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NONPROPORTIONALLY LOADED STEEL BEAM-COLUMNS
AND FLEXIBLY-CONNECTED NONSWAY FRAMES

Siva Prasad Darbhamulla
Old Dominion University
Advisor: Dr. Zia Razzaq

Abstract

A theoretical study of the inelastic stability of nonproportionally loaded steel
beam-columns and flexibly-connected frames is conducted. Specifically, solution
techniques are formulated to predict the nonlinear behavior of cross sections, spatial
beam-columns, and nonsway plane frames under the combined influence of
imperfections, flexible connections, and nonproportional loads. A set of new
inelastic slope-deflection equations for imperfect members are derived and their use
illustrated through in-depth studies of flexibly-connected portal and two-bay two-
story frames. These equations are derived from a system of nonlinear ordinary
differential equations. The member studies are carried out using a second-order
finite-difference solution to a set of nonlinear equilibrium equations, and coupled to
a tangent stiffness procedure for cross sections. The majority of the theoretical
studies are carried out on a conventional sequential computer. Efficient concurrent
computational algorithms are also presented for biaxial bending and column stability

problems. Results are obtained using a multiprocessor computer known as the Finite
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Element Machine. A critical appraisal of the conventional tangent modulus approach
is presented in light of the analysis which includes elastic unloading of the material.
It is found that the tangent modulus approach resuits in a fictitious ductile behavior.
Furthermore, it is also realized that there is a dramatic difference in the nonlinear
behavior between the proportionally and nonproportionally loaded structures. It is
also observed that the proportionally loaded structures lead to rather unconservative
peak loads. Additionally, members as integral parts of a frame may exhibit
significantly different load-deformation behavior as compared to that of isolated
members. The study on members and frames shows that nonproportional loads have

a significant effect on their behavior and strength.
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1. INTRODUCTION

1.1 Introduction

Practical structural steel members and frames are imperfect, seldom possess
ideal pinned or rigid joints, and may not be subjected to proportional loads.
Previous studies have been devoted to an understanding of the effects of initial
imperfections and flexible connections on the response of individual members
subjected to proportional loads. In comparison, little research has been carried out
on the influence of nonproportional loads on response of steel members and frames.
The combined influence of imperfections, flexible connections, and nonproportional
loading on the behavior and strength of such structures has not been studied.

Mathematically, the afore-mentioned inelastic behavior problems can be
reduced to a system of materially nonlinear ordinary differential equations. Closed-
form solutions to these equations are not possible since the coefficients of the
governing differential equations vary with the level of external loads and also with
the dependent variables, namely, the deformations. Over the past two decades,
numerical solutions for specific cases of inelastic problems have been devised for
implementation on sequential computers. Rigorous analysis is quite complex and
time-consuming even for relatively simple structures. With the advent of parallel
computers, efficient solutions to these problems appear to be possible. However, no

such studies have been conducted by any investigators for inelastic analysis.
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Parallel computing derives its name from the fact that in a parallel computer,
there are a number of mini-computers or processors connected in parallel through
an inter-processor communication network. The name concurrent processing is also
used in the literature instead of parallel computing. Elasto-plastic problems appear
to be suitable for solution on parallel computers. For example, the process of
enforcing equilibrium conditions at several locations within the domain of a structure
may be carried out concurrently.

The primary aim of this dissertation is to present an analysis of
nonproportionally loaded practical steel members and frames. Sequential algorithms
are devised for a majority of the problems, however, representative parallel
algorithms are also included to explore the feasibility of using concurrent solution

procedures.

1.2 Literature Review

Long after the famous work of Euler (2) on column stability, Engesser (1)
realized, in 1895, that metal columns of intermediate length may fail before the
elastic buckling load is attained, that is by inelastic instability. Consequently,
Engesser suggested the use of a reduced modulus approach for evaluating the
inelastic strength of such members. The experimental results, however, were not in
good agreement with this theory. In 1947, this controversy was resolved by Shanley
(3) in a set of carefully controlled column experiments. Shanley suggested that the
tangent modulus should be used instead of the reduced modulus and that it would

result in a better prediction of the test results.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In 1961, Galambos and Ketter (11), Ketter (12), and Ketter and Prasad (13)
analyzed the inelastic behavior of beam-columns with simple ends based on the
tangent modulus theory. A few years later, Lu and Kamalvand (22) investigated
beam-columns with fixed-ended supports. A number of other investigations were
carried out (4,5,7,11-13,16,19,21,22,23,27,30,34,38-40,50,51,53-56) to understand the
behavior of these members. Recently, Razzaq and Calash (51,54) presented a
rigorous investigation of column behavior with partial restraints and biaxial initial
crookedness. Other studies have explained partly the effects of residual stresses
(4,6,12,13,38-40,51,54,56), end restraints (38,39,42,46,50,51,54,56), and initial
crookedness (28,32,38,51,54,56) on member response. Some theoretical and
experimental studies are carried out by Razzaq and McVinnie (45,55) on
nonproportionally loaded pin-ended beam-columns with biaxial bending.

In 1957, Driscoll (8) conducted studies on the plastic behavior of frames.
Galambos (10) considered the effects of the base fixity on frame behavior. Saap
(14), Citipitioglu (15), McVinnie (18), Korn (20) and many other researchers
(17,26,28,29,32,37,41,42,44,46,56) studied the behavior of various types of frames.
Most of the frames studied were rigid-jointed. In a recent study, Aackroyd (37)
adopted proportional loading and secant modulus theory to investigate Type 2
connection frames. Also, the study did not include the influence of initial
crookedness of members in the frames.

The conventional sequential computers have been used for most of the past
investigations. Parallel computers on the other hand, are fairly recent (33,35,36).

In the early 1980s, NASA Langley Research Center developed a parallel computer
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(47), called The Finite Element Machine (FEM), designed specifically for numerical
and finite element analysis of structures. A description of the FEM is given in
Appendix B. The application of parallel computers has centered mainly around the
development of algorithms for solving simultaneous linear equations such as those
resulting from elastic finite element formulations (36,48).

A review of the existing literature shows that a study of structures with initial
imperfections and flexible connections is needed when subjected to nonproportional
loads. In addition, the validity of the tangent modulus approach needs to be
evaluated critically. Also, no parallel solutions to inelastic problems have been
published in the past.

The primary emphasis of this dissertation is on a rigorous study of the
influence of nonproportional loads on the strength and béhavior of steel beam-

columns and plane frames.

1.3 Definition of Problems

The main thrust of this dissertation is on a rigorous study of the influence of
nonproportional loads on the inelastic response of steel beam-columns and plane
frames. The influence of imperfections and flexible connections on the strength and
behavior of these structures is also investigated. The analyses are based on a
equilibrium approach which leads to a system of materially nonlinear ordinary
differential equations with appropriate boundary conditions.

The analysis is performed using a finite-difference technique combined with an
iterative solution procedure incorporating material unloading. A complete system

of inelastic slope-deflection equations is also derived and used for the
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nonproportionally loaded inelastic frames. The suitability of parallel computing is
investigated through the inelastic analysis of cross sections and biaxially imperfect
columns. The main computational work, however, is conducted on a sequential

computer.

1.4 Objectives and Scope
The principal objectives of this study are to:

1. Study the effectiveness of concurrent computing for inelastic analysis of
proportionally loaded cross sections.

2. Study the effect of material unloading on the response of cross sections when
loaded nonproportionally.

3.  Conduct concurrent analysis of biaxially imperfect and centrally loaded columns
using the Finite Element Machine.

4,  Identify suitable moment-rotation connection models for use in the analysis of
beam-columns.

5. Investigate the behavior of beam-columns with uniaxial and biaxial
nonproportional loads

6. Study flexibly-connected, imperfect, planar, nonsway frames subjected to
nonproportional loads. |
For member-level studies, both I-shaped and hollow rectangular sections are

used. The development of inelastic slope-deflection analysis is demonstrated through

detailed studies of a portal frame, and a two-bay two-story plane frame each

subjected to a variety of load paths. The method presented, however, is fairly
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general and can be adopted for the analysis of other types of nonsway plane frames.

1.5 Assumptions and Conditions
The following basic assumptions and conditions are adopted in the analysis:
1. Displacements are small.
2.  Member shortening is neglected.
3.  Shear deformations are neglected.
4. No local buckling takes place.
S.  Only axial and bending equilibrium conditions are considered.
6. The material stress-strain relationship is elastic-perfectly-plastic, with material

elastic unloading.
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2. CROSS-SECTIONAL ANALYSIS

A study of the effectiveness of concurrent computing for the inelastic analysis
of biaxially loaded cross sections is given herein. The results are obtained utilizing
Finite Element Machine. Also, the effect of nonproportional loading on the inelastic
response of a cross section is investigated using a sequential computer. The analysis

is based on the tangent stiffness procedure described in Reference 34.

2.1 Equilibrium Equations

Figure 1 shows discretized hollow rectangular, and I-shaped sections. The
rectangular hollow section has a width B, a depth D, and a wall thickness t. The I-
section has a flange width B and thickness t, an overall depth D, and a web
thickness t,. The loading consists of an axial load P applied perpendicular to the
xy-plane and bending moments M, and M, about the x and y axes, respectively.

The normal strain, ¢, at a point (x,y) of a cross section is expressed as:
€ = e dX t hy + o€ (1)

in which ¢ is the average axial strain; ¢, and ¢y are the bending curvatures about
the x and y axes, respectively; and ¢, is the residual strain. The residual stress
patterns used in this study are shown in Figure 2(a) and 2(b). Figures 3(a) and 3(b)

show the o-¢ relations with and without material unloading, respectively. In this
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figure, o, is the normal yield stress, E is the Young’s modulus, and ¢y is the yield

y
strain. The stress-strain relationship is assumed to be identical in tension and

compression. In the rate form:
5=E,¢ )

in which E; equals E if the material is elastic or if it is experiencing elastic
unloading; it equals zero if the material is plastic. The axial and the biaxial moment

equilibrium equations of the cross section can be written as:

P = - fye 0 dA -y, 0y dA 3)
My = [ae@YdA + 5 oy dA (4)
My=-fAeoedi-praydi (5)

in which dA is an elemental area of the cross section, and o is the normal stress on
that area. The subscripts e and p refer to the elastic and plastic parts, respectively,
of a partially plastified section; [, denotes cross-sectional integration. Thus, given
an axial load P, and a pair of bending moments M, and M,, the strain distribution
is found while following Equation 2. In other words, compatible €0 by and 3y need
be obtained which satisfy equilibrium for P, M,, and My The cross-sectional

dimensionless load and deformation vectors, {f} and {s}, can be expressed as

follows:
{f={p m, m,}" (6)
{6} ={%g dy 3,37 (7)
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in which T indicates the transpose of a vector, and the other terms are defined in
Appendix A. The solution procedure involves starting at a known state and
incrementally converging to the next state for which only {f} is known. The
deformation vector {6} is determined by iteratively adjusting a cross-sectional
tangent stiffness matrix, [K], relating the increments in {f} and {6} through a rate

equation of the type (34):

{f = (K {5) ®)

whose components are defined in Appendix A. The process is repeated until the
imbalance in the external loads and internal forces becomes zero or is within a
tolerance. Once the ¢ distribution is found, the internal resisting forces are
evaluated by numerical summation over the discretized cross section shown in Figure
1. This is readily done by replacing the integrals in Equations 3-5 by summations,
and dA by AA, as shown in Figure 1.

The cross-sectional stiffness characteristics can be represented in the form of
a thrust-moment-curvature (p-m-¢ ) relationship as shown in Figure 4. The initial
or the linearly elastic portion of this curve can be determined noniteratively. The
elasto-plastic and nearly plastic regions shown in Figure 4 are determined iteratively.
The curve in this figure represents a moment-curvature (fMi-¢ ) relationship while the
axial thrust p is held constant. The determinant of the tangent stiffness matrix,

|[K{]|, approaches zero as the maximum moment-carrying capacity of the cross

section is reached.
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2.2 Concurrent Processing for Cross-Sectional Analysis

In this section, a concurrent processing study of biaxially loaded hollow
rectangular sections is presented using a Finite Element Machine (FEM). Appendix
B contains a brief description of this multiprocessor computer.

If a cross section is subjected to a pair of gradually increasing moment values
m, and i, in the presence of an axial load p, the maximum moments obtained define
a typical point, such as S, on the yield surface shown schematically in Figure 5. The
quantities I’T'Jx* and ﬁuy* in this figure represent the maximum moment capacities for
a given axial load level, p. In this study, the ratio of the moments ﬁxy to m, is:
y = m,/m 9
is held constant. For a given value of v, a contour RST as shown in F_igure S is
generated for various values of p such as for p;, p,, . . .. To generate the yield
surface, several contours such as RST are developed for various v values. The
numerical studies are based on hollow square and hollow rectangular sections of
sizes 7x7x0.375 in, and 8x6x0.375 in, respectively, are analyzed. Each wall of the
section is divided into two layers with 20 elemental areas in each layer, thus
providing a total of 160 elemental areas per section. The fM-¢ curves and the
contours of the yield surfaces for these sections are developed by using 1, 2, 4, and
8 processors of the FEM, and the computational efficiencies are evaluated.

Table 1 summarizes the concurrent processing results for the hollow square
section with y = 1.000 for developing 8 different moment-curvature curves each
corresponding to a different axial load value. First, the 8 moment-curvature curves

are developed concurrently on 8 processors. The analysis is then repeated with 4,

10
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2, and 1 processors, respectively. When 8 processors are employed, it is found that
different processors took different lengths of computational time. The maximum
computational time with 8, 4, 2, and 1 processors is recorded in Table 1. The

speedup factor, s, in this table is evaluated as follows:

in which t, is the time taken by a single processor to generate all eight moment-
curvature curves, and t; is the maximum computational time obtained when i number
of processors are employed. The efficiency of concurrent computation, n;, is

determined as follows:
n; = 100 (5 /1) (11)

Speedup factors of 7.69, 3.96, and 1.99 are obtained for 8, 4, and 2 processors,
respectively, and the corresponding efficiencies are 96.2, 98.9, and 99.8 percent. The
actual relationship between the number of processors employed and the resulting
speedup factors is shown in Figure 6. The linear theoretical maximum relationship
is also shown in this figure for a direct comparison. Table 2 presents a summary of
the computational times on concurrent processors for the square and rectangular
sections. For the square section, 8 different y values, designated by v, through g

in this table, are used to generate the yield surface. The specific values used are:

715 = 1.000 15 = 0875 135 = 0.750
T4 = 0625 75, = 0.500 vgs = 0.375 (12)
175 = 0.250 18, = 0.000

11
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First, 8 processors are empldyed to generate concurrently 8 different families of
moment-curvature relations. Each family of the curves is obtained for a specific
value of vy defined from Equation 12. Figures 7 and 8 together represent a typical
family of curves for v = 0.625 and p = 0.0 to 0.9. The process is repeated with 4,
2, and 1 processors using the v values summarized in Table 2. The computational
times obtained for various processors are given in this table. The maximum time
taken for each analysis is identified in the parentheses. The ﬁwx' versus fﬁy'
interaction contours of the yield surface are shown in Figure 9. For the rectangular

section, with eight v values, v, through v are:

11e = 0.000 12 = 0.300 73¢ = 0.600
13¢ = 0.900 vge = 1111 1ge = 1.667 (13)
T9p = 3.333 Tgr =

The results for this section are also summarized in Table 2, and shown graphically
in Figures 10 through 12.

Table 3 summarizes the speedup factors and the efficiencies for the square
section. The maximum computational times in Table 3 were identified previously
in Table 2. Table 4 summarizes the rectangular section results. Figures 13 and 14

show these results graphically.

2.3 Nonproportionally Loaded Sections
The response of materially nonlinear sections is dependent upon the history of
loading. In this section, an example of an I-section subjected to biaxial

nonproportional loads is presented. The procedure, however is also applicable to

12
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hollow rectangular sections. Referring to Figure 15, the load path OA represents
proportional loading. The load path OFDA indicates a typical nonproportional
loading in that the cross section is subjected to M,, followed by M,, and finally
followed by P until the section capacity is reached. Since significant strain reversal
may occur due to nonproportional loading, the o-¢ curve in Figure 3(a) with material
elastic unloading is used. Here, a W 8x31 section with no residual stresses is
analyzed and the results are compared to those of Chen and Atsuta (34). The
section walls are divided into two layers of 12 elemental areas in each plate,
providing a total of 72 elements for the entire cross section. The load path OFDA
as shown in Figure 15 ia used. The section is first subjected to m, = 0.6 (level F),
followed by m, = 0.6 (level D), and finally followed by p which eventually attains a
value of 0.3 at the full section capacity. Figures 16 through 18 show the resulting
M -¢y, ﬁsy-}?y, and p-¢, relationships, respectively, and are in reasonable agreement
with the curves of Reference 34. The deviation of the curves of Reference 34 from
those given here is due to the piecewise-linear approach adopted in that reference.
The type of cross-sectional analysis demonstrated here is incorporated in the beam-

column and frame analyses.

13
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3. BIAXIJALLY IMPERFECT COLUMNS

A sequential computational inelastic analysis of centrally loaded columns with
biaxial imperfections and partial rotational restraints has been given previously by
Razzaq and Calash (54). No concurrent solution to this or any other inelastic
problem has been published in the past. In this chapter, a concurrent solution

procedure is shown and later implemented on the Finite Element Machine (FEM).

3.1 Theoretical Formulation

An imperfect column BT of length L, and with partial biaxial end restraints is
shown schematically in Figure 19. It is subjected to an axial thrust P gradually until
the maximum capacity is reached. The rotational restraint stiffnesses kg, kBy, Ko
ky, simulate the bending resistance of the connections, or structural members
framing into the column at the member ends. The subscripts B and T refer to the
member ends as shown in Figure 19. The material of the column follows an
idealized elastic-perfectly-plastic o-¢ relationship shown in Figure 3(b). The hollow
rectangular section selected used here has an initial residual stress distribution as
shown in Figure 2(b). The corners have a tensile residual stress of o, = O.Say and
the midpoints of all four walls have a compressive residual stress of o, = -0.20y.
The residual stress distribution is piecewise-linear along the length of the walls of

the section and uniform across the thickness (40).

14
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The inelastic behavior of the column shown in Figure 19 is governed by the

following materially nonlinear ordinary differential equations (54):

Qup €0 * Gz W' + Q3 V' -Pp-Pp = P (14)
Qg €p + Qo W' + Q3 V' - My - My, + P (y; + w)

= mg, + (z/L) (mTy - mpy) (15)
Q33 €9 t Gaz W' + A3z V' - My - My + P (v; + V)

= mg, + (z/L) (my, - mg,) (16)

in which the primes designate differentiation relative to z; u and v are the respective
flexural displacements due to P, in the x and y directions; ¢, is the average axial
strain. The q; terms are the inelastic cross-sectional properties evaluated using the
numerical procedure described in the preceding chapter. The terms P, Pp, M, e
M},n, Mxp, and Myp are inelastic load and moment parameters defined in Reference
54 and summarized in Appendix C. As shown in Figure 19, the initial member

crookedness in the x and y directions is taken as follows:

ui um Sin 1|'Z/L (17)

Vi VOI Sin 1l’Z/L (18)

where ug; and vy; are the respective midspan amplitudes. The terms mpg,, mg,, My,

and my, in Equations 15 and 16 represent end spring moments given by:
m=ky¢ (19)

in which the spring stiffness k is kg,, kgy, kyy, Or kyy, and ¢ is the corresponding

15
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member end rotation. The geometric boundary conditions are given as follows:
u(0) =v(0) = uw(L) =vL) =0 (20)

At the global level, Equation 14 is enforced implicitly by first solving it for ¢
explicitly and then substituting it into Equations 15 and 16. This results in the

following two global equilibrium equations:

Quu u" + Quy V" - Mypeityre) - (Mypony) + P (u; + u-ug)

= mg, + (z/L) (myy - mgy) (21)
Quy U + Quy v' - (Mypertire) - Myingy) + P (v + v - vg)

= mp, + (z/L) (myy - mp,) (22)
where:
Qn = 922 - (412921 / 911 ) (23a)
Quy = d23 - (413 921 / 31 ) (23b)
Qyx = Q32 - (q42 931 / 911 ) (23¢)
Qy = 933~ (A13 931 / A1) (23d)
Hyre = Q21 Pr / At (23e)
byp = %1 Pp/ an (23f)
txre = 931 Pr / Ay (23g)
bp = 91 Pp /Ay (23h)
U = %1/ dn ’ (23i)
YQ = %1/ 9n (23i)

16
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The numerical procedure is based on a second-order central finite-difference
scheme (43) applied to Equations 21 and 22 at N equidistant nodes over [O, L], and

invoking Equation 20. This results in:

Qg (054205449 )/B% + Qui (Vi 2vi+Vi4 )/ - ( Myt );

- (Mg ) + P (u+uug )y = mpy + (z/L)( mpymp, ) (24)
Qg (U201 44 )/h% + Quyj (V517295444 )/h% - ( M, e txre )j

- ( Mypigp ); + P ( VitV ); = Mgy + (zj/L)( My, -Mp, ) (25)

where the spring moments in Equations 24 and 25 are:

mg, = kg, (v;-v.q )/2h (26)
gy, = kg (Ve gVivg /20 @7)
mp, = kg, (uu; )/2h (28)
My, = -kqy ( Uny1-Ung )/2R (29)

Applying Equations 25 and 26 at all N nodes leads to following equilibrium

equations in the matrix form:

[K] {a} = {F} + {F}, (30)

In this equation, [K] is the global stiffness matrix of the order 2Nx2N. The vector

{a} contains lateral displacements as follows:

T _
{a}" = {uy vyuvyuyvyugv;. Uj Vj ..
-~ UN3 VN.3 UN3 VN3 UN3 VN3 UN3 VN3 ) (1)

The external and plastic force vectors, {F} and {F}p, are given in Appendix D.

17
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Equation 30 is nonlinear since [K], {F}, and {F}p depend on {a}. Therefore, an
iterative scheme is adopted in which the global stiffness matrix is updated and
inverted at each iteration level. Also, a convergence study showed that it was

sufficient to take N = 8.

3.2 Concurrent Computing Solution
A concurrent procedure is devised for the solution of Equation 30, based on

a master-assistant processor configuration. The assembly of Equation 30 is assigned
to the master processor, whereas the computation of g;; terms and the inelastic load
and moment load parameters is assigned to the assistant processors. A flow chart
of the concurrent procedure implemented on the FEM is shown in Figure 20. The
double-headed pointers in the flow chart indicate the interprocessor communication
flow. The concurrent procedure is summarized as follows:

1.  Input the section properties into the master and assistant processors.

2.  Compute elastic properties for the N cross sections concurrently on all assistant
processors and send this information to the master processor to assemble [K]
and evaluate the initial determinant |[K]|.

3. Specify a small axial load, P = P, in the master processor and solve Equation
30 for {a}.

4.  Synchronize all processors for communication.

5. Broadcast to the assistant processors the value of P and the necessary
components of {A} generated by the master processor.

6.  Compute g;; and the inelastic load and moment parameters for the N cross

sections concurrently on the assistant processors using the tangent stiffness

18
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procedure, and send the computed properties to the master processor in an
asynchronous communication mode.

7.  Assemble [K], {F}, and {F}IJ in the master processor and solve Equation 30
to update {a}.

8.  Check for the convergence of {a}. If convergence is not achieved, go to step
4.

9. If column becomes unstable (|[K]| -+ 0), stop the execution on the master
processor after setting a flag, and go to step 11.

10. SetP = P; + P, where sP is a small load increment, and go to step 4.

11. Stop execution on assistant processors and the master processor.

In step 6, an asynchronous communication mode is used since the various assistant

processors do not necessarily complete their computations at the same instant.

Furthermore, the asynchronous communication facilitates the assistant processors to

send information as and when it becomes available.

3.3 Numerical Study

The effectiveness of the concurrent procedure is evaluated by analyzing eight
sample column problems designated CN1 through CN8. Columns CN1-CN4 have
a 7.0x7.0x0.375 in. hollow square section, while CN5-CN8 have an 8.0x6.0x0.375S in.
hollow rectangular section. Three different k values are used in Equation 19,
namely, k, = 0.0 in-kip/rad, k, = 5,397 in-kip/rad, and ky = 15.0 X 10'® in-kip/rad.
Here, k; simulates pinned condition, k, the bending resistance of a 5.0x5.0x0.1875
in. hollow square restraint beam of 12 ft. length, and k4 a nearly fixed condition.

The columns are provided with equal end restraints about the x and y axes at the

19
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top and bottom ends except for columns CN5 and CN8, which have unequal end
restraints. The k values of these two columns are defined as kg, = k;; kBy = ky;
ke = Ky kTy = ks Imperfections are taken in the form of residual stresses as
shown in Figure 2 and out-of-straightness given by Equations 17 and 18 with uy; =
vg; = L/1,000. Sample load-deflection curves for columns CN2 and CN6 are shown
in Figure 21, in which U and V represent the total midspan lateral deflections given

by:

ug; + u(L/2) (32)
V = vy + v(L/2) (33)

Table S summarizes the column peak loads for CN1-CN8. The quantity pyay
in this table represents the maximum value of p; that is, the column load-carrying
capacity. The concurrent computing procedure is implemented on 2, 3, S, and 9
processors and execution times are obtained to evaluate computational efficiencies.
The number of processors includes both the master and the assistant processors.
Table 6 summarizes the execution times on concurrent processors for the hollow
square column CN1 and the hollow rectangular column CNS. The t; values used for
the speedup, s;, and the efficiency, »;, calculations are enclosed in parentheses.
When 9 processors are used to analyze column CN1, the sum of the individual
processor execution times is 9574.360 sec. Similarly, the sums for S, 3, and 2
processors are 7199.466, 5972.540, and 6578.309 sec., respectively. The lowest of
these sums is adopted as the estimated execution time on a single processor as

recorded at the bottom of Table 6. Table 7 gives the speedup factors and

20
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efficiencies for hollow square columns. As the number of processors increase, n;
decreases except when 2 processors are employed. The reduction in n; with two
processors is due to the loss of asynchronous communication advantage present when
3 or more processors are employed. This loss is attributable to the sequential
computation of cross-sectional data on a single assistant processor. Furthermore, as
the number of processors increase, the distribution of computational work among the
assistant processors tends to become nonuniform. This is due to an unequal number
of iterations required in the assistant processors in carrying out the tangent stiffness
procedure. Similar results for hollow rectangular columns are given in Table 8.
Corresponding to the results in Tables 7 and 8 for columns CN2 and CNG6, the
relationships between the speedup factor and the number of processors are shown
in Figure 22, along with the theoretical maximum speedup.

A review of the numerical study carried out in this investigation indicate that
the algorithm developed for the concurrent computing analysis of inelastic structural
members is quite efficient, and the application of the new generation multiprocessor

computers promise a great reduction in CPU time required for the analyses.

21
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4, IMPERFECT BEAM-COLUMNS

The effect of nonproportional uniaxial and biaxial loads on the behavior of
partially restrained nonsway imperfect beam-columns is studied. Adequate models
for representing the connection moment-rotation curves are studied and used in the
beam-column analysis. Both hollow rectangular and I-sections are considered. A
critical evaluation of the tangent modulus approach is also conducted. In Chapter

5, this procedure modified and utilized for the analysis of plane nonsway frames.

4.1 Theoretical Formulation
4.1.1 Equilibrium Equations

A biaxially imperfect and partially restrained beam-column, BT, of Length L
is shown in Figure 23. It is subjected to an axial load P, and biaxial end moments
Mgy, Mgy, My, and My,. The partial restraint stiffnesses kg,, kg, kyy, and ky,
simulate the bending resistance of the flexible connections or structural members
framing into the member ends. The material of the beam-column may follow the
stress-strain relationship shown in Figure 3(a) or 3(b).

Equations 14-16 modified to include the applied end moments take the form:

Qg €0 * 9z 0" + Q3 V' - P - P, =P (34)
Qg1 €0 + Qap U" + Qo3 V"' - My - My + P (y + u)
= mp, + (z/L) (myy - mpy) - My, - (2/L) (Mqy - Mg,) (35)

22
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Q3 €9 + Q32 0" + q33v"-Mm-Mxp+ P(v; +v)
= mg, + (z/L) (my, - mg,) - Mg, - (z/L) My, - Mp,) (36)

The initial crookedness of the member in the x and y directions, indicated in Figure
23 is governed by Equations 17 and 18. Equations 34-36 are also utilized to predict
the behavior of uniaxially loaded members. The minor axis analysis is conducted by
utilizing Equations 34 and 35 only and by setting v; = 0, and Mg, = Mg, = 0.
Similarly, the major axis analysis is carried out by utilizing Equations 34 and 36 only
and by setting u; = 0, and MBy = M'Iy = 0.

In the above-mentioned analysis, ¢ is eliminated from Equations 35 and 36 by
using Equation 34. The resulting differential equations with u and v as the
dependent variables are then solved for using a second-order central finite-difference

scheme (43). This results in the following member equilibrium equations:

(K] {a} = {M} (372)
in which:
{M} = {F} + {F}, + {M}, (37b)

where {K], {a}, {F}, and {F}p are defined in the preceding chapter and {M}, is the
applied end moment vector. In the elastic range, [K], {F}, and {M}, are explicitly
defined and {F}p is zero, whence, Equation 37(a) can be solved directly. In the
inelastic range, however, the coefficients in [K] and the components of vector {F}p
become dependent upon the inelastic cross-sectional properties at various nodes

along the member length.

23
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4.12 End Restraint Conditions

Past studies (9,24,31) indicate that beam-column connections exhibit nonlinear
moment-rotation characteristics. Recently, Chen and Lui (53), and Razzaq and
Calash (54) studied the effects of partial end restraints on member behavior. These
and similar other studies (34,38,39,50,51) indicated that the flexible connections have
a significant influence on member behavior. Figure 24 shows a typical moment-
rotation, m-6, curve with an idealized piecewise-linear model of a connection. Chen
and Lui (53) used m-e models defined by spline curves with optimization techniques
to define the coefficients of these splines. While their method represents the
connection response accurately, the procedure is cumbersome for practical use.
Razzaq and Calash (54) in their study used practical piecewise-linear connection
models typically shown in Figure 24. In order to identify suitable piecewise-linear
connection characteristics, various models shown in Figures 25 through 28 are
investigated. Specifically, linear, bilinear, and trilinear models are considered.

The moments mg,, mp,, mr,, and myy, in Equations 35 and 36 are dependent
upon the moment-rotation m-e characteristics of a connection. For a linear m-e

relationship, the spring moment follows line OA in Figure 24, and is given by:
m=k,6; |m| =0 (38)

For a bilinear relationship, the spring moment follows path OAB in Figure 24.
Thus:

al

24
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m=m, +ky(0-86,); [m| > [m,] (39)

in which m, is the knee moment at & = ¢, indicated in Figure 24. The spring
stiffness is reduced to ky, past m,. A trilinear connection m-6 is shown as the dashed

line OABC in Figure 24 for which:

m =k, e; |m| < |m,|
m=m, +ky(6-6,); [m,| < [m|=|my] (40)
m=my + k,(®-6p); [|m| > [my]

where m, and m,, correspond to 6, and ,. The connection stiffness in the tertiary
range is k,, as shown in Figure 24.
The m expressions given in this section are used for the spring moments mg,,

my,, My, and my, which appear in Equations 35 and 36.

4.2 Load Paths
Two different load paths are adopted for uniaxially loaded beam-columns, and
are defined in Section 4.2.1. For biaxially loaded beam-columns, six different load

paths are used, and are outlined in Section 4.2.2.

4.2.1 Uniaxially Loaded Beam-Columns

Referring to Figure 15, two different load paths designated as NP1 and NP2
are adopted for uniaxially loaded beam-columns and are defined as follows:
NP1: The axial load P is applied first incrementally and held constant, followed by

gradually increasing equal end moments until the load-carrying capacity of the
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member is reached. This corresponds to the load path OGB for member
minor axis analysis, or OGC for member major axis analysis.

NP2: The equal end moments corresponding to the load-carrying capacity obtained
in NP1 are applied first incrementally and held constant, followed by a
gradually increasing axial load P until the member collapse occurs. This
corresponds to load paths OEB or OFC for member minor and major axis

analyses, respectively.

4.2.2 Biaxially Loaded Beam-Columns
Referring to Figure 15, six different load paths designated as NP3 through NP8
are used for biaxially loaded beam-columns as defined below:

NP3: The axial load P is applied first incrementally and held constant, followed by
M, and M, simultaneously, until the member collapses. The moment ratio
is held constant and taken as follows:

M,‘/My=rx/ry 41)
where r, and r, are major and minor axis radii of gyration. This load path
corresponds to OGA.

NP4: The moments M, and M, are applied proportionally following Equation 41,
until the peak moment values from NP3 are attained, followed by P until
collapse occurs. NP4 corresponds to load path ODA.

NPS: The axial load P of the same magnitude as in NP3 is applied first, M,
achieved in NP3 is applied next, followed by My until collapse occurs. NP5
corresponds to load path OGCA.

NP6: This load path is the reverse of NP5 in that My achieved in NP3 is applied

26
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NP7:

NPS8:

first, followed by M, achieved in NP3, and finally followed by P until collapse
occurs. NP6 corresponds to load path OEDA.

The axial load P of the same magnitude as in NP3 is applied first, M,
achieved in NP3 is applied next, followed by M, until collapse occurs. This
corresponds to load path OGBA.

This load path is the reverse of NP7 in that M, achieved in NP3 is applied
first, followed by M, achieved in NP3, and finally followed by P until collapse
occurs. NP8 corresponds to load path OFDA.

When hollow square section members are analyzed, NP7 and NP8 are

redundant and correspond, respectively, to NP5 and NP6, owing to the double

symmetry of the section.

4.3 Solution Procedure

The following sequential computing procedure is used for solving Equation

37(a) iteratively:

L

Evaluate initial cross-sectional properties at N nodes to assemble the initial
global beam-column stiffness matrix [K] in Equation 37(a).

Specify small external loads and formulate {M}, using Equation 37(b).
Solve for the deformation vector {a} in Equation 37(a).

Compute the external nodal forces {f}; and deformations {5}, defined in
Equations 6 and 7, respectively, in the elastic range corresponding to {M},.
Increase {M} to {M}, = {M}, + {6M}, in which {§M} is the resultant
increment load vector. Solve Equation 37(a) for {a}, and compute external

force vectors {f}, corresponding to {M},.
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10.
11.

Using {f}, vectors and the tangent stiffness procedure (34), compute [K] in
Equation 8 for all cross sections.

Solve for an updated {a} after assembling [K}, {F}, and {F}p utilizing the
cross-sectional properties obtained in Step 6.

With the {a} in Step 7, formulate the load vector {M},.

If |{M}; - {M},| = {a}, where {a} is the tolerance vector composed with load
limits of 0.01% of the member yield-load capacity, go to Step 11.

Set {M}, = {M},; {f}; = {f}; (M}, = {M};, and go to Step 6.

Set {M}; = {M}3; {f}; = {f}3, and repeat Steps 5-10 until the maximum load-
carrying capacity of the beam-column is reached.

The procedure described herein is carried out using constant load increments

throughout the elastic range. In the inelastic range, these load increments are

successively reduced to avoid severe imbalance between the external and internal

forces. The maximum load is obtained within 0.0002 times the cross-sectional yield

capacity. Also, based on a convergence study, a total 15 nodes for I-section

members and 11 nodes for hollow rectangular members over [0,L] is found to be

sufficient. The cross-sectional analysis in Step 5 is conducted using two layers of 50

discrete elemental areas in each wall of an I-section, providing 100 equal-area

elements per plate, and two layers of 24 discrete elemental areas in each wall of a

hollow rectangular section, providing 48 equal ares elements per plate.
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4.4 Numerical Study

4.4.1 Modeling of End Restraints

Two different connection m-e relationships given in References 24 and 53 are

used for conducting a modeling study of the beam-column end restraints. A set of

five piecewise-linear models is used for each connection type. These are shown in

Figures 25 through 28. Figures 25 and 26 show the idealized m-e models designated

al through f1 for the first connection data (23) and are described as follows:

al:

bl:

cl:

di:

el:

Linear approximation obtained by drawing a tangent to the nonlinear m-e
curve at the origin. The slope of the tangent is k, = 42,135 in-kip/rad.
Bilinear approximation based on tangents drawn at the origin and from the
highest given point on the nonlinear m-e curve. The respective initial and
secondary connection stiffnesses are k, = 42,135 in-kip/rad, and k,, = 2,431
in-kip/rad. The connection moment at the transition point where the two
tangents meet is m, = 316 in-kips.

Bilinear approximation obtained by drawing a pair of secants to the nonlinear

m-8 curve. Here, ka

= 31,580 in-kip/rad; ky, = 3,115 in-kip/rad; m, = 300 in-
kips.

Bilinear lower bound approximation with the first straight line drawn from the
origin to an intermediate point on the nonlinear m-8 curve, and the second line
drawn by connecting the transition point to the highest available point on the
m-e curve. Here, k, = 27,000 in-kip/rad; ky, = 3,167 in-kip/rad; m, = 270 in-
kips.

Elastic-plastic approximation with two secants, with k, = 30,385 in-kip/rad; k,,
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fi:

= 0 in-kip/rad; m, = 395 in-kips.

Trilinear approximation with two tangents as in b1 with the intermediate region
represented by a secant to the nonlinear m-6 curve. Here, k, = 42,135 in-
kip/rad; k, = 6,667 in-kip/rad; k, = 2,431 in-kip/rad; at the transition where
the first tangent and secant meet, m, = 200 in-kips; at the transition where the
secant and the second tangent meet, m, = 350 in-kips.

Similarly, Figures 27 and 28 show the idealized m-6 models designated as a2

through f2, for the second connection data (53). These are defined as follows:

a2:
b2:
c2:
d2:
e2:

f2:

k, = 24,000 in-kip/rad.

k, = 24,000 in-kip/rad; ky, = 1,286 in-kip/rad; m; = 100 in-kips.
k, = 17,778 in-kip/rad; k,, = 2,195 in-kip/rad; m, = 80 in-kips.

k, = 13,333 in-kip/rad; k,, = 2,368 in-kip/rad; m, = 80 in-kips.

k, = 17,778 in-kip/rad; k;, = 0 in-kip/rad; m, = 100 in-kips.

k, = 24,000 in-kip/rad; ky = 3,583 in-kip/rad; k, = 1,286 in-kip/rad; m, = 70
in-kips; my, = 115 in-kips.

For the numerical study, a W 8x31 section of 15 ft. length, is considered.

Each of the amplitudes uy; and vy are taken as L/1000. The material of the

member is assumed to follow the o-¢ relationship shown in Figure 3(b). When the

residual stresses are present, the distribution in Figure 2(a) is used. First, a centrally

loaded column with biaxial crookedness is analyzed using the six m-e models al

through f1. The individual studies relative to the minor and major axes showed no

significant effect of m-e relationships on the column peak loads. The end spring

moments developed (18 in-kips to 141 in-kips) were considerably less than m, value
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when models al through f1 are used. Also, the major axis analysis is less sensitive
to the various m-e models.

The effect of various m-6 models on uniaxially loaded beam-column response
is studied with ug; = L/100,000. The beam-column is subjected to an axial load, P,
and an end moment, My,, at the member top, in a proportional manner such that
the ratio between P and MTy is 2.25. Atz = (0, a pinned condition is used, whereas,
a partial rotational end restraint is provided at z = L to simulate the subassemblage
used in Reference 53. The results for this special case are compared to those in
Reference 53. Table 9 summarizes the dimensionless peak loads, ppga.
corresponding to the connection models a2 through f2.

The predicted end rotations show that with restraints b2, ¢2 and d2, the beam-
columns collapse as soon as the top end spring attempts to develop a moment
greater than m,. The elastic-plastic restraint e2 allows the spring to rotate
additionally even after the attainment of the plastic spring moment (100 in-kips).
The beam-column with trilinear restraint f2 reached its peak load while the spring
moment was between m, and my. Thus, the third linear range of the m-e relation
was not activated. The significant observation which is made from this table is that
regardless of the type of connection modeling used, the peak load varied in a small
range from 0.64 to 0.71. In fact, the lower bound model d2 gave the same peak load
as the bilinear portion of the trilinear model f2. The peak load obtained by Chen
and Lui (53) is 0.64 comparing favorably with these results. Thus, for the type of
connections used herein, a simple linear or at most a bilinear connection m-6 model

is adequate. The results also indicate that the strength of these members is not
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highly sensitive to the connection modeling.

4.4.2 Behavior of Uniaxially Loaded I-Section Beam-Columns

The effect of nonproportional loads on the behavior of a 12 ft. long uniaxially
crooked beam-column. with equal end restraints is presented in this section. A W
8x31 section is used, with and without residual stresses. When the residual stresses
are present, they are the type shown in Figure 2(b). The material of the beam-
column follows the stress-strain law shown in Figure 3(a). The following initial

spring stiffnesses are adopted:

k,; = 0 in-kip/rad (Pinned-Condition)
k,, = 13,333 in-kip/rad
k.3 = 24,000 in-kip/rad

Additionally, the behavior of the beam-column with elastic-plastic end springs is also
investigated wherein k_, is adopted as the initial spring stiffness until the spring
moment reaches the plastic limit value of m, = 100 in-kips.

The following load conditions designated as LC1 through LC4 and associated
with load paths NP1 and NP2 are used for the beam-column study:

LC1: Corresponding to the load path NP1, a relatively large axial load is applied
first incrementally and held constant, followed by gradually increasing the
equal cnd moments until the member collapses.

LC2: The maximum end moments corresponding to the load condition LC1 are
applied first incrementally and held constant, followed by a gradually

increasing the axial load until the member collapses, thus following load path

NP2.
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LC3: Corresponding to the load path NP2, relatively large equal end moments are
applied first incrementally and held constant, followed by gradually increasing
the axial load until the member collapses.

LC4: The maximum axial load corresponding to the load condition LC3 is applied
first incrementally and held constant, followed by gradually increasing equal
end moments until the member collapses thus following the load path NP1.

The beam-column peak loads obtained for the major and minor axis analyses
using LC1 through LC4 are summarized in Table 10. The maximum loads for the
major axis are nearly the same, suggesting that the load paths have no significant
effect on the member strength. However, when the beam-column is loaded about
its minor axis, the maximum loads are found to be load path dependent.

Furthermore, LC1 and LC2 provide nearly the same peak loads, while LC3 and LC4

exhibit a substantial difference in the maximum loads. In the absence of initial

residual stresses, m for LC3 is 19.7% greater than that for LC4 when the spring
stiffness is k,5. This difference is 10.5% when initial residual stresses are included.

The behavior of a beam-column with elastic-plastic restraints defined by k,,,
and m, = 100 in-kips is also investigated. Table 11 summarizes the maximum loads
for various load paths and load conditions when these restraints are used. The
results in this table indicate that the maximum loads are not load path dependent
in the presence of elastic-plastic restraints.

Since the above-mentioned results indicated that the minor axis analysis is load
path dependent when linear end restraints are present, additional minor axis analyses

were carried out on beam-columns with L=8, 12, and 16 ft, and k = kyp or k3.
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Load paths NP1 and NP2 are .again adopted in this analysis. For each beam-column
different load levels are used to define an interaction curve between p and m y The
results obtained are summarized in Table 12 for beam-columns numbered 1 through
6. A graphical presentation of the interaction loads for beam-column 4 is given in
Figure 29. The interaction peak loads obtained by using the stress-strain law given
in Figure 3(b), neglecting the elastic unloading (tangent modulus), is also shown in
this figure. For p = 0.0 to 0.45, the tangent modulus curve gives unconservative

moment estimates. This phenomenon is also observed in beam-columns 2 and 6.

4.4.3 Behavior of Biaxially Loaded I-Section Beam-Columns

Biaxially loaded I-section beam-columns may experience twist in addition to
bending. However, past experimental and theoretical studies (21,25) indicate that
such open sections with a width to depth ratio of nearly one experience negligibly
small twist. Since the section adopted for the present study meets this condition,
twisting is therefore neglected. This assumption was found to be valid through a
comparison of the results from the present analysis to those in References 21 and
25 for pinned beam-columns subjected to proportional loads. Table 13 shows this
comparison. The maximum loads are clearly in good agreement.

In order to investigate nonproportional load effects on biaxially loaded beam-
column behavior, a 12 ft. long W 8x31 section member with elastic partial restraints
is used. Various nonproportional load paths are adopted and the member response
obtained. The cross section possesses residual stresses as shown in Figure 2(b).

Two different end restraint stiffnesses, k = kg, or k.5 are used and the beam-
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columns are subjected to load path NP3 or NP4. The results from this study are
reported in Table 14, For beam-column numbered 8, Figure 30 shows an interaction
diagram between p and the dimensionless minor axis maximum moment, Ely'. The
figure also shows the tangent modulus curve. A comparison of these curves indicates
that the tangent modulus peak loads are unconservative. A load path dependency

is obviously present in the nonproportionally loaded I-section beam-columns.

4.4.4 Behavior of Biaxially Loaded Rectangular Tubular Beam-Columns

A relatively limited amount of research has been conducted in the past on
rectangular tubular beam-columns subjected to nonproportional loads. Razzaq and
McVinnie (55) conducted inelastic analysis and experiments on biaxially loaded
pinned-end members subject to nonproportional loads. In this section, the behavior
of rectangular tubular imperfect beam-columns subjected to different load paths
defined as NP3 through NP8 are presented. For the rectangular tubular section, the
torsional effects are negligible (55) and ignored.

For the beam-column studied, the length is taken as 12 ft. Each of the initial
midspan amplitude in Equations 17 and 18 is taken as L/1000. Hollow square,
7x7x0.375 in., and rectangular, 8x6x0.375 in. sections are used for the beam-columns
studied herein. The material stress-strain law in Figure 3(a) is used. The initial
residual stresses in Figure 2(a) are adopted. For each beam-column, identical

rotational restraints are used at both ends about the x and y axes, that is:
For the numerical study conducted, the k values defined in Section 4.4.2 are used.
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The following five types of beam-columns designated as BC1 through BCS are
studied:
BC1: hollow square section with k = k,,
BC2: hollow square section with k = k_,
BC3: hollow square section with k = k_ 4
BC4: hollow rectangular section with k = k_,
BCS: hollow rectangular section with k = k.3

For the beam-column BC1 with pinned boundaries, NP3 through NP8 provided
practically the same maximum loads. For the beam-columns BC2 through BCS,
however, significant load path dependence is found for certain load combinations.
The results obtained for BC2-BCS are summarized in Tables 15 through 18. Figure
31 compares the interaction curves for BC3 with load paths NPS and NP6. Figure
32 shows the stiffness degradation curves for BC3 with an axial load level of 0.75,
in which D is the dimensionless determinant of the global tangent stiffness matrix

for the entire member, and is calculated as:

D = HK“current/ I[K]linitial (43)

where current represents the determinant of [K] at the given load level, and initial
refers to the determinant at the zero load level. From Figure 32(a), it is noticed
that in case of NP5, p = 0.75 is applied first, followed by m,, however, the member
collapsed at a moment value m, = 0.39 which is less than that found in NP3. As

a result, the moment m, could not be applied for NPS. This is evident from Figure

32(c) in which the curve for NP5 is absent.
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The stiffness degradation curve in Figure 32(b) for NP5 shows valleys in the
form of near-abrupt changes in D indicating as if the beam-column suddenly looses
a considerable stiffness followed by an immediate gain with a small variation in the
loads. The studies herein are based on adopting a total of 196 elemental areas for
each of the eleven nodes along the member length. When the number of elemental
areas was increased to 560 or more, the first of the two valleys disappeared but this
did not affect the peak loads. However, it was found for some other cases reported
in Tables 15 through 18 that the number and shape of these valleys could both
decrease or increase, with an increase in the number of elemental areas.
Fortunately, these valleys did not alter the peak loads by more than 2%. From these
observations, it appears that such valleys in stiffness degradation curves are a result
of redistribution of stresses. Figures 33 and 34 show the curves for BC5 with load
paths NP7 and NP8. Here again, the load path dependence has a significant effect
on the member strength. Thus, the behavior and strength of hollow square and
rectangular section nonsway beam-columns with imperfections and partial end
restraints is found to be significantly influenced by nonproportional loads. This
dependence disappears only for certain load combinations, or for the special case of

pinned boundaries.

4.4.5 Critique on Tangent Modulus Approach

The analyses in the preceding sections explained the influence of load paths
on the beam-column behavior. Specific studies are also compared with the tangent
modulus analysis. Presented herein is an investigation of the effect of o-¢

relationships shown in Figures 3(a) and 3(b) on the response of a proportionally
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loaded imperfect beam-column. The member is 15 ft. long with a W 8x31 section,
having equal elastic partial end restraints with k = k_,. The residual stresses used
are shown in Figure 2(b). Also, a proportionality constant of 1.0 is used between the
axial load and the equal end moments.

The beam-column response is represented in the form of axial load versus
lateral displacement relationship in Figure 35. Also, stiffness degradation curves for
the analyses are given in Figure 36. An observation of the load-displacement
relationship in Figure 35 suggests that the beam-column exhibits a near plateau
behavior when the tangent modulus approach is used. This is also associated with
relatively large displacements near the collapse load. In contrast, the analysis
associated with the material elastic unloading indicates that the structure possesses
a lesser degree of ductility, that is, the displacements near the peak load are smaller
compared to those from the tangent modulus approach. The tangent modulus
method neglects the redistribution of stresses along the member length, thus
resulting in fictitious strains and fictitious ductile behavior. The analysis including
material unloading, on the other hand, considers localized strain reversals. The
effect of localized strain reversals is observed in Figure 36 as indicated by the valleys

in the in the stiffness degradation curves.
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5. FLEXIBLY-CONNECTED PLANE NONSWAY FRAMES

A theoretical investigation of the effect of nonproportional loads on the
behavior of flexibly-connected nonsway plane imperfect frames is presented in this
chapter. The solution procedure used in Chapter 4 is modified to formulate inelastic
slope-deflection equations for an imperfect beam-column, and adopted for plane
frame analysis. The use of these equations is illustrated through detailed studies of

a portal frame and a two-bay two-story frame.

5.1 Theoretical Formulation
5.1.1 Inelastic Slope-Deflection Equations for Imperfect Beam-Column
For a prismatic beam-column subjected to loads P, Mg and My as shown in

Figure 37, the slope-deflection equations have the following well-known (23) form:

M, = (EI/L) (Csg + Sop) (44)
My = (EI/L) (Sog + Céy) (45)

in which C and S are stability coefficients, and ¢g and 6 are end slopes. Equations
44 and 45 are obviously valid only for elastic members with no imperfections. In this
section, a set of new slope-deflection equations are formulated which account for
inelastic action, initial crookedness, and residual stresses.

Equation 37(a) can be written in the following partitioned form:
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K K F F M
[ 1 12] {AI}={ 1} . { pl} +{ 1} (46a)
Ky Kyl Uy F, Fp2 M,
in which {4} is defined as:

{837 = {uy uy uny Unyg) or  {v; Vi VN1 VN+1) (46b)

for minor/major axis analysis; {A,} is the interior nodes displacement vector defined

as:
{AI}T ={u,uy... U ... Ung un,}  oOr {vpvyg... Vi VN3 VN2t (46¢)
for minor or major axis. Expanding Equation 46(a):

[Kpal {83} + [Kyal {89} = {Fy} + {F} + {My} (47a)
(Kpl {284} + [Kypl {85} = {F,} + {sz} + {M,} (47b)

Solving Equation 47(b) for {4,}:
{85} = [Kzz].l (-[K3] {8y} + {F,} + {sz} + {M,})
Substituting {4,} into Equation 47(a) gives:

[Kel {24} = {Fg} + {Fp,.} + {M} (48)

in which;

(K] = [Kyq] - (K] [Kpol? (Kyy]
{Fp = {F}} - [Kp]? {F,)
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{Fpr} = {Fpy} - [Kppl™ {Fpp} and
M} = (M} - [Kop] ™ {M;}

The load vector {M,} in Equation 48 may be decomposed and written as:

{M,} = [B] {M,} (49)
where:
M} = (Mg Mp}" (50)

and [B] is a coefficient matrix. From Equations 48 and 49:

{8} = [KJ" ({Fg} + {Fpe } + [B] {M,}) (51)

Equation 51 can be rewritten as follows:

{a) = [F1 {M.} + {59 + {5} (52)
where:

[F] = K™ [8]

{6¢} = K] {Fg}

{6p} = K" {Fpe}

Relative to the beam-column minor axis, Equation 52 can be written in the following

expanded form:

' - 1 ) o
Uy 1 Fn Fp 5 5p1
Uy Fn Fn| Mg . el e 53
4 p = 4 p 4 d
Un.g Fyy Fp| Mp 5 §p3
[Unet) | Fa  Fa | &  5pa |
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Using Equation 53, the beam-column end slopes can be computed as follows:

T Pl I o SR e I B B
by Rrg Ry My b¢r 00T

in which:

og = (u;-u,)/2h (552)
by = (Unsp - Un.p)/2D (55b)
Rgg = (Fy - Fy1)/2h (55¢)
Rgr = (Fy, - Fyp)/2h (55d)
Ryg = (Fy - F3)/2h (55¢)
Rpp = (Fy - Fzp)/2h (556)
bg = (o - ép1)/2h (55g)
by = (64 - 63)/2h (55h)
6pB = (apz - 5p1)/2h (551)
oo = (8pq - 553)/20 (55))

where h is the member panel length. The beam-column end moments My and My

are obtained from Equation 54 as:

{ MB}= ,:SBB’\B SBT'\TJ { 93} {MpB} {MpB} (56)
My SteAs  Sppit r Mpr Mpr

in which:

i Nl

brr
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-1
{MpB } _ [RBB RBT] {”pn}
Myt Rrg Rpp o1
Equation 56 represents modified slope-deflection matrix equation for an inelastic

beam-column, and are hereafter referred to as inelastic slope-deflection equations.

This equation can be written in the following simplified form:

My} = [S]{s} - {Mg} - {M}} (7)

where [S] is the beam-column tangent stiffness matrix; {M,} and {Mp} are the load
vectors resulting from the so-called p-é effects and partial plastification. Equation
57 is derived relative to the member minor axis. A similar equation can also be

derived for the major axis using the same procedure.

5.1.2 Equilibrium and Compatibility for Flexible-Connections

Initially it appears that the presence of flexible beam-column end connections
may be accounted for in frame analysis as follows. If the effect of the connections
is included in the [S] matrix of Equation 57, it poses a problem in satisfying the
rotational compatibility condition correctly at member to spring junction when the
spring stiffness is relatively large. For example, if very stiff rotational springs are
associated with a girder, an incorrect inelastic converged deflected shape of the girder
results while performing the member-level analysis owing to the fact that the springs
tend to nearly fix the member end rotationally. Needless to say, a very stiff spring

at a connection should not necessarily result in a zero connection rotation in a

frame.
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To circumvent the above-mentioned difficulty, the flexible end connection is
simulated as a two-noded member of zero length. This is explained by means of a
typical joint as shown in Figure 38. Three members numbered 1, 2, and 3 in this
figure are connected at a joint J through flexible connections with stiffnesses kyy,
kpy, and kqy. The joint J is subjected to a bending moment M. The end nodes of
members 1, 2, and 3 are T;, B,, and Tj, respectively. The connection lengths T,J,
B,J, and T,J are each taken as zero. Equation 57 applied at T,, B,, and Tj, without

including the effect of the spring in the [S] matrix, results in the following inelastic

equations:
Mry = Sty fB1 * Strip 011 - M - My (582)
Mg, = Sppz fB2 * Spr2 f12 - MpB2 - M2 (58b)

The equilibrium equation at nodes T, B,, Ts, and J can be written as:

My + kpy (6py - 8p) = 0 (59a)
Mg, + kg (85 - 6p) = 0 (59b)
Mrps + kpz (43 - 8p) = 0 (59¢)
M + kpy (671 - 8) + kp, (63 - 0)) + kpg (63 - 6p) = 0 (594)

In these equations, 4, fp,, and 613 are the member end rotations, and 6y is the
joint rotation. Equations 59(a) through 59(d) also satisfy the rotational compatibility
condition. It is necessary to point out that Equations 59(a) through 59(d) need to

be employed carefully when relatively stiff springs are present.
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5.1.3 Analysis of Flexibly-Connected Imperfect Frame
5.1.3.1 Portal Frame

Figure 39 shows a schematic diagram of a flexibly-connected nonsway plane
portal frame. The frame consists of two columns AB and CD of equal length L and
a girder BC of length L;. The columns are partiaily restrained elastically at supports
A and D and are joined to the girder at B and C. The beam-to-column connections
at B and C are represented by rotational springs. The members in the portal frame
are imperfect with the column out-of-straightness defined by Equation 17 and the
girder out-of-straightness defined by Equation 18. The columns AB and CD are
oriented to bend about their minor axis while the girder BC bends about its major
axis. The frame is subjected to axial loads, P; and P¢, and bending moments, M,
and Mg at specified joints nonproportionally. In this dissertation, numerical
examples of frames with I-section members are presented. However, the computer
programs developed can also be used for frames with rectangular hollow section
members. A sample portal frame having symmetric geometry and loading can be
modeled and analyzed as an equivalent beam-column. For example, setting P; =
Pg = P; M3 = Mg = M, and taking +u,; for the member AB in Figure 39, an
equivalent model as shown in Figure 40 can be deduced for the left half of the
frame. This modeling is valid only if the girder BC is elastic and carries negligibly
small axial load throughout the load history. Under these conditions, the equivalent

spring stiffness, kg, at B of the model is given by:

k, = 2EL/L, [1/(1+2EL,/KL))] (60)
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where g refers to the girder. This equivalent model allows a direct use of the beam-

column analysis procedure given in Chapter 4.

For a frame which cannot be modeled in the manner described above due to

geometric or loading asymmetry, the detailed inelastic slope-deflection equations in

Section 5.1.1 must be utilized for each member of the frame. For the frame in

Figure 39, Equation 57 applied to each member gives:

My = Sp; 85 + Sp303- Mp3 - Mg
Mj, = S35 85 + S3303- Mz - M,
Mgs = Saq 04 + Sys 05 - Mpgs - Myys
Mgy = Ssq 04 + Ssg 05~ Mpgg - Mg
Mg = Sgg 86 + Sg7 97 - Mpg7 - Mpgy

My = Sq6 07 + Sg7 89 - Mpg - Mg

(61a)
(61b)
(61c)
(61d)
(61e)
(61f)

Also, the following joint equilibrium and compatibility conditions must be enforced:

My; + k(6,-6,) =0
Mys + k(64-93) =0
Mgy + k(65-46g) =0
Mgg + k(67-0g) =0
My, + k(83-194) + My =0
Mg + k(8g-67)-Mg =0

(62a)
(62b)
(62c)
(62d)
(62e)
(62f)

It should be noted that Equation 62(e) and 62(f) are the total joint equilibrium

equations. The geometric boundary conditions are:
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that is, there is no rotational settlement of ground supports at A and D. Upon
substitution of Equations 61(a) through 61(f) and 63, Equations 62(a) through 62(f)

can be written in the following matrix form:

Kl {8g} = {Mgg} + {Mp(;} + {Mg} (64)

Here the subscript G is used to emphasize that this is a global frame equilibrium
equation. Equation 64 is solved for {85} iteratively for the frame response
prediction. The vector {M} has terms like M3, Mg, . . . of Equations 61(a),
61(b), . .., and are dependent upon the axial load P and the member displacements.
The vector {MpG} has terms like Mp23, Mp32, . .. of Equations 61(a), 61(b), . . .,
and are dependent upon the internal plastic force parameters. The vector {Mg}
contains the externally applied joint moments and includes terms like M5 and M of

Equations 62(e) and 62(f).

5.1.3.2 Two-Bay Two-Story Frame

A schematic diagram of an imperfect two-bay two-story nonsway frame is given
in Figure 41. The frame consists of three continuous columns loaded relative to
their minor axis, and four girders loaded about their major axis. Each member of
the frame has a length L. The beam-to-column connections are simulated as elastic
springs with a constant rotational stiffness k. The frame is subjected to joint loading
consisting of axial loads, P, and/or bending moments, M. Following a procedure

similar to that presented in Section 5.1.3.1, the governing equilibrium equations for
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this problem can be obtained in the form given by Equation 64.

5.2 Load Paths and Combinations
5.2.1 Load Paths
With reference to Figure 15, following load paths are used for the numerical

study presented in Section 5.4:

NP9: Both p and m are applied simultaneously in a proportional manner with a
proportionality constant, ¢, defined as:
¢ = m/p (65)
NP9 corresponds to the path OB.

NP10: An axial load p = p* is applied first, followed by both p and m applied
simultaneously, satisfying the relationship:
p=m+p (66)
NP10 corresponds to the path OHB.

NP11: Both p and m are applied simultaneously in a proportional manner, as in
Equation 65, until m reaches the ultimate value obtained in NP10. This is
followed by an increase in the axial load p while holding m constant. NP11
corresponds to the path OIB.

The loads are incremented until the load-carrying capacity of the structure is
reached. When load path NP9 is used, the analysis is carried out following the
stress-strain laws given in Figures 3(a) as well as 3(b) for a critical view on the

tangent modulus approach which neglects elastic unloading.
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5.2.2 Load Combinations

Unlike for a single member, the portal and two-bay two-story frames can be

subjected to various load combinations due to the presence of a number of joints.

The following load combinations are utilized in the present study.

a. Portal frame

FL1:

FL3:

Referring to Figure 39:

An axial load Py = P, and a counterclockwise bending moment M; = M are
used while keeping Py = Mg = 0.

Same loading as FL1, except that the bending moment My = M is applied
clockwise. |

In addition to the loads in FL1, P; = P and My = M are used.

The same loading condition as in FL3 is used, except that My and Mg are

reversed in direction.

b. Two-bay two-story frame

FLS:
FLé:
FLT:
FL&:

Referring to Figure 41:

P and M are applied at joint A only.

The loading is the same as in FLS, except that M is clockwise.
All the loads shown at the joints A through F are applied.

The loading is the same as in FL7, except that the direction of M is reversed.

5.3 Solution Procedure

Equation 64 is materially nonlinear since the stiffness matrix [Kg] and the

moment vectors {Mg;} and {MPG} are dependent upon the deformation vector

{6} The following iterative scheme is devised to predict the load-deformation
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response of the frame:

1.

10.
11.

12,

Evaluate the initial elastic properties for each member and deduce Equation
57 for each member.

Assemble global stiffness matrix [K] in equation 64.

Prescribe small loads and formulate the load vectors {My;} and {MpG} in
Equation 64.

Solve Equation 64 for a set of deformations {6g}.

Compute the member end moment vectors {M,} using Equation 57. Next,
determine the member end actions using simple statics, and formulate the load
vector {M} = {M}, in Equation 37(a). Here, i refers to the iteration number.
Analyze the members with {M}; individually using the procedure given in
Chapter 4, and compute the converged member stiffness matrices [K] in
Equation 37(a).

Update the inelastic slope-deflection Equation 57 for each member, reassemble
[Kgl, {Mg} and {MpG}, and update {6} using Equation 64.

Recompute the member end moment vectors {M,} using Equation 57, and
update {M} = {M},,; in Equation 37(a).

If [{M};41 - {M};| = {a}, where {a} is the tolerance taken as 0.01%, go to
Step 11.

Set {M}; = {M},,, and go to Step 6.

If [[Kg]|—0, go to Step 13.

Increase (or change) the external loads, that is, P and/or M, update the load

vectors {My;} and {MpG} in Equation 64, and go to Step 4.
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13.  Stop.
The solution procedure described herein is programmed on a sequential
computer using FORTRAN and named NONPRFRM. A listing of this computer

program is included in Appendix E.

5.4 Numerical Study

To gain an in-depth understanding of the behavior of the nonsway plane frames
referred to in Section 5.1.2, an extensive numerical study is conducted using the
solution procedures described in Chapter 4 and Section 5.3. Since the number of
variables is quite large, the material properties and the dimensions of the members
are fixed. Each beam-column is a W 8x31 section loaucd about its minor axis. Each
girder, however is a S 12x31.8 section loaded about its major axis. The length of
each member is taken as 15 ft. The frame is A36 steel, that is, with E = 29,000 ksi,
ay = 36 ksi, and following the o-e relationship of either Figure 3(a) or 3(b). The
following two magnitudes of the initial crookedness amplitudes are used for the
beam-columns:
uy; = L/1000 (67)
uy, = L/100,000 (68)
Similarly, the initial crookedness amplitudes for the girders are:
Vo1 = L/1000 (69)
vgz = L/100,000 (70)
Each connection behaves elastically with a stiffness k = 13,333 in-kip/rad. A linear
moment-rotation relationship is adopted since the beam-column behavioral study in

Chapter 4 indicated that this type of connection provides significant load path
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dependency.

5.4.1 Equivalent Structural Model

This section contains the outcome of a numerical study of the portal frame in
Figure 39 and its equivalent structural model in Figure 40 under the symmetry
conditions described in Section 5.1.2. Referring to Figure 40, three types of
equivalent structures E1, E2, and E3 with uy; values in Equation 17 given by +uyy,,
-Ugg, and +ug,, respectively, are considered. A total of 16 equivalent models
designated as C1 through C16 are considered to investigate the influence of load
paths NP9, NP10, and NP11 on their behavior. The stress-strain relationship shown
in Figure 3(a) is adopted for all of the cases except for C14 and C16 for which the
relationship ignoring material unloading shown in Figure 3(b) is used. The

maximum axial load, p,,,,, and the maximum applied moment, m as found from

max’
the analysis are given in Table 19.

Figures 42 through 44 present some of the key results of the study graphically.
Figure 42 exhibits the dimensionless load versus applied moment (p-m) relationships
for the three load paths NP9, NP10, and NP11 and the cases C1, C2, C13, and C14
for E1. With NP10, p_ .. and m _  are found to be 0.84, and 0.33, respectively, for
case C1. With NP11, m . and p, .. are found to be 0.33, and 0.86, respectively,
for C2. With NP9, the case C13 based on o-¢ relationship in Figure 3(a) provides
a somewhat greater maximum load-carrying capacity than that for C14 with o-¢
relationship in Figure 3(b). Also, the maximum moments obtained for the cases C1

and C2 are found to be significantly less than those obtained for C13 and C14. For

example, case C13 provides a moment capacity of 0.80 which is 0.47 in excess of that
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for C1 while the axial loads do not differ significantly.

Figure 43 shows dimensionless load versus column midheight deflection (p-u,)
relationships for the cases Cl, C2, C13, and C14 of frame E1. The deflection is
nondimensionalized by one half the member flange width. The p-u_ responses
obtained for the cases C1 and C2 with NP10 and NP11, respectively, indicate that
the deflections are positive throughout the history of loading. However, the
deflections changed their sign during the loading for the cases C13 and C14 with
NP9, since the end moments had a more dominant effect as compared with the so-
called P-delta effect.

Figure 44 shows stiffness degradation curves corresponding to the cases C1, C2,
C13, and Cl14. In this figure, D is the dimensionless determinant defined in
Equation 43. The D-p curves for the cases Cl, C2, and C13 in Figure 44 show
valleys in the form of rapid changes in D indicating that considerable strain reversal
is present in the structure. Similar findings were also observed for beam-column
studies in Chapter 4. Such valleys, however, are not observed for the case C14 since

the material unloading is not included.

5.4.2 Portal Frame Behavior

The portal frame shown in Figure 39 is first analyzed numerically under various
load histories. Later, extensive additional computer runs were made to generate
load-moment interaction curves. The load combinations FL1 through FL4 with the
load paths NP9 through NP11 described in Section 5.2 are utilized to analyze 6
types of portal frames with various configurations of the initial crookedness. These

frames are designated as FR1 through FR6 and are described below:
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FR1:

FR2:

FR3:

FR4:

FRS:

FR6:

All of the members AB, BC, and CD are nearly perfect, with uy; in Equation
17 given by uy, in Equation 68 for members AB and CD, and with vy; in
Equation 18 given by vy, in Equation 70 for member BC. The y; for
members AB and CD is as shown in Figure 39 while v; for member BC is
opposite to that shown in this figure.

The members AB and CD are initially crooked as shown in Figure 39 with
the midspan amplitudes equal to ug, in Equation 67, and v; for BC is opposite
to the direction shown in this figure with its midspan amplitude given by
Equation 69.

The member AB is nearly perfect as for the frame FR1, with uy; = ug,, and
the members BC and CD are initially crooked as for the frame FR2.

The members AB and BC are initially crooked as in FR2, and the member
CD is nearly perfect as for the frame FRI1.

The member AB is initially crooked as in FR2, the member CD is initially
crooked in the direction opposite to that indicated in Figure 39, with uy; =
ug; in Equation 67, and the member BC is initially crooked as for the frame
FR2.

The configuration of this frame is the same as FRS, except that the lateral

support at C is replaced by a support at B.

The frame FR6 is analyzed in order to gain an insight into the nature of the

induced girder axial load and its effect on the frame behavior. The parametric

study conducted thus encompasses the frames FR1 through FR6 and the frame

loadings FL1 through FL4 for the load paths NP9, NP10, and NP11. For NP10, p*
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in Equation 65 is taken as 0.5.

The numerical results for frames FR1 through FR6 are summarized in Tables
20 and 21. The peak loads obtained for the frames FR1 through FR4 with FL1 and
F12 following the three load paths NP9, NP10, and NP11 are given in Table 20.
The results clearly indicate that the nonproportional load paths NP10 and NP11
result in substantially different maximum load-carrying capacities as compared to
that resulting from the proportional load path NP9. For the frame FR2 with FL1,
for example,the load paths NP10 and NP11 result in practically the same peak loads,
Pmax = 0-71 and m_, = 0.21, whereas NP9 results in p,, = 0.64 and m .. =
0.64. Similar observations are also made for other frames included in this table.

Table 21 summarizes the maximum loads for frames FR1, FR2, FRS, and FR6
for FL3 and FL4 with NP9 through NP11. It should be noted that the structural
model used in Section 5.4.1 is equivalent to the frames FR1 and FR2 for the load
combinations FL3 and FL4. The peak loads for FR1 with NP10 and NP11 in Table
21 are found to be practically the same as those for the equivalent structural models
C9 through C12 in Table 19. Also, the peak loads for the frame FR2 with load
paths NP10 and NP11 are fairly similar to those obtained for the cases C1 through
C8. However, the maximum loads for the cases C13 through C16 are somewhat
greater than those for the frame FR2 with the load path NP9, This discrepancy is
attributed to the softening effect of the induced axial compression in the girder. This
means that a somewhat over-estimated value of k, is used in the equivalent

structural model.
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Figures 45 through 53 present the key results obtained for the portal frame
FR2 with the load combination FL3. The overall frame behavior is presented in
Figures 45 through 48 and the response of the beam-column AB of this frame is
shown in Figures 49 through 52. The load-deformation response of the frame is
represented by the dimensionless axial load, p, versus the joint rotation, e,
relationship. When the proportional load path NP9 is used, the p-e, relations for
FR2 based on the material curves of Figure 3(a) or 3(b) are nearly the same, as
shown in Figure 45. The corresponding stiffness degradation curves are shown in
Figure 46. It is interesting to note that the curve with the tangent modulus approach
shows a significant loss of frame stiffness compared with that including material
unloading. The members of the frame, with material elastic unloading included,
experience considerable redistribution of stresses resulting in localized strain
reversals.

Figures 47 and 48 show, respectively the p-9, and D-p relationships for the
frame FR2 with the load combination FL3 and subjected to the load paths NP10 and
NP11. For NP10, the p-9, relation indicates a slight reduction in the joint rotation
as the loads are increased. The probable cause of such a reduction in deformations
may be explained as follows. Throughout the loading history of the frame, the
beam-column AB exhibits a reverse curvature that is to say that it is bent in an §-
curve because of the presence of the rotational restraints at the base of the frame.
Also, the beam-column experiences substantial yielding as the loads reach the
maximum load-carrying capacity of the frame. At this instant, the rotational

restraints tend to cause a snap-through type of beam-column deformation, thus
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elastically unloading the beam-column to gain enough strength to resist the snap-
through type of deformations. Eventually, the structure fails due to the instability
of beam-columns. Figure 51 showing the load-deformation response of the beam-
column AB clearly substantiates these conclusions by indicating a reduction in the
member displacements followed by further increase as the load is incremented.

The stiffness degradation curves for the frame FR2 with FL3 and the beam-
column AB of this frame are shown in Figures 48 and 52, respectively. These curves
exhibit the presence of substantial unloading in the form of valleys. Similar
observations are also made in a number of the frame results.

To generate the interaction curve between p and m, frame FR2 with load
combination FL3 with the load path NP9 is considered. The following 9 different

proportionality constants, ¢, defined by Equation 65 are used for the analysis:

¢ = 0.00 ¢ =025 ¢ =050
¢ = 1.00 ¢ = 2.00 ¢ = 4.00 (71)
¢ = 8.00 ¢ = 20.00 { = o

The results from the analysis are graphically represented by an interaction curve
shown in Figure 53. The results from the numerical studies with the load paths
NP10 and NP11 are also plotted in the form of data points. Figure 53 is noticed to
predict frame maximum loads accurately. Within the parameters considered herein,

this interaction curve forms an envelope to predict the strength of the frame FR2.

5.4.3 Two Bay Two-Story Frame Behavior

The two-bay two-story frame shown in Figure 41 is analyzed first for various
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load histories, followed by extensive additional analyses to construct a load-moment

interaction envelope. The following two different frames with prescribed initial

crookedness configurations are used in the numerical study:

FR7:. Frame with nearly perfect members, that is, each of the beam-column has
ug; = Ugp given by Equation 68 and each of the girder has vy = v, given
by Equation 70 with all of the members initially curved as shown in Figure
41.

FR8: Frame with the Beam-columns ADG and CFI are initially crooked as shown
in Figure 41 with each member having uy = ug; in Equation 67, and the
girders are initially crooked as shown in this figure with each girder having
Vo = Vop as given in Equation 69.

The frames FR7 and FR8 are subjected to the four load combinations FLS
through FL8 and load paths NP9 through NP11 described in Section 5.2. In this
study, p* = 0.50 is used in Equation 65 for load combinations FL5 and FL6, and
p* = 0.25 is used for the loading combinations FL7 and FLS.

Table 22 presents a summary of the results obtained for the frames FR7 and
FR8 with load combinations FLS through FL8 when subjected to the proportional
load path NP9, and the nonproportional load paths NP10 and NP11. A review of
the maximum loads recorded in this table indicates that the load path NP9 predicts
moment capacities unconservatively when compared to those obtained for the load
paths NP10 and NP11. For example, for the frame FR8 with FL6, NP9 gives m .,
= 0.68, whereas NP10 or NP11 predict m , = 0.22. Similar differences in moment

capacities is observed for all of the frames included in Table 22.
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An examination of the computer output for the frame FR8 with load
combination FL8 subjected to the load path NP11 indicated that the maximum load-
carrying capacity of this frame is governed by the failure of the beam-column EH
in contrast to a general expectation of a failure of either DG or FI in Figure 41.
This unpredictable behavior is explained as follows. The computer output revealed
that considerable yielding of the beam-columns DG and FI takes place when the
inelastic action is initiated in the frame. Further change in the applied loads activate
the nearly perfect beam-column EH to share somewhat of a greater load relative to
the yielded beam-columns DG and FI. During such redistribution of loads, the
beam-columns DG and FI experience material unloading thereby gaining some
amount of stiffness. This material unloading is caused by the restraining effect
offered by the member end partial rotational restraints. This process continues in
the beam-columns DG and FI while the member EH begins to plastify. The
restraining, however, is not felt by the beam-column EH since it is nearly straight,
additionally, the symmetrical bending of the frame induces no significant bending
moments on EH. Consequently, the beam-column EH is deprived of any possible
material unloading while the members DG and FI continue to redistribute the
internal loads. Finally, the beam-column EH becomes completely plastic resulting
in the eventual collapse of the frame.

The results corresponding to those reported in Table 22 for FR8 with FL7 are
shown graphically in Figures 54 through 62. A detailed study of these results
indicate the two-bay two-story frame behavior to be consistent with that of the portal

frame studies reported in Section 5.4.2. The interaction diagram for the frame FR8
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with FL7 shown in Figure 62 is constructed by carrying out a number of frame
analyses using the different values of the proportionality constants given from
Equation 71. Here, the interaction curve is found to form an envelope closely

predicting the maximum strength of the frame for various load paths.
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6. CONCLUSIONS AND FUTURE RESEARCH

The main thrust of this investigation is on a rigorous analysis of the influence
of nonproportional loads on the inelastic response of imperfect beam-columns and
flexibly-connected steel nonsway plane frames. The analysis is performed using a
finite-difference technique combined with an iterative solution procedure. A set
of inelastic slope-deflection equations is derived and utilized for the frame analysis.
The suitability of concurrent computing is investigated through inelastic analysis of
cross sections and biaxially imperfect columns. The main computational work,
however, is performed using the sequential computer.

A number of examples have been presented throughout this dissertation
encompassing the above-mentioned inelastic problems. The cross-sectional and
member studies include both I-sections and hollow rectangular sections. The frame
studies are limited to I-section members to restrict the volume of research.

The conclusions drawn from this research are discussed in the following

sections and appropriate recommendations for further research are made at the end.

6.1 Conclusions
To conveniently present the conclusions, the studies are grouped into three
categories, namely, (i) Concurrent Computing Studies, (ii) Beam-Column Studies,

and (iii) Frame Studies. Various conclusions drawn for each category are discussed
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here.

6.1.1 Concurrent Computing
The effectiveness of concurrent computing using the Finite Element Machine

is studied and the corresponding conclusions are presented as follows:

A. Cross-sectional analysis
1. A maximum speedup factor of 7.69 is achieved on eight processors resulting

in an efficiency of 96.1 per cent.

)

The minimum speedup factor for the study is found to be 7.09 on eight
processors which corresponds to 88.6% efficiency.

3. The speedup factors increased as the number of processors are reduced. This
is primarily due to an efficient distribution of computational load between the

processors and also reduction in communication time between the processors.

B. Column studies

1. Ingeneral, the execution times required to analyze hollow rectangular columns
(CN5-CNB8) are greater than those for the hollow square columns (CN1-CN4).
This difference in computational time is explained as follows. The hollow
rectangular column began yielding at a lower load level due to the smaller
bending resistance about the minor axis and resulted in a greater number of
cycles for convergence in the nonlinear range compared to the hollow square
column.

2. The speedup factors are found to be of the same order for both hollow square

and rectangular columns although larger computational times are needed for
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the latter ones.

3. The communication overhead needed is negligibly small since the analysis is
dominated by extensive arithmetical computations on all processors. The
development of the algorithm exploits the inherent quality of processors that
are designed to be efficient computers. Therefore, algorithms which exploit
this property will derive efficient speedups.

4.  Generally, the computational time needed to analyze the structure increases
with the degree of end fixity of the column.

5. The computational efficiency decreases as the number of processors increase,
suggesting an optimal limit on the number of processors that may be employed.
In summary, the concurrent computing algorithms are found to be efficient to

analyze this class of nonlinear problems.

6.1.2 Beam-Columns

Specific studies on beam-columns include an investigation of the restraint
modeling, and a behavioral study of uniaxially and biaxially loaded I-section beam-
columns and biaxially loaded hollow rectangular section beam-columns subjected to

various load paths. The following conclusions are drawn form the numerical studies:

A. Restraint modeling effect on beam-columns

1.  The studies indicate that the end restraints can be practically modeled by a
simple linear or at the most a bilinear moment-rotation relation.

2. The beam-column analyses predict that the strength of the members is not

highly sensitive to the connection modeling.
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3.  When the connection possesses a relatively large stiffness, a simple linear
model will provide accurate connection response.
4. These models in general provide simple and accurate moment-rotations

relationship for a connection spring.

B. Nonproportionally loaded I-section beam-columns

1.  The major axis response of beam-columns is not load path dependent for all
practical purposes.

2.  The minor axis response of beam-columns is load path dependent when elastic
rotational restraints are present.

3. With elastic-plastic end restraints, the load paths provide nearly the same peak
loads.

4.  For load paths NP1 and NP2, the load conditions LC1 and LC2 provide nearly
the same peak loads, while load paths LC3 and LC4 exhibit a substantial
difference for the minor axis loading when elastic restraints are present.

S. A consideration of appropriate nonproportional loadings may provide greater
allowable loads for beam-columns with elastic end restraints.

6. Neglecting the effects of material unloading may lead to unconservative
estimation of load-carrying capacity of beam-columns.

7. A greater degree of unconservativeness results for the biaxially loaded beam-
columns.

8.  Considerable redistribution of stresses takes place along the member length in
the inelastic range.

9.  The study on beam-columns with proportional loads indicated that the tangent
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modulus approach exhibits a fictitious ductile behavior of the member. Such

fictitious ductility is not noticed in the experimental investigations.

C. Nonproportionally loaded hollow rectangular beam-columns:

1.  Significant load dependence exists for biaxially loaded hollow rectangular
beam-columns.

2. Critical combination of loadings in a load path may dramatically change the
strength of the member in comparison to yet another the load path(s).

3.  The load path dependence disappears only for certain load combinations, or
for the special case of pinned boundaries.

4,  Considerable material unloading is present and is indicated in the form of
valleys in the stiffness degradation curves.

5. Substantially a greater number of cross-sectional elemental areas are required
when the analysis includes material unloading.

6. The members analyzed using the tangent modulus approach exhibit a fictitious
yield plateau in contrast to the relatively less ductile behavior observed in

experimental investigations.

6.1.3 Frame Studies

The following conclusions are derived from the frame studies conducted in this

research:

A. Equivalent structural model
1. The peak loads for imperfect structure are larger than those for the nearly

perfect structural model when the applied moment causes deflection opposite
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to the initial crookedness.

2. Nearly the same peak loads result for structural models subjected to load paths
NP10 and NP11.

3. The strength of nonproportionally loaded equivalent structural model is
substantially less than that of the proportionally loaded one.

4.  There is a dramatic difference in the behavior between the nonproportionally
loaded and the proportionally loaded structures.

5. In some cases, the equivalent structural model provided unconservative peak

loads compared to the corresponding frame analyses results.

B. Portal and two-bay two-story frames

1. The inelastic slope-deflection equation method of frame analysis is found to be
simple and practical.

2. The number of degrees of freedom involved for the global frame response
prediction is quite small due to the inelastic slope-deflection method.

3. Specific case studies for the portal frame analyses compared with those of
equivalent structural model indicated that the frame analysis procedures are
reliable.

4.  The effect of P-delta effects on girders is found to be significant for some of
the portal frames analyzed.

5. The maximum load-carrying capacity of frames, in general, are found to be
unconservative when tangent modulus approach was used.

7. For the frames considered, the girders in general exhibited elastic behavior.

8.  The frame analyses using tangent modulus unloading of the material did not
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10.

11

12.

13.

14.

exhibit a large yield plateau unlike in the case of individual member studies
even when the tangent modulus approach is used.

Substantial redistribution of loads takes place in the inelastic range for the
frames.

There is a significant difference in the behavior between the nonproportionally
and proportionally loaded frames.

For portal frames, the failure in general is governed by the instability failure
of the beam-columns.

When the lateral support location is altered in the frame as in FR6 relative to
FRS, the girder experienced a tensile axial load indicating that the location of
lateral support can alter the behavior of girders.

For two-bay two-story frames, the outer columns experienced considerable
redistribution of stresses and the frame maximum loads are attained when the
lower story central beam-column eventually failed due to inelastic instability,
in contrast to the generally expected failure of the initially crooked outer beam-
columns.

The interaction diagrams developed for the frames form a type of maximum
load envelope which govern the maximum load-carrying capacity for these
frames when subjected to various load paths.

The present study clearly indicates that the combined influence of

nonproportional loads, imperfections, and flexible connections on the behavior and

strength of structural members and frames is very significant. In general,

proportionally loaded structures provided unconservative maximum loads for beam-
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columns as well as frames. The inelastic slope-deflection equations developed for

the frame analysis are found to efficient and simple for practical use.

6.2

Future Research

Considering the scope of the present research the following recommendations

are made for future investigations.

1.

No verifiable data is available at present in the literature to experimentally
corroborate the theoretical developments in this study.  Therefore,
experimental investigation of the structural behavior investigated herein will be
a challenge in the future.

The inherent potential for parallelization of this theoretical formulation makes
it a suitable candidate for application on concurrent computers.

The concept of the inelastic slope-deflection equations for beam-columns may
be extended to investigate the behavior of sway frames.

Modifications of member equilibrium equations to include member loads in
addition to the applied nodal loads will enhance the analytical capability of the
computer program developed herein.

The theoretical formulations developed for plane frame analyses may be
extended to study the behavior of space frames.

An experimental investigation of various load paths in real-life structures may
be performed for use in the future research.

The torsional effects of the open section members may be incorporated into

the present analysis to enhance its scope.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10.

11.

12.

13.

REFERENCES

Engesser, F., Schweizenicshe Bauzeitung, Vol. 26, 1895.

Euler, L., "Elastic Curves," Translated and Annotated by Oldfather, W. A,
Ellis, C. A,, and Brown, D. M,, 1933.

Shanley, F. R., "Inelastic Column Theory," Journal of Aeronautical Sciences,
Vol. 14, 1947.

Osgood, W. R., "The Effect of Residual Stress on Column Strength,"
Proceedings of First National Congress of Applied Mechanics, June, 1951.

Duberg, J. E., and Wilder, T. W.,, "Inelastic Column Behavior,"” NACA
Technical Note, No. 2267, Washington, D. C., January, 1951.

Huber, A. W., and Beedle, L. S., "Residual Stress and Compressive Strength
of Steel," The Welding Journal, Vol. 33, December, 1954.

Ketter, R. L., "Stability of Beam-Columns above Elastic Limit," Proceedings of
ASCE, Vol. 81, Separate No. 692, May, 1955.

Driscoll, G. C., and Beedle, L. S., "The Plastic Behavior of Structural Members
and Frames," The Welding Journal, Vol. 36, No.6, June, 1957.

Munse, W. H,, Bell, W. G., and Chesson, E., "Behavior of Riveted and Bolted
Beam-to-Column Connections," Journal of Structural Division, ASCE, Vol. 85,
March, 1959.

Galambos, T. V., "Influence of Partial Base-Fixity on Frame Stability," Journal
of the Structural Division, ASCE, Vol. 86, No. ST5, May, 1960.

Galambos, T. V., and Ketter, R. L., "Columns Under Combined Bending ard
Thrust," Transactions of ASCE, Vol. 126, Part I, 1961.

Ketter, R. L., "Further Studies on the Strength of Beam-Columns," Proceedings
of ASCE, Vol. 87, No. ST6, August, 1961.

Galambos, T. V., and Prasad, J., "Ultimate Strength Tables for Beam-Columns,"
Welding Research Council Bulletin, No. 78, June, 1962.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



14.

15.

16.

17.

18.

19.

20.

21.

22.

24.

25.

26.

27.

Saap, D. A,, "Inelastic Stability of Rectangular Frames," Ph. D. Dissertation,
University of Illinois, Urbana-Champaign, 1964.

Citipitioglu, E., "Stability of Rigid-Jointed Space Frames," Ph. D. Dissertation,
Oklahoma State University, Oklahoma, 1965.

Dwyer, T. J., and Galambos, T. V. "Plastic Behavior of Tubular
Beam-Columns," Journal of the Structural Division, ASCE, Vol. 91, No. ST4,
August, 1965.

Driscoll, G. C,, et al, "Plastic Design of Multi-Story Frames," Fritz Engineering
Laboratory Report, No. 273.20, Lehigh University, Bethlehem, Pennsylvania,
1965.

McVinnie, W. W.,, "Elastic and Inelastic Buckling of an Orthogonal Space
Frame," Ph. D. Dissertation, University of Illinois, Urbana-Champaign, 1966.

Culver, G. C,, "Exact Solution of the Biaxial Bending," Journal of the Structural
Division, ASCE, Vol. 92, No. ST2, April, 1966.

Korn, A., "The Elastic-Plastic Behavior of Multistory, Unbraced, Planar
Frames," Ph. D. Dissertation, Washington University, St. Louis, Missouri, 1967.

Birnsteil, C., "Experiments on H-Columns Under Biaxial Bending," Journal of
the Structural Division, ASCE, Vol, 94, No. ST10, October, 1968.

Lu, L. W,, and Kamalvand, H., "Ultimate Strength of Laterally Loaded
Columns," Journal of the Structural Division, ASCE, Vol. 94, No. ST6, June,
1968.

Galambos, T. V., Structural Members and Frames, Printice Hall, Inc./Englewood
Cliffs, New Jersey, 1968.

Lewitt, C. S., Chesson, E., and Munse, W. H., "Restraint Characteristics of
Flexible Rivetted and Bolted Beam-To-Column Connections,” Engineering
Experiment  Station  Bulletin, No. 500, University of [llinois at
Urbana-Champaign, January, 1969.

Sharma, S. S., and Gaylord, E. H., "Strength of Steel Beam-Columns with
Biaxially Eccentric Load," Journal of the Structural Division, ASCE, Vol. 95,
No. ST12, December, 1969.

Romstad, K. M., and Subramanian, C. V., "Analysis of Frames with Partial
Connection Rigidity," Journal of the Structural Division, ASCE, Vol. 96, No.
ST11, November, 1970.

Gupta, S. P, and Agarwal, M. K,, "Ultimate Strength of Beam-Column Hinged

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28.

29.

30.

31

32.

33.

34,

35.

36.

37.

38.

39.

40.

at Both Ends," Journal of the Institute of Engineers (India), Civil Engineering
Division, Vol. 54, Patr CI3, January, 1974.

Harung, H. S., Elektr Sveisning A/S, B. N., Miller, M. A, and Brotton, D. M.,
"Imperfections in Axially Loaded Plane Frames," International Journal of
Numerical Methods in Engineering, Vol. 8, n4, 1974,

Nair, R. S., "Overall Elastic Stability of Multistory Buildings," Journal of the
Structural Engineering, ASCE, Vol. 101, n12, December, 1975.

Wood, B. R., Beaulieu, D., and Adams, P. F., "Failure Aspects of Design by
P-Delta Method," Journal of Structural Engineering, ASCE, Vol. 102, n3, March,
1976.

Lispon, S. L., "Single-Angle Welded-Bolted Connections," Journal of the
Structural Division, ASCE, Vol, 103, No. ST3, March, 1977.

Simitses, G. J., and Kunadis, A. N, "Nonlinear Buckling Analysis of
Imperfection Sensitive Simple Frames," International Colloquium on Stability
of Structures Under Static and Dynamic Loads, Washington, D. C., May, 1977.

Hayashi, K., and Yokoyama, M., "Direct Simulation Of Engineering Problems
With a Fast Array Computer," Bulletin of the Japan Society of Mechanical
Engineers, Vol. 20, No. 149, 1977.

Chen, W. F., and Atsuta, T., Theory of Beam-Columns, Vol. 2, McGraw-Hill,
Inc., New York, 1977.

Smith, B., "A Pipelined Shared Resource MIMD Computer," Proceedings of
1978 Intermational Conference on Parallel Processing, August, 1978.

Jordan, H., "A Special Purpose Architecture for Finite Element Analysis,"
Proceedings of 1978 International Conference on Parallel Processing, August,
1978.

Ackroyd, M. H., "Nonlinear Inelastic Stability of Flexibly-Connected Plane
Steel Frames," Ph. D. Dissertation, University of Colorado, Boulder, 1979.

Razzaq, Z., Chang, J. G., and Kruger, P. K,, "Inﬂitiall;' Crooked Columns With

Partial Restraints," Annual Technical Session, Structural Stability Research
Council, New York, 1980.

Chen, W. F., "End Restraint and Column Stability," Journal of the Structural
Division, ASCE, Vol. 106, No. ST11, November, 1980.

Balio, G., and Campanini, G., "Equivalent Bending Moments for Beam-
Columns," Journal of Constructional Steel Research, Vol. 1, No. 3, May, 1981,

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

Rahimzadeh-Hanachi, J., "Nonlinear Elastic Frame Analysis by Finite Element,"
Ph. D. Dissertation, Michigan State University, Michigan, 1981.

Moncarz, P. D., and Gerstle, K. H., "Steel Frames With Nonlinear
Connections," Journal of Structural Engineering, ASCE, Vol. 107, August, 1981.

Burden, R. L., Faires, J. D., and Reynolds, A. C., Numerical Analysis, Second
Edition, Prindle, Weber & Schmidt, Massachusetts, 1981.

Stowan, S. H., "Nonlinear Collapse Load Analysis of Braced Frame Structures,"
Ph. D. Dissertation, Case Western University, Cleveland, 1982.

Razzaq, Z., and McVinnie, W. W,, "Rectangular Tubular Steel Columns
Loaded Biaxially," Journal of Structural Mechanics, ASCE, Vol. X, No. 4, 1982.

Marglichi, K., "Non-Rigid Frame Analysis," Ph. D. Dissertation, Washington
State University, St. Louis, Missouri, 1982.

Storaasli, O. O., Peebles, S., Crockett, T. W., Kott, J. D., and Adams, L. M.,
"The Finite Element Machine: An Experiment in Parallel Processing," Research
in Structures and Solid Mechanics-1982, NASA CP-2245, October, 1982.

Adams, L. M., "Tterative Algorithms for Large Sparse Linear Systems on
Parallel Computers," Ph. D. Dissertation, University of Virginia, Charlottesville,
1982.

Jones, S. W., Kirby, P. A, and Nethercot, D. A., "Analysis of Frames With
Semi-Rigid Connections - A State of the Art Report," Journal of Constructional
Steel Research, Vol. 3, n2, 1983.

Razzaq, Z., "Restraint Effect on Steel Column Strength,"” Journal of Structural
Engineering, ASCE, Vol. 109, No. 2, February, 1983.

Razzaq, Z., and Calash, A. Y., "Partially Restrained Columns With Biaxial
Crookedness and Residual Stresses," Structures Congress, ASCE, Houston,
Texas, October, 1983.

Leondorf, D., "Advanced Computer Architecture for Engineering Analysis and
Design," Ph. D. Dissertation, University of Michigan, Ann Arbor, Michigan,
1983.

Chen, W. F., and Lui, E. M,, "Columns With End Restraint and Bending in

Load Resistance Design Factor," Engineering Journal, AISC, 3rd Quarter, Vol.
22, No. 3, 1985.

Razzaq, Z., and Calash, A. Y., "Imperfect Columns With Biaxial Partial

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Restraints," Journal of Structural Engineering, ASCE, Vol. 111, No. 4, April,
198s.

55. Razzaq, Z., and McVinnie, W. W,, "Theoretical and Experimental Behavior
of Biaxially Loaded Inelastic Columns," Journal of Structural Mechanics, ASCE,
Vol. 14, No. 3, March, 1986.

56. Galambos, T. V., Guide to Stability Design Criteria for Metal Structures, Fourth
Edition, John Wiley and Sons, Inc., New York, N. Y., 1988.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 1. Concurrent processing results for hollow square section with y = 1.000

Number of Maximum Speedup Efficiency
processors  computational time §; m
(sec)

8 312.853 7.69 96.1

4 608.171 3.96 99.0

2 1204.867 1.99 99.5

1 2405.829 --- ---
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Table 2. Computational time on concurrent processors

———— _
Square section Rectangular section
Number of
processors Moment Cosnputaﬁonal Mopent Computational

ratio y time (sec) ratio y time(sec)

Y1 1289.836 Yir 1289.817
Ya (1422.777) Yo (1419.233)

Ys 1419.230 Yar 1333.203

Ya 1398.955 Ve 1137.931

’ Ys 1333.192 Yar 1253.166

Yo 1273721 Ve 1291.926

Y 1143658 Y 1261.039

Ya 1102.597 Y 1102.564
Yio Ya 2701.822 Yio Y2 (2715.432)

Yoo Ve (2823.155) Y Yae 2471.114

) Yso Y7 2471.129 Y55 Ve 2538.101

Yoo Vou 2375.804 Yo Yas 2362.757
) Yio Yo Yso Y2 (5197.993) | ¥, 10 Ya (5172.083)

Y2 Yaor Yoor Ve 5190392 Ys, 1O Y, 4896.691

1 Yis 1O Y 10324.935 Y1 O Y 10067.648
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Table 3. Concurrent processing efficiencies for hollow square section with y = v,

to Yg,
Number of Maximum Speedup Efficiency
processors  computational time S; n
(sec)

8 1422.777 7.26 90.7

4 2823.155 3.66 91.5

2 5197.993 1.99 99.5

1 10,324.935 - -

Table 4. Concurrent processing efficiencies for hollow rectangular section with y =

Yir to Yar
Number of Maximum Speedup Efficiency
processors  computational time S; n;
(sec)

8 1419.233 7.09 88.6

4 2715432 3.71 92.7

2 5172.083 1.95 97.5

1 10,067.648 — -
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Table 5. Peak loads of hollow square and rectangular columns

Hollow square section Holl(;w rectangular section
Column Spring P Column Spring P
stiffness stiffness
CN1 k, 0.851 CN5 k, 0.832
CN2 k, 0.887 CNé6 k, 0.875
CN3 k, 0.951 CN7 k, 0.930
CN4 k, 0.902 CN8 k, 0.859

k.(k&=klvk‘h=kbk3y=kbk'ly=k3)
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Table 6. Execution times on concurrent processors for columns CN1 and CNS

— ]

Number of crf);lsms::igf;s Executive time (sec)
Processors p: (;a::toa:t Columa CNL o s
1083.285 1319343
1082.937 1318.933
1083.267 1319.327
1083.283 1319.353
9 1 1083.068 1319.089
1083.244 1319.292
1083.268 1319.325
1083.185 1319.235
(1088.823) (1322.104)
(1442337) (1709.396)
1441.870 1708.872
5 2 1442.230 1709380
1442.284 1709.335
1430.745 1694.345
(2002.951) 2250632
3 4 2002.196 (2349.799)
1967.393 2306.682
3286.645 3842.815
2 8
(3291.664) (3848.343)
- 8 5272.540° 6907.108"
S—
* Estimated times.
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Table 7. Computational speedup factors and efficiencies for hollow square columns

Coumn | St | Nmbrof | cyion | Sreiir | B
time (sec) !

9 1088.823 549 61.0

5 1442.284 414 828

CN1 k, 3 2002.951 298 994
2 3291.664 1.81 90.7

1 5972.540 —

9 1527.131 5.89 65.4

5 2090.294 4.30 86.1

CN2 k, 3 3017.470 2.98 994
2 5084.405 1.7 88.5

1 8994.377

9 988.095 515 573

5 1270.900 401 80.2

CN3 k, 3 1780.100 2.86 954
2 2837310 1.79 89.8

1 5093.126 - —

9 1871.138 553 614

5 2506.175 413 82.5

CN4 K 3 3481.424 297 99.0
2 5520.623 187 93.7

1 _ 10240.735 - ——-

k.(km=khk'n=kz’kny=kbk1y=ka)
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Table 8. Computational speedup factors and efficiencies for hollow rectangular

columns
— — — —
Couma | Soon | Nmbrof | oipn | ST | B
Time (sec) :
9 1322.104 522 58.0
5 1709.396 4.04 80.8
CN5 ¥, 3 2350.632 2.94 97.9
2 3848343 179 89.7
1 6907.108
9 1700.910 5.65 62.8
5 2245.908 4.28 85.6
CN6 k, 3 3219.390 2.98 99.4
2 5398.389 1.78 89.0
9 4386.441 5.67 63.0
5 5911918 4.21 84.2
CN7 ks 3 8332422 2.99 99.6
2 13880.841 179 89.7
1 24887.504 — —
9 4570.608 5.61 523
5 6040.994 424 84.8
CN8 K 3 8555.816 2.99 99.6
2 14147.350 181 90.6
__l 256_1_2172 - -
k' (key = ky, kyy = ky, kg, = ky, kyy = k)
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Table 9. Summary of beam-column strength for various connection models

Reatraint p Spring’
type max moment

a2 0.71 12423

b2 0.69 95.92

2 0.66 79.89

d2 0.64 79.85

e2 0.67 100.00

f2 0.64 72.00

— -

“in inch-kip units
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Table 10. Maximum beam-column loads for various load paths and elastic restraints

' Major axis Minor axis Major axis Minor axis

e S":’ff’fn"?;s Load | 1c1 | Lc2 | LC1 | Lc2 | LC3 | Lc4 | LC3 | LCd
p | 0950 | 0952 | 0935 | 0910 | 0426 | 0426 | 0.290 | 0.290
» o m | 0021 | 0021 | 0182 | 0182 | 1.200 | 1.160 | 4.600 | 3.842
p | 0710 | 0710 | 0625 | 0625 | 0.166 | 0.166 | 0.261 | 0.261
” . m | 0192 | 0.192 | 0.086 | 0.086 | 0.900 | 0901 | 0.850 | 0.849
p | 075 [ 0761 | 0.800 | 0.731 | 0.321 | 0321 | 0.075 | 0075

03 ke )
@ | 0275 | 0275 | 0675 | 0675 | 1.050 { 1.084 | 3.400 | 3343
p | 0800 [ 0798 | 0.850 | 0856 | 0377 | 0377 | 0311 | 0311
> - m | 0313 | 0313 | 0543 | 0543 | 1.200 | 1.202 | 4.600 | 4163

Table 11. Maximum beam-column loads for various load paths and elastic-plastic
restraints (K, Mg = 100 in-kips)

Bending Load LC1 LC2 LC3 LC4
axis N

p 0.800 0.800 0.168 0.168
Major

@ 0.198 0.198 1.000 1.000

p 0.800 0.799 0.150 0.150
Minor

@ 0.159 0.159 1.400 1.499
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Table 12.  Maximum external loads for uniaxially loaded imperfect beam-columns
with partial rotational equal end restraints and various load paths

(W8X31)
Length} Spring
Beam-Column | (ft.) |Stiffness fLoad Path Maximum External Loads
npy |B| 0000 0075 0737 0961 --
@m| 3211 3000 1500 0000 | --
1 8 Ky
Npy || 0000 0075 0737 0961 --
@l 3211 2990 1733 0000  --
py |P| 0000 0169 0689 0968 0958
‘ M| 4.689 4000 2500 1.000  0.000
2 8 ky
p| 0000 0.169 0669 0865 0958
NPI &) 4689 4190 2155 1114  0.084
Npy [P 0000 0238 0749 o867 -
@l 3.736 3000 1.500  0.001 --
3 12 kg
npy |P| 0000 0238 0749 o0ser -
| 3736 3344 0845 0144  --
npy |P| 0000 0360 050 0744 0893
P2 '®| 5014 4500 3000 1.500 0.000
4 12 kg
p| 0000 0360 0550 0744  0.893
NPl &l 5014 3842 3476 1825  0.258
p| 0000 0.8 0273 0496 0.751
NP2 izl ss61 4500 3.000 1.500  0.000
5 16 Ky
p| 0000 o0.182 0273 0496 0.751
NPl Im| ss61 3.032 3590 1.593  0.007
p| 0000 o0.00 0352 0649 0.795
NP2 |5l 6983 6000 4500 1.500  0.000
6 16 Ky
np |P| 0000 0100 0352 0649 0755
| 6983 5483 3923 2087  0.386
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Table 13.  Comparison of predicted and previously published maximum loads for
pinned-end beam-columns with biaxially eccentric load

p p Predicted
Reference | Cross |Length | Eccentricity | Eccentricity
Number |Section | (in.) e, (in.) ¢, (in.) Predicted | Reference | p Reference
21 H 6x6 96 1.61 2.78 0.426 0.421 1.01
21 H 5x5 120 2.38 2.51 0.284 0.297 0.96
28 W12x65| 180 18.40 3.76 0.186 0.199 0.93
28 W12x65) 270 18.40 3.76 0.167 0.169 0.99
5 Wi12x65| 360 18.40 3.76 0.149 0.144 0.97

*m, = Pe,/My, ; m, = Pe/M,,

Table 14. Maximum external loads for biaxially loaded imperfect beam-columns
with partial rotational equal end restraints and various load paths
(L=12ft.; W8X31)

Beam- Spring | Load
Column| Stiffness{ Path Maximum External Loads
p 0.000 0.251 0.525 0.876 0.869
NP2 | m, 1.078 0.364 0.405 0.070 0.000
m, | 0.63] 0.506 0.237 0.041 0.000
p 0.000 0.250 3.500 0.750 0.869
NP1 {m, 1.078 0.864 0.405 0.070 0.000
m, | 0.631 0.506 0.237 0.041 0.000
p 0.000 0.276 0.503 0.919 0.904
NP2 | m, 1.255 0.952 0.471 0.039 0.000
m, | 0.735 0.558 0.276 0.023 0.000
8 ks
p 0.000 0.250 0.500 0.780 0.904
NPI | m, 1.255 0.952 0.471 0.039 0.000
m, | 0.735 0.558 0.276 0.023 0.000
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Table 15.  Maximum external nonproportional biaxial loads for partially restrained
imperfect beam-column BC2 with hollow square section (k=k,,)

Load Dimensionless Maximum Loads

case
p 0.00 0.25 0.50 0.75 0.93

NP3 |my 1.86 1.11 0.89 0.42 0.00
Eiy 1.86 1.11 0.89 0.42 0.00
My 1.86 1.11 0.89 0.42 -

NP4 Eiy 1.86 1.11 0.89 0.42 -

0.00 0.27 0.50 0.77 -

p 0.00 0.25 0.50 0.75 -

NP5 |@, 1.86 1.11 0.89 0.31 -
r'ﬁy 0.24 1.17 0.39 0.00 -
ﬁy 1.86 1.11 0.89 0.42 -

NP6 |Gy 0.24 1.11 0.89 0.42 -
) 0.00 0.30 0.51 0.77 -

Table 16.  Maximum external nonproportional biaxial loads for partially restrained
imperfect beam-column BC3 with hollow square section (k=k,;)

Load Dimensionless Maximum Loads

case
p 0.00 0.25 0.50 0.75 0.98

NP3 |3 1.95 1.62 1.18 0.50 0.0
ﬁ'x; 1.95 1.62 1.18 0.50 0.00
iy 1.95 1.62 118 0.50 -

NP4 Ey 1.95 1.62 1.18 0.50 -
jo} 0.00 0.35 0.44 0.76 -
p 0.00 0.25 0.50 0.75 -

NP5 |, 1.95 1.62 1.18 0.39 -
ﬁy 1.73 1.74 0.83 0.00 -
riy 1.95 1.62 1.18 0.50 -

NP6 |y 1.73 1.62 1.18 0.50 -
p 0.00 0.21 0.44 0.76 -
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Table 17. Maximum external nonproportional biaxial loads for partially restrained
imperfect beam-column BC4 with hollow rectangular section (k=k,,)

Load Dimensionless Maximum Loads
case
p 0.00 0.25 0.50 0.75 0.91
NP3 | mig 2.02 1.19 0.75 0.32 0.00
:ﬁy 2.14 1.26 0.80 0.34 0.00
fig 2.02 1.19 075 032 -
NP4 &iy 2.14 1.26 0.80 0.34 -
0.05 0.40 0.45 0.78 -
p 0.00 0.25 0.50 0.75 -
NPS | miy 2.14 1.19 0.75 0.32 -
fi'ly 0.99 1.18 1.02 0.30 -
ﬁy 2.02 1.26 0.80 0.34 -
NP6 | my 0.61 .19 0.75 0.32 -
p 0.00 0.39 0.46 0.78 -
p 0.00 0.25 0.50 0.75 -
NP7 x‘ﬁy 2.02 1.26 0.80 0.29 -
Mg 0.61 0.97 0.60 0.00 -
My 2.14 1.19 0.75 0.32 -
NP8 ﬁy 0.99 1.26 0.80 0.34 -

0.00 0.26 0.45 0.78 -

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 18 Maximum external nonproportional biaxial loads for partially restrained
imperfect beam-column BCS with hollow rectangular section (k=k;)

Load Dimensionless Maximum Loads
case
p 0.00 0.25 0.50 0.75 0.93
NP3 | M| 195 143 104 035  0.00
ﬁy 2.07 1.52 1.11 0.37 0.00
Be| 195 143 104 035 -
NP4 | My 2.07 1.52 L1l 0.37 -
0.02 0.34 0.48 0.75 -
p 0.00 0.25 0.50 0.75 -
NP5 | dig 1.95 143 104 035 .
Gy| 369 184 098 047 -
ﬁiy 2.07 1.52 1.11 0.37 -
NP6 | @iy |  1.83 143 104 035 -
p 0.00 0.38 0.49 0.75 -
p 0.00 0.25 0.50 0.75 -
NP7 |@y| 207 152 Ll 037 -
fiy| 183 166 134 000 -
B | 195 143 104 035 -
NP8 fﬁy 2.07 1.52 1.11 0.37 -
p 0.38 0.39 0.49 0.75 -
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Table 19. Equivalent structural model analysis results

Case U, Sign Load g-e -
Frame | o dy of M | Path | Figuwe3 | Fmx | Mmx
E1 c1 +g + NP10 (a) 083 | +033
c2 +uyy + NP11 (a) 0.86 | +033
E1 c3 +uyy . NP10 (a) 074 | -024
c4 +Uyy . NP11 (a) 075 | 024
E Ccs gy - NP10 (a) 083 | -033
c6 iy - NP11 (a) 084 | -033
Ea c7 -y + NP10 (a) 074 | +0.24
C8 -Uy, + NP11 (a) 0.81 +0.24
E3 9 +Upy + NP10 (a) 0.78 | +0.28
C10 +Upy + NP11 (a) 0.80 | +0.28
E3 c11 +lp . NP10 (a) 078 | -0.28
C12 +Ug, - NP11 (a) 0.79 -0.28
El C13 +Uy + NP9 (a) 0.80 -0.80
C14 +uy + NP9 (b) 075 | +0.75
E1 C15 +lgy - NP9 (a) 070 | -0.70
C16 + 1y - NP9 (b) 0.68 -0.68
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Table 20. Portal frame analysis results for FR1, FR2, FRS, and FR6 with FL1

through FLA
Load Maximum loads for
};r‘ame Loading path Load path Load path
ype NP9 NP10 NP1
Pumax 0.67 0.75 0.75
FL1 My, 0.67 0.25 0.25
FR1
FL2 Poa 0.72 0.76 0.76
My, 0.72 0.26 0.26
Pesax 0.64 0.71 0.71
FL1 M, 0.64 021 0.21
FR2
FL2 Pmax 0.71 0.82 0.84
Mgy 071 032 032
P 0.67 0.75 0.75
FL1 My 0.67 025 0.25
FR3
FL2 Pmax 0.72 0.76 0.76
My, 0.72 0.26 0.26
Ponax 0.64 071 0.71
FL1 My, 0.64 021 021
FR4
FL2 Pras 0.71 0.82 0.84
M., 071 032 032
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Table 21. Portal frame analysis results for FR1, FR2, FRS, and FR6 with FL1

through F1L4
Load Maximum loads for
I:‘Ix:ame Loading path Load path Load path

ype NP9 NP10 NP1
Paxx 0.67 0.75 0.75
FL3 My 0.67 0.25 0.25

FR1
FLA Dot 0.72 0.76 0.76
= 072 0.26 026
P | 064 0.79 070
FL3 m,, | 064 0.29 029

FR2
FL4 Poas 071 0.83 0.84
My 0.71 033 0.33
Past 0.64 0.66 0.72
FL3 My 0.64 0.16 0.16

FRS
FLA Pmax 0.64 0.68 0.72
o, 0.64 0.18 018
Pes 0.64 0.66 972
FL3 o 0.64 0.16 0.16

FR6
FL4 Do 0.64 0.68 072
M, 0.64 0.18 018

—
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Table 22. Two-bay two-story frame analysis results for FR7 and FR8 with FLS5

through FL6
Load Maximum loads for
F;ame Loading path Load path Load path

ype NP9 NP10 NP11
Pouss 0.61 0.69 0.72
FLS m_, 0.61 0.19 0.19

FR7
FL6 Prmax 0.63 0.71 071
Mpy 0.63 021 0.21
Do 0.59 0.66 0.6
FLS Mg, 0.59 0.16 0.16

FRS8
FL6 Poax 0.68 0.72 0.72
Mgy 0.68 022 0.22
Prmax 038 039 039
FL7 My, 0.38 0.14 0.14

FR7
FL8 Prmax 0.38 039 039
My 0.38 0.14 0.14
P 036 038 039
FL7 D 036 I 0.13

FR8
FL8 Panax 039 039 039
My, 0.39 0.14 0.14
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Figure 1.  Discretized hollow rectangular and I-shaped sections subjected to axial
load and biaxial bending moments
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Figure 2.  Typical residual stress patterns of cross sections
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Figure 3.  Material stress-strain relationships
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Figure 7. Moment-curvature relationships about x axis for hollow square section
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Figure 13. Speedup curves for generation of yield surface for hollow square section
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Figure 33. Interaction curves for biaxially loaded partially restrained imperfect
beam-column BCS for load paths NP7 and NP8
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Figure 38. Typical frame joint
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Figure 39. Imperfect portal frame
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Figure 44. Stiffness degradation curves
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Figure 52. Stiffness degradation curve for a column of the frame FR2 and loading
FL3 with NP10 and NP11
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Figure 58. Axial load versus midspan displacement relationship for a column of
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Figure 61. Stiffness degradation curve for a column of the frame FR8 and loading
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APPENDIX A
Tangent Stiffness Method

The various terms and incremental equations for use in the tangent stiffness
procedure for the problem shown in Figure 1 are summarized in this appendix. It
can be shown that the dimensionless rate form of Equations 3-5 take the form of

Equation 8, which can be written explicitly as follows: .

p 91 4912 %3 -0 (A1)
m, b -ldy 92 9 o,
m’ 43 493 93 6,
= da
9u -f rf (A2)
- _ dg
d - f 1Y = (A3)
: A
= . da
9, - - [Ex 2 (A4)
A
= - da
qn - f ¢y IT (AS)
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2
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d, - 3 (A28)
2

where A is the area of cross section, and I, and L are the moments of inertia about
the x and y axes, respectively. The integrals in Equations A2-A10 are evaluated by

numerical summation over the discrete elemental areas shown in Figure 1.
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APPENDIX B

The Finite Element Machine

The Finite Element Machine (47) is a special purpose computer having as a main
component an array of interconnected microcomputers. In addition to the array
processors, there is an input/output (I/O) processor that provides operator console
control, mass storage, problem input, and printed output for the array. The I/O
processor is a conventional minicomputer that has a high bandwidth connection
directly to one of the processors of the array. Communications within the
microprocessor array take place by way of word-oriented point-to-point
communications channels and, to a lesser extent, by way of cooperative computation
networks involving all microcomputers in the array. There is no common memory
in the system.

The processors of the array and the I/O processor are based on the Texas
Instruments (TT) 990 minicomputer/9900 microcomputer. The 1/O processor is a
TI 990/10 minicomputer and the array processors also called the modal processors,
are based on the TI TMS 9900 single chip microprocessor. This also contains TMS
9901 programmable systems interface and TMS 9902 asynchronous communications

controller configured as on the 990/100M board that is built around the chip. In
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addition, microprocessors have 16 bit/word of dynamic random access memory
(RAM) and a Am9512 floating point arithmetic unit. The CPU board also contains
16K bytes of erasable, programmable read-only memory, 32K bytes of dynamic
read/write memory. The nodal processors are interconnected by four different
hardware structures:
1. A network of local communication links
2. A time multiplexed global bus
3. Cooperative signaling flag networks
4. A cooperative sum/maximum computation network

An overall block diagram of the finite element machine is shown in Figure B.
The FEM system software is designed such that the controller serves as a host for
the array. Thus, the controller is in charge of the overall system. Activities on the
array are initiated and terminated by commands issued from the controller. These
commands may be either directed to individual processors or broadcast to all of
them through the global bus, as appropriate. Additionally, the controller supports
program development, file storage, and pre- and postprocessing of data. The
controller does not participate in execution of parallel application programs to
facilitate uniform array monitoring. The system software is augmented by additional
software for parallel computing. A set of about 40 programs known collectively as
FEM array control software (FACS) implements the controller’s portion of
initialization, data management, program control, debugging, and postprocessing
functions for the array. The FACS programs, invoked by system command

interpreter (SCI) commands, serve as the interface between the user and the array.
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Each array processor is installed with an operating system called Nodal Exec and a
PASCAL language subroutine library, PASLIB. The Nodal Exec is divided into two
major sections. One section provides services typical of most operating systems such
as memory management, process control, low-level I/O and communication routines,
timers, and interrupt handlers. The other section contains a set of command
routines that carry out functions requested by the controller. Application programs
are down-loaded onto the array processors for execution. These programs are
regular sequential programs written in PASCAL language and each program is
individual to a single processor. PASLIB allows the application programs to be
parallelized. It also provides subroutines for communication between processes, 1/O
to and from the controller, timing, processor identification, flat settings, and floating-
point operations. The parallelization is achieved by an appropriate design of

algorithms suitable to the architecture of the FEM.
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APPENDIX C

Inelastic Load and Moment Parameters

The inelastic load and moment parameters used in Equations 14 - 16 are defined

as follows:
P, - fM o, dA (C1)
P, - f” 0, dA (C2)
M, - L‘ o,ydA (C3)
M,, - L, o, xdA (C4)
M, -“Lp o,ydA (C5)
M, - Lp o,xdA | (C6)

The above integrals are evaluated numerically by summing over the decretized

cross sections of the type shown in Figure 1.
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The external force vector, {F}, in Equation 30 is defined as follows:

r

(F} = ¢

APPENDIX D

External and Plastic Load Vectors

(M

yre_yr-)
(M

xre -ﬂ‘t )

o * Pqu
o + P vy
(M=)
(M_,~pe + P(vy - ¥),
(Myn—m)2 + P(uQ - u),

(Mxn-xn)z M P(vQ - "i)z

1+ P (ug - u)

(M =yed; + P (ug - ),
(Mxn_xre)j + P(vQ - vl)}

(Myn_yre)N-Z * P(ug - udy,
(Moe=gednz * P (Vg - vy,
(M, = oy + P("Q - )y
(M e Iyt + P(VQ = Viya

(M

wre“re In * P gy

(M,=aedy + Pygy
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Also, the plastic load vector, {F}, in Equation 30 is given by:

[ (M, - 1) ]
(M, - B
(M, - u,)
(M, - )
(F), - EL’” i”;’ L (D2)
xp P’
(M, - vy
(Mg, - B hn
(M, - p )y
| (M, - By |
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APPENDIX E

Computer Program NONPRFRM
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FILE:

NONPRFRM FORTRAN A OLD DOMINION UNIVERSITY

1,0 (15),v0(15),TU, TV NON 15410
COMMON/MATLCL/E,SIGY,EYBAR NON15420
COMMON/RVALLEL/XRTS, XRTD,YRCB, YRCO,C1,C2,C8X,CBY,CTX.CTY NON15430
COMMON/DSCALEL/MSEC, NB, N MTB, NTD,NK, NT L L NEL NON 154D
COMAON/XSKLEL/SKX (15.3,3) NON 15450
COMNMON/FALCL/FAR (15,3) NON 15460
COMMON/DELLCL/DELX{15,3) KON I54J0
COMMON/FLGLCL/IUNLD (15,400) . 1UNLDX (15,400) NON I5A80
COMMON/FLAGS/CODE , LOAD, UNLD , NEW, NENTRY ,LATF 1) NON 15490
COMMON/TOL/TOLY,TOL2,TOL3, TOLA NON 15500
COMMON/DETLCL/DET NOW 15510
COMMON/SUMS/SUR, ASUM, BSUM, CSUN, DSUN, ESUR NON 15520
COMMON/INEL/PP,PR,BXP BXRE,BYP,BYRE NON 15530
COMMON/FRES/FR,FXRE, FYRE NOR 15540
4 NON 15550
4 NON 15560
LCNT 1=} NON 15570
30 CONTINUE NON 15580
DO 4O I=1,NL NON 15530
Y=DFLOAT (2#1-1) NOW 15600
Y=1.0-YAEBT/2.0 NON15610
1F (10K.EQ. ). AND.CODE.EQ."I1SEC’) Y=YAEBT/2.0 NON15620
1F (LCNT1.EQ.2) Ya=-Y NON15630
1F (1DX.£Q.1) T=y KON15640
TY=YADEL2 KON 15650
1F (10X.£Q.1) Ty=-TY NON 15660
LCNT2=] NON 15670
20 CONTINUE NON 15680
DO 50 J=1,MB NON15690
XaDELOAT (283-1) NON 15700
R=XAEBW/2.0 NON15710
I1F (LCNT2.EQ.2) X=-X NON1§720
1 (10K.EQ.O) CALL RESX(SIGR,ER,X) WON15730
1F (IOX.EQ. 1) CALL RESY(SIGR,ER,X) NON15740
TX=RADELY HOM15750
16 (1DX.£Q.0) TX=-TX NON15760
TSN (W, K) =DEL I+ TX+TY+ER NON15270
T5=51G (M, K) +TSN (M, K) -TSO (M, K) NON15780
4 )VF (UNLD.WE. 'ELAST') TSeTSN(M,K) NOW15750
1F (UNLD.NE."ELAS®) TS=TSN(A.K) NON15800
1F (10X.€Q.0) GOTO 80 NONI5810
Yex NON 15820
x=T NON15830
80  CONTINUE NON 15840
1F (DABS175) .LT.€YBAR) GOTOD 60 NON15B50
IUNLD (M, K) =1 NOK 15860
§CTR=1.0 NON 15870
VF(YS.LT.0.0) FCTR=-1.0 HON 15880
SI1G (N, K)=FCTR NON 15890
PP=PPHEABAFCTR NON 15300
BXP=BXP+YREABSFCTR NOHI5910
BYP«BYP-XAEABAFCTR NON15920
GOTO 51 NON 15930
60 CONTINUE NON 15940
KH=KN+)

NON15950

FILE: NONPRFAM FORTRAN A OLD DOMINION UNIVERSITY

SUM=SURLEAB
SIG (M. K)=TS
1F (UNLD.EQ."ELAS")
) CALL UNLOAD{S1G(M.K) ,SIGR,SR, TSN (M,K) ,TSO{N.X) ,1UNLD (M.K))
FR=FR+SICRAEAB
EXRE=FXRE+SIGRRYREAB
FYRE=FYRE-SIGRAXAEAD
PR=PR+ (TS-SIGR) 2EAB
ASUNSASURCYAEAD
BSUM=BSUMI X2EAB
CSUM=CSUREXAYREAB
DSUR=DSUMIXAXAEAR
ESUN=ESUMIYAYREAB
BXRE=BXRE+ (TS-SIGR)"AYREAB
BYRE=BYRE - (TS-SIGR) AX0EAB
51 CONT INUE
Kak¢)
50 CONT INUE
LCNT2=LCNT2+1}
1F {LCNT2.LE.2) GOTO 20
L1 CONTINUE
LCNT I=LENT I
1F {LCNTI.LE.2) GOTO 30
RE FURN
END

4
€ UNLOAD SUBROUTINE TO ACCOUNT FOR ELASTIC UNLOADING SIGR
C

SUBROUTINE UNLOAD{SIG,S1GR,SR, TSN, TS50, LUNLD)
INPLICIT REALAB (A-H,0-2)
1F (OABS (TSN) .LT.DABS{TS0)) GOTO 10
1% (1UNLD.EQ.-1) GOTO 10
{UNLO=1
RETURN
10 CONTINUE
SR=S1G-TSN
1F (OABS (SR) .GE.1.0) SR=SR/DABS (SR)
SIGR=SIGR+SR
IUNLD=-]
RETURN
END

nfOoonn

SUBROUTINE RESX (SIGR,EPSR,X}
IMPLICIT REAL*D (A-H,0-2)
CHARACTER®A CODE,LOAD,UNLD

~

COMMON/PROPLCL/AR, RIX,RIY,ARND, RIXND,RIYND,RXND,RYND, ZXND, 2YND
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COMMON/CROKLCL/AL,SEGL,UINT,VINT ,RC,RT,SIGRC, SIGRT

1 w0 (15) ,vo15) . Tu, TV

COMMON/MATLCL/E,SIGY, EYBAR
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FILE: NONPAFRM FORTRAN A  OLD DOMINION UMIVERSITY

[

3o

20

c

on

TAT=ND

€aW=2.0/TaT

TRT=NTS

EBT=2.04TF/ (DATXT)
TXF=NTD

EOW=2.00TW/ (B2TXT)

TXT=KD
EDT=2.0%(D-2.04TF) / (DATXY)

WRITE (1,4) ‘EBWe* EBW,' EBT=' EBT,' EOW=' EOW,' EDT=' EDT

1F (RT.£Q.0.0.OR.CODE.EQ. ' ISEC') GOTO 10
XRTSRCART# (8+0D-2.04T) / (2.02 (RTHRC) ##2)

XRT0=2.08XRTH/D
XRTE=2.00XRTB/0
YRCO=XRTBARC/RT
YRCD=XATOARC/RT
GoTo 20

CONTINUE
\F(RT.£Q.0.0) GOTO 30
XRT8=RC/ (RC4RT)
YRCB=XRYBART/RC
YRCD= (D-2.04TF) /0
XRTD=0.0

GoTo 20

CONTINUE

XRT8=0.0

XRT0=0.0

YRCE=0.0

YRLD=0.0

CONTINUE
PFCYR (MEN) =S I1GY#AR

VF (MEMID (MER) .€£Q.0) BRFCTR (MEM)=2,0%RIVASIGY/B
VF (MEMID (NEM) .€Q.1) BAFCTR (REM) =2.0%RIXASIGY/D

WRITE (), %) *XR YR S' XRT8, XRTD,YRCS,YRCO

CALL ASSIGN(nEN)
RETURN
END

SUBROUTINE ASSIGN (m)
IMPLICIT REAL®B (a-H,0-2)
CHARACTERAL CODE,LOAD,UNLD

LR XY

1
2

COMMON/PROPGBL /XAR (10) , XRIX (10} , XR1Y {10)
» XARND {10} ,ARIXND (1D) ,AR1 YWD {10) , XREND (10} ,XRYND {10)
X2XND (10) ,XZYND (10)
COMAON/XDINGBL/XB (10) , X0 {10} ,XTF (10) ,XTW(10) ,XEBW(10) ,XEBT (10)
+XEDW(10) ,XEOT (10)
COMMON/CROKGBL/SAL (10) ,SSEGL (10) , SUINT (10) ,SVINT (10} ,XRC (10)
» XRT (10) ,SU0 {10, 15) ,SVO (10, 15) ,FRTU(10) ,FRTV(10)
COMAON/XVALGBL/XXRTS (10) . XXRTD (10} ,XYRCS (10) , XYACD (10)
«XC1(10) ,XC2{10) ,XCOX(10) , XCBY (10) . XETX (10) ,XCTY (10)
COMMON/DSCRGBL/NSECS (10) ,NBX (10) ,NOX (10) ,NTBX (10) ,NTDX {10)
+NKX{10) ,NTX {10} ,NUNEL (10) ,L5(10)

NDN23110
HON23120
NON23130
NOW23140
NON23150
NON23160
NON231]0
NON23180
NON23190
NON23200
NON23210
NON23220
NON23230
NON23240
NOW23250
NOWZ3260
NON23270
HON23280
NON23290
NON23300
NON23310
NON23320
HON23330
NON23340
NON23350
NON23360
NON23370
NON233B0
HOM213330
NDN23400
NON23&10
NONZ3k20
NON23430
NON23MOD
NOW23L50
NON23460
NONZ3470
NON23480
NON23450
NOH23500
NOW23510
NON23520
NON23530
NON23540
NON23550
NON23560
NON23570
NON23580
NON23590
NON23600
HON213610
NON23620
NON23630
NON236k0
NON23650

FILE: NONPRFRA FORTRAN A  OLD DOMINION UNIVERSITY

nOO

AN E

COMNON/PROPLCL/AR,RIX,RIY,ARND,RIXND,RIYND,RAND,RYND, ZXND, ZYND
COMMON/XDINLCL/D,0,TF, VW, EBW, EBY, EDW, EDT
COMMON/CROKLCL /AL, SEC! ,UINT ,VINT,RC,RT,SIGRC,5IGRT

1 .uo(15) ,vo(15) . TU, IV
COMNON/XVALLCL/XRTD, XRTD, YRCB, YRCD,C1,C2,CBX,COY,CTX,CTY
COMMOM/OSCRLCL/NSEC,WB, N0 NTB NTD HX NT, LL NEL

NON23660
NON23670
NON23680
NON23690
NON23700
RON23710
NON2}J20

KAR (M) =AR
XRIX (W) =RI X
XRIY (M) =RIY
RARND (W) »ARND
XRIXND (B) »R1XND
XRIYND (M) =R1YND
XRXND (M) *RAND
XRYND (M) =RYND
XZAND (M) =ZXND
RZYND (M) =2THD
XEBW (M) =EBW
XEBY (M) =EBT
XEOW (M) =EDW
XEDT (M) =EOT
SSEGL (M) =SEGL
FRATU (M) =TU
FRTV (M) =TV
KXATS (1) =XATE
XXRTD (W) «XRTD
XYRCB (W) =YRCD
XYRCO (M) =YRCO
At {m=ci

xC2(M =2

XCBX (W) =CBX .
KCOY (M) =CBY

NCTX (M) =CTX

XCTY (M) =CTY

RETURN

END

SUBROUT INE SIGAA (NEN)
IMPLICIT REALAB (A-84.0-2)
CHARACYER&L CODE,LOAD,UNLD

COMMON/STRGBY /TSOM({10,15,400) ,TS0C {10, §5,400) ,SIGA{10,15,400)
1 ,516€(10,15,400)
COMMON/01SGBL/DSM (10, 30) ,0SC (10,30) ,011(10,30) .01C (10, 30)
COMMON/ERDP/OELOLO (17} ,POLD (1]} ,0ELOROC(17),POLOC(}])
COMMON/SPRGBL/BKX (10, 3) ,BKY {10, 3) ,TKX {10, 3) . TKY (10, 3)

1 ,TETBX(10,2) ,TETBY (10,2) ,TETTX(10,2) ,TEYTY (10,2}
COMMON/PROPGBL /XAR (10) ,XR1X (10) ,XRIY {10}

I ,KARND (10) ,XKRIXND (10) ,XRIYND (10) , XRXND {10} , XRYND (10}

ON23730
NON23740
NON23750
NON23760
NON23770
NDN23780
NON23790
NON23B800
NoN23810
NON23820
NON23830
NON23840
NON23B50
NON23B60
NON23870
NDN23B80
NON23890
NON23900
NON23910
NON23920
NON23930
NON23940
NON23950
NON23960
NON23)970
NON23980
NON23990
NON24000
NON24010
NOW24020
NON240YD
NON2404O
WON24050
NON2406O
NON24070
NON240BO
NON24090
HON24 100
NON24110
NON24120
NON24 130
NON24 140
NON2L 150
NON2M 60
NON2h170
NON24 180
NON24190
NON24200
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