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INELASTIC STABILITY OF NONPROPORTIONALLY LOADED STEEL SWAY
BEAM-COLUMNS AND SPACE FRAMES

Saleh Ali Eidan

Old Dominion University, 1992
Agdvisor: Dr. Zia Razzaq

Abstract

A comprehensive study of the inelastic stability of steel beam-columns and
frames subjected to nonproportional loads is conducted. A set of materially
nonlinear differential equations of equilibrium for planar and biaxially loaded beam-
columns are first formulated including sidesway. The anaiysis includes the effect of
flexible connections, and initial imperfections in the form of member crookedness
and residual stresses. Also, hollow rectangular sections are adopted for the study.
First, an iterative numerical solution procedure is formulated for sway beam-columns
utilizing central finite-differences with second-order truncation errors. Next, using
the beam-column analysis, an inelastic frame analysis procedure is formulated by a
conversion of the governing equations to a system of three-dimensional inelastic
slope-deflection equations. The three-dimensional frame analysis is verified
experimentally by conducting a rigorous test on a 15-foot high three-story single-bay
structural steel space frame. The experimental results are in good agreement with
the theoretical predictions. The strength of beam-columns, and plane and space

frames with flexible connections is found to be load path dependent.
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NOMENCLATURE
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1. INTRODUCTION

1.1 Background

The current methods of inelastic frame analysis are based on the contention
that the applied loads are proportional in nature. The actual structures, on the
contrary, are subjected to nonproportional loads. One example is that of relatively
constant gravity loads with variable horizontal loading. This research is primarily
aimed at studying the influence of nonproportional loads on the theoretical and
experimental behavior of sway space frames. Furthermore, before such an
investigation is conducted, it is necessary to formulate accurate theoretical analysis
of the individual members which form a structure. Thus, a rigorous theoretical study
is also conducted for plane and space beam-columns with practical boundary
conditions and initial imperfections. Consequently, a substantial part of this research
is oriented toward a comprehensive study at the member level. The member
equations are then used to analyze sway plane frames before generalizing for the
space frames.

The member analysis is conducted using an equilibrium approach coupled with
an iterative finite-difference formulation in order to predicted the load-deformation
behavior. A set of materially nonlinear ordinary differential equations are
formulated which govern the member load-deformation behavior for gradually

increasing nonproportional static loads. Using a difference- type formulation, the



sway beam-column equations for both two- and three-dimensional problems are also
exploited to arrive at equations that contain the member deformations at the
boundaries. These equations are then utilized for the plane and the space frame
analysis.

Due to the complexity of the coupled nonlinear differential equations for the
problems described herein, a validation of the theoretical models becomes one of the
key issues. To include every conceivable nonlinear term is both impractical and
unnecessary. Furthermore, nonlinear equations have multiple roots and there is
always a danger of converging to an inapplicable root. An effective way to verify
theoretical predictions is to conduct laboratory experiments. The test results can
provide a meaningful means of checking the validity of the assurﬁptions made in the
theoretical formulations. Consequently, a comprehensive test on a real three-story
single-bay orthogonal framed structure is also conducted.

The main thrust of the research is to study members and frames with
rectangular tubular cross section. Such sections are quite stiff torsionally, therefore,
twisting deformations are ignored. Even for some open section members studied by
some past investigators, the twisting deformations for members subjected to
combined axial load and biaxial bending did not prove to have a very substantial
effect on the load-carrying capacity. Torsional effects must, however, be accounted
for in space frames with external torques or for those constructed from thin-walled
open section members.

In this dissertation, theoretical procedures are presented to predict the

behavior of nonproportionally loaded inelastic members and frames in the presence
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of sway. In addition, the theoretical results are compared to those from a large scale

frame test also conducted as a part of this research.

1.2 Literature Review

Presented in this section is a summarized literature survey of the relevant

publications for both members and frames.

1.2.1 Columns and Beam-Columns

Ellis, Jury, and Kirk (1) determined theoretically the ultimate capacity of steel
columns loaded biaxially. The section is a hollow square and no imperfections are
considered. Also, the tangent modulus approach is used. The length of the column
is divided into small elements and an iterative method of analysis is formulated. The
cross section is also divided into a number of small elements. A comparison of the
results for uniaxial loading cases is made to the existing theoretical results. The
results for an annular cross section are compared to other theoretical and
experimental results. The comparison is found to be favorable.

Ellis and Marshall (4) conducted a theoretical investigation of the ultimate
capacity of steel columns loaded biaxially. The cross section used is a thin-walled
square, the material is assumed to be perfectly elastic-plastic mild steel, and no
material unloading is included. The theoretical predictions are compared to the
existing results for certain cases and the agreement is found to be good.

Harstead and Birnstiel (8), and Birnstiel (9) conducted a theoretical and
experimental study on H-columns under biaxial bending. Sixteen columns are tested
and the results are compared with those obtained theoretically. The theoretical study

3
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is based on the tangent modulus approach. The experimental results are also
compared with the CRC interaction equations. The theoretical study shows the
influence of residual stresses on the deformational response and the ultimate capacity
of the columns under biaxial bending.

Tebedge and Chen (13) formulated design criteria for H-columns under
biaxial loading. The column out-of-straightness and residual siresses are taken into
consideration. Various I-sections are used in the study, and the tangent modulus
approach is followed. Several load-moment interaction diagrams are developed for
various slenderness ratios. The results are compared to CRC (Column Research
Council) interaction formulas. It is found that the CRC procedure is over-
conservative for short columns, conservative for intermediate columns, and less
conservative for long columns.

Vinnakota and Aysto (15) studied the inelastic spatial stability of restrained
beam-columns. Although the residual stresses are accounted for, the crookedness of
the columns is not included. The method presented is based on the tangent modulus
approach. The predicted ultimate load and the load-deformation response shows a
satisfactory agreement with the available tests and analytical results.

Chen and Atsuta (18,19) published a comprehensive literature review and
summary of beam-column research conducted up to 1976. Reference 18 presents the
work done on planar beam-columns while Reference 19 covers beam-columns in a
three-dimensional space. A limited amount of results are also described in
Reference 18 for nonproportionally loaded cross sections and members. An
algorithm and some numerical results are given for nonsway I-section beam-columns.
A summary of tests conducted by Gent and Milner (11) on nonsway I-section beam-

4
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columns subjected to nonproportional biaxial loading are also presented. It is found
that if torsion is included in the analysis, the collapse load is reduced by less than 2
percent.

o Razzaq and McVinnie (23,27) conducted theoretical and expérimental studies
on hollow rectangular section nonsway beam-columns subjected to nonproportional
loading. Material unloading is not included in the theory, however, good correlation
is obtained with the test results since pinned-end conditions are used.

Razzaq (24) investigated the effects of linear and nonlinear partial rotational
end restraints on steel planar column strength. The study is performed for a W8x31
section with residual stresses and initial crookedness. Both equal and unequal end
restraints are considered. It is concluded that the nonlinear moment-rotation
relationships should be approximated by simple elastic-plastic or bilinear
relationships as opposed to trilinear or curve-fitted nonlinear ones. The effects of
partial restraints and initial imperfections on the column strength are found to be
quite important.

Razzaq and Calash (26) conducted a rigorous inelastic analysis of imperfect
columns with linear or nonlinear biaxial partial restraints. The study is conducted
for a thin-walled hollow rectangular section. A central finite-difference procedure
is used and the effect of imperfections on the column strength explained. It is found
that the residual stresses are less detrimental to the column strength than the
crookedness. Also, for a number of cases, it is found that the strength of nearly-
perfect columns does not depend upon the slenderness or the degree of rotational

end restraint stiffness. For crooked columns with or without residual stresses,
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however, an increase in the degree of end fixity is found to increase the column
strength.

Razzaq and Darbhamulla (28, 29, 30), Darbhamulla and Razzaq (31), and
Darbhamulla (37) studied imperfect rectangular tubular nonsway beam-columns with
nonproportional biaxial loads. Two types of sections are considered, namely an I-
section and a hollow rectangular section. Elastic unloading in the plastic range is
included. The effect of nonproportional loading on the beam-column strength is
found to be quite significant.

A review of the published research shows that no research has been conducted

on sway beam-columns under the influence of nonproportional loading.

122 Frames

Yura and Galambos (2) conducted research on the strength of single-story
steel frames. The structures are unbraced, symmetric, and with rigid joints. The
study is based on the tangent modulus approach. The structures are subjected to
various concentrated vertical and lateral loads. Inelastic and residual stresses are
taken into consideration. The interaction curves are established and the results are
compared to the interaction equations used in building design. It is found that the
frame strength can be predicted by a plastic analysis of the deformed structure up to
the buckling load, and that the P-delta effect is important for frames permitted to
sway. Also, the AISC interaction equations are found to give unconservative results
by as much as 309 when sway is permitted.

Lu (3) studied the inelastic buckling of steel frames. The procedure is
explained with reference to a portal frame subjected to concentrated loads at the

6
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beam-column connections and a distributed load over the beam. A laboratory test
is also conducted and the results compared to the theory. The test results are in
good agreement with the predicted frame behavior.

Korn and Galambos (5) studied the behavior of elastic-plastic frames. The
stress-strain relationship is assumed to be ideal elastic-plastic and the loading is
static, proportional, and monotonically increasing up to failure. The first- and
second-order analysis for unbraced plane frames is included. For frames having a
reasonably linear behavior at working loads, it is found that at least 86% of the
predicted first-order load-carrying capacity is obtained. Load-deformation curves are
also presented to show the deviations between the first- and the second-order
analysis.

Wright and Gaylord (6) presented the analysis of unbraced multistory steel
frames. It is assumed in the elastic-plastic analysis that plastic hinges form at
discrete points while the remainder of the structure remains elastic. The theoretical
results compared well with those found experimentally.

McVinnie and Gaylord (7) investigated the inelastic buckling of unbraced
space frames. The study was for single-story single-bay orthogonal space frames. It
is assumed that the structure deforms symmetrically when the load is less than the
critical load. Also, unloading of the inelastic material is not accounted for. It is
found that it is unlikely that a single-story frame with biaxially loaded columns and
with slenderness ratios of less than 100 will become unstable at a load less than 90%
of the mechanism load. Also, the authors found that the AISC provision for columns
in plastically designed unbraced frames was conservative when applied to the

biaxially loaded columns.
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McNamee and Lu (12) analyzed theoretically the inelastic multistory frame
buckling problem, and verified the results with a laboratory experiment on a three-
story sway plane frame. Concentrated loads are applied to the beams with two point
loads per beam. The tests are conducted, and the results are found to be in excellent
agreement with the theory.

Wood, Beaulieu, and Adams (16) presented an approximate technique in
which the P-A effect is included in the analysis by modifying the first-order results.
The theoretical results are also compared to some available experimental ones. The
technique presented does not converge for very flexible frames with high axial loads.

Cheong-Siat-Moy (17) presented a design procedure for braced and unbraced
multistory frames. It is found that the complexity of unbraced multistory steel frame
design can be significantly reduced by breaking it down into smaller story units.

Razzaq and Naim (20) conducted a study of elastic instability of unbraced
space frames. Single-story single-bay space frames are studied with various column
orientations and concentrated joint load patterns. The results are compared with
those obtained using the well-known, though approximate, effective length approach.
It is found that the effective length approach is very approximate and may
underestimate drastically the instability loads of some frames since it does not
account for the three-dimensional interaction such as that due to different cross-
sectional orientations of the columns. Furthermore, it is found that a dramatic
increase in the instability load of space frames may be achieved by orienting the

cross-sectional major principal axis of alternate columns at right angles to each other.
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Wen and Rahimzadeh (25) presented a nonlinear finite element analysis for
elastic frames. Both plane and space frames are considered. The stiffness matrix
elements are presented and include the axial loads to account for the P-delta effect.
The study also accounts for large displacements. A comparison of the numerical
results with fixed coordinate procedure and beam-column methods along with other
methods mentioned in the paper indicates that the method presented is competitive.

Darbhamulla and Razzaq (34) presented a solution procedure for flexibly-
connected nonsway plane frames subjected to nonproportional loading. In the study,
the strength of the frames loaded nonproportionally is found to be substantially less
than that of the frames loaded proporticnally. Also, it is found that a dramatic
difference exists between the behavior of nonproportionally and proportionally
loaded frames.

Chandra, Krishna, and Trikha (35,36) presented a nonlinear analysis of steel
space structures. In the study, it is found that an instantaneous secant stiffness
procedure converges more rapidly than the Newton-Raphson technique.

A review of the existing literature shows that no study has been conducted in

the past on unbraced plane or space frames subjected to nonproportional loads.

1.3 The Problems
To study the inelastic instability behavior of members and frames with sway
and subjected to nonproportional loads, solution procedures are developed for the
following types of structures:
1. Planar beam-columns.

2. Space beam-colummns.
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3. Portal frames.

4,  Space frames.

The theoretical analysis includes both linear and bilinear rotational end
restraints. The member analysis also includes partial lateral restraints. An
experimental study of a three-story single-bay space frame is also conducted under
nonproportional loads in order to verify the inelastic theoretical procedures

presented.

1.4 Objective and Scope

The main objective of this research is to study the effect of nonproportional
loading on the stability and behavior of sway beam-columns, and plane and space
frames with flexible connections. Based on materially nonlinear differential
equations of equilibrium, a procedure for analyzing plane and space frames is
formulated through member-level inelastic slope-deflection equations. Only
orthogonal frames are considered, that is, no inclined members are included.
Furthermore, hollow square and rectangular members are adopted. These members
are considered torsionally stiff and comsequently torsional deformations are
neglected.

To verify the theoretical results, a laboratory experiment is conducted on a

three-story single-bay space steel frame and the results are compared to the theory.

1.5 Assumptions and Conditions
The following assumptions and conditions are adopted in this dissertation:
1. The deflections are small in accordance with the small deflection theory.

10
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2. The material is elastic-plastic and unloads elastically in the inelastic range.
3.  Torsional effects are negligible.
4.  Plate local buckling does not occur in the members.
5. Member shear deformation and axial shortening are negligible.
The external loads are nonproportional in nature and are applied gradually,

that is, no dynamic effects are included.

11
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2. PARTIALLY RESTRAINED IMPERFECT SWAY BEAM-COLUMNS

The governing nonlinear differential equations of equilibrium for a partially
restrained imperfect sway beam-column are presented in this chapter. An iterative
algorithm based on a finite-difference scheme is formulated. The imperfections
include cross-sectional residual stresses and initial member crookedness. The
approach presented by Razzaq (24) for inelastic columns has been previously
modified by Razzaq and Darbhamulla (28, 29, 30, 31) for biaxially restrained nonsway
columns and beam-columns. This analysis is extended herein to include biaxial sway
in the presence of biaxial lateral translational restraints. First, several special
nonsway and sway cases are analyzed and compared to known results for a
verification of the analysis. Next, the behavior of both uniaxially and biaxially loaded
sway beam-columns is studied under the influence of nonproportional loads. Lastly,
the beam-column equations are exploited to generate inelastic slope-deflection

equations for use in frame analysis presented latter in this dissertation.

2.1 Cross-Sectional Analysis
Figure 1 shows a discretized hollow rectangular section with a width B, depth

D, and a wall thickness t. Each wall of the cross section is divided into finite
elemental areas. In this figure, A A represents a typical elemental area. Figure 2
shows an elastic-plastic stress-strain relationship for the material including elastic

12
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unloading. In this figure, E is the Young’s modulus, o+, is the yield stress, and ¢+
is the yield strain. The compression and tension stress-strain relationships are
assumed to be identical. The cross section has initial residual stresses. The residual

stress distribution shown in Figure 3 is by Ballio and Campanini (21), with the
maximum tensile and compressive residual stresses equal to ¢, = 0.56y and o,
= -0.2 0y, respectively. Figures 4 and 5 show the idealized versions of the residual

stresses found experimentally for the square and rectangular sections used,
respectively, in the space frame test described in Chapter 4. The experiments
showed that compressive residual stresses exist at the corners while tensile residual

stresses exist at the center of each wall of the cross sections. These residual stresses
are opposite in nature to those shown in Figure 3. In Figure 4, o, = 0.210y and
0. = -0.170y. InFigure 5, 0, = 0.120y and o, = -0.180+.

The loading on the cross section consists of an axial load P applied

perpendicular to the xy-plane, and bending moments M, and My about the x and y
axes, respectively. The normal strain, €, at a point (x,y) of the cross section is

expressed as:

e=¢g +Dy-Bx+g 1
in which ¢, is the average axial strain; @, and @, are the bending curvatures about
the x and y axes, respectively; ¢, is the residual strain. The stress-strain rate
relationship is given by:

6 =E ¢ )

13
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in which E, equals E if the material is elastic; it equals zero if the material is plastic.

The axial and the biaxial moment equilibrium equations for the cross section can be

written as:

P-=- fAeoedA ~ proYdA 3
M, = [ o.ydA + [ oyydA @
M, = —fAeocdi - proYXdA )

in which Da is an elemental area of the cross section, and o is the normal stress on

that area. The subscripts e and p refer to the elastic and plastic parts, respectively,

of a partially plastified section; f A denotes cross-sectional integration. Thus, given

an axial load, and a pair of bending moments, the strain distribution is found while
following Equation 2. In other words, compatible eg Py and (I)Y are obtained
which satisfy equilibrium for P, M,, and My. The cross-sectional dimensionless load

and deformation vectors, {f} and {5}, can be expressed as follows:
(fl={p & &N ©

(8}=(%, & &7 (7)
where the various terms are defined in Appendix A. The solution procedure

(Reference 19) involves starting at a known state and incrementally converging to the

next state for which only {f} is known. The deformation vector {8} is determined

14
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by iteratively adjusting a cross-sectional tangent stiffness matrix, [K/], relating the

increments in {f} to the increments in {8} through the following rate equation:

{f}=[K1{5} ®)
The various components of this equation are defined in Appendix A. The process
is repeated until the imbalance between the external loads and the internal forces
becomes zero or is within a tolerance. Once the strain distribution, ¢, is found, the
internal resisting forces are evaluated by numerical summation over the discretized
cross section shown in Figure 1. This is readily done by replacing the integrals in

Equations 3, 4, and 5 by summations.

2.2 Governing Equations for Space Sway Ream-Columns

Figure 6 shows a partially restrained imperfect sway beam-column BT of
length L in the three-dimensional space x, y, z. The origin of the longitudinal
coordinate z is at B. The member is provided with end rotational springs having an
initial set of stiffnesses K, Kpy, K1y, and Kg(. The translational springs provided
at the top end have stiffnesses K, and Ky. The member is subjected to a lateral load
W in the yz plane, and an axial load P and biaxial end moments Mg,, Mg,, Mr,, and
MW applied at the boundaries.

The total deflections U and V including member initial crookedness are given

by:

U=u+uy )

15
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V=v+vy, (10)
where u and v are the deflections due to the applied loads, and uy; and v, represent

the crookedness in the xz and yz planes, respectively, and given by:

L
nZ

. = v, sin — (12)
Vi o S1D. L

In Equations 11 and 12, u, and v, are the midspan initial amplitudes taken as

L /1000 for a crooked member and as L/100,000 for a nearly straight one.
If the spring moments at the member ends B and T are represented,
respectively, by (mg,, mBy) and (M, mw), the total external moments M, and My

at any location z can be expressed as follows:

M, =PV - my, - My, - zR, (0sz<0) (13a)
M, = PV - W(z-c) - m,, - M, - zR, z =c) (13b)
M, = - PU + my - My +zR a4)

where c is the distance of the load W from B, and the reactions are given by:

R, = (R0, + iy -y + My My ) as

1g=%{Pvn+W(L-c)-me+mk-MBx-Mk} (16)
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In these equations, U, and V, are the member top end deflections in the x and y
directions, respectively.

Substituting Equation 1 into the first term on the right hand side of each of
Equations 3, 4, and 5, noting that ®, = v/, and @ = v/, and utilizing Equations

13 and 14, the following materially nonlinear ordinary differential equations are

obtained:

a; e, + apv’ +agu’ =-P-P -P 7
2y + 2" + 2’ = M - M - M, (18)
25,80 + a3,v" + azu’ = M, + M, + M, a9

in which the primes designate differentiation relative to z; a;; are the inelastic cross-
sectional coeificients described in Appendix B. The terms P, Py, My, My, My,
and Myp are the inelastic load and moment parameters defined in Reference 25 and

also summarized in Appendix B.

At the global level, Equation 17 is enforced by first solving it for &, explicitly

and then substituting it into Equations 18 and 19. This results into the following two

materially nonlinear ordinary differential equations:

A" + A" = P + M, - M, @0

A" + A" =ayP + M, - M, @1

where:

17
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Ay = (a2, - a,2y)/a), (22)

A,y = (a2 — 233) ]y (23)
A, = (a3 - ap25), 24)
A, = (ayay - ayay)ay, @5)
P, = (P +P, +P)ay, (26)
My =M, + M, @7)

M,, = M. + M, (28)
In the elastic range, the terms defined in Equations 22 through 28 are constant
for each load level. In the inelastic range, however, these terms must be calculated

iteratively since they become dependent upon u and v.

2.3 Boundary Conditions

The restraining springs at the boundaries are assumed to behave elastically
or bilinearly during the loading process following Figure 7. The resisting spring
moments for a space sway beam-column appearing in Equations 13 through 16 are
Mg, Mpy, My, and my, and are dependent upon the moment-rotation (m-6)
relationships of the end connections. For a linear m-0 relationship, the spring

moment, m,, follows the line OA in Figure 7 and is given by:

m =K_86; 8] < 16,] (29)

S sa

18
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For a bilinear relationship, the spring moment follows the path OAB shown in Figure
7. The portion OA is represented by Equation 29, while the portion AB is

represented by:
m, = K, - Kp) 8, + Ky9; 18] = |6, (30)
where K, and K are the spring rotational stiffnesses. For 6 = 6,, the spring

- . —
"plastic" moment m, is also showx in Figure 7.

The deflection at end B is zero. Thus:

u0) =v(@0 =0 31)

The top end reactions in both planes are given by:
RM = - K@) (32)

R - - K,v@) | (33)

where K and Ky are the translational spring stiffnesses.

2.4 Finite-Difference Formulation

The numerical procedure is based on a second-order central finite-difference
scheme applied to Equations 20 and 21 at n equidistant nodes over (0, L), and by
invoking the appropriate boundary conditions. Using the finite-difference expression

for a second-order derivative (21), Equations 20 and 21 become:

Ai(Vig = 2v; + Vi) + Agi(u, - 2 + u,) = (3P4 + My - M )h? (34)

19
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Ani(Vig = 2V + V) + Ap(u, - 21 + uy) = (gPg + My; - Myph? (35)
where h is the distance between two consecutive nodes along the member length.
Applying Equations 34 and 35 at nodesi = 1, 2, 3, ..., n along the member length,
and using the boundary conditions given in Section 2.3, the following nonlinear

matrix equation is obtained:

[K1{A} = (M} (36)
In this equation, [K] is the global tangent stiffness matrix of order 2(n+2). The

vector { A} contains the member deflections defined as follows:

Ay ={y vy o, v, ... w,; v, u v, 6 R B.I.y}T 37

in which 8g,, 8py, Oy, and Oy, are the rotations at the ends B and T. The load

vector {M} is given by:
M = 8 + 6, + M, (38)

in which {F} is the external load vector associated with member crookedness, {F}p
is the load vector containing the plastic forces, and {M}, is the applied nodal
moment vector.

In order to clearly visualize the various vectors in Equation 38, comsider a
member loaded uniaxially about the major axis. For this problem, only Equation 34
is applicable with all u terms set equal to zero. The vectors {F} and {Fp} are

expanded as follows:

20
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[ @), + Vo
(@), * Vo

— 2 . .
(B} = 1P (g, + Vo@- (352)
@), * Vg
@), + Vo
L (a2l)n + Von J

[ (@)@, + P), - M), W
@),®, + P, - M,),

{F }p = h? 4(321):1-1(?1' +.P p)n_; - (Mn)n_1> (38b)

(@) ®; + Py - M),
(a2l)n(Pr + Pp)n - (Mxx)n
L (), (P; - Pp)n - M),

The right hand side terms are generated for nodes i = 1, 2, 3,..., n. For generating
{M_}, note that the moments at any node i are given by Equations 13a and 13b and
correspond to the second term on the right hand side of Equation 34. The nodal
moments M, include unknown deflection terms which must be transferred to the left

hand side of Equation 34. The vector {M,} is then isolated and written as follows:

( z,-L z ‘
L L
zL z
L L
{M,} = h¥ z"'I" - Z‘I‘:H {M”‘ } (38¢)
z,-L  z, M
L L
z-L  z,
L L
z,-L  z
L L |
21
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Equation 36 is nonlinear since [K] and {F}p are dependent on {A}. If the initial
member crookedness is included in the lateral displacement terms, the deflection

vector can be written as:

at={u, v, U, v, ... U, V., U, V, 6, 6, 6, 6. (39)

In this expression, the slope terms are the same as those in Equation 37.

2.5 Load Paths
Two different sets of load paths are adopted, one for the uniaxially loaded
sway beam-columns and the other for the biaxially loaded sway beam-columns.

These are described in this section.

2.5.1 Load Paths for Uniaxially Loaded Sway Beam-Columns
Five load paths designated as NP1 through NP5 are used for the uniaxial

loading case. With reference to Figure 8, these are defined as follows:

NP1: The axial load P is first applied incrementally and then held constant,
followed by gradually increasing equal end moments until the load-carrying
capacity of the member is reached. This corresponds to the path OAB.

NP2: The equal end moments corresponding to the load-carrying capacity obtained
in NP1 are first applied incrementally and then held constant, followed by a
gradually increasing axial load P until the member collapse occurs. The load

path NP2 corresponds to the path OCB.

22
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NP3: The equal end moments are first applied and then held constant, followed by
gradually increasing axial load P until the member collapses. This loading
path is the reverse of NP1. The load path NP3 corresponds to the path OCB.

NP4: The axial load corresponding to the load-carrying capacity obtained in NP3
is applied first incrementally and then held constant, followed by gradually
increasing equal end moments until the collapse occurs. This load path is the
reverse of NP2 and corresponds to the path OAB.

NP5: The equal end moments are first applied incrementally, followed by gradually
increasing both the axial load P and the equal end moments M,
simultaneously until collapse occurs. This corresponds to the path OJB.
The following four specific load paths are from Reference 37, and are

designated herein as LC1 through LC4:

LC1: A relatively large axial load is first applied incrementally and then held
constant, followed by gradually increasing the equal end moments until
collapse occurs.

LC2: The maximum end moments corresponding to LC1 are first applied
incrementally and then held constant, followed by a gradually increasing axial
load until collapse occurs.

LC3: Relatively large equal end moments are first applied incrementally and then
held constant, followed by a gradually increasing axial load until collapse
occurs.

LC4: The maximum axial load corresponding to LC3 is first applied incrementally
and then held constant, followed by gradually increasing equal end moments
until collapse occurs.

23
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The load paths LC1 through LC4 correspond, respecﬁvely, to the load paths NP1

through NP4 except for the magnitudes of the axial load and the moments.

2.52 Load Paths for Biaxially Loaded Sway Beam-Columns

Seven different load paths designated as LP1 through LP7 are used for

biaxially loaded sway beam-columns and are defined below with reference to Figure

8:

LP1:

LP2:

LP3:

LP4:

LP5:

The axial load P is first applied incrementally and then held constant,
followed by M, and My simultancously until collapse occurs. This corresponds
to the path OAE.

The moments M, and My are first applied proportionally until the peak values
obtained in LP1 are attained, followed by the axial load P until collapse
occurs. The load path LP2 corresponds to the path OFE.

The axial load P of the same magnitude as in LP1 is first applied
incrementally and then held constant. Next, the M, value achieved in LP1 is
applied and held constant, followed by M, until collapse occurs. The load
path LP3 corresponds to the path OABE.

This load path is the reverse of LP3, that is, My achieved in LP1 is first
applied followed by M, achieved in LP1, and then followed by load P until
collapse occurs. This corresponds to the path OGFE.

The moments M, and M, are first applied proportionally, followed by the
axial load P until collapse occurs. The load path LP5 corresponds to the path

OFE.

24
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LPé6:

LP7:

The axial load P of the same magnitude as that reached in LPS is first apphed
incrementally and then held constant, followed by M, and M, simultaneously
until collapse occurs. This corresponds to the path OAE.

The moments M, and M, are first applied incrementally in a proportional
manner and held constant, followed by a gradual increase in both the axial
load P and the end moments until collapse occurs. The load path LP7

corresponds to the path OHE.

Numerical results based on these load paths are presented latter in this dissertation.

2.6 Solution Procedure for Sway Beam-Columns

The inelastic beam-column solution procedure used in the present study is

basically the same as that given by Razzaq (23) with modifications to account for

biaxial loading and sway. The solution steps are as follows:

1.

Evaluate the initial cross-sectional properties at n nodes along the member
length and assemble the initial global sway beam-column stiffness matrix [K]
in Equation 36.

Specify small external loads and formulate {M}; using Equation 38.

Solve for the deformation vector {A} in Equation 36.

Compute the external nodal forces {f}; and deformations {8}, defined in
Equations 6 and 7, respectively, in the elastic range corresponding to {M};.
Increase {M} to {M},={M};+{8M}, in which {8M} is the resultant load
increment vector. Solve Equation 36 for {A}, and compute the external force

vector {f}, corresponding to {M},.

25
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6.  Using {f}, and the tangent stiffness procedure ( Reference 18), determine [K ]
in Equation 8 for all n cross sections.

7.  Solve for an updated {A} after assembling [K], {F} and {F}p while utilizing
the cross-sectional coefficients obtained in Step 6.

8. Using {A} from Step 7, formulate the load vector {M},.

9. If KkM}; - {M},| < @, where « is the tolerance taken as 0.01% of the

member yield-load capacity, go to Step 11.

10. Set {M}; = {M},, {f}; = {f}, and {M}, = {M}3, go to Step 6.

11.  Set {M},; = {M}3; {f}; = {f}5, and repeat Steps 5-10 until the maximum load
carrying capacity of the beam-column is reached.

The procedure is carried out using constant load increments throughout the
elastic range. In the inelastic range, these load increments are successively reduced
to avoid severe imbalance between the external and the internal forces. The member
maximum load is obtained within a tolerance of 0.0002 times the cross-sectional yield

capacity.

2.7 Analysis and Behavior of Sway Beam-Columns

In Figure 1, the side with the dimension B is divided into 48 elements (4
layers with 12 elements per layer), and the side with the dimension (D - 2t) is
divided into 56 elements (4 layers with 14 elements per layer). This provides a total
of 208 elements per cross section. This discretization is found to be suitable for
convergence purposes. Also, for the finite-difference scheme, a total of 11 nodes

over the member length [0, L] is found to be sufficient.

26
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2.7.1 Comparison to Published Results for Special Cases

To assess the accuracy of the computational procedure, a comparison is made
to some published results for columns and beam-columns with or without sway.

Galambos (10) investigated the elastic instability of planar beam-columns
subjected to axial load and end moments. Equations 4.77 and 4.78 in Reference 10
are the elastic slope-deflection equations modified for axial load. For a comparison,
a 7x7x0.375 in. hollow square cross section is adopted. A 12 ft long steel member
with fixed base, free top, and subjected to an axial load and a moment at the top is
analyzed using the procedure in Reference 10. Figure 9 shows the dimensionless
axial load p versus the top deflection for this member including the P-A effect, in
which p = P/Py. The curve shown in the figure is for both the predicted and
reference values indicating that the results are identical.

Razzaq and Calash (26) studied the behavior of imperfect columns with
biaxial partial restraints. The columns were initially crooked in one or both principal
directions, and possessed initial residual stresses. Elastic unloading of plastic
material was not included. The following four rotational end restraint stiffnesses
were used in the study:

K, = 0.0 kip-in/rad
Ky = 5397.22 kip-in/rad
K

C

K4

15506.94 kip-in/rad

1.0E+1S5 kip-in/rad
Two types of cross sections were considered, a 7 x 7 x 0.375 in. hollow square

section and a 6 x 8 x 0.375 in. hollow rectangular section. The material properties,
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E and oy were taken as 29,000 ksi and 46.0 ksi, respectively. For a 12 ft long

column, Tables 1 and 2 summarize the results for 16 cases, eight with the hollow
square section and eight with the hollow rectangular section. The midspan
crookedness is taken as 1/1000. For nearly straight members, it is taken as
L/100,000. The columns are either uniaxially crooked (Columns 1 to 4, and 9 to 12),
or biaxially crooked (Columns 5 to 8, and 13 to 16). The column peak loads found
by the present study are in good agreement with those presented in Reference 26.
Similarly an excellent comparison of the results is obtained as shown in Table 2 for
hollow rectangular section (Columns 9 through 16).

Figure 10 shows a pinned-end nonsway beam-column subjected to an axial
load P, and a concentrated lateral point load W applied at midspan. Moy (14)
conducted a theoretical study of this type of beam-column. A W8x31 section was
used with L/r, taken as 20, 40, and 60, where r, is the radius of gyration about the
x axis. Table 3 shows 9 beam-columns of A36 steel numbered 17 through 25. The
lateral load is applied and held constant at the W value given in the table while the
axial load P is incremented until the collapse occurs. The predicted loads are in
good agreement with the loads from Reference 14.

Razzaq and Darbhamulla (29 and 30) studied the behavior of biaxially loaded
imperfect nonsway beam-columns with a hollow rectangular section and an I-section.
'The following four rotational spring stiffnesses were considered:

K; = 0.0 kip-in/rad
K, = 13,333 kip-in/rad

K3 = 24,000 kip-in/rad
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K, = 1.0E+15 kip-in/rad
Tables 4 and 5 summarize the predicted and previously obtained (References
29 and 30) maximum dimensionless external loads for load paths LP1 through LP4.

The members used in Table 4 have a 6x8x0.375 in. hollow rectangular section with
L = 12ft, E = 29,000 ksi, o+ = 46 ksi, and residual stresses as shown in Figure 3.

The beam-columns are biaxially crooked, and have equal rotational end restraints of
stiffness K;. The beam-column results in Table 5 are for a W8x31 section of A36
steel. The beam-column length is 12 ft and it is crooked in both planes. The W
section beam-columns possess a residual stress distribution as shown in Figure 11.
The beam-columns are partially restrained with equal end rotational springs of
stiffness K,. The results in Tables 4 and 5 show that the predicted results are in
good agreement with those in References 29 and 30.

Finally, the results for uniaxially loaded imperfect and inelastic sway columns
with unequal end restraints are compared to those given by Lord (32). Lord
conducted a study with a W8x31 section of A36 steel relative to the minor axis. The
length of each column was taken as 12 ft. The columns were initially crooked and
possessed residual stresses as shown in Figure 11. Figures 12 through 14 show the
load versus the top deflection curves for the columns with rotational end restraint
stiffnesses equal to K, at T, and equal to Ky, K, and K, respectively, at end B.
Elastic unloading of plastic material was neglected. The curves in the figures show
that the predicted results are in excellent agreement with those given in Reference

32.
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2.7.2 Behavior of Uniaxially Loaded Sway Beam-Columns

Considering the deflections in the yz plane only, a sway beam-column is
obtained as a special case of the one shown in Figure 6. The member is imperfect
and has a 7x7x0.375 in. hollow square section. It is crooked in the yz plane and has
residual stresses defined by o, = -0.20y and o ; = 0.50 as shown in Figure 3
unless otherwise mentioned. Tables 6 and 7 give the results for a total of 11
members designated as BC1 through BC11. The beam-columns are subjected to an
axial load and external equal end moments (Mg, = Mp, = M,) applied
nonproportionally. The members under study are partially restrained at both ends
by rotational springs corresponding to the moment-rotation relationship shown in
Figure 7. The tables summarize the dimensionless external loads p = P/Py and m,,
= M,/M,y. The results in Table 6 are obtained for the load paths NP1 and NP2.
The rotational end restraints used for this table are of stiffness K,. Table 7 presents
the results based on load paths NP3 and NP4, and the restraints used have a stiffness
K3. The effect of lateral spring stiffness, K, on the maximum axial load, Py, is
shown in the last column of Tables 6 and 7. The results show the dramatic influence
of nonproportional loading on the load-carrying-capacity of the sway beam-columns.
The results in Tables 6 and 7 are only the maximum external loads, and the loading
history for any path is shown graphically in Figures 15 through 19. Figures 15 and

16 show stiffness degradation curves in the form of the relationships between the
dimensionless determinant, D , of the member tangent stiffness matrix, with the initial

tangent stiffness determinant used as a normalizing factor, and the dimensionless

axial load p, for various lateral springs stiffnesses. From the figures, it is clear that
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__. the member stiffness and strength decrease with a decrease in the lateral spring

stiffness. Figures 17 and 18 show ﬁ-p and l-)-m, curves for BC5 subjecied to load

paths NP1 and NP2. The very significant effect of the load paths on the beam-
column response is quite clear here. In Figure 17, the dashed curve is for the
member following the load path NP1. For the load path NP1, the determinant

decreases rapidly until the point Q, is reached. The moment is then incremented

while holding p constant. The solid curve in the same figure shows the ]3-p curve

for the load path NP2, This curve starts at D = 0.12. The initial rising part of this

curve is due to the member experiencing elastic unloading of portions of the

member. When p reaches a higher value, the member starts to lose its stiffness again
and ultimately drops down to zero at point Q,. Similar behavior is observed in D -m,

curves shown in Figure 18.

Figure 19 shows p-m, interaction relationships for the sway beam-column
BC10. The curves are constructed from the results in Table 7, in which p or m, are
held constant at different values and attain the member collapse loads for a given
load path. As seen from Figure 19, the member peak loads are load-path dependent.
The results in Table 8 show the effect of imperfections on the strength of sway beam-
columns, with lateral spring stiffness K; = 0.0, and with equal rotational end
restraints of stiffness K,. The results for beam-columns BC12 through BC15 in this
table are obtained for various residual stress and crookedness values. The member

has a 6x8x0.375 in. hollow rectangular section, and the load paths NP3 and NP4 are

used. Figures 20 and 21 show the D -p and D - m, curves for the members. These
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figures show that the members with residual stresses and crookedness are weaker in
strength. In addition, the residual stresses affect the strength of members more than
the crookedness. Tables 9 through 11 present similar results with Ky = (.10, 2.0, and

1.0E+ 15, respectively.

Table 12 summarizes the maximum dimensionless external loads for sway
beam-columns with the hollow rectangular section, bilinear lateral restraints and
equal end rotational restraints. Figure 7 shows the bilinear spring moment-rotation
relationship. Here K, is taken as K,, and Ky, as Ky, The spring yield moment,

m,,, is taken as 97.0 kip-in/rad. Also a 6x8x0.375 in. hollow rectangular section is
used. Figures 22 and 23 show the stiffness degradation D versus p and m,
respectively, for member BC30 with the load path NP3. Figure 22 shows an increase
in the member stiffness in the initial part of the I—)~p curve. This type of member
stiffening occurs due to material unloading. The unloading occurs since the axial

load is applied last. This increase in the stiffness is observed for D in the range
from 0.05 to 0.45 whereafter a decrease in D is experienced. Also, since the end

moments are first applied, D remains constant initially in the elastic range

whereafter it decreases almost suddenly due to the yielding of the rotational springs
while the member is still elastic. The member stiffness remains constant after the
spring stiffness is reduced. Subsequently, it begins to decrease as the member itself

develops plastic action. At a dimensionless moment equal to 0.93, the axial load is

incremented and some member unloading occurs. This causes a jump in the ]5-mx
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curve as shown by the vertical line at m, = 0.93. Figure 24 shows the stiffness

degradation D versus the spring moment m, relationship and having the same type

of characteristics as the ﬁ-mx curve.

As mentioned earlier, it was found that there is a difference between the
measured residual stress distributions (RSD)shown in Figures 4 or 5 and that given
in Reference 20 shown in Figure 3. To study the effect of the type of RSD

distribution on the behavior of hollow rectangular section sway member, a member
of length 5 ft. with oy = 46 ksi is considered. The rotational restraint stiffness is
taken as zero at the top and as infinite at the bottom end of the member. The
translational stiffness K, is taken as 1.0 kip/in., and the load path NP5 is used. With
the RSD given in Figure 3, the maximum dimensionless ioads obtained are p = 0.204

and m, = 1.062. With the RSD in Figure 5, p = 0.196 and m, = 1.056. In both

cases, m, = 0.891 is first applied. A slight increase in the peak loads is found if RSD
shown in Figure 3 is used. Figures 25, 26, and 27 show a comparison of the 1-)-p, D-
m,, and m,- A, relationships based on the two RSD distributions. The member with

the RSD given in Figure $ is stiffer.

2.7.3 Behavior of Biaxially Loaded Sway Beam-Columns
The behavior of 12 ft. long biaxially loaded imperfect sway beam-columns is

investigated with equal and unequal end rotational restraints, with various load paths.

A 6x8x0.375 in. hollow rectangular section is used with E = 29,000 ksi, and oy = 46

ksi. Figure 6 shows the member which is crooked in both the xz and the yz planes

An
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and has a residual stress distribution of the type shown in Figure 3 unless otherwise
mentioned.

Table 13 presents the maximum dimensionless external loads for sway beam-
columns numbered BC32 through BC36 with equal end rotational restraints of
stiffness K, for load paths LP1 and LP2. The first column of results under
dimensionless external load in the table shows no axial load in either load path, that
is, only biaxial moments are applied. These cases do not represent a stability
problem. Nevertheless, the results show that an increase in the lateral spring
stiffness results in an increase in the moment capacity. In the second column of the
results, the axial load is seen to range from 0.20 to 0.33. These results show that the
effect of load path dependence exists for some cases when a small to moderate axial
load is introduced into the problem. As an example, the maximum axial load for
BC33 is increased by 21% (p is increased from 0.24 to 0.29) when the load path is
reversed from LP1 to LP2. Similarly, the maximum axial load for BC34 is increased
by 32%, from 0.22 to 0.29. When the axial load is about 50% of the axial yield load,
a reversal of the load path has no effect. This is seen from the last three columns
presented in the table. Also, the maximum dimensionléss axial load which the
member can carry is given in the last column of th< table for various lateral
stiffnesses. If this axial load is reduced by a small amount, a member may be able
to sustain significant bending moments. This is observed for the beam-column BC34.
As the axial load is reduced from 0.79 to 0.75, it can carry m, and my of 0.27 and
0.29, respectively.

The effect of the lateral restraint stiffness on the beam-column strength is also
observed from Table 13. When a moderate axial load is applied using the load path
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LP1, a significant increase in the moment is obtained by introducing a partial lateral
restraint. For example, the moment-carrying capacity of member BC33 is much
greater than that of member BC32. For a dimensionless axial load of 0.50, the
moments for BC33 increase by 83% and 89% for m, and m,, respectively, relative
to the moments for BC32. The members subjected to a low to moderate axial load
as an initial loading for LP1 show a noticeable change in the peak axial load when
the load path is reversed from LP1 to LP2, For example, for the beam-column
BC36, when the load path LP1 is used with an axial load of 0.27, the biaxial moments
m, and m, of 1.62 and 1.77, respectively, are achieved at collapse. However, when
the load path LP2 is used with the corresponding moments from LP1, the maximum
axial load is found to be 22% higher than that from LP1. Figures 28 through 31

show the stiffness degradation curves for some representative cases. Figure 28 shows

the effect of lateral restraint stiffness on the stiffness degradation 5—p for the beam-

columns BC32 through BC36. Figures 29, 30, and 31 show the stiffness degradationf)

versus p, m,, and m,, respectively, for the beam-column BC35.

Table 14 summarizes the maximum dimensionless external loads for imperfect
sway beam-columns with unequal partial end rotational restraints and with stiffnesses
K3 and K, at the bottom and top, respectively. The load paths LP5 and LP6 are
adopted in this table with various lateral restraints. Five cases are studied here,
namely, BC37 through BC41. The first column under the dimensionless external
loads is for bending problems since no axiai load is introduced. The effect of the
load paths LP5 and LP6 is observed here only when a high value of the external

moments is applied using LP5. The second and the third columns show the effect

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of the nonproportional loads for various lateral restraint stiffnesses. It is seen that
when the load path LP6 is used corresponding to the axial load achieved by the load
path LP5, a reduction in the moment-carrying capacity occurs. This is true for all
lateral restraints stiffnesses except when K, = K, = 1.0 kip/in. for which a small
change in the maximum moments is observed when the load path is reversed. For
example, consider the beam-columns BC37 and BC39 with lateral restraint stiffnesses
of 0.0 and 1.0 kip/in., respectively. For the beam-column BC37, with load path LP5,
the m, and m, moments are incremented to the maximum values of 1.71 and 1.43,
respectively, whereafter a peak axial load of 0.16 is attained. However, when the
load path LP6 is used and the axial load of 0.16 is first applied, the peak m, and m,
moments attained are 1.40 and 1.17, respectively, that is, a reduction of 22% on each
moment. For the beam-column BC39, a substantial change in the peak moments is
observed when the load path is reversed in the presence of a lateral restraint stiffness
of 1.0 kip/in. Figure 32 shows a comparison of the axial load versus the top
deflection curves obtained with LPS and LP6 for the beam-column BC39.

Table 15 summarizes the maximum dimensionless loads for the sway beam-
columns with equal partial end rotational restraints of stiffness K, and with load
paths LP1 through LP4. The first and the last columns, under the maximum external
load in the table, are for bending and axial load problems, respectively. The second
and the third columns are for moderate axial load, and it is seen from the results that
only the load paths LP2 and LP4 exhibit the load path effect. Applying the load path
LP2 with the moments obtained in LP1, the maximum axial load obtained is 0.25.
This represents a 25% increase in the member axial strength compared to that with
load path LP1. With load path LP4, the maximum axial load obtained is 0.13. This
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load is 53% less than the load obtained with LP1. Figure 33 shows the stiffness
degradation curves D-p for the beam-columns BC42 and BC43. The figure shows

the effect of the lateral spring stiffness on the stiffness degradation of the beam-

columns. Figures 34 through 36 show the stiffness degradation D versus p, m,, and
m, for BC42 with the load paths LP3 and LP4. The D value with the load path LP4

is close 0 zero when the axial load is applied. Similarly, D nearly equals to zero

with the load path LP3 when even a small m, moment is applied. Figure 37 shows
the moment versus the midspan deflection for the beam-column BC42 with load

paths LP1 and L P2. The flat top portion of the curve for LP2 indicates that the axial
load is held constant. Figures 38 and 39 show the interaction relationship,p - m,
and p -m,, respectively, for the beam-column BC43 with LP3 and LP4. The figures
clearly show that the beam-column strength is load-path dependent.

Figures 40, 41, and 42 show D versus p, m,, and m, for a beam-column with

no lateral restraint, with end rotational restraints of stiffness K, and with the load
path LP7. Figure 40 shows that at the start of the axial load application, the
determinant was 0.36 due to a previously applied biaxial moment. A rapid'increase
in the stiffness occurs when the axial load is incremented. The quantity Q in these

figures represents the final axial load or the moments reached at collapse. The rapid
increase in the D value in these curves is due to the elastic unloading of the plastic

material.
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Tables 16 and 17 show the maximum dimensionless external axial loads for
the beam-columns with equal partial end rotational restraints and with various lateral
spring stiffnesses. The results in Table 16 are obtained with the load path LP3 with
m, = m, = 0.50 applied first. Table 17 is strictly for the axial load only, that is, with
m, = m, = 0. The effect of the lateral restraints as well as of the rotational
restraints on the beam-column strength is observed from the results given in these
tables. For a given rotational restraint, the maximum axial load obtained increases
as the lateral restraint stiffness increases. Also, for a given lateral restraint stiffness,
an increase in the load is observed as the rotational stiffness increases. Figures 43
and 44 show the effect of various lateral restraint stiffnesses on the axial load for
given end rotational restraint stiffnesses.

To demonstrate the phenomenon of the material unloading, Figures 45, 46,
and 47 for biaxially loaded imperfect beam-column are used with the load path LP7.
The beam-column possesses partial end rotational restraints at B and T with
stiffnesses K, and K, respectively. In the figures, the point A corresponds to the
results after the final moment increment but before the axial load is applied. At this
stage, some elements of the beam-column are plastified. When the axial load is
applied, some of the plastified elements unload elastically thereby resulting in an
increase in the beam-column stiffness. This is observed in the figures as the increase
in the stiffness from point A to point B. Corresponding to the state A in these
figures, Figure 48 shows the cross-sectional plastification at nodes 1, 4, 7, 10, and 13
along the beam-column length. The plastified elements are shaded dark. Figure 49
shows the plastified elements corresponding to the state B. Figure 50 which shows
A "combination" of Figures 48 and 49 leads to the unloaded elements as shaded, and
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the newly plastified elements by x marks. Figures 51 and 52 present the
corresponding m, versus the midspan and the top deflections, respectively.

Figure 53 shows a comparison of the m,-m, interaction curves for a 6x8x0.375
in. hollow rectangular section beam based on the tangent modulus approach and the
analysis including elastic unloading. For these curves, the tramslational spring
stiffness along the x and the y axes are taken as 1.0 kip/in. and 2.0 kip/in,
respectively. The end rotational restraints at the beam ends are all identical in both
planes and posses a stiffness of 15,000 kip-in/rad. The load path consisted of first
applying m, and holding it constant, and then incrementing my until its collapse value
is attained. The inclusion of elastic unloading clearly results in higher moment
capacities for the beam.

Table 18 shows the effect of crookedness and residual stresses on the peak
loads of beam-columns subjected to the load paths LPS and LP6. A total of four
cases are studied with or without crookedness and residual stresses. The beam-
columns are restrained at end B with a rotational restraint of stiffness K, about both
the x and the y axes. At the top end T, the x and the y axes rotational restraints
have a stiffness K. The translational stiffnesses K, and Ky are taken as 1.0 kip/in.
The dimensionless external loads show only small differences for wvarious
imperfections. Figures 54, 55, and 56 clearly show the effect of imperfections on the
beam-column behavior.

A biaxially loaded imperfect sway beam-column with 2x3x0.1875 in. section is
studied under the influence of the load path LP7, for two different types of residual
stress distributions (RSDs). The RSDs are shown in Figures 3 and 5. The bottom
end rotational restraints have infinite stiffness while those at the top have zero
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stiffness about the x and the y axes. The top end translational restraint has a

stiffness equal to 1.0 kip/in. along each of the x and the y axes. Figures 57 and 58

compare the D - p and D - m_ curves for the two types of RSDs. The beam-

columns are first loaded by equal end moments gradually until m, = 0.572 and my
= 0.696 are reached. Next, the axial load is incremented together with the moments.
The maximum loads attained at collapse are p = 0.068, m, = 0.716, and m, = 0.881
for the beam-column with RSD given in Figure 3; p = 0.067, m, = 0.712, and my =
0.877 for the beam-column with RSD given in Figure 5. The curves show that while
the beam-column stiffness degradation depends on the type of RSD, the ultimate
strengths are not much affected. Figures 59 and 60 are the corresponding axial load

versus the midspan and the top deflections.

2.8 Inelastic Slope-Deflection Equations for Sway Planar Beam-Column

For use in a plane frame analysis problem, the beam-column slope-deflection
equations including inelastic action and sway are derived herein. The inelastic siope-
deflection equations for a nonsway beam-column are presented by Darbhamulla (36).
A modified version of these equations including the sway are derived herein for the
type of beam-column shown in Figure 61.

Equation 36 is the global stiffness matrix equation for an imperfect sway
beam-column in space and is derived using finite-differences. Setting Ky equal to
zero, dropping the out-of-plane equations, and using partitioning technique to
separate the boundary deflections from the internal ones leads to a matrix equation

of the following type:
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[Igll leZ

1 {ﬁi} i {11::} * {gz} * {1\%} (40)

in which Kxij are the partitioned element stiffnesses; {F,} and {F,,} are the vectors

associated with the member crookedness; {Fxpl} and {Fxp2} are the vector containing
the moments due to the plastified elements and residual stresses; {M,;} and {M,,}
include the applied external moments. The vectors {A,;} and {A,,} contain the

deflections defined below:

{agt={v, v, . v} (41)

n

{a =108, 6, v} (42)

Expanding Equation 40 results in:
[Ky 108, Y+ [ K, 1A, Y ={F, ) +{F } +{M} (43)
[ Koy 1{A, } + [ Ky 1{Au )} = {Fy} + {E, b + {M,) (44)

Solving Equation 43 for {A,;} and substituting the result into Equation 44, the

following condensed equation is obtained:

[Ko1{A,}={F }+{F_}+{M,)} (45)

where:

[Kel = [Kp1[Ky 1K, 1+ (Kl (46)

{F,}={F,}-[K, 1[K, I"'{E, } (47)
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(P} ={F,} - [Ky I [ Ky I {F, } (48)

{Mxr}={Mx2}'[Km][Kxu]_l{Mx1} 49)
From Equation 45:
B = [K 17 (B} + F ) + D) (50)

Before a formal set of inelastic slope-equations is obtained, the vector {M,}

must be expressed in terms of a coefficient matrix [ B, ] and a vector containing the

applied member end moments Mg, and My, as follow:

{Mn}=[Bx]{Mn} (51)
in which:
IM,}={M; M} (52)

The moment vectors {M,;} and {M,,} in Equation 49 are obtained by

splitting Equation 38c into two parts as follows:

[ z,-L A
L L
L NNV
2.9
{M}=02{ L L »{ } (53)
zn-l L zn-l
L L |
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z, -L zl1
L L
M
(M =2 Pt é»[ B"} (54)
L L
z -L z, Mo
L L|

These equations can also be written in the following condensed form:
M 1 =1Q, 1{M,} (55)

{M,}=[Q,1{M,} (56)
Substituting Equations 55 and 56 into Equation 49 and factorizing the load vector

{M,,}, the following equation is obtained:

(M} =[1Qu1 - IRy 11K, T1Q,1]{M,} (57)
Comparing Equation 57 to Equation 51, it is seen that the first major bracketed term

in the in right hand side of Equation 57 represents the matrix [ B, ], and substituting
Equation 51 into Equation 50, the following equation is obtained:

(A, = [R I [{E b+ {Fy ) + [ B, 1{M,)] (58)

which may be rewritten as:

(AL =T1G 1 {M, +{s }+{s_} (59)

where:

[G,1=0K, 1'[B,] (60)
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{S,}=[K, 1" {F,)} (61)

= - 62
(S, =[K, I {E,} (62)
The end moments of the sway beam-column shown in Figure 61 can be
obtained from Equation 59 in terms of the member end deflections in the matrix

form as follow:

(Mo} =[R 1{A,}-{R )}~ (R} (63)
in which,

[R,1=[G, 1" (64)
{R_}=[G I (S} (65)
(R} =[G I (s,,) (66)

Here, [R,] is the stiffness matrix for the sway beam-column bent about its major axis
and depends on the axial load and the cross-sectional properties; {R,_} is the load
vector associated with the member crookedness, and {&(p} is the load vector
containing the forces produced due to the plastification and residual stresses in the

member. The end moments are obtained from Equation 63 as follows:
Msi = Rearn Oax * Reqopy O * Regisy Vo ~ Reeny — Ropa) (67)

M, )5 = Ryor Opx + Ry Opy + Rz Ve = Reesy ~ Roes (68)
where B and T refer to the top and the bottom ends of the beam-column,
respectively; i refers to the beam-column number under consideration; Ry are the
beam-column elemental stiffness terms. Equations 67 and 68 are the inelastic slope-
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deflection equations for sway beam-column bent about the major axis. These
equations will be used later for evaluating the global stiffness matrix of the sway

portal frame.

2.9 Inelastic Slope-Deflection Equations for Sway Space Beam-Column

A set of inelastic slope-deflection equations are derived in the previous section
for the sway planar beam-column. For a beam-column loaded biaxially as shown in
Figure 62, a complete set of global inelastic slope-deflection equations are needed
for use in space frame analysis. Equation 36 is a global tangent stiffness equation
for a sway beam-column in space. It contains all of the elastic and inelasiic
properties in both planes of bending. In order to separate the boundary terms from

the internal ones, Equation 36 is partitioned in the following form:

NENENEW

where K;; refer to the partitioned elemental stiffnesses; {F;} and {F,} are the vectors

Kll Kl2
1 Ko

assocaited with the member crookedness; {Fpl} and {sz} are the load vectors

containing the plastification and residual stress effects; {M;} and {M,} include the

applied external moments in both the xz and yz planes The deflection vectors{ A, }

and{ A,} are defined as follows:

{ap=tv, w5 v, w ... Voo Wo Vo, u_} (70)
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{ag=1{8; 05 0 6y v, w!} (71)

Expanding Equation 69 results into the following two equations:

[K;, 1{A} + [Kp1{4A,} = {F} + {F,; } + (M} (72)

[K,, 1A} + [Kp1{4A,} = (K} + {F,} + (M} (73)
Solving Equation 72 for {A,} and substituting it into Equation 73 leads to the

following equation:

[K.1{4,} ={E} + {F,;} + (M} (74)
where:

[K1 = [K, K, 1K, 1 + [K,] (75)
{F} = {R,} - [K, 1[K,,1"'{F,} (76)
{E,} ={E,} - [K, 1[K; 1 {F,;} (77)
M} ={M} - [K, 1[K, T {M} (78)

The vector {M,} in Equation 74 can be written in terms of a coefficient matrix[ f ]

and beam-column end moments Mg, MBy’ Mr,, and MTy as follow:

{M}=1p1{M,} (79)

where:

M} ={M;, My, M, MV 80
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The matrix [ B ] is obtained in a manner similar to that for the planar beam-column
except that all of terms in both the xz and the yz planes must be included. Of
course, Mgy, Mg, Mr,, and My, are the moments at the ends B and T. Using

Equation 79, Equation 74 can be written as follows:

{4,} = [G1{M,} + {8} + (S} @1

where:

[G] =[K]1'[B] (82)

{8} = [KJME} (83)
84

s,} = [K,JHE,)

The end moments for the sway space beam-column are obtained by solving Equation

81 for {M,}:

{M,} = [R]{4,} - {R} - (R ) (85)
where:

[R] = [G] (86)
{R} =[G {8} (87)
(R} =[G {8} (88)

in which [R] is the tangent stiffness matrix for the sway space beam-column; {A,} is

the boundary deflection vector; {R_} is the load vector containing the P-delta effects;
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{Rp} is the load vector containing the plastification and residual stress effects. The

end moments for the member i are obtained from Equation 85 as follows:

M)si = Re1988x * Rezi®ex * Reasn¥a ™ Reety ~ Repa) (89)
Mn = Reer88: * RepBnx + Ruzn¥a ~ Reesy ~ Roe (90)
Mydsi = Ry O3y * Ryay 01y + Ryqan W ~ Ryeqy ~ Ry 1)
Mn = Rygiy 08y + Rypoy Oy + Ryusy ~ Ryenyy ~ Rypy) 92)

Equations 89 through 92 are used for space frame analysis presented in Chapter 3.
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3. FLEXIBLY CONNECTED IMPERFECT SWAY FRAMES

An inelastic slope-deflection solution procedure for flexibly connected sway
plane and space frames is presented in this chapter. The examples of a portal frame
and a single-story single-bay orthogonal space frame are studied in depth. The

solution procedure is also applied to the three-story test frame in Chapter 4.

3.1 Portal Frame

Figure 63 shows schematically an imperfect unbraced portal frame with
flexible joints at B and C, and flexible base connections at A and D. All three
members are loaded about their major axes. The initial member crookedness is in
the plane of the loading is given by Equation 12. Also, the member cross section is
assumed to have an initial residual stress of the type shown in Figure 3 unless
otherwise mentioned. As seen from Figure 63, the frame has six joints. Springs exist
between joints 2 and 3, and joints 4 and 5 as well as at the supports. The distances
between joints 2 and 3 as well as between joints 4 and 5 are taken as zero. The
structure is subjected to nonproportional loading which includes a horizontal load H
applied at B, vertical loads P; and P,, and bending moments M; and M, at B and

C, as shown in Figure 63.
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3.1.1 Analysis

The analysis is conducted by using the inelastic slope-deflection expressions

in Equations 67 and 68. Using the joint numbers in Figure 63, and applying the

inelastic slope-deflection equations to the three members of the frame in Figure 63

leads to:

M2 = Ry O + Reaay 8 + Reasny Ve = Rucany ~ Rpan
Moy = Reann O + Reeany 0 + Repagy Ve = Recy = Repny
Moo = R Os * Rewz O ~ Ratry ~ R
My = Ry 9 * R O ~ Reer) ~ Rey
Miso = Raary Oas * Reazy Bxs + Ry Ve ~ Recsy ~ Ry

Mes) = Re1 0xs * Reoy O36 + Repsgy Ve ~ Rucpsy ~ R

®9

95)

(6)

ty)

8)

(99)

Here, the first subscript refers to the member stiffness of one end with respect to the

other end. The second subscript refers to the member number. Next, an

enforcement of the joint moment equilibrium at A, B, C, and D leads to:

Mgt K 0,,=0
Mot Kg(6,- 8,0+ M, =0
M4+ Kg( 0,3-6,,) =0

M, 43t Ke( 6,4~ 6,5 =0
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(100)

(101)

(102)

(103)



Mt Kl 05~ 6,90 + M, =0 (104)

Mx(s,s)* KD ex6= 0 (105)

Substituting Equations 94 through 99 into Equations 100 through 105, a total
of six equations containing seven unknowns are obtained. Therefore, one more
equation is required to solve for the unknowns. This is obtained by using the shear

condition at the base of the structure:
H +H=H (106)

where H; and H, are the shear forces at the frame bases obtained by considering the

moment equilibrium of each column. The resulting form of Equation 106 is:

Mg + Mygy + PV, + My + M, + Pv, = HL, (107)

Substituting for the moments Mx(i,j) in the above equation from Equations 94,

95, 98, and 99, the following equation is obtained:

Txl exl + t‘Fx2 632 + Tx3 exS + Tx4 6x6 +Yx§ "’n = HLc + ?16 (108)

in which the ¥, terms for k = 1, 2,.., 6, are defined in Appendix C.

Substituting Equations 94 through 99 into Equations 100 through 105, and

including Equation 108 results in a nonlinear global matrix equation as follows:
[K 18, ={M }+ M }+{M, ]} (109)
in which [Kxg] is the global tangent stiffness matrix of the order 7x7, { d,,} is the

deflection vector containing 6 rotations (6,, through 6_,) and one frame horizontal

translation,v,, at B or C; {M, .} is associated with the member crookedness; {M,,}
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contains the applied moments; {Mxpg} is the plastic force vector generated beyond

the elastic range. To determine {3,,}, Equation 109 must be solved iteratively for

each external load level. The various load paths considered herein are defined in

Section 3.1.2 and the procedure for solving Equation 109 is defined in Section 3.1.3.

3.12 Load Paths
The load paths used earlier by Darbhamulla (36) are adopted here for
comparison purpose and numerical study. Figure 8 shows a variety of load paths for
a three-dimensional problem, however, it can also be used for a two-dimensional
problem by adopting various load paths in one plane. Referring to the m,-p plane
in this figure, the following load paths are adopted herein:
LPF1: Both p and m are applied simultaneously in a proportional manner. This
corresponds to the path OB.
LPF2: An axial load p is first applied, followed by both p and m,_ applied
simultaneously. This corresponds to the path ODB.
LPF3: Both p and m, are applied simultaneously in a proportional manner until m,
reaches the ultimate value obtained in LPF2, followed by an increase in the
axial load p while holding the moment constant. This corresponds to the

path OKB.

3.1.3 Solution Procedure
The algorithm by Darbhamulla (36) for a nonsway portal frame is modified

here for the sway case. Equation 109 is materially and geometrically nonlinear since
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the tangent stiffness matrix [Kxg] and the load vectors on the right hand side are

dependent upen the deformation vector {8,,}. To predict the load-deformation

behavior of the frame, the following iterative scheme is devised:

1.

10.

Evaluate the initial elastic properties and deduce Equation 63 for each
member.

Assemble global stiffness matrix [Kxg] in Equation 109.

Prescribe small load increments and formulate the load vectors {M, .} and
{Mxpg} in Equatien 109.

Solve Equation 109 for {8, }.

Compute the member end forces vector {M,,} using Equation 63. Next,
determine the member end actions using static equilibrium, and formulate the
load vector {M} ={M,} in Equation 31. Here, i refers to the iteration number.
Analyze the members with {M;} individually using the procedure given in
Chapter 2, and compute the converged member stiffness matrices [K] in
Equation 31 of Chapter 2 .

Update the inelastic slope-deflection Equation 63 for each member, re-
assemble [Igg], {chg} and {Mxpg}, and update {8,,} using Equation 109.
Recompute the member end force vectors {M,,} using Equation 63, and
update {M}={M}, ; in Equation 31.

If {M};,1 - {M}] < «, where o is the tolerance taken as 0.01%, go to

Step 11.

Set {M};={M};, 1, and go to Step 6.
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11. IfIK]l = 0.0, go to Step 13.
12. Increase (or change) the external loads, that is, P and/or M, update the load
vectors {chg} and {Mxpg} in Equation 109, and go to Step 4.
13. Stop
The solution procedure described herein is programmed in FORTRAN on a
sequential IBM 3090 computer using the vectorization facilities provided. The

program is named SPF (Sway Portal Frame) and a listing is included in Appendix D.

3.1.4 Load Combinations
The following load combinations are considéred for the portal frame study:

FL1: An axial load P,, and a counterclockwise bending moment M, are used while
keeping P, = M, = 0.0

FL2: Same loading as FL1 except that the bending moment M, is applied
clockwise.

FL3: In addition to the loads in FL1, P, and Mj; are also applied.

3.1.5 Types of Frames Studied
The numerical study of the portal frame is based on many frame
configurations. Frame crookedness is one of the important aspects, therefore, with
reference to Figure 38, the following frame types are considered:
FR1: The members AB, BC, and CD are nearly perfect with v; in Equation 12 and
with vq = L/100,000. The vy, for the members AB and CD is as shown in

Figure 63 while for member BC it is opposite to that shown in the figure.
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FR2: The members AB and CD are initially crooked as shown in Figure 63 with vi;
given in Equation 12 and with vy = L/1000. Member BC is crooked
opposite to the direction shown in the figure.

FR3: The member AB is nearly perfect as in FR1, and the members BC and CD
are initially crooked as in FR2.

FR4: The members AB and BC are initially crooked as in FR2, and the member
CD is nearly perfect as in FR1.

FRS: The member AB is initially crooked as shown in the figure, and the members

BC and CD are initially crooked opposite to those in the figure.

3.1.6 Frame Behavior
Figure 63 shows schematically an imperfect sway portal frame. It is assembled
from members of 7x7x0.375 in. hollow square section for the columns, and 6x8x0.375

in. hollow rectangular section for the beam. The material used for the frame is steel

with a modulus of elasticity E=29,000 ksi, and a yield stress o, = 46 ksi. The length

of each member is taken as 12 ft, and each member is divided by means of 17
equidistant nodes along its length. Also, each member has initial crookedness
defined by Equation 12.

Darbhamulla (36) studied the effects of nonproportional loads on nonsway
portal frames with partial rotational restraints. Table 19 shows a comparison of the
externally applied dimensionless maximum loads to those given in Reference 36 for
imperfect nonsway portal frames. A W8x31 section is used for the columns and a

S12x31.8 section is used for the beam. Each member is 15 ft. long. The beam-
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column joints are connected by partial rotational restraints of stiffness K, and the
joints at the foundations are taken as rigid. The columns are bent about their minor
axes and the beam about it’s major axis. The results in the table show excellent
agreement with Reference 36.

A total of 19 frames, PF1 through PF19, are studied in order to investigate the
effect of nonproportional loads on the frame behavior and strength. Table 20
presents the maximum dimensionless external loads for sway portal frames FR1, FR2,
FR3, and FRS with rigid beam-to-column connections, and with partial rotational
restraints at the bases of stiffness K,, and subjected to FL3 and FL4 loading. The
results show that there are major differences between the strength of frames
subjected to the proportional loading LPF1 and those with nonproportional loading
LPF2 or LPF3. However, no significant differences are observed between the
collapse loads based on LPF2 and LPF3.

Table 21 shows the maximum dimensionless external loads obtained for the
imperfect sway portal frame FRS. The beam-to-column connections are rigid and
the bases are connected to the foundations by rotational restraints of stiffness K,.
Frame loading types FL1 through FI4 are considered. It is seen that when the frame
is loaded at only one joint (loading FL1 or FL2), the maximum vertical load is
increased by 38% to 44% of the column squash load. When nonproportional load
paths LPF2 or LPF3 are used, a reduction in the applied moment m, is noticed as
compared with that for the proportional load path LPF1. Figures 64, 65, and 66

present the behavior of the frame PF9 for the load paths LPF2 and LPF3. These

figures show the stiffness degradation curves ( D - p) and (l_) -m_ ), and the
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dimensionless vertical load versus top (horizontal) deflection of the joint C shown in
Figure 63. From these figures, it is clear that the frame loses it’s stiffness faster
under the load path LPF2. Figures 67, 68, and 69 show the behavior of the frame
PF10 with the load path LPF2.

Table 22 presents the effect of member crookedness and residual stresses on
the strength of the sway portal frames with rigid beam-to-column connections and
with partial rotational restraints at the bases of stiffness K3. The frame type used is
FRS with FL4 loading. The results show that the perfect frame is stronger than the
crooked one. Figures 70 through 81 depict the behavior of frames PF13 through

PF16. In each figure, four curves are plotted, one for each frame. Figures 70, 71,

72, and 73 show the (D -p), (D -m), (p-A), and (m,_ - 6,)) curves,

respectively, where 6., is the joint 1 rotation, for the frames with the load path

LPF1. From the figures, it is clear that the frame with crookedness and residual

stresses loses it’s stiffness faster than others, and the perfect frame has the highest

stiffness. Similarly, Figures 74, 75, and 76 present the (D - p), (D - m ), and

(]3 - A) curves, respectively, for the same frames subjected to the load path LPF2.

Also, Figures 77 through 81 present similar curves for the frames with the load path
LPF3.

Table 23 summarizes the dimensionless maximum loads for the sway portal
frames PF17, PF18, and PF19 with different residual stress distributions (RSD). The
behavior of frames is studied with different RSDs depicted in Figures 3, 4, and S.

The frames under consideration are of the type FRS with frame loading FL3 and are
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subjected to load paths LPF1, LPF2, and LPF3. The columns are constructed from
2x2x0.1875 in. hollow square sections, and the beam is a 2x3x0.1875 in. hollow
rectangular section loaded about the major axis. All joints are rigid. No significant
difference is noticed between the frame strength with RSD of Figure 3 and that of
the frame with RSD of Figures 4 and 5 when the load path LPF1 or LPF2 is used.
The load path LP3 gives a 13% increase in the vertical load when the RSDs of
Figures 4 and 5 are used. The results also illustrated graphically in Figures 82
through 90. The figures show that the stiffness of the frames also depends on the
residual stress distribution and that they are weaker when RSD given by Figure 3 is

used.

3.2 Orthogonal Space Frame

Figure 91 shows an unbraced single-story single-bay space frame with flexible
connections and foundation attachments. The joints are numbered from 1 through
15. Following the same format as for the portal frame of section 3.1, the joints are
numbered in such a way that each rotational spring connects two joints with a zero
distance between them. The space frame is imperfect with member initial
crookedness given by Equations 11 and 12. The cross section of the members is
assumed to have initial residual stresses of the type shown in Figure 3 unless

otherwise mentioned.

3.2.1 Analysis
The inelastic slope-deflection equations for sway beam-column in space have
been derived in the previous chapter. A set of global tangent stiffness equations are

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



needed to obtain the solution of the unknown rotations and translations of the frame.
Equilibrium and compatibility conditions are enforced at each joint. Figure 92a
shows one such joint with subscript i denoting the joint between two columns and
subscripts j and k denoting the nodes connecting the beam end to the rotational
springs. Figure 92b shows typical joint loads which include two horizontal loads P;,
and Py, a vertical load P;,, and a pair of moments M;, and M.

Figure 93 shows a typical joint i with the members and the springs connected
to it. Joint i is connected to the top column CT, the bottom column CB, and the
rotational springs about the x and the y axes with stiffnesses K; and Kyi’ respectively.
The members B1, B2, CB, and CT are connected at their ends by the joints I-k, m-j,
h-i, and i-n, respectively. Applying Equations 89 and 90 to beams B1 and B2, the

following internal moment equations are obtained:

Men = Reesn O + Reopry 85 ~ Receny ~ Roesn (110)

My = R O * Ry 8 = Reeery ~ Ropeno) (111

In generating Equations 110 and 111, the displacements v, and u, in Equations 89
and 90 are set equal zero. For columns CB and CT, Equations 89 through 92

become:

Micen = Ruaren %5 * Rupzen O * Regaen(@yn =4 - Reqen ~ Rpaen  (112)
Mjien = Ryaren O * Ruzen O * Ryasen@xa=8%) -~ Recuen = Rpaen (113)

Micp = Reaicm O + Reocp Bu + Riesem Byi ~ Recoeny ~ Rupecp) (114)
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Micm) = Rieresy O * Ryeocn O + Rioseny Ax ~ Ryeremy ~ Rypeaicn) (115)

The resisting moments at joints i, j, and k are expressed as follows:

Mig = Kq @y - 8y + My (116)
Mg = KBy - 8) + My (117
Mir) = Kg(85 - 6y (118)
Mug = Ky (8 - 8y) (119)

in which the subscript R refers to the appropriate "resisting" moments. The moment

equilibrium conditions at joints i,j, and k are as follow:

Mucen * M) * Mg = 0 (120)
Myien + Myicp) + Myiy = 0 (121)
Mim + Mygn =0 122)
Muw * My = 0 (123)

Applying Equations 89 through 92 to column 1 of the single-story single-bay

space frame shown in Figure 91 leads to the following equations:

Mo = Raany O * Reaany Os * Raany Ay ~ R, v ~ Roan (124)

1Vf}'(il.5) = R}’(ll»l) eyl * &(12,1) * &(13 1) &’C(l D ISP(I,I) (125)

Misn = Reny 09 + Reeany 8is * Rypayy 4, ~ Reoy - Roen (126)
60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



M7(5,1) = Ry(21,l) eyl * 1%’02.1) e}'s * R)'(23,l) A - 1g'c(Z.l) - R}‘P(Z-l) 27

For Column 2, the equation are:

M.o6 = Raaiz) B2 + Rupaz) O * Reaapy Ay ~ Ry ~ Roa) (128)
Moo = Ryarz) 82 + Ryaza) 85 + Ryaa Ax ~ Reany ~ Ry (129)
M2 = R O + Reaz) Bxs + Repsny 8y ~ Rupsy ~ Ry (130)
My = Ryerz) O + Ryaazy O6 + Ryeany Bx ~ Ry ~ Ry (131)

For Column 3, the equations are:

Misn = Reary O + Reay B0 + Raayy Ay ~ Ry ~ Roqy (132)
Man = Rars O + Ry O7 * Ryasy Ac = Ryeay ~ Rypary (133)
Meas = Reary 86 + Ry 80 + Regagy Ay ~ Reps) ~ Ry (134)
Myan = Ryary O + Ryaasy O7 + Ryaasy Ax ~ Ry ~ Ry (135)
For Column 4, the equations are:

Mx(4,8) = Rx(11,4) 9x4 + 1%(12,4) 018 + &((13,4) Ay - Rm(m) - &y(l,«t) (136)
Myus = Roare O * Raog 855 * Ryasy Ax ~ Rieayy ~ Rpagy (137)
Mo = Reare Bis + Ry B8 * Repsgy Ay ~ Ringy ~ Ry (138)
Miss = Ryarg O + Ryaag 85 + Rygagy 85 = Rycpy ~ Ry (139)
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For Beam 5, the equations are:

My(s,m) = lgc(u,s) 6y9 + Rx(12,5) eym - 1%:0(1,5) - Rxp(l,S) (140)
Maos = Reers O *+ Reaas) 8510 ~ Rucesy ~ Raes (141)
For Beam 6, the equations are:

Mz = Raare O + Raaze Ox2 ~ Recie ~ R (142)
Mx(lz.u) = Rx(21,6) O * &(22,6) 0,12 - Igc(2,6) - 1%p(z.ts) (143)

For Beam 7, the equations are:

IVI}'(13.14) = &(11,7) eylS + Rx(12.7) e37'14 - Rxc(l,7) - 1%:p(l,’T) (144)

Myaa1s = R 851 * Reagy O1s ~ Recen — Ry (145)

Lastly, for Beam 8, the equations are:

Mas16 = Rearg 8us * Reazg O - Recasy ~ Rxp(l,8) (146)

Mx(16,15) = Rx(21,8) exlS + Rx(zz,S) exl& - Km(z,s) - &:p(z,s) (147)

Enforcing the compatibility and equilibrium conditions at each joint leads to:

My * Kby =0 (148)

Mys + Ky 0y =0 (149)

Mg * Kby =0 (150)

Myoe + Kypbp, =0 (151)
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Mn * Kby =0

Mz + KBy = 0

Mg * Kby =0

Mug * Ky =0

Mispy + Kes Bys = 6y5) + My =0
My + K5 (65 — 659) + My; = 0
M6 * Kis O = Opp) + My = 0
Myen + KysO = 8y9) + Mg = 0
Mas + Kg @y -6 +M,; =0
Mgz * Ky By = 859 + My, = 0
Mg * Kg(Brg = 059 + Mg =0
Myga + Kis(Bys - 8,19 * M, =0
Mg10 + Kys(Byg - 6,9 =0
M09 + Kys By ~ 6,9 = 0

M1 * K O5y ~ 8,9 = 0
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(152)

(153)

(154)

(155)

(156)

as?n

(158)

(159)

(160)

(161)

(162)

(163)

(164)

(165)

(166)



Moy * KegOrpp = 850 = 0 (167)

Mz + Kig(By3 — 659) = 0 (168)
Miaagy * K7 By - 6,) = 0 (169)
Miasie + KesOns ~ 0,9 = 0 (170)
8M, 615 * Kig(By6 — B59) = 0 171)

Equations 148 through 171 form a set of 16 equations with 18 unknown
deflection quantities. In order to complete the required minimum equations to solve
for the unknown deformations in the space frame, two additional equations are
needed. These are obtained by using the following shear equilibrium equations at

the base of the frame in the x and in the y directions:
H, +Hy + Hy + Hy, = 2H, (172)

Hyl + H}Q + Hy3 + Hy4 = 2Hy a”s)

where H,; and Hy1 are the horizontal reactions in the x and the y directions,
respectively, at the frame base at nodes 1 through 4 skcwn in Figure 91, and H, and
H, are the external horizontal loads applied at the top of the frame in the x and the
y directions, respectively. The horizontal reactions can be expressed in terms of the
end moments for each column. The column moments are expressed by Equations

124 though 139. Thus, Equations 172 and 173 are converted to a useful form.
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Substituting Equations 124 through 147 into Equations 148 through 171,
together with Equations 172 and 173, finally leads to the following global tangent

stiffness matrix equation:
[K,] {ag} = {Mcg} + {Mpg} + {Mg} (174)
where [Kg] is the global tangent stiffness matrix, {8, } is the deflection vector, {Mcg}

is the load vector associated with the initial crookedness of the members, {Mpg} is
the plastic load vector, and {Mg} is the externally apblied load vector. Equations
174 is solved for the global deflections iteratively using the solution procedure

described in Section 3.2.3.

3.2.2 Load Paths
A study of the behavior of the single-story single-bay space frame shown in
Figure 91 is presented in Section 3.2.5. The loadingconsists of the vertical loads P,
P, AP, and AP at the joints 5 through 8, respectively, and the bending moments M,
and My applied in the directions as shown in Figure 91. Referring to Figure 8, the
following load paths are considered herein:
SL1: The vertical load P is first applied at each of the joints 5 through 8 with A =
1.0, then held constant, and then followed by the bending moments M, and
My applied proportionally at all of the nodes as shown in Figure 91 until the
frame collapse occurs. This corresponds to the load path OAE.
SL2: The mending moments M, and My corresponding to SL1 are first applied

proportionally to the same joints as in SL1, held constant, and then followed
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by the vertical load P, and with A = 1.0, at the same joints until collapse
occurs. This follows the load path OFE.

SL3: The vertical load P reached in SL1 is first applied at the same joint, followed
by a further increase in the vertical load P, with A = 1.0, and the bending
moments M, and My simultaneously until collapse occurs. This load path
corresponds to the load path ODE.

SL4: The bending moments M, and My reached in SL1 are first applied, followed
by the vertical load P at the same joints, with A = 1.0, and the bending
moments M, and M, simultaneously until collapse occurs. This corresponds
to the load path OHE.

SL5: T vertical load P applied at joints 5 and 6, that is, A = 0.0, with until

collapse occurs. This corresponds to the load path OA.

3.2.3 Solution Procedure
The algorithm used for the sway portal frame is modified here to handle the
inelastic stability analysis of the sway space frames. In the elastic range, Equation
174 is solved non-iteratively for a given set of external loads. In the inelastic range,
this equation becomes nonlinear since the tangent stiffness matrix [Kg] and the load
vectors on the right hand side become dependent upon the extent of plastification.
To predict the load-deformation behavior of the frame, the following iterative
scheme is devised:
1.  Evaluate the initial elastic properties of the frame members and formulate

Equation 85 for each member in the elastic range.
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2.  Prescribe a set of external loads [Kg], {Mcg}, {M.pg}, and {Mg} in Equation.

174. Note that in the elastic range, {Mpg} = {0}.

3.  Solve Equation 174 for {8,}.
4. Using {§,} from Step 3, compute the end moment vector {M,} for each

member, using Equation 85. Next, determine the end actions using static
equilibrium, and formulate the load vector {M}={M}; in Equation 38 for
each member. Here, i refers to the iteration number.

5. Analyze the members with {M}; individually using the procedure given in
Chapter 2, and compute the locally converged member stiffness matrices [K]
in Equation 36.

6. Update the inelastic slope-deflection Equation 85 for each member,

reassemble [K,], {M} and {M,},

and solve for {3 } using Equation 174.

7.  Recompute the member end moment vectors {M,} using Equation 85, and
update {M}={M},,; in Equation 38.

8. If{M};.;- {M}] < «, where « is the tolerance taken as 0.01%, go to step

10.
9. Set {M};={M},,, and go to step 5.
10. IFIK] = 0.0, go to step 12.
11. Specify the next set of load levels, update the load vectors {Mcg} and {Mpg}
in Equation 174, and go to step 3.

12. Stop
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The solution procedure described herein is programmed in the FORTRAN
language on a sequential IBM 3090 computer using the vectorization facilities. The
program is named SSF (Sway Space Frame) and its listing is presented in Appendix

D.

3.2.4 Frames Studied
Three types of frame crookedness configurations are chosen here to study the

behavior of the single-story single-bay space frame shown in Figure 91, under the
influence of nonproportional loading. For the numerical study presented herein, the
applied moments about the x and the y axes are taken equal to each other, that is,
m, = m, = m. Also, each of the four columns is subjected to an axial load p except
for the frame subjected to the load path SLS5. For the frames studied, the
crookedness is considered to be present only in the columns in the specified
directions. Beams S through 8 are taken as nearly straight in all of the frames
considered below, that is, with a midspan crookedness of 1/100,000 measured
downward (negative z direction). Referring to Figure 91 and the frame global
coordinates, the following types of framed are studied:

SFR1: Columns 1 and 4 are crooked in the negative x direction and Columns 2 and
3 are crooked in the positive x direction. Also, Columns 1 and 2 are crooked
in the positive y direction and Columns 3 and 4 are crooked in the negative
y direction.

SFR2: All of the columns in the frame are crooked in the directions opposite to

those for the frame SFR1.
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SFR3: All of the columns in the frame are crooked in the negative x and the

negative y directions.

3.2.5 Frame Behavior

Unless otherwise mentioned, the beam and column sizes, and the material
properties adopted for the space frames are the same as those used for studying the
behavior of the portal frame, and are outlined in Section 3.1.6.

Table 24 summarizes the maximum dimensionless applied loads for single-
story single-bay sway space frames SFR1, SFR2, and SFR3 with rigid joints. The
load paths used here are SL1 through SLS. The results clearly show the influence
of the nonproportional loads on the frame maximum loads. For example, when the
load path SL1 is utilized for the frame type SFR1, the maximum loads obtained are
p = 0.70 and m = 1.23. However, when the load path is reversed, that is, when the
load path SL2 is used, the frame maximum loads become p = 1.24 and m = 1.23.
This type of behavior is also observed for all other cases presented in the table for
the load paths SL1 through SIA4.

An interesting result is also obtained for the space frame SFpl which is
subjected to the load path SLS. For A = 0.0, that is, the external loading consists
of only two vertical loads applied at the joints 5 and 6 shown in Figure 91. As given
in Table 24, p is found to be 3.76. This means that the total frame load, 2p, equal
7.52 times the squash load for one column. This is attributed to the combined effect
of material unloading and the interaction of the various members of the frame in the

presence of unsymmetric loading of this type.
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The behavior of the frames SF2 and SF4, referred to in table 24, is depicted

by the curves in Figure 94 through 96. These figures show the stiffness degradations

curves D -p and ]-)-my, and the load-deflection curve P-A,.

Table 25 shows the maximum dimensionless applied loads for the sway frames SF13
through SF24. The joints and the foundation connections for these frames are
partially fixed and possess equal rotational restraint stiffness of K (=15506.94 kip-
in/rad). The effect of the load path dependence on maximum loads of these frames
is seen from the results in this table. For example, when the load path SL1 is used
for the frame SF13, p and m are found to be 0.79 and 0.21, respectively. However,
with the load path SL2 p and m results become 0.30 and 0.21, respectively. This
means that the frame vertical load with the load path SL1 is about 2.6 times that
with the load path SL2. Also, the strength of the frame types SFR1 and SFR2 is
found to be practically identical for each given load path. However, the frame type
SFR3 exhibits substantially different maximum loads compared to those obtained for

the frame types SFR1 and SFR2, for a given load path. Figures 97, 98,and 99 show

the D -p, D -mg, and p - A, curves for the frame SF24 under the influence of the

load path SLA.

Table 26 presents the effect of crookedness and residual stress distributions
(RSDs) on the dimensionless maximum loads of the space frames with flexible joints.
The beam-to-column connections as well as the bases have a rotational restraint
stiffness of K5 (=24,000 kip-in/rad). The frame is type SFR3 is adopted. The results
for a total of 16 frames, SF25 through SF40, are presented in this table. The results

show that the nearly perfect frames are stronger than the imperfect ones. Figures
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100 through 104 show the behavior of the frames subjected to the load path SL1.

Figure 101 shows ]3—my relationships for the frames SF25 through SF28 with the

load path SL1. These curves are generated only after a specific value of p is applied.
Therefore, at my = 0, the D value is already relatively small. As the moment is

increased, the influence of nonproportional loading is exhibited by the reductions and
successive increases in the frame stiffness. Figures 102 and 103 present thep - A
curves for these frames. In Figure 102, the deflection due to the vertical loads is
small as indicated by the apparently "vertical" part of the curve. The horizontal part
of the curve indicates that the vertical load is held constant while the deflection
continued to increase under the influence of increasing external moments. Figure
103 shows the magnified version of the vertical line presented in Figure 102. In
Figure 103, only the horizontal is shown magnified. Figures 105 through 108 show
the behavior curves for frames SF25 through SF28 with the load path SL2. Figures
109 through 112 show the curves for these frames with the load path SL3. Figures
113 through 116 show the curves for these frames with the load path SIA. The
frames with both the residual stresses and the crookedness are found to have the
least stiffness.

A comparison of the space frame behavior for the various types of residual
stress distributions (RSDs) given in Figures 3, 4, and 5 is also conducted. The space
frame studied is of the type SFR3. The frame consists of columns with 2x2x0.1875
in. hollow square section, and beams with 2x3x0.1875 in. hollow rectangular section.
Each member is 5 ft long. For the frames for which the (RSDs) given by Figures
4 and 5, the RSD of Figures 4 is assigned to the columns and the RSD of Figure 5
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is assigned to the beams. For the frames with RSD given by Figure 3, all members
are assumed to have the same RSD pattern. Table 27 shows a comparison of the
maximum dimensionless external loads for the sway frames with different residual
stress distributions. A total of four frames, SF41 through SF44, are investigated with
the load paths SL1 through SL4. The partial rotational restraint of stiffness for each
connection is taken as 5,961.1 kip-in/rad. With the load path SL1, the maximum
moment obtained with the RSD of Figures 4 and 5 is slightly higher than the moment
achieved with the RSD of Figure 3. With the load path SL3, identical maximum
loads are obtained. The results for the load paths SL2 and SL3 depend on the
outcome of the load path SL1 and hence cannot be compared. Figures 117 through
120 present sample behavior curves for the space frames with different RSDs. These
figures show that although the frames with the RSDs given in Figures 4 and 5 are
stiffer than those with the RSD in Figure 3, their load-carrying capacities are

practically the same.
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4. EXPERIMENTAL INVESTIGATION

4,1 Three-Story Single-Bay Space Frame

To verify the accuracy of the theoretical solution procedure presented in
Chapter 3 for orthogonal space frames, a three-story single-bay structural steel frame
is tested in the laboratory under three-dimensional nonproportional loading
conditions. Hot-rolled hollow square and rectangular structural steel tubing is used
for the test frame columns and beams, respectively. This chapter presents the details
of the experiment, and a comparison of the experimental and theoretical behavior
of the frame.

Figure 121 shows the major portion of the unbraced three-story single-bay
orthogonal space frame tested. Figure 122 shows the test frame schematically. The
total frame height is 15 feet with each story having a height of 5 feet. Also, the bay
width is 5 feet in both principal directions. Each column has a 2 x 2 x 0.1875 in.
bollow square section, and each of the beams has a 2 x 3 x 0.1875 in. hollow
rectangnlar section. The beams are oriented in the usual fashion, that is, with their
major axis oriented horizontally. Square plates with dimensions 6 x 6 x 0.5 in. are
welded to the four columns at the frame base which in turn are bolted to the flanges
of I-section foundation beams. The I-section beams are anchored to the ground by
1/2 in. diameter bolts with 36-inch spacing. No stiffeners are used to reinforce the

web of the foundation beams, therefore, the column bases at nodes 1 through 4 in
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Figure 122 are capable of developing partially restrained rotations about the global

X axis.

4.1.1 Frame Material Properties

To determine the material Young’s modulus and the yield stress, two stub
column compression tests were conducted on 8-inch long speciniens of the hollow
square section. The test procedure followed is given in Reference 29. Four strain
gages were mounted to the mid-height of one stub column. Each gage was mounted
at the center of each side of the specimen as shown in Figure 123. Four additional
strain gages were mounted at the corners of another identical stub column specimen
at mid-height as shown in Figure 124. The stub columns were loaded in
compression, and the output from strain gages was recorded. Figure 125 shows the
experimental stress-strain relationship as the solid curve based on the stub column

test with corner gages. The dashed line is the idealized relationship used for defining

the Young’s modulus and the material yield stress. The average E and o, values

from the two specimens are found to be 29,000 ksi and 75 ksi, respectively.

4.1.2 Instrumentation

The frame deflections are measured at the beam-to-column connections in
both the x and the y directions. Figure 126 shows an overall view of the deflection
measurement setup including deflection transducers called LVDTs (Linear Variable
Differential Transformers), and string and pulley. Figure 127 is the corresponding

schematic diagram. As shown in the diagram, a small hook (1) is welded to the test
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frame (2) at the joint level. A string (3) tied to the hook stretches horizontally
toward a frictionless pulley (4) mounted on an isolated and rigid support. Beyond
the pulley, the string drops vertically downward and passes through the LVDT (5).
The end of the string is lightly loaded by a dead weight (6) to eliminate any string
slack and for maintaining a small uniform tension during the experiment. Any
motion of the frame at the joint level moves the rod inside the LVDT by equal
magnitude. The LVDT’s (manufactured by Schaevits Engineering) are hollow
cylindrical inductance devices and develop linear output differential voltage between
two inductance coils for any movement of core rod along the central axis. The
devices are calibrated earlier for the gage factor and for the maximum range of the
linear output. The maximum linear range of the LVDT is +4.0 inches. Figures 128
and 129 show a photograph and a corresponding schematic diagram, respectively, of
a part of the vertical loading the apparatus. As shown in Figure 129, a load cell (7)
is mounted at the top of a jack (8). The jack is attached to the flanges of a girder
(9). The applied loads are transferred through a 0.5-inch diameter steel loading
cable (10). Above the load cell and below the girder, a channel (11) is mounted with
three rollers (12) which freely rotate inside the channel. The applied loads are
measured by a load cell (manufactured by MTS System Corporation).

The measurement of the strains in the frame members is conducted by using
a total of 68 strain gages. Four gages, with one on each face are placed at the
midspan of each column. A single strain gage is located at the bottom face of each
beam at its midspan. In addition, two strain gages are located near each of the four

column bases. The recording of the output from the LVDTs, the load cells, and the
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strain gages is carried out by an on-line computer. All of the devices except the
strain gages are connected to a multichannel strain gage conditioner and amplifier.
Figure 130 shows the data acquisition system for recording the analog output signals
which are fed into a converter called the NEFF System 470. The NEFF system is
shown as item (13) for digitizing the output. The strain gage signals are directly fed
into another converter. An IBM-PC compatible computer (14) is used for the digital
data acquisition and reduction. The test output is stored in the raw data form on the
computer hard disk and later converted and stored as text data. This is done by the

data acquisition software by playing back the raw output.

4.1.3 Roiational Stiffness Measurement Procedure

The frame is anchored to a pair of I-section foundation beams which run
along the x-axis as indicated in Figure 122. A pilot test was first conducted to
measure any possible rotations of the frame bases. The rotation about the y-axis was
found to be practically nonexistent and thus giving an infinite rotational stiffness
about that axis. However, the column bases rotated due to the flexibility of the
unstiffened upper flanges of the foundation I-section beams. Figures 131 and 132
show a typical setup for the measurement of the rotation. In Figure 132, a stiff steel
strip (15) of 8 inches length is welded to the column base plate (16). The steel strip
cantilevers horizontally outward along the y-axis. A single LVDT (17) is mounted
on an isolated external support to record the vertical movement of the end of the
steel strip. The distance between the base plate center and the LVDT is used to
calculate the base rotation. The outer fiber normal strain near the base of the
column is obtained by using a linear extrapolation of the output from two strain
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gages (19) in Figure 132. The distance between the base plate and the lower strain
gage is 1.0 in., and the other strain gage is right above the first one at a distance of
1.50 in. from the first gage. These strains are used to calculate the internal bending
moment at the column base induced by the external loading on the frame. The

bending moment versus the base rotation are plotted in Figure 133. The initial off-

set 0, is due to the fact that the result used for this plot are based on the load pair

P,, P, shown in Figure 122, after the load pair P;, P, is applied. The slope of the
line in Figure 133 provide the rotational restraint stiffness at the column base about

the x axis, and is found to be 7,023 kip-in/rad.

4.1.4 Residual Stresses

In order to predict the frame behavior theoretically, it is necessary to know
the distribution of the residual stresses in the hollow square and rectangular
members. For this purpose, the method of sectioning is used on two specimens,
namely a 2 x 3 x 0.1875 in. hollow rectangular section and a 2 x 2 x 0.1875 in. hollow
square section, with lengths of 8.175 in. and 7.986 in., respectively. The initial lengths
are precisely obtained after milling the ends to a tolerance of +0.0001 in. The
square section is divided into 16 longitudinal strips; four corner strips and twelve
strips from the four sides. The rectangular section is divided into 20 longitudinal
strips; four corner strips, six from the two short sides, and ten from the two long
sides. Figures 134 and 135 show the strip locations in the two sections. After the
strips were carefully cut, they were straightened out for the final length

measurements. All of the strips exhibited an outward bend (compression on the
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outside) before they were straightened out. The midspan flexural deflection of each
of the strips was measured and recorded. The residual stresses obtained from the
residual strains in the strips for the two sections are given in the fifth column of
Tables 28 and 29. The last column in these tables presents the average residual
stress in the strips. The average values are obtained by using the stresses in the
strips that are located at the same distance from the center of gravity of the section.
Figures 4 and S show the resulting idealized residual stress distributions for the two
sections, and are employed in the theory.

The cross-sectional residual stresses were also found for the hollow square
section using an alternate experimental approach as follows. A total of 16 strain
gages were first mounted on the outside of an 8-inch long stub column with the 2 x
2x0.1875 in. section. The strain gages were mounted at the center of each strip, and
then initialized. Next, the section was sliced parallel to the plane of the section,
resulting in a 1.5 in. long ring type short column including the 16 strain gages. The
ring was then sliced longitudinally between the gages and the final gage readings
were recorded. The strain in all of the strips was found to be compressive.
Furthermore all of the strips exhibited an outward bend (compression on the
outside). The outward bend indicated that the residual stresses also varied across the
thickness of the section walls. Knowing the average axial strain from the method of
sectioning and the strip midspan deflections, a numerical computation was performed
to find the inner and the outer fiber residual strains in the section. Figures 135 and
136 show the calculated distribution of stresses across the thickness of the wall for
each strip. The strips in the figures are numbered according to their locations as
indicated in Figures 133 and 134. The inner and outer faces of the strips are also
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identified in these figures. The dashed lines in Figure 135 represent the strain
distribution across the thickness found by using the output from the strain gages as
well as the residual axial strains reported in Table 28. As seen from Figure 136, the
two test procedures for finding average residual stresses are in good agreement. The
elements with no apparent dashed lines in Figure 135 indicate that identical results

are obtained using the two procedures.

4.1.5 Initial Crookedness

To measure the initial crookedness of the frame columns, a theodolite is
used. The initial crookedness is measured for each column in both the x and the y
directions. The initial crookedness is a measurement of the horizontal shift of the
central axis of the column from a vertical axis which passes through the center of the
base of the first story column. Readings are taken at the member ends and at three
other equidistant internai points. The interpolated crookedness values for the
columns numbered 1 through 12 in Figure 122 are tabulated in Table 30. In this
table, the crookedness of the base of the frame is shown to be zero. The measured
crookedness values are used as a part of the input to the computer program for
conducting the analysis of the three-story test frame. To adapt to the finite
difference scheme, interpolated values of the crookedness were used at the node

points.
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4.2 Frame Test
4.2.1 Loading Apparatus

The loading system designed for two equal horizontal loads (H, H) along the
x axis is shown in Figures 138 and 139. A channel (20) running horizontally is
attached to the second story level at the beam-column joints. The central point of
the channel is pulled by a looped around horizontal cable (21) of 0.25-inch diameter
which wraps around a pulley (22) mounted on an isolated support system. The cable
is further looped around a jack (23) mounted upside down on an isolated support
system as shown in Figure 138. For the load measurement, a load cell (24) is placed
behind the channel.

As shown in Figures 140 and 141, a short I-beam (25) is placed at the top of
the frame across two adjoining beams. The support points on the beams are located
close to the column center such that there is a sufficient space between the I-beam
and the column for the loading cables to be able to pass through. With reference to
Figures 140 and 141, the loading cable (10) wraps around the I-beam (25) and runs
along the full length of the 15-ft column toward the foundation. For stabilizing the
short loading I-beams, 2-inch diameter bearing balls (26) are placed in between the
I-beam and the frame beams (27). The bearing ball sits and projects above a pair
of from two square steel blocks (28) which are been separately welded to the I-beam
and the frame beams. The blocks are grooved to form a ball-and-socket joint. This
arrangement allows for the vertical loading of the beams without any twisting
moments.

For pulling the vertical load cables, the setup used at the frame bottom is
shown in Figures 128 and 129. First, a pair of long girders running along the y axis
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are placed on top of the foundation beams and bolted in place. These girders
project outside of the test frame base dimensions. Next, a pair of cross girders (9)
running parallel to the two top loading I-beams (25) are placed near the two frame
corners to be loaded. The cross girders are bolted to the foundation beams. A
loading jack (8) is mounted on the top of the cross girder (9) at a point which is right
under the center of the top loading I-beams (25). A channel (11) and a three-roller
system (12) is mounted under the girder (9) for the loading cables to pass around
and move smoothly. Two additional but similar roller systems are also mounted, one
at the top of the I-beam (25) and another at the top of the jack (8). Subsequently,
a single cable (10) of 0.50-inch diameter is run starting from the bottom of the frame
to the top, going over the top I-beam, running vertically down, going around the
bottom roller system, going toward the jack, going around the jack, going down again
and appearing on the same side of the starting point. This cable is taken through
one more similar rouie before it is tied to the starting point of the cable by "eyes and
clips". The cables are initially stretched to remove any slack. When the jack is
opened, it stretches the cables and provides a self-reacting frame compression system
with little or no load-transfer to the foundation. Figure 141 shows a photograph of
the first story with the loading jacks marked as Jack-1 for P;, Jack-2 for P,, and Jack-
H for the horizontal load.

The beam-to-column comnections at joints 30 and 32 were reinforced by
welding 2x2x0.25 in. angles. The angles were welded at four locations, namely, two
at the connections of beams 21 and 22 to column 18, and two at the connections of

beams 23 and 24 to column 20.
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4.2.2 Nonproportional Experimental Loads

With reference to Figure 122, the steps given below are followed to apply the
set of nonproportional load pairs (H, H); (P;, P;); (P,, P,), to the three-story test
frame:

1.  Apply a horizontal load pair (H, H) at joints 17 and 20 in gradual increments
until H = H,.

2. With H = H, held constant, apply a vertical load pair P;, P; on beams 21 and
22 in gradual increments until P; = (P,),.

3. Holding H and P; constant at H, and (P,),, respectively, apply another
vertical load pair (P,, P,) on beams 23 and 24 in gradual increments until P,
= Py

4. Holding H and P, constant at H, and (P,),, respectively, increase P, gradually
beyond (P,), to a new value (P,);.

5. Holding H and P, constant at H, and (P,)y, respectively, increase P, gradually
beyond (P,), until the frame load-carrying capacity is reached at P = (P,),.

For the frame tested, H, = 1.0 kip; (P;), = 16.50 kips; (P;), = 21.50 kips; (P,), =

18.50 kips; (P,), = 24.50 kips.

4.2.3 Test Procedure

A number of elastic pilot tests were conducted on the test frame to ensure
that all of the instruments were functioning properly before loading into the inelastic
range. As shown in Figure 122, the horizontal load pair (H, H) was applied to the
frame through the beam-to-column connections at joints 17 and 20, in the positive
x direction. The vertical load pairs (P,, P,) and (P,, P,) were applied by means of
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the loading beams described previously. At every load increment, the jacks were

locked completely and left for approximately two to three minutes to allow the

hydraulic system to stabilize before the test output was recorded. The output consists

of readings from 66 strain gages, 16 deflection transducers (LVDTs), and three load

cells. One day before the test, the frame was lightly coated by a water-proof cement

paint to observe the initiation of yielding exhibited by the flaking of the paint

induced by the cracking of the mill-scale. This provided a visual check on the

condition of the members. The test procedure is summarized as follows:

1.

2.

The strain gages, the LVDTs, and the load cells are initialized.

The horizontal load pair (H, H) is first applied incrementally until H = H,.
With H held constant at H,, the vertical load pair (P;, P;) is incremented
gradually until P; = (P;),.

With the P, held constant at (P;), , the vertical load pair (P,, P,) is
incremented gradually until P, = (P,),.

With H = H, and P, = (P,), held constant, the vertical load pair (P;, P,) is
incremented again until P; reaches a new higher load level (Py)y,.

With H = H, and P, = (P,), held constant, the vertical load pair (P,, P,) is
incremented again until P, reaches the peak load (P,),,.

Lastly, the frame is gradually unloaded by removing the load pairs one by one
in a sequence opposite to that used for the loading process. Thus the loads
are removed in the following manner: Reduce (P,),, to (P,),; (P1), to (P1),
(Pp), to zero; (Py), to zero, and finally H, to zero.

The loads and deformations are recorded at each load increment described

in Steps 2 through 8. The test results are stored in a hard disk of an IBM-PC.
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4,3 Theory versus Experiment

A twisting of the frame was observed during the test. This twisting affected
all of the joint deflections. Tables 31 presents the frame deflections at joints 29 and
32 in the x direction. Since the frame developed twisting, the average of the joints
29 and 32 displacements is calculated and entered in the table for a comparison to
the theoretical predictions. The angle of twist at the frame top is measured by using
the deflections of the two top frame joints and is entered in the last column of the
table. Table 32 summarizes the displacements at joints 31 and 32 and their average.
Figures 148 and 149 present, respectively, the vertical loads P; and P, versus the

frame angle of twist. The maximum angle of twist which the frame experienced

during the test is «; = 0.0183 rad. In addition to the frame twisting, the mid-height

twisting of column 20 was also measured by means of two dial gages mounted at 5
in. and 9 in., respectively. Table 33 presents the experimental deflections and the
calculated angle of twist of column 20. Figures 150 and 151 show the vertical load
P, versus the angle of twist and the midspan deflection, respectively.

Figures 152 through 154 show a comparison of the theory and the experiment
in the form of curves relating the applied loads to the frame horizontal deflection
along the x axis. Figure 152 shows the lateral load, H, versus the frame top
deflection in the x direction. The experimental deflection is in good agreement with
the theory. At H = 1.0 kip, the "humps" in the experimental curve are in part due

to the fluctuations in the NEFF system. The other source of the fluctuation is the
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variation in H due to the application of P; and P,. During the test, H was adjusted
periodically to maintain the 1.0 kip value. Figure 153 shows the vertical load P,
versus the lateral deflection at the frame top. The figure shows the start of the
vertical load P, at a horizontal deflection (point A) of about 1.7 in. Next, the load

P, is held constant at 16.5 kips (Point B) while the load P, is incremented. During

the application of P,, the P;- A, relationship in Figure 153 goes from point B to point

C. The horizontal displacement from the Point B to the point C is not clear in the
experimental curve due to the average of the displacements considered. The load
P, is incremented again starting at the Point C until the point D is reached at about
20.5 kips. Holding P; constant at its new value, P, is incremented to collapse.
During this phase of loading, the curves in Figure 153 move from D to E. Figure
154 shows the vertical load P, versus the frame top deflection in the x direction. The

load P, starts near point B with a prior deflection due to the vertical load P,. Next,
P, is increased gradually to 19.5 kips (point C). The P,- A relationship moves from
the point C to the point D while P, is incremented from 16.5 kips to 20.5 kips.
Next, P, is incremented to 24.5 kips which corresponds to the frame collapse. The
results in Figures 153 and 154 show that the peak loads and the deflections from the

theory and the experiment are in good agreement.

Figures 155 through 157 show the lateral load H, the vertical load P,, and the

vertical load P, versus the frame top deflection A, respectively. Figures 158 and

159 show the relationships between the lateral load H and the normal strains at
locations S1 and S2 for column 18. Figure 160 shows the relationships between the

applied load P; and the normal strain at location S1. Figure 161 shows the
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relationships between P, and the normal strain at S1. Figures 162 to 165 are similar
curves for column 20. The locations for the normal strain measurement gages for
these columns are identified in Figure 166. The experimental curves are seen to be
in good agreement with the theory. The maximum strength P, obtained by the
theory is 25.44 kip, that is, 3.8% higher than that reached by the experiment.

Figures 167 through 169 show the total stiffness degradation curves for the
three-story test frame. In Figure 167, D is constant during the application of the

lateral load H, that is, from point A to point B. The sudden drop in the curve from

B to C is due to the application of the vertical load pairs (P;, P;) and (P,, P,).

Figure 168 shows the decrease in D as (P4, Py) increases from (0,0) at D to [(P,),,

(P,).] at E. A sudden drop in D from E to F is due to the first application of (P,
1/a PP 2

P,) as it increases from (0,0) at E to [(P,),, (P,),] at F. The vertical load pair (P,

P,) is increased again from [(P,),, (P),] at F to [(P;),, (P),] at G. Figure 169

shows the decrease in D as (Py, P,) increases from (0, 0) at Q to [(P,),, (P,),] at L

A sudden drop in D from I to J is due to the second application of (P;, P,) as it

increases from [(P;),, (Py),] at I to [(P;),, (P)p] at J. Finally, (P,, P,) is increased
from [(P,),, (P,),] at J to [(P,)y, (Py)] at K. The effect of the vertical load pairs on

the frame stiffness degradation is seen clearly from these figures.
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5.1

5. CONCLUSIONS AND FUTURE RESEARCH

Conclusions

Within the range of the parameters considered, the following conclusions are

drawn from this research:

1.

The load-deformation behavior of the space frame tested is in good
agreement with the theory.

The inelastic slope-deflection procedure for plane and space sway frames
presented herein is computationally stable and converges rapidly.

The strength of the beam-columns, and plane and space frames with flexible
connections is load path dependent.

An increase in the lateral restraint stiffness results in an increase in the
member strength. However, there exists a threshold restraint stiffness beyond
which no further increase in the member strength is achieved.

When only one joint of a portal frame is subjected to a concentrated vertical
load, the frame can carry more load than the squash load of the column.
When only two joints of a single-story single-bay space frame are subjected to
concentrated vertical loads, each load at collapse may be larger than the

column squash load.
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7.  Unbraced frames subjected to vertical loads exhibit very small lateral
deflections.

8.  Residual stresses show a significantly larger effect on the member stiffness
than the initial crookedness.

9. The torsional deformations do not have a noticeable effect on the load-

carrying capacity of a space frame.

5.2 Future Research

The next significant step in research in this field is the inclusion of torsional
effects for thin-walled sections. The analysis procedure should also be modified to
account for axial member shortening. Parallel and supercomputing procedures
should be developed for very rapid practical solutions to load path dependent

inelastic frame analysis and design problems.
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Table 1. Comparison of dimensionless maximum axial loads for columns
crooked uniaxially or biaxially (7x7x0.375 in. cross section)

dicted | Referen Predicted | Reference 26
K, | 1 | 086 0.86 5 | o8 081
K, [ 2 | o080 0.89 6 | 086 0.36
K, | 3 | 09 0.93 7 | oot 0.91
Ky | 4 | 09 096 8 | 09 0.95

Table 2. Comparison of dimensionless maximum axial loads for colum:s
crooked uniaxially or biaxially (6x8x0.375 in. cross section)

K, 9 0.85 0.87 13 0.80 0.80

Ky 10 0.92 0.91 14 0.84 0.84

K. 11 0.94 0.94 15 0.89 0.89

K4 12 0.97 0.97 16 0.94 0.94
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Table 3. Comparison of dimensionless maximum axial loads p, for nonsway
pinned-end members with lateral load W (W8x31 cross section)

{ 5] Reférence 14

0.92
18 20.0 10.0 0.85 0.85
19 20.0 15.0 0.77 0.77
20 40.0 5.0 0.82 0.79
21 40.0 10.0 0.65 0.67
22 40.0 15.0 0.50 0.52
23 60.0 5.0 0.66 0.67
24 60.0 10.0 0.44 0.45
25 60.0 15.0 0.25 0.26
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Table 4. Comparison of dimensionless maximum loads for biaxially loaded
nonsway beam-columns, with equal biaxial rotational springs of
stiffness K (6x8x0.375 in. cross section)

D 025 0.25
26 LP1 m, 1.43 143
m, 1.52 152
m, 143 143
27 LP2 m, 152 152
p 0.35 0.34
p 0.25 0.25
28 LP3 m, 143 143
m, 1.84 1.84
p 0.75 0.75
29 LP1 m, 0.33 0.35
m, 0.35 0.37
m, 0.35 0.35
30 LP2 m, 0.37 0.37
p 0.74 0.75
p 0.75 0.75
31 LP3 m, 0.35 0.35
m, 0.47 0.47
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Table 5. Comparison of dimensionless maximum loads-for biaxially loaded
nonsway beam-columns, with equal biaxial end rotational restraints of
stiffness K,; (W8x31 cross section)

p X
32 | Lp3 m, 0.86 0.86
m, 0.51 0.51
p 0.25 0.25
33 | Lp4 m, 0.86 0.86
m, 0.51 0.51
p 0.53 0.53
34 | LP3 m, 0.41 0.41
m, 0.24 0.24
D 0.50 0.50
35 | Lp4 m, 0.41 0.41
m, 0.24 0.24
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Table 6. Maximum dimensionless external loads for uniaxially loaded sway
beam-columns, with equal end rotational restraints of stiffness K,

NPL | p 000 020 028 035 -
m, 170 169 134 000 -
BCL [ 10E9 [y [ 000 021 029 035 -
m, 170 169 134 000 -
NPL | 000 022 031 043 -
m, 170 168 140 000 -
BC2 11025 | ;o | 000 021 030 043 -
m, 170 168 140 000 -
NPL | p 000 024 049 051 -
m, 170 162 070 000 -
BE 1 0 1 xe2 | » 000 023 049 051 -
m, 170 162 069 000 -
NPL | p 0.00 024 035 046 0.66
m, 170 165 125 091 0.00
BCH 1 10 N2 | 000 022 035 046 0.66
m, 170 165 125 091 0.00
NPL | p 000 022 047 057 0.74
m, 170 168 088 0.63 0.00
B .
S B I ae]| p 000 021 039 045 0.74
m, 170 168 088 0.63 0.00
NPL | p 000 020 043 0.63 0.90
m, 170 166 100 051 0.00
BC6 |20 1\ | 5 000 022 043 0.63 0.90
m, 170 166 100 051 0.00
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Table 7. Maximum dimensionless external loads for uniaxially loaded sway
beam-columns, with equal end rotational restraints of stiffness K,

NP3 | 000 027 036 0.48 0.57

m 301 251 2.04 161 0.00

BCT | 1LOE9 [ \py | 0.00 027 036 048 0.57
m 301 240 183 119 0.00

NP3 | p 000 026 031 049 0.72

m 337 2.63 224 151 0.00

BC | 05 e [ 000 026 031 0.49 0.72
m 337 2.07 2.02 149 0.00

NP3 | p 0.00 022 035 048 0.82

m 337 2.83 230 158 0.00

BCO L0 nps | p 0.00 020 035 0.48 0.83
m 337 274 2.02 144 0.19

NP3 | p 0.00 024 030 0.46 0.90

m 437 321 241 158 0.00

BCIO | 15 1 nps | o 0.00 024 030 0.46 0.90
m 437 228 195 163 0.09

NP3 | p 0.00 024 028 043 0.94

m 547 301 250 1.69 0.00

BCIL 120 1 s | 0.00 024 028 043 0.94
m 547 226 2.05 1.62 0.00
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Table 8.  Effect of imperfection on the strength of sway beam-columns loaded
uniaxially, with lateral spring stiffness K, = 0.0 and with equal end
rotational restraints of stiffness K,

NP3 P 0.30

m,, 113

m, 1.14

NP3 p 0.30

m, 1.13

BC13 | L/100,000 0.0 NP4 p 0.30
m, 1.14

NP3 p 0.30

m, 1.13

m, 1.18

NP3 P 0.30

m, 1.13

BC15{ L/1000 0.0 NP4 | p 0.30
m, 1.13
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Table 9. Effect of imperfection on the strength of sway beam-columns loaded
uniaxially, with lateral spring stiffness K = 0.10 kip/in. and equal end
rotational restraints of stiffness K,

NP3 p 0.32

m, 1.13

BC16 | L/100,000 -0.2 NP4 | p 0.32
m, 113

NP3 | p 0.33

m, 1.13

BC17 | L/100,000 0.0 NP4 p 0.33
m, 1.13

NP3 p 0.32

m, 1.13

BC18 | L/1000 02 Taes | p 0.32
m, 119

NP3 P 0.34

m, 1.13

BC19 | 1L/1000 0.0 NP4 | p 0.34
m, 0.97
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Table 10. Effect of imperfection on the strength of sway beam-columns loaded
uniaxially, with lateral spring stiffness K, =20 kip/in. and equal end
rotational restraints of stiffness K,

NP3 p 0.39

m, 1.13

BC20 | 1/100000 | 02 [To 0.39
m, 1.13

NP3 p 0.39

m, 1.13

BC21 | L/100,000 0.0 NP4 | p 0.39
m, 1.13

NP3 P 0.38

m, 1.13

BC22 | L/1000 -0.2 NP4 | p 0.38
m, 1.06

NP3 ) 0.38

m, 1.13

BC23 |  L/1000 00 I'xea | p 0.38
m, 1.13
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Table 11.  Effect of imperfection on the strength of sway beam-columns loaded
uniaxially, with lateral spring stiffness Ky = 1.,0E+ 15 kip/in. and equal
end rotational restraints of stiffness K,

NP3 | p 0.39

m, 1.13

BC24 | 1/100,000 -0.2 NP4 | p 039
m, 1.13

NP3 | p 0.39

m, 1.13

BC25 | L/100,000 0.0 NP4 | p 039
m, 113

NP3 | p 0.38

m, 1.13

BC26 L/1000 -0.2 NP4 | p 038
m, 1.06

NP3 | p 0.38

m, 1.13

BC27 L/1000 0.0 NP4 | p 038
m, 1.13
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Table 12. Maximum dimensionless external loads for uniaxially loaded sway
beam-columns, with bilinear lateral restraints and equal end rotational

restraints

NP3 [ p | 000 | 000 | 0.00 | 000 | 034 | 034

m | 179 | 121 | 093 | 032 | 012 | 000

BC28 1000 I'xps | p | 000 | 000 | 0.00 | 000 | 034 | 034
m, | 179 | 121 | 093 | 032 | 024 | 024

NP3 | p | 000 | 003 | 003 | 003 | 037 | 037

m | 179 | 121 | 093 | 032 | 012 | 0.0

BC2 1030 ) xpa | p | 000 | 003 | 003 | 003 | 037 | 037
m | 179 | 187 | 187 | 187 | 024 | 024

NP3 | p | 000 | 023 | 033 | 063 | 077 | 089

m | 179 | 121 | 093 | 032 | 012 | 000

BC30 1200 [ xpa | p | 000 | 023 [ 033 | 063 | 077 | 089
m | 179 | 121 | 093 | 037 | 012 | 002

NP3 | p | 000 | 023 | 033 | 066 | 081 | 090

m | 179 | 121 | 093 | 032 | 0.12 | 000

BGOL | e [Nps | p [ 000 | 024 | 033 | 066 | 081 | 090
me | 179 | 207 | 093 | 032 | 012 | 002
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Table 13. Maximum dimensionless external loads for biaxially loaded sway beam-
columns, with equal end rotational restraints of stiffness K

000 020 050 053 -
282 190 053 000 -
3.09 206 056 0.00 -

LP1

BC32 LE-9 0.00 029 050 053 -

282 190 053 0.00 -
309 206 056 0.00 -

0.00 024 050 0.69 -
293 177 097 0.00 -
317 192 106 0.00 -

0.00 029 050 0.9 -
293 177 097 0.00 -
3.17 192 106 0.00 -

0.00 022 049 0.75 0.79
293 189 099 0.27 0.00
317 200 105 0.29 0.00

0.00 029 050 075 0.79
293 189 099 0.27 0.00
317 200 105 0.29 0.00

000 027 056 075 091
293 162 076 033 0.00
342 177 083 0.36 0.00

0.00 033 056 0.75 091
293 162 076 033 0.00
342 177 083 036 0.00

0.00 027 056 0.75 091
293 162 076 033 0.00
342 177 083 036 0.00

0.00 033 056 0.75 091
293 162 076 033 0.00
342 177 083 036 0.00

LP2

LP1

BC33 0.5
LP2

LP1

BC34 1.0
LP2

BC3S 15

BC36 2.0
LpP2

A pFo |BRo (BPRo |FBo (BB~ FRo |BRo [BBo [BR- BB
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Table 14. Maximum dimensionless external loads for biaxially loaded imperfect
sway beam-columns with unequal partial end rotational restrains with
stiffnesses K5 and K, values at bottom and top, respectively

LPS

BC37 0.0
LP6

LPS

BC38 0.5
LP6

LPS

BC39 1.0
LP6

LPS

BC40 135
LP6

LP5

BC41 2.0
LP6

Hpo o BB BB [0BR [BRo |9FB |BR~ [oBB (BB [°RB
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Table 15. Maximum dimensionless external loads for biaxially loaded sway beam-
columns with equal partial end rotational restraints of stiffness K,
value and with lateral restraints of various stiffnesses

p 000 020 033 034

LP1 m, 210 143 064 0.00
m, 1.66 112 051 000

P 012 025 033 034

LP2 m, 210 143 064  0.00
m, 166 112 052  0.00

BC42 0.0 P 000 020 033 034
LP3 m, 210 143 064  0.00
m, 310 111 052 0.0

P 010 013 033 034

LP4 m, 210 143 064  0.00
m, 1.66 112 051 0.0

P 000 021 038 049

LP1 m, 278 138 090  0.00
m, 220 108 070 0.0

p 000 026 039 049

LP2 m 278 138 090  0.00
m, 274 108 079 0.0

BC43 0.5 P 000 021 038 049
LP3 m, 278 138 090 0.0
m, 283 112 074 000

P 000 029 033 049

LP4 m, 278 138 090 0.0
m, 220 108 070 0.0
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Table 16. Maximum dimensionless external axial loads, with load path LP3, for
biaxially loaded imperfect sway beam-columns with equal partial end
rotational restraints and with lateral restraints of various stiffnesses; M,

= M, = 05My
0.0 033 0.53 0.86
02 0.39 0.55 0.87
0.4 0.44 0.65 0.88
0.6 0.49 0.71 0.90
0.8 0.54 0.75 0.91
10 055 0.79 0.92
12 055 0.82 0.93
14 0.53 0.86 0.94
16 0.53 0.87 0.94
18 0.53 0.87 0.94
2.0 053 0.87 0.94
22 0.53 0.87 0.94
24 053 0.87 0.94
2.6 053 0.87 0.94
2.8 053 0.87 0.94
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Table 17. Maximum dimensionless external axial loads for sway beam-columns
with biaxial imperfections, with equal partial end rotational restraints
and with lateral restraints of various stiffnesses

0.0 0.34 0.53 0.86
0.2 0.40 0.59 0.87
04 0.46 0.65 0.88
0.6 0.52 0.72 0.90
0.8 0.59 0.77 0.91
1.0 0.65 0.80 0.95
1.2 0.72 0.82 0.95
14 0.77 0.85 0.95
1.6 0.81 0.88 0.95
1.8 0.85 0.91 0.95
2.0 0.89 0.91 0.95
2.2 0.89 0.91 0.95
24 0.89 0.91 0.95
2.6 0.89 0.91 0.95
2.8 0.89 0.91 0.95
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Table 18. Effect of crookedness and residual stresses on the peak loads of
biaxially loaded sway beam-columns with end rotational restraints

p 0.50 0.50

BC44 L/1000 -0.2 m, 0.45 0.44
m, 0.51 0.52

p 0.50 0.50

BC45 L/1000 0.0 m, 0.45 0.44
m, 0.51 0.53

P 0.51 0.51

BC46 | L/100,000 -0.2 m, 0.45 0.44
m, 0.51 0.52

p 0.51 0.51

BC47 | L/100,000 0.0 m, 0.45 0.44
| my 0.51 0.53
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Table 19. Comparison of externally applied dimensionless maximum loads to
published results for imperfect nonsway portal frame

FL1 P 0.67 0.67 0.75 0.75 0.75 0.75
m, | 067 | 0.67 0.24 0.25 0.25 0.25
FRI FL2 p 0.72 0.72 0.76 0.76 0. 0.
m, | 072 0.72 0.25 0.26 0.26 0.26
FL1 P 0.64 0.64 0.71 0.71 0.71 0.71
m, | 0.64 0.64 0.20 0.21 0.21 0.21
FR2 FL2 P 0.71 0.71 0.80 0.82 0.84 0.84
m, | 0.71 0.71 0.29 0.32 0.32 0.32
FL1 p 0.67 0.67 0.75 0.75 0.75 0.75
m, | 0.67 0.67 0.25 0.25 0.21 0.21
FR3 F1L2 p 0.72 0.72 0.76 0.76 0.76 0.76
m, | 0.72 0.72 0.25 0.26 0.26 0.26
FL1 p 0.64 0.64 0.71 0.71 0.71 0.71
m, | 0.64 0.64 0.20 0.21 0.21 0.21
FR4
FL2 p 0.72 0.72 0.82 0.82 0.83 0.84
m, | 0.72 0.72 0.31 0.32 0.32 0.32
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Table 20. Maximum dimensionless external loads for sway portal frames with
rigid beam-to-column connections, and with partial rotational restraints

at the bases of stiffness K,
FL3 | p 0.71 071 0.71
m, 071 0.10 0.10
PF1  FR1 gy [ ) 0.68 071 0.71
m, 068 0.10 0.10
FL3 | p 0.71 0.67 0.70
m, 071 0.08 0.08
PR2 | FRZ Fes | ) 0.68 071 0.71
m, 0.68 0.10 0.10
FL3 | p 0.65 071 0.71
m 065 0.10 0.10
PES | FRS es | 068 0.73 0.70
m, 068 011 0.11
FL3 | p 067 0.70 0.70
m, 067 0.10 0.10
PR TFRS Tea | 0.68 0.70 0.70
m, 068 0.10 0.10
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Table 21. Maximum dimensionless external loads for imperfect sway portal frame

FRS

p 1.40 1.38 1.44
PF9 | FL1

m, 0.67 0.42 042

p 1.44 1.45 1.45
PF10 | FL2

m, 0.69 0.45 0.45

p 0.58 0.60 0.60
PF11 | FL3

m, 028 0.05 0.05

p 0.58 0.68 0.70
PF12 | FL4

m, 028 0.08 0.08
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Table 22.  Effect of crookedness and residual stresses on the strength of sway
portal frames with rigid beam-to-column connections, and with partial
rotational restraints at bases of stiffness K,

p | 067 | 072 | 068
PF13 L/1000 -0.2

m | 048 | 010 | 010

p | 067 | 073 | 0713
PF14 L/1000 0.0

m | 048 | 011 | o011

p | 067 | 076 | 068
PF15 | 1/100,000 -0.2

m | 048 | 012 | 012

p | 068 | 078 | 077
PF16 | 1/100,000 0.0

m | 049 | 013 | 013
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Table 23. Comparison of dimensionless maximum loads for sway portal frames
with different residual stress distributions

| ¥ Dimensionless External Load with .

2
PF17 | LPF1

m, 2.15 2.20

p 0.77 0.78
PFI8 | LPF2

m, 0.46 0.47

LPF3 | p 0.81 0.72

PF19

m, 0.46 0.47
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Table 24. Maximum dimensionless applied loads for single-story single-bay sway
space frames with rigid joints

SF1 SL1 P 0.70
m 1.23
SF2 SL2 P 1.24
m 1.23
SFR1 SF3 SL3 P 0.79
m 0.04
SF4 SL4 P 0.78
m 1.61
SFP1 SLS P 3.76
m 0.00
SFS SL1 P 0.70
m 1.20
SF6 SI.2 P 1.11
m 1.20
SFR2 SF7 SL3 p 0.79
m 0.04
SF8 SL4 P 1.25
m 1.79
SFP2 SLS P 3.76
m 0.00
SF9 SL1 P 0.70
m 1.12
SF10 S12 p 0.75
SER3 m 1.12
SF11 S13 P 0.79
m 0.04
SF12 SL4 p 0.81
m 1.50
SFP3 SLS p 3.76
m 0.00
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Table 25. Maximum dimensionless applied loads for single-story single-bay sway
space frames with flexible joints

SF13 SL1 P 0.79

m 0.21

SF14 SL2 P 0.30

m 0.21

SFR1 SF15 SL3 P 0.83
m 0.02

SF16 SL4 P 0.32

m 0.36

SF17 SL1 P 0.79

m 021

SF18 SL2 P 0.30

m 0.21

SFR2 SF19 SL3 P 0.83
m 0.02

SF20 SL4 p 032

m 0.36

SF21 SL1 p 0.79

m 0.04

SF22 SL2 p 0.35

SFR3 m 0.04
SF23 SL3 p 0.83

m 0.02

SF24 SL4 ) 0.34

m 0.21

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 26. Effect of crookedness and residual stresses on dimensioniess maximum
loads of single-story single-bay sway space frames with flexible joints

SF25 1./1000 -0.2 p 0.40

m 0.65

SF26 1./1000 0.0 p 0.40

m 0.67

SL1 | sF27 | L/100,000 -0.2 p 0.40
m 0.66

SF28 | 1,/100,000 0.0 p 0.40

m 0.70

SF29 L/1000 -0.2 P 0.36

m 0.65

SF30 L/1000 0.0 p 0.47

m 0.67

SL2 | sF31 | 1/100,000 -0.2 P 0.40
m 0.66

SF32 | 1,/100,000 0.0 p 0.39

m 0.70

SF33 L/1000 -0.2 p 0.31

m 0.04

SF34 L/1000 0.0 p 0.50

m 0.05

SL3 | sF35 | 1L,/100,000 -0.2 p 0.50
m 0.05

SF36 | 1,100,000 0.0 p 0.50

m 0.05

SF37 L/1000 -0.2 p 038

m 0.83

SF38 1./1000 0.0 p 0.37

m 0.84

SL4 | sF39 | 1/100,000 0.2 P 0.38
m 0.84

SF40 | 1./100,000 0.0 p 0.37

m 0.97
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Table 27. Comparison of dimensionless maximum loads for sway single-story
single-bay space frames with different residual stress distributions

P 0.56
SF41 SL1

m 1.78 1.73

p 0.49 0.52
SF42 SL2

m 1.78 1.73

p 0.64 0.64
SF43 SL3

m 0.15 0.15

P 0.45 0.48
SF44 SLA

m 2.59 2.60
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Table 28. Experimental method of sectioning results for residual stress
determination for 2x3x0.1875 in. section, with an initial length of 8.187

in.
: (in: 0% ess (ksi).
1 8.179 +0.004 -489.30 -13.30
2 8.177 +0.002 -244.65 -7.10 -3.33
3 8.174 -0.001 +122.32 +3.55 +4.44
4 8.172 -0.003 +366.97 +10.64 +8.87
5 8.174 -0.001 +122.32 +3.55 +4.44
6 8.176 +0.001 -122.32 -3.55 -5.33
7 8.179 +0.004 -489.30 -14.19 -13.30
8 8.176 +0.001 -122.32 -3.55 -1.78
9 8.173 -0.002 +244.65 +7.10 +7.10
10 8.174 -0.001 +122.32 +3.55 -1.78
11 8.178 +0.003 -366.97 -10.64 -13.30
12 8.176 +0.001 -122.32 -3.55 -5.33
13 8.173 -0.002 +244.32 +7.10 +4.44
14 8.173 -0.002 +244.65 +7.10 +8.87
15 8.174 -0.001 --122.32 +3.55 +4.44
16 8.178 +0.002 -244.65 -71.10 -5.33
17 8.179 +0.004 -489.30 -4.19 -13.30
18 8.176 +0.001 -122.32 -3.55 -1.78
19 8.173 -0.002 +244.65 +7.10 +7:10
20 8.175 +0.000 0.00 0.00 -1.78
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Table 29. Experimental method of sectioning results for residual stress
determination for 2x2x0.1875 in. section, with an initial length of 7.986

in.
1 7.989 +0.003 -357.66 -10.89 -12.71
2 7.984 -0.002 +250.44 +7.26 +4.10
3 7.982 -0.004 +500.88 +14.52 +15.67
4 7.985 -0.001 +125.22 +3.63 +4.10
5 7.989 +0.003 -375.66 -10.89 -12.71
6 7.986 0.000 0.00 0.00 +4.10
7 7.981 -0.005 +625.10 +18.13 +15.67
8 7.985 -0.001 +125.22 +3.63 +4.10
9 7.990 +0.004 -500.88 -14.52 -12.71
10 7.985 -0.001 +125.22 +3.63 +4.10
11 7.982 -0.004 +500.88 +14.52 +15.67
12 7.985 -0.001 +125.22 +3.63 +4.10
13 7.990 +0.004 -500.88 -14.52 -12.71
14 7.985 -0.001 +125.22 +3.63 +4.10
15 7.982 -0.004 +500.88 +14.52 +15.67
16 7.984 _-0.002 +250.44 +7.26 +4.10
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Table 30. Initial crookedness in test frame columns measured before test at five
equidistant points along each column with base of frame as reference

point
X 0.000 -0.132 } -0.328 | -0.589 | -0.785
1 0.000 -0.101 | -0.189 | -0.311 | -0471
0.000 -0.203 -0.347 | -0.534 | -0.732
? y 0.000 -0.023 -0.032 | -0.097 | -0.172
X 0.000 -0.037 | -0.140 | -0.259 | -0.386
3 0.000 -0.035 | -0.008 | -0.043 | -0.121
X 0.000 -0.161 -0.314 | -0440 | -0.553
4 y 0.000 0.053 0.104 0.155 0.208
X -0.785 -0.984 | -1.164 | -1.326 | -1.455
? y -0.471 -0.521 -0.572 | -0.571 | -0.595
X -0.732 | -0.993 -1.176 | -1.377 | -1.514
10 y -0.172 | -0.256 | -0.316 | -0.381 | -0.450
X -0.386 | -0.500 | -0.647 | -0.903 | -1.055
H y -0.121 -0.121 -0.228 | -0.289 | -0.393
X -0.553 -0.682 | -0822 | -1.066 | -1.296
12 y -0.208 | -0.354 | -0407 | -0465 | -0.535
X -1.455 -1.579 -1.812 | -1961 | -2.184
17 y -0.595 -0.632 | -0.720 | -0.768 | -0.836
X -1.514 | -1.610 | -1.704 | -1.798 | -1.830
18 y -0450 | -0.534 | -0.594 | -0.659 | -0.728
X -1.055 -1.216 | -1.382 | -1.522 | -1.637
19 y -0.393 -0.393 -0.500 | -0.562 | -0.665
X -1.296 | -1.418 -1.624 | -1.839 | -2.069
20 y -0.535 | -0.681 | -0.734 | -0.792 | -0.862
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Table 31. Test frame deflections at joints 29 and 32 in x direction

0 0 0 0 0 0 0
0.226 0 0 0.347 0.347 0.347 0
0.446 0 0 0.704 0.704 0.704 0
0.999 0 0 1.757 1.963 1.725 -0.0011
0.991 | .205 0 1.759 1.689 1.724 -0.001
1.006 | 5.011 0 1.712 1.685 1.698 -.0004
1.025 | 9.951 0 1.659 1.666 1.663 .00012
1.047 | 15.963 0 1.585 1.630 1.607 .00076
1.050 | 16.813 0 1.580 1.629 1.604 .00082
1.047 | 16.726 | 0.293 1.571 1.631 1.601 .001
1.002 | 16.626 | 7.189 1.498 1.634 1.566 .0023
0.961 | 16.460 | 16.979 1.395 1.808 1.601 .0069
0.921 | 16.514 | 19.473 1.335 1.843 1.589 .0085

991 | 16.755 | 19.519 1.365 1.925 1.645 .0093
0.986 | 17.844 | 19.503 1.313 1.901 1.607 .0098
0.985 | 18.735 | 19.257 1.255 1.881 1.568 0.0104

998 | 20.674 | 19.411 1.148 1.870 1.509 0.012
0.977 | 20.658 | 20.350 1.127 1.870 1.498 0.0124
1.044 | 20,210 | 22551 1.295 2233 1.764 0.0156
1.044 | 20.749 | 23414 1278 | 2245 1.761 0.0161
1.025 | 20.641 | 24.137 1.281 2.308 1.794 0.0171
1.018 | 20.637 | 24.352 1.283 2.328 1.805 0.0174
1.010 | 20.633 | 24.768 1.282 2.377 1.830 0.0183
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Table 32. Test frame deflections at joints 29 and 32 in y direction

0 0 0 0 0 0
0.226 0 0 0.0045 -0.0094 -0.0025
0.446 0 0 0.0076 -0.0287 -0.0106
0.999 0 0 -0.0045 -0.097 -0.0508
0.991 | .205 0 -0.0047 -0.0962 -0.0505
1.006 | 5.011 0 0.003 -0.1164 -0.0567
1.025 | 9.951 0 0.0003 -0.1495 -0.0746
1.047 | 15.963 0 -0.0206 -0.1992 -0.1099
1.050 | 16.813 0 -0.0206 -0.2027 -0.1117
1.047 | 16.726 | 0.293 -0.0197 -0.2037 -0.1117
1.002 | 16.626 | 7.1389 -0.0527 -0.3001 -0.1764
0.961 | 16.460 | 16.979 -0.0763 -0.3604 -0.2184
0.921 { 16.514 | 19.473 -0.0774 -0.3354 -0.2064

991 | 16.755 | 19.519 -0.1347 -0.4125 -0.2736
0.986 | 17.844 | 19.503 -0.1735 -0.4388 -0.3062
0.985 | 18.735 | 19.257 -0.2040 -0.4537 -0.3289

998 | 20.674 | 19.411 -0.2634 -0.4555 -0.3595
0.977 | 20.658 | 20.350 -0.2707 -0.4557 -0.3632
1.044 | 20.210 | 22.551 -0.2666 -0.3413 -0.3040
1.044 | 20.749 | 23.414 -0.2518 -0.3102 -0.2810
1.025 | 20.641 | 24.137 -0.2287 -0.2158 -0.2223
1.018 | 20.637 | 24.352 -0.2278 -0.1926 -0.2102
1.010 | 20.633 | 24.768 -0.2214 -0.1377 -0.1796
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Table 33. Experimental deflection and angle of twist of Column 20

0; (in:

0.00000

-0.00650 0.0005
-0.01662 0.0011
0.00125 0.0013
0.00725 0.0013
0.01400 0.0010
0.02425 0.0013
0.03675 0.0008
0.05175 0.0008
0.11950 0.0005
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Figure 1. D.isc‘retized hollow rectangular section subjected to axial load and
biaxial bending moments
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Figure 2.  Stress-strain relationship with elastic unloading
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Figure 3.  Cross section and residual stress distribution (Ref. 21)
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Figure 4.  Square section (B = D) with idealized residual stress distribution
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Figure 5.  Rectangular section with idealized residual stress distribution
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Figure 6.  Imperfect sway beam-column with biaxial restraints
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Figure 7. Moment-rotation relationship
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Figure 8.  Loading paths for nonproportional loading
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Figure 9. Axial load versus top deflection of elastically loaded sway beam-
column of Ref. 9
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Figure 10. Laterally loaded pinned column
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Figure 11. Residual stress strain pattern for an I-section
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Figure 12. Dimensionless axial load versus top deflection of imperfect column
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Figure 13. Dimensionless axial load versus top deflection of imperfect column
with Kgy = K, and Ky = Ky
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Figure 14. D.imensionless axial load versus top deflection of imperfect column
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Figure 15. Stiffness degradation curves for uniaxially loaded sway beam-columns
BC1, BC3, BC4, BCS, and BC6, with X, = Ky, = K,
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Figure 16. Stiffness degradation curves for uniaxially loaded sway beam-columns
BC7, BC8, and BC10, with Kg, = Ky, = K3
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Figure 17. Stiffness degradation curves ( D-p) for uniaxially loaded sway beam-
column BCS, for load paths NP1 and NP2, with Kg, = K1y = K,
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Figure 18. Stiffness degradation curves ( ﬁ—nk) for uniaxially loaded sway beam-
column BCS, for load paths NP1 and NP2, with Kg, = Kp, = K,
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Figure 19. Imteraction curve for uniaxially loaded sway beam-column BC10 for
load paths NP3 and NP4, with Kp, = Ky, = K3
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Figure 20. Stiffness degradation curves (D-p) for uniaxially loaded sway beam-
columns BC12, BC13, BC14, and BC15
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Figure 21. Stiffness degradation curves (l-)—mx) for uniaxially loaded sway beam-
columns BC12, BC13, BC14, and BC15
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Figure 22. Stiffness degradation curve (D -p) for uniaxially loaded sway beam-
column BC30, with bilinear rotational restraints and load path NP3
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Figure 23.  Stiffness degradation curve (D - m, ) for uniaxially loaded sway beam-
column BC30, with bilinear rotational restraints and load path NP3
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Figure 24. Stiffness degradation versus spring moment for uniaxially loaded sway
beam-column BC30, with with bilinear rotational restraints and load

path NP3
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Figure 25. Effect of the type of residual stress distribution (RSD) on stiffness
degradation (D -p) of uniaxially loaded sway beam-column
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Figure 26. Effect of the type of residual stress distribution (RSD) on stiffness
degradation ( D- m,_) of uniaxially loaded sway beam-column

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.50

1.00

0

e With RSD of
’ Fig. 3

With RSD of
Fig. S

NN NN

0.50

Dimensionless Bending Moment, m,,

0.00

N N I O N O A N O D O
0 0.50 1.00 1.50

o
oLt i1t

Top Deflection, in.

Figure 27. Dimensionless bending moment versus top deflection for uniaxially
loaded sway beam-columns with two different residual stress
distributions (RSD)
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Figure 28. Stiffness degradation curve (ﬁ—p) for biaxially loaded sway beam-
columns BC32 through BC36
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Figure 29. Stiffness degradation curve (D-p) for biaxially sway loaded sway
beam-column BC35 with LP1 load path
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Figure 30. Stiffness degradation curve (l_)—m‘) for biaxially loaded sway beam-
column BC35 with LP1 and LP2 load paths
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Figure 31.  Stiffness degradation curve (B-my) for biaxially loaded sway beam-
column BC3$ with load paths LP1 and LP2
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Figure 32. Axial load versus top deflection for biaxially loaded sway beam-column
BC39 with equal end restraints and with load paths LPS and LP6
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Figure 33.  Stiffness degradation curve (D-p) for biaxially loaded sway beam-
columns BC42 and BC43
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Figure 34. Stiffness degradation curve for member BC42 with load path LP3, m_
= 1.38 and m, = 112
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Figure 35. Stiffness degradation curve (]3 -m_) for member BC42 with load
paths LP3 and LP4
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Figure 36. Stiffness degradation curve ( D- m, ) for member BC42 with load path
LP4
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Figure 37. Moment versus midspan deflection for biaxially loaded sway beam-
column BC42 with equal end restraints and with load paths LP1 and
LP2
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Figure 38. Interaction diagrams for biaxially loaded sway beam-column BC43 with
equal end restraints and with load paths LP3 and LP4
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Figure 39. Interaction curves for biaxially loaded sway beam-column BC43 with
equal end restraints and with load paths LP3 and LP4
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Figure 40. Stiffness degradation curve (ﬁ—P) for biaxially loaded imperfect sway
beam-column with end rotational restraints of type K, and with load
path LP7
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Figure 41. Stiffness degradation curve (]3-mx) for biaxially loaded imp?rfgct sway
beam-column with end rotational restraints of type K, and with load
path LP7
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Figure 42. Stiffness degradation curve (]3- ) for biaxially loaded sway beam-
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Figure 43. Dimensionless axial load versus lateral spring stiffness for biaxially
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Figure 44. Dimensionless axial load versus lateral spring stiffness for biaxially
loaded sway column with various rotational end restraints
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Figure 45. Stiffness degradation curve (I-)—P) for biaxially loaded sway beam-
column with load path LP7
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Figure 46. Stiffness degradation curve (ﬁ-mx) for biaxially loaded sway beam-
column with load path LP7
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Figure 47. Stiffness degradation curve (]-)-my) for biaxially loaded sway beam-
column with load path LP7
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Figure 48. Spread of plasticity in the cross sections before axial load is
incremented (corresponding to point A in Figures 47 - 49)
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Figure 49.  Spread of plasticity in the cross sections after axial load is incremented
(corresponding to point B in Figures 47 - 49)
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Figure 50. Unloaded elements in the section (dashed) and newly plastified
elements (dotted)
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Figure 51. Dimensionless bending moment versus midspan deflection in yz plane
for a biaxially loaded sway beam-column
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Figure 52. Dimensionless bending moment versus top deflection in yz plane for
a biaxially loaded sway beam-column
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Figure 53. Interaction curves for biaxially loaded sway beam-column based on
tangent modulus approach, and including elastic unloading
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Figure 54. Effect of residual stresses and crookedness on the stiffness degradation
of biaxially loaded sway beam-columns with load path LP5
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Figure 55. Dimensionless axial load versus top deflection of biaxially loaded sway
beam-column with residual stresses and/or crookedness and with load

path LP5
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Figure 56. Stiffness degradation ( D- m_ ) for biaxially loaded sway beam-column
with residual stresses and/or crookedness and with load path LP6
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Figure 57. Effect of the type of residual stress distribution (RSD) on stiffness
degradation ( D - p ) of biaxially loaded sway beam-column
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Figure 58. Effect of type residual stress distribution (RSD) on stiffness
degradation ( D -m,_ ) of biaxially loaded sway beam-column

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.08 —
e 0.068
o 3
S -
& .
3 .
< oo S With RSD of
2 7 - Fig. §
(5] —
= -
S 3
§ - With RSD of
A 0.02
0.00 —IIIIIIIII]IIIIIIIH Illll-lrlllllllllllll
0.00 0.20 0.40 0.60 0.80

Midspan Deflection, in.

Figure 59. Dimensionless axial load versus midspan deflection of biaxially loaded
sway beam-column with different residual stress distributions (RSD)
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Figure 60. Dimensionless axial load versus top deflection of biaxially loaded sway
beam-column with different residual stress distributions (RSD)
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Figure 61. Sway beam-column subjected to uniaxial loading
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Figure 62. Sway beam-column subjected to biaxial loading
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Figure 63. Imperfect unbraced portal frame with loading
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Figure 64. Stiffness degradation (ﬁ—p) for sway plane frame PF9 with load paths
LPF2 and LPF3

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.25
A 1.00 N
o -
b= -
lc —
g 0.75 —
3 —
Q .
- -
é -
8 0.50 -
a -
3
E 7
Q —

0.85 —

0.00 ——— - - | T S R

T T 17
0.00 C.190 0.20 0.30 .40 0.50

Dimensionless Bending Moment, m,

Figure 65. Stiffness degradation (D -m_) for sway plane frame PF9 with load
paths LPF2 and LPF3
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Figure 66. Dimensionless vertical load versus top deflection curves for sway portal
frame PF9 with load paths LPF2 and LPF3
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Figure 67. itll;ffness degradation ( D -p) for sway plane frame PF10 with load path
F2
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Figure 68. Dimensionless stiffness degradation (D -m_) for sway plane frame
PF10 with load path LPF2
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Figure 69. Dimensionless vertical load versus top deflection of plane frame PF10
with Joad path LPF2
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Figure 70. Effect of residual stresses and/or crookedness on stiffness degradation
of sway portal frames under load path LPF1
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Figure 71.  Stiffness degradation (D -m_) of sway portal frames with residual
stresses and/or crookedness with load path LPF1
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Figure 72. Dimensionless vertical load versus top deflection of plane frames with
residual stresses and/or crookedness and with load path LPF1
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Figure 73. Dimensionless bending mdment versus rotation at Joint 1 of plane
frames with residual stresses and/or crookedness and with load path
LPF1
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Figure 75. Stiffness degradation (D -m_) for sway portal frames with residual
stresses and/or crookedness and with load path LPF2
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Figure 76. Dimensionless vertical load versus top deflection of plane frames with
residual stresses and/or crookedness and with load path LPF2
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Figure 77. Stiffness degradation (13 -p) of sway portal frames with residual
stresses and/or crookedness and with load path LPF3
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Figure 78. Stiffness degradation ( D -m_) for sway portal frames with residual
stresses and/or crookedness and with load path LPF3
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Figure 79. Dimensionless vertical load versus top deflection of plane frames with
residual stresses and/or crookedness and with load path LPF3
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Figure 80. Dimensionless vertical load versus rotation at Joint 1 of sway plane
frames with residual stresses and/or crookedness and with load path
LPF3
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Figure 81. Dimensionless bending moment versus rotation at Joint 1 of sway
plane frames with residual stresses and/or crookedness and with load
path LPF3
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Figure 82.  Stiffness degradation of sway portal frame with different residual stress
distributions (RSDs) and load path LPF1
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Figure 83. Stiffness degradation of sway portal frame with different residual stress
distribution and load path LPF1
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Figure 84, Dimensionless vertical load versus top deflection of sway portal frame
with load path LPF1 and different residual stress distributions

(RSDs)
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Figure 85. Stiffness degradation (D -p) of sway portal frame with load path
LPF2 and different residual stress distributions (RSDs)
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Figure 86.  Stiffness degradation (D -m_) of sway portal frame with load path
LPF2 and different residual stress distributions (RSDs)
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Figure 87. Dimensionless vertical load versus top deflection of sway portal frame
with load path LPF2 and different residual stress distributions
(RSDs)
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Figure 88.  Stiffness degradation (D-p) of sway portal frame with load path

LPF3 and different residual stress distributions (RSDs)
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Figure 89. Stiffness degradation (D -m_) of sway portal frame with load path
LPF3 and different residual stress distributions (RSDs)
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Figure 90. Dimensionless vertical load versus top deflection of sway portal frame
with load path LPF3 and different residual stress distribution (RSDs)
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Figure 91. Flexibly -connected single-story single-bay unbraced sway space frame
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Figure 92. Typical space frame joint
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Figure 93. Space frame joint moments used in slope-deflection formulation
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Figure 94. Stiffness degradation (D -p) of single-story single-bay sway space
frames SF2 and SF4

218

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.50

Ja) N

£ 1.00 ,

< = |

E - i

= -

5 -~ \

£ ] \

s . j

wy -~ LY

) - \

E . \

.g 0.50 - Frame SF2 '\ _Frame SF4
Q - \'

E .

& N

0.00 lllllllll!llllllllllllIllllllllllllllll
0.00 0.50 1.00 1.50 2.00

Dimensionless Bending Moment, my

Figure 95. Stiffness degradation (D - m, ) of single-story single-bay sway space
frames SF2 and SF4
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Figure 96. Dimensionless vertical load versus top deflection (p - A, ) of single-
story single-bay sway space frames SF2 and SF4
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Figure 97. Stiffness degradation (D -p) of single-story single-bay sway space
frame SF24
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Figure 98. Stiffness degradation (D -m_ ) of single-story single-bay sway space
frame SF24
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Figure 99. Dimensionless vertical load versus top deflection (p - A, ) of single-
bay single-story sway space frame SF24
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Sigure 100. Stiffness degradation (D -p) for single-story single-bay sway space
frames with various combinations of residual stresses and crookedness,
with load path SL1
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Figure 101. Stiffness degradation (D - m, ) for single-story single-bay sway space
frames with various combinations of residual stresses and crookedness,
with load path SL1
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Figure 102. Dimensionless vertical load versus top deflection (p - A, ) for single-
story single-bay sway space frames with various combinations of
residual stresses and crookedness; with load path SL1
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Figure 103. Dimensionless vertical load versus top deflection(p-4,)
relationships of Figure 102 with horizontal scale magnification
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Figure 104. Dimensionless bending moment versus top deflection (m, - 4,) for
single-story single-bay sway space frames with various combinations of
residual stresses and crookedness, with load path SL1
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Figure 105. St.iffne.ss degradation (D - p ) for a single-bay single-story space frames
with different combination of residual stresses and crookedness, with
load path SL2
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Figure 106. Stiffness degradation (D - m,_) for single-story single-bay sway space
frames with various combinations of residual stresses and crookedness,
with load path SL2
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Figure 107. Bending moment versus top deflection (my, - A,) for single-story

single-bay sway space frames with various combinations of residual
stresses and crookedness, with load path SL2
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Figure 108. Dimensionless vertical load versus top deflection (p - A, ) for single-
story single-bay sway space frames with various combinations of
residual stresses and crookedness, with load path SL2
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Figure 109. Stiffness degradation (D ~-p) for single-story single-bay sway space
frames with various combinations of residual stresses and crookedness,
with load path SL3

233

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.025

\q 0020 =
E ]
E ]
§o.o1sf
()]
Q -
8 4 SF25 & SF26
E 0.010 —
Z i
()]
E 1 s
A 4 SF27 & SF28
0.005 — AN
- \
0'000 |llllllllllllllllll[llllf_l(l[
0.00 0.02 0.04 0.08

Dimensionless Bending Moment, m,

Figure 110. Stiffness degradation ( D- m, ) for single-story single-bay sway space
frames with various combinations of residual stresses and crookedness,
with load path SL3
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Figure 111. Dimensionless vertical load versus top deflection (p - A, ) for single-
story single-bay sway space frames with various combinations of
residual stresses and crookedness, with load path SL3
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Figure 112. Bending moment versus top deflection (m,-4,) for single-story
single-bay sway space frames with various combinations of residual
stresses and crookedness, with load path SL3
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Figure 113. Stiffness degradation (D -p) for single-story single-bay sway space
frame with various combinations of residual stresses and crookedness,
with load path SL4
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Figure 114. Stiffness degradation (D - ) for single-story single-bay space sway
frames with various combinations of residual stresses and crookedness,
with load path SLA4
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Figure 115. Dimensionless vertical load versus top deflection (p ~ A, ) for single-
story single-bay sway space frames with various combinations of
residual stresses and crookedness, with load path SL4
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Figure 116. Bending moment versus top deflection (my-4A,) for single-story

single-bay sway space frames with various combinations of residual
stresses and crookedness, with load path SL4

240

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.00

3 . Vg

& - With RSD of /

o150 4 &3 /7

o _

g - /

g . g
- /

= ] /

g e

T 1.00 “w

= = / With RSD of

& ] // Fig. 3

c ] /

=t - /

€ 0.50 - /

£ ] /

Q 3 /
17 -
q1/7

O'oo IlTllllllllllllllll]ﬁllllljll
0.00 5.00 10.00 15.00
Top Deflection, in.

Figure 117. Dimensionless bending moment versus top deflection (m, - 4,) for
single-story single-bay sway space frames with various residual stress
distributions and load path SL1
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Figure 118. Stiffness degradaticn ( D -m,) for single-story single-bay sway space
frames with various residual stress distributions and with load path SL2
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Figure 119. Stiffness degradation (D - m,) for single-story single-bay sway space
frames with various residual stress distributions and load path SL4
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Figure 120. Bending moment versus top deflection ( m - 4,) for single-story
single-bay sway space frames with various residual stress distributions
and load path SL4
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Figure 121. Tested Frame with Jacks and Cables Arrangement
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Figure 122. Three-story single-bay space frame

246

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 123. Stub column with center strain gages
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Figure 124. Stub column with corner strain gages
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Figure 125. Stress-strain curve the stub column with strain gages at member

corners
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Figure 126. Setup for LVDTs
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Figure 127. Schematic diagram for LVDTs setup
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Figure 128. Jack, load cell and looped cable
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Figure 129. Schematic diagram showing the jack and cable
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Figure 130. NEFF hardware and the personal computer used
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Figure 131. Bases connection detail
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Figure 132. Schematic diagram showing setup for base joint rotation measurement
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Figure 133. Base moment-rotation relationship
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Figure 135. Strips numbering for the rectangular section
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Figure 136. Distribution of residual stresses across wall thickness for square section
(Vertical scale: 1in = 100 ksi)
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Figure 138. Loading jack (27) and cable arrangement for frame horizontal load
application
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Figure 139. Schematic diagram of setup for lateral force application
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Figure 140. Loading beam assembly at frame top
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Figure 141. Schematic diagram of loading beam assembly at frame top
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Figure 142. Loading jacks in frame test
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Figure 143. Start of plastification in Beam 23 at P, = 19.5 kips
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Figure 144. Nearly complete plastification of Beam 23 at P, = 23.0 kips
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Figure 145. Plastification of Beam 23, Beam 24, and Column 20
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Figure 146. Dial gages attached to Column 20 for measuring torsional angle
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Figure 147. Schematic diagram for dial gages on Column 20 for measuring
torsional angle
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Figure 148. Experimental vertical load P, versus angle of twist of the test frame
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Figure 149. Experimental vertical load P, versus angle of twist of the test frame
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Figure 150. Experimental vertical load P, versus angle of twist of Column 20

273

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20.00

15.00

10.00 —

Vertical Load Py, kips.
|

5.00 —

0.00 T T T 1T ] 7T T T I 7T T T T T
-0.10 -0.00 0.10 - 0.20 0.30

Deflection at Mid-Span, in.

Figure 151. Experimental vertical load P, versus horizontal deflection at midspan
of Column 20 in the y-direction
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Figure 152. Lateral load versus frame top deflection A,
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Figure 153. Vertical load P, versus frame top deflection A_
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Figure 154. Vertical load P, versus frame top deflection A,
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Figure 155. Lateral load H versus frame top deflection A,
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Figure 156. Vertical load P, versus frame top deflection A,
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Figure 157. Vertical load P, versus frame top deflection A,
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Figure 158. Lateral load H versus normal strain in column 18 at location S1
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Figure 155. Lateral load H versus normal strain in column 18 at location S2
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Figure 160. Vertical load P, versus normal strain in column 18 at location S1
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Figure 161. Vertical load P, versus normal strain in column 18 at location S2
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Figure 162. Lateral load H versus normal strain in column 20 at location S3
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Figure 163. Lateral load H versus normal strain in column 20 at location S4

286

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30.00
'J
2 20.00 —
= 4
s
g ]
3 ]
g ]
5 10.00 —
> ]
0.00 l!llllllllll—lllllll|lll|ll|ll|l||llllllllllllllll

-0.40 -0.30 -0.20 -0.10 -0.00 0.10

Normal Strain, ¢, 1072 in/in,

Figure 164. Vertical load P, versus normal strain in column 20 at location S3
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Figure 165. Vertical load P, versus normal strain in column 20 at location S4
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Figure 166. Locations of strain gages on Columns 18 and 20
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Figure 167. Stiffness degradation curve (ﬁ—H) for three-story single bay sway
space frame with the load path used in experiment
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Figure 168. Stiffness degradation curve (]_)-Pl) for three-story single bay sway
space frame with the load path used in experiment
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Figure 169. Stiffness degradation curve (l-)-Pz) for three-story single bay sway
space frame with the load path used in experiment
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APPENDIX A

Cross-Sectional Inelastic Rate Equation

The various terms and the incremental equations used in the tangent stiffness
procedure for the problem shown in Figure 1 are summarized in this appendix. It can
be shown that the dimensionless rate form of Equations 3, 4, and 5 can be expressed

in the matrix form given by Equation 8. The various terms of Equation 8 are defined

as follows:
{ft = {p m, my} (A-1)
= da = da = da]
= - X—=
= _ da = ,da = __da
K]= f 24 -i'_ f t YZ-I-_ f t xyi-_ (A-2)
= _da f = da = ,da
f t X — t Xy— f t X '—
IY IY IY J
(8Y=1(3 & &) (A-3)
where
_ P
P~ Ao, (A-4)
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2

nf]x =
MxY
m, = —M’Y
- €y
€g = 8—
Y
- ¢
@,= q)"
xY
.
y ‘I)yY
da = dxdy
- _ X
x = co—
B/2
R
D/2
A-23A
BD
= 161
I =
BD?
-I- ) IGIY
¥ B%D
20Y
Vor = 5

I

X
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(A-11)

(A-12)

(A-13)

(A-14)

(A-15)

(A-16)

. Further reproduction prohibited without permission.



) 204 Iy (A-17)

Y
B
Oy (A-18)
SY = e—
E
2¢
G, = — (A-19)
D
2y
Oy = (A-20)

where A is the area of the cross section, and L, and Iy are the moments of inertia
values about the x and the y axes, respectively. The integrals in Equation A-2 are
evaluated by numerical summation over the discrete elemental areas shown in Figure

1.
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APPENDIX B

Inelastic Parameters

The inelastic load and moments parameters 2 used in Equations 17,18, and

19 are defined as follows:

a, = -EA, (B-1)
a;, = ES,, (B-2)
a; = ES,, (B-3)
1 % 3 (B-4)
a, = - EI_ | (B-5)
ay = - BL, (B-6)
2 = -2y (B-7)
8 = = 4y B-8)
ay = EI, (B-9)
where:
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A = fMdA (B-10)

S, = [, vdA (B-11)
Sy = [, xdA (B-12)
L,=J, v*dA (B-13)
L, = Aexsz (B-14)
Lye = [, xvdA (B-15)
: = fMO,dA (B-16)
p = ], OvdA (B-17)
M, = [, oydA (B-18)
My, = [, o,xdA (B-19)
M, = pr oy ydA (B-20)
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M, = pr o, xdA (B-21)

o =Ee (B-22)

The above integrals are evaluated numerically by summing over the

discretized cross section of the type shown in Figure 1.
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APPENDIX C

Portal Frame Shear Equilibrium Equation

The terms used in Equation 107 are defined in this appendix. Substituting

Equation 94, 95, 98, and 99 into Equation 107, the following equation is obtained:

Ry @ * Rz e * RasnYa ~ Ry ~ Rpany * Reern O *
Rz 02 * RepsnVa = Ruoy = Roen * Reans Oxs + Reqzzy B +
Rz Ve ~ Ruay ~ Roan + Repisy Brs + Rz 056 + Ri@szVa =

Ry = Roppzy * (Py + Pg)v, = HL, (C1)

where P, and P, are the axial loads in columns 1 and 3, respectively. By using the

condensed notation:

Ty = Ry + Rean (C-2)

Yo = Roan * Ry (C-3)

Ps = Ry + Ry (C9)

P = Ry + Ry (C-5)
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¥os = Rasny * Resny * Rapsz) * P + Py (C-6)

¥ = _&s(l,l) - Rxs(2.l) - 1%;9(1,3) - Rxs(2,3) -

(C7)

Roan ~ Roen ~ Rousy ~ Roes

Equation C-1 is expressed as:

P06, + T, + Pu6,+ ¥,0,=HL + ¥, (C-8)

x1 Vx1

which is Equation 108 presented in Section 3.1.1
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APPENDIX D

Computer Programs

This appendix presents the complete listing of the following computer
programs based on the theory presented in this dissertation:

Program D.1 Biaxial Sway Beam-Column

Program D.2 Sway Portal Frame (SPF)

Program D.3 Sway Space Frame (SSF)
The input parameters for the programs are defined below.

For Program D.1:

ANG Bilinear angle of rotation in radian (6,)
B Cross section width (B)
B1 Equal D for tube and equal zero for I-section
CODE Beam-column Identification code
COX Coefficient for maximum moment applied about x axis
(6/0)'¢ Coefficient for maximum moment applied about y axis
D Cross section depth (D)
DELX Initial crookedness in the x direction (ug,)
DELY Initial crookedness in the y direction (vy;)
DTOL Determinant tolerance
E Young modulus (E)
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EL
EMXBSXB
EMXTSXT
EMYBSYB
EMYTSYT
EPSAVE
FT

FY

INPT
ITANG
KX
KY
KBX
KTX
KBY
KTY
LP
MBAX
MTAX
MBAY
MTAY

NELAST

Beam-column length, (L)

Incremental applied moment about x axis at bottom
Incremental applied moment about x axis at top
Incremental applied moment about y axis at bottom
Incremental applied moment about y axis at top
Axial load increment

Flange thickness of the cross section (t)

Yield stress (oy)

Number of nodes along the beam-column length (n)
Equal 1.0 for tangent modulus

Lateral restraint in the x direction (K,)
Lateral restraint in the y direction (Ky)
Rotational restraint about x axis at B (Kg,)
Rotational restraint about x axis at T (Kp)
Rotational restraint about y axis at B (Kg,)
Rotational restraint about y axis at T (KTy)
Load Path (LP or NP)

Initial applied moment at end B about x axis
Initial applied moment at end T about x axis
Initial applied moment at end B about y axis
Initial applied moment at end T about y axis
Coefficient used as 1 for elastic problem

Number of layers in each flange
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NFV
NWH
NwV
PB1

SRC

Number of elements across the flange
Number of layers in each web
Number of elements across the web

Initial applied axial load

Compressive residual stress (o,.)

Equal to 10.0 (incremental force reduction factor)

Web thickness of the cross section (t)

For Program D.2 and D.3:

In addition to the input data for the beam-columns, the following input

parameters are required in the programs for the frames:

I Story number (= 1, 2, 3)

J Joint number (= 5, 6, 7, 8, 17, 18, 19, 20, 29, 30, 31, 32)

ALPPXI
ALPPYI
ALPPZJ
FRATIOP
FRATIOM

NXJ

Coefficient controlling the lateral load at joint i in x-direction; I=1,2,3
Coefficient controlling the lateral load at joint i in y-direction; I=1,2,3
Coefficient controlling the vertical load at joint j in z-direction; 1=1,2,3
Coefficient for maximum P load

Coefficient for maximum M load

Coefficient controlling the moments at joint J about x-direction;
J=5,6,7,....

Coefficient controlling the moments at joint J about y-direction;
J=5,6,7,....

Rotational restraints about x axis at joint J (Kxj); J=5,6,7,....
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KYJ Rotational restraints about y axis at joint J (Kyj); J=5,6,7,....
LPF Load path for frames
MAPL Initial applied moments (M, and My)

MAPLINC Incremental load for moments

P21 Initial applied load on top of beam 21 (P;)
P22 Initial applied load on top of beam 22 (P;)
P23 Initial applied load on top of beam 23 (P,)
P24 Initial applied load on top of beam 24 (P,)

P21INC Incremental load for Py

P22INC Incremental load for P,

P23INC Incremental load for P,

P24INC Incremental load for P,

P2IMAX = Maximum load for experimental use

PAPL Initial applied lateral (H) and vertical loads (P)

PAPLINC Incremental loads for lateral and vertical

X21 Distance between P; on beam 21 and joint 30
X22 Distance between P; on beam 22 and joint 30
X23 Distance between P, on beam 23 and joint 32
X24 Distance between P, on beam 24 and joint 32

Sample output are presented at the end of each of the programs.
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D.1 Biaxial Sway Beam-Column
IF ( ABS(SRC) .LE. 0.00001 ) THEN

C  PROGRAM SWAY BIAXIALLY LOADED BEAM-COLUMN DO 333 I=1,TOTAL
INCLUDE 'PROJECT 333 STR(1) =0.0
READ(12,7)CODE ENDIF

7 FORMAT(A7) IF ( ELIMT .NE. 900000.) GO TO 922
PRINT 193,CODE NS1=NFV*NFH
193 FORMAT(' * LOADING NUMBER *'/*,A9,") NS2=NS1*2-NFV+1
READ(12,*)ALPHAP ALPHAM,ALPHA1 ALPHA2,COEFP,COX,COY NS3=2°NS1
READ(12,*)LPITANG,TOLG 922 CALL EXT
PRINT ¢ ' END
EMAX =0.0 ¢ The next subroutine is as a second main program
INNN=0 SUBROUTINE EXT
CALL READ INCLUDE "PROJECT*
CALL SEC PIY=99999.0
TR=TOTAL-NWV*NWH ICHI=0
IF ( B1 .EQ. 00 ) THEN IDL=0
DO 66 1=1,TOTAL IXEE=0
IF(1.LE. TR )THEN RATIO=1.0
STR(1) =-(ABS{SRC) +SRT)*ABS(X(l)) + SRT READ(12,*)KTX KTY,KBX KBY KX KY MATX MATY MABX MABY ,PB!
ELSE READ(12,*)TTOL,ANG
STR(I)=SRT 9911 PY=FY*A
ENDIF AXX =IX*10.0
66 CONTINUE 1AXI=0
ENDIF DET0=00
1F (Bl LE.00)GOTO 68 IYYY=0
QL=2.0°SRC*(BR + DR)/(8.0*'SRC-4.0°SRT+4.0°'SRC*ABS(SRC)/SRT) ICHI=0
FQQ=4.'SRT*FT+4.* WT*SRT + 8. SRC*ABS(SRC)*FT/SRT-8.*SRC*FT IDL=0
+-8*FT*SRC*ABS(SRC)/SRT-8.S WT*SRC-8* FT*SRC*ABS(SRC) /SRT IXEE=0
FQ=4.0*SRC*(BR*FT+DR*WT) JCHEK=0
F=SRT*(FT*WT**2+ WT*FT**2) IDD=0
QL=05*(-FQ+SQRT(FQ**24.0°F*FQQ))/FQQ IEE=0
Z=ABS(SRC)*QL/SRT PA=00
QQ=QL+Z DO 95 1=1,INPT
DO 67 1=1.TOTAL AE(l)=A
IF (I LE. TR ) THEN MYR(I)=00
STRM =SRT*(1 + WT/(2.°QL)) UNLi(1) =00
SOUT =-(ABS(SRC)/Z*B/2.0-STRM) UNL2(1) =0.0
STR(I) =ABS(X(1))*B/2.0°(STRM + AES(SOUT))*2.0/B-ABS(SOUT) UNL3(1)=0.0
IF ( STR(I) .LT. SRC ) STR(I) =SRC MXA(1)=0.0
ELSE MYA(1)=0.0
DR=D-20°FT STI(1)=0.0
STRM=SRT*(1.-05°FT/QL) ST{1)=00
SOUT=-((ABS(SRC)/Z*DR/2.0-STRM)) 95 ST3(1)=00
STR(I) =ABS(Y(I))*D/2.0°2.0/DR*(STRM + ABS(SOUT))-ABS(SOUT) DO 96J=1,INPT
IF ( STR(1) .LT. SRC ) STR(I)=SRC DO 96 I=1,TOTAL
ENDIF ITT(3,1) =0
67 CONTINUE ITR(J1)=0
68 FCC=00

STRPRE(J}) =STR(I)/FY

DO 321=1,TOTAL 96 STRPAS(3,]) =STR(I)/FY

32 FCC=FCC+AD(I)*STR(1)*B*D/4.0

TTOL=10.
IYYY=0 CURMX =00
JCHEK=0 CUTS=00
=1 ATX =10

305



00=gXWI
00=JAWT
00=IXIKA
HAWH-AGVIN=AGVIN
AXWE-XEVIN=XaVIN
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00=ZVHITV
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NIHL (XWN B9 XWANOD 'ONV' Z°DF' d1°40' +
ANN ‘HO'AWNANOD ‘ANV Z ‘0F'd 141 aSTd
=4
GASHAWH = HAWT
AXSAXWH = GXWH
LASLAWH =LAWH
IXSEXWH =IXINT
OI=WVHATV
NAHL ( XVINd "8 184 "ANV €°0F" 1) 413573
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NEHL ( XVINd *BD' 184 "GNV 9°0F 41) 313513
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68 0L OO (010 d1) 41
868 OL OO (€108 * 41 41
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102 0L 0D (1D d1) a1
0=1331
666 OL 0D (00010 “LT WLIAOLS ) J1
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90¢
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(1+LINDTX e XDi = GEXW
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00=()xNd
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EMYB=00

EP=EPSAVE

PB1=EP

ILP=1

ELSE IF ( LP .EQ. 7 .AND. PBI .GE. PMAX ) THEN
EP=10E-1S

ILP=1

ELSEIF (LP EQ.4 AND.CONVMX .GE.UMX ) THEN
ALPHAP=10

EP=EPSAVE

PB1=EP

ILP=1

ENDIF

IF ( LP .EQ. 8 AND. ABS(MATX) .GE. MMAX ) THEN
ALPHA2=00

ALPHA1=10

EMYT =EMYTSYT

EMYB-EMYBSYB

MATY =EMYT

MABY =EMYB

EMXT=00

EMXB=00

ILP=1

ENDIF

IF (LP .EQ.9 AND. ABS(MATX) .GE. UMX ) THEN
ALPHA1=10

ALPHA2=00

EMYT=EMYTSYT

EMYB=EMYBSYB

ILP=9

ENDIF

89 IF (LP .EQ. 11 ) GO TO &6

IF (LP .EQ. 10 AND. CONVP .GE. PMAX ) THEN
PB1=PB1-EP
EP=0.0
EMXT=EMXTSXT
EMXB =EMXBSXB
MATX =EMXT
MABX =EMXB
ALPHA1=00
ALPHA2=1.0
ALPHAP=00
ALPHAM =10
LP=11

ENDIF

836 CONTINUE

IF ( LP .EQ. 11 .AND. CONVMX .GE. UMX ) THEN
MATX =MATX-EMXT

MABX=MABX-EMXB

EP=0.0

ALPHP=00

EMYT=EMYTSYT

EMYB=EMYBSYB

MATY =EMYT

MABY =EMYB
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EMXT=00
EMXB=0.0
ALPHA1=10
ALPHA2=00
ILP=13
ENDIF
IF (LP EQ. 12. AND. CONVMY .GE. UMY ) THEN
MATY =MATY-EMYT
MABY =MABY-EMYB
ALPHA1=00
ALPHA2-10
EMXT=EMXTSXT
EMXB=EMXBSXB
MATX=EMXT
MABX=EMXB
EMYT=00
EMYB=00
LP=13
ENDIF
IF ( LP .EQ. 13 AND. CONVMX .GE. UMX ) THEN
MATX = MATX-EMXT
MABX =MABX-EMXB
EMXT=00
EMXB=0.0
ALPHA2=00
ALPHAM=00
ALPHP=10
ILP=13
ENDIF
201 CONTINUE
&8 PB1=PBI1-EP+EP*ALPHAP
MATX =MATX-EMXT+ EMXT*ALPHA2°ALPHAMRATIO
MABX =MABX-EMXB + EMXB*ALPHA2°ALPHAM*RATIO
MATY =MATY-EMYT+EMYT*ALPHAI*ALPHAM
MABY =MABY-EMYB+ EMYB*ALPHA1*ALPHAM
IF (ILP EQ.2 ) THEN
EMXT=00
EMYT=00
EMXB=00
EMYB=00
ENDIF
IF (DETV .EQ. 0.0 ) THEN
PB1=FB1/1000.0
MATY =MATY//10000
MARBY =MARBY/1000.0
ENDIF
PB=-FBI/PY
119 MXT=KITX*XL(INPT+2)
MXBB= + KBX*XL(INPT +1)
MYT=+KTY*XG(INPT+2)
MYBB= +KBY*XG(INPT+1)
DO 494 K=LINPT
Z=(K-1)'H
MXB(K) =(+PB1°XL(K) + MXBB-MABX-Z/EL*(MXT+MXBB-MATX-
+MABX+PBI*XL(INPT)))/MXYY
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0.00E+000 1.90E-002 0.00E-000
0.00E+000 3.90E-002 2.30E-002
0.00E+000 5.80E-002 4.60E-002
0.00E+000 7.80E-002 6.90E-002
0.00E+000 9.70E-002 9.20E-002
0.00E+000 1.17E-001 1.15E-001
0.00E+000 1.36E-001 1.38E-001
0.00E+000 1.56E-001 1.61E-001
0.00E+000 1.75E-001 1.84E-001
0.00E+000 1.95E-001 2.08E-001
0.00E+000 2.14E-001 2.31E-001
0.00E+000 2.34E-001 2.54E-001
0.00E+000 2.53E-001 2.77E-001
0.00E+000 2.73E-001 3.00E-001
0.00E+000 2.92E-001 3.23E-001
0.00E+000 3.12E-001 3.46E-001
0.00E+000 3.31E-001 3.69E-001
0.00E+000 3.51E-001 3.92E-001
0.00E+000 3.70E-001 4.15E-001
0.00E+000 3.90E-001 4.38E-001
0.00E+000 4.09E-001 4.61E-001
0.00E+000 4.29E-001 4.84E-001

0.00E+000 4.48E-001 5.07E-001 -5.48E-002 -9.40E-001 -1.11E-001
0.945 0.00E+00 4.68E-001 5.30E-001 -6.39E-002 -9.83E-001 -1.22E-001
0.812 0.00E+000 4.87E-001 5.53E-001 -7.29E-002 -1.0256

A, A, A,
1.44E-001 0.00E+000 1.33E-001
1.35E-001 -4.28E-002 1.22E-001
1.26E-001 -8.55E-002 1.11E-001
1.17E-001 -1.28E-001 9.96E-002
1.08E-001 -1.71E-001 8.85E-002
9.88E-002 -2.14E-001 7.74E-002
8.98E-002 -2.56E-001 6.63E-002
8.07E-002 -2.99E-001 5.52E-002
7.17E-002 -3.42E-001 4.41E-002
6.27E-002 -3.85E-001 3.30E-002
5.36E-002 -4.27E-001 2.19E-002
4.46E-002 -4.70E-001 1.08E-002
3.55E-002 -5.13E-001 -3.00E-004
2.65E-002 -5.55E-001 -1.14E-002
1.75E-002 -5.98E-001 -2.25E-002
8.40E-003 -6.41E-001 -3.36E-002
-6.00E-004 -6.84E-001 -4.47E-002
-9.70E-003 -7.26E-001 -5.58E-002
-1.87E-002 -7.69E-001 -6.69E-002
-2.77E-002 -8.12E-001 -7.80E-002
-3.68E-002 -8.55E-001 -8.91E-002
-4.58E-002 -8.97E-001 -1.00E-001

-1.33E-001

Axt
-4.48E-002
-8.97E-002
-1.34E-001
-1.79E-001
-2.24E-001
-2.69E-001
-3.14E-001
-3.59E-001
-4.04E-001
-4.48E-001
-4.93E-001
-5.38E-001
-5.83E-001
-6.28E-001
-6.73E-001
-7.17E-001
-7.62E-001
-8.07E-001
-8.52E-001
-8.97E-001
-9.42E-001
-9.86E-001
-1.0312

-1.0758
-1.1203

0.705 0.00E+000 5.06E-001 5.76E-001 -8.19E-002 -1.0681  -1.44E-001 -1.165
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C(IM+2)=KX12(1,2)
C(ILM+3) =KX12(13)
C(1M+4) =FX1(l)
C(I24+5)=MX1(1,1)
C(IM+6)=MX1(1,2)
100 CLM+7)=MX1(13)
C CALL THE ROUTINE TO SOLVE FOR XM(1J)
CALL SOLVE
C SOLVE XM(1J) AND KX21 AND ADD KX22 TO GET KXR
DO 280 1=1,N22
DO 110 IM=1,N22
KXR(L,IM) =00
DO 110J=1M
SUM =KX21(1,J)*XM(J.IM)
110 KXR(LIM)=KXR(LIM)+SUM
280 CONTINUE
DO 130 1=1N22
DO 130 J=1N2
130 KXR(1§) =-KXR(IJ) + KX22(1,7)
DO 320 I=1,N22
FXR(1)=00
DO 330 J=1M
SUM=KX21(13)*XM(J 4)
330 FXR(1)=FXR(l)+SUM
320 FXR(I) =-FXR(I)+FX2(1)
c
C NOW EVALUATE {MXR} OR {BETAX}
C (MXR}={MX2} - (KX21} [KX11}-1 {MX1} = [BETAX] {MXA}
C ALSO REMMEMBER THAT K11 AND K21 WERE SOLVED BEFORE
DO 211 =1,N22
IN=0
DO 211 IM =5
JB=1M4
BETAX(1JB) =0.0
DO 211 J=1,M
SUM =KX21(1J)*XM(J,IM)
211 BETAX(1JB)=BETAX(1JB) +SUM
DO 212 1=1N22
DO 212 J=1N2
212 BETAX(IJ) =-BETAX(IJ) + MX2(L,J)
c

CCCCCCCCCCCCCCCC  FOR ELIMINATE ONE EQUATION CCCCCCCCCC

c
C NOW SOLVE {DEF} [KXR]=BETA * {M} + {FXR} AS
C (DEF} [IXXR] [BETA} = {M} + [BETA}1 {FXR} TO GET
c {M} =[RXG] {DEF} -{SXR}

C(1,1)=BETAX(2,2)

C(1,2) =BETAX(2.3)

C(21) =BETAX(3.2)

C(22) =BETAX(33)

C(13) =KXR(2,1)

C(14) =KXR(2,2)

C(15) =KXR(23)

C(23) =KXR(3,1)

C(24) =KXR(3.2)

320

C(25)=KXR(33)
C(165)=FXR(2)
C(2:6)=FXR(3)

C CALL SOLVE TO GET {XM} AS 2X4, THE FIRST 3 ARE THE 2X3 [RXG] AND

c THE LAST COLUMN IS 2X1 {SXR}

NG=2

NC=6

NCC=4
CALL SOLVE
RXG(NM,1)=XM(1,2)
RXG(NM,2)=XM(13)
RXG(NM3)=XM(L,1)
RXG(NMA)=XM(2,2)
RXG(NM,5)=XM(23)
RXG(NM,6)=XM(2,1}
RXG(NM,7) =XM(1,4)
RXG(NM,B) =XM(24)

CH########3### Y-AXIS EVALUATIONS ### #3845 8858327

IF ( AXFLAG(NM) .EQ. 1 ) GO TO 999

222 CONTINUE

c

C EVALUATE [KYR]

C [KYR] = [KY12} * [KY11]-1 * [KY2I] + [KY22)
NCC=7

NC=NG+NCC
DO 10 1=3M
DO 20 J=1M
20 C(iJ)=KY11(1)
C(EM+1)=KY12(1,1)
C(IM+2)=KY12(1,2)
C(IM+3)=KY12(1,3)
C(LM+4)=FY1(1)
C(LM+5)=MYI1(L1)
C(IM+6)=MYI1(1.2)
10 CIM+7)=MYI(13)
C CALL THE ROUTINE TO SOLVE FOR XM(1J)
CALL SOLVE
C SOLVE XM(1J) AND KY21 AND ADD KY22 TO GET KYR
DO 28 [=1,N22
DO 11 IM=1 N2
KYR(LIM)=0.0
DO 11 J=1M
SUM=KY21{13)*XM(,1M)
11 KYR(LIM)=KYR(LIM)+SUM
28 CONTINUE
DO 131=1,N22
DO 13J=1N22
13 KYR(LI)=-KYR(1))+KY22(L})
C EVALUATE { FYE}
C (FYR} = {FY2} - [KY21] * [KY.1}1 * {FY]}
C SOLVE KY21 AND XM(4,J) AND ADD FY2
C REMMEMBER THAT K11 AND K21 WERE SOLVED BEFORE
DO 321=1,N22
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MAPL =MAPL+MAPLINC
GO TO 999
333 PAPL=PAPL-PAPLINC
MAPL =MAPL-MAPLINC
PAPLINC=PAPLINC/10.0
MAPLINC=MAPLINC/10.0
PAPL=PAPL+PAPLINC
MAPL =MAPL +MAPLINC
9% CONTINUE
ETTL=00
ETTL1=ABS(PAPLING)
ETTL2=ABS(MAPLINC)
ETTL = MAX(ETTL1,ETTL2)
IF ( ETTL .LT. 0.01 ) IGLBCON =3000
END
SUBROUTINE FNONPRO
INCLUDE 'SPFINC'
IF( LPF [EQ. 1 AND, PAPL .GE. FPMAX ) THEN
MAPLINC=PAPLINC
PAPLINC=00
LPF =10
ELSE IF ( LPF .EQ. 2 AND, PAPL .GE. FPMAX ) THEN
MAPLINC=PAPLINC
LPF=100
ELSE IF ( LPF .EQ. 3 AND. MAPL .GE. FMMAX ) THEN
MAPLINC=0.0
LPF=100
ENDIF

999 END

324



D

1.000

9.77E-001
9.54E-001
9.32E-001
9.09E-001
8.87E-001
8.65E-001
8.43E-001
8.21E-001
8.00E-001
7.78E-001
7.57E-001
7.36E-001
7.16E-001
6.952-001
6.74E-001
6.54E-001
6.34E-001
6.14E-001
5.95E-001
5.75E-001
5.56E-001
5.37E-001
5.18E-001
4.99E-001
4.80E-001
4.62E-001
4.44E-001
4.26E-001
4.08E-001
3.10E-001
2.99E-001
2.87E-001
2.75E-001
2.63E-001
2.51E-001
2.39E-001
2.27E-001
2.16E-001
2.04E-001

P

0.00E +000

2.50E-002
S5.00E-002
7.50E-002
1.00E-001
1.25E-001
1.50E-001
1.75E-001
2.00E-001
2.25E-001
2.50E-001
2.75E-001
3.00E-001
3.25E-001
3.50E-001
3.75E-001
4.00E-001
4.25E-001
4.50E-001
4.75E-001
5.00E-001
5.25E-001
5.505-001
5.75E-001
6.00E-001
6.25E-001
6.50E-001
6.75E-001
7.00E-001
7.25E-001
7.50E-001
7.75E-001
8.00E-001
8.25E-001
8.50E-001
8.75E-001
9.00E-001
9.25E-001
9.50E-001
9.75E-001

0.00E + 000
0.00E+000
0.00E+ 000
0.00E+000
0.00E+000
0.00E+000
0.00E +000
0.00E +000
0.00E+000
0.00E+000
0.00E+000
0.00E +000
0.00E+000
0.00E+000
0.00E +000
0.00E+000
0.00E+000
0.00E+000
0.60E +000
0.00E+000
0.00E+000
1.19E-002
2.38E-002
3.58E-002
4.77E-002
5.96E-002
7.15E-002
8.35E-002
9.54E-002
1.07E-001
1.19E-001
1.31E-001
1.43E-001
1.55E-001
1.66E-001
1.78E-001
1.91E-001
2.03E-001
2.15E-001
2.26E-001

A,
-1.00E-006
-1.10E-003
-2.30E-003
-3.50E-003
-4.80E-003
-6.20E-003
-7.60E-003
-9.10E-003
-1.07E-002
-1.24E-002
-1.41E-002
-1.60E-002
-1.80E-002
-2.00E-002
-2.22E-002
-2.45E-002
-2.70E-002
-2.96E-002
-3.24E-002
-3.53E-002
-3.85E-002

-4.97E-002
-6.14E-002
-7.38E-002
-8.69E-002
-1.00E-001
-1.15E-001
-1.30E-001
-1.47E-001
-1.65E-001
-1.58E-001
-1.73E-001
-1.89E-001
-2.07E-001
-2.27E-001
-2.48E-001
-2.71E-001
-2.96E-001
-3.25E-001
-3.57E-001
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)

x1

0.00E + 000
0.00E+000
1.00E-004
1.00E-004
1.00E-004
2.00E-004
2.00E-004
2.00E-004
3.00E-004
3.00E-004
3.00E-004
4.00E-004
4.00E-004
4.00E-004
5.00E-004
5.00E-004
6.00E-004
6.00E-004
7.00E-004
7.00E-004
8.00E-004
8.00E-004
9.00E-004
1.00E-003
1.00E-003
1.10E-003
1.20E-003
1.30E-003
1.40E-003
1.50E-003
1.40E-003
1.50E-003
1.60E-003
1.60E-003
1.70E-003
1.80E-003
2.00E-003
2.10E-003
2.30E-003
2.50E-003
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DO 212 1=1N22
DO 2121 =1N22
212 BETAX(IJ) =-BETAX(LT) + MX2(1,J)

(o
CCCCCCCCCCCCCCCC  FOR ELIMINATE ONE EQUATION CCCCCCCCCC

c
C NOW SOLVE {DEF} [KXR|~BETA * {M} + {FXR} AS
C (DEF} [KXR] {BETA} = {M} + [BETA}-1 (FXR) TO GET
c {M} =|[RXG] {DEF} -(SXR}

C(1,1) =BETAX(222)

C(1,2) =BETAX(23)

C(2,1)=BETAX(3,2)

C(22)=BETAX(33)

C(13)=KXR(21)

C(14) =KXR(22)

C(1,5)=KXR(23)

C(23)=KXR(3,1)

C(24)=KXR(3,2)

C(25)=KXR(33)

C(1,6) =FXR(2)

C(2,6)=FXR(3)

C CALL SOLVE TO GET {XM} AS 2X4, THE FIRST 3 ARE THE 2X3 [RXG] AND

c THE LAST COLUMN IS 2X1 {SXR}
NG=2
NC=6
NCC=4
CALL SOLVE
RXG(NM,1) =XM(1.2)
RXG(NM,2) =XM(1,3)
RXG(NM.3) =XM(1,1)
RXG(NM,4)=XM(2.2)
RXG(NMS) =XM(27)
RXG(NM.6)=XM(2,1)
RXG(NM.7) =XM(14)
RXG(NM 3) =XM(24)
CHEFEFEFF##EES Y-AXIS EVALUATIONS #4424 84 845285484
IF ( AXFLAG(NM) .EQ. 1) GO TO 999
222 CONTINUE
C EVALUATE [KYR]
C [KYR] = [KY12] * [KY11]-1 * [KY2]] + [KY2)
NCC=7
M=INPT-{
NG=M
NC=NG+NCC
DO 101=1M
DO 203=1M
20 CUN)=KYL{))
CUM+1)=KYI12(1,1)
C(IM+2)=KY12(1,2)
C(LM+3)=KY12(13)
C(IM+4)=FY1(1)
CUM+5)=MYI(I,1)
COM+6)=MY1(1.2)
10 CILM+T)=MYI(13)
C CALL THE ROUTINE TO SOLVE FOR XM(1,})

329

CALL SOLVE
C SOLVE XM(LJ) AND KY21 AND ADD KY22 TO GET KYR
DO 281=1N22
DO 11 IM=1N2
KYR(1IM)=0.0
DO 11J=1M
SUM=KY21(1,3)*XM(3,IM)
11 KYR(LIM)=KYR(LIM)+SUM
28 CONTINUE
DO 131=1N2
DO 13 J=1N22
13 KYR(LJ)=-KYR(LJ) +KY22(1)
C EVALUATE { FYR}
C {FYR} = {FY2) - [KY21] * [KY11}-1 * {FY1)
C SOLVE KY21 AND XM(4J) AND ADD FY2
C REMMEMBER THAT K11 AND K21 WERE SOLVED BEFORE
DO 321=1,N22
FYR(1)~0.0
DO33J=1M
SUM=KY21{1J)*XM(J 4)
33 FYR(I)=FYR(l)+SUM
32 FYR(l)=-FYR()+FY2(l)
c
C NOW EVALUATE {MYR} OR {BETAY}
C {MYR}={MY2} - [KY21] [KY11]-1 {MY1} = [BETAY] {(MXA}
C ALSO REMMEMBER THAT K11 AND K21 WERE SOLVED BEFORE
DO 200 I=1,N22
IN=)
DO 200 IM=5,7
IB=IM4
BETAY(1JB) =00
DO 200 J=1M
SUM =KY21(1J)*XM(J,IM)
200 BETAY(LJB) =BETAY(IJB)+SUM
DO 201 1=1,N22
DO 201 J=1,N22
201 BETAY(IJ)=-BETAY(LJ)+MY2(L])
C NOW SOLVE (DEF} [KYR]=BETA * {M} + {FYR} AS
C {DEF} [KYR] {BETA}-1 = {M} + [BETA}- {FYR} TO GET
c {M}=[RYG] {DEF} -{SYR}
C(1,1) =BETAY(2.2)
C€(1.2)=BETAY(23)
C(21)=BETAY(32)
C(22)=BETAY(53)
C(13)=KYR(21)
C(14)=KYR(22)
C(15)=KYR(23)
C(23)=KYR(3,1)
C(24)=KYR(3.2)
C(25)=KYR(33)
. C(16)=FYR(2)
C(26)=FYR(3)
C CALL SOLVE TO GET {XM} AS 2X4, THE FIRST 3 ARE THE 2X3 [RXG] AND
c THE LAST COLUMN IS 2X1 (SXR}
NG=2
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SUBROUTINE ELODINC MAPLINC=0.0
INCLUDE 'SSF3INC’ LPF=100
IF (ICONLOC EQ. 1 .OR. IGLBCON GT. 10 ) GO TO 333 ELSE IF ( LPF EQ. 4 AND. MAPL .GE. FMMAX )THEN
PAPL=PAPL+PAPLINC PAPLINC=MAPLINC
MAPL =MAPL+MAPLINC MAPLINC=00
PEXTX = PEXTX+PEXINC LPF=100
PEXTY =PEXTY +PEYINC ELSE IF ( LPF EQ. 5 AND. PEXTY .GE. PEYMAX ) THEN
P21=P21+PINC2L PEXINC=PIZYINC
P22=P22+PINC2 PEYINC=0.
PZ3=PZ3+PINCB LPF=6
P24=P24+PINC24 ELSEIF ( LFF EQ. 6 AND. PAPL .GE.20 ) THEN
GO TO 99 PEXINC=0.)
333 PAPL=PAPL-PAPLINC ALPPZ30=1
MAPL =MAPL-MAPLINC ALPPZ32=]
PEXTX =PEXTX-PEXINC LPF=100
PEXTY =PEXTY-PEYINC ENDIF
P21=P21-PINC21 IF ( LPF .EQ. 7 AND, PAPL .GE. FPMAX ) THEN
P22=P22-PINCZ2 P21=PAPLINC
P23=P23-PINCZ P22=PAPLINC
P24=124-PINC24 PINC21 =P21"PMODIF
PAPLINC = PAPLINC/10.0 PINC22=P21*PMODIF
MAPLINC=MAPLINC/10.0 PAPLINC=0)
PEXINC=PEXINC/10.0 ALPPX3=10/PAPL
PEYINC=PEYINC/10.0 ALPPY3=10/PAPL
PINC21=PINC21/100 LPF=8
PINC22=PINC22/10.0 KTRX1~EMEX1
PINC23=PINC23/10.0 KTRX2=ENKX2
PINC24=PINC24/10.0 KTRX3=EMKX3
PAPL=PAPL+PAPLINC KTRY1=EMKY!
MAPL=MAPL+ MAPLINC KTRY2=EMKY2
PEXTX( =PEXTX + PEXINC KTRY3=EMKY3
PEXTY =PEXTY +PEYINC ENDIF
P21=P214PINC21 IF ( LPF .EQ. 8 AND. P21 GE. P2IMAX ) THEN
P22=P2+PINC2 P23=PINC21
P23=P23+PINC3 PA=PINC21
P24=P23+PINCY PINC23=PINC2!
999 CONTINUE PINC24=PINC2}
ETTL=00 PINC21=00
ETTL1=ABS(PAPLINC) PINC22=00
ETTL2=ABS(MAPLINC) LPF=9
ETTL3=ABS(PEXINC) P2IMAX =194
ETTLA=ABS(PEYINC) ENDIF
ETTL =MAX(PAPLINC,MAPLINC,PINC21,PINC22,PINCZ3,PINCZ4) IF (LPF .EQ.9 AND, P23 GE. P2IMAX ) THEN
IF ( ETTL LT. 0.01 ) IGLBCON =300 P21=P21+PINCZ3
END P2=P22+PINCZ
SUBROUTINE FNONPRO PINC21 =PINC23
INCLUDE "SSE3INC’ PINC22=PINC24
IF( LPF .EQ. 1 AND, PAPL .GE. FPMAX ) THEN PINC23=00
MAPLINC =PAPLINC : PINC24=00
PAPLINC=00 LPF=10
LPF=100 P2IMAX =204
ELSE JF ( LPF .EQ. 2 AND. PAPL .GE. FPMAX ) THEN ENDIF
MAPLINC =PAPLINC IF (LPF .EQ. 10 AND. P21 .GE. P2IMAX ) THEN
LPF=100 PZ3=P2Z3+PINC21
ELSE IF ( LPF .EQ. 3 AND. MAPL .GE. FMMAX ) THEN P24=P24+PINC21
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y X

.100E+01 0.000 0.000 0.000 0.000
926E+00 0.044 0.000 0.001 0.001
857E+00 0.088 0.000 0.002 0.002
J91E+00 0.131 0.000 0.004 0.004
729E+00 0.175 0.000 0.005 0.005
671E+00 0.219 0.000 0.006 0.006
616E+00 0.263 0.000 0.008 0.008
S64E+00 0.306 0.000 0.009 0.009
S16E+00 0.350 0.000 0.011 0.011
471E+00 0.394 0.000 0.013 0.013
428E+00 0.438 0.000 0.015 0.015
389E+00 0.481 0.000 0.017 0.017
352E+00 0.525 0.000 0.019 0.019
317E+00 0.569 0.000 0.022 0.022
285E+00 0.613 0.000 0.024 0.024
256E+00 0.656 0.000 0.027 0.027
228E+00 0.700 0.000 0.031 0.031
203E+00 0.744 0.021 0.014 0.055
201E+00 0.748 0.023 0.012 0.058
.198E+00 0.753 0.025 0.010 0.060
.196E+00 0.757 0.027 0.008 0.063
.194E+00 0.761 0.029 0.006 0.065
.191E+00 0.766 0.031 0.005 0.068
.189E +00 0.770 0.033 0.003 0.071
.187E+00 0.775 0.035 0.001 0.073
184E+00 0.779 0.038 -0.001 0.076
.182E+00 0.783 0.040 -0.003 0.079
179E+00 0.788 0.042 -0.005 0.082
.180E+00 0.788 0.042 -0.005 0.081
A79E+00 0.789 0.042 -0.005 0.082
J179E+00 0.789 0.042 -0.006 0.082
J179E+00 0.789 0.043 -0.006 0.082
179E+00 0.790 0.043 -0.006 0.082
179E+00 0.790 0.043 -0.006 0.083
.178E+00 0.791 0.043 -0.006 0.083
178E+00 0.791 0.043 -0.007 0.083
.178E+00 0.792 0.044 -0.007 0.083
.178E+00 0.792 0.044 -0.007 0.084
.178E+00 0.792 0.044 -0.007 0.084
.178E+00 0.792 0.044 -0.007 0.084
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