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Advisor: Dr. Zia Razzaq

Abstract

A theoretical study of the inelastic stability of nonproportionally loaded steel 

beam-columns and flexibly-connected frames is conducted. Specifically, solution 

techniques are formulated to predict the nonlinear behavior of cross sections, spatial 

beam-columns, and nonsway plane frames under the combined influence of 

imperfections, flexible connections, and nonproportional loads. A set of new 

inelastic slope-deflection equations for imperfect members are derived and their use 

illustrated through in-depth studies of flexibly-connected portal and two-bay two- 

story frames. These equations are derived from a system of nonlinear ordinary 

differential equations. The member studies are carried out using a second-order 

finite-difference solution to a set of nonlinear equilibrium equations, and coupled to 

a tangent stiffness procedure for cross sections. The majority of the theoretical 

studies are carried out on a conventional sequential computer. Efficient concurrent 

computational algorithms are also presented for biaxial bending and column stability 

problems. Results are obtained using a multiprocessor computer known as the Finite
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Element Machine. A critical appraisal of the conventional tangent modulus approach 

is presented in light of the analysis which includes elastic unloading of the material. 

It is found that the tangent modulus approach results in a fictitious ductile behavior. 

Furthermore, it is also realized that there is a dramatic difference in the nonlinear 

behavior between the proportionally and nonproportionally loaded structures. It is 

also observed that the proportionally loaded structures lead to rather unconservative 

peak loads. Additionally, members as integral parts of a frame may exhibit 

significantly different load-deformation behavior as compared to that of isolated 

members. The study on members and frames shows that nonproportional loads have 

a significant effect on their behavior and strength.
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1. INTRODUCTION

1.1 Introduction

Practical structural steel members and frames are imperfect, seldom possess 

ideal pinned or rigid joints, and may not be subjected to proportional loads. 

Previous studies have been devoted to an understanding of the effects of initial 

imperfections and flexible connections on the response of individual members 

subjected to proportional loads. In comparison, little research has been carried out 

on the influence of nonproportional loads on response of steel members and frames. 

The combined influence of imperfections, flexible connections, and nonproportional 

loading on the behavior and strength of such structures has not been studied.

Mathematically, the afore-mentioned inelastic behavior problems can be 

reduced to a system of materially nonlinear ordinary differential equations. Closed- 

form solutions to these equations are not possible since the coefficients of the 

governing differential equations vary with the level of external loads and also with 

the dependent variables, namely, the deformations. Over the past two decades, 

numerical solutions for specific cases of inelastic problems have been devised for 

implementation on sequential computers. Rigorous analysis is quite complex and 

time-consuming even for relatively simple structures. With the advent of parallel 

computers, efficient solutions to these problems appear to be possible. However, no 

such studies have been conducted by any investigators for inelastic analysis.

1
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Parallel computing derives its name from the fact that in a parallel computer, 

there are a number of mini-computers or processors connected in parallel through 

an inter-processor communication network. The name concurrent processing is also 

used in the literature instead of parallel computing. Elasto-plastic problems appear 

to be suitable for solution on parallel computers. For example, the process of 

enforcing equilibrium conditions at several locations within the domain of a structure 

may be carried out concurrently.

The primary aim of this dissertation is to present an analysis of 

nonproportionally loaded practical steel members and frames. Sequential algorithms 

are devised for a majority of the problems, however, representative parallel 

algorithms are also included to explore the feasibility of using concurrent solution 

procedures.

1.2 Literature Review

Long after the famous work of Euler (2) on column stability, Engesser (1) 

realized, in 1895, that metal columns of intermediate length may fail before the 

elastic buckling load is attained, that is by inelastic instability. Consequently, 

Engesser suggested the use of a reduced modulus approach for evaluating the 

inelastic strength of such members. The experimental results, however, were not in 

good agreement with this theory. In 1947, this controversy was resolved by Shanley 

(3) in a set of carefully controlled column experiments. Shanley suggested that the 

tangent modulus should be used instead of the reduced modulus and that it would 

result in a better prediction of the test results.

2
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In 1961, Galambos and Ketter (11), Ketter (12), and Ketter and Prasad (13) 

analyzed the inelastic behavior of beam-columns with simple ends based on the 

tangent modulus theory. A few years later, Lu and Kamalvand (22) investigated 

beam-columns with fixed-ended supports. A number of other investigations were 

carried out (4,5,7,11-13,16,19,21,22,23,27,30,34,38-40,50,51,53-56) to understand the 

behavior of these members. Recently, Razzaq and Calash (51,54) presented a 

rigorous investigation of column behavior with partial restraints and biaxial initial 

crookedness. Other studies have explained partly the effects of residual stresses 

(4,6,12,13,38-40,51,54,56), end restraints (38,39,42,46,50,51,54,56), and initial 

crookedness (28,32,38,51,54,56) on member response. Some theoretical and 

experimental studies are carried out by Razzaq and McVinnie (45,55) on 

nonproportionally loaded pin-ended beam-columns with biaxial bending.

In 1957, Driscoll (8) conducted studies on the plastic behavior of frames. 

Galambos (10) considered the effects of the base fixity on frame behavior. Saap 

(14), Citipitioglu (15), McVinnie (18), Korn (20) and many other researchers 

(17,26,28,29,32,37,41,42,44,46,56) studied the behavior of various types of frames. 

Most of the frames studied were rigid-jointed. In a recent study, Aackroyd (37) 

adopted proportional loading and secant modulus theory to investigate Type 2 

connection frames. Also, the study did not include the influence of initial 

crookedness of members in the frames.

The conventional sequential computers have been used for most of the past 

investigations. Parallel computers on the other hand, are fairly recent (33,35,36). 

In the early 1980s, NASA Langley Research Center developed a parallel computer

3
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(47), called The Finite Element Machine (FEM), designed specifically for numerical 

and finite element analysis of structures. A description of the FEM is given in 

Appendix B. The application of parallel computers has centered mainly around the 

development of algorithms for solving simultaneous linear equations such as those 

resulting from elastic finite element formulations (36,48).

A review of the existing literature shows that a study of structures with initial 

imperfections and flexible connections is needed when subjected to nonproportional 

loads. In addition, the validity of the tangent modulus approach needs to be 

evaluated critically. Also, no parallel solutions to inelastic problems have been 

published in the past.

The primary emphasis of this dissertation is on a rigorous study of the 

influence of nonproportional loads on the strength and behavior of steel beam- 

columns and plane frames.

1.3 Definition of Problems

The main thrust of this dissertation is on a rigorous study of the influence of 

nonproportional loads on the inelastic response of steel beam-columns and plane 

frames. The influence of imperfections and flexible connections on the strength and 

behavior of these structures is also investigated. The analyses are based on a 

equilibrium approach which leads to a system of materially nonlinear ordinary 

differential equations with appropriate boundary conditions.

The analysis is performed using a finite-difference technique combined with an 

iterative solution procedure incorporating material unloading. A complete system 

of inelastic slope-deflection equations is also derived and used for the

4
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nonproportionally loaded inelastic frames. The suitability of parallel computing is 

investigated through the inelastic analysis of cross sections and biaxially imperfect 

columns. The main computational work, however, is conducted on a sequential 

computer.

1.4 Objectives and Scope

The principal objectives of this study are to:

1. Study the effectiveness of concurrent computing for inelastic analysis of 

proportionally loaded cross sections.

2. Study the effect of material unloading on the response of cross sections when 

loaded nonproportionally.

3. Conduct concurrent analysis of biaxially imperfect and centrally loaded columns 

using the Finite Element Machine.

4. Identify suitable moment-rotation connection models for use in the analysis of 

beam-columns.

5. Investigate the behavior of beam-columns with uniaxial and biaxial 

nonproportional loads

6. Study flexibly-connected, imperfect, planar, nonsway frames subjected to 

nonproportional loads.

For member-level studies, both I-shaped and hollow rectangular sections are 

used. The development of inelastic slope-deflection analysis is demonstrated through 

detailed studies of a portal frame, and a two-bay two-story plane frame each 

subjected to a variety of load paths. The method presented, however, is fairly

5
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general and can be adopted for the analysis of other types of nonsway plane frames.

1.5 Assumptions and Conditions

The following basic assumptions and conditions are adopted in the analysis:

1. Displacements are small.

2. Member shortening is neglected.

3. Shear deformations are neglected.

4. No local buckling takes place.

5. Only axial and bending equilibrium conditions are considered.

6. The material stress-strain relationship is elastic-perfectly-plastic, with material

elastic unloading.

6
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2. CROSS-SECTIONAL ANALYSIS

A study of the effectiveness of concurrent computing for the inelastic analysis 

of biaxially loaded cross sections is given herein. The results are obtained utilizing 

Finite Element Machine. Also, the effect of nonproportional loading on the inelastic 

response of a cross section is investigated using a sequential computer. The analysis 

is based on the tangent stiffness procedure described in Reference 34.

2.1 Equilibrium Equations

Figure 1 shows discretized hollow rectangular, and I-shaped sections. The 

rectangular hollow section has a width B, a depth D, and a wall thickness t. The I- 

section has a flange width B and thickness tp an overall depth D, and a web 

thickness t^  The loading consists of an axial load P applied perpendicular to the 

xy-plane and bending moments Mx and My about the x and y axes, respectively. 

The normal strain, e, at a point (x,y) of a cross section is expressed as:

e = £0 '  V  +  +  £r ( ! )

in which e0 is the average axial strain; <f>x and 4>y are the bending curvatures about 

the x and y axes, respectively; and er is the residual strain. The residual stress 

patterns used in this study are shown in Figure 2(a) and 2(b). Figures 3(a) and 3(b) 

show the <j-e relations with and without material unloading, respectively. In this

7
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figure, (7y is the normal yield stress, E is the Young’s modulus, and ey is the yield 

strain. The stress-strain relationship is assumed to be identical in tension and 

compression. In the rate form:

a = Et £ (2)

in which Et equals E if the material is elastic or if it is experiencing elastic 

unloading; it equals zero if the material is plastic. The axial and the biaxial moment 

equilibrium equations of the cross section can be written as:

P = - / A e - e d A - J Apay dA (3)

Mx =  JAe *e y  d A  +  J Ap ffy y  d A  (4 )

My = - JAe ae x dA ‘ Zap fy * dA (5)

in which dA is an elemental area of the cross section, and a is the normal stress on 

that area. The subscripts e and p refer to the elastic and plastic parts, respectively, 

of a partially plastified section; J"A denotes cross-sectional integration. Thus, given 

an axial load P, and a pair of bending moments M^ and My, the strain distribution 

is found while following Equation 2. In other words, compatible e0» 4# and <f>y need 

be obtained which satisfy equilibrium for P, My and My The cross-sectional

dimensionless load and deformation vectors, {f} and { 5 } ,  can be expressed as

follows:

{f} = { p mx ihy }T (6)

{«} = C«o *x

8
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in which T indicates the transpose of a vector, and the other terms are defined in 

Appendix A. The solution procedure involves starting at a known state and 

incrementally converging to the next state for which only {f} is known. The 

deformation vector { 5 }  is determined by iteratively adjusting a cross-sectional 

tangent stiffness matrix, [KJ, relating the increments in {f} and { 5 }  through a rate 

equation of the type (34):

{£} = [KJ { 5 }  (8)

whose components are defined in Appendix A. The process is repeated until the 

imbalance in the external loads and internal forces becomes zero or is within a 

tolerance. Once the e distribution is found, the internal resisting forces are 

evaluated by numerical summation over the discretized cross section shown in Figure

1. This is readily done by replacing the integrals in Equations 3-5 by summations, 

and dA by aA| as shown in Figure 1.

The cross-sectional stiffness characteristics can be represented in the form of 

a thrust-moment-curvature (p-rh-^) relationship as shown in Figure 4. The initial 

or the linearly elastic portion of this curve can be determined noniteratively. The 

elasto-plastic and nearly plastic regions shown in Figure 4 are determined iteratively. 

The curve in this figure represents a moment-curvature (m-^ ) relationship while the 

axial thrust p is held constant. The determinant of the tangent stiffness matrix,

| [K̂ ] | , approaches zero as the maximum moment-carrying capacity of the cross 

section is reached.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2 Concurrent Processing for Cross-Sectional Analysis

In this section, a concurrent processing study of biaxially loaded hollow 

rectangular sections is presented using a Finite Element Machine (FEM). Appendix 

B contains a brief description of this multiprocessor computer.

If a cross section is subjected to a pair of gradually increasing moment values 

and rhy in the presence of an axial load p, the maximum moments obtained define 

a typical point, such as S, on the yield surface shown schematically in Figure 5. The 

quantities rft̂  and rhy in this figure represent the maximum moment capacities for 

a given axial load level, p. In this study, the ratio of the moments n^ to is: 

7 = ^ / 6̂  (9)

is held constant. For a given value of 7, a contour RST as shown in Figure 5 is 

generated for various values of p such as for pj, p2, . . . .To generate the yield 

surface, several contours such as RST are developed for various 7 values. The 

numerical studies are based on hollow square and hollow rectangular sections of 

sizes 7x7x0.375 in, and 8x6x0.375 in, respectively, are analyzed. Each wall of the 

section is divided into two layers with 20 elemental areas in each layer, thus 

providing a total of 160 elemental areas per section. The m-^ curves and the 

contours of the yield surfaces for these sections are developed by using 1, 2, 4, and 

8 processors of the FEM, and the computational efficiencies are evaluated.

Table 1 summarizes the concurrent processing results for the hollow square 

section with 7 = 1.000 for developing 8 different moment-curvature curves each 

corresponding to a different axial load value. First, the 8 moment-curvature curves 

are developed concurrently on 8 processors. The analysis is then repeated with 4,

10
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2, and 1 processors, respectively. When 8 processors are employed, it is found that 

different processors took different lengths of computational time. The maximum 

computational time with 8, 4, 2, and 1 processors is recorded in Table 1. The 

speedup factor, s{, in this table is evaluated as follows:

in which tt is the time taken by a single processor to generate all eight moment- 

curvature curves, and t{ is the maximum computational time obtained when i number 

of processors are employed. The efficiency of concurrent computation, 77., is 

determined as follows:

Speedup factors of 7.69, 3.96, and 1.99 are obtained for 8, 4, and 2 processors, 

respectively, and the corresponding efficiencies are 96.2, 98.9, and 99.8 percent. The 

actual relationship between the number of processors employed and the resulting 

speedup factors is shown in Figure 6. The linear theoretical maximum relationship 

is also shown in this figure for a direct comparison. Table 2 presents a summary of 

the computational times on concurrent processors for the square and rectangular 

sections. For the square section, 8 different 7 values, designated by 7ls through y8s 

in this table, are used to generate the yield surface. The specific values used are:

si = h  /  h ( 10)

r?i = 100 (Sj /  i) (11)

7ls = 1.000 

74s = 0.625 

77s = 0.250

72s = 0.875 

7Ss = 0.500

78s = 0.000

73s = 0.750 

76s = 0-375 ( 12)

11
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First, 8 processors are employed to generate concurrently 8 different families of 

moment-curvature relations. Each family of the curves is obtained for a specific 

value of 7 defined from Equation 12. Figures 7 and 8 together represent a typical 

family of curves for 7 = 0.625 and p = 0.0 to 0.9. The process is repeated with 4, 

2, and 1 processors using the 7 values summarized in Table 2. The computational 

times obtained for various processors are given in this table. The maximum time 

taken for each analysis is identified in the parentheses. The n^* versus n^* 

interaction contours of the yield surface are shown in Figure 9. For the rectangular 

section, with eight 7 values, 7ri through 7rg are:

7lr = 0.000 72r = 0-300 73r = 0.600

73r = 0.900 75r = 1.111 76r = 1-667 (13)

77r = 3.333 7j}r = "

The results for this section are also summarized in Table 2, and shown graphically 

in Figures 10 through 12.

Table 3 summarizes the speedup factors and the efficiencies for the square 

section. The maximum computational times in Table 3 were identified previously 

in Table 2. Table 4 summarizes the rectangular section results. Figures 13 and 14 

show these results graphically.

2 3  Nonproportionally Loaded Sections

The response of materially nonlinear sections is dependent upon the history of 

loading. In this section, an example of an I-section subjected to biaxial 

nonproportional loads is presented. The procedure, however is also applicable to

12
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hollow rectangular sections. Referring to Figure 15, the load path OA represents 

proportional loading. The load path OFDA indicates a typical nonproportional 

loading in that the cross section is subjected to followed by My, and finally 

followed by P until the section capacity is reached. Since significant strain reversal 

may occur due to nonproportional loading, the a-e curve in Figure 3(a) with material 

elastic unloading is used. Here, a W 8x31 section with no residual stresses is 

analyzed and the results are compared to those of Chen and Atsuta (34). The 

section walls are divided into two layers of 12 elemental areas in each plate, 

providing a total of 72 elements for the entire cross section. The load path OFDA 

as shown in Figure 15 ia used. The section is first subjected to n^ = 0.6 (level F), 

followed by n)y = 0.6 (level D), and finally followed by p which eventually attains a 

value of 0.3 at the full section capacity. Figures 16 through 18 show the resulting 

n^-0x, ny-iy, and p-e0 relationships, respectively, and are in reasonable agreement 

with the curves of Reference 34. The deviation of the curves of Reference 34 from 

those given here is due to the piecewise-linear approach adopted in that reference. 

The type of cross-sectional analysis demonstrated here is incorporated in the beam- 

column and frame analyses.

13
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3. BIAXIALLY IMPERFECT COLUMNS

A sequential computational inelastic analysis of centrally loaded columns with 

biaxial imperfections and partial rotational restraints has been given previously by 

Razzaq and Calash (54). No concurrent solution to this or any other inelastic 

problem has been published in the past. In this chapter, a concurrent solution 

procedure is shown and later implemented on the Finite Element Machine (FEM).

3.1 Theoretical Formulation

An imperfect column BT of length L, and with partial biaxial end restraints is 

shown schematically in Figure 19. It is subjected to an axial thrust P gradually until 

the maximum capacity is reached. The rotational restraint stiffnesses kBx, kBy, k ^ , 

kjy simulate the bending resistance of the connections, or structural members 

framing into the column at the member ends. The subscripts B and T refer to the 

member ends as shown in Figure 19. The material of the column follows an 

idealized elastic-perfectly-plastic a-s relationship shown in Figure 3(b). The hollow 

rectangular section selected used here has an initial residual stress distribution as 

shown in Figure 2(b). The comers have a tensile residual stress of arl = 0.5<ry and 

the midpoints of all four walls have a compressive residual stress of a_„ = -0.2^rc y

The residual stress distribution is piecewise-linear along the length of the walls of 

the section and uniform across the thickness (40).

14
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The inelastic behavior of the column shown in Figure 19 is governed by the 

following materially nonlinear ordinary differential equations (54):

in which the primes designate differentiation relative to z; u and v are the respective

flexural displacements due to P, in the x and y directions; e0 is the average axial

strain. The qy terms are the inelastic cross-sectional properties evaluated using the 

numerical procedure described in the preceding chapter. The terms Pr  Pp, M ^ , 

M ^ , M ^, and Myp are inelastic load and moment parameters defined in Reference 

54 and summarized in Appendix C. As shown in Figure 19, the initial member 

crookedness in the x and y directions is taken as follows:

Uj = u01 sin ttz/ L  (17)

Vj = v0l sin ttz/ L  (18)

where u0i and v0i are the respective midspan amplitudes. The terms mBx, mBy, m ^, 

and rri/py in Equations 15 and 16 represent end spring moments given by:

m = k 9 (19)

in which the spring stiffness k is kBx, kBy, k ^  or k jy  and 9 is the corresponding

9 u  £o + 9i2 u" + 9i3 v" * p r - p P = p

921 £0 + 922 u" + 923 v" • Myre - Myp + P (u i + u )

(14)

= mBy + (z/L) (m^y - mBy)

931 £0 + 932 u" + 933 v" - Mxre - Mxp + P (vi + v)

= mBx + (z/L) (mTx - mBx)

(15)

(16)

15
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member end rotation. The geometric boundary conditions are given as follows:

u(0) = v(0) = u(L) = v(L) = 0 (20)

At the global level, Equation 14 is enforced implicitly by first solving it for e0 

explicitly and then substituting it into Equations 15 and 16. This results in the 

following two global equilibrium equations:

Qxx u " +  Qxy v " - (M yre-^yre) '  ( M y p 'V  + P  (u i +  u  - UQ)

= m By + (z /L )  (mi>  - rnBy) (21)

Qyx u " +  Qyy v " '  ( M x r e ^ n * )  * ( M x p ^ x p ) + P  (V; +  V - VQ)

= mBx + (z/L) (m ^  - mBx) (22)

where:

Qxx = *̂ 22 '  (*ll2 2̂1 /  *lii ) (23a)

Qxy = °l23 ■ (*ll3 *121 /  Qll ) (23b)

Qyx = *132 '  (*ll2 331 /  3 ll ) (23c)

Qyy = ^33 * (*ll3 331 /  3 ll ) (23d)

^yre -  *121 Pr /  *lll (23e)

^yp = 321 Pp /  q n  (23f)

^xre = 331 Pr /  3 li (23g)

^xp = ^31 Pp /  3 n  (23h)

uQ = q2l / q n  (23i)

VQ = <bl /  3 u  (23j)

16
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The numerical procedure is based on a second-order central finite-difference 

scheme (43) applied to Equations 21 and 22 at N equidistant nodes over [O, L], and 

invoking Equation 20. This results in:

Qxxj ( uj-l-2V uj+l  )/h2 + Qxjj ( vj-l'2vj +vj+ l )/b 2 * ( M yre"^yre )j

- ( Myp‘^yp )j + p ( Uj+u-Uq )j = mBy + (Zj/L)( ) (24)

Qyxj ( uj-l-2uj + uj+ l ) /h2 + Qyjj ( vj-l-2vj +vj+ l ) /h2 - ( Mxre^xre )j

- ( Mxp-^xp )j + P  ( Vi +V'VQ )j =  m Bx +  (Zj / L)( m Tx-m Bx ) (2 5 )

where the spring moments in Equations 24 and 25 are:

m Bx =  k Bx ( v r v - i  ) / 2h  (2 6 )

m Tx =  ' kTx ( VN + 1'VN-1 ) / 2h  (27 )

m By =  kBy ( ur u-l ) / 2h  (2 «)

H^Ty =  "kTy ( UN +1‘UN-1 ) / 2k  (2 9)

Applying Equations 25 and 26 at all N nodes leads to following equilibrium 

equations in the matrix form:

[K] {a} = {F} + {F}p (30)

In this equation, [K] is the global stiffness matrix of the order 2Nx2N. The vector 

{a} contains lateral displacements as follows:

(a } t  = { u .j v .i Uj v j u2 v2 u3 v3  Uj V j...

-  u N-3 vN-3 uN-3 vN-3 uN-3 v N-3 u N-3 vN-3 } (3 1 )

The external and plastic force vectors, {F} and {F} , are given in Appendix D.

17
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Equation 30 is nonlinear since [K], {F}, and {F}p depend on { a } .  Therefore, an 

iterative scheme is adopted in which the global stiffness matrix is updated and 

inverted at each iteration level. Also, a convergence study showed that it was 

sufficient to take N = 8.

3.2 Concurrent Computing Solution

A concurrent procedure is devised for the solution of Equation 30, based on 

a master-assistant processor configuration. The assembly of Equation 30 is assigned 

to the master processor, whereas the computation of q^ terms and the inelastic load 

and moment load parameters is assigned to the assistant processors. A flow chart 

of the concurrent procedure implemented on the FEM is shown in Figure 20. The 

double-headed pointers in the flow chart indicate the interprocessor communication 

flow. The concurrent procedure is summarized as follows:

1. Input the section properties into the master and assistant processors.

2. Compute elastic properties for the N cross sections concurrently on all assistant 

processors and send this information to the master processor to assemble [K] 

and evaluate the initial determinant | [K] | .

3. Specify a small axial load, P = Pj in the master processor and solve Equation 

30 for { a } .

4. Synchronize all processors for communication.

5. Broadcast to the assistant processors the value of P and the necessary 

components of { a }  generated by the master processor.

6. Compute q^ and the inelastic load and moment parameters for the N cross 

sections concurrently on the assistant processors using the tangent stiffness

18
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procedure, and send the computed properties to the master processor in an 

asynchronous communication mode.

7. Assemble [K], {F}, and {F}p in the master processor and solve Equation 30 

to update { a } .

8. Check for the convergence of { a } .  If convergence is not achieved, go to step

4.

9. If column becomes unstable ( | [K] | -» 0), stop the execution on the master 

processor after setting a flag, and go to step 11.

10. Set P = Pj + sP, where sP is a small load increment, and go to step 4.

11. Stop execution on assistant processors and the master processor.

In step 6, an asynchronous communication mode is used since the various assistant 

processors do not necessarily complete their computations at the same instant. 

Furthermore, the asynchronous communication facilitates the assistant processors to 

send information as and when it becomes available.

3.3 Numerical Study

The effectiveness of the concurrent procedure is evaluated by analyzing eight 

sample column problems designated CN1 through CN8. Columns CN1-CN4 have 

a 7.0x7.0x0.375 in. hollow square section, while CN5-CN8 have an 8.0x6.0x0.375 in. 

hollow rectangular section. Three different k values are used in Equation 19, 

namely, kt = 0.0 in-kip/rad, k2 = 5,397 in-kip/rad, and k3 = 15.0 X 101S in-kip/rad. 

Here, kj simulates pinned condition, k2 the bending resistance of a 5.0x5.0x0.1875 

in. hollow square restraint beam of 12 ft. length, and k3 a nearly fixed condition. 

The columns are provided with equal end restraints about the x and y axes at the

19
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top and bottom ends except for columns CN5 and CN8, which have unequal end 

restraints. The k values of these two columns are defined as kBx = kt ; kBy = k3; 

k ^  = k2; kjy = k3. Imperfections are taken in the form of residual stresses as 

shown in Figure 2 and out-of-straightness given by Equations 17 and 18 with u0i = 

v0i = L/1,000. Sample load-deflection curves for columns CN2 and CN6 are shown 

in Figure 21, in which U and V represent the total midspan lateral deflections given

Table 5 summarizes the column peak loads for CN1-CN8. The quantity pmax 

in this table represents the maximum value of p; that is, the column load-carrying 

capacity. The concurrent computing procedure is implemented on 2, 3, 5, and 9 

processors and execution times are obtained to evaluate computational efficiencies. 

The number of processors includes both the master and the assistant processors. 

Table 6 summarizes the execution times on concurrent processors for the hollow 

square column CN1 and the hollow rectangular column CN5. The tj values used for 

the speedup, Sj, and the efficiency, ^  calculations are enclosed in parentheses. 

When 9 processors are used to analyze column CN1, the sum of the individual 

processor execution times is 9574.360 sec. Similarly, the sums for 5, 3, and 2 

processors are 7199.466, 5972.540, and 6578.309 sec., respectively. The lowest of 

these sums is adopted as the estimated execution time on a single processor as 

recorded at the bottom of Table 6. Table 7 gives the speedup factors and

by:

U = u0i + u(L/2) 

V = v0. + v(L/2)

(32)

(33)
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efficiencies for hollow square columns. As the number of processors increase, 

decreases except when 2 processors are employed. The reduction in ^  with two 

processors is due to the loss of asynchronous communication advantage present when 

3 or more processors are employed. This loss is attributable to the sequential 

computation of cross-sectional data on a single assistant processor. Furthermore, as 

the number of processors increase, the distribution of computational work among the 

assistant processors tends to become nonuniform. This is due to an unequal number 

of iterations required in the assistant processors in carrying out the tangent stiffness 

procedure. Similar results for hollow rectangular columns are given in Table 8. 

Corresponding to the results in Tables 7 and 8 for columns CN2 and CN6, the 

relationships between the speedup factor and the number of processors are shown 

in Figure 22, along with the theoretical maximum speedup.

A review of the numerical study carried out in this investigation indicate that 

the algorithm developed for the concurrent computing analysis of inelastic structural 

members is quite efficient, and the application of the new generation multiprocessor 

computers promise a great reduction in CPU time required for the analyses.

21
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4. IMPERFECT BEAM-COLUMNS

The effect of nonproportional uniaxial and biaxial loads on the behavior of 

partially restrained nonsway imperfect beam-columns is studied. Adequate models 

for representing the connection moment-rotation curves are studied and used in the 

beam-column analysis. Both hollow rectangular and I-sections are considered. A 

critical evaluation of the tangent modulus approach is also conducted. In Chapter 

5, this procedure modified and utilized for the analysis of plane nonsway frames.

4.1 Theoretical Formulation

4.1.1 Equilibrium Equations

A biaxially imperfect and partially restrained beam-column, BT, of Length L 

is shown in Figure 23. It is subjected to an axial load P, and biaxial end moments 

MBx, MBy, and M-jy The partial restraint stiffnesses kBx, kBy, k ^ , and k ^  

simulate the bending resistance of the flexible connections or structural members 

framing into the member ends. The material of the beam-column may follow the 

stress-strain relationship shown in Figure 3(a) or 3(b).

Equations 14-16 modified to include the applied end moments take the form:

q n  eo +  ^ 1 2 u" +  ^ 1 3 v " - p r - Pp =  P  (3 4 >

321 e0 + ^22 u" +  ^23 v " - Myre - Myp +  P  (u i +  u )

= m8y + (z/L) (m-jy - mBy) - MBy - (z/L) (M ^  - MBy) (35) 
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<131 €0 + <132 u" + q33 v" * Mxre - Hep + P (vi + v)

= mBx + (z/L) (m ^  - mBx) - MBx - (z/L) (M ^  - MBx) (36)

The initial crookedness of the member in the x and y directions, indicated in Figure 

23 is governed by Equations 17 and 18. Equations 34-36 are also utilized to predict 

the behavior of uniaxially loaded members. The minor axis analysis is conducted by 

utilizing Equations 34 and 35 only and by setting v. = 0, and MBx = = 0.

Similarly, the major axis analysis is carried out by utilizing Equations 34 and 36 only 

and by setting u{ = 0, and MBy = Mjy = 0.

In the above-mentioned analysis, e0 is eliminated from Equations 35 and 36 by 

using Equation 34. The resulting differential equations with u and v as the 

dependent variables are then solved for using a second-order central finite-difference 

scheme (43). This results in the following member equilibrium equations:

[K] { a }  = {M} (37a)

in which:

{M} = {F} + (F}p + (M}a (37b)

where [K], { a } ,  {F}, and {F}p are defined in the preceding chapter and (M}a is the 

applied end moment vector. In the elastic range, [K], {F}, and {M}a are explicitly 

defined and {F}p is zero, whence, Equation 37(a) can be solved directly. In the 

inelastic range, however, the coefficients in [K] and the components of vector {F}p 

become dependent upon the inelastic cross-sectional properties at various nodes 

along the member length.
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4.1.2 End Restraint Conditions

Past studies (9,24,31) indicate that beam-column connections exhibit nonlinear 

moment-rotation characteristics. Recently, Chen and Lui (53), and Razzaq and 

Calash (54) studied the effects of partial end restraints on member behavior. These 

and similar other studies (34,38,39,50,51) indicated that the flexible connections have 

a significant influence on member behavior. Figure 24 shows a typical moment- 

rotation, m-e, curve with an idealized piecewise-linear model of a connection. Chen 

and Lui (53) used m-e models defined by spline curves with optimization techniques 

to define the coefficients of these splines. While their method represents the 

connection response accurately, the procedure is cumbersome for practical use. 

Razzaq and Calash (54) in their study used practical piecewise-linear connection 

models typically shown in Figure 24. In order to identify suitable piecewise-linear 

connection characteristics, various models shown in Figures 25 through 28 are 

investigated. Specifically, linear, bilinear, and trilinear models are considered.

The moments mBx, mBy, m ^  and mjy in Equations 35 and 36 are dependent 

upon the moment-rotation m-e characteristics of a  connection. For a linear m-e 

relationship, the spring moment follows line OA in Figure 24, and is given by:

m = ka e ; |m | > 0 (38)

For a bilinear relationship, the spring moment follows path OAB in Figure 24. 

Thus:

m = ka e ;  |m|  < |ma |
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m = ma + kb ( e - e a) ; |m| > |mj (39)

in which ma is the knee moment at e = 8a indicated in Figure 24. The spring 

stiffness is reduced to kb past ma. A trilinear connection m-e is shown as the dashed 

line OABC in Figure 24 for which:

m = mb + kc (e - eb) ; |m | > |mb|

where ma and mb correspond to ea and eb. The connection stiffness in the tertiary 

range is kc, as shown in Figure 24.

The m expressions given in this section are used for the spring moments mBx, 

mBy, m -^ and m ^  which appear in Equations 35 and 36.

42  Load Paths

Two different load paths are adopted for uniaxially loaded beam-columns, and 

are defined in Section 4.2.1. For biaxially loaded beam-columns, six different load 

paths are used, and are outlined in Section 4.2.2.

4.2.1 Uniaxially Loaded Beam-Columns

Referring to Figure 15, two different load paths designated as NP1 and NP2 

are adopted for uniaxially loaded beam-columns and are defined as follows:

NP1: The axial load P is applied first incrementally and held constant, followed by 

gradually increasing equal end moments until the load-carrying capacity of the

m = ka e ; |m | < |m j

m = ma + kb (e - ea) ; |m j  < |m | < |mb | (40)
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member is reached. This corresponds to the load path OGB for member 

minor axis analysis, or OGC for member major axis analysis.

NP2: The equal end moments corresponding to the load-carrying capacity obtained 

in NP1 are applied first incrementally and held constant, followed by a 

gradually increasing axial load P until the member collapse occurs. This 

corresponds to load paths OEB or OFC for member minor and major axis 

analyses, respectively.

4.22 Biaxially Loaded Beam-Columns

Referring to Figure 15, six different load paths designated as NP3 through NP8 

are used for biaxially loaded beam-columns as defined below:

NP3: The axial load P is applied first incrementally and held constant, followed by 

and My simultaneously, until the member collapses. The moment ratio 

is held constant and taken as follows:

Ntj /  My = rx /  ry (41)

where rx and ry are major and minor axis radii of gyration. This load path 

corresponds to OGA.

NP4: The moments Mx and My are applied proportionally following Equation 41, 

until the peak moment values from NP3 are attained, followed by P until 

collapse occurs. NP4 corresponds to load path ODA.

NP5: The axial load P of the same magnitude as in NP3 is applied first, Mx 

achieved in NP3 is applied next, followed by My until collapse occurs. NP5 

corresponds to load path OGCA.

NP6: This load path is the reverse of NP5 in that My achieved in NP3 is applied
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first, followed by Mx achieved in NP3, and finally followed by P until collapse 

occurs. NP6 corresponds to load path OEDA.

NP7: The axial load P of the same magnitude as in NP3 is applied first, My 

achieved in NP3 is applied next, followed by Mx until collapse occurs. This 

corresponds to load path OGBA.

NP8: This load path is the reverse of NP7 in that achieved in NP3 is applied 

first, followed by My achieved in NP3, and finally followed by P until collapse 

occurs. NP8 corresponds to load path OFDA.

When hollow square section members are analyzed, NP7 and NP8 are 

redundant and correspond, respectively, to NP5 and NP6, owing to the double 

symmetry of the section.

4.3 Solution Procedure

The following sequential computing procedure is used for solving Equation 

37(a) iteratively:

1. Evaluate initial cross-sectional properties at N nodes to assemble the initial 

global beam-column stiffness matrix [K] in Equation 37(a).

2. Specify small external loads and formulate (M}j using Equation 37(b).

3. Solve for the deformation vector { a }  in Equation 37(a).

4. Compute the external nodal forces (f}j and deformations {5}x defined in 

Equations 6 and 7, respectively, in the elastic range corresponding to {MJj.

5. Increase {M} to {M}2 = {M}j + {$M}, in which {sM} is the resultant 

increment load vector. Solve Equation 37(a) for { a } ,  and compute external 

force vectors {f}2 corresponding to {M}2.
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6. Using {f}2 vectors and the tangent stiffness procedure (34), compute [KJ in 

Equation 8 for all cross sections.

7. Solve for an updated { a }  after assembling [K], {F}, and {F}p utilizing the 

cross-sectional properties obtained in Step 6.

8. With the { a } in Step 7, formulate the load vector {M}3.

9. If | {M}3 - {M}21 ^ {a}, where {a} is the tolerance vector composed with load 

limits of 0.01% of the member yield-load capacity, go to Step 11.

10. Set {M}j = {M}2; {f}j = {f}2; {M}2 = {M}3, and go to Step 6.

11. Set {M}j = {M}3; {f}j = {f}3, and repeat Steps 5-10 until the maximum load- 

carrying capacity of the beam-column is reached.

The procedure described herein is carried out using constant load increments 

throughout the elastic range. In the inelastic range, these load increments are 

successively reduced to avoid severe imbalance between the external and internal 

forces. The maximum load is obtained within 0.0002 times the cross-sectional yield 

capacity. Also, based on a convergence study, a total 15 nodes for I-section 

members and 11 nodes for hollow rectangular members over [0,L] is found to be 

sufficient. The cross-sectional analysis in Step 5 is conducted using two layers of 50 

discrete elemental areas in each wall of an I-section, providing 100 equal-area 

elements per plate, and two layers of 24 discrete elemental areas in each wall of a 

hollow rectangular section, providing 48 equal ares elements per plate.
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4.4 Numerical Study

4.4.1 Modeling of End Restraints

Two different connection m-e relationships given in References 24 and 53 are 

used for conducting a modeling study of the beam-column end restraints. A set of 

five piecewise-linear models is used for each connection type. These are shown in 

Figures 25 through 28. Figures 25 and 26 show the idealized m-e models designated 

a l through f l for the first connection data (23) and are described as follows: 

al: Linear approximation obtained by drawing a tangent to the nonlinear m-e

curve at the origin. The slope of the tangent is ka = 42,135 in-kip/rad. 

bl: Bilinear approximation based on tangents drawn at the origin and from the 

highest given point on the nonlinear m-e curve. The respective initial and 

secondary connection stiffnesses are ka = 42,135 in-kip/rad, and kb = 2,431 

in-kip/rad. The connection moment at the transition point where the two 

tangents meet is ma = 316 in-kips, 

cl: Bilinear approximation obtained by drawing a pair of secants to the nonlinear

m-e curve. Here, ka = 31,580 in-kip/rad; kb = 3,115 in-kip/rad; ma = 300 in­

kips.

dl: Bilinear lower bound approximation with the first straight line drawn from the 

origin to an intermediate point on the nonlinear m-e curve, and the second line 

drawn by connecting the transition point to the highest available point on the 

m-e curve. Here, ka = 27,000 in-kip/rad; kb = 3,167 in-kip/rad; ma = 270 in­

kips.

el: Elastic-plastic approximation with two secants, with ka = 30,385 in-kip/rad; kb

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



= 0 in-kip/rad; ma = 395 in-kips, 

f 1: Trilinear approximation with two tangents as in b l with the intermediate region

represented by a secant to the nonlinear m-e curve. Here, ka = 42,135 in- 

kip/rad; kb = 6,667 in-kip/rad; kc = 2,431 in-kip/rad; at the transition where 

the first tangent and secant meet, ma = 200 in-kips; at the transition where the 

secant and the second tangent meet, mb = 350 in-kips.

Similarly, Figures 27 and 28 show the idealized m-e models designated as a2 

through £2, for the second connection data (53). These are defined as follows: 

a2: ka = 24,000 in-kip/rad.

b2: ka = 24,000 in-kip/rad; kb = 1,286 in-kip/rad; ma = 100 in-kips.

c2: ka = 17,778 in-kip/rad; kb = 2,195 in-kip/rad; ma = 80 in-kips.

d2: ka = 13,333 in-kip/rad; kb = 2,368 in-kip/rad; ma = 80 in-kips.

e2: ka = 17,778 in-kip/rad; kb = 0 in-kip/rad; ma = 100 in-kips.

f2: ka = 24,000 in-kip/rad; kb = 3,583 in-kip/rad; kc = 1,286 in-kip/rad; ma = 70

in-kips; mb = 115 in-kips.

For the numerical study, a W 8x31 section of 15 ft. length, is considered. 

Each of the amplitudes u0i and v0, are taken as L/1000. The material of the 

member is assumed to follow the a-t relationship shown in Figure 3(b). When the 

residual stresses are present, the distribution in Figure 2(a) is used. First, a centrally 

loaded column with biaxial crookedness is analyzed using the six m-9 models a l 

through fl. The individual studies relative to the minor and major axes showed no 

significant effect of m-e relationships on the column peak loads. The end spring 

moments developed (18 in-kips to 141 in-kips) were considerably less than ma value
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when models a l  through fl are used. Also, the major axis analysis is less sensitive 

to the various m-e models.

The effect of various m-e models on uniaxially loaded beam-column response 

is studied with u0i = L/100,000. The beam-column is subjected to an axial load, P, 

and an end moment, at the member top, in a proportional manner such that 

the ratio between P and is 2.25. At z = 0, a pinned condition is used, whereas, 

a partial rotational end restraint is provided at z = L to simulate the subassemblage 

used in Reference 53. The results for this special case are compared to those in 

Reference 53. Table 9 summarizes the dimensionless peak loads, pmax, 

corresponding to the connection models a2 through f2.

The predicted end rotations show that with restraints b2, c2 and d2, the beam- 

columns collapse as soon as the top end spring attempts to develop a moment 

greater than ma. The elastic-plastic restraint e2 allows the spring to rotate 

additionally even after the attainment of the plastic spring moment (100 in-kips). 

The beam-column with trilinear restraint f2 reached its peak load while the spring 

moment was between ma and mb. Thus, the third linear range of the m-e relation 

was not activated. The significant observation which is made from this table is that 

regardless of the type of connection modeling used, the peak load varied in a small 

range from 0.64 to 0.71. In fact, the lower bound model d2 gave the same peak load 

as the bilinear portion of the trilinear model £2. The peak load obtained by Chen 

and Lui (53) is 0.64 comparing favorably with these results. Thus, for the type of 

connections used herein, a simple linear or at most a bilinear connection m-e model 

is adequate. The results also indicate that the strength of these members is not
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highly sensitive to the connection modeling.

4.4.2 Behavior of Uniaxially Loaded I-Section Beam-Columns

The effect of nonproportional loads on the behavior of a 12 ft. long uniaxially 

crooked beam-column. with equal end restraints is presented in this section. A W 

8x31 section is used, with and without residual stresses. When the residual stresses 

are present, they are the type shown in Figure 2(b). The material of the beam- 

column follows the stress-strain law shown in Figure 3(a). The following initial 

spring stiffnesses are adopted: 

kal = 0 in-kip/rad (Pinned-Condition) 

k,^ = 13,333 in-kip/rad 

k.^ = 24,000 in-kip/rad

Additionally, the behavior of the beam-column with elastic-plastic end springs is also 

investigated wherein k ^  is adopted as the initial spring stiffness until the spring 

moment reaches the plastic limit value of ma = 100 in-kips.

The following load conditions designated as LC1 through LC4 and associated 

with load paths NP1 and NP2 are used for the beam-column study:

LC1: Corresponding to the load path NP1, a relatively large axial load is applied 

first incrementally and held constant, followed by gradually increasing the 

equal end moments until the member collapses.

LC2: The maximum end moments corresponding to the load condition LC1 are 

applied first incrementally and held constant, followed by a gradually 

increasing the axial load until the member collapses, thus following load path 

NP2.
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LC3: Corresponding to the load path NP2, relatively large equal end moments are 

applied first incrementally and held constant, followed by gradually increasing 

the axial load until the member collapses.

LC4: The maximum axial load corresponding to the load condition LC3 is applied 

first incrementally and held constant, followed by gradually increasing equal 

end moments until the member collapses thus following the load path NP1.

The beam-column peak loads obtained for the major and minor axis analyses 

using LC1 through LC4 are summarized in Table 10. The maximum loads for the 

major axis are nearly the same, suggesting that the load paths have no significant 

effect on the member strength. However, when the beam-column is loaded about 

its minor axis, the maximum loads are found to be load path dependent. 

Furthermore, LC1 and LC2 provide nearly the same peak loads, while LC3 and LC4 

exhibit a substantial difference in the maximum loads. In the absence of initial 

residual stresses, m for LC3 is 19.7% greater than that for LC4 when the spring 

stiffness is k^ . This difference is 10.5% when initial residual stresses are included.

The behavior of a beam-column with elastic-plastic restraints defined by k^, 

and ma = 100 in-kips is also investigated. Table 11 summarizes the maximum loads 

for various load paths and load conditions when these restraints are used. The 

results in this table indicate that the maximum loads are not load path dependent 

in the presence of elastic-plastic restraints.

Since the above-mentioned results indicated that the minor axis analysis is load 

path dependent when linear end restraints are present, additional minor axis analyses 

were carried out on beam-columns with L = 8, 12, and 16 ft., and k = k ^  or k^.
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Load paths NP1 and NP2 are again adopted in this analysis. For each beam-column 

different load levels are used to define an interaction curve between p and in y. The 

results obtained are summarized in Table 12 for beam-columns numbered 1 through

6. A graphical presentation of the interaction loads for beam-column 4 is given in 

Figure 29. The interaction peak loads obtained by using the stress-strain law given 

in Figure 3(b), neglecting the elastic unloading (tangent modulus), is also shown in 

this figure. For p = 0.0 to 0.45, the tangent modulus curve gives unconservative 

moment estimates. This phenomenon is also observed in beam-columns 2 and 6.

4.4.3 Behavior of Biaxiaily Loaded I-Section Beam-Columns

Biaxially loaded I-section beam-columns may experience twist in addition to 

bending. However, past experimental and theoretical studies (21,25) indicate that 

such open sections with a width to depth ratio of nearly one experience negligibly 

small twist. Since the section adopted for the present study meets this condition, 

twisting is therefore neglected. This assumption was found to be valid through a 

comparison of the results from the present analysis to those in References 21 and 

25 for pinned beam-columns subjected to proportional loads. Table 13 shows this 

comparison. The maximum loads are clearly in good agreement.

In order to investigate nonproportional load effects on biaxially loaded beam- 

column behavior, a 12 ft. long W 8x31 section member with elastic partial restraints 

is used. Various nonproportional load paths are adopted and the member response 

obtained. The cross section possesses residual stresses as shown in Figure 2(b). 

Two different end restraint stiffnesses, k = or k ^  are used and the beam-
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columns are subjected to load path NP3 or NP4. The results from this study are 

reported in Table 14. For beam-column numbered 8, Figure 30 shows an interaction 

diagram between p and the dimensionless minor axis maximum moment, rhy*. The 

figure also shows the tangent modulus curve. A comparison of these curves indicates 

that the tangent modulus peak loads are unconservative. A load path dependency 

is obviously present in the nonproportionally loaded I-section beam-columns.

4.4.4 Behavior of Biaxially Loaded Rectangular Tubular Beam-Columns

A relatively limited amount of research has been conducted in the past on 

rectangular tubular beam-columns subjected to nonproportional loads. Razzaq and 

McVinnie (55) conducted inelastic analysis and experiments on biaxially loaded 

pinned-end members subject to nonproportional loads. In this section, the behavior 

of rectangular tubular imperfect beam-columns subjected to different load paths 

defined as NP3 through NP8 are presented. For the rectangular tubular section, the 

torsional effects are negligible (55) and ignored.

For the beam-column studied, the length is taken as 12 ft. Each of the initial 

midspan amplitude in Equations 17 and 18 is taken as L/1000. Hollow square, 

7x7x0.375 in., and rectangular, 8x6x0.375 in. sections are used for the beam-columns 

studied herein. The material stress-strain law in Figure 3(a) is used. The initial 

residual stresses in Figure 2(a) are adopted. For each beam-column, identical 

rotational restraints are used at both ends about the x and y axes, that is:

k = ^Bx = k"By = k ^  = k-fy (42)

For the numerical study conducted, the k values defined in Section 4.4.2 are used.
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The following five types of beam-columns designated as BC1 through BC5 are 

studied:

BC1: hollow square section with k = kal 

BC2: hollow square section with k = k ^

BC3: hollow square section with k = k ^

BC4: hollow rectangular section with k = k ^

BC5: hollow rectangular section with k = k ^

For the beam-column BC1 with pinned boundaries, NP3 through NP8 provided 

practically the same maximum loads. For the beam-columns BC2 through BC5, 

however, significant load path dependence is found for certain load combinations. 

The results obtained for BC2-BC5 are summarized in Tables 15 through 18. Figure

31 compares the interaction curves for BC3 with load paths NP5 and NP6. Figure

32 shows the stiffness degradation curves for BC3 with an axial load level of 0.75, 

in which D is the dimensionless determinant of the global tangent stiffness matrix 

for the entire member, and is calculated as:

D = | [K] | current /  |[K]| initial (43)

where current represents the determinant of [K] at the given load level, and initial 

refers to the determinant at the zero load level. From Figure 32(a), it is noticed 

that in case of NP5, p = 0.75 is applied first, followed by m^ however, the member 

collapsed at a moment value n^  = 0.39 which is less than that found in NP3. As 

a result, the moment ihy could not be applied for NP5. This is evident from Figure 

32(c) in which the curve for NP5 is absent.
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The stiffness degradation curve in Figure 32(b) for NP5 shows valleys in the 

form of near-abrupt changes in D indicating as if the beam-column suddenly looses 

a considerable stiffness followed by an immediate gain with a small variation in the 

loads. The studies herein are based on adopting a total of 196 elemental areas for 

each of the eleven nodes along the member length. When the number of elemental 

areas was increased to 560 or more, the first of the two valleys disappeared but this 

did not affect the peak loads. However, it was found for some other cases reported 

in Tables 15 through 18 that the number and shape of these valleys could both 

decrease or increase, with an increase in the number of elemental areas. 

Fortunately, these valleys did not alter the peak loads by more than 2%. From these 

observations, it appears that such valleys in stiffness degradation curves are a result 

of redistribution of stresses. Figures 33 and 34 show the curves for BC5 with load 

paths NP7 and NP8. Here again, the load path dependence has a significant effect 

on the member strength. Thus, the behavior and strength of hollow square and 

rectangular section nonsway beam-columns with imperfections and partial end 

restraints is found to be significantly influenced by nonproportional loads. This 

dependence disappears only for certain load combinations, or for the special case of 

pinned boundaries.

4.4.5 Critique on Tangent Modulus Approach

The analyses in the preceding sections explained the influence of load paths 

on the beam-column behavior. Specific studies are also compared with the tangent 

modulus analysis. Presented herein is an investigation of the effect of a-t 

relationships shown in Figures 3(a) and 3(b) on the response of a proportionally
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loaded imperfect beam-column. The member is 15 ft. long with a W 8x31 section, 

having equal elastic partial end restraints with k = k^ . The residual stresses used 

are shown in Figure 2(b). Also, a proportionality constant of 1.0 is used between the 

axial load and the equal end moments.

The beam-column response is represented in the form of axial load versus 

lateral displacement relationship in Figure 35. Also, stiffness degradation curves for 

the analyses are given in Figure 36. An observation of the load-displacement 

relationship in Figure 35 suggests that the beam-column exhibits a near plateau 

behavior when the tangent modulus approach is used. This is also associated with 

relatively large displacements near the collapse load. In contrast, the analysis 

associated with the material elastic unloading indicates that the structure possesses 

a lesser degree of ductility, that is, the displacements near the peak load are smaller 

compared to those from the tangent modulus approach. The tangent modulus 

method neglects the redistribution of stresses along the member length, thus 

resulting in fictitious strains and fictitious ductile behavior. The analysis including 

material unloading, on the other hand, considers localized strain reversals. The 

effect of localized strain reversals is observed in Figure 36 as indicated by the valleys 

in the in the stiffness degradation curves.
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5. FLEXIBLY-CONNECTED PLANE NONSWAY FRAMES

A theoretical investigation of the effect of nonproportional loads on the 

behavior of flexibly-connected nonsway plane imperfect frames is presented in this 

chapter. The solution procedure used in Chapter 4 is modified to formulate inelastic 

slope-deflection equations for an imperfect beam-column, and adopted for plane 

frame analysis. The use of these equations is illustrated through detailed studies of 

a portal frame and a two-bay two-story frame.

5.1 Theoretical Formulation

5.1.1 Inelastic Slope-Deflection Equations for Imperfect Beam-Column

For a prismatic beam-column subjected to loads P, MB and MT as shown in 

Figure 37, the slope-deflection equations have the following well-known (23) form:

in which C and S are stability coefficients, and 0B and 0T are end slopes. Equations 

44 and 45 are obviously valid only for elastic members with no imperfections. In this 

section, a set of new slope-deflection equations are formulated which account for 

inelastic action, initial crookedness, and residual stresses.

Equation 37(a) can be written in the following partitioned form:

Mb = (EI/L) ( O b + S*T) 

Mt  = (EI/L) (S0B + CflT)

(44)

(45)
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K n Ku

L K a K22 J
(46a)

in which {Aj} is defined as:

{Ai)T = R i  Uj uN.! uN+1} or {V J Vl VN.J  VN +1} (46b)

for minor/haajor axis analysis; {a2} is the interior nodes displacement vector defined

as:

(Ai)T = {u2 u3 . . . u, . . . uN.3 uN.2} or {v2 v3 . . . Vj . . . vN.3 vN.2} (46c)

for minor or major axis. Expanding Equation 46(a):

[Kn ] {Aj} + [K12] {a2} = (Fj) + {Fpl} + {Mj} 

[K21] {aJ  + [K22] {a2} = {F2} + {Fp2} + {M2}

Solving Equation 47(b) for (a2):

{a2} = [Kj,] -1 (.[Kj,] {4 ,} + {Fj} + {Fp2> + {Mj})

Substituting ( a2) into Equation 47(a) gives:

[KJ (aJ  = {Ff} + (F } + {Mr}

(47a)

(47b)

(48)

in which:

[KJ = [K„] - [K,2] [K22]-> [K21] 

{F,} = {F J  - [Kjj]'1 {F2}
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{Fpr! = <Fpi> ' [KjiI' 1 ( V  and

{Mr} = {M,} - [Kjj]'1 {M2>

The load vector {Mr} in Equation 48 may be decomposed and written as:

{Mr} = [6] {Ma} 

where:

{M J = {Mb Mt }t

and [6] is a coefficient matrix. From Equations 48 and 49:

{A j = [By-1 ({Ff> + {Fpr } + [6] {M J)

Equation 51 can be rewritten as follows:

(49)

(50)

(51)

= [F] {Ma} + {st} + {5p} (52)

where:

[F] = [K,]-* [S]

{«f> = IK,]'1 {F,} 

{»p> = [Krl' 1 {Fpr>

Relative to the beam-column minor axis, Equation 52 can be written in the following 

expanded form:
~ ■ ■ -

U-1 Fit FU sn 5p1

U1 Fa f 22 m b St2K mmm + > +
UN-1 F3i F32 m t SD *p3

UN+1p a _F« & * > . 5p4

(53)
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Using Equation 53, the beam-column end slopes can be computed as follows:

*B 11 r bb

- r t b

R b

Rtt

in which:

eB = (ui ‘ u.t) /2h 

eT  =  (UN+1 ' u N - l) /2 k

r bb  = (^ 2 1 "  R n ) / 2h

RBT = (^22 ■ Fi2) /2h 

R TB = (R41 ■ R3 l ) /2 k  

R t t  = (F42 * F32) / 2h 

dfB = (5n '  5fi)/2h

SfT = (5f4 - 6f3) /2h

5pB =  ( sp2 ■ 5p l ) / 2 h 

0pB =  ( s p4 * 5p 3 )/2h

fMB|  + f . „ l  + f . „ |

I M t J I ^fr '  pT-*
(54)

(55a)

(55b)

(55c)

(55d)

(55e)

(550

(55g)

(55h)

(55i)

(55j)

where h is the member panel length. The beam-column end moments MB and MT 

are obtained from Equation 54 as:

C l - 1

in which:

^BBAB Sjjt^t 

S tb a b  STTaT

]  f * Bl  . [ MpBl  . | m pb 1

J h TJ 1 m pTJ I m pTJ
(56)

I mjtJ

r b b  R b t 1 1 

Rtb Rtt C )
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Equation 56 represents modified slope-deflection matrix equation for an inelastic 

beam-column, and are hereafter referred to as inelastic slope-deflection equations. 

This equation can be written in the following simplified form:

{Ma> = [S H n  - {Mf> - {Mp> (57)

where [S] is the beam-column tangent stiffness matrix; {Mf} and {Mp} are the load 

vectors resulting from the so-called p-& effects and partial plastification. Equation 

57 is derived relative to the member minor axis. A similar equation can also be 

derived for the major axis using the same procedure.

5.1.2 Equilibrium and Compatibility for Flexible-Connections

Initially it appears that the presence of flexible beam-column end connections 

may be accounted for in frame analysis as follows. If the effect of the connections 

is included in the [S] matrix of Equation 57, it poses a problem in satisfying the 

rotational compatibility condition correctly at member to spring junction when the 

spring stiffness is relatively large. For example, if very stiff rotational springs are 

associated with a girder, an incorrect inelastic converged deflected shape of the girder 

results while performing the member-level analysis owing to the fact that the springs 

tend to nearly fix the member end rotationally. Needless to say, a very stiff spring 

at a connection should not necessarily result in a zero connection rotation in a 

frame.
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To circumvent the above-mentioned difficulty, the flexible end connection is 

simulated as a two-noded member of zero length. This is explained by means of a 

typical joint as shown in Figure 38. Three members numbered 1, 2, and 3 in this 

figure are connected at a joint J through flexible connections with stiffnesses kT1, 

kB2, and k ^ . The joint J is subjected to a bending moment M. The end nodes of 

members 1, 2, and 3 are Tlt B2, and T3, respectively. The connection lengths TjJ, 

B2J, and T3J are each taken as zero. Equation 57 applied at T1? B2, and T3, without 

including the effect of the spring in the [S] matrix, results in the following inelastic

equations:

MTi = STB1 0B1 + S-j-p j 0T1 - Mm  - MpT1 (58a)

^B l = SBBr2 ^B2 + ^BT^ 912 ■ ^fB2 '  ̂ pB2 (58b)

MTi = STBj3 9B2 + S-pp^ 9j2 - M fn  ■ MpT3

The equilibrium equation at nodes T1? B2, T3, and J can be written as:

Myi kT1 (̂ ■pj * = ^ (^^a)

^B 2 + ^B2 (^B2 - 5j) = 0 (59b)

^T3 + kx3 (^ t3 • 5j) = 0 (59c)

M + k^j (^ ji - 0j) + kB2 (0B2 - 9j) + k ^  (5^j - 0j)  = 0 (59d)

In these equations, 0T1, 0B2, and 0̂ 3 are the member end rotations, and 0j  is the 

joint rotation. Equations 59(a) through 59(d) also satisfy the rotational compatibility 

condition. It is necessary to point out that Equations 59(a) through 59(d) need to 

be employed carefully when relatively stiff springs are present.
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5.1.3 Analysis of Flexibly-Connected Imperfect Frame

5.1.3.1 Portal Frame

Figure 39 shows a schematic diagram of a flexibly-connected nonsway plane 

portal frame. The frame consists of two columns AB and CD of equal length Lc and 

a girder BC of length 1^. The columns are partially restrained elastically at supports 

A and D and are joined to the girder at B and C. The beam-to-column connections 

at B and C are represented by rotational springs. The members in the portal frame 

are imperfect with the column out-of-straightness defined by Equation 17 and the 

girder out-of-straightness defined by Equation 18. The columns AB and CD are 

oriented to bend about their minor axis while the girder BC bends about its major 

axis. The frame is subjected to axial loads, P3 and P6, and bending moments, M3 

and M6 at specified joints nonproportionally. In this dissertation, numerical 

examples of frames with I-section members are presented. However, the computer 

programs developed can also be used for frames with rectangular hollow section 

members. A sample portal frame having symmetric geometry and loading can be 

modeled and analyzed as an equivalent beam-column. For example, setting P3 = 

P6 = P; M3 = Mg = M, and taking +u{ for the member AB in Figure 39, an 

equivalent model as shown in Figure 40 can be deduced for the left half of the 

frame. This modeling is valid only if the girder BC is elastic and carries negligibly 

small axial load throughout the load history. Under these conditions, the equivalent 

spring stiffness, ke, at B of the model is given by:

ke = 2EIg/L g [ l / ( l  + 2EIg/kLg)] (60)
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where g refers to the girder. This equivalent model allows a direct use of the beam- 

column analysis procedure given in Chapter 4.

For a frame which cannot be modeled in the manner described above due to 

geometric or loading asymmetry, the detailed inelastic slope-deflection equations in 

Section 5.1.1 must be utilized for each member of the frame. For the frame in 

Figure 39, Equation 57 applied to each member gives:

Also, the following joint equilibrium and compatibility conditions must be enforced:

It should be noted that Equation 62(e) and 62(f) are the total joint equilibrium 

equations. The geometric boundary conditions are:

^23 = 2̂2 e2 + ^23 '  ^ E 3 '  Mp23

^32 = ^32 S2 + S33 ff3 - MQ2 - Mp32

M 45 =  S44 8 4 + S45 8S ‘ M f45 '  M p45

M S4 = S54 8 4 + S55 8 5 * M f54 '  M p54

M67 =  S66 86 + S67 91 '  M f67 '  M p67

^76 = ^76 91 + ^77 81 ‘ ‘ ^p76

(61a) 

(61b) 

(61c) 

(61d) 

(61e) 

(6 If)

M23 + k (e2 - ̂ i) = 0

M4S + k (fl4 - 93) = 0

M54 + k (05 - 9 {5) = 0

M75 + k (87 * s$) = 0

(62a)

(62b)

(62c)

(62d)

(62e)

(62f)

M32 + k (93 - s4) + M3 = 0 

M67 + k (96 - 07) - Mg = 0
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(63)

that is, there is no rotational settlement of ground supports at A and D. Upon 

substitution of Equations 61(a) through 61(f) and 63, Equations 62(a) through 62(f) 

can be written in the following matrix form:

Here the subscript G is used to emphasize that this is a global frame equilibrium 

equation. Equation 64 is solved for {eG} iteratively for the frame response 

prediction. The vector {M ^} has terms like MC3, MD2, . . .  of Equations 61(a), 

61(b),. . . ,  and are dependent upon the axial load P and the member displacements. 

The vector {MpG} has terms like Mp23, Mp32, . . .  of Equations 61(a), 61(b), . . ., 

and are dependent upon the internal plastic force parameters. The vector {MG} 

contains the externally applied joint moments and includes terms like M3 and M6 of 

Equations 62(e) and 62(f).

5.1.3.2 Two-Bay Two-Story Frame

A schematic diagram of an imperfect two-bay two-story nonsway frame is given 

in Figure 41. The frame consists of three continuous columns loaded relative to 

their minor axis, and four girders loaded about their major axis. Each member of 

the frame has a length L. The beam-to-column connections are simulated as elastic 

springs with a constant rotational stiffness k. The frame is subjected to joint loading 

consisting of axial loads, P, and/or bending moments, M. Following a procedure 

similar to that presented in Section 5.1.3.1, the governing equilibrium equations for

[Kg] {eG} = {Mrc} + {MpG} + {Mg } (64)
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this problem can be obtained in the form given by Equation 64.

5.2 Load Paths and Combinations

5.2.1 Load Paths

With reference to Figure 15, following load paths are used for the numerical 

study presented in Section 5.4:

NP9: Both p and in are applied simultaneously in a proportional manner with a

proportionality constant, f, defined as:

? = m /p (65)

NP9 corresponds to the path OB.

NP10: An axial load p = p* is applied first, followed by both p and m applied 

simultaneously, satisfying the relationship:

p = in + p* (66)

NP10 corresponds to the path OHB.

NP11: Both p and in are applied simultaneously in a proportional manner, as in 

Equation 65, until in reaches the ultimate value obtained in NP10. This is 

followed by an increase in the axial load p while holding in constant. NP11 

corresponds to the path OIB.

The loads are incremented until the load-carrying capacity of the structure is 

reached. When load path NP9 is used, the analysis is carried out following the 

stress-strain laws given in Figures 3(a) as well as 3(b) for a critical view on the 

tangent modulus approach which neglects elastic unloading.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.2.2 Load Combinations

Unlike for a single member, the portal and two-bay two-story frames can be 

subjected to various load combinations due to the presence of a number of joints. 

The following load combinations are utilized in the present study.

a. Portal frame

Referring to Figure 39:

FL1: An axial load P3 = P, and a counterclockwise bending moment M3 = M are 

used while keeping P6 = = 0.

FL2: Same loading as FL1, except that the bending moment M3 = M is applied 

clockwise.

FL3: In addition to the loads in FL1, P3 = P and M3 = M are used.

FL4: The same loading condition as in FL3 is used, except that M3 and M6 are 

reversed in direction.

b. Two-bay two-story frame

Referring to Figure 41:

FL5: P and M are applied at joint A only.

FL6: The loading is the same as in FL5, except that M is clockwise.

FL7: All the loads shown at the joints A through F are applied.

FL8: The loading is the same as in FL7, except that the direction of M is reversed.

5.3 Solution Procedure

Equation 64 is materially nonlinear since the stiffness matrix [KG] and the 

moment vectors {M^} and {MpG} are dependent upon the deformation vector 

{eG}. The following iterative scheme is devised to predict the load-deformation
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response of the frame:

1. Evaluate the initial elastic properties for each member and deduce Equation 

57 for each member.

2. Assemble global stiffness matrix [KG] in equation 64.

3. Prescribe small loads and formulate the load vectors {MfG} and {MpG} in 

Equation 64.

4. Solve Equation 64 for a set of deformations {0G}.

5. Compute the member end moment vectors {Ma} using Equation 57. Next, 

determine the member end actions using simple statics, and formulate the load 

vector {M} = {M}j in Equation 37(a). Here, i refers to the iteration number.

6. Analyze the members with (M); individually using the procedure given in 

Chapter 4, and compute the converged member stiffness matrices [K] in 

Equation 37(a).

7. Update the inelastic slope-deflection Equation 57 for each member, reassemble 

[K^], {Mflj} and {MpG}, and update {eG} using Equation 64.

8. Recompute the member end moment vectors {Ma} using Equation 57, and

update {M} = {M} .+1 in Equation 37(a).

9. If |{M}i+1 - {M}j| < {«}, where {a} is the tolerance taken as 0.01%, go to 

Step 11.

10. Set {M}. = {M}i+1, and go to Step 6.

11. If | [K ĵ] | —*0, go to Step 13.

12. Increase (or change) the external loads, that is, P and/or M, update the load 

vectors {M^} and {MpG} in Equation 64, and go to Step 4.
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13. Stop.

The solution procedure described herein is programmed on a sequential 

computer using FORTRAN and named NONPRFRM. A listing of this computer 

program is included in Appendix E.

5.4 Numerical Study

To gain an in-depth understanding of the behavior of the nonsway plane frames 

referred to in Section 5.1.2, an extensive numerical study is conducted using the 

solution procedures described in Chapter 4 and Section 5.3. Since the number of 

variables is quite large, the material properties and the dimensions of the members 

are fixed. Each beam-column is a W 8x31 section loaned about its minor axis. Each 

girder, however is a S 12x31.8 section loaded about its major axis. The length of 

each member is taken as 15 ft. The frame is A36 steel, that is, with E = 29,000 ksi, 

= 36 ksi, and following the a-t relationship of either Figure 3(a) or 3(b). The 

following two magnitudes of the initial crookedness amplitudes are used for the 

beam-columns:

Each connection behaves elastically with a stiffness k = 13,333 in-kip/rad. A linear 

moment-rotation relationship is adopted since the beam-column behavioral study in 

Chapter 4 indicated that this type of connection provides significant load path

u01 = L/1000 

Uq2 = L/100,000

Similarly, the initial crookedness amplitudes for the girders are: 

v01 = L/1000 

v02 = L/100,000 (70)

(68)

(69)

(67)
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dependency.

5.4.1 Equivalent Structural Model

This section contains the outcome of a numerical study of the portal frame in 

Figure 39 and its equivalent structural model in Figure 40 under the symmetry 

conditions described in Section 5.1.2. Referring to Figure 40, three types of 

equivalent structures E l, E2, and E3 with u0i values in Equation 17 given by +u01, 

-u01, and +u02, respectively, are considered. A total of 16 equivalent models 

designated as Cl through C16 are considered to investigate the influence of load 

paths NP9, NP10, and NP11 on their behavior. The stress-strain relationship shown 

in Figure 3(a) is adopted for all of the cases except for C14 and C16 for which the 

relationship ignoring material unloading shown in Figure 3(b) is used. The 

maximum axial load, pmax, and the maximum applied moment, in max, as found from 

the analysis are given in Table 19.

Figures 42 through 44 present some of the key results of the study graphically. 

Figure 42 exhibits the dimensionless load versus applied moment (p-m) relationships 

for the three load paths NP9, NP10, and NP11 and the cases C l, C2, C13, and C14 

for El. With NP10, pmax and m max are found to be 0.84, and 0.33, respectively, for 

case Cl. With NP11, m max and pmax are found to be 0.33, and 0.86, respectively, 

for C2. With NP9, the case C13 based on a-e relationship in Figure 3(a) provides 

a somewhat greater maximum load-carrying capacity than that for C14 with a-e 

relationship in Figure 3(b). Also, the maximum moments obtained for the cases Cl 

and C2 are found to be significantly less than those obtained for C13 and C14. For 

example, case C13 provides a moment capacity of 0.80 which is 0.47 in excess of that
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for C l while the axial loads do not differ significantly.

Figure 43 shows dimensionless load versus column midheight deflection (p-"uc) 

relationships for the cases Cl, C2, C13, and C14 of frame E l. The deflection is 

nondimensionalized by one half the member flange width. The p-uc responses 

obtained for the cases C l and C2 with NP10 and NP11, respectively, indicate that 

the deflections are positive throughout the history of loading. However, the 

deflections changed their sign during the loading for the cases C13 and C14 with 

NP9, since the end moments had a more dominant effect as compared with the so- 

called P-delta effect.

Figure 44 shows stiffness degradation curves corresponding to the cases Cl, C2, 

C13, and C14. In this figure, D is the dimensionless determinant defined in 

Equation 43. The D-p curves for the cases Cl, C2, and C13 in Figure 44 show 

valleys in the form of rapid changes in D indicating that considerable strain reversal 

is present in the structure. Similar findings were also observed for beam-column 

studies in Chapter 4. Such valleys, however, are not observed for the case C14 since 

the material unloading is not included.

5.4.2 Portal Frame Behavior

The portal frame shown in Figure 39 is first analyzed numerically under various 

load histories. Later, extensive additional computer runs were made to generate 

load-moment interaction curves. The load combinations FL1 through FL4 with the 

load paths NP9 through NP11 described in Section 5.2 are utilized to analyze 6 

types of portal frames with various configurations of the initial crookedness. These 

frames are designated as FR1 through FR6 and are described below:
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FR1: All of the members AB, BC, and CD are nearly perfect, with u0i in Equation 

17 given by u02 in Equation 68 for members AB and CD, and with v0i in 

Equation 18 given by vQ2 in Equation 70 for member BC. The Uj for 

members AB and CD is as shown in Figure 39 while v- for member BC is 

opposite to that shown in this figure.

FR2: The members AB and CD are initially crooked as shown in Figure 39 with 

the midspan amplitudes equal to u01 in Equation 67, and Vj for BC is opposite 

to the direction shown in this figure with its midspan amplitude given by 

Equation 69.

FR3: The member AB is nearly perfect as for the frame FR1, with u0i = u02, and 

the members BC and CD are initially crooked as for the frame FR2.

FR4: The members AB and BC are initially crooked as in FR2, and the member 

CD is nearly perfect as for the frame FR1.

FR5: The member AB is initially crooked as in FR2, the member CD is initially 

crooked in the direction opposite to that indicated in Figure 39, with u0i = 

u01 in Equation 67, and the member BC is initially crooked as for the frame 

FR2.

FR6: The configuration of this frame is the same as FR5, except that the lateral 

support at C is replaced by a support at B.

The frame FR6 is analyzed in order to gain an insight into the nature of the 

induced girder axial load and its effect on the frame behavior. The parametric 

study conducted thus encompasses the frames FR1 through FR6 and the frame 

loadings FL1 through FL4 for the load paths NP9, NP10, and NP11. For NP10, p*
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in Equation 65 is taken as 0.5.

The numerical results for frames FR1 through FR6 are summarized in Tables

20 and 21. The peak loads obtained for the frames FR1 through FR4 with FL1 and 

FL2 following the three load paths NP9, NP10, and NP11 are given in Table 20. 

The results clearly indicate that the nonproportional load paths NP10 and NP11 

result in substantially different maximum load-carrying capacities as compared to 

that resulting from the proportional load path NP9. For the frame FR2 with FL1, 

for example,the load paths NP10 and NP11 result in practically the same peak loads, 

Pmax =  0-71 and m max = 0.21, whereas NP9 results in pmax = 0.64 and m max = 

0.64. Similar observations are also made for other frames included in this table.

Table 21 summarizes the maximum loads for frames FR1, FR2, FR5, and FR6 

for FL3 and FL4 with NP9 through NP11. It should be noted that the structural 

model used in Section 5.4.1 is equivalent to the frames FR1 and FR2 for the load 

combinations FL3 and FL4. The peak loads for FR1 with MP10 and NP11 in Table

21 are found to be practically the same as those for the equivalent structural models 

C9 through C12 in Table 19. Also, the peak loads for the frame FR2 with load 

paths NP10 and NP11 are fairly similar to those obtained for the cases Cl through 

C8. However, the maximum loads for the cases C13 through C16 are somewhat 

greater than those for the frame FR2 with the load path NP9. This discrepancy is 

attributed to the softening effect of the induced axial compression in the girder. This 

means that a somewhat over-estimated value of ke is used in the equivalent 

structural model.
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Figures 45 through 53 present the key results obtained for the portal frame 

FR2 with the load combination FL3. The overall frame behavior is presented in 

Figures 45 through 48 and the response of the beam-column AB of this frame is 

shown in Figures 49 through 52. The load-deformation response of the frame is 

represented by the dimensionless axial load, p, versus the joint rotation, eA 

relationship. When the proportional load path NP9 is used, the p-eA relations for 

FR2 based on the material curves of Figure 3(a) or 3(b) are nearly the same, as 

shown in Figure 45. The corresponding stiffness degradation curves are shown in 

Figure 46. It is interesting to note that the curve with the tangent modulus approach 

shows a significant loss of frame stiffness compared with that including material 

unloading. The members of the frame, with material elastic unloading included, 

experience considerable redistribution of stresses resulting in localized strain 

reversals.

Figures 47 and 48 show, respectively the p-0A and D-p relationships for the 

frame FR2 with the load combination FL3 and subjected to the load paths NP10 and 

NP11. For NP10, the p-0A relation indicates a slight reduction in the joint rotation 

as the loads are increased. The probable cause of such a reduction in deformations 

may be explained as follows. Throughout the loading history of the frame, the 

beam-column AB exhibits a reverse curvature that is to say that it is bent in an S- 

curve because of the presence of the rotational restraints at the base of the frame. 

Also, the beam-column experiences substantial yielding as the loads reach the 

maximum load-carrying capacity of the frame. At this instant, the rotational 

restraints tend to cause a snap-through type of beam-column deformation, thus
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elastically unloading the beam-column to gain enough strength to resist the snap- 

through type of deformations. Eventually, the structure fails due to the instability 

of beam-columns. Figure 51 showing the load-deformation response of the beam- 

column AB clearly substantiates these conclusions by indicating a reduction in the 

member displacements followed by further increase as the load is incremented.

The stiffness degradation curves for the frame FR2 with FL3 and the beam- 

column AB of this frame are shown in Figures 48 and 52, respectively. These curves 

exhibit the presence of substantial unloading in the form of valleys. Similar 

observations are also made in a number of the frame results.

To generate the interaction curve between p and m, frame FR2 with load 

combination FL3 with the load path NP9 is considered. The following 9 different 

proportionality constants, f , defined by Equation 65 are used for the analysis:

f = o.oo r = 0.25 r =  0.50

r = 1.00 r = 2.00 r = 4.oo (71)

f = 8.00 f = 20.00 f = «

The results from the analysis are graphically represented by an interaction curve 

shown in Figure 53. The results from the numerical studies with the load paths 

NP10 and NP11 are also plotted in the form of data points. Figure 53 is noticed to 

predict frame maximum loads accurately. Within the parameters considered herein, 

this interaction curve forms an envelope to predict the strength of the frame FR2.

5.4.3 Two Bay Two-Story Frame Behavior

The two-bay two-story frame shown in Figure 41 is analyzed first for various
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load histories, followed by extensive additional analyses to construct a load-moment 

interaction envelope. The following two different frames with prescribed initial 

crookedness configurations are used in the numerical study:

FR7: Frame with nearly perfect members, that is, each of the beam-column has 

Uq| = u02 given by Equation 68 and each of the girder has v0i = v02 given 

by Equation 70 with all of the members initially curved as shown in Figure 

41.

FR8: Frame with the Beam-columns ADG and CFI are initially crooked as shown 

in Figure 41 with each member having ufli = u01 in Equation 67, and the 

girders are initially crooked as shown in this figure with each girder having 

v0i = v01 as given in Equation 69.

The frames FR7 and FR8 are subjected to the four load combinations FL5 

through FL8 and load paths NP9 through NP11 described in Section 5.2. In this 

study, p* = 0.50 is used in Equation 65 for load combinations FL5 and FL6, and 

p* = 0.25 is used for the loading combinations FL7 and FL8.

Table 22 presents a summary of the results obtained for the frames FR7 and 

FR8 with load combinations FL5 through FL8 when subjected to the proportional 

load path NP9, and the nonproportional load paths NP10 and NP11. A review of 

the maximum loads recorded in this table indicates that the load path NP9 predicts 

moment capacities unconservatively when compared to those obtained for the load 

paths NP10 and NP11. For example, for the frame FR8 with FL6, NP9 gives m max 

= 0.68, whereas NP10 or NP11 predict m max = 0.22. Similar differences in moment 

capacities is observed for all of the frames included in Table 22.
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An examination of the computer output for the frame FR8 with load 

combination FL8 subjected to the load path NP11 indicated that the maximum load- 

carrying capacity of this frame is governed by the failure of the beam-column EH 

in contrast to a general expectation of a failure of either DG or FI in Figure 41. 

This unpredictable behavior is explained as follows. The computer output revealed 

that considerable yielding of the beam-columns DG and FI takes place when the 

inelastic action is initiated in the frame. Further change in the applied loads activate 

the nearly perfect beam-column EH to share somewhat of a greater load relative to 

the yielded beam-columns DG and FI. During such redistribution of loads, the 

beam-columns DG and FI experience material unloading thereby gaining some 

amount of stiffness. This material unloading is caused by the restraining effect 

offered by the member end partial rotational restraints. This process continues in 

the beam-columns DG and FI while the member EH begins to plastify. The 

restraining, however, is not felt by the beam-column EH since it is nearly straight, 

additionally, the symmetrical bending of the frame induces no significant bending 

moments on EH. Consequently, the beam-column EH is deprived of any possible 

material unloading while the members DG and FI continue to redistribute the 

internal loads. Finally, the beam-column EH becomes completely plastic resulting 

in the eventual collapse of the frame.

The results corresponding to those reported in Table 22 for FR8 with FL7 are 

shown graphically in Figures 54 through 62. A detailed study of these results 

indicate the two-bay two-story frame behavior to be consistent with that of the portal 

frame studies reported in Section 5.4.2. The interaction diagram for the frame FR8
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with FL7 shown in Figure 62 is constructed by carrying out a number of frame 

analyses using the different values of the proportionality constants given from 

Equation 71. Here, the interaction curve is found to form an envelope closely 

predicting the maximum strength of the frame for various load paths.
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6. CONCLUSIONS AND FUTURE RESEARCH

The main thrust of this investigation is on a rigorous analysis of the influence 

of nonproportional loads on the inelastic response of imperfect beam-columns and 

flexibly-connected steel nonsway plane frames. The analysis is performed using a 

finite-difference technique combined with an iterative solution procedure. A set 

of inelastic slope-deflection equations is derived and utilized for the frame analysis. 

The suitability of concurrent computing is investigated through inelastic analysis of 

cross sections and biaxially imperfect columns. The main computational work, 

however, is performed using the sequential computer.

A number of examples have been presented throughout this dissertation 

encompassing the above-mentioned inelastic problems. The cross-sectional and 

member studies include both I-sections and hollow rectangular sections. The frame 

studies are limited to I-section members to restrict the volume of research.

The conclusions drawn from this research are discussed in the following 

sections and appropriate recommendations for further research are made at the end.

6.1 Conclusions

To conveniently present the conclusions, the studies are grouped into three 

categories, namely, (i) Concurrent Computing Studies, (ii) Beam-Column Studies, 

and (iii) Frame Studies. Various conclusions drawn for each category are discussed
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here.

6.1.1 Concurrent Computing

The effectiveness of concurrent computing using the Finite Element Machine

is studied and the corresponding conclusions are presented as follows:

A. Cross-sectional analysis

1. A maximum speedup factor of 7.69 is achieved on eight processors resulting 

in an efficiency of 96.1 per cent.

2. The minimum speedup factor for the study is found to be 7.09 on eight 

processors which corresponds to 88.6% efficiency.

3. The speedup factors increased as the number of processors are reduced. This 

is primarily due to an efficient distribution of computational load between the 

processors and also reduction in communication time between the processors.

B. Column studies

1. In general, the execution times required to analyze hollow rectangular columns 

(CN5-CN8) are greater than those for the hollow square columns (CN1-CN4). 

This difference in computational time is explained as follows. The hollow 

rectangular column began yielding at a lower load level due to the smaller 

bending resistance about the minor axis and resulted in a greater number of 

cycles for convergence in the nonlinear range compared to the hollow square 

column.

2. The speedup factors are found to be of the same order for both hollow square 

and rectangular columns although larger computational times are needed for
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the latter ones.

3. The communication overhead needed is negligibly small since the analysis is 

dominated by extensive arithmetical computations on all processors. The 

development of the algorithm exploits the inherent quality of processors that 

are designed to be efficient computers. Therefore, algorithms which exploit 

this property will derive efficient speedups.

4. Generally, the computational time needed to analyze the structure increases 

with the degree of end fixity of the column.

5. The computational efficiency decreases as the number of processors increase, 

suggesting an optimal limit on the number of processors that may be employed. 

In summary, the concurrent computing algorithms are found to be efficient to

analyze this class of nonlinear problems.

6.1.2 Beam-Columns

Specific studies on beam-columns include an investigation of the restraint

modeling, and a behavioral study of uniaxially and biaxially loaded I-section beam-

columns and biaxially loaded hollow rectangular section beam-columns subjected to

various load paths. The following conclusions are drawn form the numerical studies:

A. Restraint modeling effect on beam-columns

1. The studies indicate that the end restraints can be practically modeled by a 

simple linear or at the most a bilinear moment-rotation relation.

2. The beam-column analyses predict that the strength of the members is not 

highly sensitive to the connection modeling.
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3. When the connection possesses a relatively large stiffness, a simple linear 

mode) will provide accurate connection response.

4. These models in general provide simple and accurate moment-rotations 

relationship for a connection spring.

B. Nonproportionally loaded I-section beam-columns

1. The major axis response of beam-columns is not load path dependent for all 

practical purposes.

2. The m in or axis response of beam-columns is load path dependent when elastic 

rotational restraints are present.

3. With elastic-plastic end restraints, the load paths provide nearly the same peak 

loads.

4. For load paths NP1 and NP2, the load conditions LC1 and LC2 provide nearly 

the same peak loads, while load paths LC3 and LC4 exhibit a substantial 

difference for the minor axis loading when elastic restraints are present.

5. A consideration of appropriate nonproportional loadings may provide greater 

allowable loads for beam-columns with elastic end restraints.

6. Neglecting the effects of material unloading may lead to unconservative 

estimation of load-carrying capacity of beam-columns.

7. A greater degree of unconservativeness results for the biaxially loaded beam- 

columns.

8. Considerable redistribution of stresses takes place along the member length in 

the inelastic range.

9. The study on beam-columns with proportional loads indicated that the tangent
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modulus approach exhibits a fictitious ductile behavior of the member. Such 

fictitious ductility is not noticed in the experimental investigations.

C. Nonproportionally loaded hollow rectangular beam-columns:

1. Significant load dependence exists for biaxially loaded hollow rectangular 

beam-columns.

2. Critical combination of loadings in a load path may dramatically change the 

strength of the member in comparison to yet another the load path(s).

3. The load path dependence disappears only for certain load combinations, or 

for the special case of pinned boundaries.

4. Considerable material unloading is present and is indicated in the form of 

valleys in the stiffness degradation curves.

5. Substantially a greater number of cross-sectional elemental areas are required 

when the analysis includes material unloading.

6. The members analyzed using the tangent modulus approach exhibit a fictitious 

yield plateau in contrast to the relatively less ductile behavior observed in 

experimental investigations.

6.1.3 Frame Studies

The following conclusions are derived from the frame studies conducted in this

research:

A. Equivalent structural model

1. The peak loads for imperfect structure are larger than those for the nearly

perfect structural model when the applied moment causes deflection opposite
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to the initial crookedness.

2. Nearly the same peak loads result for structural models subjected to load paths 

NP10 and NP11.

3. The strength of nonproportionally loaded equivalent structural model is 

substantially less than that of the proportionally loaded one.

4. There is a dramatic difference in the behavior between the nonproportionally 

loaded and the proportionally loaded structures.

5. In some cases, the equivalent structural model provided unconservative peak 

loads compared to the corresponding frame analyses results.

B. Portal and two-bay two-story frames

1. The inelastic slope-deflection equation method of frame analysis is found to be 

simple and practical.

2. The number of degrees of freedom involved for the global frame response 

prediction is quite small due to the inelastic slope-deflection method.

3. Specific case studies for the portal frame analyses compared with those of 

equivalent structural model indicated that the frame analysis procedures are 

reliable.

4. The effect of P-delta effects on girders is found to be sign ificant for some of 

the portal frames analyzed.

5. The maximum load-carrying capacity of frames, in general, are found to be 

unconservative when tangent modulus approach was used.

7. For the frames considered, the girders in general exhibited elastic behavior.

8. The frame analyses using tangent modulus unloading of the material did not
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exhibit a large yield plateau unlike in the case of individual member studies 

even when the tangent modulus approach is used.

9. Substantial redistribution of loads takes place in the inelastic range for the 

frames.

10. There is a significant difference in the behavior between the nonproportionally 

and proportionally loaded frames.

11. For portal frames, the failure in general is governed by the instability failure 

of the beam-columns.

12. When the lateral support location is altered in the frame as in FR6 relative to 

FR5, the girder experienced a tensile axial load indicating that the location of 

lateral support can alter the behavior of girders.

13. For two-bay two-story frames, the outer columns experienced considerable 

redistribution of stresses and the frame maximum loads are attained when the 

lower story central beam-column eventually failed due to inelastic instability, 

in contrast to the generally expected failure of the initially crooked outer beam- 

columns.

14. The interaction diagrams developed for the frames form a type of maximum 

load envelope which govern the maximum load-carrying capacity for these 

frames when subjected to various load paths.

The present study clearly indicates that the combined influence of 

nonproportional loads, imperfections, and flexible connections on the behavior and 

strength of structural members and frames is very significant. In general, 

proportionally loaded structures provided unconservative maximum loads for beam-
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columns as well as frames. The inelastic slope-deflection equations developed for

the frame analysis are found to efficient and simple for practical use.

6.2 Future Research

Considering the scope of the present research the following recommendations

are made for future investigations.

1. No verifiable data is available at present in the literature to experimentally 

corroborate the theoretical developments in this study. Therefore, 

experimental investigation of the structural behavior investigated herein will be 

a challenge in the future.

2. The inherent potential for parallelization of this theoretical formulation makes 

it a suitable candidate for application on concurrent computers.

3. The concept of the inelastic slope-deflection equations for beam-columns may 

be extended to investigate the behavior of sway frames.

4. Modifications of member equilibrium equations to include member loads in 

addition to the applied nodal loads will enhance the analytical capability of the 

computer program developed herein.

5. The theoretical formulations developed for plane frame analyses may be 

extended to study the behavior of space frames.

6. An experimental investigation of various load paths in real-life structures may 

be performed for use in the future research.

7. The torsional effects of the open section members may be incorporated into 

the present analysis to enhance its scope.
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Table 1. Concurrent processing results for hollow square section with y = 1.

Number of 
processors

Maximum 
computational time 

(sec)

Speedup
Si

Efficiency
hi

8 312.853 7.69 96.1

4 608.171 3.96 99.0

2 1204.867 1.99 99.5

1 2405.829 — —
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Table 2. Computational time on concurrent processors

Number of 
processors

Square section Rectangular section

Moment 
ratio y

Computational 
time (sec)

Moment 
ratio Y

Computational
time(sec)

Yi, 1289.836 Yi, 1289.817

Yu (1422.777) Yu (1419.233)

Yu 1419.230 Ysr 1333.203

Yu 1398.955 Yu 1137.931
8

Yu 1333.192 Yjr 1253.166

Ys. 1273.721 Ysr 1291.926

Y7. 1143.658 Y7r 1261.039

Ys, 1102.597 Y& 1102.564

Yi* Yu 2701.822 Ylr, Yu (2715.432)

Yu, Yu (2823.155) Y3„ Yu 2471.114
4

Yu, Y7. 2471.129 Yiri Ys. 2538.101

Ys* Ys. 2375.804 Y7r» Ys. 2362.757

Yu, Yu, Yu, Y7, (5197.993) Ylr to Yu (5172.083)
2

Yu, Yu, Yu, Ys. 5190392 Ysr to Ys. 4896.691

1 Yu to Ys. 10324.935 Yi, to Ys. 10067.648
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Table 3. Concurrent processing efficiencies for hollow square section with y = 
to Ygs

Number of 
processors

Maximum 
computational time 

(sec)

Speedup
Si

Efficiency
Hi

8 1422.777 7.26 90.7

4 2823.155 3.66 91.5

2 5197.993 1.99 99.5

1 10,324.935 — —

Table 4. Concurrent processing efficiencies for hollow rectangular section with y 
Yu Ysr

Number of 
processors

Maximum 
computational time 

(sec)

Speedup
Si

Efficiency
7i

8 1419.233 7.09 88.6

4 2715.432 3.71 92.7

2 5172.083 1.95 97.5

1 10,067.648 — —
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Table 5. Peak loads of hollow square and rectangular columns

Hollow square section Hollow rectangular section

Column Spring
stiffness

Pm Column Spring
stiffness

p4 mix

CN1 k| 0.851 CN5 ki 0.832

CN2 ki 0.887 CN6 ki 0.875

CN3 K 0.951 CN7 ki 0.930

CN4 0.902 CN8 ki 0.859

k (kgj -  k,, k^, -  ka kgy -  ka k,y -  k3)
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Table 6. Execution times on concurrent processors for columns CN1 and CN5

Number of 
Processors

Number of 
cross sections 
per assistant 

processor

Executive time (sec)

Column CN1 Column CN5

1083.285 1319343

1082.937 1318.933

1083.267 1319327

1083.283 1319353

9 1 1083.068 1319.089

1083.244 1319.292

1083.268 1319.325

1083.185 1319.235

(1088.823) (1322.104)

(1442337) (1709396)

1441.870 1708.872

5 2 1442330 1709380

1442.284 1709335

1430.745 1694.345

(2002.951) 2250.632

3 4 2002.196 (2349.794)

1967393 2306.682

3286.645 3842.815
2 8

(3291.664) (3848343)

1 8 5272340* 6907.108*

* Estimated times.
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1

Table 7. Computational speedup factors and efficiencies for hollow square columns

Column Spring
stiffness

Number of 
processors

Maximum 
execution 
time (sec)

Speedup
(Si)

Eficiency
Oli)

9 1088.823 5.49 61.0

5 1442.284 4.14 82.8

CN1 3 2002.951 2.98 99.4

2 3291.664 1.81 90.7

1 5972.540 — —

9 1527.131 5.89 65.4

5 2090.294 430 86.1

CN2 3 3017.470 2.98 99.4

2 5084.405 1.77 88.5

1 8994377 — —

9 988.095 5.15 57.3

5 1270.900 4.01 80.2

CN3 3 1780.100 2.86 95.4

2 2837310 1.79 89.8

1 5093.126 — —

9 1871.138 553 61.4

5 2506.175 4.13 82.5

CN4 k’ 3 3481.424 2.97 99.0

2 5520.623 1.87 93.7

1 10240.735 — . . .

k (k* -  ktl kn, -  kj, kgy -  kj, k]y -  k3)
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Table 8. Computational speedup factors and efficiencies for hollow rectangular 
columns

Column Spring
stiffness

Number of 
Processors

Maximum 
execution 

Time (sec)

Speedup
(Si)

Efficiency
(hi)

9 1322.104 5.22 58.0

5 1709396 4.04 80.8

CN5 K 3 2350.632 2.94 97.9

2 3848343 1.79 89.7

1 6907.108 — —

9 1700.910 5.65 62.8

5 2245.908 4.28 85.6

CN6 k2 3 3219390 2.98 99.4

2 5398389 1.78 89.0

1 9609.606 — —

9 4386.441 5.67 63.0

5 5911.918 4.21 84.2

CN7 k3 3 8332.422 2.99 99.6

2 13880341 1.79 89.7

1 24887304 — —

9 4570.608 5.61 .52.3

5 6040.994 4.24 84.8

CN8 k‘ 3 8555.816 2.99 99.6

2 14147350 1.81 90.6

1 25619372 — . . .

k (kg, -  kn kp, -  kj, kgy -  k^ kjy -  k3)
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Table 9. Summary of beam-column strength for various connection models

Reatraint
type Pmo

Spring*
moment

a2 0.71 124.23

b2 0.69 95.92

c2 0.66 79.89

d2 0.64 79.85

e2 0.67 100.00

f2 0.64 72.00

‘in inch-kip units
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Table 10. Maximum beam-column loads for various load paths and elastic restraints

Spring
stiffness

Major axis Minor axis Major axis Minor axis

re Load LC1 LC2 LC1 LC2 LC3 LC4 LC3 LC4

0 .0 k *3

P

m

0.950

0.021

0.952

0.021

0.935

0.182

0.910

0.182

0.426

1.200

0.426

1.160

0.290

4.600

0.290

3.842

-0 .3 k«i

P

m

0.710

0.192

0.710

0.192

0.625

0.086

0.625

0.086

0.166

0.900

0.166

0.901

0.261

0.850

0.261

0.849

-03 ^* 2

P

m

0.750

0.275

0.761

0.275

0.800

0.675

0.731

0.675

0.321

1.050

0.321

1.084

0.075

3.400

0.075

3.343

-03 K*
P

m

0.800

0.313

0.798

0.313

0.850

0.543

0.856

0343

0377

1.200

0377

1.202

0.311

4.600

0.311

4.163

Table 11. Maximum beam-column loads for various load paths and elastic-plastic 
restraints (k*; 111̂  = 100 in-kips)

Bending
axis Load LC1 LC2 LC3 LC4

P 0.800 0.800 0.168 0.168
Major

m 0.198 0.198 1.000 1.000

P 0.800 0.799 0.150 0.150
Minor

m 0.159 0.159 1.400 1.499
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Table 12. Maximum external loads for uniaxially loaded imperfect beam-columns
with partial rotational equal end restraints and various load paths 
(W8X31)

Beam-Column
Length

(ft.)
Spring

Stiffness Load Path Maximum External Loads

1 8
NP2 P

m
0.000
3.211

0.075
3.000

0.737
1.500

0.961
0.000

kc

NP1 P
m

0.000
3.211

0.075
2.990

0.737
1.733

0.961
0.000

8
NP2 P_

m
0.000
4.689

0.169
4.000

0.669
2.500

0.968
1.000

0.958
0.000

2 kgj
NP1 P

m
0.000
4.689

0.169
4.190

0.669
2.155

0.865
1.114

0.958
0.084

12
NP2 P

m
0.000
3.736

0.238
3.000

0.749
1.500

0.867
0.001 _

3

NP1 P
m

0.000
3.736

0.238
3.344

0.749
0.845

0.867
0.144

- -

12
NP2 P

a
0.000
S.014

0.360
4.500

0.j 50
3.000

0.744
1.500

0.893
0.000

4 ku

NP1 p
m

0.000
S.014

0.360
3.842

0.550
3.476

0.744
1.825

0.893
0.258

5 16
NP2 P

m
0.000
S.S61

0.182
4.500

0.273
3.000

0.496
1.500

0.751
0.000

k»a

NP1 P
m

0.000
S.S61

0.182
3.032

0.273
3.590

0.496
1.593

0.751
0.007

6 16
NP2 p

m
0.000
6.983

0.100
6.000

0.352
4.500

0.649
1.500

0.795
0.000

k*j

NP1 P
a

0.000
6.983

0.100
5.483

0.352
3.923

0.649
2.087

0.795
0.386
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Table 13. Comparison of predicted and previously published maximum loads for 
pinned-end beam-columns with biaxially eccentric load

Reference
Number

Cross
Section

Length
(in.)

Eccentricity 
e, (in.)

Eccentricity 
ey (in.)

P p Predicted

Predicted Reference p Reference

21 H 6x6 96 1.61 2.78 0.426 0.421 1.01

21 H 5x5 120 2.38 2.51 0.284 0.297 0.96

2S W12x65 180 18.40 3.76 0.186 0.199 0.93

25 W12x65 270 18.40 3.76 0.167 0.169 0.99

25 W12x65 360 18.40 3.76 0.149 0.144 0.97

*m, -  Pe,/MYl; m, -  Pe/M Yr

Table 14. Maximum external loads for biaxially loaded imperfect beam-columns 
with partial rotational equal end restraints and various load paths 
(L= 12ft.; W8X31)

Beam-
Column

Spring
Stiffness

Load
Path Maximum External Loads

7 **

NP2
P

m,
™r

0 . 0 0 0

1.078
0.631

0.251
0.864
0.506

0.525
0.405
0.237

0.876
0.070
0.041

0.869
0 . 0 0 0

0 . 0 0 0

NP1
P

m,
m,

0 . 0 0 0

1.078
0.631

0.250
0.864
0.506

3.500
0.405
0.237

0.750
0.070
0.041

0.869
0 . 0 0 0

0 . 0 0 0

8

NP2
P

nix
m,

0 . 0 0 0

1.255
0.735

0.276
0.952
0.558

0.503
0.471
0.276

0.919
0.039
0.023

0.904
0 . 0 0 0

0 . 0 0 0

^ 1 3

NP1
P

m,
" V

0 . 0 0 0

1.255
0.735

0.250
0.952
0.558

0.500
0.471
0.276

0.780
0.039
0.023

0.904
0 . 0 0 0

0 . 0 0 0
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Table 15. Maximum external nonproportional biaxial loads for partially restrained
imperfect beam-column BC2 with hollow square section (k=ka2)

Loac

case
Dimensionless M axim um  Loads

P 0.00 0.25 0.50 0.75 0.93
NP3 m x 1.86 1.11 0.89 0.42 0.00

my 1.86 1.11 0.89 0.42 0.00

S T 1.86 1.11 0.89 0.42 _

NP4 mv 1.86 1.11 0.89 0.42 -
P 0.00 0.27 0.50 0.77 -

P 0.00 0.25 0.50 0.75
NP5 a T 1.86 1.11 0.89 0.31 -

rfiy 0.24 1.17 0.39 0.00 -

m v 1.86 1.11 0.89 0.42
NP6 s ir 0.24 1.11 0.89 0.42 -

P 0.00 0.30 0.51 0.77 -

Table 16. Maximum external nonproportional biaxial loads for partially restrained
imperfect beam-column BC3 with hollow square section (k = kaJ)

Load

case
Dimensionless M axim um  Loads

P 0.00 0.25 0.50 0.75 0.94

NP3 1.95 1.62 1.18 0.50 0.00
ffiy 1.95 1.62 1.18 0.50 0.00

5 X 1.95 1.62 1.18 0.50 -
NP4 mv 1.95 1.62 1.18 0.50 -

/
p 0.00 0.35 0.44 0.76 -

p 0.00 0.25 0.50 0.75 -
NP5 m T 1.95 1.62 1.18 0.39 -

3 y 1.73 1.74 0.83 0.00 -

mv 1.95 1.62 1.18 0.50 -
NP6 1.73 1.62 1.18 0.50 -

P 0.00 0.21 0.44 0.76 -
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Table 17. Maximum external nonproportional biaxial loads for partially restrained
imperfect beam-column BC4 with hollow rectangular section (k=ka2)

Load

case
D im ensionless M axim um  Loads

P 0.00 0.25 0.50 0.75 0.91
NP3 5 X 2.02 1.19 0.75 0.32 0.00

my 2.14 1.26 0.80 0.34 0.00

2.02 1.19 0.75 0.32 -

NP4 Qlu 2.14 1.26 0.80 0.34 -3
P 0.05 0.40 0.45 0.78 -

P 0.00 0.25 0.50 0.75 •
NP5 s x 2.14 1.19 0.75 0.32 -

m y 0.99 1.18 1.02 0.30 -

Qly 2.02 1.26 0.80 0.34 _

NP6 fix 0.61 1.19 0.75 0.32 -

P 0.00 0.39 0.46 0.78 -

P 0.00 0.25 0.50 0.75
NP7 IDy 2.02 1.26 0.80 0.29 -

S i 0.61 0.97 0.60 0.00 -

fix 2.14 1.19 0.75 0.32 _

NP8 IDy 0.99 1.26 0.80 0.34 -J
P 0.00 0.26 0.45 0.78 -
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Table 18 Maximum external nonproportional biaxial loads for partially restrained
imperfect beam-column BC5 with hollow rectangular section (k=ka3)

Load

case
Dimensionless M axim um  Loads

P 0.00 0.25 0.50 0.75 0.93
NP3 1.95 1.43 1.04 0.35 0.00

my 2.07 1.52 1.11 0.37 0.00

5 x 1.95 1.43 1.04 0.35 _
NP4 m v 2.07 1.52 1.11 0.37 -j

P 0.02 0.34 0.48 0.75 -

P 0.00 0.25 0.50 0.75 _

NPS fix 1.95 1.43 1.04 0.35 -
Qly 3.69 1.84 0.98 0.47 -

Qly 2.07 1.52 1.11 0.37 _

NP6 S x 1.83 1.43 1.04 0.35 -
P 0.00 0.38 0.49 0.75 -

P 0.00 0.25 0.50 0.75 -
NP7 Qly 2.07 1.52 1.11 0.37 -

S i 1.83 1.66 1.34 0.00 -

f ix 1.95 1.43 1.04 0.35 ..
NP8 my 2.07 1.52 1.11 0.37 -

p 0.38 0.39 0.49 0.75 -
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Table 19. Equivalent structural model analysis results

Frame Case
Study

Uo Sign 
of M

Load
Path

o-e 
Figure 3 Pm« ^max

R1 Cl + Uoi + NP10 (a) 0.83 +0.33
C2 + U01 + NP11 (a) 0.86 +0.33

R1 C3 + % NP10 (a) 0.74 -0.24
C4 + «01 ■ NP11 (a) 0.75 0.24

C5 -Uoi NP10 (a) 0.83 -0.33
C6 -Uoi ■ NP11 (a) 0.84 -0.33

C7 + NP10 (a) 0.74 +0.24
CZ C8 -Uoi + NP11 (a) 0.81 + 0.24

C9 + U02 + NP10 (a) 0.78 + 0.28
CO CIO + U(« + NP11 (a) 0.80 +0.28

C ll + U02 NP10 (a) 0.78 -0.28
C12 + U02 ■ NP11 (a) 0.79 -0.28

CD + Uoi + NP9 (a) 0.80 --0.80C l C14 + U0! + NP9 (b) 0.75 +0.75

R1 CD + % NP9 (a) 0.70 -0.70
C16 + U01

‘
NP9 (b) 0.68 -0.68
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Table 20. Portal frame analysis results for FR1, FR2, FR5, and FR6 with FL1
through FL4

Frame
Type

Loading
Load
path
NP9

Maximum loads for 
Load path 

NP10

Load path 
NP11

Pmax 0.67 0.75 0 .7 5

FL1 mm„ 0.67 0.25 0 .2 5

FR1
FL2 0.72 0.76 0.76

0.72 0.26 0.26

Pmav 0.64 0.71 0.71
FL1 mm.. 0.64 0.21 0.21

FR2
FL2 Pmax 0.71 0.82 0.84

0.71 032 0.32

PfflU 0.67 0.75 0.75
FL1 mnux 0.67 0.25 0.25

FR3
FL2 Pmaz 0.72 0.76 0.76

0.72 0.26 0.26

Pmix 0.64 0.71 0.71
FL1 “ mi* 0.64 031 0.21

FR4
FL2 Prnax 0.71 0.82 0.84

0.71 032 0.32
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Table 21. Portal frame analysis results for FR1, FR2, FR5, and FR6 with FL1
through FL4

Frame
Type Loading

Load
path
NP9

Maximum loads for 
Load path 

NP10

Load path 
NP11

Pmax 0.67 0.75 0.75
FL3 0.67 0.25 0.25

FR1
FL4 Pmax 0.72 0.76 0.76

0.72 0.26 0.26

Pmax 0.64 0.79 0.70
FL3 m„.. 0.64 0.29 0.29

FR2
FL4 Poax 0.71 0.83 0.84

m max 0.71 033 033

Pmax 0.64 0.66 0.72
FL3 n io u 0.64 0.16 0.16

FR5
FL4 Pmax 0.64 0.68 0.72

mmn 0.64 0.18 0.18

Pmax 0.64 0.66 0.72
FL3 “ max 0.64 0.16 0.16

FR6
FL4 Pmax 0.64 0.68 0.72

°lmax 0.64 0.18 0.18
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Table 22. Two-bay two-story frame analysis results for FR7 and FR8 with FL5
through FL6

Frame
Type

Loading
Load
path
NP9

Maximum loads for 
Load path 

NP10

Load path 
NP11

Pmax 0.61 0.69 0.72
FL5 ninn 0.61 0.19 0.19

FR7
FL6 Pmax 0.63 0.71 0.71

Oh, , 0.63 0.21 0.21

Pmax 0.59 0.66 0.66
FL5 m rnax 0.59 0.16 0 .1 6

FR8
FL6 Pmax 0.68 0.72 0.72

n W 0.68 0.22 0.22

Pmax 038 039 0.39
FL7 m„„ 038 0.14 0.14

FR7
FL8 Pmax 038 039 0.39

nimu 038 0.14 0.14

Pmax 036 038 0.39
FL7 036 0.13 0.13

FR8
FL8 Pmax 039 039 039

5max 039 0.14 0.14
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Figure 38. Typical frame joint
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Figure 40. Equivalent structural model for portal frame
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Figure 41. Flexibly-connected imperfect two-bay two-story frame

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 .0

C2

NP11

0.5

0.0
0 .0 1.00.5

m

Figure 42. Load-moment relationships

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Dimensionless Axial Load, p 

1.0 r

C13

CM 
O

 

°1>

C 1 4 ---- / i

A
\

/ \

in•
o

k i

l i i

i

\ i

\ 1 ____ 1
-0.3 -0 .2  -0.1 0.0 0.1 0.2

Dimensionless Midspan Displacement, uc

Figure 43. Load-deflection relationships

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0 2

0.5

C1

0.0
0.0 1.00.5

P

(a) Cases Cl and C2

0.5
C13

C14 \

0.0  L -  

0.0 0.5 1.0

P

(b) Cases C13 and C14

Figure 44. Stiffness degradation curves

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.80

NP9
(T an g e n t M odu lus)

a
T3CU
O_1

NP9

■o
c
CO
8  0.40
_Q)
C
o
'</>
c
(U
E 0.20 
Q

0.00
1.00 2.000.50 1.500.00

J o in t  ro ta tio n , 0a ra d s .

Figure 45. Axial load versus joint rotation relationship for portal frame FR2 and 
frame loading FL3 with NP9

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.00

Q
~  0.80c(0

NP9c
E
k .
<u 0.60 
o  
Q
to
CO
«  0.40
c
o
CO
c
0)
E 0.20
Q

NP9 \  
(T angen t M odulus)

0.00
0.00 0.800.20 0.40 0.60

D im en s io n less  Axial Load, p

Figure 46. Stiffness degradation curve for portal frame FR2 and frame loading 
FL3 with NP9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D
im

en
si

on
le

ss
 

A
xi

al
 L

oa
d,

 p 0.80  -

N P 1 00.60  -

N P l l

0.40  -

0.20  -

0.00
0.00 0.50 1.00 1.50

Joint Rotation, eA rads.

Figure 47. Axial load versus joint rotation relationship for portal frame FR2 and 
frame loading FL3 with NP10 and N P ll

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.00Q

I  0.80
c

<° 0.60*■*<u
Q

|  0.40
c
o
g 0.20
<D
£
5  0.00

NP10
NP11

0.200.00 0.40 0.60 0.80
D im en s io n le ss  Axial L oad, p

Figure 48. Stiffness degradation curve for portal frame FR2 and frame loading 
FL3 with NP10 and N P ll

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



T3
CO
O

.2
x
<
uiw
0)
c
o
’35
c
<u
E

0.80

NP9
(T an g en t m o d u lu s)0.60

NP9

0.40

0.20

0.00
1.000.60 0.800.00 0.20 0.40

L atera l D isp lacem en t, U, inch .

Figure 49. Axial load versus midspan displacement relationship for a column of 
the frame FR2 and loading FL3 with NP9

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



a

c
ca
c NP9 (T an g e n t M odulus)0.8
EUrn
<D 0.6

N P9 n
CO

2  0.4
c
o
co _ _
c  0 .2
o>
E

5  0.0
0.0 0.2 0.4 0.6 0 .8

D im e n s io n le ss  Axial L oad, p

Figure 50. Stiffness degradation curve for a column of the frame FR2 and loading 
FL3 with NP9
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Figure 56. Axial load versus joint rotation relationship for two-bay two-story frame 
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Figure 57. Stiffness degradation curve for two-bay two-story frame FR8 and frame 
loading FL8 with NP10 and N P ll
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Figure 58. Axial load versus midspan displacement relationship for a column of 
the frame FR8 and loading FL8 with NP9
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Figure 59. Stiffness degradation curve for a column of the frame FR8 and loading 
FL8 with NP9
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Figure 60. Axial load versus midspan displacement relationship for a column of 
frame FR8 and loading FL8 with NP10 and N P ll

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Q

c(0
c 0.8

a, 0.6
O
(A
aj 0.4
c
o
«c 0.2
<D
E

5  0.0

NP11

N P10

0.0 0.3 0.40.1 0 .2

D im en s io n le ss  Axial L oad, p

Figure 61. Stiffness degradation curve for a column of the frame FR8 and loading 
FL8 with NP10 and N Pll

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.4

a
■a

0.3

0.1

0.0
0.0 3.01.0 2 .0 4.0

D im e n s io n le s s  E xternal M om ent, m

Figure 62. p-m interaction for frame FR8

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX A

Tangent Stiffness Method

The various terms and incremental equations for use in the tangent stiffness 

procedure for the problem shown in Figure 1 are summarized in this appendix. It 

can be shown that the dimensionless rate form of Equations 3-5 take the form of 

Equation 8, which can be written explicitly as follows:

p «12 «13

r —  ̂
e o 
•

*21 ^22 #23 <!>*

m y .« 3 1 ^32 #33 A
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where A is the area of cross section, and Ix and Iy are the moments of inertia about 

the x and y axes, respectively. The integrals in Equations A2-A10 are evaluated by 

numerical summation over the discrete elemental areas shown in Figure 1.
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APPENDIX B

The Finite Element Machine

The Finite Element Machine (47) is a special purpose computer having as a main 

component an array of interconnected microcomputers. In addition to the array 

processors, there is an input/output (I/O) processor that provides operator console 

control, mass storage, problem input, and printed output for the array. The I/O 

processor is a conventional minicomputer that has a high bandwidth connection 

directly to one of the processors of the array. Communications within the 

microprocessor array take place by way of word-oriented point-to-point 

communications channels and, to a lesser extent, by way of cooperative computation 

networks involving all microcomputers in the array. There is no common memory 

in the system.

The processors of the array and the I/O  processor are based on the Texas 

Instruments (TI) 990 minicomputer/9900 microcomputer. The I/O  processor is a 

TI 990/10 minicomputer and the array processors also called the modal processors, 

are based on the TI TMS 9900 single chip microprocessor. This also contains TMS 

9901 programmable systems interface and TMS 9902 asynchronous communications 

controller configured as on the 990/100M board that is built around the chip. In
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addition, microprocessors have 16 bit/word of dynamic random access memory 

(RAM) and a Am9512 floating point arithmetic unit. The CPU board also contains 

16K bytes of erasable, programmable read-only memory, 32K bytes of dynamic 

read/write memory. The nodal processors are interconnected by four different 

hardware structures:

1. A network of local communication links

2. A time multiplexed global bus

3. Cooperative signaling flag networks

4. A cooperative sum/maximum computation network

An overall block diagram of the finite element machine is shown in Figure B. 

The FEM system software is designed such that the controller serves as a host for 

the array. Thus, the controller is in charge of the overall system. Activities on the 

array are initiated and terminated by commands issued from the controller. These 

commands may be either directed to individual processors or broadcast to all of 

them through the global bus, as appropriate. Additionally, the controller supports 

program development, file storage, and pre- and postprocessing of data. The 

controller does not participate in execution of parallel application programs to 

facilitate uniform array monitoring. The system software is augmented by additional 

software for parallel computing. A set of about 40 programs known collectively as 

FEM array control software (FACS) implements the controller’s portion of 

initialization, data management, program control, debugging, and postprocessing 

functions for the array. The FACS programs, invoked by system command 

interpreter (SCI) commands, serve as the interface between the user and the array.
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Each array processor is installed with an operating system called Nodal Exec and a 

PASCAL language subroutine library, PASLIB. The Nodal Exec is divided into two 

major sections. One section provides services typical of most operating systems such 

as memory management, process control, low-level I/O  and communication routines, 

timers, and interrupt handlers. The other section contains a  set of command 

routines that carry out functions requested by the controller. Application programs 

are down-loaded onto the array processors for execution. These programs are 

regular sequential programs written in PASCAL language and each program is 

individual to a single processor. PASLIB allows the application programs to be 

parallelized. It also provides subroutines for communication between processes, I/O  

to and from the controller, timing, processor identification, flat settings, and floating­

point operations. The parallelization is achieved by an appropriate design of 

algorithms suitable to the architecture of the FEM.
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APPENDIX C

Inelastic Load and Moment Parameters

The inelastic load and moment parameters used in Equations 14 -16 are defined 

as follows:

P - f  o  dA ( C l )
r JAe '

A (C2)

M*" ■ L  y M  (C3)

-  L  x M  <C4)

M* ' h ° > y d A  (C5)

-  h ° , x d A  (C6)

The above integrals are evaluated numerically by summing over the decretized 

cross sections of the type shown in Figure 1.
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APPENDIX D

External and Plastic Load Vectors

The external force vector, {F}, in Equation 30 is defined as follows:

( Myre'yrt )o + P UQ0 

(Mxrg-xre)o + P VQO

( M y r ' - y r e \  + P  (  UQ *  >1

+ P ( V<? -  Vi \

^ y n ~ y re \  + P ( UQ ~ “/) 2

+ ^ ( V<? - Vi)2

( Myn-y*h + P ( UQ~

+ p Cv<? ~ v/)y

(^yr t 'yre^N -l + P  ( UQ ~ Ui )tf-2

( ^xre~xre ^N-2 + P ( VQ ~ V, )f/-2

( M y rt ~ yrt  ) t f - l  +  P  ( UQ ~  “ , ) / / - !

+ P ( V<? - V/V l

(  ^ y r t~ y r e  ^ N  + P  UQN 

^ x r e ~ x r e ^ N  + P  VQN

(Dl)
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Also, the plastic load vector, {F}p in Equation 30 is given by:

■ ~ M «

" M o

M i

-  M i

Vyp^j

Pxp^j

< " » - Pyp^N-l

^xp^N-l

Pyp^N

Vxp^N

(D2)
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APPENDIX E 

Computer Program NONPRFRM
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OS A

1/1

a
0
X

c
1/1

<

a X X
a

c E X

£ _ x ui
t/l
a a K t/>

«
X

> X
u

a
c

« X
o - QC

X X 2
X
0 0 X

a
0 X 0

z
X

u
A O “ 0 «Ml fW

<
a

X -
0
0

*1 t/l
—' x I

• CJ W
a t/>

O a ^ Mi

a
I/I • 
0 X ? > 2 X a a 

x X
0 • 0 •MlAlb • <a m Si 2 0 0  0 — o> — 0 •

ac a X X 
« « —>

3  2  S Ul O O 
a  k >>

0
3 3 5 £ £

X
0

N IM
V* 1/9 ^  —

Q o J
• O •

^  vi OO 
-j a  0 0 a

0 
-»0 3 0 o w0 0  ^ M VI a

>— a a 
1 a

— K

z
oc

— x . c
I  >ON t  m

x
X 'S

a
a 0 "s a  

o x  m * —.
X
X

aj z X* X* i/I M.
0 S oMl » 1t/l 1 _

«
0 5 o ^O ^  «M ■ M 1

ae < u O w  —. —'
« x ►» a  ^  x — zw1 « * • • • « * • — —* t-i

— 0
X —»

■ ♦ . 7  1 ♦ o a  k . — m
“ “* ; fl“

M H- S —
z 0•— 0 
t** 0

u
w Mi X a  a
£ S  J  1 * 
x x — 7

X ^  — *■» ""t 
• 0  . •
1 a m • 1

r 2 2 5  «m-* '1 ?  mi .j a  0 X >> ■ «»M«aea s  2 T - T U S - C O M  Ml O 1- — a a a a a a  — • • *•* 0 0  x x a
— -1 • X X 

X m5 VI Z 0 T 0 ' ’•ZVIZ^Civ ' ‘ ? X L S X 2 » ? " a t x x 1 k x -  a — ^  ^ ^  a  0 X x a a  a a ib «» O 0 ix X My C X X " © — mi X — — — c —’ —a
a
z

-j a  ^  ^ ^ — £ ^ z  a  — • ^  — -» —’ X _i —’ ^  1- *— x -1 _i
3  1  O H  
I- ^  X

a  a  — a x a  
x w w — x x

0 a 
a

•j a_» a
a  □ -

XXX
" | « | -  X -I 

X -1
X

« I* « 0
U •  U k'

0 0 0BlkQ
KOCWkMViO-OCCi i lv iog
L U U - > Q O Q S U U U S O - «

0 w. — 0 ** — «. a  0 *« 
0 — 0 u — x —u u x

a
•
a

« a 
u aa

u oc OS 01 CC 0  0 a a  a

i
0 — 0 

•» »*«•

09 0 0 0

1
0 a0 a
in a

aa
a
a

0■a
u —

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  00 00000000  00 OOOO 0000  c  
— -  p< r*«mo -  £f,*'££k^2£?»S£ko —
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F IL E :  NOMPRFRM FORTRAN A OLD O O M IN IQ N  U N IV E R S IT Y

I . U 0 O 5 )  , V 0 ( I 5 )  .T U .T V  
C O M M O N /R A T L C L /E .S IG Y .E Y B A R
C O M M O N /X V A L L C I/IR T B .X R T O .Y R C B .Y R C O .C 1 .C 2 .C B X .C B Y .C T X .C T Y
COMHOH/DSCRLCL/NSEC.NB.ND.NTO.NTD.NIl.NT.ll.NEL
C O M M O N /X S X L C L /S K X ( 1 5 . 3 . 3 )
C O M M O N /FA LC L /FA K  ( 1 5 . 3 )
C O N H O N /0 E I IC I /O E L X ( I5 . 3 )
C O M M O N /FL G L C L /IU N L O  ( 1 5 . 6 0 0 )  .  lU N L D X  0 5 . 6 0 0 )  
C O N M O M /F L A G S /C O D E .L O A D ,U N L O .N E W .H E N T R Y .L A T F IX  

C O M M O N /T O L /T O L I ,T 0 L 2  » T 0 L 3 .T 0 L 6  
C O M M O N /D E TLC L /D E T
conhon/sums/sun.asun.bsum.csun.dsun.esuh 
C O M H O N /IN E L /P P .P R .B X P ,B X R E . B Y P .B Y R E  
C O M M O N /F R E S /F R .F X R E .F Y R E

C
C ..........................       . . . . . . . . . . . . . . . .

L C N T I - I  
3 0  C O N TIN U E

0 0  l - I . N L  
Y - O F L O A T ( 2 * I - I )
V - I . 0 - V * E B T / 2 . 0
IF  ( IO X . E Q . I .A N D .C O D E . E Q . ' IS E C ' )  Y - Y * E B T / 2 . 0  
IF  ( I C N T I . E Q . 2 )  Y—  Y 

IF  ( I O X . E Q . I )  T - Y  
T Y - Y * D £ L 2
IF  ( I O X . E Q . I )  T V — TV  
IC H T 2 - 1  

2 0  C O N TIN UE
DO 5 0  j - i . m b
X « O F L O A T ( 2 * J - I )
X - X « E B W /2 .0
IF  ( L C N T 2 .E Q .2 )  X— X
IF  ( I O X . E Q . 0 )  CALL R E S X (S IG R .E R .X )
IF  ( IO X . E Q .  I )  CALL R E S T (S IC R .E F t .X )
T X -X « 0 E L 3
IF  ( I O X . E Q . 0 )  T X — TX  
T S N ( H .K ) - O IL l+ T X + T Y + E R  
T S - S IC ( H .K ) + T S N ( M . R ) - T S O ( H . K )

C IF ( U N L O . N E . ' C L A S T ')  T S » T S N (R ,K )
IF  (U N L O .H E . 1 E l  A S * ) T S - T S N ( M .K )
IF  ( IO X . E Q . 0 )  GOTO BO
Y -X
X - T

8 0  C O N TIN UE
IF  (DABS U S )  .L T .E Y B A R ) GOTO 6 0
I U N L O ( H , K ) - l
F C T R - I .O
IF  ( T S .L T .O . O )  FC TR — 1 . 0  
S I G ( H .K ) - F C T R  

P P -P P *E A B *F C T R  
8 X P -8 X P * V * E A 6 * F C T R  
B Y P " B Y P -X *E A B *F C T R  
GOTO S I  

6 0  C O N TIN UEKHbKN+!

F IL E :  NONPRFRH FORTRAN A OLD D O M IN IO N  U N IV E R S IT Y

N O N I5 6 IO  S U H -S U M H A B  NON 1 5 9 6 0
N 0 N IS 6 2 O  S l G ( H . K ) - T S  N D N I5 9 7 0
NON 15*. 3 0  IF  (U N L O .E Q . ' E l A S ' )  N O N I5 9 B O
N 0 H I5 6 6 O  I CALL UNLOAO ( c IG  ( H ,  K ) , S I C R .S R . T S N (M .K )  .T S O  ( H .K )  .  I UNLO ( H . K ) )  NON 1 5 9 9 0
HON 1 51 .50  F R *F R * S IG R *E A B  N 0 N I6 0 0 O
NON I S 6 6 O F X R C "F X R E + S IG R « Y *E A B  N 0 N I 6 0 I 0
NON 1 5 6 7 0  F V R E « F Y R I-S IG R * X * E A B  N 0 N I6 O 2 O
N 0 N I5 6 8 0  P R « P R * ( T S - S IG R ) * E A B  NON 16 0 3 0
N 0 N I5 6 9 0  A S U H -A S U n tV *E A B  N O M I6 O6O
NON 15 5 0 0  B S U H *B S U m X *E A B  N 0 N I6 0 5 0
N O N 15510  c s u r - c s u h * x * v « e a b  n o n  16060
H 0 N I 5 5 2 O O S U n -D S U F H X *X *E A B  N O N I60 7 0
NON 15530  E S U H -E S U M *Y » Y * IA B  N O N I6 0 BO
HON 15 5 6 0  B X R E *8 X R E H T S -S IG R )* * Y *E A B  N O N I6 0 9 0
N 0 N I5 5 5 0  B Y R E *8 Y R E -  ( T S - S IG R ) * X * E A B  N O N I6 IO O

•NON 15 5 6 0  5> C O N TIN U E  N 0 N I 6 I I 0
N 0 N I5 5 7 0  K - K + l  N 0 N I 6 I 2 0
NON 15 5 8 0  5 0  C O N TIN U E N 0 H I 6 I 3 0
N 0 N I5 5 9 0  L C N T 2 BL C N T 2 * I  N 0 N I6 1 6 0
HON 15 6 0 0  IF ( L C N T 2 . L E . 2 )  GOTO 2 0  N 0 N 1 6 I5 O
N 0 N I5 6 1 0  6 0  C O N TIN U E  N O M I6 1 6 O
N O N I5 6 2 0  L C N T I -L C N T U 1  N O H I6 1 7 0
N 0 N I5 6 3 0  I F ( L C N T I . L E . 2 )  GOTO 30  N O N I6 I 8O
N 0 N I5 6 6 0  RETURN N 0 N I6 I9 O
NON 1 5 6 5 0  ENO NON 1 6 2 0 0
N D N I5 6 6 0  C N O N I6 2 IO
N 0 N I5 6 7 0  C UNLOAO SU B R O U TIN E TO ACCOUNT FOR E L A S T IC  U N LO A D IN G  S IG R  N O N I6 2 2 0
N 0 H I5 6 8 O  C NON 1 6 2 3 0
N O N I5 69 O SU B R O U TIN E U N L O A O (S IG .S IG R ,S R , T S N .T S O .IU N L O )  N 0 N I6 2 6 O
N 0 N I5 7 0 0  IM P L IC IT  R E A L *B  ( A - H . 0 - 2 )  N 0 N I6 2 5 O
N 0 H I 5 7 I 0  IF ( O A B S ( T S N ) .L T .D A B S ( T S O ) )  GOTO 10  N O N I6 2 6 0
N 0 N I5 7 2 O  I F ( I U N 1 0 . E Q . - I )  GOTO 10  N 0 N I6 2 7 O
N 0 N I5 7 3 0  IU N L O * I  N 0 M I6 2 8 0
N 0 N I5 7 6 0  R ETURN N 0 N I6 2 9 O
N 0 N I5 7 5 O  10  C O N TIN U E  N O N I6 3 OO
N 0 N I5 7 6 0  S R - S IC - T S N  N 0 N I6 3 IO
N 0 N I5 7 7 O  IF (O A B S  ( S R ) . G E . I . 0 )  S R -S R /O A B S  (S R ) NON 1 6 ) 2 0
N 0 M I5 7 6 0  S IC R -S 1 C R + S R  N O N I6 3 3 0
N 0 N I5 7 9 0  IU N L O - -1  N 0 N I6 3 6 0
HON 15 8 0 0  RETURN N O N |6 ) 5 0
N O N I5 8 IO  ENO N 0 M I6 3 6 0
NON 1 5 0 2 0  C N O N I6 3 7 0
N O N I5 8 3 0  C N O N I6 ) 8 0
NON 15 8 6 0  C N O N I '3 9 0
N O M I5 B 5 0  G N 0 M )6 * 0 O
N 0 N I5 6 6 O  SU B R O U TIN E R E S * ( S IG R .E P S R .X )  N O N I6 6 IO
N O N I5 8 7 0  IM P L IC IT  R EA LA 8 ( A - H . 0 - 2 )  NON 1 6 6 2 0
N 0 N I5 B B 0  C H A R A C T E R S  CODE .L O A D .U N L O  H O N I6 6 3 O
HON 1 5 8 9 0  C — — —  ...................           N O N I6 6 6 O

N 0 N I5 9 0 0  C ....................... - ................. - ......................................................................     - .H O N I6 6 5 0
NON 1 5 9 1 0  C 0 M M 0 N /P R 0 P L C L /A R .R IX .R IY .A R N 0 .R IX N 0 .R IY N 0 .R X N 0 .R Y N 0 .2 X N 0 .Z Y N 0  N O N I6 6 6 O
N 0 N 1 5 9 2 0  C O M M O N /X D IM L C L /B .O .T F .T W .E B W .E B T .E O W .E O T  N 0 N I6 6 7 O
NON 1 5 9 3 0  C O M M O N /C R O X L C l/A l, S E G l ,U IN T . V I N T ,R C ,R T , S IG R C , S I CRT N O N I6 6 8 O
N 0 N I5 9 6 0  1 . U O d S )  .V O  ( 15 ) .T U .T V  H 0 N I6 6 9 O
NON 15 9 5 0  C O M M O N /M A T L C L /E . S lG Y . EYBAR NON 16 5 0 0
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FILE; NONPRFRA FORTRAN A OLD OQAINION UNIVERSITY

00
Os

TXT-NB 
EBW-2.O/TIT 
TIT-NTI
EBT-2.0*TF/(D*TXT)
TXT-NTO
E0W-2.O*TW/(B»TXT)
TXT-NO
EDT-2.0* (0-2.0*TF) / (0*TXT)

WRITE (I.*) 'EBW-'.EBW.' EBT-'.EBT.' COW-'.EDW. 
IF(RT.EQ.0.0 .OR.CODE.£Q.MSEC1) GOTO 10 
XRTB-RC*RT*<B*D-2.0*T)/(2 .0* (RT+RC)**2) 
IRI0-2.OAIRTB/0 
XRTB-2.0*XRTB/B 
VRCB-XRTRARC/RT 
VRCD-XRTOARC/RT 
GOTO 20 
CONTINUE
IF (RT.EQ.O.O) GOTO 30 
XRTB-RC/(RC+RT)
VRCB-XATB*RT/AC
YRC0-(D-2.O*TF)/O
XRTO-O.O
GOTO 20
CONTINUE
XRTB-0.0
XRTO-O.O
YRCB-0.0
YRCO-O.O
CONTINUE
PFCTR (REN)-SlGY*AR
IF (AEAIO(AEA) .EQ.O) BAFCTR(AEA)-2.0«RIY*SIGY/B 
IF (AEHID(AEA) EQ.I) BAFCTR (RCA) -2 .0*RI X*SI GY/P 

WRITE ( I . • ) ’XR YR S'.IRTB.IRTD.YRCI.YRCO 
CALL ASSIGN(RER)
RETURN
END

SUBROUTINE ASSIGN(H)
IAPLICIT REALAfi (A-H.O-Z)
CHARACTER*!. CODE .LOAD,UNLO

C
CORAON/PROPGBL/XAR(10).XRIX(10).XR IY(10)

1 • XARNO (10).XRIXND(IO).XR1YHDU0).XRXND(10).XRYND(10)
2 .XZXND(IO) .IZVND(IO)
CORRON/XOIRGBL/X6(10) .XO(IO) ,XTF (10) .XTW(IO) .XEBW(IO) .XEBT(IO) 

I .XEOW(IO),XEOT (10)
COnAON/CRORGBL/SAL(10).SSEGL(10).SUINT(10).SVINT(10).XRC(IO)

I .XRT(IO) ,SUO<IO, IS) .SVOdO. 15) .FRTU(IO) .FRTV(IO) 
COAAON/XVALGBL/XXRTB(10).XXRTO(10).XYRC6(10).XYRCO (10)

1 .XCI (10) , XC2 (10) .XCBX(IO) .XCBY(IO) .XCTX(IO) .XCTY(IO) 
CORAON/OSCRGBL/NSECSdO) .NBX(IO) .NOX(IO) .NTBX(IO) (NTDX{IO)

I .NKX(IO) .NIX (10) .NUHEL(IO) . LS (10)

FILE: NONPRFRR FORTRAN A OLD OORINION UNIVERSITY

N0N2JI10 C
N0N23I2O
N0N2)I}0
NOH23ILO
NON23I50
NONZJItO
NON23WO
NON23I80 c
N0N23I90
N0N232OO
N0N2321O
NON23220
N0N2323O
NON232LO
N0N2325O
N0N2326O
N0N23270
N0N23280
N0N2329O
N0N2330O
N0N233I0
N0N23J20
N0N2333O
N0N233L0
N0N2335O
N0H2JJ&O
N0N23370
N0N23360
NON23390
NON23LOO
NON23LIO
N0N23L2O
N0N23L30
N0N2JLL0
NON23LSO
N0N2JL60
NON23L70
N0N23L80 c
N0N23L9O c
NON2 3500 c
N0N23S1O
N0N23520
NON23530
NON235LO c
NON23S50 c
N0N2J560 c
N0N2357O c
NON23SBO
N0N2359O
N0N23600
N0N2J61O
N0N2J62O
N0N2 363O
NON23SLO
H0H2365O

COAAON/PROPLCl/AR.RIX.RIY.ARNO.RIXND.RIYND.RXND.RYND.ZXND.ZYNO 
COAAON/XOIHICL/B.D.TF.TW.EBW.EBT.EOW.EOT 
COAAON/CROKLCL/AL.SEC..UINT.VINT.RC.RT.SIGRC.SlGRT 

I .U0(I5) ,V0(I5) .TU.TV
CORMON/XVALLCL/XRTO,XRTO,YRCB.YRCO.CI.C2.CBI.C8Y.CTX,CTY 
CORAOH/OSCRLCL/HSIC.NB.NO.NTB.NTO.HR.NT.LL.Nil

XAR(H)-AR 1
XRIX(A) -RIX 1
XRIV(H) -RIV 1
XARNO (A)-ARNO 1
XRIXNO(R)-RlXND 1
XRIYND(A)-RIYND 1
XRXND (A)-RXND 1
XRYND(H)-RVNO 1
XZXND (A)-ZXNO 1
XZYND (R)-ZtND \
XEBW (A)-EBW 1
XEBT (R)-EBT 1
XEOW (H)-EDW 1
XEOT(N)-EOT 1
SSEGL(R)-SEGL l
FRTU(A) -TU
FRTV(R) -TV
KXRTB (R)-INTO
XXRTO (R)-XRTO
XYRCB(R) -YRCD
XYRCO (R) -YRCD
XCI(A)-Cl
XC2 (A) -C2
XCBX(H) -CBX •
XCBY(A)-CBV
XCTX (R) -CTX
XCTY (R) -CTV
RETURN
END

SUBROUTINE SICRA(HER)
IAPLICIT REALA8 (A-H.0-2)
CHARACVERAL COOE.LOAD.UNLO

CORRON/STRGBl/TSORdO. I S. LOO) .TSOC (10. IS. LOO) .SIGR(IO. IS. LOO)
1 . sigc( io. is . loo)
C0NA0N/0ISGBL/0SH(10.30).OSCOO. JO).OIA(IO.JO).OIC(IO.)O) 
CORRON/fROP/OELOLOd?) .P0L0U7) ,0EL0L0C(I7) .PQLQC 07) 
CORRON/SPRGBL/BRX (10.3) .BKV(10.3) .TKX(I0.3) .TKY(I0.3)

1 ,TET8X (10.2).TETBY (10.2).TETTX(I0.2).TETTY(I0.2) 
CORRON/PROPGBl/XAR(10).XR1X(10).XRIY(10)

I . XARND (10) . XR I XNO (10) .XRIVNOdO) .XRXND(IO) .XRVND(IO)

NON2J6SO NON2J670 
N0N2J660
N0N2J690 
N0N2J700 
N0N237I0 
N0H23720 
N0N23730 
NON237LO 
NON2J750 
NON2J760 
NON2J770 
N0N23760 
N0N2379O 
NON2JSOO 
NON23810 
N0N2J820 
NON2J8JO 
N0N2)8L0 
NON23BSO 
N0N2JB60 
N0N23B7O 
N0N2JB8O 
NON2J690 
NON23900 
N0N2J9IO 
N0N23920 
NQN2J9J0 
NON239LO 
NON23950 
N0N2J9*0 
NON2J970 
NOH239BO 
NON2J990 
NON2LOOO 
N0N2L0I0 
NON2L020 
NON2LOJ0 
N0N2L0L0 
MON2LOSO 
N0N2L060 
N0N2L070 
N0W2L080 
N0N2L09O 
N0N2L100 
N0N2LII0 
N0N2LI20 
N0N2LIJ0 
N0N2LIL0 
NON2LI50 
N0H2LIS0 
N0N2LI70 
N0N2LISO 
N0N2LI9O 
NON2L200
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