Spring 1990

Nonproportionally Loaded Steel Beam-Columns and Flexibly-Connected Nonsway Frames

Siva Prasad Darbhamulla
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/cee_etds
Part of the Applied Mechanics Commons, and the Civil Engineering Commons

Recommended Citation

Darbhamulla, Siva P.. "Nonproportionally Loaded Steel Beam-Columns and Flexibly-Connected Nonsway Frames" (1990). Doctor of Philosophy (PhD), dissertation, Civil/Environmental Engineering, Old Dominion University, DOI: 10.25777/w8yp-0b85
https://digitalcommons.odu.edu/cee_etds/92

NONPROPORTIONALLY LOADED STEEL BEAM-COLUMNS and FLEXIBLY-CONNECTED NONSWAY FRAMES

By
Siva Prasad Darbhamulla
B. E., May 1977, Andhra University, Visakhapatnam, India M. Tech., August 1979, Indian Institute of Technology, Kanpur, India

A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY
CIVIL ENGINEERING
OLD DOMINION UNIVERSITY
May 1990

Approved by

Dr. Zia Razzaq, Chairman

Dr. Duc T. Nguyen

Dr. R. Prabhakaran

NONPROPORTIONALLY LOADED STEEL BEAM-COLUMNS AND FLEXIBLY-CONNECTED NONSWAY FRAMES

Siva Prasad Darbhamulla
Old Dominion University
Advisor: Dr. Zia Razzaq

Abstract

A theoretical study of the inelastic stability of nonproportionally loaded steel beam-columns and flexibly-connected frames is conducted. Specifically, solution techniques are formulated to predict the nonlinear behavior of cross sections, spatial beam-columns, and nonsway plane frames under the combined influence of imperfections, flexible connections, and nonproportional loads. A set of new inelastic slope-deflection equations for imperfect members are derived and their use illustrated through in-depth studies of flexibly-connected portal and two-bay twostory frames. These equations are derived from a system of nonlinear ordinary differential equations. The member studies are carried out using a second-order finite-difference solution to a set of nonlinear equilibrium equations, and coupled to a tangent stiffness procedure for cross sections. The majority of the theoretical studies are carried out on a conventional sequential computer. Efficient concurrent computational algorithms are also presented for biaxial bending and column stability problems. Results are obtained using a multiprocessor computer known as the Finite

Element Machine. A critical appraisal of the conventional tangent modulus approach is presented in light of the analysis which includes elastic unloading of the material. It is found that the tangent modulus approach results in a fictitious ductile behavior. Furthermore, it is also realized that there is a dramatic difference in the nonlinear behavior between the proportionally and nonproportionally loaded structures. It is also observed that the proportionally loaded structures lead to rather unconservative peak loads. Additionally, members as integral parts of a frame may exhibit significantly different load-deformation behavior as compared to that of isolated members. The study on members and frames shows that nonproportional loads have a significant effect on their behavior and strength.

This research is dedicated to my parents Jayalaxmi and Rama Linga Sastry

Acknowledgement

The author wishes to thank Dr. Zia Razzaq for the technical and moral support throughout this research. The appreciation is also extended to Dr. J. Mark Dorrepaal, Dr. Duc T. Nguyen, Dr. R. Prabhakaran, and Dr. Leon R. L. Wang for their participation and advise at various stages of this endeavor. Special thanks are due to my wife, Jan, for providing moral support and transforming the manuscript into this report. Appreciation is also extended to Ms. Sue C. Smith and Ms. Mary G. Carmone for their help with the preparation of this report.

The support from the faculty and my colleague graduate students of Civil Engineering Department is also recognized. The help form the Computer center of Old Dominion University is acknowledged.

TABLE OF CONTENTS

List of Tables vii
List of Figures ix
Nomenclature xiii
1.0 INTRODUCTION
1.1 Introduction 1
1.2 Literature Review 2
1.3 Definition of Problems 4
1.4 Objectives and Scope 5
1.5 Assumptions and Conditions 6
2.0 CROSS-SECTIONAL ANALYSIS
2.1 Equilibrium Equations 7
2.2 Concurrent Processing for Cross-Sectional Analysis 10
2.3 Nonproportionally Loaded Sections 12
3.0 BIAXIALLY IMPERFECT COLUMNS
3.1 Theoretical Formulation 14
3.2 Concurrent Computing Solution 18
3.3 Numerical Study 19
4.0 IMPERFECT BEAM-COLUMNS
4.1 Theoretical Formulation 22
4.1.1 Equilibrium Equations 22
4.1.2 End Restraint Conditions 24
4.2 Load Paths 25
4.2.1 Uniaxially Loaded Beam-Columns 25
4.2.2 Biaxially Loaded Beam-Columns 26
4.3 Solution Procedure 27
4.4 Numerical Study 29
4.4.1 Modeling of End Restraints 29
4.4.2 Behavior of Uniaxially Loaded I-Section Beam-Columns 32
4.4.3 Behavior of Biaxially Loaded I-Section Beam-Columns 34
4.4.4 Behavior of Biaxially Loaded Rectangular Tubular Beam-Columns 35
4.4.5 Critique on Tangent Modulus Approach 37
5.0 FLEXIBLY-CONNECTED PLANE NONSWAY FRAMES
5.1 Theoretical Formulation 39
5.1.1 Inelastic Slope-Deflection Equations for Imperfect Beam-Column 39
5.1.2 Equilibrium and Compatibility for Flexible Connections 43
5.1.3 Analysis of Flexibly-Connected Imperfect Frames 45
5.1.3.1 Portal Frame 45
5.1.3.2 Two-Bay Two-Story Frame 47
5.2 Load Paths and Combinations 48
5.2.1 Load Paths 48
5.2.2 Load Combinations 49
5.3 Solution Procedure 49
5.4 Numerical Study 51
5.4.1 Equivalent Structural Model 52
5.4.2 Portal Frame Behavior 53
5.4.3 Two-Bay Two-Story Frame Behavior 57
6.0 CONCLUSIONS AND FUTURE RESEARCH
6.1 Conclusions 61
6.1.1 Concurrent Computing 62
6.1.2 Beam-Columns 63
6.1.3 Frame Studies 65
6.2 Future Research 68
References 69
Tables 74
Figures 92
Appendix A Tangent Stiffness Method 153
Appendix B Finite Element Machine 157
Appendix C Inelastic Load and Moment Parameters 161
Appendix D External and Plastic Load Vectors 162
Appendix E Computer Program NONPRFRM 164

LIST OF TABLES

TABLE
PAGE

1. Concurrent processing efficiencies for hollow square section 74 with $\gamma=1.000$
2. Computational time on concurrent processors 75
3. Concurrent processing efficiencies for hollow square section 76 with $\gamma=\gamma_{1 \mathrm{~s}}$ to $\gamma_{8 \mathrm{~s}}$
4. Concurrent processing efficiencies for hollow rectangular 76 section with $\gamma=\gamma_{1 \mathbf{r}}$ to $\gamma_{8 \mathrm{r}}$
5. Peak loads of hollow square and rectangular columns 77
6. Execution times on concurrent processors for columns CN 1 78 and CN5
7. Computational speedup factors and efficiencies for hollow 79 square columns
8. Computational speedup factors and efficiencies for hollow 80 rectangular columns
9. Summary of beam-column strength for various connection 81 models
10. Maximum beam-column loads for various load paths and 82 elastic restraints
11. Maximum beam-column loads for various load paths and 82 elastic-plastic restraints ($\mathrm{k}_{\mathrm{a} 2} ; \mathrm{m}_{\text {plastic }}=100 \mathrm{in}-\mathrm{kips}$)
12. Maximum external loads for uniaxially loaded imperfect 83 beam-columns with partial rotational equal end restraints and various load paths (W8×31)
13. Comparison of predicted and previously published maximum 84 loads for pinned-end beam-columns with biaxially eccentric load
14. Maximum external loads for biaxially loaded imperfect 84 beam-columns with partial rotational equal end restraints and various load paths ($\mathrm{L}=12 \mathrm{ft}$.; W8X31)
15. Maximum external nonproportional biaxial loads for 85 partially restrained imperfect beam-column BC 2 with hollow square section ($k=k_{\mathrm{a}_{2}}$)
16. Maximum external nonproportional biaxial loads for 85 partially restrained imperfect beam-column BC3 with hollow square section ($k=k_{a 3}$)
17. Maximum external nonproportional biaxial loads for 86 partially restrained imperfect beam-column BC4 with hollow rectangular section ($k=k_{a_{2}}$)
18. Maximum external nonproportional biaxial loads for 87
partially restrained imperfect beam-column BC5 with hollow rectangular section $\left(k=k_{a 3}\right)$
19. Equivalent structural model analysis results 88
20. Portal frame analysis results for FR1 through FR4 with 89 FL1 through FLA
21. Portal frame analysis results for FR1, FR2, FR5, and FR6 90
with FL1 through FL4
22. Two-bay two-story frame analysis results for FR7 and FR8 91 with FL5 through FL6

LIST OF FIGURES

FIGURE PAGE

1. Discretized hollow rectangular and I-shaped sections subjected 92 to axial load and biaxial bending moments
2. Typical residual stress patterns of cross sections 93
3. Material stress-strain relationships 94
4. Cross-sectional moment-curvature relationship 95
5. Yield surface 96
6. Speedup curves for moment-curvature relations for hollow square 97 section
7. Moment-curvature relationships about x axis for hollow square 98 section
8. Moment-curvature relationships about y axis for hollow square 99 section
9. Yield surface contours for hollow square section 100
10. Moment-curvature relationships about x axis for hollow rectangular 101 section
11. Moment-curvature relationships about y axis for hollow rectangular 102 section
12. Yield surface contours for hollow rectangular section 103
13. Speedup curves for generation of yield surface for hollow square 104 section
14. Speedup curves for generation of yield surface for hollow 105 rectangular section
15. Various load paths for nonproportional loading 106
16. $\overline{\mathrm{m}}_{\mathrm{x}}-\bar{\phi}_{\mathrm{x}}$ relationship for a nonproportionally loaded I-section 107
17. $\overline{\mathrm{m}}_{\mathrm{y}}-\bar{\phi}_{\mathbf{y}}$ relationship for a nonproportionally loaded I-section 107
18. $\mathrm{p}-\bar{\epsilon}_{0}$ relationship for a nonproportionally loaded I-section 108
19. Imperfect column with biaxial partial restraints 109
20. Flowchart of the concurrent processing 110
21. Load versus midspan deflection for columns CN2 and CN6 111
22. Speedup factor versus number of processors relationship 112
23. Imperfect beam-column with biaxial restraints 113
24. Connection moment-rotation relationships 114
25. Linear and bilinear approximations of connection $\mathrm{m}-\theta$ curve for 115 column analysis
26. Elastic-plastic and trilinear approximations of connection $m-\theta$ 116 curve for column analysis
27. Linear and bilinear approximations of connection $\mathrm{m}-\theta$ curve for 117 beam-column analysis
28. Elastic-plastic and trilinear approximations of connection $\mathrm{m}-\theta$ 118 curve for beam-column analysis
29. Interaction curves for uniaxially loaded partially restrained 119 beam-column 4
30. Interaction curves for biaxially loaded partially restrained 120 beam-column 8
31. Interaction curves for biaxially loaded partially restrained 121 imperfect beam-column BC3 for load paths NP5 and NP6
32. Stiffness degradation curves for beam-column BC 3 with load paths 122 NP5 and NP6 and axial load $p=0.75$
33. Interaction curves for biaxially loaded partially restrained 123 imperfect beam-column BC5 for load paths NP7 and NP8
34. Stiffness degradation curves for beam-column BC5 with load paths 124
NP7 and NP8 and axial load $p=0.75$
35. Load versus midspan displacement relationships for BC 0 125
36. Stiffness degradation curves for BC0 126
37. Beam-column 127
38. Typical frame joint 128
39. Imperfect portal frame 129
40. Equivalent structural model for portal frame 130
41. Flexibly-connected imperfect two-bay two-story frame 131
42. Load-moment relationships 132
43. Load-deflection relationships 133
44. Stiffness degradation curves 134
45. Axial load versus joint rotation relationship for portal frame 135 FR2 and frame loading FL3 with NP9
46. Stiffness degradation curve for portal frame FR2 and frame 136 loading FL3 with NP9
47. Axial load versus joint rotation relationship for portal frame 137
FR2 and frame loading FL3 with NP10 and NP11
48. Stiffness degradation curve for portal frame FR2 and frame loading 138 FL3 with NP10 and NP11
49. Axial load versus midspan displacement relationship for a column 139 of the frame FR2 and loading FL3 with NP9
50. Stiffness degradation curve for a columin of the frame FR2 and 140 loading FL3 with NP9
51. Axial load versus midspan displacement relationship for a column 141 of the frame FR2 and loading FL3 with NP10 and NP11
52. Stiffness degradation curve for a column of the frame FR2 and 142 loading FL3 with NP10 and NP11
53. $p-\bar{m}$ interaction for frame FR2 143
54. Axial load versus joint rotation relationship for two-bay 144 two-story frame FR8 and frame loading FL8 with NP9
55. Stiffness degradation curve for two-bay two-story frame FR8 145 and frame loading FL8 with NP9
56. Axial load versus joint rotation relationship for two-bay 146 two-story frame FR8 and frame loading FL8 with NP10 and NP11
57. Stiffness degradation curve for two-bay two-story frame FR8 and 147 frame loading FL8 with NP10 and NP11
58. Axial load versus midspan displacement relationship for a column 148 of the frame FR8 and loading FL8 with NP9
59. Stiffness degradation curve for a column of the frame FR8 and 149 loading FL8 with NP9
60. Axial load versus midspan displacement relationship for a column of 150 frame FR8 and loading FL8 with NP10 and NP11
61. Stiffness degradation curve for a column of the frame FR8 and 151 loading FL8 with NP10 and NP11
62. $p-\bar{m}$ interaction for frame FR8 152

NOMENCLATURE

A Area
BC Beam-column
C Stability coefficient
$\mathrm{C} 1, \mathrm{C} 2, . . . \quad$ Equivalent model designation
$\mathrm{CN} \quad$ Centrally loaded column designation
D Dimensionless determinant, Depth of the cross section
E Young's modulus
E1, E2, E3 Equivalent model frames
FL Load combination for frame
FR Frame Designation
I Moment of inertia
L Length
LC Load condition for columns
M Applied moment
N
Total nodes
NP Nonproportional load designation
P
Applied axial load
Q Member stiffness at a node .

NOMENCLATURE - Cont'd

k

Stability coefficient
Total midspan displacement in minor axis plane
Total midspan displacement in major axis plane
Elemental area
Processor number
Finite-difference node
Connection spring stiffness
Connection moment
Dimensionless moment
Dimensionless axial load
Cross-sectional inelastic properties
Speedup
Computational time
Displacement in minor axis plane
Midspan amplitude of initial crookedness
Displacement in major axis plane
Midspan amplitude of initial crookedness
Moment ratio
Incremental axial load
Normal strain
Axial strain

	NOMENCLATURE - Cont'd
ϵ_{r}	Residential strain
$\overline{\boldsymbol{\epsilon}}$	Dimensionless strain
ϵ_{y}	Yield strain
η	Efficiency
ϕ	Curvature
$\bar{\phi}$	Dimensionless Curvature
σ	Normal stress
$\sigma_{\pi r}, \sigma_{\pi}$	Residual compressive and tensile stresses, respectively
σ_{y}	Yield stress
θ	Rotation
ζ	Proportionality constant
\{F\}	Load vector
[K]	Member global stiffness matrix
[K_{7}]	Cross-sectional tangent stiffness matrix
\{M\}	Moment vector
[S]	Inelastic slope-deflection properties matrix
\{f\}	Cross-sectional dimensionless load vector
$\{\alpha\}$	Tolerance vector
[β]	Coefficient matrix
\{ Δ \}	Member displacement vector
\{ δ \}	Cross-sectional dimensionless deformation vector

NOMENCLATURE - Cont'd

$\{\theta\}$
Rotational deformations vector

1. INTRODUCTION

1.1 Introduction

Practical structural steel members and frames are imperfect, seldom possess ideal pinned or rigid joints, and may not be subjected to proportional loads. Previous studies have been devoted to an understanding of the effects of initial imperfections and flexible connections on the response of individual members subjected to proportional loads. In comparison, little research has been carried out on the influence of nonproportional loads on response of steel members and frames. The combined influence of imperfections, flexible connections, and nonproportional loading on the behavior and strength of such structures has not been studied.

Mathematically, the afore-mentioned inelastic behavior problems can be reduced to a system of materially nonlinear ordinary differential equations. Closedform solutions to these equations are not possible since the coefficients of the governing differential equations vary with the level of external loads and also with the dependent variables, namely, the deformations. Over the past two decades, numerical solutions for specific cases of inelastic problems have been devised for implementation on sequential computers. Rigorous analysis is quite complex and time-consuming even for relatively simple structures. With the advent of parallel computers, efficient solutions to these problems appear to be possible. However, no such studies have been conducted by any investigators for inelastic analysis.

Parallel computing derives its name from the fact that in a parallel computer, there are a number of mini-computers or processors connected in parallel through an inter-processor communication network. The name concurrent processing is also used in the literature instead of parallel computing. Elasto-plastic problems appear to be suitable for solution on parallel computers. For example, the process of enforcing equilibrium conditions at several locations within the domain of a structure may be carried out concurrently.

The primary aim of this dissertation is to present an analysis of nonproportionally loaded practical steel members and frames. Sequential algorithms are devised for a majority of the problems, however, representative parallel algorithms are also included to explore the feasibility of using concurrent solution procedures.

1.2 Literature Review

Long after the famous work of Euler (2) on column stability, Engesser (1) realized, in 1895 , that metal columns of intermediate length may fail before the elastic buckling load is attained, that is by inelastic instability. Consequently, Engesser suggested the use of a reduced modulus approach for evaluating the inelastic strength of such members. The experimental results, however, were not in good agreement with this theory. In 1947, this controversy was resolved by Shanley (3) in a set of carefully controlled column experiments. Shanley suggested that the tangent modulus should be used instead of the reduced modulus and that it would result in a better prediction of the test results.

In 1961, Galambos and Ketter (11), Ketter (12), and Ketter and Prasad (13) analyzed the inelastic behavior of beam-columns with simple ends based on the tangent modulus theory. A few years later, Lu and Kamalvand (22) investigated beam-columns with fixed-ended supports. A number of other investigations were carried out (4,5,7,11-13,16,19,21,22,23,27,30,34,38-40,50,51,53-56) to understand the behavior of these members. Recently, Razzaq and Calash $(51,54)$ presented a rigorous investigation of column behavior with partial restraints and biaxial initial crookedness. Other studies have explained partly the effects of residual stresses (4,6,12,13,38-40,51,54,56), end restraints ($38,39,42,46,50,51,54,56$), and initial crookedness ($28,32,38,51,54,56$) on member response. Some theoretical and experimental studies are carried out by Razzaq and McVinnie $(45,55)$ on nonproportionally loaded pin-ended beam-columns with biaxial bending.

In 1957, Driscoll (8) conducted studies on the plastic behavior of frames. Galambos (10) considered the effects of the base fixity on frame behavior. Saap (14), Citipitioglu (15), McVinnie (18), Korn (20) and many other researchers ($17,26,28,29,32,37,41,42,44,46,56$) studied the behavior of various types of frames. Most of the frames studied were rigid-jointed. In a recent study, Aackroyd (37) adopted proportional loading and secant modulus theory to investigate Type 2 connection frames. Also, the study did not include the influence of initial crookedness of members in the frames.

The conventional sequential computers have been used for most of the past investigations. Parallel computers on the other hand, are fairly recent $(33,35,36)$. In the early 1980s, NASA Langley Research Center developed à parallel computer
(47), called The Finite Element Machine (FEM), designed specifically for numerical and finite element analysis of structures. A description of the FEM is given in Appendix B. The application of parallel computers has centered mainly around the development of algorithms for solving simultaneous linear equations such as those resulting from elastic finite element formulations $(36,48)$.

A review of the existing literature shows that a study of structures with initial imperfections and flexible connections is needed when subjected to nonproportional loads. In addition, the validity of the tangent modulus approach needs to be evaluated critically. Also, no parallel solutions to inelastic problems have been published in the past.

The primary emphasis of this dissertation is on a rigorous study of the influence of nonproportional loads on the strength and behavior of steel beamcolumns and plane frames.

1.3 Definition of Problems

The main thrust of this dissertation is on a rigorous study of the influence of nonproportional loads on the inelastic response of steel beam-columns and plane frames. The influence of imperfections and flexible connections on the strength and behavior of these structures is also investigated. The analyses are based on a equilibrium approach which leads to a system of materially nonlinear ordinary differential equations with appropriate boundary conditions.

The analysis is performed using a finite-difference technique combined with an iterative solution procedure incorporating material unloading. A complete system of inelastic slope-deflection equations is also derived and used for the
nonproportionally loaded inelastic frames. The suitability of parallel computing is investigated through the inelastic analysis of cross sections and biaxially imperfect columns. The main computational work, however, is conducted on a sequential computer.

1.4 Objectives and Scope

The principal objectives of this study are to:

1. Study the effectiveness of concurrent computing for inelastic analysis of proportionally loaded cross sections.
2. Study the effect of material unloading on the response of cross sections when loaded nonproportionally.
3. Conduct concurrent analysis of biaxially imperfect and centrally loaded columns using the Finite Element Machine.
4. Identify suitable moment-rotation connection models for use in the analysis of beam-columns.
5. Investigate the behavior of beam-columns with uniaxial and biaxial nonproportional loads
6. Study flexibly-connected, imperfect, planar, nonsway frames subjected to nonproportional loads.

For member-level studies, both I-shaped and hollow rectangular sections are used. The development of inelastic slope-deflection analysis is demonstrated through detailed studies of a portal frame, and a two-bay two-story plane frame each subjected to a variety of load paths. The method presented, however, is fairly
general and can be adopted for the analysis of other types of nonsway plane frames.

1.5 Assumptions and Conditions

The following basic assumptions and conditions are adopted in the analysis:

1. Displacements are small.
2. Member shortening is neglected.
3. Shear deformations are neglected.
4. No local buckling takes place.
5. Only axial and bending equilibrium conditions are considered.
6. The material stress-strain relationship is elastic-perfectly-plastic, with material elastic unloading.

2. CROSS-SECTIONAL ANALYSIS

A study of the effectiveness of concurrent computing for the inelastic analysis of biaxially loaded cross sections is given herein. The results are obtained utilizing Finite Element Machine. Also, the effect of nonproportional loading on the inelastic response of a cross section is investigated using a sequential computer. The analysis is based on the tangent stiffness procedure described in Reference 34.

2.1 Equilibrium Equations

Figure 1 shows discretized hollow rectangular, and I-shaped sections. The rectangular hollow section has a width B , a depth D , and a wall thickness t . The Isection has a flange width B and thickness t_{f} an overall depth D, and a web thickness t_{w}. The loading consists of an axial load P applied perpendicular to the $x y$-plane and bending moments M_{x} and M_{y} about the x and y axes, respectively. The normal strain, ϵ, at a point (x, y) of a cross section is expressed as:

$$
\begin{equation*}
\epsilon=\epsilon_{0}-\phi_{\mathbf{y}}^{\mathrm{X}}+\phi_{\mathbf{x}} \mathrm{y}+\epsilon_{\mathbf{r}} \tag{1}
\end{equation*}
$$

in which ϵ_{0} is the average axial strain; $\phi_{\mathbf{x}}$ and $\phi_{\mathbf{y}}$ are the bending curvatures about the x and y axes, respectively; and ϵ_{r} is the residual strain. The residual stress patterns used in this study are shown in Figure 2(a) and 2(b). Figures 3(a) and 3(b) show the $\sigma-\epsilon$ relations with and without material unloading, respectively. In this
figure, σ_{y} is the normal yield stress, E is the Young's modulus, and ϵ_{y} is the yield strain. The stress-strain relationship is assumed to be identical in tension and compression. In the rate form:
$\dot{\sigma}=\mathrm{E}_{\mathfrak{t}} \dot{\epsilon}$
in which E_{t} equals E if the material is elastic or if it is experiencing elastic unloading; it equals zero if the material is plastic. The axial and the biaxial moment equilibrium equations of the cross section can be written as:

$$
\begin{align*}
& P=-\int_{\mathbf{A e}} \sigma_{\mathrm{e}} \mathrm{dA}-\int_{\mathrm{Ap}} \sigma_{\mathrm{y}} \mathrm{dA} \tag{3}\\
& \mathrm{M}_{\mathrm{x}}=\int_{\mathbf{A e}} \sigma_{\mathrm{e}} \mathrm{ydA}+\int_{\mathrm{Ap}} \sigma_{\mathrm{y}} \mathrm{ydA} \tag{4}\\
& \mathrm{M}_{\mathrm{y}}=-\int_{\mathbf{A e}} \sigma_{\mathrm{e}} \mathrm{xdA}-\int_{\mathbf{A p}} \sigma_{\mathrm{y}} \mathrm{xdA} \tag{5}
\end{align*}
$$

in which dA is an elemental area of the cross section, and σ is the normal stress on that area. The subscripts e and p refer to the elastic and plastic parts, respectively, of a partially plastified section; $\int_{\mathbf{A}}$ denotes cross-sectional integration. Thus, given an axial load P, and a pair of bending moments M_{x} and M_{y}, the strain distribution is found while following Equation 2. In other words, compatible $\epsilon_{0}, \phi_{\mathbf{x}}$, and $\phi_{\mathbf{y}}$ need be obtained which satisfy equilibrium for P, M_{x}, and M_{y}. The cross-sectional dimensionless load and deformation vectors, $\{\mathrm{f}\}$ and $\{\delta\}$, can be expressed as follows:

$$
\begin{align*}
& \{f\}=\left\{p \overline{\mathrm{~m}}_{\mathrm{x}} \overline{\mathrm{~m}}_{\mathrm{y}}\right\}^{\mathrm{T}} \tag{6}\\
& \{\delta\}=\left\{\bar{\epsilon}_{0} \bar{\phi}_{\mathbf{x}} \bar{\phi}_{\mathbf{y}}\right\}^{\mathbf{T}} \tag{7}
\end{align*}
$$

in which T indicates the transpose of a vector, and the other terms are defined in Appendix A. The solution procedure involves starting at a known state and incrementally converging to the next state for which only $\{\mathrm{f}\}$ is known. The deformation vector $\{\delta\}$ is determined by iteratively adjusting a cross-sectional tangent stiffness matrix, $\left[\mathrm{K}_{\mathrm{t}}\right]$, relating the increments in $\{\mathrm{f}\}$ and $\{\delta\}$ through a rate equation of the type (34):
$\dot{f}\}=\left[K_{\mathrm{t}}\right]\{\dot{\delta}\}$
whose components are defined in Appendix A. The process is repeated until the imbalance in the external loads and internal forces becomes zero or is within a tolerance. Once the ϵ distribution is found, the internal resisting forces are evaluated by numerical summation over the discretized cross section shown in Figure 1. This is readily done by replacing the integrals in Equations 3-5 by summations, and dA by $\Delta \mathrm{A}_{\mathrm{i}}$ as shown in Figure 1.

The cross-sectional stiffness characteristics can be represented in the form of a thrust-moment-curvature ($\mathrm{p}-\overline{\mathrm{m}}-\bar{\phi}$) relationship as shown in Figure 4. The initial or the linearly elastic portion of this curve can be determined noniteratively. The elasto-plastic and nearly plastic regions shown in Figure 4 are determined iteratively. The curve in this figure represents a moment-curvature ($\overline{\mathrm{m}}-\bar{\phi}$) relationship while the axial thrust p is held constant. The determinant of the tangent stiffness matrix, $\left|\left[K_{\mathrm{t}}\right]\right|$, approaches zero as the maximum moment-carrying capacity of the cross section is reached.

2.2 Concurrent Processing for Cross-Sectional Analysis

In this section, a concurrent processing study of biaxially loaded hollow rectangular sections is presented using a Finite Element Machine (FEM). Appendix B contains a brief description of this multiprocessor computer.

If a cross section is subjected to a pair of gradually increasing moment values \bar{m}_{x} and \bar{m}_{y} in the presence of an axial load p, the maximum moments obtained define a typical point, such as S, on the yield surface shown schematically in Figure 5. The quantities $\overline{\mathrm{m}}_{\mathrm{x}}^{*}$ and $\overline{\mathrm{m}}_{\mathrm{y}}^{*}$ in this figure represent the maximum moment capacities for a given axial load level, p. In this study, the ratio of the moments \bar{m}_{y} to \bar{m}_{x} is: $\gamma=\bar{m}_{\mathrm{y}} / \overline{\mathrm{m}}_{\mathrm{x}}$
is held constant. For a given value of γ, a contour RST as shown in Figure 5 is generated for various values of p such as for p_{1}, p_{2}, \ldots.. To generate the yield surface, several contours such as RST are developed for various γ values. The numerical studies are based on hollow square and hollow rectangular sections of sizes $7 \times 7 \times 0.375 \mathrm{in}$, and $8 \times 6 \times 0.375 \mathrm{in}$, respectively, are analyzed. Each wall of the section is divided into two layers with 20 elemental areas in each layer, thus providing a total of 160 elemental areas per section. The $\overline{\mathrm{m}}-\bar{\phi}$ curves and the contours of the yield surfaces for these sections are developed by using $1,2,4$, and 8 processors of the FEM, and the computational efficiencies are evaluated.

Table 1 summarizes the concurrent processing results for the hollow square section with $\gamma=1.000$ for developing 8 different moment-curvature curves each corresponding to a different axial load value. First, the 8 moment-curvature curves are developed concurrently on 8 processors. The analysis is then repeated with 4 ,

2 , and 1 processors, respectively. When 8 processors are employed, it is found that different processors took different lengths of computational time. The maximum computational time with $8,4,2$, and 1 processors is recorded in Table 1. The speedup factor, s_{i}, in this table is evaluated as follows:
$s_{i}=t_{1} / t_{i}$
in which t_{1} is the time taken by a single processor to generate all eight momentcurvature curves, and t_{i} is the maximum computational time obtained when i number of processors are employed. The efficiency of concurrent computation, η_{i}, is determined as follows:

$$
\begin{equation*}
\eta_{i}=100\left(s_{i} / i\right) \tag{11}
\end{equation*}
$$

Speedup factors of $7.69,3.96$, and 1.99 are obtained for 8,4 , and 2 processors, respectively, and the corresponding efficiencies are $96.2,98.9$, and 99.8 percent. The actual relationship between the number of processors employed and the resulting speedup factors is shown in Figure 6. The linear theoretical maximum relationship is also shown in this figure for a direct comparison. Table 2 presents a summary of the computational times on concurrent processors for the square and rectangular sections. For the square section, 8 different γ values, designated by $\gamma_{1 s}$ through $\gamma_{8 s}$ in this table, are used to generate the yield surface. The specific values used are:
$\gamma_{1 \mathrm{~s}}=1.000$
$\gamma_{2 \mathrm{~s}}=0.875$
$\gamma_{3 \mathrm{~s}}=0.750$
$\gamma_{4 \mathrm{~s}}=0.625$
$\gamma_{5 s}=0.500$
$\gamma_{6 s}=0.375$
$\gamma_{7 s}=0.250$
$\gamma_{8 s}=0.000$

First, 8 processors are employed to generate concurrently 8 different families of moment-curvature relations. Each family of the curves is obtained for a specific value of γ defined from Equation 12. Figures 7 and 8 together represent a typical family of curves for $\gamma=0.625$ and $p=0.0$ to 0.9 . The process is repeated with 4 , 2, and 1 processors using the γ values summarized in Table 2. The computational times obtained for various processors are given in this table. The maximum time taken for each analysis is identified in the parentheses. The \bar{m}_{x}^{*} versus \bar{m}_{y}^{*} interaction contours of the yield surface are shown in Figure 9. For the rectangular section, with eight γ values, $\gamma_{\mathbf{r} 1}$ through $\gamma_{\mathbf{r}}$ are:

$\gamma_{\mathbf{1} \mathbf{r}}=0.000$	$\gamma_{\mathbf{2} \mathbf{r}}=0.300$	$\gamma_{\mathbf{3} \mathbf{r}}=0.600$
$\gamma_{\mathbf{3} \mathbf{r}}=0.900$	$\gamma_{\mathbf{5} \mathbf{r}}=1.111$	$\gamma_{6 \mathbf{r}}=1.667$
$\gamma_{\mathbf{7} \mathbf{r}}=3.333$	$\gamma_{8 \mathbf{r}}=\infty$	

The results for this section are also summarized in Table 2, and shown graphically in Figures 10 through 12.

Table 3 summarizes the speedup factors and the efficiencies for the square section. The maximum computational times in Table 3 were identified previously in Table 2. Table 4 summarizes the rectangular section results. Figures 13 and 14 show these results graphically.

2.3 Nonproportionally Loaded Sections

The response of materially nonlinear sections is dependent upon the history of loading. In this section, an example of an I-section subjected to biaxial nonproportional loads is presented. The procedure, however is also applicable to
hollow rectangular sections. Referring to Figure 15, the load path OA represents proportional loading. The load path OFDA indicates a typical nonproportional loading in that the cross section is subjected to M_{x}, followed by M_{y}, and finally followed by P until the section capacity is reached. Since significant strain reversal may occur due to nonproportional loading, the $\sigma-\epsilon$ curve in Figure 3(a) with material elastic unloading is used. Here, a W 8×31 section with no residual stresses is analyzed and the results are compared to those of Chen and Atsuta (34). The section walls are divided into two layers of 12 elemental areas in each plate, providing a total of 72 elements for the entire cross section. The load path OFDA as shown in Figure 15 ia used. The section is first subjected to $\overline{\mathrm{m}}_{\mathrm{x}}=0.6$ (level F), followed by $\overline{\mathrm{m}}_{\mathrm{y}}=0.6$ (level D), and finally followed by p which eventually attains a value of 0.3 at the full section capacity. Figures 16 through 18 show the resulting $\bar{m}_{\mathrm{x}}-\bar{\phi}_{\mathrm{x}}, \overline{\mathrm{m}}_{\mathrm{y}}-\bar{\phi}_{\mathrm{y}}$, and $\mathrm{p}-\epsilon_{0}$ relationships, respectively, and are in reasonable agreement with the curves of Reference 34. The deviation of the curves of Reference 34 from those given here is due to the piecewise-linear approach adopted in that reference. The type of cross-sectional analysis demonstrated here is incorporated in the beamcolumn and frame analyses.

3. BIAXIALLY IMPERFECT COLUMNS

A sequential computational inelastic analysis of centrally loaded columns with biaxial imperfections and partial rotational restraints has been given previously by Razzaq and Calash (54). No concurrent solution to this or any other inelastic problem has been published in the past. In this chapter, a concurrent solution procedure is shown and later implemented on the Finite Element Machine (FEM).

3.1 Theoretical Formulation

An imperfect column BT of length L , and with partial biaxial end restraints is shown schematically in Figure 19. It is subjected to an axial thrust P gradually until the maximum capacity is reached. The rotational restraint stiffnesses $\mathrm{k}_{\mathbf{B x}}, \mathrm{k}_{\mathbf{B y}}, \mathrm{k}_{\mathbf{T x}}$, k_{Ty} simulate the bending resistance of the connections, or structural members framing into the column at the member ends. The subscripts B and T refer to the member ends as shown in Figure 19. The material of the column follows an idealized elastic-perfectly-plastic $\sigma-\varepsilon$ relationship shown in Figure 3(b). The hollow rectangular section selected used here has an initial residual stress distribution as shown in Figure 2(b). The corners have a tensile residual stress of $\sigma_{\mathbf{r t}}=0.5 \sigma_{\mathrm{y}}$ and the midpoints of all four walls have a compressive residual stress of $\sigma_{\mathbf{r c}}=-0.2 \sigma_{\mathbf{y}}$. The residual stress distribution is piecewise-linear along the length of the walls of the section and uniform across the thickness (40).

The inelastic behavior of the column shown in Figure 19 is governed by the following materially nonlinear ordinary differential equations (54):

$$
\begin{array}{r}
q_{11} \epsilon_{0}+q_{12} u^{\prime \prime}+q_{13} v^{\prime \prime}-P_{r}-P_{p}=P \\
q_{21} \epsilon_{0}+q_{22} u^{\prime \prime}+q_{23} v^{\prime \prime}-M_{y r e}-M_{y p}+P\left(u_{i}+u\right) \\
=m_{B y}+(z / L)\left(m_{T y}-m_{B y}\right) \\
q_{31} \epsilon_{0}+q_{32} u^{\prime \prime}+q_{33} v^{\prime \prime}-M_{x r e}-M_{x p}+P\left(v_{i}+v\right) \\
=m_{B x}+(z / L)\left(m_{T x}-m_{B x}\right) \tag{16}
\end{array}
$$

in which the primes designate differentiation relative to $z ; u$ and v are the respective flexural displacements due to P, in the x and y directions; ϵ_{0} is the average axial strain. The $q_{i j}$ terms are the inelastic cross-sectional properties evaluated using the numerical procedure described in the preceding chapter. The terms $\mathrm{P}_{\mathrm{r}}, \mathrm{P}_{\mathrm{p}}, \mathrm{M}_{\mathrm{xre}}$, $\mathrm{M}_{\mathrm{yre}}, \mathrm{M}_{\mathrm{xp}}$, and M_{yp} are inelastic load and moment parameters defined in Reference 54 and summarized in Appendix C. As shown in Figure 19, the initial member crookedness in the x and y directions is taken as follows:
$u_{i}=u_{0 i} \sin \pi z / L$
$v_{i}=v_{0 i} \sin \pi z / L$
where u_{01} and $v_{0 i}$ are the respective midspan amplitudes. The terms $m_{B x}, m_{B y}, m_{T x}$ and m_{Ty} in Equations 15 and 16 represent end spring moments given by: $\mathrm{m}=\mathrm{k} \theta$
in which the spring stiffness k is $\mathrm{k}_{\mathbf{B x}}, \mathrm{k}_{\mathbf{B y}}, \mathrm{k}_{\mathbf{T x}}$, or k_{Ty}, and θ is the corresponding
member end rotation. The geometric boundary conditions are given as follows:
$u(0)=v(0)=u(L)=v(L)=0$

At the global level, Equation 14 is enforced implicitly by first solving it for ϵ_{0} explicitly and then substituting it into Equations 15 and 16 . This results in the following two global equilibrium equations:
$Q_{x x} u^{\prime \prime}+Q_{x y} v^{\prime \prime}-\left(M_{y r e} \mu_{y r e}\right)-\left(M_{y p}-\mu_{y p}\right)+P\left(u_{i}+u-u_{Q}\right)$ $=m_{B y}+(z / L)\left(m_{T y}-m_{B y}\right)$
$Q_{y x} u^{\prime \prime}+Q_{y y} v^{\prime \prime}-\left(M_{x r e}-\mu_{x r e}\right)-\left(M_{x p}-\mu_{x p}\right)+P\left(v_{i}+v-v_{Q}\right)$

$$
\begin{equation*}
=m_{B x}+(z / L)\left(m_{T x}-m_{B x}\right) \tag{22}
\end{equation*}
$$

where:

$$
\begin{align*}
& \mathrm{Q}_{\mathrm{xx}}=\mathrm{q}_{22}-\left(\mathrm{q}_{12} \mathrm{q}_{21} / \mathrm{q}_{11}\right) \tag{23a}\\
& \mathrm{Q}_{\mathrm{xy}}=\mathrm{q}_{23}-\left(\mathrm{q}_{13} \mathrm{q}_{21} / \mathrm{q}_{11}\right) \tag{23b}\\
& \mathrm{Q}_{\mathrm{yx}}=\mathrm{q}_{32}-\left(\mathrm{q}_{12} \mathrm{q}_{31} / \mathrm{q}_{11}\right) \tag{23c}\\
& \mathrm{Q}_{\mathrm{yy}}=\mathrm{q}_{33}-\left(\mathrm{q}_{13} \mathrm{q}_{31} / \mathrm{q}_{11}\right) \tag{23d}\\
& \mu_{\mathrm{yre}}=\mathrm{q}_{21} \mathrm{P}_{\mathrm{r}} / \mathrm{q}_{11} \tag{23e}\\
& \mu_{\mathrm{yp}}=\mathrm{q}_{21} \mathrm{P}_{\mathrm{p}} / \mathrm{q}_{11} \tag{23f}\\
& \mu_{\mathrm{xre}}=\mathrm{q}_{31} \mathrm{P}_{\mathrm{r}} / \mathrm{q}_{11} \tag{23g}\\
& \mu_{\mathrm{xp}}=\mathrm{q}_{31} \mathrm{P}_{\mathrm{p}} / \mathrm{q}_{11} \tag{23h}\\
& \mathrm{u}_{\mathrm{Q}}=\mathrm{q}_{21} / \mathrm{q}_{11} \tag{23i}\\
& \mathrm{v}_{\mathrm{Q}}=\mathrm{q}_{31} / \mathrm{q}_{11} \tag{23j}
\end{align*}
$$

The numerical procedure is based on a second-order central finite-difference scheme (43) applied to Equations 21 and 22 at N equidistant nodes over [O, L], and invoking Equation 20. This results in:

$$
\begin{gather*}
Q_{x x j}\left(u_{j-1}-2 u_{j}+u_{j+1}\right) / h^{2}+Q_{x y j}\left(v_{j-1}-2 v_{j}+v_{j+1}\right) / h^{2}-\left(M_{y r e}-\mu_{y r e}\right)_{j} \\
-\left(M_{y p}-\mu_{y p}\right)_{j}+P\left(u_{i}+u-u_{Q}\right)_{j}=m_{B y}+\left(z_{j} / L\right)\left(m_{T y}-m_{B y}\right) \tag{24}\\
Q_{y x j}\left(u_{j-1}-2 u_{j}+u_{j+1}\right) / h^{2}+Q_{y y j}\left(v_{j-1}-2 v_{j}+v_{j+1}\right) / h^{2}-\left(M_{x r e}-\mu_{x r e}\right)_{j} \\
\quad-\left(M_{x p}-\mu_{x p}\right)_{j}+P\left(v_{i}+v-v_{Q}\right)_{j}=m_{B x}+\left(z_{j} / L\right)\left(m_{T x} m_{B x}\right) \tag{25}
\end{gather*}
$$

where the spring moments in Equations 24 and 25 are:
$m_{B x}=k_{B x}\left(v_{1}-v_{-1}\right) / 2 h$
$\mathrm{m}_{\mathrm{Tx}}=-\mathrm{k}_{\mathrm{Tx}}\left(\mathrm{v}_{\left.\mathrm{N}+1^{-\mathrm{v}_{\mathrm{N}-1}}\right) / 2 \mathrm{~h}}\right.$
$m_{B y}=k_{B y}\left(u_{1}-u_{-1}\right) / 2 h$
$\mathrm{m}_{\mathrm{Ty}}=-\mathrm{k}_{\mathrm{Ty}}\left(\mathrm{u}_{\mathrm{N}+1}-\mathrm{u}_{\mathrm{N}-1}\right) / 2 \mathrm{~h}$

Applying Equations 25 and 26 at all N nodes leads to following equilibrium equations in the matrix form:

$$
\begin{equation*}
[\mathrm{K}]\{\Delta\}=\{\mathrm{F}\}+\{\mathrm{F}\}_{\mathbf{p}} \tag{30}
\end{equation*}
$$

In this equation, $[\mathrm{K}]$ is the global stiffness matrix of the order 2 Nx 2 N . The vector $\{\Delta\}$ contains lateral displacements as follows:

$$
\begin{align*}
& \{\Delta\}^{T}=\left\{u_{-1} v_{-1} u_{1} v_{1} u_{2} v_{2} u_{3} v_{3} \ldots \ldots u_{j} v_{j} \ldots\right. \\
& \left.\ldots \ldots u_{N-3} v_{N-3} u_{N-3} v_{N-3} u_{N-3} v_{N-3} u_{N-3} v_{N-3}\right\} \tag{31}
\end{align*}
$$

The external and plastic force vectors, $\{F\}$ and $\{F\}_{p}$, are given in Appendix D.

Equation 30 is nonlinear since $[\mathrm{K}],\{\mathrm{F}\}$, and $\{\mathrm{F}\}_{\mathrm{p}}$ depend on $\{\Delta\}$. Therefore, an iterative scheme is adopted in which the global stiffness matrix is updated and inverted at each iteration level. Also, a convergence study showed that it was sufficient to take $\mathrm{N}=8$.

3.2 Concurrent Computing Solution

A concurrent procedure is devised for the solution of Equation 30, based on a master-assistant processor configuration. The assembly of Equation 30 is assigned to the master processor, whereas the computation of $q_{i j}$ terms and the inelastic load and moment load parameters is assigned to the assistant processors. A flow chart of the concurrent procedure implemented on the FEM is shown in Figure 20. The double-headed pointers in the flow chart indicate the interprocessor communication flow. The concurrent procedure is summarized as follows:

1. Input the section properties into the master and assistant processors.
2. Compute elastic properties for the N cross sections concurrently on all assistant processors and send this information to the master processor to assemble [K] and evaluate the initial determinant $|[K]|$.
3. Specify a small axial load, $P=P_{1}$ in the master processor and solve Equation 30 for $\{\Delta\}$.
4. Synchronize all processors for communication.
5. Broadcast to the assistant processors the value of P and the necessary components of $\{\Delta\}$ generated by the master processor.
6. Compute $q_{i j}$ and the inelastic load and moment parameters for the N cross sections concurrently on the assistant processors using the tangent stiffness
procedure, and send the computed properties to the master processor in an asynchronous communication mode.
7. Assemble $[\mathrm{K}],\{\mathrm{F}\}$, and $\{\mathrm{F}\}_{\mathrm{p}}$ in the master processor and solve Equation 30 to update $\{\Delta\}$.
8. Check for the convergence of $\{\Delta\}$. If convergence is not achieved, go to step 4.
9. If column becomes unstable $(|[K]| \rightarrow 0)$, stop the execution on the master processor after setting a flag, and go to step 11.
10. Set $P=P_{1}+\delta P$, where δP is a small load increment, and go to step 4 .
11. Stop execution on assistant processors and the master processor.

In step 6, an asynchronous communication mode is used since the various assistant processors do not necessarily complete their computations at the same instant. Furthermore, the asynchronous communication facilitates the assistant processors to send information as and when it becomes available.

3.3 Numerical Study

The effectiveness of the concurrent procedure is evaluated by analyzing eight sample column problems designated CN1 through CN8. Columns CN1-CN4 have a $7.0 \times 7.0 \times 0.375$ in. hollow square section, while $\mathrm{CN} 5-\mathrm{CN} 8$ have an $8.0 \times 6.0 \times 0.375 \mathrm{in}$. hollow rectangular section. Three different k values are used in Equation 19, namely, $\mathrm{k}_{1}=0.0 \mathrm{in}-\mathrm{kip} / \mathrm{rad}, \mathrm{k}_{2}=5,397 \mathrm{in}-\mathrm{kip} / \mathrm{rad}$, and $\mathrm{k}_{3}=15.0 \times 10^{15} \mathrm{in}-\mathrm{kip} / \mathrm{rad}$. Here, k_{1} simulates pinned condition, k_{2} the bending resistance of a $5.0 \times 5.0 \times 0.1875$ in. hollow square restraint beam of 12 ft . length, and k_{3} a nearly fixed condition. The columns are provided with equal end restraints about the x and y axes at the
top and bottom ends except for columns CN5 and CN8, which have unequal end restraints. The k values of these two columns are defined as $k_{B x}=k_{1} ; k_{B y}=k_{3}$; $k_{T X}=k_{2} ; k_{T y}=k_{3}$. Imperfections are taken in the form of residual stresses as shown in Figure 2 and out-of-straightness given by Equations 17 and 18 with $\mathrm{u}_{0 \mathrm{i}}=$ $\mathrm{v}_{0 \mathrm{i}}=\mathrm{L} / 1,000$. Sample load-deflection curves for columns CN2 and CN6 are shown in Figure 21, in which U and V represent the total midspan lateral deflections given by:
$U=u_{0 i}+u(L / 2)$
$V=v_{0 i}+v(L / 2)$

Table 5 summarizes the column peak loads for $\mathrm{CN} 1-\mathrm{CN} 8$. The quantity $\mathrm{p}_{\text {max }}$ in this table represents the maximum value of p ; that is, the column load-carrying capacity. The concurrent computing procedure is implemented on 2,3,5, and 9 processors and execution times are obtained to evaluate computational efficiencies. The number of processors includes both the master and the assistant processors. Table 6 summarizes the execution times on concurrent processors for the hollow square column CN1 and the hollow rectangular column CN5. The t_{i} values used for the speedup, s_{i}, and the efficiency, η_{i}, calculations are enclosed in parentheses. When 9 processors are used to analyze column CN1, the sum of the individual processor execution times is 9574.360 sec . Similarly, the sums for 5,3 , and 2 processors are $7199.466,5972.540$, and 6578.309 sec ., respectively. The lowest of these sums is adopted as the estimated execution time on a single processor as recorded at the bottom of Table 6. Table 7 gives the speedup factors and
efficiencies for hollow square columns. As the number of processors increase, η_{i} decreases except when 2 processors are employed. The reduction in η_{i} with two processors is due to the loss of asynchronous communication advantage present when 3 or more processors are employed. This loss is attributable to the sequential computation of cross-sectional data on a single assistant processor. Furthermore, as the number of processors increase, the distribution of computational work among the assistant processors tends to become nonuniform. This is due to an unequal number of iterations required in the assistant processors in carrying out the tangent stiffness procedure. Similar results for hollow rectangular columns are given in Table 8. Corresponding to the results in Tables 7 and 8 for columns CN2 and CN6, the relationships between the speedup factor and the number of processors are shown in Figure 22, along with the theoretical maximum speedup.

A review of the numerical study carried out in this investigation indicate that the algorithm developed for the concurrent computing analysis of inelastic structural members is quite efficient, and the application of the new generation multiprocessor computers promise a great reduction in CPU time required for the analyses.

4. IMPERFECT BEAM-COLUMNS

The effect of nonproportional uniaxial and biaxial loads on the behavior of partially restrained nonsway imperfect beam-columns is studied. Adequate models for representing the connection moment-rotation curves are studied and used in the beam-column analysis. Both hollow rectangular and I-sections are considered. A critical evaluation of the tangent modulus approach is also conducted. In Chapter 5, this procedure modified and utilized for the analysis of plane nonsway frames.

4.1 Theoretical Formulation

4.1.1 Equilibrium Equations

A biaxially imperfect and partially restrained beam-column, BT, of Length L is shown in Figure 23. It is subjected to an axial load P, and biaxial end moments $\mathrm{M}_{\mathbf{B x}}, \mathrm{M}_{\mathbf{B y}}, \mathrm{M}_{\mathbf{T x}}$, and $\mathrm{M}_{\mathbf{T y}}$. The partial restraint stiffnesses $\mathrm{k}_{\mathbf{B x}}, \mathrm{k}_{\mathbf{B y}}, \mathrm{k}_{\mathbf{T x}}$, and $\mathrm{k}_{\mathbf{T y}}$ simulate the bending resistance of the flexible connections or structural members framing into the member ends. The material of the beam-column may follow the stress-strain relationship shown in Figure 3(a) or 3(b).

Equations 14-16 modified to include the applied end moments take the form:

$$
\begin{align*}
& q_{11} \epsilon_{0}+q_{12} u^{\prime \prime}+q_{13} v^{\prime \prime}-P_{r}-P_{p}=P \tag{34}\\
& q_{21} \epsilon_{0}+q_{22} u^{\prime \prime}+q_{23} v^{\prime \prime}-M_{y r e}-M_{y p}+P\left(u_{i}+u\right) \\
& \quad=m_{B y}+(z / L)\left(m_{T y}-m_{B y}\right)-M_{B y}-(z / L)\left(M_{T y}-M_{B y}\right) \tag{35}
\end{align*}
$$

$$
\begin{align*}
& q_{31} \epsilon_{0}+q_{32} u^{\prime \prime}+q_{33} v^{\prime \prime}-M_{x r e}-M_{x p}+P\left(v_{i}+v\right) \\
&=m_{B x}+(z / L)\left(m_{T x}-m_{B x}\right)-M_{B x}-(z / L)\left(M_{T x}-M_{B x}\right) \tag{36}
\end{align*}
$$

The initial crookedness of the member in the x and y directions, indicated in Figure 23 is governed by Equations 17 and 18. Equations 34-36 are also utilized to predict the behavior of uniaxially loaded members. The minor axis analysis is conducted by utilizing Equations 34 and 35 only and by setting $v_{i}=0$, and $M_{B x}=M_{T x}=0$. Similarly, the major axis analysis is carried out by utilizing Equations 34 and 36 only and by setting $u_{i}=0$, and $M_{B y}=M_{T y}=0$.

In the above-mentioned analysis, ϵ_{0} is eliminated from Equations 35 and 36 by using Equation 34. The resulting differential equations with u and v as the dependent variables are then solved for using a second-order central finite-difference scheme (43). This results in the following member equilibrium equations:
$[\mathrm{K}]\{\Delta\}=\{\mathrm{M}\}$
in which:
$\{M\}=\{F\}+\{F\}_{p}+\{M\}_{a}$
where $[\mathrm{K}],\{\Delta\},\{\mathrm{F}\}$, and $\{\mathrm{F}\}_{\mathrm{p}}$ are defined in the preceding chapter and $\{\mathrm{M}\}_{\mathrm{a}}$ is the applied end moment vector. In the elastic range, $[\mathrm{K}],\{\mathrm{F}\}$, and $\{\mathrm{M}\}_{\mathrm{a}}$ are explicitly defined and $\{F\}_{\mathbf{p}}$ is zero, whence, Equation 37(a) can be solved directly. In the inelastic range, however, the coefficients in $[\mathrm{K}]$ and the components of vector $\{\mathrm{F}\}_{\mathbf{p}}$ become dependent upon the inelastic cross-sectional properties at various nodes along the member length.

4.1.2 End Restraint Conditions

Past studies $(9,24,31)$ indicate that beam-column connections exhibit nonlinear moment-rotation characteristics. Recently, Chen and Lui (53), and Razzaq and Calash (54) studied the effects of partial end restraints on member behavior. These and similar other studies $(34,38,39,50,51)$ indicated that the flexible connections have a significant influence on member behavior. Figure 24 shows a typical momentrotation, $m-\theta$, curve with an idealized piecewise-linear model of a connection. Chen and Lui (53) used m- θ models defined by spline curves with optimization techniques to define the coefficients of these splines. While their method represents the connection response accurately, the procedure is cumbersome for practical use. Razzaq and Calash (54) in their study used practical piecewise-linear connection models typically shown in Figure 24. In order to identify suitable piecewise-linear connection characteristics, various models shown in Figures 25 through 28 are investigated. Specifically, linear, bilinear, and trilinear models are considered.

The moments $\mathrm{m}_{\mathrm{Bx}}, \mathrm{m}_{\mathrm{By}}, \mathrm{m}_{\mathrm{Tx}}$, and m_{Ty} in Equations 35 and 36 are dependent upon the moment-rotation $m-\theta$ characteristics of a connection. For a linear $m-\theta$ relationship, the spring moment follows line OA in Figure 24, and is given by:

$$
\begin{equation*}
\mathrm{m}=\mathrm{k}_{\mathrm{a}} \theta ; \quad|\mathrm{m}| \geq 0 \tag{38}
\end{equation*}
$$

For a bilinear relationship, the spring moment follows path OAB in Figure 24. Thus:

$$
\mathrm{m}=\mathrm{k}_{\mathrm{a}} \theta ; \quad|\mathrm{m}| \leq\left|\mathrm{m}_{\mathrm{a}}\right|
$$

$m=m_{a}+k_{b}\left(\theta-\theta_{a}\right) ; \quad|m|>\left|m_{a}\right|$
in which m_{a} is the knee moment at $\theta=\theta_{\mathrm{a}}$ indicated in Figure 24. The spring stiffness is reduced to k_{b} past m_{a}. A trilinear connection $m-\theta$ is shown as the dashed line OABC in Figure 24 for which:

$$
\begin{array}{ll}
m=k_{a} \theta ; & |m| \leq\left|m_{a}\right| \\
m=m_{a}+k_{b}\left(\theta-\theta_{a}\right) ; & \left|m_{a}\right|<|m| \leq\left|m_{b}\right| \tag{40}\\
m=m_{b}+k_{c}\left(\theta-\theta_{b}\right) ; & |m|>\left|m_{b}\right|
\end{array}
$$

where m_{a} and m_{b} correspond to θ_{a} and θ_{b}. The connection stiffness in the tertiary range is $\mathrm{k}_{\mathbf{c}}$, as shown in Figure 24.

The m expressions given in this section are used for the spring moments $m_{B x}$. $\mathrm{m}_{\mathrm{By}} \mathrm{m}_{\mathrm{Tx}}$, and m_{Ty} which appear in Equations 35 and 36.

4.2 Load Paths

Two different load paths are adopted for uniaxially loaded beam-columns, and are defined in Section 4.2.1. For biaxially loaded beam-columns, six different load paths are used, and are outlined in Section 4.2.2.

4.2.1 Uniaxially Loaded Beam-Columns

Referring to Figure 15, two different load paths designated as NP1 and NP2 are adopted for uniaxially loaded beam-columns and are defined as follows:

NP1: The axial load P is applied first incrementally and held constant, followed by gradually increasing equal end moments until the load-carrying capacity of the
member is reached. This corresponds to the load path OGB for member minor axis analysis, or OGC for member major axis analysis.

NP2: The equal end moments corresponding to the load-carrying capacity obtained in NP1 are applied first incrementally and held constant, followed by a gradually increasing axial load P until the member collapse occurs. This corresponds to load paths OEB or OFC for member minor and major axis analyses, respectively.

4.2.2 Biaxially Loaded Beam-Columns

Referring to Figure 15, six different load paths designated as NP3 through NP8 are used for biaxially loaded beam-columns as defined below:

NP3: The axial load P is applied first incrementally and held constant, followed by M_{x} and M_{y} simultaneously, until the member collapses. The moment ratio is held constant and taken as follows:
$M_{x} / M_{y}=r_{x} / r_{y}$
where r_{x} and r_{y} are major and minor axis radii of gyration. This load path corresponds to OGA.

NP4: The moments M_{x} and M_{y} are applied proportionally following Equation 41, until the peak moment values from NP3 are attained, followed by P until collapse occurs. NP4 corresponds to load path ODA.

NP5: The axial load P of the same magnitude as in NP3 is applied first, M_{x} achieved in NP3 is applied next, followed by M_{y} until collapse occurs. NP5 corresponds to load path OGCA.

NP6: This load path is the reverse of NP5 in that M_{y} achieved in NP3 is applied
first, followed by M_{x} achieved in NP3, and finally followed by P until collapse occurs. NP6 corresponds to load path OEDA.

NP7: The axial load P of the same magnitude as in NP3 is applied first, M_{y} achieved in NP3 is applied next, followed by M_{x} until collapse occurs. This corresponds to load path OGBA.

NP8: This load path is the reverse of NP7 in that M_{x} achieved in NP3 is applied first, followed by M_{y} achieved in NP3, and finally followed by P until collapse occurs. NP8 corresponds to load path OFDA.

When hollow square section members are analyzed, NP7 and NP8 are redundant and correspond, respectively, to NP5 and NP6, owing to the double symmetry of the section.

4.3 Solution Procedure

The following sequential computing procedure is used for solving Equation 37(a) iteratively:

1. Evaluate initial cross-sectional properties at N nodes to assemble the initial global beam-column stiffness matrix [K] in Equation 37(a).
2. Specify small external loads and formulate $\{\mathrm{M}\}_{1}$ using Equation 37(b).
3. Solve for the deformation vector $\{\Delta\}$ in Equation 37(a).
4. Compute the external nodal forces $\{\mathrm{f}\}_{1}$ and deformations $\{\delta\}_{1}$ defined in Equations 6 and 7, respectively, in the elastic range corresponding to $\{M\}_{1}$.
5. Increase $\{M\}$ to $\{M\}_{2}=\{M\}_{1}+\{\delta M\}$, in which $\{\delta M\}$ is the resultant increment load vector. Solve Equation 37(a) for $\{\Delta\}$, and compute external force vectors $\{f\}_{2}$ corresponding to $\{M\}_{2}$.
6. Using $\{f\}_{2}$ vectors and the tangent stiffness procedure (34), compute $\left[\mathrm{K}_{\mathrm{t}}\right]$ in Equation 8 for all cross sections.
7. Solve for an updated $\{\Delta\}$ after assembling $[K],\{F\}$, and $\{F\}_{p}$ utilizing the cross-sectional properties obtained in Step 6.
8. With the $\{\Delta\}$ in Step 7, formulate the load vector $\{\mathrm{M}\}_{3}$.
9. If $\left|\{M\}_{3}-\{M\}_{2}\right| \leq\{\alpha\}$, where $\{\alpha\}$ is the tolerance vector composed with load limits of 0.01% of the member yield-load capacity, go to Step 11.
10. Set $\{M\}_{1}=\{M\}_{2} ;\{f\}_{1}=\{f\}_{2} ;\{M\}_{2}=\{M\}_{3}$, and go to Step 6 .
11. Set $\{M\}_{1}=\{M\}_{3} ;\{f\}_{1}=\{f\}_{3}$, and repeat Steps $5-10$ until the maximum loadcarrying capacity of the beam-column is reached.

The procedure described herein is carried out using constant load increments throughout the elastic range. In the inelastic range, these load increments are successively reduced to avoid severe imbalance between the external and internal forces. The maximum load is obtained within 0.0002 times the cross-sectional yield capacity. Also, based on a convergence study, a total 15 nodes for I-section members and 11 nodes for hollow rectangular members over $[0, \mathrm{~L}]$ is found to be sufficient. The cross-sectional analysis in Step 5 is conducted using two layers of 50 discrete elemental areas in each wall of an I-section, providing 100 equal-area elements per plate, and two layers of 24 discrete elemental areas in each wall of a hollow rectangular section, providing 48 equal ares elements per plate.

4.4 Numerical Study

4.4.1 Modeling of End Restraints

Two different connection m- θ relationships given in References 24 and 53 are used for conducting a modeling study of the beam-column end restraints. A set of five piecewise-linear models is used for each connection type. These are shown in Figures 25 through 28. Figures 25 and 26 show the idealized $\mathrm{m}-\theta$ models designated a1 through f 1 for the first connection data (23) and are described as follows:
a1: Linear approximation obtained by drawing a tangent to the nonlinear $\mathrm{m}-\theta$ curve at the origin. The slope of the tangent is $\mathrm{k}_{\mathrm{a}}=42,135 \mathrm{in}-\mathrm{kip} / \mathrm{rad}$.
b1: Bilinear approximation based on tangents drawn at the origin and from the highest given point on the nonlinear $m-\theta$ curve. The respective initial and secondary connection stiffnesses are $k_{a}=42,135$ in- $\mathrm{kip} / \mathrm{rad}$, and $\mathrm{k}_{\mathrm{b}}=2,431$ in-kip/rad. The connection moment at the transition point where the two tangents meet is $\mathrm{m}_{\mathrm{a}}=316$ in-kips.
c1: Bilinear approximation obtained by drawing a pair of secants to the nonlinear $\mathrm{m}-\theta$ curve. Here, $\mathrm{k}_{\mathrm{a}}=31,580 \mathrm{in}-\mathrm{kip} / \mathrm{rad} ; \mathrm{k}_{\mathrm{b}}=3,115 \mathrm{in}-\mathrm{kip} / \mathrm{rad} ; \mathrm{m}_{\mathrm{a}}=300 \mathrm{in}-$ kips.
d1: Bilinear lower bound approximation with the first straight line drawn from the origin to an intermediate point on the nonlinear m-ө curve, and the second line drawn by connecting the transition point to the highest available point on the $\mathrm{m}-\theta$ curve. Here, $\mathrm{k}_{\mathrm{a}}=27,000 \mathrm{in}-\mathrm{kip} / \mathrm{rad} ; \mathrm{k}_{\mathrm{b}}=3,167 \mathrm{in}-\mathrm{kip} / \mathrm{rad} ; \mathrm{m}_{\mathrm{a}}=270 \mathrm{in}-$ kips.
e1: Elastic-plastic approximation with two secants, with $k_{a}=30,385 \mathrm{in}-\mathrm{kip} / \mathrm{rad} ; \mathrm{k}_{\mathrm{b}}$
$=0 \mathrm{in}-\mathrm{kip} / \mathrm{rad} ; \mathrm{m}_{\mathrm{a}}=395 \mathrm{in}-\mathrm{kips}$.
f1: Trilinear approximation with two tangents as in b1 with the intermediate region represented by a secant to the nonlinear $m-\theta$ curve. Here, $k_{a}=42,135$ in$\mathrm{kip} / \mathrm{rad} ; \mathrm{k}_{\mathrm{b}}=6,667 \mathrm{in}-\mathrm{kip} / \mathrm{rad} ; \mathrm{k}_{\mathrm{c}}=2,431 \mathrm{in}-\mathrm{kip} / \mathrm{rad}$; at the transition where the first tangent and secant meet, $\mathrm{m}_{\mathrm{a}}=200 \mathrm{in}$-kips; at the transition where the secant and the second tangent meet, $\mathrm{m}_{\mathrm{b}}=350$ in-kips.

Similarly, Figures 27 and 28 show the idealized m- θ models designated as a2 through $\mathfrak{f} 2$, for the second connection data (53). These are defined as follows:
a2: $\quad k_{a}=24,000$ in-kip/rad.
b2: $\quad k_{a}=24,000 \mathrm{in}-\mathrm{kip} / \mathrm{rad} ; \mathrm{k}_{\mathrm{b}}=1,286 \mathrm{in}-\mathrm{kip} / \mathrm{rad} ; \mathrm{m}_{\mathrm{a}}=100 \mathrm{in}-\mathrm{kips}$.
c2: $\quad k_{a}=17,778$ in-kip/rad; $k_{b}=2,195$ in-kip/rad; $m_{a}=80$ in-kips.
d2: $\quad k_{a}=13,333 \mathrm{in}-\mathrm{kip} / \mathrm{rad} ; \mathrm{k}_{\mathrm{b}}=2,368 \mathrm{in}-\mathrm{kip} / \mathrm{rad} ; \mathrm{m}_{\mathrm{a}}=80 \mathrm{in}-\mathrm{kips}$.
e2: $\quad k_{a}=17,778 \mathrm{in}-\mathrm{kip} / \mathrm{rad} ; \mathrm{k}_{\mathrm{b}}=0 \mathrm{in}-\mathrm{kip} / \mathrm{rad} ; \mathrm{m}_{\mathrm{a}}=100 \mathrm{in}-\mathrm{kips}$.
f2: $\quad k_{a}=24,000 \mathrm{in}-\mathrm{kip} / \mathrm{rad} ; \mathrm{k}_{\mathrm{b}}=3,583 \mathrm{in}-\mathrm{kip} / \mathrm{rad} ; \mathrm{k}_{\mathrm{c}}=1,286 \mathrm{in}-\mathrm{kip} / \mathrm{rad} ; \mathrm{m}_{\mathrm{a}}=70$ in-kips; $\mathrm{m}_{\mathrm{b}}=115$ in-kips.

For the numerical study, a $\mathrm{W} 8 \times 31$ section of 15 ft . length, is considered. Each of the amplitudes u_{01} and $v_{0 i}$ are taken as $L / 1000$. The material of the member is assumed to follow the $\sigma-\epsilon$ relationship shown in Figure 3(b). When the residual stresses are present, the distribution in Figure 2(a) is used. First, a centrally loaded column with biaxial crookedness is analyzed using the six $\mathrm{m}-\theta$ models a1 through f1. The individual studies relative to the minor and major axes showed no significant effect of $m-\theta$ relationships on the column peak loads. The end spring moments developed (18 in-kips to 141 in-kips) were considerably less than m_{a} value
when models a1 through f1 are used. Also, the major axis analysis is less sensitive to the various m- θ models.

The effect of various $\mathrm{m}-\theta$ models on uniaxially loaded beam-column response is studied with $u_{0 i}=L / 100,000$. The beam-column is subjected to an axial load, P , and an end moment, M_{Ty}, at the member top, in a proportional manner such that the ratio between P and $M_{T y}$ is 2.25. At $z=0$, a pinned condition is used, whereas, a partial rotational end restraint is provided at $z=L$ to simulate the subassemblage used in Reference 53. The results for this special case are compared to those in Reference 53. Table 9 summarizes the dimensionless peak loads, $\mathrm{p}_{\max }$, corresponding to the connection models a2 through f 2 .

The predicted end rotations show that with restraints $b 2$, c 2 and d 2 , the beamcolumns collapse as soon as the top end spring attempts to develop a moment greater than m_{a}. The elastic-plastic restraint e2 allows the spring to rotate additionally even after the attainment of the plastic spring moment (100 in -kips). The beam-column with trilinear restraint f 2 reached its peak load while the spring moment was between m_{a} and m_{b}. Thus, the third linear range of the $m-\theta$ relation was not activated. The significant observation which is made from this table is that regardless of the type of connection modeling used, the peak load varied in a small range from 0.64 to 0.71 . In fact, the lower bound model d2 gave the same peak load as the bilinear portion of the trilinear model f 2 . The peak load obtained by Chen and Lui (53) is 0.64 comparing favorably with these results. Thus, for the type of connections used herein, a simple linear or at most a bilinear connection $\mathrm{m}-\theta$ model is adequate. The results also indicate that the strength of these members is not
highly sensitive to the connection modeling.

4.4.2 Behavior of Uniaxially Loaded I-Section Beam-Columns

The effect of nonproportional loads on the behavior of a 12 ft . long uniaxially crooked beam-column with equal end restraints is presented in this section. A W 8×31 section is used, with and without residual stresses. When the residual stresses are present, they are the type shown in Figure 2(b). The material of the beamcolumn follows the stress-strain law shown in Figure 3(a). The following initial spring stiffnesses are adopted:
$\mathrm{k}_{\mathrm{al}}=0 \mathrm{in}-\mathrm{kip} / \mathrm{rad}$ (Pinned-Condition)
$\mathrm{k}_{\mathrm{a} 2}=13,333 \mathrm{in}-\mathrm{kip} / \mathrm{rad}$
$\mathrm{k}_{\mathrm{a} 3}=24,000 \mathrm{in}-\mathrm{kip} / \mathrm{rad}$
Additionally, the behavior of the beam-column with elastic-plastic end springs is also investigated wherein $\mathrm{k}_{\mathrm{a} 2}$ is adopted as the initial spring stiffness until the spring moment reaches the plastic limit value of $m_{a}=100 \mathrm{in}$-kips.

The following load conditions designated as LC1 through LC4 and associated with load paths NP1 and NP2 are used for the beam-column study:

LC1: Corresponding to the load path NP1, a relatively large axial load is applied first incrementally and held constant, followed by gradually increasing the equal end moments until the member collapses.

LC2: The maximum end moments corresponding to the load condition LC1 are applied first incrementally and held constant, followed by a gradually increasing the axial load until the member collapses, thus following load path NP2.

LC3: Corresponding to the load path NP2, relatively large equal end moments are applied first incrementally and held constant, followed by gradually increasing the axial load until the member collapses.

LC4: The maximum axial load corresponding to the load condition LC3 is applied first incrementally and held constant, followed by gradually increasing equal end moments until the member collapses thus following the load path NP1. The beam-column peak loads obtained for the major and minor axis analyses using LC1 through LC4 are summarized in Table 10. The maximum loads for the major axis are nearly the same, suggesting that the load paths have no significant effect on the member strength. However, when the beam-column is loaded about its minor axis, the maximum loads are found to be load path dependent. Furthermore, LC1 and LC2 provide nearly the same peak loads, while LC3 and LC4 exhibit a substantial difference in the maximum loads. In the absence of initial residual stresses, $\overline{\mathrm{m}}$ for LC3 is 19.7% greater than that for LC4 when the spring stiffness is $\mathrm{k}_{\mathrm{a} 3}$. This difference is 10.5% when initial residual stresses are included. The behavior of a beam-column with elastic-plastic restraints defined by $\mathrm{k}_{\mathrm{a} 2}$, and $m_{a}=100 \mathrm{in}$-kips is also investigated. Table 11 summarizes the maximum loads for various load paths and load conditions when these restraints are used. The results in this table indicate that the maximum loads are not load path dependent in the presence of elastic-plastic restraints.

Since the above-mentioned results indicated that the minor axis analysis is load path dependent when linear end restraints are present, additional minor axis analyses were carried out on beam-columns with $\mathrm{L}=8,12$, and 16 ft , and $\mathrm{k}=\mathrm{k}_{\mathrm{az}}$ or $\mathrm{k}_{\mathrm{a} 3}$.

Load paths NP1 and NP2 are again adopted in this analysis. For each beam-column different load levels are used to define an interaction curve between p and $\overline{\mathrm{m}}_{\boldsymbol{y}}$. The results obtained are summarized in Table 12 for beam-columns numbered 1 through 6. A graphical presentation of the interaction loads for beam-column 4 is given in Figure 29. The interaction peak loads obtained by using the stress-strain law given in Figure 3(b), neglecting the elastic unloading (tangent modulus), is also shown in this figure. For $p=0.0$ to 0.45 , the tangent modulus curve gives unconservative moment estimates. This phenomenon is also observed in beam-columns 2 and 6.

4.4.3 Behavior of Biaxially Loaded I-Section Beam-Columns

Biaxially loaded I-section beam-columns may experience twist in addition to bending. However, past experimental and theoretical studies $(21,25)$ indicate that such open sections with a width to depth ratio of nearly one experience negligibly small twist. Since the section adopted for the present study meets this condition, twisting is therefore neglected. This assumption was found to be valid through a comparison of the results from the present analysis to those in References 21 and 25 for pinned beam-columns subjected to proportional loads. Table 13 shows this comparison. The maximum loads are clearly in good agreement.

In order to investigate nonproportional load effects on biaxially loaded beamcolumn behavior, a 12 ft . long $\mathrm{W} 8 \times 31$ section member with elastic partial restraints is used. Various nonproportional load paths are adopted and the member response obtained. The cross section possesses residual stresses as shown in Figure 2(b). Two different end restraint stiffnesses, $\mathrm{k}=\mathrm{k}_{\mathrm{a} 2}$ or $\mathrm{k}_{\mathrm{a} 3}$ are used and the beam-
columns are subjected to load path NP3 or NP4. The results from this study are reported in Table 14. For beam-column numbered 8, Figure 30 shows an interaction diagram between p and the dimensionless minor axis maximum moment, $\overline{\mathrm{m}}_{\mathrm{y}}{ }^{*}$. The figure also shows the tangent modulus curve. A comparison of these curves indicates that the tangent modulus peak loads are unconservative. A load path dependency is obviously present in the nonproportionally loaded I-section beam-columns.

4.4.4 Behavior of Biaxially Loaded Rectangular Tubular Beam-Columns

A relatively limited amount of research has been conducted in the past on rectangular tubular beam-columns subjected to nonproportional loads. Razzaq and McVinnie (55) conducted inelastic analysis and experiments on biaxially loaded pinned-end members subject to nonproportional loads. In this section, the behavior of rectangular tubular imperfect beam-columns subjected to different load paths defined as NP3 through NP8 are presented. For the rectangular tubular section, the torsional effects are negligible (55) and ignored.

For the beam-column studied, the length is taken as 12 ft . Each of the initial midspan amplitude in Equations 17 and 18 is taken as $\mathrm{L} / 1000$. Hollow square, $7 \times 7 \times 0.375$ in., and rectangular, $8 \times 6 \times 0.375 \mathrm{in}$. sections are used for the beam-columns studied herein. The material stress-strain law in Figure 3(a) is used. The initial residual stresses in Figure 2(a) are adopted. For each beam-column, identical rotational restraints are used at both ends about the x and y axes, that is:

$$
\begin{equation*}
\mathrm{k}=\mathrm{k}_{\mathrm{Bx}}=\mathrm{k}_{\mathrm{By}}=\mathrm{k}_{\mathrm{Tx}}=\mathrm{k}_{\mathrm{Ty}} \tag{42}
\end{equation*}
$$

For the numerical study conducted, the k values defined in Section 4.4.2 are used.

The following five types of beam-columns designated as BC 1 through BC 5 are studied:
$B C 1$: hollow square section with $k=k_{a 1}$
$B C 2$: hollow square section with $k=k_{a 2}$
$B C 3$: hollow square section with $k=k_{a 3}$
BC4: hollow rectangular section with $k=k_{a 2}$
$B C 5$: hollow rectangular section with $k=k_{a 3}$
For the beam-column BC1 with pinned boundaries, NP3 through NP8 provided practically the same maximum loads. For the beam-columns BC 2 through BC 5 , however, significant load path dependence is found for certain load combinations. The results obtained for $\mathrm{BC} 2-\mathrm{BC} 5$ are summarized in Tables 15 through 18. Figure 31 compares the interaction curves for BC3 with load paths NP5 and NP6. Figure 32 shows the stiffness degradation curves for BC 3 with an axial load level of 0.75 , in which D is the dimensionless determinant of the global tangent stiffness matrix for the entire member, and is calculated as:

$$
\begin{equation*}
\mathrm{D}=|[\mathrm{K}]|_{\text {current }} /|[\mathrm{K}]|_{\text {initial }} \tag{43}
\end{equation*}
$$

where current represents the determinant of $[\mathrm{K}]$ at the given load level, and initial refers to the determinant at the zero load level. From Figure 32(a), it is noticed that in case of NP5, $p=0.75$ is applied first, followed by $\overline{\mathrm{m}}_{\mathrm{x}}$, however, the member collapsed at a moment value $\overline{\mathrm{m}}_{\mathrm{x}}=0.39$ which is less than that found in NP3. As a result, the moment $\overline{\mathrm{m}}_{\mathrm{y}}$ could not be applied for NP5. This is evident from Figure 32(c) in which the curve for NP5 is absent.

The stiffness degradation curve in Figure 32(b) for NP5 shows valleys in the form of near-abrupt changes in D indicating as if the beam-column suddenly looses a considerable stiffness followed by an immediate gain with a small variation in the loads. The studies herein are based on adopting a total of 196 elemental areas for each of the eleven nodes along the member length. When the number of elemental areas was increased to 560 or more, the first of the two valleys disappeared but this did not affect the peak loads. However, it was found for some other cases reported in Tables 15 through 18 that the number and shape of these valleys could both decrease or increase, with an increase in the number of elemental areas. Fortunately, these valleys did not alter the peak loads by more than 2%. From these observations, it appears that such valleys in stiffness degradation curves are a result of redistribution of stresses. Figures 33 and 34 show the curves for BC5 with load paths NP7 and NP8. Here again, the load path dependence has a significant effect on the member strength. Thus, the behavior and strength of hollow square and rectangular section nonsway beam-columns with imperfections and partial end restraints is found to be significantly influenced by nonproportional loads. This dependence disappears only for certain load combinations, or for the special case of pinned boundaries.

4.4.5 Critique on Tangent Modulus Approach

The analyses in the preceding sections explained the influence of load paths on the beam-column behavior. Specific studies are also compared with the tangent modulus analysis. Presented herein is an investigation of the effect of $\sigma-\epsilon$ relationships shown in Figures 3(a) and 3(b) on the response of a proportionally
loaded imperfect beam-column. The member is 15 ft . long with a $\mathrm{W} 8 \times 31$ section, having equal elastic partial end restraints with $k=k_{a_{2}}$. The residual stresses used are shown in Figure 2(b). Also, a proportionality constant of 1.0 is used between the axial load and the equal end moments.

The beam-column response is represented in the form of axial load versus lateral displacement relationship in Figure 35. Also, stiffness degradation curves for the analyses are given in Figure 36. An observation of the load-displacement relationship in Figure 35 suggests that the beam-column exhibits a near plateau behavior when the tangent modulus approach is used. This is also associated with relatively large displacements near the collapse load. In contrast, the analysis associated with the material elastic unloading indicates that the structure possesses a lesser degree of ductility, that is, the displacements near the peak load are smaller compared to those from the tangent modulus approach. The tangent modulus method neglects the redistribution of stresses along the member length, thus resulting in fictitious strains and fictitious ductile behavior. The analysis including material unloading, on the other hand, considers localized strain reversals. The effect of localized strain reversals is observed in Figure 36 as indicated by the valleys in the in the stiffness degradation curves.

5. FLEXIBLY-CONNECTED PLANE NONSWAY FRAMES

A theoretical investigation of the effect of nonproportional loads on the behavior of flexibly-connected nonsway plane imperfect frames is presented in this chapter. The solution procedure used in Chapter 4 is modified to formulate inelastic slope-deflection equations for an imperfect beam-column, and adopted for plane frame analysis. The use of these equations is illustrated through detailed studies of a portal frame and a two-bay two-story frame.

5.1 Theoretical Formulation

5.1.1 Inelastic Slope-Deflection Equations for Imperfect Beam-Column

For a prismatic beam-column subjected to loads P, M_{B} and M_{T} as shown in Figure 37, the slope-deflection equations have the following well-known (23) form:

$$
\begin{align*}
& M_{b}=(E I / L)\left(C \theta_{\mathbf{B}}+\mathrm{S} \theta_{\mathbf{T}}\right) \tag{44}\\
& \mathrm{M}_{\mathbf{T}}=(\mathrm{EI} / \mathrm{L})\left(\mathrm{S} \theta_{\mathbf{B}}+\mathrm{C} \theta_{\mathrm{T}}\right) \tag{45}
\end{align*}
$$

in which C and S are stability coefficients, and $\theta_{\mathbf{B}}$ and $\theta_{\mathbf{T}}$ are end slopes. Equations 44 and 45 are obviously valid only for elastic members with no imperfections. In this section, a set of new slope-deflection equations are formulated which account for inelastic action, initial crookedness, and residual stresses.

Equation 37(a) can be written in the following partitioned form:
$\left[\begin{array}{ll}\mathrm{K}_{11} & \mathrm{~K}_{12} \\ \mathrm{~K}_{21} & \mathrm{~K}_{22}\end{array}\right]\left\{\begin{array}{l}\Delta_{1} \\ \Delta_{2}\end{array}\right\}=\left\{\begin{array}{l}\mathrm{F}_{1} \\ \mathrm{~F}_{2}\end{array}\right\}+\left\{\begin{array}{l}\mathrm{F}_{\mathrm{p} 1} \\ \mathrm{~F}_{\mathrm{p} 2}\end{array}\right\}+\left\{\begin{array}{l}\mathrm{M}_{1} \\ \mathrm{M}_{2}\end{array}\right\}$
in which $\left\{\Delta_{1}\right\}$ is defined as:
$\left\{\Delta_{1}\right\}^{T}=\left\{u_{-1} u_{1} u_{N-1} u_{N+1}\right\} \quad$ or $\quad\left\{v_{-1} v_{1} v_{N-1} v_{N+1}\right\}$
for minor/major axis analysis; $\left\{\Delta_{\mathbf{2}}\right\}$ is the interior nodes displacement vector defined as:
$\left\{\Delta_{1}\right\}^{T}=\left\{u_{2} u_{3} \ldots u_{j} \ldots u_{N-3} u_{N-2}\right\} \quad$ or $\quad\left\{v_{2} v_{3} \ldots v_{j} \ldots v_{N-3} v_{N-2}\right\}$
for minor or major axis. Expanding Equation 46(a):
$\left[\mathrm{K}_{11}\right]\left\{\Delta_{1}\right\}+\left[\mathrm{K}_{12}\right]\left\{\Delta_{2}\right\}=\left\{\mathrm{F}_{1}\right\}+\left\{\mathrm{F}_{\mathrm{p} 1}\right\}+\left\{\mathrm{M}_{1}\right\}$
$\left[\mathrm{K}_{21}\right]\left\{\Delta_{1}\right\}+\left[\mathrm{K}_{22}\right]\left\{\Delta_{2}\right\}=\left\{\mathrm{F}_{2}\right\}+\left\{\mathrm{F}_{\mathrm{p} 2}\right\}+\left\{\mathrm{M}_{2}\right\}$

Solving Equation 47(b) for $\left\{\Delta_{2}\right\}$:
$\left\{\Delta_{2}\right\}=\left[\mathrm{K}_{22}\right]^{-1}\left(-\left[\mathrm{K}_{21}\right]\left\{\Delta_{1}\right\}+\left\{\mathrm{F}_{2}\right\}+\left\{\mathrm{F}_{\mathrm{p} 2}\right\}+\left\{\mathrm{M}_{2}\right\}\right)$

Substituting $\left\{\Delta_{2}\right\}$ into Equation 47(a) gives:
$\left[\mathrm{K}_{\mathrm{r}}\right]\left\{\Delta_{\mathbf{1}}\right\}=\left\{\mathrm{F}_{\mathrm{f}}\right\}+\left\{\mathrm{F}_{\mathrm{pr}}\right\}+\left\{\mathrm{M}_{\mathrm{r}}\right\}$
in which:

$$
\begin{aligned}
& {\left[\mathrm{K}_{\mathrm{r}}\right]=\left[\mathrm{K}_{11}\right]-\left[\mathrm{K}_{12}\right]\left[\mathrm{K}_{22}\right]^{-1}\left[\mathrm{~K}_{21}\right]} \\
& \left\{\mathrm{F}_{\mathrm{f}}\right\}=\left\{\mathrm{F}_{1}\right\}-\left[\mathrm{K}_{22}\right]^{-1}\left\{\mathrm{~F}_{2}\right\}
\end{aligned}
$$

$\left\{\mathrm{F}_{\mathrm{pr}}\right\}=\left\{\mathrm{F}_{\mathrm{p} 1}\right\}-\left[\mathrm{K}_{22}\right]^{-1}\left\{\mathrm{~F}_{\mathrm{p} 2}\right\}$ and
$\left\{\mathrm{M}_{\mathrm{r}}\right\}=\left\{\mathrm{M}_{1}\right\}-\left[\mathrm{K}_{22}\right]^{-1}\left\{\mathrm{M}_{2}\right\}$

The load vector $\left\{\mathrm{M}_{\mathrm{r}}\right\}$ in Equation 48 may be decomposed and written as:
$\left\{M_{r}\right\}=[B]\left\{M_{a}\right\}$
where:
$\left\{\mathrm{M}_{\mathrm{a}}\right\}=\left\{\mathrm{M}_{\mathrm{B}} \mathrm{M}_{\mathrm{T}}\right\}^{\mathrm{T}}$
and $[B]$ is a coefficient matrix. From Equations 48 and 49:
$\left\{\Delta_{1}\right\}=\left[\mathrm{K}_{\mathrm{r}}\right]^{-1}\left(\left\{\mathrm{~F}_{\mathrm{f}}\right\}+\left\{\mathrm{F}_{\mathrm{pr}}\right\}+[\mathrm{B}]\left\{\mathrm{M}_{\mathrm{a}}\right\}\right)$

Equation 51 can be rewritten as follows:
$\left\{\Delta_{1}\right\}=[F]\left\{M_{a}\right\}+\left\{\delta_{\mathrm{f}}\right\}+\left\{\delta_{\mathrm{p}}\right\}$
where:
$[\mathrm{F}]=\left[\mathrm{K}_{\mathrm{T}}\right]^{-1}[B]$
$\left\{\delta_{\mathrm{f}}\right\}=\left[\mathrm{K}_{\mathrm{r}}\right]^{-1}\left\{\mathrm{~F}_{\mathrm{f}}\right\}$
$\left\{\delta_{\mathrm{p}}\right\}=\left[\mathrm{K}_{\mathrm{r}}\right]^{-1}\left\{\mathrm{~F}_{\mathrm{pr}}\right\}$
Relative to the beam-column minor axis, Equation 52 can be written in the following expanded form:

Using Equation 53, the beam-column end slopes can be computed as follows:
$\left\{\begin{array}{l}\theta_{\mathbf{H}} \\ { }_{\theta \mathrm{T}}\end{array}\right\}=\left[\begin{array}{ll}\mathrm{R}_{\mathrm{BB}} & \mathrm{R}_{\mathrm{BT}} \\ \mathrm{R}_{\mathrm{TB}} & \mathrm{R}_{\mathrm{TT}}\end{array}\right]\left\{\begin{array}{l}\mathrm{M}_{\mathrm{B}} \\ \mathrm{M}_{\mathrm{T}}\end{array}\right\}+\left\{\begin{array}{c}{ }_{\mathrm{f} B} \\ { }_{\theta_{\mathrm{IT}}}\end{array}\right\}+\left\{\begin{array}{c}{ }_{\mathrm{p} B} \\ \theta_{\mathrm{pT}}\end{array}\right\}$
in which:

$$
\begin{align*}
& \theta_{B}=\left(u_{1}-u_{-1}\right) / 2 h \tag{55a}\\
& { }^{\theta} \mathrm{T}=\left(\mathrm{u}_{\mathrm{N}+1}-\mathrm{u}_{\mathrm{N}-1}\right) / 2 \mathrm{~h} \tag{55b}\\
& R_{B B}=\left(F_{21}-F_{11}\right) / 2 h \tag{55c}\\
& \mathrm{R}_{\mathrm{BT}}=\left(\mathrm{F}_{22}-\mathrm{F}_{12}\right) / 2 \mathrm{~h} \tag{55d}\\
& \mathrm{R}_{\mathrm{TB}}=\left(\mathrm{F}_{41}-\mathrm{F}_{31}\right) / 2 \mathrm{~h} \tag{55e}\\
& \mathrm{R}_{\mathrm{TT}}=\left(\mathrm{F}_{42}-\mathrm{F}_{32}\right) / 2 \mathrm{~h} \tag{55f}\\
& \theta_{\mathbf{f B}}=\left(\delta_{\mathbf{R} \mathbf{Z}}-\delta_{\mathbf{f 1}}\right) / 2 \mathrm{~h} \tag{55~g}\\
& \theta_{\mathbf{f T}}=\left(\delta_{\mathbf{f} 4}-\delta_{\mathbf{f} \mathbf{3}}\right) / 2 \mathrm{~h} \tag{55~h}\\
& \theta_{\mathrm{pB}}=\left(\delta_{\mathbf{p} 2}-\delta_{\mathrm{p} 1}\right) / 2 \mathrm{~h} \tag{55i}\\
& \theta_{\mathrm{pB}}=\left(\delta_{\mathrm{p} 4}-\delta_{\mathrm{p} 3}\right) / 2 \mathrm{~h} \tag{55j}
\end{align*}
$$

where h is the member panel length. The beam-column end moments M_{B} and M_{T} are obtained from Equation 54 as:
in which:

$$
\left\{\begin{array}{l}
M_{\mathrm{FB}} \\
\mathrm{M}_{\mathrm{TT}}
\end{array}\right\}=\left[\begin{array}{ll}
\mathrm{R}_{\mathrm{BB}} & \mathrm{R}_{\mathrm{BT}} \\
\mathrm{R}_{\mathrm{TB}} & \mathrm{R}_{\mathrm{TT}}
\end{array}\right]^{-1}\left\{\begin{array}{c}
\theta_{\mathrm{TB}} \\
{ }_{\mathrm{\theta}} \mathrm{TT}
\end{array}\right\}
$$

$\left\{\begin{array}{l}\mathrm{M}_{\mathrm{pB}} \\ \mathrm{M}_{\mathrm{pT}}\end{array}\right\}=\left[\begin{array}{ll}\mathrm{R}_{\mathrm{BB}} & \mathrm{R}_{\mathrm{BT}} \\ \mathrm{R}_{\mathrm{TB}} & \mathrm{R}_{\mathrm{TT}}\end{array}\right]^{-1}\left\{\begin{array}{c}{ }_{\mathrm{pB}} \\ \theta_{\mathrm{pT}}\end{array}\right\}$
Equation 56 represents modified slope-deflection matrix equation for an inelastic beam-column, and are hereafter referred to as inelastic slope-deflection equations. This equation can be written in the following simplified form:
$\left\{\mathrm{M}_{\mathrm{a}}\right\}=[\mathrm{S}]\{\theta\}-\left\{\mathrm{M}_{\mathrm{f}}\right\}-\left\{\mathrm{M}_{\mathrm{p}}\right\}$
where [S] is the beam-column tangent stiffness matrix; $\left\{\mathrm{M}_{\mathrm{f}}\right\}$ and $\left\{\mathrm{M}_{\mathrm{p}}\right\}$ are the load vectors resulting from the so-called $p-\delta$ effects and partial plastification. Equation 57 is derived relative to the member minor axis. A similar equation can also be derived for the major axis using the same procedure.

5.1.2 Equilibrium and Compatibility for Flexible-Connections

Initially it appears that the presence of flexible beam-column end connections may be accounted for in frame analysis as follows. If the effect of the connections is included in the [S] matrix of Equation 57, it poses a problem in satisfying the rotational compatibility condition correctly at member to spring junction when the spring stiffness is relatively large. For example, if wery stiff rotational springs are associated with a girder, an incorrect inelastic converged deflected shape of the girder results while performing the member-level analysis owing to the fact that the springs tend to nearly fix the member end rotationally. Needless to say, a very stiff spring at a connection should not necessarily result in a zero connection rotation in a frame.

To circumvent the above-mentioned difficulty, the flexible end connection is simulated as a two-noded member of zero length. This is explained by means of a typical joint as shown in Figure 38. Three members numbered 1, 2, and 3 in this figure are connected at a joint J through flexible connections with stiffnesses $\mathrm{k}_{\mathbf{T} 1}$, $\mathrm{k}_{\mathrm{B} 2}$, and $\mathrm{k}_{\mathrm{T} 3}$. The joint J is subjected to a bending moment M . The end nodes of members 1,2 , and 3 are T_{1}, B_{2}, and T_{3}, respectively. The connection lengths $T_{1} J$, $B_{2} J$, and $T_{3} J$ are each taken as zero. Equation 57 applied at T_{1}, B_{2}, and T_{3}, without including the effect of the spring in the [S] matrix, results in the following inelastic equations:
$\mathrm{M}_{\mathrm{T} 1}=\mathrm{S}_{\mathrm{TB}, 1}{ }^{\theta_{\mathbf{B} 1}}+\mathrm{S}_{\mathbf{T T}, 1}{ }^{\theta} \mathbf{T 1}-\mathrm{M}_{\mathrm{TT} 1}-\mathrm{M}_{\mathrm{pT1}}$
$\mathrm{M}_{\mathrm{B} 1}=\mathrm{S}_{\mathrm{BB}, 2}{ }^{\theta}{ }_{\mathrm{B} 2}+\mathrm{S}_{\mathrm{BT}, 2}{ }^{\theta} \mathrm{T}_{\mathbf{T}}-\mathrm{M}_{\mathrm{fB} 2}-\mathrm{M}_{\mathrm{pB} 2}$
$\mathrm{M}_{\mathrm{T} 1}=\mathrm{S}_{\mathrm{TB}, 3}{ }^{\theta} \mathrm{B} 3+\mathrm{S}_{\mathrm{TT}, 3}{ }^{\theta}{ }_{\mathrm{T} 3}-\mathrm{M}_{\mathrm{TT} 3}-\mathrm{M}_{\mathrm{pT} 3}$

The equilibrium equation at nodes $\mathrm{T}_{1}, \mathrm{~B}_{2}, \mathrm{~T}_{3}$, and J can be written as:
$\mathrm{M}_{\mathrm{T} 1}+\mathrm{k}_{\mathrm{T} 1}\left(\theta_{\mathbf{T} 1}-\theta_{\mathrm{J}}\right)=0$
$\mathrm{M}_{\mathbf{B} 2}+\mathrm{k}_{\mathbf{B} 2}\left(\theta_{\mathbf{B} 2}-\theta_{\mathrm{J}}\right)=0$
$\mathrm{M}_{\mathbf{T} 3}+\mathrm{k}_{\mathbf{T} 3}\left(\theta_{\mathbf{T} 3}-\theta_{\mathrm{J}}\right)=0$
$\mathrm{M}+\mathrm{k}_{\mathbf{T} 1}\left({ }_{\mathbf{T} \mathbf{1}}-\theta_{\mathrm{J}}\right)+\mathrm{k}_{\mathbf{B} \mathbf{2}}\left(\theta_{\mathbf{B} 2}-\theta_{\mathrm{J}}\right)+\mathrm{k}_{\mathbf{T} \mathbf{3}}\left(\theta_{\mathbf{T} 3}-\theta_{\mathrm{J}}\right)=0$

In these equations, ${ }_{\mathbf{T} 1}, \theta_{\mathbf{B 2}}$, and ${ }_{\mathbf{T} 3}$ are the member end rotations, and θ_{J} is the joint rotation. Equations 59(a) through 59(d) also satisfy the rotational compatibility condition. It is necessary to point out that Equations 59(a) through 59(d) need to be employed carefully when relatively stiff springs are present.

5.1.3 Analysis of Flexibly-Connected Imperfect Frame

5.1.3.1 Portal Frame

Figure 39 shows a schematic diagram of a flexibly-connected nonsway plane portal frame. The frame consists of two columns $A B$ and $C D$ of equal length L_{c} and a girder $B C$ of length L_{b}. The columns are partially restrained elastically at supports A and D and are joined to the girder at B and C . The beam-to-column connections at B and C are represented by rotational springs. The members in the portal frame are imperfect with the column out-of-straightness defined by Equation 17 and the girder out-of-straightness defined by Equation 18. The columns AB and CD are oriented to bend about their minor axis while the girder BC bends about its major axis. The frame is subjected to axial loads, P_{3} and P_{6}, and bending moments, M_{3} and M_{6} at specified joints nonproportionally. In this dissertation, numerical examples of frames with I-section members are presented. However, the computer programs developed can also be used for frames with rectangular hollow section members. A sample portal frame having symmetric geometry and loading can be modeled and analyzed as an equivalent beam-column. For example, setting $\mathrm{P}_{3}=$ $P_{6}=P ; M_{3}=M_{6}=M$, and taking $+u_{i}$ for the member $A B$ in Figure 39, an equivalent model as shown in Figure 40 can be deduced for the left half of the frame. This modeling is valid only if the girder BC is elastic and carries negligibly small axial load throughout the load history. Under these conditions, the equivalent spring stiffness, k_{e}, at B of the model is given by:

$$
\begin{equation*}
\mathrm{k}_{\mathrm{e}}=2 \mathrm{EI}_{\mathrm{g}} / \mathrm{L}_{\mathrm{g}}\left[1 /\left(1+2 \mathrm{EI}_{\mathrm{g}} / \mathrm{kL}_{\mathrm{g}}\right)\right] \tag{60}
\end{equation*}
$$

where g refers to the girder. This equivalent model allows a direct use of the beamcolumn analysis procedure given in Chapter 4.

For a frame which cannot be modeled in the manner described above due to geometric or loading asymmetry, the detailed inelastic slope-deflection equations in Section 5.1.1 must be utilized for each member of the frame. For the frame in Figure 39, Equation 57 applied to each member gives:
$\mathrm{M}_{23}=\mathrm{S}_{22} \theta_{2}+\mathrm{S}_{23} \theta_{3}-\mathrm{M}_{\mathrm{f} 23}-\mathrm{M}_{\mathrm{p} 23}$
$\mathrm{M}_{32}=\mathrm{S}_{32} \theta_{2}+\mathrm{S}_{33} \theta_{3}-\mathrm{M}_{\mathrm{F} 22}-\mathrm{M}_{\mathrm{p} 32}$
$\mathrm{M}_{45}=\mathrm{S}_{44}{ }^{\theta_{4}}+\mathrm{S}_{45} \theta_{5}-\mathrm{M}_{\mathrm{f} 45}-\mathrm{M}_{\mathrm{p} 45}$
$\mathrm{M}_{54}=\mathrm{S}_{54} \theta_{4}+\mathrm{S}_{55} \theta_{5}-\mathrm{M}_{\mathrm{f} 44}-\mathrm{M}_{\mathrm{p} 54}$
$M_{67}=S_{66}{ }^{\theta_{6}}+S_{67} \theta_{7}-M_{667}-M_{p 67}$
$\mathrm{M}_{76}=\mathrm{S}_{76} \mathrm{\theta}_{7}+\mathrm{S}_{77} \boldsymbol{\theta}_{7}-\mathrm{M}_{\mathbf{7 6}}-\mathrm{M}_{\mathrm{p} 76}$
Also, the following joint equilibrium and compatibility conditions must be enforced:
$\mathrm{M}_{23}+\mathrm{k}\left(\theta_{2}-\theta_{1}\right)=0$
$\mathrm{M}_{45}+\mathrm{k}\left(\theta_{4}-\theta_{3}\right)=0$
$\mathrm{M}_{54}+\mathrm{k}\left(\theta_{5}-\theta_{6}\right)=0$
$\mathrm{M}_{76}+\mathrm{k}\left(\theta_{7}-\theta_{8}\right)=0$
$\mathrm{M}_{32}+\mathrm{k}\left(\theta_{3}-\theta_{4}\right)+\mathrm{M}_{3}=0$
$M_{67}+k\left(\theta_{6}-\theta_{7}\right)-M_{6}=0$

It should be noted that Equation 62(e) and 62(f) are the total joint equilibrium equations. The geometric boundary conditions are:
$\theta_{1}=\theta_{8}=0$
that is, there is no rotational settlement of ground supports at A and D. Upon substitution of Equations 61(a) through 61(f) and 63, Equations 62(a) through 62(f) can be written in the following matrix form:
$\left[\mathrm{K}_{\mathrm{G}}\right]\left\{\theta_{\mathrm{G}}\right\}=\left\{\mathrm{M}_{\mathrm{fG}}\right\}+\left\{\mathrm{M}_{\mathrm{pG}}\right\}+\left\{\mathrm{M}_{\mathbf{G}}\right\}$

Here the subscript G is used to emphasize that this is a global frame equilibrium equation. Equation 64 is solved for $\left\{\theta_{G}\right\}$ iteratively for the frame response prediction. The vector $\left\{\mathrm{M}_{\mathrm{fG}}\right\}$ has terms like $\mathrm{M}_{\mathrm{f} 3}, \mathrm{M}_{\mathrm{fB2}}, \ldots$ of Equations 61(a), 61(b), ..., and are dependent upon the axial load P and the member displacements. The vector $\left\{\mathrm{M}_{\mathrm{pG}}\right\}$ has terms like $\mathrm{M}_{\mathrm{p} 23}, \mathrm{M}_{\mathrm{p} 32}, \ldots$ of Equations $61(\mathrm{a}), 61(\mathrm{~b}), \ldots$, and are dependent upon the internal plastic force parameters. The vector $\left\{\mathrm{M}_{\mathrm{G}}\right\}$ contains the externally applied joint moments and includes terms like M_{3} and M_{6} of Equations 62(e) and 62(f).

5.1.3.2 Two-Bay Two-Story Frame

A schematic diagram of an imperfect two-bay two-story nonsway frame is given in Figure 41. The frame consists of three continuous columns loaded relative to their minor axis, and four girders loaded about their major axis. Each member of the frame has a length L . The beam-to-column connections are simulated as elastic springs with a constant rotational stiffness k . The frame is subjected to joint loading consisting of axial loads, P , and/or bending moments, M. Following a procedure similar to that presented in Section 5.1.3.1, the governing equilibrium equations for
this problem can be obtained in the form given by Equation 64.

5.2 Load Paths and Combinations

5.2.1 Load Paths

With reference to Figure 15, following load paths are used for the numerical study presented in Section 5.4:

NP9: Both p and $\overline{\mathrm{m}}$ are applied simultaneously in a proportional manner with a proportionality constant, ς, defined as:
$5=\overline{\mathrm{m}} / \mathrm{p}$
NP9 corresponds to the path OB.
NP10: An axial load $p=p^{*}$ is applied first, followed by both p and \bar{m} applied simultaneously, satisfying the relationship:
$\mathrm{p}=\overline{\mathrm{m}}+\mathrm{p}^{*}$
NP10 corresponds to the path OHB.
NP11: Both p and m are applied simultaneously in a proportional manner, as in Equation 65, until m reaches the ultimate value obtained in NP10. This is followed by an increase in the axial load p while holding m constant. NP11 corresponds to the path OIB.

The loads are incremented until the load-carrying capacity of the structure is reached. When load path NP9 is used, the analysis is carried out following the stress-Strain laws given in Figures 3(a) as well as 3(b) for a critical view on the tangent modulus approach which neglects elastic unloading.

5.2.2 Load Combinations

Unlike for a single member, the portal and two-bay two-story frames can be subjected to various load combinations due to the presence of a number of joints. The following load combinations are utilized in the present study.

a. Portal frame

Referring to Figure 39:
FL1: An axial load $P_{3}=P$, and a counterclockwise bending moment $M_{3}=M$ are used while keeping $\mathrm{P}_{6}=\mathrm{M}_{6}=0$.

FL2: Same loading as FL1, except that the bending moment $\mathrm{M}_{3}=\mathrm{M}$ is applied clockwise.

FL3: In addition to the loads in $\mathrm{FL} 1, \mathrm{P}_{3}=\mathrm{P}$ and $\mathrm{M}_{3}=\mathrm{M}$ are used.
FL4: The same loading condition as in FL3 is used, except that M_{3} and M_{6} are reversed in direction.
b. Two-bay two-story frame

Referring to Figure 41:
FL5: P and M are applied at joint A only.
FL6: The loading is the same as in FL5, except that M is clockwise.
FL7: All the loads shown at the joints A through F are applied.
FL8: The loading is the same as in FL7, except that the direction of M is reversed.

5.3 Solution Procedure

Equation 64 is materially nonlinear since the stiffness matrix $\left[\mathrm{K}_{\mathbf{G}}\right]$ and the moment vectors $\left\{\mathrm{M}_{\mathrm{fG}}\right\}$ and $\left\{\mathrm{M}_{\mathrm{pG}}\right\}$ are dependent upon the deformation vector $\left\{\theta_{\mathbf{G}}\right\}$. The following iterative scheme is devised to predict the load-deformation
response of the frame:

1. Evaluate the initial elastic properties for each member and deduce Equation 57 for each member.
2. Assemble global stiffness matrix $\left[\mathrm{K}_{\mathbf{G}}\right]$ in equation 64 .
3. Prescribe small loads and formulate the load vectors $\left\{\mathrm{M}_{\mathrm{fG}}\right\}$ and $\left\{\mathrm{M}_{\mathrm{pG}}\right\}$ in Equation 64.
4. Solve Equation 64 for a set of deformations $\left\{\theta_{\mathbf{G}}\right\}$.
5. Compute the member end moment vectors $\left\{\mathrm{M}_{\mathrm{a}}\right\}$ using Equation 57. Next, determine the member end actions using simple statics, and formulate the load vector $\{\mathrm{M}\}=\{\mathrm{M}\}_{\mathrm{i}}$ in Equation 37(a). Here, i refers to the iteration number.
6. Analyze the members with $\{\mathrm{M}\}_{\mathrm{i}}$ individually using the procedure given in Chapter 4, and compute the converged member stiffness matrices $[\mathrm{K}]$ in Equation 37(a).
7. Update the inelastic slope-deflection Equation 57 for each member, reassemble [$\left.\mathrm{K}_{\mathrm{G}}\right],\left\{\mathrm{M}_{\mathrm{fG}}\right\}$ and $\left\{\mathrm{M}_{\mathrm{pG}}\right\}$, and update $\left\{\theta_{\mathbf{G}}\right\}$ using Equation 64.
8. Recompute the member end moment vectors $\left\{\mathrm{M}_{\mathrm{a}}\right\}$ using Equation 57, and update $\{M\}=\{M\}_{i+1}$ in Equation $37(a)$.
9. If $\left|\{M\}_{i+1}-\{M\}_{i}\right| \leq\{\alpha\}$, where $\{\alpha\}$ is the tolerance taken as 0.01%, go to Step 11.
10. Set $\{M\}_{i}=\{M\}_{i+1}$, and go to Step 6 .
11. If $\left|\left[\mathrm{K}_{\mathbf{G}}\right]\right| \rightarrow 0$, go to Step 13 .
12. Increase (or change) the external loads, that is, P and/or M , update the load vectors $\left\{\mathrm{M}_{\mathrm{fG}}\right\}$ and $\left\{\mathrm{M}_{\mathrm{pG}}\right\}$ in Equation 64, and go to Step 4.
13. Stop.

The solution procedure described herein is programmed on a sequential computer using FORTRAN and named NONPRFRM. A listing of this computer program is included in Appendix E.

5.4 Numerical Study

To gain an in-depth understanding of the behavior of the nonsway plane frames referred to in Section 5.1.2, an extensive numerical study is conducted using the solution procedures described in Chapter 4 and Section 5.3. Since the number of variables is quite large, the material properties and the dimensions of the members are fixed. Each beam-column is a W 8×31 section loaued about its minor axis. Each girder, however is a S 12×31.8 section loaded about its major axis. The length of each member is taken as 15 ft . The frame is A36 steel, that is, with $\mathrm{E}=29,000 \mathrm{ksi}$, $\sigma_{y}=36 \mathrm{ksi}$, and following the $\sigma-\varepsilon$ relationship of either Figure 3(a) or 3(b). The following two magnitudes of the initial crookedness amplitudes are used for the beam-columns:
$\mathrm{u}_{01}=\mathrm{L} / 1000$
$\mathrm{u}_{02}=\mathrm{L} / 100,000$
Similarly, the initial crookedness amplitudes for the girders are:
$\mathrm{v}_{01}=\mathrm{L} / 1000$
$\mathrm{v}_{02}=\mathrm{L} / 100,000$
Each connection behaves elastically with a stiffness $\mathrm{k}=13,333 \mathrm{in}$-kip/rad. A linear moment-rotation relationship is adopted since the beam-column behavioral study in Chapter 4 indicated that this type of connection provides significant load path
dependency.

5.4.1 Equivalent Structural Model

This section contains the outcome of a numerical study of the portal frame in Figure 39 and its equivalent structural model in Figure 40 under the symmetry conditions described in Section 5.1.2. Referring to Figure 40, three types of equivalent structures E1, E2, and E3 with $\mathrm{u}_{0 \mathrm{i}}$ values in Equation 17 given by $+\mathrm{u}_{01}$, $-\mathrm{u}_{01}$, and $+\mathrm{u}_{02}$, respectively, are considered. A total of 16 equivalent models designated as C 1 through C16 are considered to investigate the influence of load paths NP9, NP10, and NP11 on their behavior. The stress-strain relationship shown in Figure 3(a) is adopted for all of the cases except for C14 and C16 for which the relationship ignoring material unloading shown in Figure 3(b) is used. The maximum axial load, $\mathrm{p}_{\max }$, and the maximum applied moment, $\overline{\mathrm{m}}_{\max }$, as found from the analysis are given in Table 19.

Figures 42 through 44 present some of the key results of the study graphically. Figure 42 exhibits the dimensionless load versus applied moment ($p-m$) relationships for the three load paths NP9, NP10, and NP11 and the cases C1, C2, C13, and C14 for E1. With NP10, $\mathrm{p}_{\text {max }}$ and $\overline{\mathrm{m}}_{\text {max }}$ are found to be 0.84 , and 0.33 , respectively, for case C 1 . With NP11, $\dot{\mathrm{m}}_{\max }$ and $\mathrm{p}_{\max }$ are found to be 0.33 , and 0.86 , respectively, for C2. With NP9, the case C13 based on $\sigma-\epsilon$ relationship in Figure 3(a) provides a somewhat greater maximum load-carrying capacity than that for C14 with $\sigma-\epsilon$ relationship in Figure 3(b). Also, the maximum moments obtained for the cases C1 and $C 2$ are found to be significantly less than those obtained for C13 and C14. For example, case C13 provides a moment capacity of 0.80 which is 0.47 in excess of that
for C 1 while the axial loads do not differ significantly.
Figure 43 shows dimensionless load versus column midheight deflection ($\mathrm{p}-\mathrm{u}_{\mathrm{c}}$) relationships for the cases $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 13$, and C 14 of frame E 1 . The deflection is nondimensionalized by one half the member flange width. The $\mathrm{p}-\mathrm{u}_{\mathrm{c}}$ responses obtained for the cases C1 and C2 with NP10 and NP11, respectively, indicate that the deflections are positive throughout the history of loading. However, the deflections changed their sign during the loading for the cases C13 and C14 with NP9, since the end moments had a more dominant effect as compared with the socalled P-delta effect.

Figure 44 shows stiffness degradation curves corresponding to the cases $\mathrm{C} 1, \mathrm{C} 2$, C 13 , and C 14 . In this figure, D is the dimensionless determinant defined in Equation 43. The D-p curves for the cases C1, C2, and C13 in Figure 44 show valleys in the form of rapid changes in D indicating that considerable strain reversal is present in the structure. Similar findings were also observed for beam-column studies in Chapter 4. Such valleys, however, are not observed for the case C14 since the material unloading is not included.

5.4.2 Portal Frame Behavior

The portal frame shown in Figure 39 is first analyzed numerically under various load histories. Later, extensive additional computer runs were made to generate load-moment interaction curves. The load combinations FL1 through FLA with the load paths NP9 through NP11 described in Section 5.2 are utilized to analyze 6 types of portal frames with various configurations of the initial crookedness. These frames are designated as FR1 through FR6 and are described below:

FR1: All of the members $A B, B C$, and $C D$ are nearly perfect, with $u_{0 i}$ in Equation 17 given by u_{02} in Equation 68 for members $A B$ and $C D$, and with $v_{0 i}$ in Equation 18 given by v_{02} in Equation 70 for member $B C$. The u_{i} for members $A B$ and $C D$ is as shown in Figure 39 while $v_{\mathbf{i}}$ for member $B C$ is opposite to that shown in this figure.

FR2: The members $A B$ and $C D$ are initially crooked as shown in Figure 39 with the midspan amplitudes equal to u_{01} in Equation 67 , and $\mathrm{v}_{\mathbf{i}}$ for BC is opposite to the direction shown in this figure with its midspan amplitude given by Equation 69.

FR3: The member $A B$ is nearly perfect as for the frame FR1, with $u_{0 i}=u_{02}$, and the members BC and CD are initially crooked as for the frame FR2.

FR4: The members $A B$ and $B C$ are initially crooked as in FR2, and the member CD is nearly perfect as for the frame FR1.

FR5: The member $A B$ is initially crooked as in FR2, the member $C D$ is initially crooked in the direction opposite to that indicated in Figure 39, with $u_{0 i}=$ u_{01} in Equation 67, and the member BC is initially crooked as for the frame FR2.

FR6: The configuration of this frame is the same as FR5, except that the lateral support at C is replaced by a support at B.

The frame FR6 is analyzed in order to gain an insight into the nature of the induced girder axial load and its effect on the frame behavior. The parametric study conducted thus encompasses the frames FR1 through FR6 and the frame loadings FL1 through FL4 for the load paths NP9, NP10, and NP11. For NP10, p*
in Equation 65 is taken as 0.5 .
The numerical results for frames FR1 through FR6 are summarized in Tables 20 and 21. The peak loads obtained for the frames FR1 through FR4 with FL1 and FL2 following the three load paths NP9, NP10, and NP11 are given in Table 20. The results clearly indicate that the nonproportional load paths NP10 and NP11 result in substantially different maximum load-carrying capacities as compared to that resulting from the proportional load path NP9. For the frame FR2 with FL1, for example, the load paths NP10 and NP11 result in practically the same peak loads, $\mathrm{p}_{\max }=0.71$ and $\overline{\mathrm{m}}_{\max }=0.21$, whereas $\mathrm{NP9}$ results in $\mathrm{p}_{\max }=0.64$ and $\overline{\mathrm{m}}_{\max }=$ 0.64 . Similar observations are also made for other frames included in this table.

Table 21 summarizes the maximum loads for frames FR1, FR2, FR5, and FR6 for FL3 and FLA with NP9 through NP11. It should be noted that the structural model used in Section 5.4.1 is equivalent to the frames FR1 and FR2 for the load combinations FL3 and FL4. The peak loads for FR1 with NP10 and NP11 in Table 21 are found to be practically the same as those for the equivalent structural models C9 through C12 in Table 19. Also, the peak loads for the frame FR2 with load paths NP10 and NP11 are fairly similar to those obtained for the cases C1 through C8. However, the maximum loads for the cases C 13 through C16 are somewhat greater than those for the frame FR2 with the load path NP9. This discrepancy is attributed to the softening effect of the induced axial compression in the girder. This means that a somewhat over-estimated value of k_{e} is used in the equivalent structural model.

Figures 45 through 53 present the key results obtained for the portal frame FR2 with the load combination FL3. The overall frame behavior is presented in Figures 45 through 48 and the response of the beam-column $A B$ of this frame is shown in Figures 49 through 52. The load-deformation response of the frame is represented by the dimensionless axial load, p, versus the joint rotation, θ_{A} relationship. When the proportional load path NP9 is used, the $\mathrm{p}-\theta_{\mathrm{A}}$ relations for FR2 based on the material curves of Figure 3(a) or 3(b) are nearly the same, as shown in Figure 45. The corresponding stiffness degradation curves are shown in Figure 46. It is interesting to note that the curve with the tangent modulus approach shows a significant loss of frame stiffness compared with that including material unloading. The members of the frame, with material elastic unloading included, experience considerable redistribution of stresses resulting in localized strain reversals.

Figures 47 and 48 show, respectively the $\mathrm{p}-\theta_{\mathrm{A}}$ and $\mathrm{D}-\mathrm{p}$ relationships for the frame FR2 with the load combination FL3 and subjected to the load paths NP10 and NP11. For NP10, the $p-\theta_{A}$ relation indicates a slight reduction in the joint rotation as the loads are increased. The probable cause of such a reduction in deformations may be explained as follows. Throughout the loading history of the frame, the beam-column AB exhibits a reverse curvature that is to say that it is bent in an S curve because of the presence of the rotational restraints at the base of the frame. Also, the beam-column experiences substantial yielding as the loads reach the maximum load-carrying capacity of the frame. At this instant, the rotational restraints tend to cause a snap-through type of beam-column deformation, thus
elastically unloading the beam-column to gain enough strength to resist the snapthrough type of deformations. Eventually, the structure fails due to the instability of beam-columns. Figure 51 showing the load-deformation response of the beamcolumn AB clearly substantiates these conclusions by indicating a reduction in the member displacements followed by further increase as the load is incremented.

The stiffness degradation curves for the frame FR2 with FL3 and the beamcolumn AB of this frame are shown in Figures 48 and 52, respectively. These curves exhibit the presence of substantial unloading in the form of valleys. Similar observations are also made in a number of the frame results.

To generate the interaction curve between p and $\overline{\mathrm{m}}$, frame FR2 with load combination FL3 with the load path NP9 is considered. The following 9 different proportionality constants, ζ, defined by Equation 65 are used for the analysis:

$$
\begin{array}{lll}
\zeta=0.00 & \zeta=0.25 & \zeta=0.50 \\
\zeta=1.00 & \zeta=2.00 & \zeta=4.00 \tag{71}\\
\zeta=8.00 & \zeta=20.00 & \zeta=\infty
\end{array}
$$

The results from the analysis are graphically represented by an interaction curve shown in Figure 53. The results from the numerical studies with the load paths NP10 and NP11 are also plotted in the form of data points. Figure 53 is noticed to predict frame maximum loads accurately. Within the parameters considered herein, this interaction curve forms an envelope to predict the strength of the frame FR2.

5.4.3 Two Bay Two-Story Frame Behavior

The two-bay two-story frame shown in Figure 41 is analyzed first for various
load histories, followed by extensive additional analyses to construct a load-moment interaction envelope. The following two different frames with prescribed initial crookedness configurations are used in the numerical study:

FR7: Frame with nearly perfect members, that is, each of the beam-column has $u_{0 i}=u_{02}$ given by Equation 68 and each of the girder has $v_{0 i}=v_{02}$ given by Equation 70 with all of the members initially curved as shown in Figure 41.

FR8: Frame with the Beam-columns ADG and CFI are initially crooked as shown in Figure 41 with each member having $u_{0 i}=u_{01}$ in Equation 67, and the girders are initially crooked as shown in this figure with each girder having $v_{0 i}=v_{01}$ as given in Equation 69.

The frames FR7 and FR8 are subjected to the four load combinations FL5 through FL8 and load paths NP9 through NP11 described in Section 5.2. In this study, $\mathrm{p}^{*}=0.50$ is used in Equation 65 for load combinations FL5 and FL6, and $\mathrm{p}^{*}=0.25$ is used for the loading combinations FL7 and FL8.

Table 22 presents a summary of the results obtained for the frames FR7 and FR8 with load combinations FL5 through FL8 when subjected to the proportional load path NP9, and the nonproportional load paths NP10 and NP11. A review of the maximum loads recorded in this table indicates that the load path $\mathrm{N}: \mathrm{P} 9$ predicts moment capacities unconservatively when compared to those obtained for the load paths NP10 and NP11. For example, for the frame FR8 with FL6, NP9 gives $\bar{m}_{\text {max }}$ $=0.68$, whereas NP10 or NP11 predict $\overline{\mathrm{m}}_{\max }=0.22$. Similar differences in moment capacities is observed for all of the frames included in Table 22.

An examination of the computer output for the frame FR8 with load combination FL8 subjected to the load path NP11 indicated that the maximum loadcarrying capacity of this frame is governed by the failure of the beam-column EH in contrast to a general expectation of a failure of either DG or FI in Figure 41. This unpredictable behavior is explained as follows. The computer output revealed that considerable yielding of the beam-columns DG and FI takes place when the inelastic action is initiated in the frame. Further change in the applied loads activate the nearly perfect beam-column EH to share somewhat of a greater load relative to the yielded beam-columns DG and FI. During such redistribution of loads, the beam-columns DG and FI experience material unloading thereby gaining some amount of stiffness. This material unloading is caused by the restraining effect offered by the member end partial rotational restraints. This process continues in the beam-columns DG and FI while the member EH begins to plastify. The restraining, however, is not felt by the beam-column EH since it is nearly straight, additionally, the symmetrical bending of the frame induces no significant bending moments on EH. Consequently, the beam-column EH is deprived of any possible material unloading while the members DG and FI continue to redistribute the internal loads. Finally, the beam-column EH becomes completely plastic resulting in the eventual collapse of the frame.

The results corresponding to those reported in Table 22 for FR8 with FL7 are shown graphically in Figures 54 through 62. A detailed study of these results indicate the two-bay two-story frame behavior to be consistent with that of the portal frame studies reported in Section 5.4.2. The interaction diagram for the frame FR8
with FL7 shown in Figure 62 is constructed by carrying out a number of frame analyses using the different values of the proportionality constants given from Equation 71. Here, the interaction curve is found to form an envelope closely predicting the maximum strength of the frame for various load paths.

6. CONCLUSIONS AND FUTURE RESEARCH

The main thrust of this investigation is on a rigorous analysis of the influence of nonproportional loads on the inelastic response of imperfect beam-columns and flexibly-connected steel nonsway plane frames. The analysis is performed using a finite-difference technique combined with an iterative solution procedure. A set of inelastic slope-deflection equations is derived and utilized for the frame analysis. The suitability of concurrent computing is investigated through inelastic analysis of cross sections and biaxially imperfect columns. The main computational work, however, is performed using the sequential computer.

A number of examples have been presented throughout this dissertation encompassing the above-mentioned inelastic problems. The cross-sectional and member studies include both I-sections and hollow rectangular sections. The frame studies are limited to I-section members to restrict the volume of research.

The conclusions drawn from this research are discussed in the following sections and appropriate recommendations for further research are made at the end.

6.1 Conclusions

To conveniently present the conclusions, the studies are grouped into three categories, namely, (i) Concurrent Computing Studies, (ii) Beam-Column Studies, and (iii) Frame Studies. Various conclusions drawn for each category are discussed
here.

6.1.1 Concurrent Computing

The effectiveness of concurrent computing using the Finite Element Machine is studied and the corresponding conclusions are presented as follows:
A. Cross-sectional analysis

1. A maximum speedup factor of 7.69 is achieved on eight processors resulting in an efficiency of 96.1 per cent.
2. The minimum speedup factor for the study is found to be 7.09 on eight processors which corresponds to 88.6% efficiency.
3. The speedup factors increased as the number of processors are reduced. This is primarily due to an efficient distribution of computational load between the processors and also reduction in communication time between the processors.
B. Column studies
4. In general, the execution times required to analyze hollow rectangular columns (CN5-CN8) are greater than those for the hollow square columns (CN1-CN4). This difference in computational time is explained as follows. The hollow rectangular column began yielding at a lower load level due to the smaller bending resistance about the minor axis and resulted in a greater number of cycles for convergence in the nonlinear range compared to the hollow square column.
5. The speedup factors are found to be of the same order for both hollow square and rectangular columns although larger computational times are needed for
the latter ones.
6. The communication overhead needed is negligibly small since the analysis is dominated by extensive arithmetical computations on all processors. The development of the algorithm exploits the inherent quality of processors that are designed to be efficient computers. Therefore, algorithms which exploit this property will derive efficient speedups.
7. Generally, the computational time needed to analyze the structure increases with the degree of end fixity of the column.
8. The computational efficiency decreases as the number of processors increase, suggesting an optimal limit on the number of processors that may be employed. In summary, the concurrent computing algorithms are found to be efficient to analyze this class of nonlinear problems.

6.1.2 Beam-Columns

Specific studies on beam-columns include an investigation of the restraint modeling, and a behavioral study of uniaxially and biaxially loaded I-section beamcolumns and biaxially loaded hollow rectangular section beam-columns subjected to various load paths. The following conclusions are drawn form the numerical studies:
A. Restraint modeling effect on beam-columns

1. The studies indicate that the end restraints can be practically modeled by a simple linear or at the most a bilinear moment-rotation relation.
2. The beam-column analyses predict that the strength of the members is not highly sensitive to the connection modeling.
3. When the connection possesses a relatively large stiffness, a simple linear model will provide accurate connection response.
4. These models in general provide simple and accurate moment-rotations relationship for a connection spring.
B. Nonproportionally loaded I-section beam-columns
5. The major axis response of beam-columns is not load path dependent for all practical purposes.
6. The minor axis response of beam-columns is load path dependent when elastic rotational restraints are present.
7. With elastic-plastic end restraints, the load paths provide nearly the same peak loads.
8. For load paths NP1 and NP2, the load conditions LC1 and LC2 provide nearly the same peak loads, while load paths LC3 and LC4 exhibit a substantial difference for the minor axis loading when elastic restraints are present.
9. A consideration of appropriate nonproportional loadings may provide greater allowable loads for beam-columns with elastic end restraints.
10. Neglecting the effects of material unloading may lead to unconservative estimation of load-carrying capacity of beam-columns.
11. A greater degree of unconservativeness results for the biaxially loaded beamcolumns.
12. Considerable redistribution of stresses takes place along the member length in the inelastic range.
13. The study on beam-columns with proportional loads indicated that the tangent
modulus approach exhibits a fictitious ductile behavior of the member. Such fictitious ductility is not noticed in the experimental investigations.
C. Nonproportionally loaded hollow rectangular beam-columns:
14. Significant load dependence exists for biaxially loaded hollow rectangular beam-columns.
15. Critical combination of loadings in a load path may dramatically change the strength of the member in comparison to yet another the load path(s).
16. The load path dependence disappears only for certain load combinations, or for the special case of pinned boundaries.
17. Considerable material unloading is present and is indicated in the form of valleys in the stiffness degradation curves.
18. Substantially a greater number of cross-sectional elemental areas are required when the analysis includes material unloading.
19. The members analyzed using the tangent modulus approach exhibit a fictitious yield plateau in contrast to the relatively less ductile behavior observed in experimental investigations.

6.1.3 Frame Studies

The following conclusions are derived from the frame studies conducted in this research:
A. Equivalent structural model

1. The peak loads for imperfect structure are larger than those for the nearly perfect structural model when the applied moment causes deflection opposite
to the initial crookedness.
2. Nearly the same peak loads result for structural models subjected to load paths NP10 and NP11.
3. The strength of nonproportionally loaded equivalent structural model is substantially less than that of the proportionally loaded one.
4. There is a dramatic difference in the behavior between the nonproportionally loaded and the proportionally loaded structures.
5. In some cases, the equivalent structural model provided unconservative peak loads compared to the corresponding frame analyses results.
B. Portal and two-bay two-story frames
6. The inelastic slope-deflection equation method of frame analysis is found to be simple and practical.
7. The number of degrees of freedom involved for the global frame response prediction is quite small due to the inelastic slope-deflection method.
8. Specific case studies for the portal frame analyses compared with those of equivalent structural model indicated that the frame analysis procedures are reliable.
9. The effect of P-delta effects on girders is found to be significant for some of the portal frames analyzed.
10. The maximum load-carrying capacity of frames, in general, are found to be unconservative when tangent modulus approach was used.
11. For the frames considered, the girders in general exhibited elastic behavior.
12. The frame analyses using tangent modulus unloading of the material did not
exhibit a large yield plateau unlike in the case of individual member studies even when the tangent modulus approach is used.
13. Substantial redistribution of loads takes place in the inelastic range for the frames.
14. There is a significant difference in the behavior between the nonproportionally and proportionally loaded frames.
15. For portal frames, the failure in general is governed by the instability failure of the beam-columns.
16. When the lateral support location is altered in the frame as in FR6 relative to FR5, the girder experienced a tensile axial load indicating that the location of lateral support can alter the behavior of girders.
17. For two-bay two-story frames, the outer columns experienced considerable redistribution of stresses and the frame maximum loads are attained when the lower story central beam-column eventually failed due to inelastic instability, in contrast to the generally expected failure of the initially crooked outer beamcolumns.
18. The interaction diagrams developed for the frames form a type of maximum load envelope which govern the maximum load-carrying capacity for these frames when subjected to various load paths.

The present study clearly indicates that the combined influence of nonproportional loads, imperfections, and flexible connections on the behavior and strength of structural members and frames is very significant. In general, proportionally loaded structures provided unconservative maximum loads for beam-
columns as well as frames. The inelastic slope-deflection equations developed for the frame analysis are found to efficient and simple for practical use.

6.2 Future Research

Considering the scope of the present research the following recommendations are made for future investigations.

1. No verifiable data is available at present in the literature to experimentally corroborate the theoretical developments in this study. Therefore, experimental investigation of the structural behavior investigated herein will be a challenge in the future.
2. The inherent potential for parallelization of this theoretical formulation makes it a suitable candidate for application on concurrent computers.
3. The concept of the inelastic slope-deflection equations for beam-columns may be extended to investigate the behavior of sway frames.
4. Modifications of member equilibrium equations to include member loads in addition to the applied nodal loads will enhance the analytical capability of the computer program developed herein.
5. The theoretical formulations developed for plane frame analyses may be extended to study the behavior of space frames.
6. An experimental investigation of various load paths in real-life structures may be performed for use in the future research.
7. The torsional effects of the open section members may be incorporated into the present analysis to enhance its scope.

REFERENCES

1. Engesser, F., Schweizenicshe Bauzeitung, Vol. 26, 1895.
2. Euler, L., "Elastic Curves," Translated and Annotated by Oldfather, W. A., Ellis, C. A., and Brown, D. M., 1933.
3. Shanley, F. R., "Inelastic Column Theory," Journal of Aeronautical Sciences, Vol. 14, 1947.
4. Osgood, W. R., "The Effect of Residual Stress on Column Strength," Proceedings of First National Congress of Applied Mechanics, June, 1951.
5. Duberg, J. E., and Wilder, T. W., "Inelastic Column Behavior," NACA Technical Note, No. 2267, Washington, D. C., January, 1951.
6. Huber, A. W., and Beedle, L. S., "Residual Stress and Compressive Strength of Steel," The Welding Journal, Vol. 33, December, 1954.
7. Ketter, R. L., "Stability of Beam-Columns above Elastic Limit," Proceedings of ASCE, Vol. 81, Separate No. 692, May, 1955.
8. Driscoll, G. C., and Beedle, L. S., "The Plastic Behavior of Structural Members and Frames," The Welding Journal, Vol. 36, No.6, June, 1957.
9. Munse, W. H., Bell, W. G., and Chesson, E., "Behavior of Riveted and Bolted Beam-to-Column Connections," Journal of Structural Division, ASCE, Vol. 85, March, 1959.
10. Galambos, T. V., "Influence of Partial Base-Fixity on Frame Stability," Journal of the Structural Division, ASCE, Vol. 86, No. ST5, May, 1960.
11. Galambos, T. V., and Ketter, R. L., "Columns Under Combined Bending and Thrust," Transactions of ASCE, Vol. 126, Part I, 1961.
12. Ketter, R. L., "Further Studies on the Strength of Beam-Columns," Proceedings of $A S C E$, Vol. 87, No. ST6, August, 1961.
13. Galambos, T. V., and Prasad, J., "Ultimate Strength Tables for Beam-Columns," Welding Research Council Bulletin, No. 78, June, 1962.
14. Saap, D. A., "Inelastic Stability of Rectangular Frames," Ph. D. Dissertation, University of Illinois, Urbana-Champaign, 1964.
15. Citipitioglu, E., "Stability of Rigid-Jointed Space Frames," Ph. D. Dissertation, Oklahoma State University, Oklahoma, 1965.
16. Dwyer, T. J., and Galambos, T. V., "Plastic Behavior of Tubular Beam-Columns," Journal of the Structural Division, ASCE, Vol. 91, No. ST4, August, 1965.
17. Driscoll, G. C., et al, "Plastic Design of Multi-Story Frames," Fritz Engineering Laboratory Report, No. 273.20, Lehigh University, Bethlehem, Pennsylvania, 1965.
18. McVinnie, W. W., "Elastic and Inelastic Buckling of an Orthogonal Space Frame," Ph. D. Dissertation, University of Illinois, Urbana-Champaign, 1966.
19. Culver, G. C., "Exact Solution of the Biaxial Bending," Journal of the Structural Division, ASCE, Vol. 92, No. ST2, April, 1966.
20. Korn, A., "The Elastic-Plastic Behavior of Multistory, Unbraced, Planar Frames," Ph. D. Dissertation, Washington University, St. Louis, Missouri, 1967.
21. Birnsteil, C., "Experiments on H-Columns Under Biaxial Bending," Journal of the Structural Division, ASCE, Vol, 94, No. ST10, October, 1968.
22. Lu, L. W., and Kamalvand, H., "Ultimate Strength of Laterally Loaded Columns," Journal of the Structural Division, ASCE, Vol. 94, No. ST6, June, 1968.
23. Galambos, T. V., Structural Members and Frames, Printice Hall, Inc./Englewood Cliffs, New Jersey, 1968.
24. Lewitt, C. S., Chesson, E., and Munse, W. H., "Restraint Characteristics of Flexible Rivetted and Bolted Beam-To-Column Connections," Engineering Experiment Station Bulletin, No. 500, University of Illinois at Urbana-Champaign, January, 1969.
25. Sharma, S. S., and Gaylord, E. H., "Strength of Steel Beam-Columns with Biaxially Eccentric Load," Journal of the Structural Division, ASCE, Vol. 95, No. ST12, December, 1969.
26. Romstad, K. M., and Subramanian, C. V., "Analysis of Frames with Partial Connection Rigidity," Journal of the Structural Division, ASCE, Vol. 96, No. ST11, November, 1970.
27. Gupta, S. P., and Agarwal, M. K., "Ultimate Strength of Beam-Column Hinged
at Both Ends," Journal of the Institute of Engineers (India), Civil Engineering Division, Vol. 54, Patr CI3, January, 1974.
28. Harung, H. S., Elektr Sveisning A/S, B. N., Miller, M. A., and Brotton, D. M., "Imperfections in Axially Loaded Plane Frames," International Journal of Numerical Methods in Engineering, Vol. 8, n4, 1974.
29. Nair, R. S., "Overall Elastic Stability of Multistory Buildings," Journal of the Structural Engineering, ASCE, Vol. 101, n12, December, 1975.
30. Wood, B. R., Beaulieu, D., and Adams, P. F., "Failure Aspects of Design by P-Delta Method," Journal of Structural Engineering, ASCE, Vol. 102, n3, March, 1976.
31. Lispon, S. L., "Single-Angle Welded-Bolted Connections," Journal of the Structural Division, ASCE, Vol, 103, No. ST3, March, 1977.
32. Simitses, G. J., and Kunadis, A. N., "Nonlinear Buckling Analysis of Imperfection Sensitive Simple Frames," International Colloquium on Stability of Structures Under Static and Dynamic Loads, Washington, D. C., May, 1977.
33. Hayashi, K., and Yokoyama, M., "Direct Simulation Of Engineering Problems With a Fast Array Computer," Bulletin of the Japan Society of Mechanical Engineers, Vol. 20, No. 149, 1977.
34. Chen, W. F., and Atsuta, T., Theory of Beam-Columns, Vol. 2, McGraw-Hill, Inc., New York, 1977.
35. Smith, B., "A Pipelined Shared Resource MIMD Computer," Proceedings of 1978 International Conference on Parallel Processing, August, 1978.
36. Jordan, H., "A Special Purpose Architecture for Finite Element Analysis," Proceedings of 1978 International Conference on Parallel Processing, August, 1978.
37. Ackroyd, M. H., "Nonlinear Inelastic Stability of Flexibly-Connected Plane Steel Frames," Ph. D. Dissertation, University of Colorado, Boulder, 1979.
38. Razzaq, Z., Chang, J. G., and Kruger, P. K., "Initially Crooked Columns With Partial Restraints," Annual Technical Session, Structural Stability Research Council, New York, 1980.
39. Chen, W. F., "End Restraint and Column Stability," Journal of the Structural Division, ASCE, Vol. 106, No. ST11, November, 1980.
40. Balio, G., and Campanini, G., "Equivalent Bending Moments for BeamColumns," Journal of Constructional Steel Research, Vol. 1, No. 3, May, 1981.
41. Rahimzadeh-Hanachi, J., "Nonlinear Elastic Frame Analysis by Finite Element," Ph. D. Dissertation, Michigan State University, Michigan, 1981.
42. Moncarz, P. D., and Gerstle, K. H., "Steel Frames With Nonlinear Connections," Journal of Structural Engineering, ASCE, Vol. 107, August, 1981.
43. Burden, R. L., Faires, J. D., and Reynolds, A. C., Numerical Analysis, Second Edition, Prindle, Weber \& Schmidt, Massachusetts, 1981.
44. Stowan, S. H., "Nonlinear Collapse Load Analysis of Braced Frame Structures," Ph. D. Dissertation, Case Western University, Cleveland, 1982.
45. Razzaq, Z., and McVinnie, W. W., "Rectangular Tubular Steel Columns Loaded Biaxially," Journal of Structural Mechanics, ASCE, Vol. X, No. 4, 1982.
46. Marglichi, K., "Non-Rigid Frame Analysis," Ph. D. Dissertation, Washington State University, St. Louis, Missouri, 1982.
47. Storaasli, O. O., Peebles, S., Crockett, T. W., Kott, J. D., and Adams, L. M., "The Finite Element Machine: An Experiment in Parallel Processing," Research in Structures and Solid Mechanics-1982, NASA CP-2245, October, 1982.
48. Adams, L. M., "Iterative Algorithms for Large Sparse Linear Systems on Parallel Computers," Ph. D. Dissertation, University of Virginia, Charlottesville, 1982.
49. Jones, S. W., Kirby, P. A., and Nethercot, D. A., "Analysis of Frames With Semi-Rigid Connections - A State of the Art Report," Journal of Constructional Steel Research, Vol. 3, n2, 1983.
50. Razzaq, Z., "Restraint Effect on Steel Column Strength," Journal of Structural Engineering, ASCE, Vol. 109, No. 2, February, 1983.
51. Razzaq, Z., and Calash, A. Y., "Partially Restrained Columns With Biaxial Crookedness and Residual Stresses," Structures Congress, ASCE, Houston, Texas, October, 1983.
52. Leondorf, D., "Advanced Computer Architecture for Engineering Analysis and Design," Ph. D. Dissertation, University of Michigan, Ann Arbor, Michigan, 1983.
53. Chen, W. F., and Lui, E. M., "Columns With End Restraint and Bending in Load Resistance Design Factor," Engineering Journal, AISC, 3rd Quarter, Vol. 22, No. 3, 1985.
54. Razzaq, Z., and Calash, A. Y., "Imperfect Columns With Biaxial Partial

Restraints," Journal of Structural Engineering, ASCE, Vol. 111, No. 4, April, 1985.
55. Razzaq, Z., and McVinnie, W. W., "Theoretical and Experimental Behavior of Biaxially Loaded Inelastic Columns," Journal of Structural Mechanics, ASCE, Vol. 14, No. 3, March, 1986.
56. Galambos, T. V., Guide to Stability Design Criteria for Metal Structures, Fourth Edition, John Wiley and Sons, Inc., New York, N. Y., 1988.

Table 1. Concurrent processing results for hollow square section with $\gamma=1.000$

Number of processors	Maximum computational time (sec)	Speedup s_{i}	Efficiency η_{i}
8	312.853	7.69	96.1
4	608.171	3.96	99.0
2	1204.867	1.99	99.5
1	2405.829	\cdots	\cdots

Table 2. Computational time on concurrent processors

Number of processors	Square section		Rectangular section	
	Moment ratio γ	$\begin{aligned} & \text { Computational } \\ & \text { time (sec) } \\ & \hline \end{aligned}$	Moment ratio γ	Computational time sec
8	γ_{11}	1289.836	$\gamma_{1 r}$	1289.817
	$\gamma_{\text {a }}$	(1422.777)	$\gamma_{2 r}$	(1419.233)
	γ_{34}	1419.230	$\gamma_{3 r}$	1333.203
	γ_{4}	1398.955	γ_{45}	1137.931
	$\gamma_{s o}$	1333.192	$\gamma_{\text {sr }}$	1253.166
	γ_{G}	1273.721	$\gamma_{\theta s}$	1291.926
	γ_{70}	1143.658	$\gamma_{7 r}$	1261.039
	$\gamma_{s 8}$	1102.597	γ_{88}	1102.564
4	$\gamma_{10} \gamma_{36}$	2701.822	$\boldsymbol{\gamma}_{10} \boldsymbol{\gamma}_{23}$	(2715.432)
	$\gamma_{20} \gamma_{48}$	(2823.155)	$\gamma_{30} \gamma_{40}$	2471.114
	$\gamma_{50} \gamma_{70}$	2471.129	$\gamma_{s i n} \gamma_{s m}$	2538.101
	$\gamma_{600} \gamma_{88}$	2375.804	$\gamma_{70} \gamma_{80}$	2362.757
2	$\gamma_{10} \gamma_{30} \gamma_{s o} \gamma_{70}$	(5197.993)	γ_{15} to γ_{46}	(5172.083)
	$\gamma_{20} \gamma_{40} \gamma_{60} \gamma_{88}$	5190392	$\gamma_{5 r}$ to γ_{88}	4896.691
1	γ_{1} to $\gamma_{\text {m }}$	10324.935	γ_{15} to γ_{88}	10067.648

Table 3. Concurrent processing efficiencies for hollow square section with $\gamma=\boldsymbol{\gamma}_{1 \mathrm{~s}}$ to $\gamma_{8 s}$

Number of processors	Maximum computational time (sec)	Speedup \mathbf{s}_{i}	Efficiency η_{i}
8	1422.777	7.26	90.7
4	2823.155	3.66	91.5
2	5197.993	1.99	99.5
1	$10,324.935$	\cdots	\cdots

Table 4. Concurrent processing efficiencies for hollow rectangular section with $\gamma=$ $\gamma_{1 \mathrm{r}}$ to $\gamma_{8 \mathrm{r}}$

Number of processors	Maximum computational time (sec)	Speedup s_{i}	Efficiency η_{i}
8	1419.233	7.09	88.6
4	2715.432	3.71	92.7
2	5172.083	1.95	97.5
1	$10,067.648$	-	$\ldots-$

Table 5. Peak loads of hollow square and rectangular columns

Hollow square section				Hollow rectangular section			
Column	Spring stiffness	$P_{\max }$	Column	Spring stiffness	$P_{\max }$		
$\mathrm{CN1}$	\mathbf{k}_{1}	0.851	CN 5	k_{1}	0.832		
CN 2	\mathbf{k}_{1}	0.887	CN 6	k_{1}	0.875		
CN 3	\mathbf{k}_{1}	0.951	CN 7	k_{1}	0.930		
CN 4	\mathbf{k}_{1}	0.902	CN 8	\mathbf{k}_{1}	0.859		

$$
k^{\prime}\left(k_{\mathrm{BX}}=k_{1}, k_{\mathrm{TX}}=k_{z} k_{\mathrm{BY}}=k_{z} k_{\mathrm{Ty}}=k_{3}\right)
$$

Table 6. Execution times on concurrent processors for columns CN1 and CN5

Number of Processors	Number of cross sections per assistant processor	Executive time (sec)	
		Column CN1	Column CN5
9	1	1083.285	1319.343
		1082.937	1318.933
		1083.267	1319.327
		1083.283	1319.353
		1083.068	1319.089
		1083.244	1319.292
		1083.268	1319.325
		1083.185	1319.235
		(1088.823)	(1322.104)
5	2	(1442.337)	(1709.396)
		1441.870	1708.872
		1442.230	1709.380
		1442.284	1709.335
		1430.745	1694.345
3	4	(2002.951)	2250.632
		2002.196	(2349.794)
		1967.393	2306.682
2	8	3286.645	3842.815
		(3291.664)	(3848.343)
1	8	5272.540°	6907.108 ${ }^{\text {a }}$

${ }^{\bullet}$ Estimated times.

Table 7. Computational speedup factors and efficiencies for hollow square columns

Column	Spring stiffness	Number of processors	Maximum execution time (sec)	Speedup (si)	Eficiency $\left(\eta_{i}\right)$
CN1	k_{1}	9	1088.823	5.49	61.0
		5	1442.284	4.14	82.8
		3	2002.951	2.98	99.4
		2	3291.664	1.81	90.7
		1	5972.540	---	.-.
CN2	k_{2}	9	1527.131	5.89	65.4
		5	2090.294	4.30	86.1
		3	3017.470	2.98	99.4
		2	5084.405	1.77	88.5
		1	8994.377	---	---
CN3	k_{3}	9	988.095	5.15	57.3
		5	1270.900	4.01	80.2
		3	1780.100	2.86	95.4
		2	2837.310	1.79	89.8
		1	5093.126	.-.	---
CN4	k^{*}	9	1871.138	5.53	61.4
		5	2506.175	4.13	82.5
		3	3481.424	2.97	99.0
		2	5520.623	1.87	93.7
		1	10240.735	..-	.--

$$
k^{\circ}\left(k_{\mathrm{Bx}}=k_{1}, k_{\mathrm{Tx}}=k_{2}, k_{\mathrm{By}}=k_{2 \mathrm{~b}} k_{\mathrm{Ty}}=k_{3}\right)
$$

Table 8. Computational speedup factors and efficiencies for hollow rectangular columns

Column	Spring stiffness	Number of Processors	Maximum execution Time (sec)	Speedup (s_{i})	Efficiency (η_{i})
CN5	k_{1}	9	1322.104	5.22	58.0
		5	1709.396	4.04	80.8
		3	2350.632	2.94	97.9
		2	3848.343	1.79	89.7
		1	6907.108	---	---
CN6	k_{2}	9	1700.910	5.65	62.8
		5	2245.908	4.28	85.6
		3	3219.390	2.98	99.4
		2	5398.389	1.78	89.0
		1	9609.606	---	...
CN7	k_{3}	9	4386.441	5.67	63.0
		5	5911.918	4.21	84.2
		3	8332.422	2.99	99.6
		2	13880.841	1.79	89.7
		1	24887.504	---	---
CN8	k°	9	4570.608	5.61	12.3
		5	6040.994	4.24	84.8
		3	8555.816	2.99	99.6
		2	14147.350	1.81	90.6
		1	25619.272	.--	---

$k^{\prime}\left(k_{\mathrm{Bx}}=k_{1}, k_{\mathrm{TY}}=k_{2}, k_{\mathrm{By}}=\mathrm{k}_{2}, \mathrm{k}_{\mathrm{Ty}}=\mathrm{k}_{3}\right)$

Table 9. Summary of beam-column strength for various connection models

Reatraint type	$\mathbf{P}_{\operatorname{mar}}$	Spring moment
a2	0.71	124.23
b2	0.69	95.92
c2	0.66	79.89
d 2	0.64	79.85
e2	0.67	100.00
f2	0.64	72.00

in inch-kip units

Table 10. Maximum beam-column loads for various load paths and elastic restraints

	Spring stiffness	Load	Major axis		Minor axis		Major axis		Minor axis	
r			LC1	LC2	LC1	LC2	LC3	LC4	LC3	LC4
0.0	k_{23}	p	0.950	0.952	0.935	0.910	0.426	0.426	0.290	0.290
		$\overline{\mathrm{m}}$	0.021	0.021	0.182	0.182	1.200	1.160	4.600	3.842
-0.3	k_{21}	p	0.710	0.710	0.625	0.625	0.166	0.166	0.261	0.261
		$\overline{\mathrm{m}}$	0.192	0.192	0.086	0.086	0.900	0.901	0.850	0.849
-0.3	k_{22}	p-	0.750	0.761	0.800	0.731	0.321	0.321	0.075	0.075
			0.275	0.275	0.675	0.675	1.050	1.084	3.400	3.343
-0.3	k_{23}	p	0.800	0.798	0.850	0.856	0.377	0.377	0.311	0.311
		$\overline{\mathrm{m}}$	0.313	0.313	0.543	0.543	1.200	1.202	4.600	4.163

Table 11. Maximum beam-column loads for various load paths and elastic-plastic restraints ($\mathrm{k}_{\mathrm{a} 2} ; \mathrm{m}_{\text {plastic }}=100 \mathrm{in}-\mathrm{kips}$)

Bending axis	Load	LC1	LC2	LC3	LC4
Major	p	0.800	0.800	0.168	0.168
	$\overline{\mathrm{~m}}$	0.198	0.198	1.000	1.000
Minor	p	0.800	0.799	0.150	0.150
	$\overline{\mathrm{~m}}$	0.159	0.159	1.400	1.499

Table 12. Maximunn external loads for uniaxially loaded imperfect beam-columns with partial rotational equal end restraints and various load paths (W8X31)

Beam-Column	Length (ft.)	Spring Stiffness	Load Path		Maximum External Loads				
1	8	k_{1}	NP2	$\begin{aligned} & \mathrm{p} \\ & \mathrm{~m} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.000 \\ & 3.211 \end{aligned}$	$\begin{aligned} & 0.075 \\ & 3.000 \end{aligned}$	$\begin{aligned} & 0.737 \\ & 1.500 \end{aligned}$	$\begin{aligned} & 0.961 \\ & 0.000 \end{aligned}$	--
			NP1	$\left\|\frac{p}{m}\right\|$	$\begin{aligned} & 0.000 \\ & 3.211 \end{aligned}$	$\begin{aligned} & 0.075 \\ & 2.990 \end{aligned}$	$\begin{aligned} & 0.737 \\ & 1.733 \end{aligned}$	$\begin{aligned} & 0.961 \\ & 0.000 \end{aligned}$	--
2	8	k_{3}	NP2	$\frac{\mathrm{p}}{\mathrm{m}}$	$\begin{aligned} & 0.000 \\ & 4.689 \end{aligned}$	$\begin{aligned} & 0.169 \\ & 4.000 \end{aligned}$	$\begin{aligned} & 0.659 \\ & 2.500 \end{aligned}$	$\begin{aligned} & 0.968 \\ & 1.000 \end{aligned}$	$\begin{aligned} & 0.958 \\ & 0.000 \end{aligned}$
			NP1	$\left\|\frac{p}{m}\right\|$	$\begin{aligned} & 0.000 \\ & 4.689 \end{aligned}$	$\begin{aligned} & 0.169 \\ & 4.190 \end{aligned}$	$\begin{aligned} & 0.669 \\ & 2.155 \end{aligned}$	$\begin{aligned} & 0.865 \\ & 1.114 \end{aligned}$	$\begin{aligned} & 0.958 \\ & 0.084 \end{aligned}$
3	12	k_{3}	NP2	$\left.\frac{p}{m} \right\rvert\,$	$\begin{aligned} & 0.000 \\ & 3.736 \end{aligned}$	$\begin{aligned} & 0.238 \\ & 3.000 \end{aligned}$	$\begin{aligned} & 0.749 \\ & 1.500 \end{aligned}$	$\begin{aligned} & 0.867 \\ & 0.001 \end{aligned}$	
			NP1	$\left\|\frac{p}{m}\right\|$	$\begin{aligned} & 0.000 \\ & 3.736 \end{aligned}$	$\begin{aligned} & 0.238 \\ & 3.344 \end{aligned}$	$\begin{aligned} & 0.749 \\ & 0.845 \end{aligned}$	$\begin{aligned} & 0.867 \\ & 0.144 \end{aligned}$	--
4	12	k_{3}	NP2	$\left.\begin{aligned} & \mathbf{p} \\ & \mathbf{n} \end{aligned} \right\rvert\,$	$\begin{aligned} & 0.000 \\ & 5.014 \end{aligned}$	$\begin{aligned} & 0.360 \\ & 4.500 \end{aligned}$	$\begin{aligned} & 0.350 \\ & 3.000 \end{aligned}$	$\begin{aligned} & 0.744 \\ & 1.500 \end{aligned}$	$\begin{aligned} & 0.893 \\ & 0.000 \end{aligned}$
			NPI	$\frac{p}{m}$	$\begin{aligned} & 0.000 \\ & 5.014 \end{aligned}$	$\begin{aligned} & 0.360 \\ & 3.842 \end{aligned}$	$\begin{aligned} & 0.550 \\ & 3.476 \end{aligned}$	$\begin{aligned} & 0.744 \\ & 1.825 \end{aligned}$	$\begin{aligned} & 0.893 \\ & 0.258 \end{aligned}$
5	16	k_{3}	NP2	$\frac{\mathrm{p}}{\bar{m}}$	$\begin{aligned} & 0.000 \\ & 5.561 \end{aligned}$	$\begin{aligned} & 0.182 \\ & 4.500 \end{aligned}$	$\begin{aligned} & 0.273 \\ & 3.000 \end{aligned}$	$\begin{aligned} & 0.496 \\ & 1.500 \end{aligned}$	$\begin{aligned} & 0.751 \\ & 0.000 \end{aligned}$
			NPI	$\begin{gathered} p \\ \text { nin } \end{gathered}$	$\begin{aligned} & 0.000 \\ & 5.561 \end{aligned}$	$\begin{aligned} & 0.182 \\ & 3.032 \end{aligned}$	$\begin{aligned} & 0.273 \\ & 3.590 \end{aligned}$	$\begin{aligned} & 0.496 \\ & 1.593 \end{aligned}$	$\begin{aligned} & 0.751 \\ & 0.007 \end{aligned}$
6	16	k_{3}	NP2	$\frac{p}{\mathbf{p}}$	$\begin{aligned} & 0.000 \\ & 6.983 \end{aligned}$	$\begin{aligned} & 0.100 \\ & 6.000 \end{aligned}$	$\begin{aligned} & 0.352 \\ & 4.500 \end{aligned}$	$\begin{aligned} & 0.649 \\ & 1.500 \end{aligned}$	$\begin{aligned} & 0.795 \\ & 0.000 \end{aligned}$
			NPI	$\begin{aligned} & \mathrm{p} \\ & \frac{\mathrm{~m}}{\mathrm{~m}} \end{aligned}$	$\begin{aligned} & 0.000 \\ & 6.983 \end{aligned}$	$\begin{aligned} & 0.100 \\ & 5.483 \end{aligned}$	$\begin{aligned} & 0.352 \\ & 3.923 \end{aligned}$	$\begin{aligned} & 0.649 \\ & 2.087 \end{aligned}$	$\begin{aligned} & 0.795 \\ & 0.386 \end{aligned}$

Table 13. Comparison of predicted and previously published maximum loads for pinned-end beam-columns with biaxially eccentric load

Reference Number	Cross Section	Length (in.)	$\begin{gathered} \text { Eccentricity } \\ e_{\mathrm{z}}(\mathrm{in} .) \end{gathered}$	Eccentricity e_{y} (in.)	p		p Predicted p Reference
					Predicted	Reference	
21	H 6×6	96	1.61	2.78	0.426	0.421	1.01
21	H 5x5	120	2.38	2.51	0.284	0.297	0.96
25	W 12x65	180	18.40	3.76	0.186	0.199	0.93
25	W 12×65	270	18.40	3.76	0.167	0.169	0.99
25	W 12x65	360	18.40	3.76	0.149	0.144	0.97

$$
\Rightarrow m_{x}=P e_{x} / M_{y_{x}} ; m_{\gamma}=P e_{y} / M_{Y_{y}}
$$

Table 14. Maximum external loads for biaxially loaded imperfect beam-columns with partial rotational equal end restraints and various load paths (L=12ft.; W8X31)

BeamColumn	Spring Stiffness	Load Path	Maximum External Loads					
7	k_{2}	NP2	$\begin{gathered} \mathbf{p} \\ \mathbf{m}_{\mathbf{x}} \\ \mathbf{m}_{\mathrm{y}} \end{gathered}$	$\begin{aligned} & 0.000 \\ & 1.078 \\ & 0.631 \end{aligned}$	$\begin{aligned} & 0.251 \\ & 0.864 \\ & 0.506 \end{aligned}$	$\begin{aligned} & 0.525 \\ & 0.405 \\ & 0.237 \end{aligned}$	$\begin{aligned} & 0.876 \\ & 0.070 \\ & 0.041 \end{aligned}$	$\begin{aligned} & 0.869 \\ & 0.000 \\ & 0.000 \end{aligned}$
		NP1	$\begin{gathered} \mathrm{p} \\ \mathrm{~m}_{\mathrm{x}} \\ \mathrm{~m}_{3} \end{gathered}$	$\begin{aligned} & 0.000 \\ & 1.078 \\ & 0.631 \end{aligned}$	$\begin{aligned} & 0.250 \\ & 0.864 \\ & 0.506 \end{aligned}$	$\begin{aligned} & 0.500 \\ & 0.405 \\ & 0.237 \end{aligned}$	$\begin{aligned} & 0.750 \\ & 0.070 \\ & 0.041 \end{aligned}$	$\begin{aligned} & 0.869 \\ & 0.000 \\ & 0.000 \end{aligned}$
8	k_{3}	NP2	$\begin{aligned} & \mathrm{p} \\ & \mathrm{~m}_{\mathrm{r}} \\ & \mathrm{~m}_{\gamma} \end{aligned}$	$\begin{aligned} & 0.000 \\ & 1.255 \\ & 0.735 \end{aligned}$	$\begin{aligned} & 0.276 \\ & 0.952 \\ & 0.558 \end{aligned}$	$\begin{aligned} & 0.503 \\ & 0.471 \\ & 0.276 \end{aligned}$	$\begin{aligned} & 0.919 \\ & 0.039 \\ & 0.023 \end{aligned}$	$\begin{aligned} & 0.904 \\ & 0.000 \\ & 0.000 \end{aligned}$
		NPI	p m_{x} m_{r}	$\begin{aligned} & 0.000 \\ & 1.255 \\ & 0.735 \end{aligned}$	$\begin{aligned} & 0.250 \\ & 0.952 \\ & 0.558 \end{aligned}$	$\begin{aligned} & 0.500 \\ & 0.471 \\ & 0.276 \end{aligned}$	$\begin{aligned} & 0.780 \\ & 0.039 \\ & 0.023 \end{aligned}$	$\begin{aligned} & 0.904 \\ & 0.000 \\ & 0.000 \end{aligned}$

Table 15. Maximum external nonproportional biaxial loads for partially restrained imperfect beam-column BC2 with hollow square section ($k=k_{22}$)

Load case	Dimensionless Maximum Loads					
NP3	p	0.00	0.25	0.50	0.75	0.93
	$\underline{\bar{m}}^{\text {x }}$	1.86	1.11	0.89	0.42	0.00
	$\overline{\mathrm{m}}_{\mathrm{y}}$	1.86	1.11	0.89	0.42	0.00
NP4		1.86	1.11	0.89	0.42	-
	$\bar{m}_{\text {y }}$	1.86	1.11	0.89	0.42	-
		0.00	0.27	0.50	0.77	-
NP5	p	0.00	0.25	0.50	0.75	-
	m_{x}	1.86	1.11	0.89	0.31	-
	$\overline{\mathrm{m}}_{\mathrm{y}}$	0.24	1.17	0.39	0.00	-
NP6	m_{y}	1.86	1.11	0.89	0.42	-
	$\overline{\mathrm{m}}_{\mathrm{x}}$	0.24	1.11	0.89	0.42	-
		0.00	0.30	0.51	0.77	-

Table 16. Maximum external nonproportional biaxial loads for partially restrained imperfect beam-column BC3 with hollow square section ($k=k_{a 3}$)

Load case	Dimensionless Maximum Loads					
NP3	p	0.00	0.25	0.50	0.75	0.94
	$\mathrm{Br}^{\text {x }}$	1.95	1.62	1.18	0.50	0.00
	兂 ${ }^{\text {y }}$	1.95	1.62	1.18	0.50	0.00
NP4	$\overline{\text { Tx }}_{\text {x }}$	1.95	1.62	1.18	0.50	-
	$\overline{\mathrm{m}}_{\mathrm{y}}$	1.95	1.62	1.18	0.50	-
		0.00	0.35	0.44	0.76	-
NP5		0.00	0.25	0.50	0.75	-
	$\bar{m}_{\text {x }}$	1.95	1.62	1.18	0.39	-
	$\overline{\text { min }}_{\mathbf{y}}$	1.73	1.74	0.83	0.00	-
NP6		1.95	1.62	1.18	0.50	-
	m_{x}	1.73	1.62	1.18	0.50	-
	p	0.00	0.21	0.44	0.76	-

Table 17. Maximum external nonproportional biaxial loads for partially restrained imperfect beam-column BC4 with hollow rectangular section ($k=k_{22}$)

Load	Dimensionless Maximum Loads					
NP3	p	0.00	0.25	0.50	0.75	0.91
	$\overline{\mathrm{m}}_{\mathrm{x}}$	2.02	1.19	0.75	0.32	0.00
	\bar{m}_{y}	2.14	1.26	0.80	0.34	0.00
NP4	m_{x}	2.02	1.19	0.75	0.32	-
	\bar{m}_{y}	2.14	1.26	0.80	0.34	-
	p	0.05	0.40	0.45	0.78	-
NPS	p	0.00	0.25	0.50	0.75	-
	m_{x}	2.14	1.19	0.75	0.32	-
	$\bar{m}_{\mathrm{m}}^{\mathrm{y}}$	0.99	1.18	1.02	0.30	-
NP6	m_{y}	2.02	1.26	0.80	0.34	-
	$\stackrel{\bar{m}}{x}^{\text {x }}$	0.61	1.19	0.75	0.32	-
	p	0.00	0.39	0.46	0.78	-
NP7	p	0.00	0.25	0.50	0.75	-
	n $_{\text {y }}$	2.02	1.26	0.80	0.29	-
	$\overrightarrow{\mathrm{m}}_{\mathrm{x}}$	0.61	0.97	0.60	0.00	-
NP8	$\overline{\mathrm{m}}_{\mathbf{x}}$	2.14	1.19	0.75	0.32	-
	$\mathrm{m}_{\mathrm{y}}{ }^{\text {d }}$	0.99	1.26	0.80	0.34	-
	p	0.00	0.26	0.45	0.78	-

Table 18 Maximum external nonproportional biaxial loads for partially restrained imperfect beam-column BC5 with hollow rectangular section ($k=k_{23}$)

Load case	Dimensionless Maximum Loads					
NP3	p	0.00	0.25	0.50	0.75	0.93
	$\overline{\bar{m}}_{\mathrm{x}}$	1.95	1.43	1.04	0.35	0.00
	\bar{m}_{y}	2.07	1.52	1.11	0.37	0.00
NP4	$\overline{\mathrm{m}}_{\mathrm{x}}$	1.95	1.43	1.04	0.35	-
	\bar{m}_{y}	2.07	1.52	1.11	0.37	-
	p	0.02	0.34	0.48	0.75	-
NP5	p	0.00	0.25	0.50	0.75	-
	$\overline{\mathrm{m}}_{\mathrm{x}}$	1.95	1.43	1.04	0.35	-
	$\overline{\mathrm{m}}_{\mathrm{y}}$	3.69	1.84	0.98	0.47	-
NP6	m_{y}	2.07	1.52	1.11	0.37	-
		1.83	1.43	1.04	0.35	-
	p	0.00	0.38	0.49	0.75	-
NP7	p	0.00	0.25	0.50	0.75	-
	\bar{m}_{y}	2.07	1.52	1.11	0.37	-
	到	1.83	1.66	1.34	0.00	-
NP8	$\overline{\underline{m}}_{\mathbf{x}}$	1.95	1.43	1.04	0.35	-
	\bar{m}_{y}	2.07	1.52	1.11	0.37	-
	p	0.38	0.39	0.49	0.75	-

Table 19. Equivalent structural model analysis results

Frame	Case Study	u_{0}	Sign of M	Load Path	o.e Figure 3	$\mathrm{P}_{\text {max }}$	$\bar{m}_{\text {max }}$
E1	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 2 \end{aligned}$	$\begin{aligned} & +u_{01} \\ & +u_{01} \end{aligned}$	+	NP10 NP11	$\begin{aligned} & \text { (a) } \\ & \text { (a) } \end{aligned}$	$\begin{aligned} & 0.83 \\ & 0.86 \end{aligned}$	$\begin{aligned} & +0.33 \\ & +0.33 \end{aligned}$
E1	$\begin{aligned} & \mathrm{C3} \\ & \mathrm{C} 4 \end{aligned}$	$\begin{aligned} & +u_{01} \\ & +u_{01} \end{aligned}$		NP10 NP11	$\begin{aligned} & \text { (a) } \\ & \text { (a) } \end{aligned}$	$\begin{aligned} & 0.74 \\ & 0.75 \end{aligned}$	$\begin{aligned} & -0.24 \\ & 0.24 \end{aligned}$
E2	$\begin{aligned} & \text { C5 } \\ & \text { C6 } \end{aligned}$	$\begin{aligned} & -u_{01} \\ & -u_{01} \end{aligned}$		NP10 NP11	$\begin{aligned} & \text { (a) } \\ & \text { (a) } \end{aligned}$	$\begin{aligned} & 0.83 \\ & 0.84 \end{aligned}$	$\begin{aligned} & -0.33 \\ & -0.33 \end{aligned}$
E2	$\begin{aligned} & \mathrm{C} 7 \\ & \mathrm{C} 8 \end{aligned}$	$\begin{aligned} & -u_{01} \\ & -u_{01} \end{aligned}$	+	NP10 NP11	$\begin{aligned} & \text { (a) } \\ & \text { (a) } \end{aligned}$	$\begin{aligned} & 0.74 \\ & 0.81 \end{aligned}$	+0.24 +0.24
E3	$\begin{gathered} \text { C9 } \\ \text { C10 } \end{gathered}$	$\begin{aligned} & +u_{02} \\ & +u_{02} \end{aligned}$	+	NP10 NP11	$\begin{aligned} & \text { (a) } \\ & \text { (a) } \end{aligned}$	$\begin{aligned} & 0.78 \\ & 0.80 \end{aligned}$	$\begin{aligned} & +0.28 \\ & +0.28 \end{aligned}$
E3	$\begin{aligned} & \mathrm{C} 11 \\ & \mathrm{C} 12 \end{aligned}$	$\begin{aligned} & +\mathrm{u}_{02} \\ & +\mathrm{u}_{02} \end{aligned}$		NP10 NP11	$\begin{aligned} & \text { (a) } \\ & \text { (a) } \end{aligned}$	$\begin{aligned} & 0.78 \\ & 0.79 \end{aligned}$	-0.28 -0.28
E1	$\begin{aligned} & \mathrm{C} 13 \\ & \mathrm{C} 14 \end{aligned}$	$\begin{aligned} & +\mathrm{u}_{01} \\ & +\mathrm{u}_{01} \end{aligned}$	+	$\begin{aligned} & \text { NP9 } \\ & \text { NP9 } \end{aligned}$	$\begin{aligned} & \text { (a) } \\ & \text { (b) } \end{aligned}$	$\begin{aligned} & 0.80 \\ & 0.75 \end{aligned}$	$\begin{array}{r} -0.80 \\ +0.75 \end{array}$
E1	$\begin{aligned} & \mathrm{C} 15 \\ & \mathrm{C} 16 \end{aligned}$	$\begin{aligned} & +\mathrm{u}_{01} \\ & +\mathrm{u}_{01} \end{aligned}$		$\begin{aligned} & \text { NP9 } \\ & \text { NP9 } \end{aligned}$	(a) (b)	$\begin{aligned} & 0.70 \\ & 0.68 \end{aligned}$	-0.70 -0.68

Table 20. Portal frame analysis results for FR1, FR2, FR5, and FR6 with FL1 through FL4

Frame Type	Loading		Load path NP9	Maximum loads for Load path NP10	Load path NP11
FR1	$\begin{aligned} & \text { FL1 } \\ & \text { FL2 } \end{aligned}$	$\underline{p}_{\text {max }}$	0.67	0.75	0.75
		$\overline{\mathrm{m}}_{\max }$	0.67	0.25	0.25
		$\mathrm{p}_{\text {max }}$	0.72	0.76	0.76
		$\stackrel{\mathrm{m}}{\text { max }}$	0.72	0.26	0.26
FR2	FL1 FL2	$\mathrm{p}_{\text {max }}$	0.64	0.71	0.71
		$\underline{m}_{\text {max }}$	0.64	0.21	0.21
		$\underline{p}_{\text {max }}$	0.71	0.82	0.84
		$\mathrm{m}_{\text {max }}$	0.71	0.32	0.32
FR3	FL1 FL2	$\mathrm{p}_{\max }$	0.67	0.75	0.75
		$\overline{\mathrm{m}}_{\text {max }}$	0.67	0.25	0.25
		$\mathrm{p}_{\text {max }}$	0.72	0.76	0.76
		$\overline{\mathrm{m}}_{\text {max }}$	0.72	0.26	0.26
FR4		$\mathrm{p}_{\text {max }}$	0.64	0.71	0.71
	FL1	$\overline{\mathrm{m}}_{\text {max }}$	0.64	0.21	0.21
	FL2	In	0.71	0.82	0.84
		$\mathrm{m}_{\text {max }}$	0.71	0.32	0.32

Table 21. Portal frame analysis results for FR1, FR2, FR5, and FR6 with FL1 through FL4

Frame Type	Loading		$\begin{aligned} & \text { Load } \\ & \text { path } \\ & \text { NP9 } \end{aligned}$	Maximum loads for Load path NP10	Load path NP11
FR1		$\underline{\mathrm{p}}_{\max }$	0.67	0.75	0.75
	FL3	$\mathrm{m}_{\text {max }}$	0.67	0.25	0.25
	FLA	$\mathrm{p}_{\max }$	0.72	0.76	0.76
		$\overline{\mathrm{m}}_{\text {mux }}$	0.72	0.26	0.26
FR2			0.64	0.79	0.70
	FL3	$\stackrel{\underline{p}}{\text { max }}_{\mathrm{m}_{\text {max }}}$	0.64	0.29	0.29
	FLA	$\underline{\mathrm{p}}_{\text {max }}$	0.71	0.83	0.84
		$\mathrm{m}_{\text {max }}$	0.71	0.33	0.33
FR5		$\underline{p}_{\text {max }}$	0.64	0.66	0.72
	FL3	$\mathrm{m}_{\text {mux }}$	0.64	0.16	0.16
	FL4	$\mathrm{p}_{\max }$	0.64	0.68	0.72
		$\bar{m}_{\text {mux }}$	0.64	0.18	0.18
FR6		$\underline{p}_{\text {max }}$	0.64	0.66	0.72
	Fl3	$\bar{m}_{\text {max }}$	0.64	0.16	0.16
	FLA	$\mathrm{p}_{\text {max }}$	0.64	0.68	0.72
		$\bar{m}_{\text {max }}$	0.64	0.18	0.18

Table 22. Two-bay two-story frame analysis results for FR7 and FR8 with FL5 through FL6

Frame Type	Loading		Load path NP9	Maximum loads for Load path NP10	Load path NP11
FR7		$\underline{\mathrm{p}}_{\text {max }}$	0.61	0.69	0.72
	FLS	$\overline{\mathrm{m}}_{\max }$	0.61	0.19	0.19
	FL6	$\mathrm{p}_{\text {max }}$	0.63	0.71	0.71
		$\stackrel{m}{m a x}^{\text {max }}$	0.63	0.21	0.21
FR8		$\mathrm{p}_{\text {max }}$	0.59	0.66	0.66
	FL5	$\stackrel{1}{\mathrm{~m}}_{\max }$	0.59	0.16	0.16
	FL6	$\underline{p}_{\max }$	0.68	0.72	0.72
		$\mathrm{m}_{\text {max }}$	0.68	0.22	0.22
FR7		$\mathrm{p}_{\text {max }}$	0.38	0.39	0.39
	FL7	$\overline{\mathrm{m}}_{\text {max }}$	0.38	0.14	0.14
	FL8	$\mathrm{p}_{\text {max }}$	0.38	0.39	0.39
		$\overline{\mathrm{m}}_{\text {max }}$	0.38	0.14	0.14
FR8		$\underline{p}_{\text {max }}$	0.36	0.38	0.39
	FL7	$\mathrm{m}_{\text {max }}$	0.36	0.13	0.13
	FL8	$\mathrm{p}_{\text {max }}$	0.39	0.39	0.39
		$\overline{\mathrm{m}}_{\text {max }}$	0.39	0.14	0.14

Figure 1. Discretized hollow rectangular and I-shaped sections subjected to axial load and biaxial bending moments

Figure 2. Typical residual stress patterns of cross sections

Figure 3. Material stress-strain relationships

Figure 4. Cross-sectional moment-curvature relationship

Figure 5. Yield surface

Figure 6. Speedup curves for moment-curvature relations for hollow square section

Figure 7. Moment-curvature relationships about x axis for hollow square section

Figure 8. Moment-curvature relationships about y axis for hollow square section

Figure 9. Yield surface contours for hollow square section

Figure 10. Moment-curvature relationships about x axis for hollow rectangular section

Figure 11. Moment-curvature relationships about y axis for hollow rectangular section

Figure 12. Yield surface contours for hollow rectangular section

Figure 13. Speedup curves for generation of yield surface for hollow square section

Figure 14. Speedup curves for generation of yield surface for hollow rectangular section

Figure 15. Various load paths for nonproportional loading

Figure 16. $\overline{\mathrm{m}}_{\mathrm{x}} \overline{-}_{\mathbf{x}}$ relationship for a nonproportionally loaded I-section

Figure 17. $\overline{\mathrm{m}}_{\mathrm{y}^{-\bar{\phi}}}^{\mathbf{y}}$ relationship for a nonproportionally loaded I-section

Figure 18. $p-\bar{\epsilon}_{0}$ relationship for a nonproportionally loaded I -section

Figure 19. Imperfect column with biaxial partial restraints

Figure 20. Flow chart of the concurrent processing

Figure 21. Load versus midspan deflection for columns CN2 and CN6

Figure 22. Speedup factor versus number of processors relationship

Figure 23. Imperfect beam-column with biaxial restraints

Figure 24. Connection moment-rotation relationships

Figure 25. Linear and bilinear approximations of connection $\mathrm{m}-\theta$ curve for column analysis

Figure 26. Elastic-plastic and trilinear approximations of connection $m-\theta$ curve for column analysis

Figure 27. Linear and bilinear approximations of connection $\mathrm{m}-\theta$ curve for beamcolumn analysis

Figure 28. Elastic-plastic and trilinear approximations of connection $\mathrm{m}-\theta$ curve for beam-column analysis

Figure 29. Interaction curves for uniaxially loaded partially restrained beam-column 4

Figure 30. Interaction curves for biaxially loaded partially restrained beam-column 8

121

122

Figure 33. Interaction curves for biaxially loaded partially restrained imperfect beam-column BC5 for load paths NP7 and NP8

124

Figure 35. Load versus midspan displacement relationships for BC0

Figure 36. Stiffness degradation curves for BC0

Figure 38. Typical frame joint

Figure 39. Imperfect portal frame

Figure 40. Equivalent structural model for portal frame

Figure 41. Flexibly-connected imperfect two-bay two-story frame

Figure 42. Load-moment relationships

Dimensionless Axial Load, p

Figure 43. Load-deflection relationships

(a) Cases Cl_{1} and $\mathbf{C 2}$

(b) Cases C13 and C14

Figure 44. Stiffness degradation curves

Figure 45. Axial load versus joint rotation relationship for portal frame FR2 and frame loading FL3 with NP9

Figure 46. Stiffness degradation curve for portal frame FR2 and frame loading FL3 with NP9

Figure 47. Axial load versus joint rotation relationship for portal frame FR2 and frame loading FL3 with NP10 and NP11

Figure 48. Stiffness degradation curve for portal frame FR2 and frame loading FL3 with NP10 and NP11

Figure 49. Axial load versus midspan displacement relationship for a column of the frame FR2 and loading FL3 with NP9

Figure 50. Stiffness degradation curve for a column of the frame FR2 and loading FL3 with NP9

Figure 51. Axial load versus midspan displacement relationship for a column of the frame FR2 and loading FL3 with NP10 and NP11

Figure 52. Stiffness degradation curve for a column of the frame FR2 and loading FL3 with NP10 and NP11

Figure 53. $\mathrm{p}-\overline{\mathrm{m}}$ interaction for frame FR 2

Figure 54. Axial load versus joint rotation relationship for two-bay two-story frame FR8 and frame loading FL8 with NP9

Figure 55. Stiffness degradation curve for two-bay two-story frame FR8 and frame loading FL8 with NP9

Figure 56. Axial load versus joint rotation relationship for two-bay two-story frame FR8 and frame loading FL8 with NP10 and NP11

Figure 57. Stiffness degradation curve for two-bay two-story frame FR8 and frame loading FL8 with NP10 and NP11

Figure 58. Axial load versus midspan displacement relationship for a column of the frame FR8 and loading FL8 with NP9

Figure 59. Stiffness degradation curve for a column of the frame FR8 and loading FL8 with NP9

Figure 60. Axial load versus midspan displacement relationship for a column of frame FR8 and loading FL8 with NP10 and NP11

Figure 61. Stiffness degradation curve for a column of the frame FR8 and loading FL8 with NP10 and NP11

Figure 62. $\mathrm{p}-\overline{\mathrm{m}}$ interaction for frame FR8

APPENDIX A

Tangent Stiffness Method

The various terms and incremental equations for use in the tangent stiffness procedure for the problem shown in Figure 1 are summarized in this appendix. It can be shown that the dimensionless rate form of Equations 3-5 take the form of Equation 8, which can be written explicitly as follows:

$$
\begin{align*}
& \left\{\begin{array}{c}
\dot{p} \\
\dot{\bar{m}}_{x} \\
\dot{\bar{m}}^{y}
\end{array}\right\}-\left[\begin{array}{ccc}
q_{11} & q_{12} & q_{13} \\
q_{21} & q_{22} & q_{23} \\
q_{31} & q_{32} & q_{33}
\end{array}\right]\left\{\begin{array}{c}
\dot{\bar{\varepsilon}}_{0} \\
\dot{\bar{\phi}}_{x} \\
\dot{\bar{\phi}}_{y}
\end{array}\right\} \tag{A1}\\
& q_{11}-\int \bar{E}_{t} \frac{d a}{\bar{A}} \tag{A2}\\
& q_{12}-\int \bar{E}_{t} \bar{y} \frac{d a}{\bar{A}} \tag{A3}\\
& q_{13}--\int \overline{E_{t}} \bar{x} \frac{d a}{\bar{A}} \tag{A4}\\
& q_{21}-\int \overline{E_{t}} \bar{y} \frac{d a}{\bar{I}_{x}} \tag{A5}
\end{align*}
$$

$$
\begin{align*}
& q_{22}=\int \bar{E}_{t} \bar{y}^{2} \frac{d a}{\bar{I}_{x}} \tag{A6}\\
& q_{23}=-\int \bar{E}_{t} \bar{x} \bar{y} \frac{d a}{\bar{I}_{x}} \tag{A7}\\
& q_{31}=-\int \bar{E}_{t} \bar{x} \frac{d a}{\bar{I}_{y}} \tag{A8}\\
& q_{32}=-\int \bar{E}_{t} \bar{x} \bar{y} \frac{d a}{\bar{I}_{y}} \tag{A9}\\
& q_{33}=\int \bar{E}_{t} \bar{x}^{2} \frac{d a}{\bar{I}_{y}} \tag{A10}\\
& \bar{m}_{x}-\frac{P}{A \sigma_{y}} \tag{A11}\\
& \bar{M}_{y x} \tag{A12}\\
& \bar{m}_{y}-\frac{M_{y}}{M_{y y}} \tag{A13}\\
& \bar{\phi}_{x}-\frac{\phi_{x}}{\phi_{y x}} \tag{A14}\\
& \bar{\varepsilon}_{0}=\frac{\phi_{y}}{\varepsilon_{y}} \tag{A15}\\
& \Phi_{y y} \tag{A16}
\end{align*}
$$

$$
\begin{align*}
& \bar{E}_{y}=\frac{E_{t}}{E} \tag{A17}\\
& d a=d \bar{x} d \bar{y} \tag{A18}\\
& \bar{x}=\frac{x}{\frac{B}{2}} \tag{A19}\\
& \bar{y}=\frac{y}{\frac{D}{2}} \tag{A20}\\
& \bar{A}=\frac{4 A}{B D} \tag{A21}\\
& \bar{I}_{x}=\frac{16 I_{x}}{B D^{3}} \tag{A22}\\
& \bar{I}_{y}=\frac{16 I_{y}}{B^{3} D} \tag{A23}\\
& M_{y x}-\frac{\sigma_{y} I_{y}}{\frac{D}{2}} \tag{A24}\\
& M_{y y}-\frac{\sigma_{y} I_{y}}{\frac{B}{2}} \tag{A25}\\
& E \tag{A26}
\end{align*}
$$

$$
\begin{align*}
& \phi_{y x}=\frac{\varepsilon_{y}}{\frac{D}{2}} \tag{A27}\\
& \phi_{y y}=\frac{\varepsilon_{y}}{\frac{B}{2}} \tag{A28}
\end{align*}
$$

where A is the area of cross section, and I_{x} and I_{y} are the moments of inertia about the x and y axes, respectively. The integrals in Equations A2-A10 are evaluated by numerical summation over the discrete elemental areas shown in Figure 1.

APPENDIX B

The Finite Element Machine

The Finite Element Machine (47) is a special purpose computer having as a main component an array of interconnected microcomputers. In addition to the array processors, there is an input/output (I/O) processor that provides operator console control, mass storage, problem input, and printed output for the array. The I/O processor is a conventional minicomputer that has a high bandwidth connection directly to one of the processors of the array. Communications within the microprocessor array take place by way of word-oriented point-to-point communications channels and, to a lesser extent, by way of cooperative computation networks involving all microcomputers in the array. There is no common memory in the system.

The processors of the array and the I/O processor are based on the Texas Instruments (TI) 990 minicomputer/9900 microcomputer. The I/O processor is a TI 990/10 minicomputer and the array processors also called the modal processors, are based on the TI TMS 9900 single chip microprocessor. This also contains TMS 9901 programmable systems interface and TMS 9902 asynchronous communications controller configured as on the $990 / 100 \mathrm{M}$ board that is built around the chip. In
addition, microprocessors have 16 bit/word of dynamic random access memory (RAM) and a Am9512 floating point arithmetic unit. The CPU board also contains 16 K bytes of erasable, programmable read-only memory, 32 K bytes of dynamic read/write memory. The nodal processors are interconnected by four different hardware structures:

1. A network of local communication links
2. A time multiplexed global bus
3. Cooperative signaling flag networks
4. A cooperative sum/maximum computation network

An overall block diagram of the finite element machine is shown in Figure B. The FEM system software is designed such that the controller serves as a host for the array. Thus, the controller is in charge of the overall system. Activities on the array are initiated and terminated by commands issued from the controller. These commands may be either directed to individual processors or broadcast to all of them through the global bus, as appropriate. Additionally, the controller supports program development, file storage, and pre- and postprocessing of data. The controller does not participate in execution of parallel application programs to facilitate uniform array monitoring. The system software is augmented by additional software for parallel computing. A set of about 40 programs known collectively as FEM array control software (FACS) implements the controller's portion of initialization, data management, program control, debugging, and postprocessing functions for the array. The FACS programs, invoked by system command interpreter (SCI) commands, serve as the interface between the user and the array.

Each array processor is installed with an operating system called Nodal Exec and a PASCAL language subroutine library, PASLIB. The Nodal Exec is divided into two major sections. One section provides services typical of most operating systems such as memory management, process control, low-level I/O and communication routines, timers, and interrupt handlers. The other section contains a set of command routines that carry out functions requested by the controller. Application programs are down-loaded onto the array processors for execution. These programs are regular sequential programs written in PASCAL language and each program is individual to a single processor. PASLIB allows the application programs to be parallelized. It also provides subroutines for communication between processes, I/O to and from the controller, timing, processor identification, flat settings, and floatingpoint operations. The parallelization is achieved by an appropriate design of algorithms suitable to the architecture of the FEM.

Figure B. Finite element machine block diagram

APPENDIX C

Inelastic Load and Moment Parameters

The inelastic load and moment parameters used in Equations 14-16 are defined as follows:

$$
\begin{equation*}
P_{r}=\int_{A e} \sigma_{r} d A \tag{C1}
\end{equation*}
$$

$$
\begin{equation*}
P_{p}-\int_{A p} \sigma_{y} d A \tag{C2}
\end{equation*}
$$

$$
\begin{equation*}
M_{x r e}-\int_{A e} \sigma, y d A \tag{C3}
\end{equation*}
$$

$$
\begin{equation*}
M_{y r e}=\int_{A e} \sigma_{r} x d A \tag{C4}
\end{equation*}
$$

$$
\begin{equation*}
M_{x p}=-\int_{A p} \sigma_{y} y d A \tag{C5}
\end{equation*}
$$

$$
\begin{equation*}
M_{y p}-\int_{A p} \sigma_{y} x d A \tag{C6}
\end{equation*}
$$

The above integrals are evaluated numerically by summing over the decretized cross sections of the type shown in Figure 1.

APPENDIX D

External and Plastic Load Vectors

The external force vector, $\{\mathrm{F}\}$, in Equation 30 is defined as follows:

Also, the plastic load vector, $\{F\}_{p}$ in Equation 30 is given by:

$$
\{F\}_{p}-\left\{\begin{array}{c}
\left(M_{y p}-\mu_{y p}\right)_{0} \tag{D2}\\
\left(M_{x p}-\mu_{x p}\right)_{0} \\
\left(M_{y p}-\mu_{y p}\right)_{1} \\
\left(M_{x p}-\mu_{x p}\right)_{1} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\left(M_{y p}-\mu_{y p}\right)_{j} \\
\left(M_{x p}-\mu_{x p}\right)_{j} \\
\cdot \\
\cdot \\
\cdot \\
\left(M_{y p}-\mu_{y p}\right)_{N-1} \\
\left(M_{x p}-\mu_{x p}\right)_{N-1} \\
\left(M_{y p}-\mu_{y p}\right)_{N} \\
\left(M_{x p}-\mu_{x p}\right)_{N}
\end{array}\right\}
$$

APPENDIX E

Computer Program NONPRFRM

file: monpafrn fortran a olo dominion uhiversity

old dominion university

file: monprfan forthan a old dominion universitit

16	contimue
17	
15	contimut
	00 $60 \mathrm{~K}=1 . \mathrm{MSPR}$
	I-EREEF (K.1)
	J-Khtimen
	S2--spak (k)
	${ }_{\text {F10.0 }}$
	1200.0
60	continue
c	hatite (1,a) - GBLk and celp-
c	00200 -1.).HE0
c	mite (1,A) (GBLK(1,J).j-1.NEO).' : ', GBLP(1)
c80c20	format (ix.6(E15.8.3x) .5x.E15.8)
	contimut
	D0 32 I-1.xto
	polo (1)-CALP(1)
${ }^{32}$	continue
	IF (GELOLT.LE. T0L2) Goto 100
	1000
	maite (1,a)'gbip previous and present'
	0020 1-1. ME\%
	POLDI (1)-POLO (1)
	oflolo (1)-celoti (1)
20	continue
	$18(10 . \mathrm{HE}$ (heq) coto 40
	writi (1,a)-anat----- converge in thanisub
	watit (1)
	O0 250 1-1:MUNEM
250	
25	contimuen
	00251 i=1.4EQ
251	continue WRITI (I, n)

FILE: MOMPRFAM GORTAAN A OLO DOMIMION UNIVIRSITY

$k(J,-)-53+6 a<k(J, 1)$
contimut

c subroutine mimload (calotl. nea)

file: mompafra fortran a old dominion university

ํํํ

file: monprfrn fortran a old oominion university

file: momprbam tortran a old dominion university

[^0]

FILE : NOMPRIRA fORTRAN A OLD DOMINION UNIVERSITY

filf: mompatan fortran a old donimion umiversity

```
    I .V0(15),V0(15), TU.TV 
    COMNON/XVALLCL/XRTE, XRTO,YRCO, YACD,C1,C2,CEX,CBY,CTK.CTY
    COMOW/OSCALEL/WSEC,MB,WE,WTA,WTD,NK,NT,LL,WEL
        commom/xskLCL/SKK(15.3.3)
```



```
        COMMON/ALCL/FAX(15,3)
        l
        CONSOM/TOL/TOLI,TOL2,TOL 3.TOL4
        CONSN/TOL/TCLI,O
        conrow/Suns/SUM, ASUM, asun, csun,osum, i Sum
        CONHON/IMEL/PPP,PR, QXP,GXRE,GYP,ETRE
    CONOM/MRLS/FR.FRRE,FYRE
c.
LCNT1-1
    continue
    Y=DFLOAT (2*1-1)
    r=1.0-r&EET/2.0
If(IOX.EQ.I.anO.cooE.EQ.'ISEC') Y-YAE日t/2.0
    If(ICNT1.EQ.2) Y--Y
    If(10x.EQ.1) T=Y
    20 comtinue
        CONTNUR,Mb
        l}\begin{array}{l}{x=0float(2*J-1)}\\{x=x^[Ew/2.0}
    M=xA&Ew/2.0
    If (1DR.ED.0) CALL RESX(SIGR,EA,X)
    IF (IDX.IQ.1) CALL RESY(SICR,ER,K)
    If(10x.E0.0)
    TSN(N,*)-0ELI+TX+TY+E
    ISN(N,K)-0ELL+TK+TY+ER
    IF(MLLO.ME.'ILAST') TSOTSN(N,K)
    IF(WULD.ME.'LLAS') IS
    x-T
    80 continut
        IF(DABSIIS.LT.EYBAR) COTO 60
        |UNLD(N,K)-1
        ICTA=1.0 (IT.0.0) ICTR--1.0
    SIG(n,k)-&CTR
    PP-PP+EAB&FCIG
    OXPP&KP+Y&EAGMFCTR
    byP-byP-xaEABafcia
    60 CONTINUE
    KW=KN+I
```


file: monprfam fortan a old dominion uhiversity

```
    SUM-SUN+EAB
    If (unLD.EQ.ELas)
```



```
    MR-FR+SICRAEAB
    M XREFFXRE +SIGG*Y#EAB
    PR-PA+(TS-SICR) # { AB
    ASUM=A SUM+VAEAB
```



```
    BSUR-DSUN+X*XAEAE
    \SUR-E SUA+Y#Y&|AB
    BYRE-8YRE-(TS-S(GR) *RAEAB
    lol
    50\
    MCN(2-LCNT2+1)
    M0.if(ICHT2.
    ICNTIELCNTLI, (ICNTI.LE.2) coto 30
    M R&tuam
    SUBROUTIME UHLDAO(SIG,SICR.SA.TSM,TSO.IUNLD)
    MMP(ICIT REALAB (A-H,0-2), coto to 
    If(1UMID.EQ.-1) COTO 10
    Munlo-1
10)
    CONTINUE
    IF (DABS (SR).GE.I.O) SR-SR/DABS (SR)
    \
    luNLD=-
    EHO
    SUGROUTIGE RESX(SIGR.EPSR,X:
    IMPLICIT RLALAB (a-H,O-Z)
```



```
    CONOONPROPLCL/AR,DIK,RIY,ARHD,RIXN,RYMD, AXND, RYNO, ZXND, ZYMO
    COMKON/XDIMLCL/A,D,NG,TN,CGN,EBT,EDN,EDT
    I_.u0(15).vo(15).Tu.!V
    conhon/Matlel/E.Sigy.evak
```


c
c
c
c
\mathbf{c}
\mathbf{c}
\mathbf{c}

 Hil W W

FILE: MOMPRERE FORTRAM A OLD DOMINION UNIVERSITY

1 .SICC $(10.15,400)$ COMKOM/DISGAL/DSN(10. 30), DSE (10, 30), DIM(10,30), DIC (10, 30) COMOM/FROP/DELOLO (17), POLO (1]), DELOLOC (17) .POLDC (17) 		
2 , XIXMO (10), X2YND(10)		
CONSOM/CAOXGDL/SAL (10) , SSEGL (10) , SUIMT (10) . SVINT (10) , XRC (10)		
COMNOM/RATGELAE (10), xsicy (10), SEVEAR (10)		
CONYON/XVALGEL/XXATE (10), XXATO (10), XYACP (10), XYRCO (10)		
1 ,xC1(10), xC2 (10), xcex (10), xCEY (10) . xCTx (10), xCTY (10)		
COMMOM/XSKGEL/SKM (10, 15, 3, 3) , SxC (10, 15,3,3)		
comow/factifan (10,15,3), fac (10, 15, 3)		
COMMOM/OLLCEL/DELM(10.15.3). DELC (10. 15.3)		
CONYOW/CONST/PICONTOM/OETCEL/OETI (10)		
COMNOW/ASKGEL/SEGK ($10,4,4$) , SERP (10,4) , CLEK ($10,4,4$), CERP (10,4)		
COMOM/FRCEO/SPAK (8) , KREF (8,2), MEMREF (10,2), MEMID (10) , MEMADJ (10		

file: monpafrn fortana a old dominion university

xRTOO2.0AXRTB/D

YRCEDARIAGRC/RT
YOCOO 20
COWTIME
continue
if tiv
If (ar.EQ.O.0) coto 30
VRCE $=X R$ REART/RC
YRCO=(0-2.0*TF)/0
XRTD=0.0
GDTO
20
30
CONTIMUE
KRITO.O
KRTOO.
KRTOO.
YRC
YROO.O
20

c

```
IF (MEMID (MEN).EG.1) QMETTR (MEN) -2.O#RIAESIGY/O
```

CALL ASSIGM(MEA)
RETURH

c
c
subroutime assign (h)
INPLICIT AEALAE (A-H.O-2)
CHARACYRAL COOE LOAO, UMLD

COMMON/PROPGBL/XAR (10) XRIX (10) .XRIY (10)
, XARMD (10), XRIXND 1101 , XRIYMD (iO), XRAMD (10), XRYND (10)

COMON/CAOKGEL/SAL (10) , SSEGL (10) , SUIHT (10) , SVINT (10) , XRC (10)

file: mompafan fortan a old dominion umiversity

```
C CONMON/PROPLCL/AR,RIX,RIY,ARMD,RIXND,RIYMD,RXND,AYHD,IXND,ZYND
        COMKON/PROPGEL/XAA (10), RRIX(10) ,XRIY(10)
```

```
CONHOM/XDIMLCL/B,D,TF.TN,IBN,EET.IDN,EDT,
```

CONHOM/XDIMLCL/B,D,TF.TN,IBN,EET.IDN,EDT,
.W0(15).vo (15).Tu, yv

```
```

 .W0(15).vo (15).Tu, yv
    ```
```



```
```

 XAR (n) -AA
    ```
```

 XAR (n) -AA
 MRIY (N) -RIY
 MRIY (N) -RIY
 MARNO (n) - ARND
 MARNO (n) - ARND
 XAIMNO (n) =RIXND
 XAIMNO (n) =RIXND
 LRIYND(A) -RIYND
 LRIYND(A) -RIYND
 chaxN(M) -RXND
 chaxN(M) -RXND
 XZXHD((M) -ZXKD
 XZXHD((M) -ZXKD
 2YND (n) - VYND
 2YND (n) - VYND
 KEBM(M) -EOW
 KEBM(M) -EOW
 EOW(M) =EDW
 EOW(M) =EDW
 MEDU(N) EDO
 MEDU(N) EDO
 SEGL (t) -stGL
 SEGL (t) -stGL
 MTU(f) -TU
 MTU(f) -TU
 MXATE (n) -KAT
 MXATE (n) -KAT
 MXRTE(M)-KRTE
 MXRTE(M)-KRTE
 raco (N) -raca
 raco (N) -raca
 \c\(n) cl,
 \c\(n) cl,
 C2 (n) -c2
 C2 (n) -c2
 <cax(m) CcBX
 <cax(m) CcBX
 McTx(n)ctrX
 McTx(n)ctrX
 xcry (n) -cTY
 xcry (n) -cTY
 &ETURM
 &ETURM
 c
c
Subroutine SIGMA (MIM)
Subroutine SIGMA (MIM)
L
L
c
c
c m---
c m---
C COMNOM/STRGB1/ISON(10.15.400),TSOC(10.15.400).SICN(10.15.400)
C COMNOM/STRGB1/ISON(10.15.400),TSOC(10.15.400).SICN(10.15.400)
. SIGC (10,15,400)
. SIGC (10,15,400)
.SIGC (10,15,400)
.SIGC (10,15,400)
CONMON/FROP/OELOLQ (1),POLO(17),OELOLOC (17).POLOC (1)
CONMON/FROP/OELOLQ (1),POLO(17),OELOLOC (17).POLOC (1)
CONHON/SPRGBL/EKX (10,3). BKY (10,3).TKX(10,3).TKY(10.3)
CONHON/SPRGBL/EKX (10,3). BKY (10,3).TKX(10,3).TKY(10.3)
,TETAX(10,2),TETBY(10,2),1ITIX(10,2),TITTTY(10.2)
,TETAX(10,2),TETBY(10,2),1ITIX(10,2),TITTTY(10.2)

```
            ONHON/XVALLCL/MRT, XRTD, YACE, YRCD,C1,C2,CAX.C
```

 ONHON/XVALLCL/MRT, XRTD, YACE, YRCD,C1,C2,CAX.C
 c -.-
c -.-
NON23740
NON2 3750
KON 23760
NON23740
NON2 3750
KON 23760
10 N 23820
HON23830
HON2 2840

```
10 N 23820
HON23830
HON2 2840
```



```
KON2 2900
HON2 291
NOW 392
```

KON2 2900
HON2 291
NOW 392
NON2 2950
NOH23 2960
NON2 3970

```
NON2 2950
NOH23 2960
NON2 3970
```


file: momprar fortran a did domimion university

VITA AUCTORES

Name: Siva Prasad Darbhamulla
Born: February 20, 1955
Place of birth: Titilagarh, India.
Born to Sastry and Jayalaxmi, the author grew up in India with basic education from the city of Visakhapatnam. He received his Baccalaureate degree with honors in Civil Engineering from Andhra University College of Engineering in May 1977. He was the winner of university gold medals and cash prizes for excellence in academic performance. He also served on academic committees and student body in Andhra University. The author continued his education, receiving a Master's degree from the Indian Institute of Technology, Kanpur, India in August 1979. Selected through a national level competitive examination, the author served as an Assistant Engineer (Indian Railway Service of Engineers) for three years in India. Intrigued and persuaded by the complex engineering phenomena, he opted to further his education and commenced a doctoral degree program at Old Dominion University, Norfolk, Virginia, USA in August 1983. The author has two journal papers and a number of conference papers to his credit. The present dissertation research is titled "Nonproportionally Loaded Steel Beam-Columns and Flexibly-Connected Nonsway Frames." He is married to a lovely lady Jan. The author is a member of Chi Epsilon, Phi Kappa Phi, American Society of Civil Engineers (ASCE), and Structural Stability Research Council (SSRC). He is also member of Task Group 3 of SSRC.

PUBLICATIONS AND PRESENTATIONS:

1. Darbhamulla, S.P., "Optimal Design of Tee-Beam -- A Limit State Approach," A thesis submitted to the faculty of the Indian Institute Technology, Kanpur, in partial fulfillment of the requirements for the degree of Master of Technology, Kanpur, India, August, 1979.
2. Darbhamulla, S.P., Razzaq, Z., and Storaasli O.O., "Concurrent Processing for Nonlinear Analysis of Hollow Rectangular Structural Sections," presented in Orlando, Florida, Proceedings, 26th Structures, Structural Dynamics and Materials Conference, AIAA/ASME/ASCE/AHS, April, 1985.
3. Darbhamulla, S.P., Razzaq, Z., and Storaasli O.O., "Concurrent Processing in Nonlinear Structural Stability," presented in San Antonio, Texas, Proceedings, 27th Structures, Structural Dynamics and Materials Conference, ALAA/ASME/ASCE/AHS, May, 1986.
4. Razzaq, Z., and Darbhamulla, S.P., "Restraint Modelling Effect on Beam-Column Strength," presented in Washington, D.C., Proceedings, Structural Stability Research Council, Lehigh University, Bethlehem, Pennsylvania, 1986.
5. Razzaq, Z., and Darbhamulla, S.P., "Nonproportionally Loaded Elasto-Plastic Steel Beam-Columns Restrained Partially," presented in Budva, Yugoslavia, Intermational Conference on Steel Structures, September, 1986.
6. Darbhamulla, S.P., Razzaq, Z., and Storaasli O.O., "Concurrent Processing for Nonlinear Analysis of Hollow Rectangular Structural Sections," Engineering with Computers: An Intemational Joumal for Computer-Aided Mechanical and Structural Engineering, Springer-Verlag New York Inc., 2, 1987.
7. Razzaq, Z., and Darbhamulla, S.P., "Behavior and Strength of Nonproportionally Loaded Imperfect Beam-Columns Restrained Partially," presented in Houston, Texas, Proceedings, Structural Stability Research Council, Lehigh University, Bethlehem, Pennsylvania, 1987.
8. Razzaq, Z., Prasad, V., and Darbhamulla, S.P., "Two-Dimensional Finite Element Analysis of Rectangular Panel with Hole using NICE/SPAR," STAR Journal, NASA NAG1-438 (28p), Abstract \#N87-27217, Vol. 25, No. 21, November, 1987.
9. Razzaq, Z., and Darbhamulla, S.P.,"Imperfect Rectangular Beam-Columns with Nonproportional Biaxial Loads," presented in Minneapolis, Minnesota, Proceedings, Structural Stability Research Council, Lehigh University, Bethlehem, Pennsylvania, 1988.
10. Darbhamulla, S.P., Razzaq, Z., and Storaasii O.O., "Concurrent Processing in Nonlinear Column Stability," Engineering with Computers: An Intemational Joumal for Computer-Aided Mechanical and Structural Engineering, Springer-Verlag New York Inc., 4, 1988.
11. Darbhamulla, S.P., and Razzaq, Z., "Portal Frame Stability with Nonproportional Loads," presented in San Francisco, California, at the 7th Structures Congress, ASCE, May, 1989.

[^0]: (ise (15.400). SIG (15.400)

