesity-prone (black 
bars), obesity-resistant (striped bars), & control (gray bars) rats after 1 week on a 
moderately high fat (OP & OR) or low-fat diet (C). Different letters within specific 
concentration denote significant differences (p < 0.05 or less). Data are presented as 
mean ± SE.
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Fig. 24. Insulin-stimulated (14C)-glucose incorporation into fatty acid moieties of lipids 
expressed as percent increase over basal in epididymal adipocytes from obesity-prone 
(black bars), obesity-resistant (striped bars), & control (gray bars) rats after 1 week on a 
moderately high fat (OP & OR) or low-fat diet (C). Different letters within specific 
concentration denote significant differences (p < 0.0S or less). Data are presented as 
mean ± SE.
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Fig. 25. Basal and insulin-stimulated rates o f ( l4C)-glucose incorporation into glyceride- 
glycerol moiety o f lipids in epididymal adipocytes from obesity-prone (black bars), 
obesity-resistant (striped bars), & control (gray bars) rats after 1 week on a moderately 
high &t (OP & OR) or low-fat diet (C). Different letters within specific concentration 
denote significant differences (p < 0.05 or less). Data are presented as mean ± SE.
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Fig. 26. Relative rates of insulin-stimulated (minus basal) (l4C)-glucose incorporation 
into glyceride-glycerol moiety of lipids in epididymal adipocytes from obesity-prone 
(black bars), obesity-resistant (striped bars), & control (gray bars) rats after 1 week on a 
moderately high fat (OP & OR) or low-fat diet (C). Different letters within specific 
concentration denote significant differences (p < 0.05 or less). Data are presented as 
mean±SE.
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Fig. 27. Insulin-stimulated (14C)-glucose incorporation into glycerol-glyceride moiety of 
lipids expressed as percent increase over basal in epididymal adipocytes from obesity- 
prone (black bars), obesity-resistant (striped bars), & control (gray bars) rats after I week 
on a moderately high fat (OP & OR) or low-fat diet (C). Different letters within specific 
concentration denote significant differences (p < 0.05 or less). Data are presented as 
mean ± SE.
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(uOGlucose Oxidation (Carbon Dioxide Production)

Absolute rates of basal glucose incorporation into total lipids did not differ among 

groups after 1 week on their respective diets (Figure 28). Insulin enhanced glucose 

oxidation for all groups but it was significantly increased in EPI cells of C rats compared 

to OP and OR rats, which did not differ (Figure 28). The direct effects o f insulin were 

evaluated after subtracting insulin-stimulated from basal glucose incorporation rates. 

Relative rates and percent increase over basal data were still increased for C when 

compared with OP and OR, which again were not different (Figures 29 and 30).

Week 3 Data

(uC)-Glucose Incorporation into Total Lipids (Triglycerides)

Absolute basal glucose incorporation into total lipids was significantly different 

among the groups after 3 week on their respective diets (Table 12). In the presence of the 

maximal insulin concentration, EPI cells of C rats had increased absolute rates of glucose 

incorporation into total lipids than those of OP rats, which in turn was greater than OR 

rats. Relative rates, as well as, percent increase over basal data were increased in EPI 

cells for C rats when compared with OP and OR rats. OP rats were still more responsive 

to the lipogenic effects of a maximal insulin dose when compared with OR rats.

(uC)-Glucose Incorporation into Fatty Acids 

Similar to data from week 1, basal glucose incorporation into fatty acids were 

significantly different among the groups after 3 week on their respective diets (Table 12). 

With a maximal concentration for insulin, EPI cells of C rats had increased absolute rates 

of glucose incorporation into fatty acids than those of OP rats, which in turn was greater 

than OR rats. EPI cells for C rats also had augmented relative rates and percent increase
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Fig. 28. Basal and insulin-stimulated rates of (l4C)-glucose oxidation via CO2 production 
in epididymal adipocytes from obesity-prone (black bars), obesity-resistant (striped bars), 
& control (gray bars) rats after 1 week on a moderately high fat (OP & OR) or low-fat 
diet (C). Different letters within specific concentration denote significant differences 
(p < 0.05 or less). Data are presented as mean ± SE.
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Fig. 29. Relative rates of insulin-stimulated (minus basal) (>4C)-glucose oxidation via 
CO2 production by epididymal adipocytes from obesity-prone (black bars), obesity- 
resistant (striped bars), & control (gray bars) rats after 1 week on a moderately high fat 
(OP & OR) or low-fat diet (C). Different letters within specific concentration denote 
significant differences (p < 0.05 or less). Data are presented as mean ± SE.
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Fig. 30. Insulin-stimulated (14C)-glucose oxidation via CO2 production expressed as 
percent increase over basal in epididymal adipocytes from obesity-prone (black bars), 
obesity-resistant (striped bars), & control (gray bars) rats after 1 week on a moderately 
high fat (OP & OR) or low-fat diet (C). Different letters within specific concentration 
denote significant differences (p < 0.05 or less). Data are presented as mean ± SE.
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Table 12. (*4C)-glucose conversion to total lipids (fatty acids and glyceride-glycerol) in 
epididymal adipocytes o f obesity-prone (OP), obesity-resistant (OR), and control (C) rats 
after consuming either a moderately high fa t (OP & OR) or low fa t diet (C) fo r  3 weeks

Condition C OP OR

Total lipids (pmol/10* cells/2 hr)

Basal 2.34 ±0.05* 1.91 ±0.06b 1.54±0.03c

Insulin (3.5 nM) 3.88 ±0.11* 2.83 ± 0.03b 2.19 ±0.02°

Insulin minus basal 
(pmol/106 cells/2 hr)

1.54 ±0.11* 0.92 ± 0.03b 0.65 ± 0.02c

Increase over basal (%) 65.7 ± 4.6* 48.1 ± 1.6b 42.1 ± 1.0C

Fatty acids (nmol/106 cells/2 hr)

Basal 87 ±2* 50± 4b 26 ± 1°

Insulin (3.5 nM) 307 ± 8* 126 ± 4 b 52 ± l c

Insulin minus basal 
(nmol/106 cells/2 hr)

220 ± 8* 76 ± 4b 26 ± lc

Increase over basal (%) 253.2 ± 8.8* 152.1 ±7.7b 99.4 ±4.8°

Glyceride-glycerol (pmol/10* cells/2 hr)

Basal 2.26 ±0.05* 1.86 ± 0.06b 1.51 ± 0.03c

Insulin (3.5 nM) 3.63 ±0.11* 2.70 ± 0.02b 2.13 ± 0.02c

Insulin minus basal 
(pmol/106 cells/2 hr)

1.37 ±0.11* 0.85 ± 0.03b 0.62 ± 0.02c

Increase over basal (%) 60.8 ±5.1* 45.5 ± 1.5b 41.2 ± 1.3b*

Data are presented as mean ± SE.
Different letters within a row denote significant differences (p < 0.05 or less). 
OP vs. OR (p = 0.07)
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over basal data when compared with OP and OR. OP rats were still more responsive to 

the lipogenic effects o f insulin when compared with OR rats.

(14C)-Glucose Incorporation into Glyceride-glycerol

Absolute rates o f basal glucose incorporation into glyceride-glycerol were 

different among groups after 3 week on their respective diets (Table 12). There were 

reductions in absolute rates of glucose incorporation into glyceride-glycerol for EPI of 

OP and OR rats compared to C rats with insulin. Relative rates and percent increase over 

basal data were greater for C when compared with OP and OR. Comparisons between 

OP and OR EPI cell responses revealed that relative rate o f glucose conversion to 

glyceride-glycerol was increased for OP rats vs. OR rats, but these differences 

approached significance when expressed as percent increase over basal (p = 0.07).

FAS mRNA Expression

FAS mRNA expression appeared to be lower in EPI fat of both OP and OR rats 

compared with C rats (Figure 31). When expressed as a percent of control, FAS mRNA 

expression was 50% higher in EPI fat of OP than that of OR rats.

DISCUSSION

Previously it has been reported that high fat feeding alters insulin-stimulated 

glucose metabolism in rat adipocytes compared with rats fed a low fat diet (52,102, 112, 

150), which was confirmed in the present study. However, we have reported differential 

body weight responses in rats consuming the same moderately high fat (MHF) diet (40, 

100). These rats are classified as obesity-prone (OP) and obesity-resistant (OR) based on 

body weight gain. Therefore, we compared insulin-stimulated glucose metabolism in 

adipocytes OP and OR fed a MHF diet to account for the divergent responses to this diet
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110

Fig. 31. FAS/p-actin ratios expressed as percent of controls (C = 100%) in epididymal 
fat tissues from obesity-prone (black bars), obesity-resistant (striped bars), & control 
(gray bars) rats after I week on a moderately high fat (OP & OR) or low-fat diet (C).
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in the present study. We also included a low fat-fed group as a dietary control (C). 

Marked physiologic adaptations to a MHF diet were observed within one week of starting 

the diet in OP and OR rats. Plasma leptin concentrations and visceral adiposity were 

increased in OP rats vs. OR rats after 1 week, whereas the values in low fat-fed rats were 

non-significantly lower vs. OP rats. Furthermore, plasma leptin and body fat differences 

were more pronounced among groups after 3 weeks. Plasma insulin concentrations did 

not differ among groups at both time points. This was not consistent with other 

researchers that have found hyperinsulinemia or impaired glucose tolerance in OP rats 

after short-term exposure to hypercaloric diets (106,107). We have also noted that long

term exposure to a MHF diet (14 wk) produced hyperinsulinemia in OP rats (100). Since 

glucose tolerance tests were not done, it cannot be ruled that OP rats did not have 

impaired glucose tolerance (reflective of insulin sensitivity in skeletal muscle) in the 

present study. Possibly the short-term dietary challenge was not sufficient to produce 

hyperinsulinemia in the present OP rats.

Cell size in EPI fat was also increased in OP rats vs. OR and C rats. OR cell size 

was also less than C cell size, suggesting that OR rats had reduced cell sizes prior to the 

diet or were able to protect their fat cells from increased dietary lipids. Moreover, the C 

group consists of rats that would diverge into OP and OR groups upon MHF challenge. 

This may have contributed to the cell size findings. These cell size differences were 

present after 1 and 3 weeks of the dietary challenge. Therefore, OP rats appeared to 

respond to increased dietary fats by increasing Upid storage and body fatness. These data 

suggested that although moderately high fat feeding reduced lipogenic responses to
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insulin in adipocytes, diet-induced responses could be different in adipocytes from OP 

and OR rats.

High fat feeding affects insulin-stimulated glucose metabolism and ceil size in 

adipocytes (102,149). Insulin sensitivity is reduced in larger cells (37,38, 73, 102,113). 

One cell size-related mechanism for reduced lipogenesis is the increased basal lipolysis in 

larger adipocytes (38). As a result of elevated lipid breakdown, augmented intracellular 

non-esterified fatty acid concentrations shift glucose metabolism from fatty acid synthesis 

to glyceride-glycerol synthesis for re-esterification, thus reducing the capacity of the 

adipocyte to utilize glucose for lipogenesis (37,59, 102). Therefore, the following 

sections will address the effects of MHF and LF feeding and cell size on basal and 

insulin-stimulated glucose metabolism.

Basal Effects

In agreement with previous studies, we found that MHF feeding altered basal 

lipogenic responses in adipocytes when compared with LF feeding. After 1 week, basal 

fatty acid synthesis was reduced in fat cells of MHF-fed rats compared with those of LF- 

fed rats. In adipocytes, the reduction in fatty acid synthesis for rats fed moderately high 

fat diet was related increased dietary fats (32% vs. 11% kcal as fat). In contrast, basal 

glucose oxidation (i.e., CO2 production) and glyceride-glycerol production were not 

affected by MHF feeding. Since glucose was converted mainly into the glyceride- 

glycerol moiety of lipids, it was not surprising that basal lipid synthesis was not different 

between high and low fat groups. The changes in basal glucose metabolism in isolated 

EPI adipocytes were similar to the 1-week data reported by Lavau et al. (102), except that 

basal CO2 production was not different among groups in the present study. They

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



123

reported that basal fatty acid synthesis and CO2 production were reduced and production 

of glyceride-glycerol was unaffected with one week of high fat feeding. Ip et al (81) also 

noted a reduction in basal CO2 production with high fat feeding. The discordant CO2 

findings may be related to the fat content of the diet. Their diets were composed of 

approximately 70% kcal as fat and our diet contained 32% kcal as fat, thus basal activity 

o f glucose oxidative enzymes may be compromised by higher fat content. Moreover, 

basal fatty acid and glyceride-glycerol synthesis were further reduced in MHF fed rats 

compared with LF fed rats after 3 weeks. This suggested that longer term feeding 

affected glucose metabolism more than a 1-week dietary challenge.

Furthermore, this was the first study to appreciate the divergent body weight and 

fat responses to a MHF diet and to evaluate glucose metabolism in adipocytes of rats 

rendered OP and OR after exposure to this diet. In addition to diet-related effects, there 

were also within diet group (MHF-fed OP and OR rats) responses. EPI fat cells of OP 

rats converted more glucose into fatty acids than those of OR rats at basal conditions, 

whereas glucose oxidation and glyceride-glycerol (also total lipids) production did not 

differ after 1 week. These findings were independent of substrate availability because 

glucose uptake did not differ between EPI cells of OP and OR rats (see Chapter V). In 

contrast, EPI cells of OP rats had increased basal fatty acid and glyceride-glycerol 

synthesis after 3 weeks when compared with those of OR rats. This suggested that MHF 

feeding was less detrimental to basal lipogenic capacity within OP rat adipocytes.

Insulin Effects

Similar to the results found with glucose uptake, the metabolic responses to 

insulin were also depressed in adipocytes o f rats fed either a MHF, LF, or chow diet (i.e.,
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baseline rats). This demonstrated that even small changes in dietary fat content (32% vs. 

11% vs. 5%, respectively) altered glucose metabolism in adipocytes. Insulin regulates 

various metabolic pathways within adipocytes via binding to its receptor and activating 

second messenger systems. Insulin stimulates uptake of glucose and fatty acids into 

adipocytes and skeletal muscle cells. Glucose oxidation is increased in order to facilitate 

lipid synthesis and storage within adipocytes. Lipolysis is also inhibited in adipocytes by 

insulin, thus highlighting the anabolic nature o f this hormone. We found that insulin 

enhanced glucose metabolism for all groups, but metabolic responses (CO2 production 

and fatty acid and glyceride-glycerol synthesis) were compromised in adipocytes of 

moderately high fat fed rats after 1 and 3 weeks. Furthermore, these group differences 

were independent of cell size because OR rats had the smallest cell size, but insulin- 

stimulated glucose metabolism appeared to be most affected in these cells. Moreover, the 

glucose metabolism data were adjusted for both cell size and cell number by the nature of 

the normalization method (e.g., umol/mg lipid * mg lipid/106 cells). Mechanisms other 

than cell size may have contributed to the differences among groups.

Moreover, marked differences were found in the lipogenic responses to insulin 

between EPI cells of OP and OR rats. The main finding with insulin stimulation was that 

glucose conversion into fatty acids was elevated nearly two-fold in EPI cells of OP vs.

OR rats. Additionally, the production of glyceride-glycerol was also enhanced by 

insulin, but group differences were not present at all concentrations. Glucose oxidation 

did not differ between groups after 1 week. After 3 weeks o f a dietary challenge, 

differences in insulin-stimulated lipogenesis were more pronounced between OP and OR 

rats. Glucose oxidation was not measured at week 3. Again, these findings were
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independent of substrate availability because insulin-stimulated glucose uptake did not 

differ between EPI cells of OP and OR rats. Equivalent glucose uptake and differential 

metabolic responses imply channeling of glucose into different metabolic pathways 

within adipocytes of OP and OR rats. Glycogen and lactate are also products of glucose 

metabolism in adipocytes (73, 123), but were not measured in the present study. Group 

differences cannot be ruled out for these variables. EPI adipocytes o f OP rats had an 

increased capacity to convert glucose to triglycerides (both glyceride-glycerol and fatty 

acid moieties) in response to insulin, thus increasing lipid storage and adiposity.

Elevated triglyceride synthesis within OP adipocytes may have contributed to the 

augmented plasma and lipoprotein triglycerides concentrations found within OP rats. 

Triglycerides and free fatty acids are known to alter liver, specifically gluconeogenesis 

and skeletal muscle metabolism (141). Alternatively, EPI adipocytes of OR rats may 

have metabolized glucose to less metabolically detrimental products (e.g., glycogen and 

lactate). The differential lipogenic response to insulin is similar to findings from other 

animal models of obesity. Hypothalamic obesity was associated with increased 

lipogenesis in vivo I week post-lesions via increased insulin secretion and sensitivity 

(128, 129). Young obese Zucker rats have augmented lipogenic enzyme activity in 

adipose tissues with marked insulin resistance in skeletal muscles (22,69). Elevated 

lipogenic capacity in Zucker rats appears to be a genetic effect because FAS activity is 

increased in stromal cells and preadipocytes in obese Zucker rats (22). Moreover, obese 

Zucker rats consume more calories ad libitum than lean Zucker rats (169). Increased 

caloric intake is associated with elevated lipogenic enzyme activities in fat tissues of 

obese Zucker rats (18a). Therefore, differences in adipocyte lipogenic capacity between
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OP and OR rats may be related to the increased caloric consumption noted in OP rats in 

the present study. In summary, EPI fat cells of OP rats appeared to be more responsive to 

the lipogenic properties of insulin, specifically fatty acid synthesis at both time points, 

but whether this difference is primary or secondary to increased adiposity or caloric 

intake needs to be determined.

In the present study, lipogenic enzyme activity in fat cells appeared to be 

depressed with MHF feeding, but the reduction was greater for OR rats than for OP rats. 

In support of this finding, fatty acid synthase (FAS) mRNA expression was greater in EPI 

fat of OP rats compared to OR rats after 1 week on a MHF diet (50% greater). Caution 

must be taken when interpreting these results because these data were based on pooled 

adipose tissues. Pooled tissue and RNA technically yielded only a data point for each 

group. Due to lack of tissues, FAS mRNA data were not determined for week 3 rats.

This seemed, however, to be in good agreement with the finding that the activity of 

lipogenic enzymes was reduced to roughly 13% of controls in EPI cells of high fat fed 

rats (102).

FAS is a key lipogenic enzyme that catalyzes the biosynthesis of long chain fatty 

acids from acetyl CoA precursors and is present in hepatocytes and adipocytes. FAS 

gene expression is regulated at the transcriptional level by hormonal and nutritional 

controls, which indicates that enzyme activity is related to mRNA expression (16). 

Glucose and insulin regulate FAS expression and activity in vivo and in vitro, in addition 

to dietary fats (22, 56,90, 102,122,149). In the present study, non-fasting plasma 

insulin, glucose, and FFA concentrations did not differ among OP, OR, and C rats after 1 

and 3 weeks on their respective diets. This implied that these factors were not
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responsible for the apparent differences in insulin-stimulated glucose metabolism and 

FAS mRNA expression. However, plasma and very low-density lipoprotein triglycerides 

tended to be increased after I week and were significantly elevated after 3 weeks in OP 

rats compared with OR and C rats. An earlier study reported higher rates of fatty acid 

synthesis in isolated hepatocytes o f diet-induced obese rats (126). These data suggested 

that FAS activity was greater in hepatocytes of OP rats compared with OR and C rats. 

Reduced suppression of FAS mRNA expression by dietary fats may have accounted for 

the increased triglyceride production in hepatocytes and adipocytes o f OP rats compared 

with those of OR rats.

In summary, insulin responsiveness was reduced in adipocytes of rats fed a 

moderately high fat diet compared with low fat-fed rats. Epididymal adipocytes of OP 

rats appeared to be less affected by increased dietary fats than OR rats. The enhanced 

insulin effect might promote excess fat accretion noted in fat cells of OP rats at weeks 1 

and 3 of a dietary challenge, ultimately resulting in the obese state. Altered regulation of 

FAS mRNA expression in response to a moderately high fat diet could play a role in the 

increased adiposity of OP rats. Increased insulin sensitivity at the onset of a dietary 

challenge might result in augmented visceral adiposity and triglyceride synthesis, which 

may have contributed to the altered metabolic state within OP rats.
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CHAPTER Vn  

SUMMARY

In this dissertation, we attempted to understand and determine primary and 

secondary peripheral causes of excess fat accretion noted in obesity-prone (OP) rats upon 

introduction of a moderately high fat diet. Excess fat accretion was found in visceral fat 

depots within these OP rats. Adipose tissue is composed of adipocytes that are under 

hormonal control. These hormones control the major processes occurring in adipocytes 

including lipid mobilization (lipolysis) and lipogenesis. Lipolysis is stimulated mainly by 

catecholamines and secondarily by growth hormone. Lipogenesis is principally 

controlled by insulin. Adrenal cortex, thyroid, and sex steroid hormones also influence 

these processes but their roles are permissive and not primary.

In the first study, we investigated whether in vivo lipolysis was a causative factor 

in obesity development, as suggested by earlier researchers. We measured in vivo 

lipolysis by two distinct methods, whole body via plasma challenge and local via 

microdialysis. After the lipolytic studies, we challenged rats with a moderately high fat 

(MHF) diet. OP and OR (obesity-resistant) groups were determined based on body 

weight gain. Regardless of method, we found no differences in isoproterenol-stimulated 

glycerol release between OP and OR rats prior to a dietary challenge. This suggested that 

lipid mobilization was not a causative factor in obesity development in these rats.

In the second experiment, we addressed the role of increased adiposity on 

lipolytic responsiveness utilizing an in vitro approach. We evaluated lipolysis in isolated 

adipocytes of inbred OP and OR rats. These inbred rats were bred for obesity-prone or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



129

obesity-resistant traits from an outbred Sprague-Dawley stock. These rats also enabled 

us to evaluate lipolytic responses from various depots without placing them on a MHF 

diet to determine groupings. We found that although OP and OR rats have similar body 

weights at 8 wk of age, OP rats have more visceral fatness than OR rats. Moreover, 

regional and group differences were found for basal and hormone-stimulated lipolysis. 

There were also differential responses to hormones or drugs. Altogether, we found that 

OP rats had reduced lipolytic responsiveness in visceral adipocytes but not subcutaneous 

adipocytes when compared to OR rats. Excess visceral adiposity in inbred OP rats may 

be the result of reduced responsiveness to lipolytic agonists or vice versa.

In studies 3 through S, we explored the role of insulin on glucose uptake and 

metabolism with the premise that increased insulin sensitivity may have promoted excess 

substrate availability for lipid production or increased lipogenesis within adipocytes of 

OP rats. We investigated these processes (e.g., glucose uptake and lipogenesis) in 

isolated adipocytes of outbred rats identified as OP or OR after 1 and 3 weeks on a MHF 

diet. We also included low fat fed rats to examine dietary influences on insulin action. 

We found that MHF-feeding impaired insulin-stimulated glucose uptake and lipogenesis 

in adipocytes of OP and OR rats when compared to those of low-fat fed rats. The main 

interest in these studies was comparisons between OP and OR rats. OP rats were heavier 

and fatter than OR rats during the early stages of the dietary challenge. We noted that 

there were no group differences in insulin-stimulated glucose uptake, suggesting MHF 

feeding impaired this process equally between groups. The major finding in this set of 

experiments is that isolated adipocytes of OP rats are more proficient in synthesizing 

fatty acids from glucose (lipogenesis) than those of OR rats during the early stages of a
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dietary challenge. Moreover, this finding may be related to the apparent difference in 

fatty acid synthase mRNA expression between OP and OR rats. The increased lipogenic 

responses to insulin in OP rats may have contributed to the increased visceral adiposity in 

these rats, but assigning causation should be done with caution.

If we combine the above results, it may be speculated that altered lipolysis was 

not a causative factor for excess adiposity in OP rats. Moreover, increased insulin 

sensitivity and responsiveness (via increased lipid synthesis) promoted excess fat 

accretion in OP rats. As obesity developed, adipocytes of OP rats became less responsive 

to lipolytic agents and exacerbated visceral fatness. Conversely, OR rats were protected 

from obesity by a combination of increased hormone-stimulated lipolysis and reduced 

sensitivity to the lipogenic effects of insulin. Either way, increased visceral fatness was 

associated with other metabolic perturbations found in OP rats.

In adipocytes and hepatocytes, increased insulin sensitivity in OP rats appeared to 

elevate visceral adiposity and plasma and VLDL triglycerides when compared with OR 

rats in the present study. These increases were present after one and three weeks on the 

MHF diet in our study. Levin et al. (106) also found that OP rats were hyperinsulinemic 

after only two weeks on a high energy diet compared with OR rats, suggesting insulin 

resistance in skeletal muscles and liver. We did not find differences in plasma insulin 

concentrations in the present study. We have, however, reported hyperinsulinemia in OP 

rats after 14 weeks on a MHF diet (100). Impaired glucose tolerance was also noted in 

OP after three months on the high energy diet (109), indicating insulin resistance at both 

the skeletal muscle and adipose tissue level. Therefore, initially increased insulin 

responsiveness in adipose tissues is lost as the obese state further develops within the OP
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rat. It is the increased visceral adiposity and insulin resistance that are associated with 

other perturbations noted with the metabolic syndrome, dyslipidemia and hypertension 

(91,130,134). Our previous findings showed that OP rats developed symptoms of the 

metabolic syndrome during exposure to a moderately high fat diet (40,100).

These symptoms were also noted in humans with growth hormone deficiency 

(83). Previously, Lauterio and colleagues (98,101) found that growth hormone secretion 

was significantly reduced in OP rats vs. OR rats before and after the onset of obesity. 

Recently, we infused OP rats continuously with growth hormone (200 pg/day -  dose 

approximates difference between OP and OR rats) via mini-osmotic pump for 4 weeks 

and examined its effect on visceral adiposity and plasma profiles. GH-infused OP rats 

had significantly less visceral adiposity and plasma insulin and triglyceride 

concentrations than saline-infused OP rats (Davies and Lauterio, in preparation). Similar 

metabolic improvements were noted in GH-deficient humans receiving GH replacement 

therapy (84). These data indicated that increased insulin sensitivity in adipose tissue and 

GH deficiency might contribute to obesity development in OP rats.
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In summary the current experiments were able to:

1. Demonstrate that male Sprague-Dawley rats diverge into two distinct populations 

based on body weight gain after exposure to a moderately high fat (MHF) diet for 

14 weeks. These populations were termed obesity-prone (OP) and obesity- 

resistant (OR).

2. Determine that in vivo lipolytic responsiveness, as assessed by two separate 

approaches, is not causative factor for obesity susceptibility or obesity resistance 

in male Sprague-Dawley rats (outbred).

3. Establish that OP rats are more efficient in storing energy as body weight than OR

rats throughout the dietary challenge. In contrast, relative rates of body weight 

gain (i.e., growth) and food consumption are only increased in OP rats during the 

first two weeks of the dietary challenge. These data suggest that there is a 

dynamic phase and a static phase in response to the MHF diet. The dynamic 

phase is associated with marked hyperphagia and body weight accumulation.

4. Demonstrate that OP rats are hyperinsulinemic and hyperleptinemic compared to

OR rats after a 14 week dietary challenge. In addition, relative leptin secretion 

(plasma leptin concentration per fat pad weight) is also increased in OP rats. 

Together these results indicate that OP rats develop apparent leptin and insulin 

resistance.

5. Compare in vitro responses to various lipolytic agents (e.g., isoproterenol, 

forskolin, and growth hormone (GH) + dexamethasone) in adipocytes from male 

Sprague-Dawley rats bred for either OP or OR traits without the confounding
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effects o f the MHF diet. Inbred OP rats are fatter than inbred OR rats even 

though both groups have similar body weights at 8 weeks of age.

6. Determine that visceral adipocytes of OP rats are less responsive (i.e., fold 

increase over basal) to lipolytic agents than those of OR rats. Subcutaneous 

adipocytes do not differ in responses to these agents.

7. Demonstrate that GH alone does not stimulate lipolysis in adipocytes regardless 

of group or visceral fat pad. In contrast, GH plus dexamethasone is only able to 

stimulate lipolysis in visceral adipocytes of OR rats. These data suggest that 

adipocytes of inbred OP rats are not responsive to lipolytic properties of GH.

8. Confirm that short-term exposure to MHF diet drastically reduces insulin- 

stimulated glucose uptake and metabolism in isolated adipocytes of OP and OR 

rats when compared to adipocytes of rats fed a low fat diet.

9. Establish that insulin-stimulated glucose metabolism is different in epididymal 

adipocytes o f OP and OR rats after 1 and 3 weeks on a MHF diet. Moreover, 

adipocytes o f OP rats are more responsive to the lipogenic actions of insulin, 

specifically fatty acid synthesis at weeks 1 and 3. Glucose oxidation and 

glyceride-glycerol synthesis are similar between OP and OR rats at week 1.

10. Demonstrate that fatty acid synthase mRNA expression is lower in epididymal fat 

of OP and OR rats compared with control rats. The level of mRNA expression in 

epididymal fat of OP rats is 50% greater than that of OR rats. These data support 

the in vitro lipogenic results and also characterize differential responses to MHF 

feeding in OP and OR rats.
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11. Determine that plasma and VLDL triglyceride concentrations tend to be increased 

in OP rats compared with OR rats after 1 week and significantly elevated after 3 

weeks. Therefore, hepatic lipogenic capacity may be augmented in OP rats 

compared with OR rats

12. Demonstrate that OP rats consume and store more energy as fat, as indicated by 

the elevated visceral fatness and plasma leptin concentrations after 1 and 3 weeks 

on the MHF diet.
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