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ABSTRACT

AN INTEGRATED RISK ANALYSIS METHODOLOGY IN A 
MULTIDISCIPLINARY DESIGN ENVIRONMENT

Katrina R. Hampton, P.E.
Old Dominion University, 2001 

Director. Dr. Resit Unal

Design of complex, one-of-a-kind systems, such as space transportation systems, 

is characterized by high uncertainty and, consequently, high risk. It is necessary to 

account for these uncertainties in the design process to produce systems that are more 

reliable. Systems designed by including uncertainties and managing them, as well, are 

more robust and less prone to poor operations as a result of parameter variability.

The quantification, analysis and mitigation of uncertainties are challenging tasks 

as many systems lack historical data. In such an environment, risk or uncertainty 

quantification becomes subjective because input data is based on professional judgment. 

Additionally, there are uncertainties associated with the analysis tools and models. Both 

the input data and the model uncertainties must be considered for a multi disciplinary 

systems level risk analysis.

This research synthesizes an integrated approach for developing a method for risk 

analysis. Expert judgment methodology is employed to quantify external risk. This 

methodology is then combined with a Latin Hypercube Sampling -  Monte Carlo 

simulation to propagate uncertainties across a multidisciplinary environment for the 

overall system. Finally, a robust design strategy is employed to mitigate risk during the 

optimization process. This type of approach to risk analysis is conducive to the 

examination of quantitative risk factors.
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The core of this research methodology is the theoretical framework for 

uncertainty propagation. The research is divided into three stages or modules. The first 

two modules include the identification/quantification and propagation o f uncertainties. 

The third module involves the management of uncertainties or response optimization. 

This final module also incorporates the integration of risk into program decision-making.

The risk analysis methodology, is applied to a launch vehicle conceptual design 

study at NASA Langley Research Center. The launch vehicle multidisciplinary 

environment consists o f the interface between configuration and sizing analysis outputs 

and aerodynamic parameter computations. Uncertainties are analyzed for both 

simulation tools and their associated input parameters. Uncertainties are then propagated 

across the design environment and a robust design optimization is performed over the 

range of a critical input parameter.

The results of this research indicate that including uncertainties into design 

processes may require modification of design constraints previously considered 

acceptable in deterministic analyses.
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Chapter I 

INTRODUCTION

Design for complex engineered systems is accomplished in a multidisciplinary 

environment where each one of the design disciplines have an element of risk associated 

with them. It is, therefore, a natural progression to couple the methodologies of 

multidisciplinary design optimization with the probabilistic estimation methods that are 

characteristic of risk analysis.

Most simulation design tools have been developed as single discipline analysis 

tools. Engineered systems having any level of complexity involves the integration of 

several disciplines. Examples of such interfaces include weight analysis inputs to 

structural analysis or computational fluid dynamic inputs into finite element analysis. 

Calculations used in single discipline analysis tools can be either simplistic or intricate in 

nature. Regardless of the level of difficulty, multidisciplinary design seeks to examine 

the interactions of several disciplines and their impact upon one another. 

Multidisciplinary design is gaining widespread attention in the engineering community. 

The seamless integration of single discipline tools into the design process promises 

savings in computational efficiencies, more effective update of the entire system design 

when one component changes, central location of design properties and specifications, 

and product cost savings from streamlining of the design process. Although seamless 

integration of discipline analysis may be a goal, in general, subsystem designs are not 

coupled together in one integrated algorithm or code. The design in different disciplines 

is handled in an iterative fashion as one discipline is updated based on the results of 

another discipline.

Traditionally, design analysis tools involve the computation of output variables 

based on point estimates of input variables. Such design processes leave out the very 

important element of risk. Risk consists of uncertainties associated with input variables 

and models. Input variable uncertainties can be the result of variations in processes,
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tolerances, material properties or other conditions subject to change. Model uncertainties 

represent errors between the actual system and the computer model as well as truncation 

errors associated with performing mathematical calculations.

Risk is inherent in the design of any engineered system, and until recently, the 

integration of risk analysis into design processes was often neglected. This omission 

could be attributed to the complexities encountered in quantifying the various elements of 

risk and the ultimate impact of the identified uncertainties on the decision making 

process. Risk analysis has now been incorporated into numerous design disciplines with 

varying degrees of fidelity or model accuracy. Risk analysis should also be part of 

multidisciplinary design. Solving a design problem using probabilistic elements requires 

additional effort. Consequently, the decision to use deterministic analysis or stochastic 

analysis is a tradeoff between the need for increased accuracy in design calculations and 

the increase in the computational endeavor.

Risk analysis can be divided into three distinct phases: 1) uncertainty 

identification/quantification, 2) uncertainty propagation and 3) uncertainty management. 

Each of these phases is briefly discussed below.

1.1 Risk Factor Identification/Quantification

There are essentially two sources of information used to acquire uncertainty for 

input variables. The first source is available data and the second is expert opinion. 

Available data can be obtained via scientific experiments, surveys, computerized 

databases, and computer simulations. Each of these forms of uncertainty data acquisition 

are very common. Scientific experiments generally require time, manpower and finances 

that are not readily available. This acquisition methodology can produce very accurate 

uncertainty distributions if a sufficient number of iterations can economically be 

performed. Surveys are best used when soliciting specific information from individuals 

and typically require numerous man-hours to tabulate. This acquisition methodology can
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produce accurate percentile data, but can present problems in structuring questions to 

solicit desired data. Although computer databases are commonly used to identify 

uncertainty, this form of acquisition is generally appropriate for programs that have been 

in existence for some period of time. Problems arise in obtaining information in the 

appropriate format or context. Many one of a kind programs do not have the historical 

base to make this acquisition method useful. Computer simulations are generally an 

excellent method of obtaining uncertainty data. Simulations are cheaper than scientific 

experiments in most instances. However, the uncertainty information obtained is only as 

good as the model that has been built.

Using expert opinion to obtain uncertainty presents its own set of challenges.

This method of acquisition is most appropriate when there is no historical data available. 

The data may have never been collected in the past or is too expensive to obtain. Past 

data may no longer be relevant or the data is sparse and requires expert opinion to fill in 

the holes. Expert judgment is also used when the area being modeled is new. For many 

of these reasons, expert judgment data acquisition approach is utilized for this research 

study. The problem involves the conceptual design phase of a new launch vehicle. The 

limited data on the input parameters is fairly new and very little data has been collected in 

the past. To experimentally collect data would not be feasible at the conceptual design 

phase.

1.2 Propagation of Uncertainties

Typically, a complete system design combines the results of numerous simulation 

tools that have been used by various disciplines. Each simulation tool has its own 

individual bias and precision errors (uncertainties). Consequently, the accumulation of 

those errors across the system has the potential of being significant.
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When probability distributions are available for input parameters and the 

associated uncertainties, a simulation technique can be used for the propagation of 

uncertainties across multiple designs. The principles associated with the accumulation or 

propagation of uncertainty are well documented and this research selects a suitable 

strategy from existing techniques. The research examines alternative uncertainty 

propagation methodologies which fall in the categories of either analytic or simulation 

solutions.

Analytic solutions are most often used in reliability engineering and are an 

alternative to simulations. Current research is being conducted in the areas of First Order 

Reliability Methods (FORM), Second Order Reliability Methods (SORM) and Fast 

Probability Integration (FPI). These methods are effective when used with metamodels 

or response surfaces and are discussed in greater detail in the literature review.

Monte Carlo methods are simulations and comprise that branch of experimental 

mathematics which is concerned with experiments on random numbers [Hammersley and 

Handscomb (1964)]. For a probabilistic problem the simplest Monte Carlo approach is 

to observe random numbers chosen in such a way that they directly simulate the physical 

random processes of the original problem, and to infer the desired solution from the 

behavior of these random numbers. Monte Carlo methods can employ a variety of 

sampling techniques. Random sampling is the most commonly used sampling technique. 

In fret, Monte Carlo methods with random sampling are often referred to as Crude Monte 

Carlo or simply Monte Carlo. Several authors use this more restrictive definition of 

Monte Carlo methods [Law and Kelton (1991)]. Other sampling techniques used with 

Monte Carlo methods include stratified sampling, importance sampling and Latin 

Hypercube Sampling. Latin Hypercube Sampling is one of the more recently developed 

sampling techniques. The research examines these various sampling strategies and 

chooses an appropriate technique for the conceptual design environment.
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U  Uncertainty Management Strategy

Uncertainties propagated across two or more disciplines results in the 

identification of parameters that impact risk associated with a certain response variable. 

By systematically varying controllable parameters, it is possible to identify the optimum 

input parameters that minimize risk. This stage of the research identifies an uncertainty 

risk reduction technique. The research attempts to identify parameters that influence the 

mean and variance o f a response variable. Having identified those parameters, an 

optimization strategy is outlined. This optimization facilitates the selection of parameters 

that minimize the objective function of a Pareto solution and consequently minimizes 

risk.

Program decisions are determined based on a variety of factors. Some of those 

factors are quantitative in nature. The integration of factor parameters into a decision is 

typically subjective. Strategies that provide effective means of decision-making in a 

conceptual design environment are explored in conjunction with the mitigation strategy.

1.4 Problem Domain

The research is conducted in the conceptual design environment of a new launch 

vehicle. Figure 1 illustrates the conceptual design process for the assent phase of a 

launch vehicle. This process is used in the Vehicle Analysis Branch (VAB) at NASA 

Langley Research Center and there are several other phases of a launch vehicle design. 

Each design process involves multiple disciplines and requires multiple iterations to 

achieve a converged solution. Although these disciplines are not integrated directly, 

results from one discipline are passed on to one or more disciplines. These analysis 

codes are deterministic in nature. Each of these codes is developed in FORTRAN except 

SMART. SMART, a geometry code, was developed in the C++ programming language. 

A risk analysis tool (RAT) has also been developed in C++ that interfaces directly with 

the weights and sizing program (CONSIZ). This program was based on the research
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conducted by Monroe (1997), and facilitates calculation of vehicle weight based on 

uncertainty input parameters solicited from a single expert. The expert elicitation 

strategy of RAT has been incorporated into this research. This study uses the elicitation 

strategy in a multiple expert environment.

In the conceptual design phase, VAB makes use of state-of-the-art response 

surface methodology for optimization. Response surfaces have already been developed 

for a deterministic weight optimization with pitching moment coefficient constraints on 

hypersonic, supersonic and subsonic conditions.

In this study, two disciplines are coupled together to create a multidisciplinary 

environment. For methodology development and application purposes, C++ programs 

are developed which provide an output distribution for the coupled system. The C++ 

programs are used to compare output distributions generated using Monte Carlo 

simulations with output generated using Latin Hypercube Sampling. The C++ programs 

are also used to compare output generated for a single expert with output generated using 

multiple experts. This research demonstrates a risk analysis concept that can be 

extended for use in a complex engineered system such as a launch vehicle.

Quantification of the benefits from employing the research methodology for more than 

two disciplines is not part of this study, but is recommended to be explored as future 

research.

The two disciplines used in this research are aerodynamics and weight & sizing 

for a launch vehicle. As illustrated by Figure 1, these disciplines are only two of several 

other disciplines that interface or impact one another during complicated system analysis. 

As input into one or both disciplines changes, the output of both disciplines is changed in 

an iterative fashion. The use of two disciplines in this research serves as a test bed for a 

more complex structure. The two chosen disciplines directly or indirectly impact weight 

which is very important in the design process. Weight is critical to launch vehicle system 

design success and engineers strive to keep weight to a minimum. Current focus of 

launch vehicle design is on optimizing weight while using other system requirements
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(e.g., pitching moment coefficient) as constraints [Unal et al, 1998], The emphasis on 

weight optimization verses other design parameter optimizations adds risk to vehicle 

performance which to date has yet to be explored. The deterministic designs of the past 

are based on perfection. Input parameters have to be exact in order for the launch vehicle 

to function as designed. Uncertainties in parameters can push the vehicle out of 

performance feasibility regions. There is a need to identify how well these requirements 

are actually being met when uncertainty is taken into consideration for launch vehicle 

design.

Engineering organizations involved in the design of complex systems (i.e., 

NASA) would be interested in this methodology. Successful implementation of this risk 

analysis methodology could conceivably impact the design process of every system 

having two or more disciplines as risk is inherent in every engineered system. The 

uncertainty identification and quantification element is applicable to the conceptual 

design of any system. The uncertainty propagation strategy is relevant to any process 

where a Monte Carlo simulation can be implemented. Finally, the optimization strategy 

can be used when tradeoffs between optimal mean and optimal variance are needed for 

system design requirements.
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CHAPTER II 

LITERATURE REVIEW

The purpose of this literature review is to survey earlier studies relating 

quantitative risk analysis and the concomitant elements to multidisciplinary design. 

Quantitative risk analysis is probabilistic in nature and falls into four categories: cost, 

schedule, technical parameter and reliability-based (or safety) risk analysis. Quantitative 

risk analysis entails the propagation of probabilistic input distributions within a risk 

analysis model or algorithm. For cost, schedule and technical parameter analysis, the 

mean and variance of the response variable are the measures of interest. Reliability- 

based risk analysis evaluates the probability of component failures (risk) within a 

mechanism or structural system. The probability of failures and the associated failure 

consequences are the parameters of interest. Technical parameter risk analysis is the 

focus of this research study. Reliability-based risk analysis literature is briefly reviewed 

as some of the computational procedures are analogous to methods used in technical 

parameter risk analysis. It was believed that the reliability methods could potentially be 

utilized in a technical parameter risk study.

This literature review will frame the current research topic within the context of 

the overall body of knowledge. Additionally, the review will act as a filter through the 

expanse of related literature and provide convergence to, and thus justification for, a 

specific integrated risk analysis strategy for the multidisciplinary design environment of 

this research. The eight sections of this literature review include 1) risk analysis 

applications, 2) uncertainty identification/quantification, 3) uncertainty propagation, 4) 

uncertainty management, 5) current risk analysis research, 6) available risk analysis 

software, 7) literature review summary and 8) contribution. Literature from the four 

categories of probabilistic risk analysis was examined in an effort to identify pertinent 

strategies that could be implemented in this study. Figure 2 identifies some of the noted 

authors within each category and relevant strategies are documented in subsequent
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paragraphs. Technical Parameter literature specifically focused on multidisciplinary 

design. Figure 3 identifies the strategies documented in the literature for each element.

2.1 Risk Analysis Applications

Cooper and Chapman (1987) stated that “ ... risk analysis models manipulate 

probabilities and probability distributions, in order to assess the combined impact of 

risks.... The exact manner in which this is done depends on the purpose of the analysis.” 

More succinctly, no single risk analysis model is suitable for every purpose. Some 

models are simplistic while others are required to be complicated due to the nature of the 

problem. Quantitative risk analysis has been applied in the fields of project management, 

and finances. Most recently, it has been applied to the field of multidisciplinary design 

optimization (MDO). MDO of large systems is characterized by interdisciplinary 

couplings, multiple objectives, large design variable space and a number of design 

constraints (Tappeta and Renaud, 1997). Reliability-based risk analysis is a growing 

field with a different approach than traditional technical quantitative risk analysis 

methods.

2.1.1 Quantitative Risk Analysis

Winston (1996) and Cooper and Chapman (1987) address risk modeling for 

project management and financial endeavors. Hertz and Thomas (1983) provide 

coverage of financial risk analysis techniques. There are other text written about risk 

with respect to these disciplines. Those text cited here are a representative sampling.

While there are several articles and texts written on project management, and 

financial risk analysis, there appear to be no specific text available on risk analysis 

pertaining to multidisciplinary design optimization. A few journal articles have been 

identified. The primary article cited here is by Du and Chen (1999). This article 

addresses the elements of uncertainty quantification, uncertainty propagation and 

uncertainty management. It addresses the decision analysis process within the
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uncertainty management element. Du and Chen (1999) use both the extreme condition 

approach and Monte Carlo simulation to propagate uncertainties. Finally, a robust design 

mitigation element was employed in the risk analysis strategy. Gu, Renaud and Batill 

(1998) also address the identification and propagation of uncertainties within their article.

Putko et al (2001) extend the research of Du and Chen (2000) by applying the 

three stages of risk analysis to Computational Fluid Dynamics (CFD). The authors use 

different propagation techniques from that of Du and Chen (2000). These techniques are 

discussed further in 2.3.2. The authors, here, apply risk analysis in a single discipline 

setting, but refer the readers to articles where the propagation technique has been used in 

Finite Element Analysis (FEA) as well. The methodology, therefore, has the potential of 

being used in a multidisciplinary design environment.

A review of the risk analysis literature revealed common threads between the 

applications. Each application had the elements of uncertainty quantification, uncertainty 

propagation and risk management within the respective strategies. Historical data was 

most typically used as the method of acquiring uncertainty data and data characteristics. 

Crude Monte Carlo simulation methods were the chosen techniques for propagating 

uncertainty. Finally, in financial applications, sensitivity analysis was used as the form of 

risk management. Here, efforts to understand the sensitivity of the solutions or responses 

to variations in input data were undertaken with no attempt to actually control the input 

parameters. In MDO applications, full factorial designs and Response Surface 

Methodology (RSM) were employed to manage risk.

2.1.2 Reliability-based Risk Analysis

Reliability-based risk applications utilize different techniques for quantifying and 

propagating uncertainty (probability of failure) than other quantitative risk analyses. 

Ayyub and McCuen (1997), Henley and Kumamoto (1981), Gnedendo etal (1999), 

Kumamoto and Henly (1996) and Lewis (1996) have written text that contain elements of 

risk analysis pertaining to reliability engineering. Haidar and Mahadevan (2000a and
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2000b) have written two books on reliability and probabilistic methods in engineering 

design. Mahadevan and Han (1997) were funded by NASA to study multidisciplinary 

system reliability analysis and documented their work in a final report. Software 

programs, such as NESSUS, have been written to perform many of the computational 

procedures associated with reliability-based risk analysis.

Reliability-based risk analysis also makes use of Monte Carlo simulations. 

Random sampling, importance sampling and antithetic variates are all used as the 

sampling techniques associated with Monte Carlo estimators.
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2.2 Uncertainty Identification/Quantification

The first element of a risk analysis is the identification/quantification of 

uncertainties. This element also includes data gathering techniques.

2.2.1 Uncertainty Identification

Uncertainty is the inability to determine the true state of a system. It is caused by 

incomplete knowledge or stochastic variability [Haimes (1998)]. Uncertainties must be 

identified before they can be quantified. Ayyub (1994) outlines a variety of uncertainty 

types encountered in engineering design problems. Du and Chen (1999) further 

categorized Ayyub’s uncertainty types into internal and external uncertainties. Gu et al.

(1998) provide illustrations of the various categories of error (uncertainties) associated 

with simulation and modeling. Simulation tool uncertainties stem from model 

approximation error and algorithmic error associated with optimization techniques. 

Computational error also exists, but this type of uncertainty can be minimized and is 

typically neglected. A failure to account for uncertainties associated with simulation 

based tools and input data parameters can produce poor analysis results.

A significant source of uncertainty often ignored is how well the model used 

actually represents the real system’s significant behavior. This uncertainty is introduced 

through model topology, parameters, data, optimization technique and human subjectivity 

[Haimes (1998)]. Model topology refers to the form, order and type of equations used to 

model a system. The decision to use polynomials, partial differential equations, linear or 

nonlinear equations is a source of uncertainties and error in the accuracy of a model.

Once the topology has been selected, the choice of model parameters impacts the 

accuracy of the model to the real system. The parameter estimation process is discussed 

further in section 2.2.2 and affects the calculated values of the parameters as well as the 

model itself. Having enough representative data for model construction, calibration and 

validation is very important to risk analysis. A lack of data due to collecting, processing 

or analyzing techniques can cause substantial errors. Once the mathematical model has
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been constructed and parameters identified, selecting and applying a suitable 

optimization strategy introduces another source of uncertainties. Human subjectivity 

plays a huge role in the selection of major model characteristics. Human judgments are 

affected by the background, training and experience o f the analyst. It is very difficult to 

measure the impact of human subjectivity on model errors.

2.2.2 Uncertainty Data Acquisition

This literature review focuses on the use of expert opinion or expert judgment in 

the gathering o f uncertainty input parameters. “Expert judgment methods utilize 

recognized or identifiable experts(s) in a given domain to provide an informed judgment 

about some variable of interest...” (Monroe 1997). When there is no statistical 

information, input parameter distributions will be obtained using the expert judgment 

methodology. There are several expert judgment acquisition techniques such as the 

Delphi method [Dalkey (1969)], the Nominal Group Technique [Lock (1987)], 

brainstorming [Lock (1987)] and Monroe’s approach (1997). Each of these techniques, 

except brainstorming, elicits expert opinion using questionnaires. Delphi is 

accomplished at a distance. It is a method of dialogue with feedback restrictions. Open 

discussion is not permitted. The feedback consists of summary statistics such as group 

means or quantiles. Each person then reassesses their distribution and the process is 

repeated until the different opinions converge toward a common distribution. This 

approach can be inexpensive compared to group techniques since the experts need not 

communicate directly and social pressure is reduced. Winkler (1986) points out that it is 

difficult to limit the feedback to summary statistics if a specific family of distributions is 

not already known.

Nominal Group Technique and brainstorming are accomplished in a group 

setting. The Nominal Group Technique (NGT) combines aspects of silent voting with 

limited discussion to help build consensus and arrive at a team decision. Using NGT, the 

first round of opinions is generated silently, and no discussion is held until all opinions 

have been presented [P. K. Kelly (1994)]. Each opinion is then discussed separately.
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Next, each expert ranks the list of opinions silently. Then, the members call out their 

rankings. Rankings are then totaled and the opinion with the lowest ranking is taken as 

the consensus opinion. NGT ensures equal participation and minimizes controversy.

The objective of brainstorming sessions is to ensure that everyone has the same 

information on which to base their opinions. Pertinent information is gathered prior to 

the meeting and disseminated to group members. At the meeting discussions are held on 

the uncertainties o f each variable. Discussions are held until consensus opinions have 

been reached. Brainstorming sessions can drag on when issues are controversial. Often, 

strong personalities dominate the discussion and good ideas or opinions can be missed.

The Monroe approach [Monroe (1997)] of soliciting expert opinion was 

specifically developed for risk analysis in a conceptual design environment. The 

technique presented by Monroe (1997) uses a set of questionnaires to qualify and 

quantify uncertainty associated with parameters as obtained from experts. This method 

elicits minimum, most likely and maximum values of an input parameter. Experts are 

asked for cues that help shape their opinion. Cues from each expert are then shared with 

other experts and each is asked to reexamine their first opinion and revise it if 

appropriate. The methodology was used in determining uncertainty associated with 

weight estimating relationships for a launch vehicle in the conceptual design phase. 

Monroe hypothesized the usefulness of the technique in other decision-making arenas 

analogous to the conceptual design phase of a launch vehicle.

In a conceptual design domain, solicitation is often required to be accomplished at 

a distance. The Delphi and Monroe methods would then be suitable. The Delphi method 

requires several iterations and can become time consuming to achieve convergence. The 

Monroe expert judgment methodology seeks to take advantage of the effectiveness of 

questionnaires while eliminating the repetitive steps of the Delphi method.

It should be noted that studies conducted by previous researchers indicate that 

using human judgment as a basis for making decisions can produce poor results.
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Christensen-Szalansld and Beach (1984) point out that there have been a number of 

studies that support the use of human judgment, but these studies have not received as 

much attention as studies which do not support the practice. The authors’ term for this 

phenomenon is citation bias. The fact that expert opinion is included in this research 

methodology is not an argument for or against the use of human judgment. That debate 

is beyond the scope of this study which assumes that there is a need to use expert opinion 

due to a lack of historical or statistical data. The use of expert judgment techniques in this 

manner coincides with Dalkey and Helmer (1962) recommended utilization. Studies by 

Ettenson and Shanteau (1987), Einhom (2000) and Monroe (1997) highlight the 

conditions that are necessary to identify experts when judgments are the source of 

statistical data. In an effort to identify conditions which impact the validity of expert 

judgments, Beach (197S) found that experts do better when asked for an upper and lower 

bound around a midpoint rather than for probability distributions.

2.2.3 Uncertainty Quantification

Having elicited data from the experts concerning an uncertain variable, it is then 

necessary to fit probability distributions (risk profiles) to the information obtained.

Fitting probability distributions to data assumes that sufficient information is available to 

perform the required analytical process and that an analytical technique (e.g., the extreme 

condition approach) is not being employed to quantify uncertainty. There are numerous 

articles and text that address probability modeling for both historical and expert judgment 

data. Examples include Vincent (1998), Law and Kehon (1991), Mendenhall and Sincich 

(1995) and Haidar and Mahadevan (2000a and 2000b). Vose (1996) states that as a rule 

for modeling expert judgment, non-parametric distributions are more flexible and reliable 

than parametric distributions. He also points out that there are exceptions to the rule. For 

example, a triangular distribution is the most commonly used distribution for modeling 

expert opinion. Other distributions appropriate for the task are the BetaPERT, the 

modified BetaPERT, the general, the cumulative and the discrete distributions. Beach 

(1975) and Monroe (1997) are proponents of eliciting expert judgments by requesting
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minimum, most likely and maximum values. Three distributions fit this requirement and 

are discussed below.

The triangular distribution is an approximate modeling tool used when end points 

and most likely value can be estimated. It has no theoretical basis, but derives its 

statistical properties from its geometry. The flexibility of the shape of this distribution 

coupled with its ease of use make this a popular distribution. Estimating end points, 

which are absolute extremes, is sometimes difficult. This is a drawback to the use of this 

tool. The ability of the triangular distribution to maintain skewness is a strength when 

considering its use as an input distribution. Figure 4 illustrates examples of some 

triangular distributions.

008 -

(M M  •

Figure 4 Triangular Distributions (Vose, 1996]

The BetaPERT is a four-parameter version of the Beta distribution. It rescales the 

beta distribution to model a variable that runs between two points. The formula used is 

provided by the probability density function. The BetaPERT has been used to model
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activity duration in PERT networks. It assumes that mean = (minimum + 4* most Jikely 

+ maximum)/6 . The mean of the BetaPERT distribution is four times more sensitive to 

the most likely value than the end values. This is different from the triangular 

distribution mean which is equally sensitive to all three points. The standard deviation of 

a BetaPERT is also less sensitive to the estimates of the extreme. The BetaPERT can 

produce shapes with varying degrees of uncertainty (Figure S).

* *T

MaPERT(0,10,20)

BataPERT(0,49,60)

B*UP€RT(0.10,50)

Figure 5 BetaPERT Distributions [Vose, 1996]

The modified BetaPERT (Figure 6) allows the user to vary the degree of peakness 

of the distribution. The modified BetaPERT has a mean -  (minimum + y*most likely + 

maximum)/(y+2). In the standard BetaPERT, y =4. As y increases, the distribution 

becomes more peaked around the most likely value. Experts estimate the same three 

values of minimum, most likely and maximum. The values of y are varied and the 

distribution plotted for each y. The expert is then allowed to choose which distribution 

best fits his opinion. This distribution is used when experts have a good understanding of 

statistical distributions.
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a i r‘

Figure 6 -  Modified BetaPERT (Vose, 1996]

Of the three distributions just discussed, the triangular distribution is the most 

intuitive and easiest to use. Haimes (1998) states that the triangular distribution is an 

ideal approach for soliciting expert opinion when the expert is not comfortable with the 

assessment of probabilities.

Having quantified individual expert opinions, the next step in this methodology is 

to aggregate those opinions. Monroe (1997) did not implement a methodology for 

combining multiple expert judgments, although it was suggested that such an approach is 

needed. While the research performed by Monroe (1997) extracted opinions from several 

experts, analyses were conducted using each individual expert’s opinion. There was no 

attempt to combine the expert judgments prior to conducting analysis. Vose (1996) 

provides recommendations on such methods that facilitate integration of multiple 

opinions into probability distributions.

There are mathematical, behavioral and mixed approaches to aggregating expert 

judgments. Mathematical approaches involve the statistical integration of a number of 

opinions into a single judgment. Behavioral approaches entail interaction o f the entire
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group of experts until a consensus is achieved (Rowe 1992). With respect to 

mathematical aggregation, Rowe addresses the fact that composites formed by combining 

judgments have frequently been shown to outperform individual judgmental tasks 

requiring subjective input. Some researchers oppose the integration of expert judgments 

and infer that accurate models would eliminate the need for such integration. Other 

researchers believe that aggregation of opinions is simply a substitute for our inability to 

identify the most expert individual (Rowe 1992). Rowe, further, suggests that behavioral 

aggregation should be used when there is a variance of opinion in member expert groups. 

Additionally, there are two mixed approaches noted by Rowe (1992): Delphi and 

Nominal Group Technique. Monroe (1997) suggested a mixed approach that utilizes 

questionnaires to effectively ameliorate bias among experts.

Whether the aggregation approach is mathematical, behavioral or mixed, the 

integration technique must consider applying weighting factors to individual expert 

opinions. With respect to weighting factors, Genest and Zidek (1986) stated that 

preference-based opinion is not part of statistical science, but is treated as a group 

decision problem. This statement would lead one to explore decision theory and the 

concept of utility to a decision maker. In keeping with decision theory, the derivation, 

quantification and application of weighting factors should be determined by a process and 

it is that process that should be logical and repeatable. Of importance is whether the 

group must agree to the resulting aggregation opinion as an expression of consensus.

This particular problem has not been treated in statistical literature [Genest and Zidek 

(1986)] and is not considered here.

Many researchers on the subject of aggregating expert opinion agree that 

modeling is the most appropriate method of combining opinions. A major concern in the 

expert resolution literature is whether probabilities should be combined via a 

multiplicative rule, weighted average or some other type of formula [Winkler (1986)]. 

Vose (1996) advocates the weighted average method while some researchers [Winkler

(1986); Clemen and Winkler (1993)] advocate the Bayesian approach. The Bayesian 

approach is thought to be relatively straight forward, but difficulty exists in assessing the
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likelihood function [Clemen and Winkler (1993)]. Vose (1996) has used discrete 

distributions to aggregate opinions for a number of years with good results and it is 

relatively easy to implement.

In this research, the discrete distribution was chosen to aggregate multiple expert 

opinions as it provides for an accurate representation of the combined opinions given the 

relative importance of each expert judgment.

13  Uncertainty Propagation

Uncertainty propagation is a major element in the proposed research, 

consequently, it is essential to discuss relevant literature on the topic. Fortunately, the 

propagation of error is a classical problem and principles are well documented (Klir,

1994 and Evans, 1992). Although uncertainty can be modeled as either a linear or non

linear function, most analysis procedures assume linearity. This assumption significantly 

reduces the complexity o f uncertainty modeling especially with respect to the 

propagation across multidisciplinary systems.

Ayyub and Chao (1997) present uncertainty modeling theory. Gu, Renaud and 

Batill (1998) elaborate on single discipline uncertainty modeling within their study. Box, 

Hunter and Hunter (1978) is an excellent text on statistics for experimenters and is still 

cited in many studies today when discussing uncertainty propagation. Gu, Renaud and 

Batill (1998), and Du and Chen (1999) develop theories for "worst case" uncertainty 

propagation across coupled systems. Balci (1998) explores the propagation of uncertainty 

modeling using the extreme condition approach in discrete event simulation.

2.3.1 Monte Carlo Methods

Monte Carlo simulation is one of the traditional tools for propagating 

uncertainties in risk analysis modeling. Monte Carlo algorithms are available for all of
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the distributions considered feasible for expert judgment data acquisition by Vose (1996). 

Emphasis on efficient Monte Carlo sampling dates back to the 1950s, and efficiency 

issues are just as important today as we strive to solve problems o f larger scope and 

complexity (Gentle, 1998). By increasing the number of observations, the variance in 

computed results can be reduced (Hammersley and Handscomb, 1964). Consequently, to 

improve accuracy of Monte Carlo simulations, a large number o f iterations are typically 

required. Techniques, such as importance sampling, stratified sampling, control variates, 

antithetic variates, and Latin Hypercube sampling have been used to reduce the number 

o f iterations required to improve computational efficiency. These methods are known as 

variance reduction techniques and are addressed in Gentle (1998), Hammersley and 

Handscomb (1964), Law and Kelton (1991), Kleijnen (1998) and numerous other text. 

Other variance reduction techniques or sampling schemes are mentioned in some of the 

more recent articles and text. The techniques listed here are traditional in that they are 

covered in the older text and articles as well as the modern literature.

Hammersley and Handscomb (1964) demonstrate through calculative procedure 

that methods used as variance reduction techniques are more efficient than Monte Carlo 

experiments with random sampling. Here the terms experiment, methods and simulation 

are used interchangeably with regard to Monte Carlo techniques. Hammersley and 

Handscomb (1964) used a function for which there was an existing analytical solution to 

demonstrate the gains in efficiencies when employing stratified sampling, importance 

sampling, control variates or antithetic variates verses random sampling in Monte Carlo 

methods.

McKay, Beckman and Conover (1979) introduced Latin Hypercube sampling in a 

study where a comparison of the efficiency with that of random sampling and stratified 

sampling techniques was made. Latin Hypercube sampling was shown to reduce the 

sampling error significantly over the two comparative techniques. Beckman and McKay

(1987) and Tang (1993) provided empirical evidence that Latin Hypercube sampling was 

more efficient than simple random sampling. Additionally, Stein (1987) showed that the
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variance of Monte Carlo estimators using Latin Hypercube sampling was smaller than the 

variance of Monte Carlo estimators using random sampling.

An objective of sampling is to reduce the variance of the estimators while 

preserving other good qualities, such as unbiasedness [ Gentle (1998)]. When discussing 

Monte Carlo sampling procedures, we are discussing variance reduction in Monte Carlo 

applications, ft should be noted that there are other Monte Carlo variance reduction 

methods that are not specifically sampling techniques. Analytic reduction, antithetic 

variates and common variates are examples of purely variance reduction techniques.

Random Sampling uses independent random numbers between 0 and 1 to 

generate variates from a specific input distribution. Using this technique, random 

numbers are equally likely to occur, but variates with higher probability o f occurrence are 

more likely to be generated. With enough iterations, this sampling technique recreates 

the input distribution. When a small number of iterations are performed, variates tend to 

cluster around high probability outcomes and the input distribution is not recreated 

accurately enough. It takes many iterations when using random sampling for the mean to 

converge upon the true mean and stabilize. Other statistics used to assess convergence 

include skewness, percentiles and standard deviation.

In Stratified Sampling, the rule is to sample where values are likely to exhibit a lot 

of variability. In this sampling technique, distinct subregions (or strata) are formed. 

Within these strata, random sampling is conducted. As each region of the distribution 

function is sampled, convergence happens more rapidly with Stratified Sampling than it 

does with Random Sampling.

The objective of Importance Sampling is to concentrate the distribution of sample 

points in parts of the interval that correspond to large values or areas of more 

“importance.” Importance Sampling also results in improved efficiencies over random 

sampling. Hammersley and Handscomb (1964) show that Importance Sampling and
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Stratified Sampling result in about the same improvement in efficiencies over Random 

Sampling.

The principle behind Latin Hypercube Sampling is to sample equally along the 

entire distribution function. Latin Hypercube Sampling is a form of Stratified Sampling. 

The strata form equal probability regions. Contrary to stratified sampling, only one 

sample is taken from each strata. With Latin Hypercube Sampling, input distributions are 

more accurately reflected by the samples. It avoids the problem of clustering associated 

with the Random Sampling technique when insufficient iterations are conducted.

McKay, Beckman and Conover (1979) show that Latin Hypercube Sampling is an 

improvement in efficiencies over random sampling and stratified sampling. Based on 

results by Hammersly and Handscomb (1964), one may infer that Latin Hypercube 

Sampling is also an improvement over Importance Sampling. Latin Hypercube Sampling 

forces simulation sampling to include low probability events which produces more 

accurate simulation outputs. Latin Hypercube Sampling provides for faster run times by 

requiring fewer iterations for convergence.

In a developing research-in-process, Du and Chen (1999) explore a statistical 

approach to propagating uncertainty which includes the use of a Monte Carlo simulation 

with random sampling techniques. Probability distributions were developed for input 

data and response surface equation errors. Then, a statistical analysis with Monte Carlo 

simulation was used for propagation of uncertainties across multiple designs. The 

sampling procedure used was random, but the use of Latin Hypercube Sampling to 

improve computational efficiencies was hypothesized. As the results of the literature 

review suggests, the use of Latin Hypercube Sampling, as well as other sampling 

techniques, provides improvements in computational efficiencies over random sampling.
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2.3.2 Analytical Solutions

Analytical solutions are approximations and are not as accurate as simulations. 

Additionally, as the number of modeling input parameters increase, First Order and 

Second Order approximation methods can take as long as Monte Carlo simulations to 

converge upon an output variable.

2.3.2.1 FORM, SORM and FPI

Techniques such as First Order Reliability Method (FORM) (Ayyub and McCuen,

1997) and Second Order Reliability Method (SORM) (Ayyub and McCuen, 1997) are 

analytical approximation methods that have their roots in reliability engineering (See 

figure 7). FORM utilizes a reliability index (0) and the cumulative probability 

distribution function of the standard normal variate (<t>) to predict the probability of 

failure (Pf). Tables are used to obtain the cumulative probability distribution function of 

the standard normal variate. FORM uses a Taylor series expansion about the mean values 

o f the basic random variables and truncates the series to the first order terms (Ayyub and 

McCuen, 1997). This yields a first order approximate mean and variance for inclusion 

into the reliability index equation. Using the second order mean (including the square 

term in the Taylor series expansion) improves the accuracy of the mean estimation.

Fast Probability Integration (FPI) is another analytical approximate solution that 

has been used in reliability-based risk applications. “Linearizing the failure function and 

approximating the non-normal variables by normal functions leads to very simple 

approximations” (Chen and Lind, 1983). It is this linearization and normalization that is 

called Fast Probability Integration (FPI). FPI gives good approximation to small 

probabilities in the 10-3 to the 10-7 range. This analysis technique approximates the tail 

portion of a function. Since probabilities in reliability analyses are typically small, they 

would fall within the tail section of the distribution. The errors have been shown to be 

within five percent of the Monte Carlo solution (Chen and Lind, 1983). Users should be 

cautioned of employing FPI outside of its intended range. The closer the probability is to
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the center o f a non-normal distribution, the more the error increases. FPI methods have 

been developed by Rackwitz-Fiessler (R-F) and Chen-Lind (C-L). Wu (1986) examines 

a new FPI algorithm that was proposed by himself and Winching in an earlier 1985 

effort. This new FPI is an extension of the R-F and C-L schemes. As a result of the 

inaccuracies outside of the tail portion of a non-normal distribution, FPI should be used 

with caution in risk analysis.

2.3.2 2 FOSMandSOSM

The First Order Second Moment (FOSM) and Second Order Second Moment 

(SOSM) methods have been used in Computational Fluid Dynamics (CFD) and Finite 

Element Analysis (FEA) to propagate uncertainty within risk analysis [Putko et al, 2001]. 

To use FO and SO analysis, CFD output solutions are approximated using Taylor series 

expansions. First-order Taylor series approximations are used for FOSM and second- 

order Taylor series approximations are used for SOSM. Expected values for the mean 

(first moment) and variance (second moment) of the output function are then obtained. 

The FOSM and SOSM methods are straight forward, but difficulty lies in computation of 

sensitivity derivatives (SDs) from the CFD codes. Putko et al (2001) use the approach 

suggested by Taylor et al (2001).

2.3.2.3 Extreme Condition Approach

The extreme condition approach for two coupled simulation tools is presented by 

Du and Chen (1999). The approach is appropriate across systems for which a range is 

known for each input variable. A range of error functions for the two simulation tools 

would also need to be available. The first simulation tool is both minimized and 

maximized over the range of the input variables plus the error. The output o f this 

minimization and maximization effort is a range for the linking variable (Y). The second 

simulation tool is then minimized and maximized over the range of the linking variable 

(Y) plus the simulation tool error. The result is a range for the output variable (Z) o f the 

coupled system.
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2.4 Risk Management

Kumamoto and Henley (1996) refer to probabilistic risk assessment as “.. .more 

scientific, technical, formal, quantitative, and objective than the management phase, 

which involves value judgments and heuristics, and hence is more subjective, 

qualitative....” Using robust design techniques for risk management is a means of 

eliminating some of the subjectivity to the conduct of risk analysis.

In the past, mitigation strategies have focused on reducing the magnitude of 

response variable variations. More recently, techniques have been generated that reduce 

the impact of potential variations by manipulating controllable variables (Du and Chen, 

1999). These mitigation strategies are based on the principles of robust design. Robust 

design uses mathematical formulations from statistical design of experiments to obtain 

information about design variables involved in making engineering decisions (Phadke, 

1989).

2.4.1 Design of Experiments

There are several good texts on statistical design of experiments. Among the 

more noted authors are Box and Draper (1969), Box and Draper (1987), Box, Hunter and 

Hunter (1978), Hicks (1964) and John (1971). Methods cited in these publications 

include full factorial designs, fractional factorial designs and response surface techniques. 

Full factorial experiments require significant computational time when experiments 

involve large factor numbers accompanied with two or more factor levels (Law and 

Kelton, 1991). Fractional factorial designs are a variation on full factorial designs and 

require less computational effort. Unimportant factors are screened out in configuring 

the experiment and attention is then given to the rem aining factors.

Design of experiments emphasizes the experiment, the design and the analysis. 

The experiment consists of a problem statement, identification of factors and response 

variables. The design focuses on the number of observations, the order of the
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observations, methods of randomization and mathematical model representations. 

Analysis entails the data collection methods, computation test statistics and the 

interpretation of results. The objective of design of experiments is to obtain more 

information for less cost than can be obtained by traditional experimental studies (Hicks, 

1964).

2.4.1.1 Taguchi Methods

“The Taguchi Method uses orthogonal arrays (OA) from design of experiments 

theory to study parameter space with a small number of experiments” (Unal et al, 1993). 

Arrays are fractional factorial designs and illustrate that full factorial designs can be 

reduced while still maintaining statistical significance. The Taguchi method identifies 

controllable parameter settings that optimize the system response variable and reduce 

design sensitivity to variations in other uncontrollable parameters. Phadke (1989), Unal 

et al. (1993), as well as other authors, outline the process of performing Taguchi’s 

method. Taguchi has been credited with making optimization user friendly for engineers 

who have little or no training in optimization methods (Chen et al, 1996). Box (1988) 

criticizes Taguchi, however, for the statistical methods being “sometimes unnecessarily 

inefficient and complicated.” Shortcomings of the Taguchi method include the fact that it 

is not accurate for nonlinear design problems and that it involves a single performance 

measure. Chen et al. (1996) recommend that multiple performance measures be utilized 

as there are multiple objectives for design systems.

2.4.1.2 Response Surface Methodology (RSM)

Response Surface Methodology involves a dependent variable (the response 

variable) and several independent variables (control variables). By careful design and 

analysis of experiments, RSM seeks to relate a response or dependent variable to the 

levels of a number of controllable input variables that affect it (Box and Draper, 1987). 

The objective is to optimize the response variable through the use of an estimating
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algorithm. RSM is covered by Box and Draper (1987), Box, Hunter and Hunter (1978), 

Hicks (1964), and Law and Kelton (1991).

2.4.2 Sensitivity Analysis

Risk analysis models are constructed based on certain assumptions and premises. 

Since most systems are dynamic, assumptions for models may not be representative of 

changing conditions. Additionally, model output may be sensitive to certain parameters. 

Sensitivity analysis provides a methodological framework in order to evaluate the 

sensitivity of model output or constraints to changes in model parameters (Haimes,

1998).

2.4.3 Decision Analysis

Decision analysis is “a formalization of common sense for decision problems 

which are too complex for informal use of common sense” (Eppen et al, 1993). It entails 

assigning utilities to projected outcomes and optimizing the expected utilities. Raififa 

(1968) provides an elementary discussion on the application of utility functions. 

Quantification of preferences is the precursor to developing utility functions. LaVille 

(1978) outlines the fundamentals o f decision analysis which includes development of 

preferences and utility functions.

Decisions in a multidisciplinary design environment are, relatively, straight 

forward when the optimization problem has only one response or performance measure. 

Tradeoffs between multiple and often conflicting objectives is at the heart of risk 

decision-making (Haimes, 1998). When multiple performance measures are required, 

additional techniques to those used for single objective problems are required to make a 

decision or manage uncertainty.
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Compromise programming is an interactive method appropriately used in a 

multiple linear objective problem. Compromise programming identifies solutions that 

are closest to the ideal solution as measured by some distance (Goicoechea, Hansen and 

Duckstein, 1982). The ideal solution is typically not attainable, but serves as an 

evaluation standard for nondominated or Pareto solutions.

The concept of multiple objective optimality is necessarily different from single 

objective optimization. A Pareto optimal solution falls in the category of multiple 

objective optimality. It is that solution that improves upon one objective function at the 

expense of another objective function (Haimes, 1998). Pareto solutions are also known 

as nondominated solutions. Chen et al. (1988) present a strategy by combining Response 

Surface Methodology with the compromise Decision Support Problem (DSP) for 

obtaining a multiobjective solution.

2.5 Current Risk Analysis Research

Figure 8 illustrates the research that is currently being conducted in the area of 

multidisciplinary design risk analysis. Many current researchers are using metamodels or 

response surfaces to simulate the modeling tools in the conceptual design phase. 

Analytical solutions are primarily being explored in an effort to speed up computations 

while propagating uncertainties. Analytic solutions are deemed appropriate in a 

conceptual design environment because o f the need to obtain approximate, but adequate, 

information in this phase of design. More accurate and costly simulation solutions are 

typically performed in the detailed design phase.

Monte Carlo solutions can be implemented with both metamodels and the 

modeling tools. A goal of launch vehicle research is to perform risk analysis on existing 

modeling tools without the need for development of response surfaces. This research 

study and the work performed by Du and Chen appears to meet that need. The use of 

Monte Carlo simulation with Latin Hypercube Sampling can be used in the conceptual 

design phase of a complex system to propagate uncertainties. This technique is just as
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accurate as Monte Carlo simulation with random sampling but provides for faster 

convergence. Additionally, the technique could be used in the detailed design phase, 

thereby only requiring an update of data from the conceptual design phase. Savings in 

computational manpower should be realized.

Although work with modeling tools and Monte Carlo simulations is being 

conducted for single disciplines [Monroe (1997), Putko et al. (2001) and Smith and 

Maheadevan (2001)], no research has been identified with coupled multidisciplinary 

design tools using either Monte Carlo simulations or analytic methods to propagate 

uncertainties.

2.6 Available Risk Analysis Software

There are software programs developed to work with spreadsheets for simulating 

the simple risk analysis tasks associated with project management and financial 

applications. @Risk works with Microsoft Excel and Microsoft Project. Other software 

products include Monte Carlo, Opera, Predict!, Risk 7000, Risk+ and Crystal Ball.

The software used in this research and risk analysis application would have to 

support existing systems at NASA Langley Research Center used for launch vehicle 

conceptual design. Current analysis programs are written mostly in FORTRAN and 

some programs are in C++. Although commercial software does not interface with these 

existing systems, their use could serve to validate results o f programs developed using 

C++or FORTRAN.

2.7 Literature Review Summary

Figure 9 summarizes the results of the literature review. This risk analysis 

strategy will be further developed in Chapter m .
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Uncertainties in multidisciplinary design can be identified as either internal or 

external uncertainties. These uncertainty types can be quantified using a variety of 

probability distributions following data collection using historical data or expert 

judgment. Expert judgment is suitable for this domain. In multidisciplinary design, there 

are a variety of methods by which the efficiency of Monte Carlo simulations can be 

improved. Utilizing any one of the variance reduction techniques cited in 2.3.2 in place 

of random sampling would facilitate an increase in computational efficiency. Latin 

Hypercube sampling appears to have the greatest opportunity for improved efficiency. 

Using robust design strategies such as Taguchi’s orthogonal arrays or response surfaces 

to mitigate uncertainty are acceptable strategies used in multidisciplinary design. 

Response surfaces already exist for the specific problem under consideration and are 

therefore chosen to support this research for development and application. Finally, 

decision analysis for multiobjective criteria can be conducted by employing the 

compromise decision support problem and Pareto solutions as used by Du and Chen

(1999).

This literature review has covered a broad range of topics. Each of the individual 

topics has a large volume of literature associated with it. This review was not intended to 

provide complete coverage of the individual risk analysis elements. The literature review 

is intended to identify techniques and procedures that are relevant to multidisciplinary 

design optimization risk analysis.
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2.8 Contribution

The concept of using uncertainty analysis within a design environment is not 

new, but its extension to handle multiple disciplines within a complex and integrated 

engineering problem such as launch vehicle design has yet to be attempted. Stochastic 

optimization methods that use uncertainty information have been minimally developed; 

however, a general approach to create a multidisciplinary design capability which is 

based on uncertainty analysis currently does not exist. This research contributes to the 

literature of multidisciplinary design optimization (MDO) by promulgating a strategy for 

conducting uncertainty analysis in a multidisciplinary design environment.

The selection of the proposed modeling/optimization problem is an extension of 

the Du and Chen (1999) research in that it is applied to a real-world problem that is more 

complicated than the analytical model used in their study. This research study includes 

one variable input parameter and multiple input parameter distributions instead of one. 

The extension of the Du and Chen methodology to a real-world complex system was 

suggested by the authors themselves. This research also extends the work of Richard 

Monroe with expert judgment data collection techniques and incorporates those 

techniques into the methodology developed by Du and Chen (1999). The current 

research further extends the work of Unal, Lepsch and McMillin (1998) with respect to 

optimization of integrated response surfaces for a launch vehicle.
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CHAPTER HI 

METHODOLOGY

Figure 10 illustrates the concept of uncertainty propagation and management 

within a multidisciplinary environment. The research will be divided into three stages or 

modules. The first two modules include the quantification and propagation of 

uncertainties. The final stage involves the management of uncertainties or response 

optimization.
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Figure 10 Integrated Uncertainty Mitigation Strategy

The practical application of this methodology is on a weights & sizing and 

aerodynamics optimization problem for a launch vehicle concept. The research uses the 

two response surface models that had been developed to approximate the disciplinary 

analysis codes used in the design process by Unal, Lepsch and McMillin (1998). The 

two simulation models selected were part of a configuration optimization study 

conducted on a single-stage-to-orbit launch vehicle and were second order equations. The 

first response surface equation was developed from 45 designed experiments using the 

Configuration & Sizing (CONSIZ) tool. The output of this tool is center of gravity with 

payload included (Cgin). The second response surface equation was developed from
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designed experiments of the Aerodynamic Preliminary Analysis System (APAS). The 

output of this tool is pitching moment coefficient (Cm) for specific Mach numbers. This 

research only examines Mach 0.3. Figure 11 illustrates the interaction of the two 

response surfaces with their associated uncertainties. The objective is to optimize the 

pitching moment coefficient (Cm) over the range of angles of attack (a) and other design 

variables. These variables include fineness ratio (FR), wing area ratio (WA), tip fin area 

ratio (IFA), body flap area ratio (BFA), ballast weight (BL), mass ratio (MR) and elevon 

deflection (DELEV). Modeling tool error for both CONSIZ (ei) and APAS (62) are 

included in the solution of the problem.

iML
m oktian MaiM H*1 »

Simulation Model 1 Sdnuktioa MHH Q

*» » *  r On -  F, (x,, x , x* x* x „  x ,, eg) On
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Figure 11 Integrated Simulation
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3.1 Uncertainty Identification/Quantification

3.1.1 Uncertainty Identification

Uncertainty caused by variability takes three forms. Temporal, spatial and 

individual heterogeneous variability are the result of inherent fluctuations or differences 

in the quantity of concern [Haimes, 1998]. Temporal variability fluctuates with time. 

Spatial variability fluctuates according to geography and individual heterogeneous 

variability covers all other sources of fluctuation.

Uncertainty caused by a lack of knowledge also takes three forms. These forms 

are model, parameter and decision uncertainty. Model uncertainty is potentially the 

largest contributor of error if it is improperly treated. The use of surrogate variables or 

the exclusion of variables is potentially a source of modeling uncertainty. The impact of 

rare situations on models is a source of uncertainty. Modeling uncertainty can also be the 

result of the use of approximations, conflicting expert opinions or using an incorrect form 

for the basic model. Parameter uncertainties can be the result of random errors in direct 

measurements or systematic errors induced by the method of sampling. Parameter 

uncertainty also exists simply because of unpredictability.

Decision uncertainty arises when there is controversy over how to compare or 

weigh objectives. The first source of decision uncertainty is found in the selection of an 

index to determine risk. The second source of decision uncertainty is in the evaluation of 

the cost of risk. The final source of decision uncertainty is the quantification of value, the 

acceptable level o f risk. Uncertainty specific to this research is discussed further in 

Chapter IV.
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3.1.2 Uncertainty Quantification

In this study, external uncertainty quantification is accomplished using the expert 

judgment approach of Monroe (1997). The expert judgment technique used in this 

research replaces weight estimating parameters with weights & sizing parameters. The 

following steps have been derived from the steps suggested by Monroe (1997) in 

obtaining data from multiple experts:

i. Select the parameters for risk that will be evaluated for uncertainty.

ii. Rate the parameter for uncertainty using low, most likely and high values

iii. Document reason for uncertainty for each parameter rated

iv. Prompt expert for cues to further document the thinking process

v. Provide expert the opportunity to revise estimates

Monroe (1997) advocated a questionnaire approach to quantifying risk associated 

with internal uncertainties. This research will extend that principle to external 

uncertainties. An initial assessment of ranges for each design parameter will be requested 

of the experts. The assessments will include low, most likely and high values. Then, the 

experts will be requested to review the initial valuations of design parameter ranges and 

to consider revising them. Finally, the experts will be requested to describe any scenario 

that might change the valuations that they have applied to any of the design parameters. 

This last step will serve to de-bias the judgment.

This research, additionally, makes provision for more than one opinion on 

parameter distributions. This provision requires the aggregation of multiple expert 

opinions for the various design parameters. Aggregation is handled computationally 

versus having brainstorming sessions to arrive at consensus estimates. The method 

recommended by Vose (1996) is utilized as it avoids some potential pitfalls. Vose 

recommends that a discrete distribution be developed from the combination of the 

distributions from each expert opinion. The expert opinion could take any of the forms 

suggested in Chapter n  for fitting distributions to data. Vose also recommends that
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weighting factors be applied to each individual expert opinion distribution based on level 

o f confidence associated with each individual expert. For example, if three experts are 

used in the data collection process, one expert may be more senior than the remaining 

two experts. In such a case, weighting among expert opinions may be 50%, 25% and 

25%. The most senior individual would have the 50% weighting associated with his or 

her opinion. Figure 12 illustrates the technique. Goodness-of-fit statistics are observed 

to verify the degree of conformity o f the distribution curves with the discrete data points.

Voses’s recommended method avoids three potential problems previously 

encountered in the literature. The first problem is choosing the most pessimistic estimate. 

Such caution should only be applied at the decision-making stage after reviewing the risk 

analysis results. The second incorrect method would be taking averages of the two 

distributions. This method ends up with a distribution that is too narrow. The third 

problem is the aggregated distribution provides a positive value over a range that all 

experts agree should be zero. If all experts agree on the values of input parameters at a 

specific location in the distribution, then the discrete distribution provides for the 

consensus value to be employed. Using different types of distributions (e.g., normal or 

beta) to represent the aggregated opinions can often result in portions of the distribution 

curve that all experts agree are incorrect.
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Figure 12 Expert Judgment Aggregation

Following quantification of the input parameter distributions, quantification of the 

error associated with the two response surfaces (internal error) is conducted. This 

quantification is accomplished by using samples from the input distributions. CONSIZ 

and APAS were executed for each of 45 and 180 design points respectively. The 

response surface equations were also executed using the same design points. The
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differences in the design points output of Cgin between the first response surface and 

CONSIZ is computed. An error function (eO is developed for the first response surface 

equation under the assumption that the function is normally distributed. Next, the 

differences in the design points output of Cm between the second response surface and 

APAS is computed. An error Auction (82) is developed for the second response surface 

equation, again, under the assumption that the function is normally distributed.

3.2 Uncertainty Propagation

Figure 13 was taken from Du and Chen (1999) and it provides an illustration of 

uncertainties being propagated between two disciplines or simulation tools. These 

uncertainties (6i(xi) and 82 (X2, y)) impact the optimization of the system response 

variable, Z. Typically, a complete system design is a compilation of numerous 

simulation tools with their individual discipline bias and precision errors. Consequently, 

the system error accumulation has the potential of being significant. Figure 13 has been 

updated to suit the aerodynamic optimization problem and the changes reflected in Figure 

11.

*2

Y
Sbnlatioa Modd I Staudatkw Model 11

---------------- * K(**y)
Internal Uncertainty Internal Uncertainty

*>(*,) si(*2»y)

Figure 13 An illustrative simulation model chain [Du and Chen (1999)]
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The propagation procedures for this launch vehicle analysis are shown in Figures 

14 and 15. Figure 14 illustrates propagating uncertainties using LHS while Figure 15 

illustrates the procedure using Random sampling. In each of the diagrams the following 

steps are applicable:

a) Sample from the eight external parameter distributions developed using the 

expert opinion elicitation strategy.

b) Sample from Simulation Model I (CONSIZ) error distribution.

c) Compute center of gravity using the first response surface equation and add 

the error computed in step (b).

d) Sample from Simulation Model II (APAS) error distribution.

e) Compute pitching moment coefficient using the second response surface and 

add the error computed in step (d). Return to step (a) for a specified number 

of iterations.

f) Obtain distribution for pitching moment coefficient for each of the various 

numbers of iterations.

This research compares two sampling techniques used when propagating 

uncertainties. Sampling is the process of drawing random values from an input 

distribution. With enough iterations, the sampled values for a probability distribution 

approximates the known input distribution. The specifics of the Latin Hypercube 

sampling and random sampling routines are outlined below.

3.2.1 Latin Hypercube Sampling

The technique used by Latin Hypercube sampling (LHS) is sampling without 

replacement. The number of stratifications of the cumulative distribution in LHS is equal 

to the number of iterations performed. A sample is taken from each stratification. Once 

a sample is taken from a stratification, this stratification is not sampled from again,
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P tunes a) Sample xu x2, xj, x* xj, xg. x7. x, 
Latin Hypercube Sample

b) Sample 8i(xi,x2,x3,x«,xj,x«) 
Latin Hypercube Sample

f) Obtain distribution forP 
Cm Outputs

d) Sample62(xi,x2,x j,x4,.x7.x*eg) 
Latin Hypercube Sample

c) Calculate output of Simulation Model I 
Cg*F(Xi, X* Xj, X«, Xj, Xg) +
6 l (xlt X2,  X j, X4, X j, Xg)

e) Calculate output of Simulation Model n  
Cm* F2 (Xu X2. Xj, x<, Xt, x«, eg) + 
e2(xi,x2,x j,x4,tx7.xi,cg)

Figure 14- Uncertainty Propagation (Latin Hypercube Sampling)
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P times a) Sample xi, x* xj, x* xj, X& x7. *  
Random Sample

b) Samples i fa , x* xj, x* x* x«) 
Random Sampi*

I) Obtain distribution for P 
Cm Outputs

d) Samples2fa ,x j, xj, X4,.x7,x«.cg) 
Random Sample

c) Calculate output of Simulation Model I 
Cg » F fa , X2, xj, x«, xj, xe ) +
6, fa,X2,X3,X4,X5,Xtf)

e) Calculate output of Simulation Model n 
Cm=F2 fa , x* x3, x«, x7, x*, e g )  +

S 2 f a ,X 2 ,X j ,X 4, >X7,X * .C g )

Figure 15- Uncertainty Propagation (Random Sampling)
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When using the Latin Hypercube technique to sample from multiple variables, it 

is important to maintain independence between variables. The values sampled for one 

variable need to be independent of those sampled for another. This independence is 

maintained by randomly selecting the interval to draw a sample from for each variable. 

In a given iteration, variable #1 may be sampled from stratification #5, variable #2 may 

be sampled from stratification #7 and so on. This preserves randomness and 

independence and avoids unwanted correlation between variables [Palisade 2001].

Figure 16 illustrates the principle behind the technique. Here, the cumulative 

distribution curve is divided into five equal segments (stratifications). The sampling 

routine forces a design point to be selected from each stratification.
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Figure 16- Latin Hypercube Sampling [Palisade 2001]
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3.2.2 Random Sampling

Monte Carlo sampling refers to the traditional technique for using random 

numbers to sample from a probability distribution. Monte Carlo sampling techniques are 

entirely random and a sample can fall anywhere in the range of the input distribution. 

Samples occur must often in the areas of high probability. This results in what is known 

as clustering. With enough iterations, however, the input distribution can be represented 

accurately enough. Figure 17 illustrate the technique of Monte Carlo sampling (Random 

sampling) as five data points are taken from the cumulative distribution curve below.

Five iterations of Random Sampling
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Distribution
Valu*
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DMribution
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Figure 17 -  Random Sampling [Palisade 2001]
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3J  Uncertainty Management

3.3.1 Response Surfaces

In order to facilitate rapid analysis capability and multidisciplinary integration of 

anaysis codes, approximation model building methods, called response surface methods 

(RSM), are utilized (Myers, 1971). Response surface methods have been used 

successfully in prior studies for approximation model building and multidisciplinary 

integration (Roux et al, 1996; Unal et al, 1998). The simplified response surface models 

and mathematical programming methods enable quick integration of disciplines and 

facilitate fast simulation studies.

A D-Optimal design matrix was constructed by Unal et al. (1998) to simulate 

configuration and sizing data and aerodynamics data for the launch vehicle.

Aerodynamics were generated for Mach 0.3, Mach 2 and Mach 10. This research only 

makes use of the Mach 0.3 data. Center of gravity was obtained from CONSIZ and 

pitching moment coefficient was obtained from APAS. Regression Analysis was then 

used to determine the model coefficients for Cg and Cm in terms of six design 

parameters. These metamodels are used in steps d) and f) of Figure 18. The optimization 

process begins at step f). The optimization strategy is outlined in the paragraph below.

3.3.2 Pareto Optimal Solution

The Pareto solutions explored in this research study involve mean optimal 

solutions and variance optimal solutions. In any given problem, the solution that 

minimizes the target mean (mean optimal) and the solution that minimizes the variance 

(variance optimal) are two different solutions. The Pareto optimal solution is a 

compromise between the mean optimal and the variance optimal solution. An objective 

function is developed and used to identify the Pareto solutions.
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The weighted sum method is used to model the multiple objectives o f this 

optimization problem The equation to be minimized is a modification of that used by Du 

and Chen (1999) and is provided below. Cmtarget here is zero. The weighting factors 

are chosen to place emphasis on either the closest solution to the targeted mean value or 

the smallest variance.

M in F (xi,x2, X3, x *  x3, x*, xg) =  w i [p«- C m a ^ /fn ,* *  -C nw * *]2 (1)

+  W2 Ott2 /  StJa*2

[Pa* -C nW t]2 is the mean square error function for the ideal solution, ft is used to 

normalize the mean square error of each design point. oa*2 is the variance for the ideal 

solution, ft is used to normalize the variances for each design point. These ideal 

solutions are obtained from the iterative calculations of p<x and oa. The design point that 

has the lowest mean square error yields [p«* *Cm(W(ei]2 . The design point that has the 

lowest variance yields Oa*2 . The optimum solution for one variable input parameter is 

the design point that minimizes equation (1). Various combinations of Wi and w2 have 

been used here, and these values can vary as long as wi + w2 = 1.

For two variable input parameters, the optimization equation becomes

Min F(X!,X2, X3, X4, x5, Xfi) = wi [p«- Cmurg«*]2/[Pa* -Cmurgrt]2 (2)

+ w2Oa2/o «*2 + w3 [p<r Cmurgrtj t̂Pd* -Cmur*«]2 + W4 Od2 / Od*2

With two variable parameters, w l + w2 + w3 + w4 =1. [pd- Cmtj^etj^fpd* - 

Cmurpt]2 and Od2 /  Od*2 would be obtained by treating elevon deflection (d) as the sole 

variable input parameter and propagating the other seven design parameters much the 

same as when angle of attack was the sole variable input parameter.

Figure 18 is a diagram of the optimization procedure. One of the eight input 

parameters was chosen to be variable for this application. Angle of attack and elevon
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deflection appeared to be the parameters most variable during vehicle operation.

Although it should be possible to optimize for both of these parameters, angle o f attack 

was initially selected as the sole variable parameter. The following procedure is used:

(a) Design points are obtained by sampling from the seven fixed input 

parameters. Fixed parameters are set during the design of the launch vehicle. 

Variable parameters often change during vehicle operation within a specified 

range.

(b) Once the design point for the seven fixed parameters is selected, the variable 

parameter is changed by sampling from input parameter distributions.

(c) Ei is sampled from the error function of CONSIZ.

(d) Center of gravity including payload (Cgin) is then calculated for the design 

point. This includes the error computed in step (c).

(e) 82 is sampled from the error function of APAS.

(f) Pitching moment coefficient (Cm) is then calculated for the design point using 

Cgin. This includes 82 error function sampled in step (e).

(g) The mean (p„) and standard deviation (oa) can then be calculated from the 

distribution of Cma.

(h) The variance and mean square error are calculated. This process of 

calculating Cma is repeated as angle of attack is varied over its full range. 

These Cma calculations are known as sensitivity derivatives. A new design 

point is then selected by sampling from the seven fixed parameters. The 

variable parameter (a) is then changed over its range and Cma, Pa and oa are 

calculated.

0) Having determined the values of pa and oaat each design point, it is possible 

to identify the optimum design point over the range of the variable (a). The 

design point with the minimum variance and the design point with the 

minimum mean square error are identified.

(j) The minimum variance and minimum mean square error values are then used 

to normalize the objective function for each design point. The design point 

with the minimum objective function is selected.
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f) Calculate output of Simulation Model D 
Cm=F2 (xi, X2, xj, x«, x7, x i , eg) +
S 2 (Xl ,X 2,X 3,X « ,,X 7>X |.C g )

d) Calculate output of Simulation Model I 
Cg * F (X i, X *  X3,  x«, Xj, x«) +
Si (X |, X j,  X j, X4,  X j, X j)

Figure 18 Uncertainty Propagation and Optimization Routine
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3.4 Expected Results

The end result from this methodology will be a probabilistic confidence level for 

the critical subsystem performance characteristic estimate in S-curve form (or more 

appropriately in cumulative distribution function form) indicative of the risk.

While the use of multiple exert opinion is expected to provide a more realistic 

representation of input parameter distributions, this method totally changes the shape and 

breath of each input parameter distribution from the triangular distribution initially 

generated by a single expert. Extremes in each expert’s opinion are muted by the 

weighting factors. Overlapping opinions, or portions thereof would be reinforced by the 

weighting factors. The distribution associated with multiple expert opinions would tend 

to have a larger confidence interval as the standard deviation or measure of dispersion 

would increase. The distributions would span wider ranges.

Additionally, the Latin Hypercube Sampling routine is expected to produce a 

distribution that has a smaller variance than the random sampling routine for Monte Carlo 

simulations. This is an advantage of the methodology in that for large computer 

programs, run times are minimized and computer resources are used more efficiently.

A disadvantage to using Latin Hypercube sampling is that programming of the 

sampling routine is more complicated than programming of the random sampling routine. 

The disadvantage of increased initial programming effort should be offset by the savings 

that would be realized in computer run time especially for programs that are executed 

often.
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CHAPTER IV 

RESEARCH PINGINGS

This section promulgates the refinements made to the procedures outlined in 

Chapter HL It also documents the analysis results. This research does not examine the 

principles of response surface methodology (RSM) or design of experiments, but an 

elementary knowledge of both subjects is assumed. Text such as Box, Hunter and Hunter 

(1978) and Law and Kelton (1991) are excellent sources for additional information.

4.1 Methodology Refinement

This risk analysis study was accomplished using the C++ programming language 

in quantifying input parameter distributions, propagating uncertainties throughout the two 

disciplines and optimizing input parameter selection. C++ was chosen because NASA 

Langley makes use of this programming language in some of its existing programs for 

launch vehicle computation. FORTRAN is also used at NASA and C++ can be 

integrated with existing FORTRAN programs or legacy systems. These procedures 

specifically refer to the C++ program development. @Risk was used to model the same 

risk analysis procedures as a validation of the C++ programming. The use of @Risk 

also serves to demonstrate the adequacy of existing risk analysis tools for executing 

complex problems.

The proposed methodology makes use of random variates generated from 

probability distributions. In the case of external uncertainties, the probability 

distributions are triangular. Random variate generation for specific distributions is 

discussed extensively in Law and Kelton (1991) and Cheng (1998). The basic tool 

required in generating random variates is a statistically reliable U(0,1) random-number 

generator. With the identification of a suitable random-number generator, algorithms 

exist which utilize these random numbers to generate random variates.
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4.1.1 External Uncertainty Identification

The initial stage of the methodology consists of the identification of internal and 

external uncertainties for the two coupled response surfaces. The external uncertainties 

are associated with the input parameters to both response surfaces and these were 

analyzed first. A questionnaire was developed in an effort to document expert opinion on 

the parameters sought. The questionnaire utilized is provided in Appendix A  The 

methodology uses a triangular distribution to simulate the input parameter uncertainties 

from each expert. Initially, only one set of opinions derived from a single expert was 

implemented. In subsequent analysis, multiple expert opinions were aggregated.

This research uses the Inverse Transform method of generating random variates. 

Employing (1 = (b-ay(c-a), triangular distributions random number variates are calculated 

using the following algorithms:

Figure 19 illustrates the constants used in the distribution. The low value of the input 

parameter is “a.” The most likely value for the parameter is “b,” and the high value for 

the parameter is “c ”

X = a + (c-a) (pu )1/2 if u < P (3)

X = a + (c-a)[ l-((1-P )(1-u»iy2] i f u i p (4)
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f(x)

ba c

Figure 19 -  Triangular Distribution Density Function

The constants associated with each input parameter for computation of the center 

of gravity (Cg) and pitching moment coefficient (Cm) are provided in Figure 20. These 

were obtained from the questionnaire of Appendix A.

paramotor a b c bam
x1 4 5.5 7 0.5
x2 10 15 20 0.5
x3 0.5 1.75 3 0.5
x4 0 0.5 1 0.5
x5 0 0.02 0.04 0.5
x6 7.75 8 8.25 0.5
x7 5 12 15 0.7
x8 -14.68 -11.7004 -4.345 0.288302

Figure 20 -  Input Parameter Triangular Distribution Factors

4.1.2 Internal Uncertainties Identification

The response surfaces were coded in an Excel spreadsheet. A printout of the 

spreadsheet format is provided in Appendix B. Forty-five data points were used to 

generate the first response surface (Cg), while 180 data points were used to generate the
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second response surface (Cm). Errors between the first response surface model (Cg) and 

actual output CONSIZ data points were calculated. Errors between the second response 

surface model (Cm) and actual output APAS data points were also calculated. 

Spreadsheets containing the error, error mean and error variance were developed in 

Excel, and printouts are provided in Appendix C. Histograms of the data are also 

provided in Appendix C. The Arena Input Analyzer was then used to fit the best 

distribution to the data based on mean square error. The Arena Input Analyzer fitted a 

lognormal distribution to the first response surface errors (Cg), and a normal distribution 

to the second response surface (Cm) errors. The Arena Input Analyzer was also used to 

fit a normal distribution to the first response surface error (Cg) data. Although the 

normal distribution was not the best fit to the data, it was an acceptable fit. Summary 

data from the Arena Input Analyzer are provided in Appendix D. The summary data 

provides the results of goodness-of-fit calculations for the fitted distributions. The Arena 

Input Analyzer executes the Kolmogorov-Smirnov goodness-of-fit test in addition to 

computing the mean square error. The results of that test indicate that the normal 

distribution is a good fit to the Cg error data. The K-S test indicates that the normal 

distribution is not a very good fit to the Cm error data, but it is the best fit out of the nine 

distributions attempted. These nine distributions include lognormal, normal, Erlang, 

gamma, Weibull, triangular, uniform, exponential and beta distributions.

Du and Chen (1999) recommend the use of normal distributions to represent 

internal uncertainties or model error for two response surfaces. Consistent with Du and 

Chen (1999), the normal distribution is selected as the distribution fit for Cm error data.

A lognormal distribution was selected to simulate Cg error. This study uses the 

distribution that best fits the data (the lognormal distribution) instead of just using the 

assumed normal distribution for Cg error. As the data demonstrates, non-normal 

distributions may be more appropriate for modeling tool error.

The Box-Muller method [Cheng (1998)] is used to generate normal variates as 

there is no closed-form expression to accomplish the task. This technique returns pairs of 

independent normal variates and is accomplished using the following routine:
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While (True) {

Generate u l, u2, RN(0,1) variates.
Let v l = 2ul -1 , v2 = 2u2 -1 , w = v l2 + v22

I f ( w < l ) {

Let y = [(-2 In w) / w] *

Return XI = n + ovly and X2 = n + crv2y 

}
}

There is no closed form expression for generating lognormal variates either. The 

procedure for generating such variates starts with generating normal variates and then 

takes the exponential of the normal variates. The mean and variance used to generate the 

normal variates are transformations of the lognormal mean and variance. If 0 -  the 

lognormal mean and x = the lognormal standard deviation, then

H = In ( G2/ ^  + x2) * ) (5)

and

o2 = In ((02 + x2) / G2) (6)

are the values placed in the Box-Muller method. This procedure generates pairs of 

variates just like the normal variates generation technique.

4.1.3 Uncertainty Propagation
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There were five risk analysis programs developed in this research study. The first 

C++ risk analysis program utilized a single expert opinion and Monte Carlo simulation 

with Random sampling. This program, Risk_sm, was developed in stages. The first 

stage included uncertainty quantification. Each of the eight input parameter distributions 

and two error distributions were coded. The program wrote the variates to separate files 

so that the accuracy o f the coding could be tested. Five hundred variates were generated 

for the triangular distributions and 1000 variates were generated for the normal and 

lognormal distributions. Triangular, normal and lognormal distributions were then fitted 

to the data as appropriate. The results are provided in Appendix E. Although none of the 

simulations had converged upon the mean, the summary results indicate that the 

quantification coding of uncertainties had been accomplished accurately.

The second stage of developing the first risk analysis program was to code the 

response surfaces and to transform the actual values o f the input parameters into forms 

suitable for their respective response surfaces. This stage resulted in the computation of 

Cg and Cm distributions. Algorithms for the response surfaces are provided below. See 

Figure 11 for symbol definitions.

Cg = 0.7412279-0.014978*frl+0.0124302*wal+0.0098995*tfal+0.001898*bfll- 

0.010154 *bl+0.0043786*mr+0.004716*frl*frl-0.001637*frl*wal-0.000729*wal*wal- 

0.002255*fiT*tfal-0.001238*wal*tfal+0.0002298*tfal*tfal-0.000307*frl*bfll- 

0.000344*wal*bfll-0.000141*tfal*bfll-0.000054*bfll*bfll+0.0003703*frl*bi- 

0.000252*wal *bl-0.000246*tfal *bl + 0.000102*bfll*bl-0.000068*bl*bl + 

0.0000505*firl*mr + 0.0000505*frl*mr + 0.0000231*wal*mr-0.000081*tfal*mr- 

0.000068*bfll*mr-0.000019*bl*mi+0.0003477*mr*mr (7)

Cm = -0.032188-0.002886*fr2-0.008796*wa2-0.006746*alpha-0.053769*delev- 

0.00032*fr2*wa2-0.000768*ft2*alpha-0.000276*fr2*delev-0.000203*wa2*tfa2- 

0.001762*wa2*alpha-0.00284*wa2*delev-0.000346*tfa2*alpha>0.000858*tfa2*delev- 

0.000651*alpha*delev + 0.000509*fi2*fir2+0.001773*wa2*wa2+ 0.000748*t62*tfc2+
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0.000319*bfa2*bfa2+0.023208*cg2-0.000171*cg2*fr2 + 0.000765*cg2*wa2 + 

0.000288*cg2*tfa2 + 0.00468*cg2*alpha + 0.012162*cg2*delev-0.001566*tfa2 (8)

The next step in the risk analysis was to program errors into the two response 

surfaces to model the launch vehicle. A lognormal distribution was programmed for the 

Cg error and a normal distribution was programmed for the Cm error. The first risk 

analysis program was then complete and ready to be executed at various numbers of 

iterations for the Monte Carlo simulation routine.

Several iterations of the program were run in an effort to observe output 

parameter convergence. The risk analysis program was run for 10,25, 50,100,200,

300,400, 500,1000,1500 and 2000 iterations. The data was entered into the Arena Input 

Analyzer. The results are provided in Appendix F. The Arena Input Analyzer fitted an 

appropriate distribution to the Cm data points generated at the various iteration values. 

Graphs of the distribution functions are also provided to illustrate shape and skewness.

The quantification and propagation of uncertainties was also coded in @Risk. 

Printouts of the Excel spreadsheet used for Cg and Cm computation are provided in 

Appendix G. This spreadsheet has input distributions and output distributions coded the 

same as Risksm. @Risk was easy to use and similar to using Microsoft Excel.

The second C++ risk analysis program developed, Riskmm, used Monte Carlo 

simulation with Random sampling, but incorporated opinions from multiple experts. The 

expert elicitation methodology resulted in the use of discrete distributions for five of the 

eight input parameters to the Cg and Cm response surfaces. Two experts’ opinions were 

aggregated to obtain the discrete distribution functions. The experts agreed on the 

remaining three input parameter distributions, so triangular distributions were used for 

these three parameters. Diagrams which compare the triangular distributions for the two 

experts are provided in Appendix H. Additionally, diagrams of the aggregate discrete 

distribution functions are provided in this Appendix. This risk analysis program was run
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for the same number of iterations as the Risk sm program. These Arena Input Analyzer 

results are provided in Appendix L

Both Risk sm and Risk mm use Monte Carlo simulations with random sampling 

to propagate uncertainties. Two related programs were developed in C++ that used a 

Latin Hypercube Sampling (LHS) routine to propagate uncertainties. The first LHS 

program, R isksl, models a single expert opinion for the eight input parameters. The 

second LHS program, Risk_ml, models two expert opinions for the input parameters. 

Similar to Riskmm, R iskjnl uses discrete distributions for five of the eight parameters. 

Risk_sl and R iskjnl Arena Input Analyzer results are provided in Appendix J and K 

respectively.

4.1.4 Uncertainty Management

The final stage in the development of this risk analysis methodology is the 

uncertainty management or optimization portion. A fifth program was developed using 

C++ that incorporated a Pareto optimization strategy. This program (Risk_pareto) is a 

modification o f the R iskjnl program which utilized Latin Hypercube Sampling for the 

propagation routine and aggregated multiple expert opinions for the external uncertainty 

quantification. The management program identifies the design solution that optimizes the 

mean as well as the design solution that optimizes the variance. Weighting factors were 

assigned to both of these solutions in synthesizing the objective function to be minimized. 

Weighting factors ofWl = 1.0 and W2 =0.0 corresponds with the mean optimal solution. 

Weighting factors of W1 = 0.0 and W2 = 1.0 corresponds with the variance optimal 

solution. Four cases were run with varying factor weightings and the results are provided 

in Appendix O.
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4.2 Analysis of Results

The analysis o f this research is divided into three segments: 1) analysis o f Monte 

Carlo simulations with random sampling verses Latin Hypercube Sampling, 2) analysis 

of single expert opinion results verses aggregated multiple expert opinions and 3) 

analysis of optimization routine.

4.2.1 Uncertainty Propagation

The Arena Input Analyzer results were plotted for each of the C++ Risk programs 

developed. The mean and standard deviation for both Cg and Cm were plotted in an 

effort to observe convergence as the number of iterations of the simulations were 

increased.

4.2.1.1 Single Expert Opinion ( Random Sampling vs. Latin Hypercube Sampling)

Figure L-l shows the plots of Cgmean and Cg standard deviation for a single 

expert’s opinion input data as obtained using Random Sampling (CgM mean and CgM 

std dev) and Latin Hypercube Sampling (CgL mean and CgL std dev). It is obvious that 

the mean converges faster with Latin Hypercube Sampling. The standard deviation 

converges at approximately the same rate for Random Sampling and Latin Hypercube 

Sampling. The magnitude of difference between Cg mean at 10 iterations and Cg mean 

at 2000 iterations is small for Monte Carlo simulations with Random Sampling. Even 

this small change in the location of the mean coincides with approximately a 17% 

increase in the location of the Cm mean (See figure L-2).

Figure L-2 shows that Cm mean converges slightly faster using Latin Hypercube 

Sampling verses Monte Carlo simulations with Random Sampling. Cm standard 

deviation appears to converge slightly faster for Random Sampling than with Latin 

Hypercube Sampling. In general, Cm parameters converge faster than Cg parameters. It 

is possible for parameters that converge quickly that LHS does not result in any savings
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in efficiency. The larger a simulation takes to converge using Random Sampling, the 

greater is the opportunity for improvement in efficiency using Latin Hypercube 

Sampling.

4.2.1.2 Multiple Expert Opinion ( Random Sampling vs. Latin Hypercube Sampling)

Figure L-3 plots Cgmean and Cg standard deviation for the case where expert 

opinions were aggregated into discrete distributions. Cg mean LHS converges faster than 

Cg mean Random Sampling. Again, Cg standard deviation appears to converge at the 

same rate.

Figure L-4 plots Cm mean and Cm standard deviation for the case of aggregated 

expert opinions. Cm mean converges slightly faster with LHS over Random Sampling. 

Cm standard deviation converges slightly faster with random sampling.

Distribution shape and skewness are also factors when considering convergence.

It can be noted from the distribution plots that Cg and Cm converges upon shape and 

skewness within 100 iterations for both random sampling and Latin Hypercube Sampling. 

The exceptions to this fact are Cm single expert random sampling and Cm single expert 

Latin Hypercube sampling. The distributions converge upon shape and skewness at 200 

and 300 iterations respectively.

4.2.2 Uncertainty Quantification

The results of the Monte Carlo simulation with Random Sampling were plotted 

for the risk analysis programs having a single expert’s opinion as input and having 

multiple expert opinions as input. These plots are provided in Appendix M. Figure M-l 

shows Cg mean and Cg standard deviation. Cg mean single expert (CgS mean) 

consistently resulted in an increase in the mean from that of the aggregated opinions.

This is expected as aggregating opinions tends to mute the extremes of any one
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individual’s judgment. Cg standard deviation was virtually identical between the two 

risk programs. The experts in these two risk programs agreed on the minimum and 

maximum for all eight input parameters. These experts only disagreed on the most likely 

value for five of the parameters. This explains the high level of agreement between the 

Cg standard deviation of the single expert and multiple expert distributions. Even with 

this large level of agreement, a noticeable difference in Cg mean was evident. 

Additionally, the difference in Cg mean corresponds to a 43% increase in Cm mean 

single expert. These differences were taken using the data corresponding with 2000 

iterations.

Cm mean was noticeably different in the risk analyses as well. Cm mean single 

expert (CmS mean) was consistently lower when compared to Cm mean multiple experts 

(Cm A mean). The single expert’s opinion appears to provide Cm results that are more 

favorable to the design while the aggregated expert opinion illustrates that Cm is 

probably less favorable to the design. The standard deviations for these analyses were 

almost identical. Theoretically, the aggregated opinions would result in larger standard 

deviations, but since the expert’s opinions were largely in agreement, no significant 

difference in Cg standard deviation or Cm standard deviation was evident.

4.2.3 Uncertainty Management

Design performance is influenced by both the mean location and its variance. 

Dealing with the tradeoff between mean square error and variance is the essence o f a 

Pareto optimal solution. Figure 21 illustrates the distribution functions for the Pareto 

solutions plotted as a function of weighting function. As shown, the mean optimal 

solution (W1 = 1.0) is closest to the targeted mean of 0.0. This solution has the largest 

variance. The variance optimal solution (W1 = 0.0) is farthest away from the targeted 

mean, but has the smallest variance.

The best solution is chosen based on the tolerances of the problem. The limits of 

this problem are at Cm values of -0.01 and +0.01, the mean optimal solution results in
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88.32% of design conditions across the range of angle o f attacks satisfying the problem 

limits. The Pareto optimal solution coinciding with W1 =0.9/0.95 results in 77.94% of 

conditions satisfying the design limits. In this case, the mean optimal solution is the best 

solution. As variance decreases, the distribution function moves farther away from the 

targeted mean and further outside of the problem constraints.

Cm limits (or tolerances) have been set by the Vehicle Analysis Branch (VAB) at 

NASA Langley Research Center based on good engineering practices and judgment. 

Limits can sometimes be relaxed and still maintain design integrity. Relaxation of limits 

may not be acceptable for this particular launch vehicle problem, but for limits between -  

0.015 and +0.015, the mean optimal solution results in 98.38% of design conditions 

satisfying the problem constraints. The Pareto optimal solution coinciding with 

Wl=0.9/0.95 results in 99.22% of conditions satisfying the design limits. (Note: All 

percentages were derived assuming normally distributed output functions.) In this case, 

the Pareto optimal solution coinciding with Wl=0.9/0.95 would be the best solution. The 

Pareto optimal solutions coinciding with W1 = 0.75,0.5 and 0.0 are totally outside of the 

design limits and thus would not be considered feasible solutions.

w1«0.0

.030.0 01 .02 .05-.02 -.01 .06.04

Figure 21 -  Comparison of Cm Output Distributions as Function of W1
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CHAPTER V 

VERIFICATION AND VALIDATION OF RESULTS

Verification and validation of results were conducted by developing the same risk 

models in @Risk. This use of commercial software served to both verify the accuracy of 

the C++ programs developed and to validate the adequacy of @Risk to perform complex 

risk analysis problems. Verification of the uncertainty propagation results was 

accomplished first. @Risk was then used to verify the uncertainty quantification results.

The results of a weight optimization study (Unal et al, 1998) was used to compare 

the optimization results of this research. Weight is an important component in launch 

vehicle design. The results of a Cm optimization effort should be reviewed to identify 

any weight penalties that might be realized by modifying input parameters to suit Cm 

output

Finally, the results of a weight optimization effort performed at Vanderbilt 

University on the same response surfaces is reviewed for relevance to this research.

S.I Uncertainty Propagation

To verify the accuracy of the random sampling and Latin Hypercube sampling 

routines that were developed for the C++ risk programs, the same analysis was conducted 

in @Risk using the same number of iterations to plot results. These results are displayed 

in Appendix N. Figure N-l compares Cg mean and Cg standard deviation using random 

sampling and using Latin Hypercube Sampling for a single expert’s input parameters. Cg 

mean Latin Hypercube Sampling (CgL mean) converged faster than Cg mean random 

sampling (CgM mean). This figure is comparable to Figure L-l for the C++ programs 

and the results are consistent. Cg standard deviation Latin Hypercube Sampling (CgL std 

dev), Figure N -l, converges slightly faster than Cg standard deviation random sampling
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(CgM std dev). This was not consistent with Figure L-l where the random sampling 

component converged at the same rate as the Latin Hypercube Sampling component. The 

researcher believes that the sequence of random numbers used in the C++ programs were 

uniquely suited to the quicker convergence of that risk analysis program (Risksm).

Figures N-2 through N-4 validate the findings of L2 through L-4. Cg mean and 

Cm mean converges faster using Latin Hypercube Sampling verses Random Sampling.

In general, Cm converges faster than Cg. Greater efficiencies were noted in using Latin 

Hypercube Sampling for Cg parameters than for Cm parameters.

5.2 Uncertainty Quantification

Figures N-5 and N-6 compare the results of Cg and Cm computation using a 

single expert’s opinion on input parameters versus using multiple expert opinions on 

input parameters. Monte Carlo simulation with random sampling was used as the 

propagation technique. Cg mean single expert was consistently higher than Cg mean 

aggregated expert opinions except at 50 and 100 iterations. Cg standard deviation single 

expert showed very little difference from that of Cg standard deviation aggregated expert 

opinions. Figure N-5 basically validates the results of Figure M-l for the C++ programs.

Figure N-6 illustrates that Cm mean single expert and Cm mean aggregated expert 

opinion are virtually the same at all iterations. Cm standard deviation single expert is 

lower than Cm standard deviation aggregated expert opinion through 300 iterations. 

Above 300 iterations, the values are the same. Figure N-6 confirms that the similarity 

between single expert and aggregated expert opinions. The small difference in Cm mean 

would be expected as the largest difference between Cg mean single expert and Cg mean 

aggregated expert opinion is 0.002. This difference in the C++ programming was 0.004. 

Just this small increase in Cg mean location greatly impacted Cm mean difference 

between single expert and aggregated expert opinions in the C++ programs. C++ 

programs do not have a command that allows the programmer to set the random number 

seed. The absence of this feature results in the same random number stream being
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utilized in each o f the programs. Under other circumstances this is not a desirable 

feature. In this instance, the use of the same random number stream is a variance 

reduction technique that facilitates better comparison o f individual program results. The 

Cm mean single expert and Cm mean aggregated expert opinion comparison should be 

more accurate using the C++ programs.

5 3  Uncertainty Management

@Risk was used to optimize the solutions to the response surface equations. The 

results were compared to the C++ solutions and are provided in Table 1. @Risk does not 

have the capability to calculate a Pareto optimal solution when the Pareto solution is a 

compromise between the mean and variance optimal solutions. @Risk does have the 

capability to calculate both the mean optimal and variance optimal solutions.

The @Risk Optimizer can provide several simulations of the same model as it 

varies the random number stream. The C++ random number generator uses the same 

random number stream in the risk programs developed. The @Risk Optimizer identifies 

the best solution out of all o f the simulations run, while the C++ program only has one 

simulation from which to choose a solution.

The C++ solutions satisfy the Cm tolerances o f-0.01 to +0.01better than the 

@Risk solutions. The C++ mean optimal solution is 88.32% while the @Risk mean 

optimal solution is only 78.81%. If tolerances were increased to -0.015 to +0.015, then 

the C++ mean optimal solution increases its conformance rate to 98.38% and the @Risk 

mean optimal solution only increases to 90.66% conformance. The wl=0.9/0.95 Pareto 

solution provides the best conformance to these expanded limits with 99.22% 

compliance.
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Optimal
Variance
Optimal

-----

Optimal
Variance
OpUmel

Pareto
W1-.9..95

Pareto
W1*.75 Pareto W1-.5

FR 8.7575 4.833 6.5 5 5.75 5 425
m 19.6342 10.622 15 10 12 13 13
TFA 1.75 2.406 1.94921 1.6894691 12492781 22114221 1.9064441
BFL 0.3245 0.3361 0.61 01 021 0.411 021
BL

MR 1 8.15411 7.8331 81 81 7.851 8.031 7.851i
i

Variance 0.00009092 0.000000106 0.000009207 0.000002061 O 0GD0D0CB4V a W W W W ^

Std Dev 0.0095351 0.00040743 0.0030343 0.00143562 0.00081486
MaUafled (.81) 7821% | t 9J9% 77.94% 926% 929%
%Sa0afled(.O15) 90.86% 1 0.00%1 98.38% 0.00% 9922% 0.00% 0.00%
Empty Weight I 249,628 243,999 I 211,799 289,827 3192481

Note: Mean, variance and std dev used here are for the pitching moment coefficient

Table 1 -  Optimized Solutions

5.4 Weight Optimization Study Comparison

As the empty weight response surface was provided with the Cg and Cm response 

surfaces, empty weight was computed for each of the optimized C++ and @Risk 

solutions. The Pareto optimal solution with W1 = 0.9/0.95 provides the best solution to 

weight, but only has a 77.94% conformance within the -0.01 to +0.01 Cm tolerance. For 

constraints between -0.015 and 0.015, the wl -  0.9/0.95 solution provides the optimal 

conformance for Cm requirements as well as weight.

The weight optimization effort performed by Unal et al. (1998) did not consider 

uncertainties. The optimized predicted weight for that study was 249,360 pounds. The 

wl=0.9/0.95 Pareto solution weight is projected to be less than the results of that 

optimization effort. It should be remembered that this research optimizes for Cm at 

Mach number of 0.3 only. The weight optimization effort of Unal et al. (1998) included 

Mach 2 and Mach 10 Cm requirements as constraints. Each of the Cm values were 

constrained to -0.005 and 0.005. It should also be noted that neither the mean optimal, 

variance optimal, nor Pareto optimal solutions provide 99% compliance to the constraints
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without relaxation of the original boundaries. This is a disturbing fact and has serious 

implications for the design requirements of the launch vehicle. The optimized parameters 

for this weight optimization effort were:

Fineness ratio 6.9

Wing area ratio 18.76

Tip Fin area ratio 1.99

Body Flap area ratio 0.0

Ballast weight 0.014

Mass ratio 8.0

The @Risk optimized parameters show a slight weight reduction for the variance 

optimal solution (0.23%). A large weight penalty is realized, however, for the mean 

optimal solution (10.7%). Conversely, the C++ mean optimal solution provides the best 

Cm optimization compliance results with virtually no weight penalty (0.11%).

5.5 Vanderbilt University Weight Optimization Results

Smith and Mahadevan (2001) performed a weight optimization analysis on the same 

response surfaces used in the deterministic optimization study of paragraph 5.4. This 

analysis included uncertainties and used the First Order Reliability Method (FORM) to 

propagate uncertainties. The objective of the study was to minimize mean weight such 

that pitching moment coefficient has a 99% probability of falling between -0.01 and 

0.01. These limits were expanded after a solution could not be found between -0.005 and

0.005. Even with the expansion in boundaries, it was necessary to vary the input variable 

ranges to arrive at a solution. The optimized empty weight was 196,660 pounds. This 

predicted weight was found for the following parameters.

Fineness ratio 6.2796

Wing area ratio 16.1524
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Tip Fin area ratio O.S

Body Flap area ratio 0.0

Ballast weight 0.0

Mass ratio 7.75

The empty weight is much lower than the value predicted in the deterministic analysis, as 

well as, the Cm optimization effort of this research.

Smith and Mahadevan’s (2001) optimization effort validates the difficulty in 

using deterministic design constraints in a probabilistic design environment.
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CHAPTER VI 

DISCUSSIONS AND CONCLUSIONS

6.1 Discussions

It should be noted that CONSIZ is itself a model for the actual system. The error 

calculated in this study is the error between two models. For purposes of this research, 

CONSIZ data is assumed to be an accurate representation of the system. The use of 

CONSIZ data as the real world system simply serves as a means of demonstrating the 

risk analysis methodology.

Several observations concerning the data are also note worthy. Cg(CONSIZ) is 

only given to three decimal places. The errors on the first response surface (Cg) would 

be slightly different if the values for Cg had not been truncated. There was not a lot of 

error observed between Cg(RSM) and Cg(CONSIZ). Greater error exists between 

Cm(RSM) and Cm(APAS). It was also noted from manipulating the Excel spreadsheet 

of the response surfaces that Cm is very sensitive to small changes in Cg. Consequently, 

although Cg error is small, the error is still significant Further, the mean error for Cm is 

larger than that for Cg. The error standard deviation is greater as well. This increase in 

error is expected due to the cumulative nature of errors coupled in a system. Since Cm is 

smaller than Cg, this cumulative error represents a greater percentage of the response and 

is thus more significant as a matter of relative importance.

Internal uncertainties are less prevalent than external uncertainties in this 

particular risk analysis problem because the response surfaces were so well developed 

and produced little error. In a different problem where the metamodels are less accurate 

representations of the real system, internal uncertainties could have a severe impact upon 

output parameters and thus upon the stability of the system design.
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It was surprising that the standard deviation statistic, and thus variance, converged 

at approximately the same rate for Latin Hypercube sampling and random sampling, ft is 

believed that the Monte Carlo simulations with random sampling converged so quickly 

for this statistic in the problem examined that LHS could not improve upon the efficiency 

of the computation.

6.2 Summary

An objective of this research effort was to synthesize a methodology for 

conducting risk analysis in the conceptual design phase of a system such as a launch 

vehicle. A second objective was to demonstrate that methodology on a real world 

application. The methodology developed herein was primarily a compilation and 

extension of the research of authors such as Du and Chen (1999), Monroe (1997) and 

Vose (1996). Other authors such as Putko et al (2001), Haidar and Mahadevan (2000a 

and 2000b), and Hammersley and Handscomb (1964) provided alternative strategies for 

conducting one or more of the three stages of a risk analysis. The research uses expert 

judgment to elicit external input parameters from multiple experts. It, then, aggregates 

these individual distributions into a single distribution using a discrete distribution and 

weighted average approach.

Uncertainties were propagated through a coupled configuration & sizing and 

aerodynamics launch vehicle problem using a Monte Carlo simulation with Latin 

Hypercube sampling and Random sampling. Following propagation of uncertainties, a 

robust design technique was used to optimize input parameters over the range of a single 

variable input parameter. Latin Hypercube Sampling results were compared to Random 

sampling results. The research demonstrates that Latin Hypercube sampling converges 

upon distribution statistics fester than Random Sampling, particularly the mean.

The research also demonstrates that the use of multiple expert opinions verses a 

single experts’ opinion impacts the final design enough to be important. Finally, the
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research shows that tradeoffs between optimal variance and optimal mean solutions can 

result in designs that are more robust and provides greater stability when considering the 

inevitable variability present in developing models for a complex system.

U  Conclusions

The use of multiple experts in determining the input parameters for a risk analysis 

is supported by the expected increase in the accuracy of the aggregated distribution. 

Aggregated opinions allow one to account for uncertainty among the experts. Using 

discrete distributions to combine multiple expert opinions is easily implemented in both 

C ++ programming and @Risk.

Latin Hypercube Sampling results in faster convergence of distributions than 

using Monte Carlo Simulations with Random Sampling. The magnitude of the 

improvement in efficiencies increases as distributions take longer to converge using 

Random Sampling. Little improvement in efficiencies is expected for fast converging 

analysis. Distributions that take thousands of iterations for convergence will have greater 

efficiencies than distributions that only require a few hundred using Monte Carlo 

simulations. Latin Hypercube Sampling is recommended as a replacement for Monte 

Carlo Simulations with Random Sampling and should also be considered for replacement 

of analytic uncertainty propagation methods in the conceptual design phase.

@Risk software provides quick solutions for response surface models. When the 

need exists to compute optimum solutions to problems involving response surfaces, 

@Risk is a satisfactory product and is recommended to be used. When engineering 

problems involve existing software systems which do not interface with @Risk, then 

developing risk optimization routines using the methodology outlined in this research 

study is recommended.
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Managing uncertainty requires that designs be optimized to satisfy ranges of 

conditions and ranges of input variables. This differs from deterministic solutions that 

only focus on a specific set of input variables and single set of design conditions.

Designs optimized for uncertainty can focus on mean optimal solutions, variance optimal 

solutions or Pareto optimal solutions. Pareto optimal solutions provide opportunities for 

improvement in design robustness over both mean optimal and variance optimal 

solutions.

When risk analysis is examined and compared to deterministic designs, many 

existing deterministic design requirements will result in designs that have significant risk 

of failure. Using deterministic analysis, many systems are designed with less than 99% 

compliance on constraints, yet this is unknown to the designer. Risk analysis provides 

visibility into the true design feasibility region. The use of the risk analysis methodology 

developed in this research will allow designers to make reliable decisions under uncertain 

conditions representative of complex systems.

6.4 Limitations

A limitation of the research is associated with the expert opinion aggregation 

strategy. In order to use this methodology with a simulation tool such as CONSIZ, this 

aggregation strategy would have to be computerized. In this study, expert opinions were 

combined manually.

Another limitation of the research involved using C++ in a laptop environment. 

The usable memory is limited and therefore the number of iterations allowed in the 

optimization effort is limited as well.

The use of expert judgment elicitation techniques should be limited to 

environments where little is known about the parameters of interest. Where sufficient
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data exists, historical data uncertainty acquisition strategies is preferable to using expert 

judgment.

This research methodology is not limited to use on response surfaces, but can be 

used with design analysis tools with no change in implementation strategy. Although this 

methodology has been demonstrated on a problem that involves only two disciplines, it is 

not anticipated that greater numbers of disciplines will increase the complexity of the 

implementation strategy. Obviously the matrices involved in C ++ program development 

will increase in size and dimension. The C++ language is, however, less straightforward 

as matrix dimensions increase.

6.5 Future Extensions

The ultimate extension of this research is that the methodology will be applied in 

a simulation tool environment versus the response surface environment for the 

management of uncertainties. Additionally, the research could be applied to a problem 

having more than two disciplines and more than two experts to provide opinions. This 

research might also be extended by including the Mach 2 and Mach 10 aerodynamic 

constraints into the risk analysis methodology. To consider Mach 2 and Mach 10, the 

methodology would generate three distribution functions for Cm. The optimal solution 

would then be the one that provides the greatest percentage of satisfaction for the three 

cases. An objective function could be used that would be maximized. Weighting on 

which Mach number was most important would have to be considered.

The research might be extended to perform FORM and SORM analysis on the 

Cm optimization problem. The results could then be compared to simulation results with 

both Latin Hypercube sampling and random sampling. FORM results for the weight 

optimization study [Smith and Mahadevan, 2001] did not include tool error, but a method 

for incorporating this type o f uncertainty could probably be devised. It would also be 

interesting to apply the optimization approach outlined in this research to the weight 

optimization problem studied by Vanderbilt [Smith and Mahadevan, 2001] and compare
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the results of risk analysis using Monte Carlo simulation methods to propagate 

uncertainties with those obtained using FORM to propagate uncertainties.

Additionally, this research could be extended by fitting distribution functions, 

other than the triangular distribution, to external input parameters and comparing the 

results of the risk analysis.

A further area of interest is in developing a process for determining the weighting 

factors for aggregating multiple expert opinions used in the uncertainty quantification 

phase.

Designers need a risk analysis tool that can compute the percentage of compliance 

anticipated when specific design parameters are chosen. The development of such a tool 

for complex systems using strategies contained herein would augment this research.

When using risk analysis methodologies, it is important to determine when it is 

worth the added effort to include the uncertainties into an analysis. Consequently, 

extending this study to incorporate levels of fidelity into risk analysis research is also 

recommended.

Finally, the risk analysis methodology developed in this research should be 

applied in other applications or problem domains in order to determine consistency of 

results between related environments.
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INPUT PARAMETER QUESTIONNAIRE

P artL

1. Provide an estimate of ranges for the fineness ratio (FR). The range of values should 
include low, most likely and high values.

XI low 4
XI most likely 5.5

XI high 7

2. Provide an estimate of ranges for the wing area ratio (WA). The range of values 
should include low, most likely and high values.

X2 low 10
X2 most likely 15

X2 high 20

3. Provide an estimate of ranges for the tip fin area ratio (TFA). The range of values 
should include low, most likely and high values.

X3 low 0.5
X3 most likely 1.75

X3 high 3.0

4. Provide an estimate of ranges for the body flap area ratio (BFL). The range of values 
should include low, most likely and high values.

X4 low 0
X4 most likely 0.5

X4 high 1.0

5. Provide an estimate of ranges for the ballast weight (BL). The range of values should 
include low, most likely and high values.

XSlow 0
X5 most likely .02

X5 high .04

6. Provide an estimate of ranges for the mass ratio (MR). The range of values should 
include low, most likely and high values.

X6low 7.75
X6 most likely 8.0

X6 high 8.25
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7. Provide an estimate of ranges for the angle of attack (alpha). The range of values 
should include low, most likely and high values.

X7low 5
X7 most likely 12

X7hi«h 15

8. Provide an estimate of ranges for the elevon deflection (DELEV). The range of 
values should include low, most likely and high values.

XSlow -14.68
X8 most likely -11.7004

X8 high -4.345

P a rtn .

9. Revisit the values provided for fineness ratio. Revise these values if you deem it 
appropriate.

XI low same
XI most likely same

XI high same

10. Describe any scenario that might change the valuations that you applied to fineness 
ratio.

11. Revisit the values provided for wing area ratio. Revise these values if you deem it 
appropriate.

X2 low same
X2 most likely same

X2high same

12. Describe any scenario that might change the valuations that you applied to wing area 
ratio.

13. Revisit the values provided for tip fin area ratio. Revise these values if you deem it 
appropriate.
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X3 low same
X3 most likely same

X3 high same

14. Describe any scenario that might change the valuations that you applied to tip fin 
area ratio.

IS. Revisit the values provided for body flap area ratio. Revise these values if you deem 
it appropriate.

X41ow same
X4 most likely same

X4high same

16. Describe any scenario that might change the valuations that you applied to body flap 
area ratio.

17. Revisit the values provided for ballast weight. Revise these values if you deem it 
appropriate.

XSlow same
XS most likely same

XS high same

18. Describe any scenario that might change the valuations that you applied to ballast 
weight
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19. Revisit the values provided for mass ratio. Revise these values if you deem it 
appropriate.

X6low same
X6 most likely same

X6hiRh same

20. Describe any scenario that might change the valuations that you applied to mass 
ratio.

21. Revisit the values provided for angle of attack. Revise these values if you deem it 
appropriate.

X7 low same
X7 most likely same

X7 high same

22. Describe any scenario that might change the valuations that you applied to angle of 
attack.

23. Revisit the values provided for elevon deflection. Revise these values if you deem it 
appropriate.

X81ow same
X8 most likely same

X8hixh same

24. Describe any scenario that might change the valuations that you applied to elevon 
deflection.
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APPENDIX B 
Cg and Cm Response Surface Spreadsheet
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APPENDIX C 
Cg and Cm Response Surface Error
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x1 x2 x3 x4 x5 x6 cgplin (con sist) cgplin (RSM) error
1 -1 -1 -1 -1 -1 1 0.745 0.745 0
2 -1 -1 1 0.716 0.716 0
3 -1 -1 1 -1 0.745 0.7455 -0.0005
4 -1 -1 1 1 1 0.73 0.7302 -0.0002
5 -1 -1 1 -1 0.755 0.7549 1E-04
6 -1 -1 1 -1 1 0.773 0.7724 0.0006
7 -1 -1 1 1 1 0.751 0.7512 •0.0002
8 -1 -1 1 1 0 1 0.767 0.7666 0.0004
9 -1 -1 1 1 1 0.748 0.7479 1E-04

10 -1 0 1 1 0.741 0.7409 1E-04
11 -1 0 1 -1 1 0.778 0.778 0
12 -1 0 1 -1 0.778 0.7781 -1E-04
13 -1 0 1 0 0.773 0.7733 •0.0003
14 -1 1 -1 1 0.777 0.7789 1E-04
15 -1 1 1 0.749 0.749 0
16 *1 1 1 -1 0.772 0.7719 1E-04
17 -1 1 0 0.768 0.7683 -0.0003
18 0 1 -1 0.745 0.7456 -0.0006
19 0 0 -1 0.728 0.7274 0.0006
20 0 1 1 0.733 0.733 0
21 0 1 1 1 1 0.741 0.7408 0.0002
22 0 1 -1 0.762 0.7618 0.0002
23 0 1 1 0 1 0.765 0.7651 -1E-04
24 0 1 1 1 0.747 0.7471 -1E-04
25 0 1 1 1 -1 1 0.778 0.7783 -0.0003
26 1 -1 -1 -1 -1 -1 0.714 0.7137 0.0003
27 1 1 1 0.704 0.7041 -1E-04
28 1 1 0.702 0.7014 0.0006
29 1 1 -1 0.718 0.7178 0.0002
30 1 1 -1 1 0.727 0.7268 0.0002
31 1 -1 1 1 0.899 0.6995 -0.0005
32 1 -1 0 0.713 0.7133 -0.0003
33 1 1 -1 1 0.741 0.7413 -0.0003
34 1 1 1 0.713 0.7127 0.0003
35 1 1 1 -1 0.74 0.7399 1E-04
36 1 1 1 1 1 0.725 0.7252 •0.0002
37 1 -1 1 0.736 0.7363 -0.0003
38 1 1 1 -1 0.719 0.7192 -0.0002
39 1 1 -1 0.74 0.7403 -0.0003
40 1 1 1 0 0.736 0.7362 -0.0002
41 1 1 -1 1 0.756 0.7559 1E-04
42 1 1 1 -1 0.753 0.7527 0.0003
43 1 1 1 1 1 0.741 0.7409 1E-04
44 1 1 1 1 0 0.745 0.7447 0.0003
45 1 1 1 1 1 1 0.743 0.7432 -0.0002

m tan ■ -6.66M7E-06
standdard d tv  * 0.000286386
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Cg Error Histogram

CM Error Histogram

■  Frequency
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APPENDIX D 
Cg and Cm E rror Distribution Fit
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Cg Error Distribution Summary

Distribution: Normal
Expression: NORM(-6.67e-006,0.000283)
Square Error. 0.004258

Chi Square Test

Number of intervals - 2  
Degrees of freedom = -1 
Test Statistic -  0.579 
Corresponding p-value < 0.005

Kolmogorov-Smirnov Test

Test Statistic = 0.122 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 45
Min Data Value = -0.0006
Max Data Value = 0.0006
Sample Mean -  -6.67e-006
Sample Std Dev -  0.000286

Histogram Summary

Histogram Range -  -0.01 to 0.01 
Number of Intervals -  6
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Fit All Summary
Data File: G:\cgdata.txt

Function Sq Error

Lognormal 0.00326
Normal 0.00426
Erlang 0.00882
Gamma 0.00947
Weibull 0.0164
Triangular 0.167
Uniform 0.34
Exponential 0.414
Beta -l.#J
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Cm Error Distribution Summary

Distribution: Normal
Expression: NORM(3.04e-005,0.0012)
Square Error 0.018730

Chi Square Test

Number o f intervals = 3 
Degrees o f freedom = 0 
Test Statistic = S.27 
Corresponding p-value < 0.005

Kolmogorov-Smirnov Test

Test Statistic = 0.145 
Corresponding p-value < 0.01

Data Summary

Number of Data Points = 180
Min Data Value = -0.0033
Max Data Value -0.00551
Sample Mean = 3.04e-005
Sample Std Dev = 0.0012

Histogram Summary

Histogram Range -  -0.01 to 0.01 
Number of Intervals -1 3
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Fit All Summary
Data File: G:\Cm_error.txt

Function Sq Error

Normal 0.0187
Beta 0.0207
Lognormal 0.0292
Weibull 0.0315
Erlang 0.0923
Gamma 0.0926
Triangular 0.213
Uniform 0.31
Exponential 0.348
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APPENDIX E 
C ++ Input Parameter Coding Validation
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Fineness Ratio (FR) Distribution Summary

Distribution: Triangular 
Expression: TRIA(4, S.4S, 7)
Square Error 0.001674

Chi Square Test 
Number of intervals = 18 
Degrees of freedom -1 6  
Test Statistic -17.3  
Corresponding p-value = 0.376

Kolmogorov-Smirnov Test 
Test Statistic -  0.0238 
Corresponding p-value >0.15

Data Summary

Number of Data Points -  500
Min Data Value -  4
Max Data Value = 7
Sample Mean = 5.48
Sample Std Dev = 0.604

Histogram Summary

Histogram Range = 4 to 7
Number of Intervals = 22
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Wing Area (WA) Distribution Summary

Distribution: Triangular 
Expression: TRIA(10,14.3,20)
Square Error. 0.001640

Chi Square Test 
Number of intervals = 18 
Degrees of freedom = 16 
Test Statistic =24.1 
Corresponding p-value = 0.0904

Kolmogorov-Smirnov Test 
Test Statistic = 0.0S42 
Corresponding p-value = 0.103

Data Summary

Number of Data Points = 500
Min Data Value = 10 
Max Data Value = 19.7 
Sample Mean =15 
Sample Std Dev = 2.15

Histogram Summary

Histogram Range = 10 to 20 
Number of Intervals = 22
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Tip Fin Area (TFA)Ratio Distribution Summary

Distribution: Triangular 
Expression: TRIA(0.25,1.81,3)
Square Error 0.002988

Chi Square Test 
Number of intervals -  18 
Degrees of freedom =16 
Test Statistic =39 
Corresponding p-value < 0.005

Kolmogorov-Smirnov Test 
Test Statistic = 0.0861 
Corresponding p-value < 0.01

Data Summary

Number of Data Points = 500
Min Data Value = 0.5 
Max Data Value = 3 
Sample Mean =1.78 
Sample Std Dev = 0.505

Histogram Summary

Histogram Range = 0.25 to 3 
Number of Intervals = 22
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Body Flap Area (BFL) Ratio Distribution Summary

Distribution: Triangular 
Expression: TRIA(0,0.571,1)
Square Error. 0.001369

Chi Square Test 
Number of intervals -1 8  
Degrees of freedom -  16 
Test Statistic = 11.6 
Corresponding p-value > 0.75

Kolmogorov-Smirnov Test 
Test Statistic = 0.0323 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 500
Min Data Value = 0.0224 
Max Data Value - 1  
Sample Mean = 0.524 
Sample Std Dev = 0.201

Histogram Summary

Histogram Range = 0 to 1 
Number of Intervals = 22
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Ballast Weight (BL) Distribution Summary

Distribution: Triangular 
Expression: TRIA(-0.001,0.0187,0.05)
Square Error 0.003536

Chi Square Test 
Number of intervals -1 9  
Degrees of freedom = 17 
Test Statistic = 68.9 
Corresponding p-value < 0.005

Kolmogorov-Smirnov Test 
Test Statistic-0.116 
Corresponding p-value < 0.01

Data Summary

Number o f Data Points = 500
Min Data Value = 0 
Max Data Value = 0.04 
Sample Mean = 0.02 
Sample Std Dev = 0.00865

Histogram Summary

Histogram Range = -0.001 to 0.05 
Number o f Intervals = 22
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Mass Ratio (MR) Distribution Summary

Distribution: Triangular 
Expression: TRIA(7.7, 7.99,8.29)
Square Error: 0.002611

Chi Square Test 
Number o f intervals = 18 
Degrees o f freedom =16 
Test Statistic = 42 
Corresponding p-value < 0.005

Kolmogorov-Smirnov Test 
Test Statistic -  0.053 
Corresponding p-value = 0.119

Data Summary

Number of Data Points = 500
Min Data Value = 7.75
Max Data Value = 8.23
Sample Mean = 7.99
Sample Std Dev = 0.103

Histogram Summary

Histogram Range -  7.7 to 8.29
Number of Intervals =22
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Angle of Attack (alpha) Distribution Summary

Distribution: Triangular 
Expression: TRIA(5,11.9, IS)
Square Error 0.001459

Chi Square Test 
Number of intervals = 19 
Degrees o f freedom = 17 
Test Statistic = 12.9 
Corresponding p-value = 0.742

Kolmogorov-Smirnov Test 
Test Statistic -  0.0326 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 500
Min Data Value = 5.46 
Max Data Value = 14.8 
Sample Mean = 10.6 
Sample Std Dev = 1.99

Histogram Summary

Histogram Range -  5 to 15 
Number of Intervals = 22
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Elevon Deflection (DELEV) Distribution Summary

Distribution: Triangular 
Expression: TRIA(-15, -11.3, -4)
Square Error 0.002720

Chi Square Test 
Number of intervals = 19 
Degrees of freedom -1 7  
Test Statistic = 27.7
Corresponding p-value = 0.0492

Kolmogorov-Smirnov Test 
Test Statistic = 0.0572 
Corresponding p-value = 0.0764

Data Summary

Number of Data Points -  500
Min Data Value -  -14.3
Max Data Value = -4.73
Sample Mean = -10.1
Sample Std Dev = 2.1

Histogram Summary

Histogram Range = -15 to -4
Number of Intervals = 22
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Cg Error Distribution Summary

Distribution; Lognormal
Expression: -0.01 + LOGN(0.00999,2.82e-005)
Square Error 0.000007

Chi Square Test 
Number of intervals = 1 
Degrees of freedom =-2 
Test Statistic -  0.015
Corresponding p-value < 0.005

Kolmogorov-Smirnov Test 
Test Statistic = 0.0671 
Corresponding p-value < 0.01

Data Summary

Number of Data Points = 1000
Min Data Value -  -0.000103
Max Data Value -  7.3e-005
Sample Mean -  -1.4e-005
Sample Std Dev = 2.82e-005

Histogram Summary

Histogram Range -  -0.01 to 0.01
Number of Intervals =31
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Cm Error Distribution Summary

Distribution: Normal
Expression: NORM(5.57e-005,0.00124)
Square Error: 0.000586

Chi Square Test 
Number o f intervals -  10 
Degrees o f freedom =7 
Test Statistic = 9.54 
Corresponding p-value = 0.224

Kolmogorov-Smirnov Test 
Test Statistic = 0.0329 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 1000 
Min Data Value = -0.00349
Max Data Value -  0.00428
Sample Mean = 5.57e-005
Sample Std Dev = 0.00124

Histogram Summary

Histogram Range = -0.01 to 0.01 
Number o f Intervals =31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



112

APPENDIX F
Cg and Cm Distributions (Single Expert, Random Sampling)
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Cg Distribution Summary (10 Iterations)

Distribution: Beta
Expression: 0.71 + 0.05 * BETA(1.61,1.13)
Square Error. 0.063322

Kolmogorov-Smimov Test 
Test Statistic = 0.155 
Corresponding p-value >0.15

Data Summary

Number of Data Points = 10
Min Data Value =0.717
Max Data Value = 0.755
Sample Mean = 0.739
Sample Std Dev = 0.0127

Histogram Summary

Histogram Range = 0.71 to 0.76
Number of Intervals = 5
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Cg Distribution Summary (25 Iterations)

Distribution: Normal 
Expression: NORM(0.744,0.0106)
Square Error 0.005002

Chi Square Test 
Number of intervals =3 
Degrees o f freedom = 0  
Test Statistic = 0.304 
Corresponding p-value < 0.005

Kolmogorov-Smirnov Test 
Test Statistic = 0.0987 
Corresponding p-value > 0.15

Data Summary

Number o f Data Points = 25
Min Data Value = 0.717
Max Data Value = 0.766
Sample Mean = 0.744
Sample Std Dev = 0.0108

Histogram Summary

Histogram Range = 0.71 to 0.78
Number of Intervals = 5
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Cg Distribution Summary (50 Iterations)

Distribution: Normal 
Expression: NORM(0.744,0.0105)
Square Error 0.005654

Chi Square Test 
Number of intervals =3 
Degrees of freedom =0 
Test Statistic -0.451 
Corresponding p-value < 0.005

Kolmogorov-Smirnov Test 
Test Statistic = 0.0682 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 50
Min Data Value = 0.717
Max Data Value = 0.767
Sample Mean = 0.744
Sample Std Dev = 0.0106

Histogram Summary

Histogram Range -  0.71 to 0.78
Number of Intervals -  7
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Cg Distribution Summary (100 Iterations) 

Distribution: Beta
Expression: 0.71 + 0.07 * BETA(6.38,6.85)
Square Error 0.001006

Chi Square Test 
Number of intervals - 4  
Degrees of freedom =1 
Test Statistic = 0.29 
Corresponding p-value =0.617

Kolmogorov-Smirnov Test 
Test Statistic = 0.0429 
Corresponding p-value >0.15

Data Summary

Number of Data Points = 100
Min Data Value = 0.717
Max Data Value = 0.767
Sample Mean = 0.744
Sample Std Dev = 0.00994

Histogram Summary

Histogram Range 
Number of Intervals

= 0.71 to 0.78 
=  10
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Cg Distribution Summary (200 Iterations)

Distribution: Weibull
Expression: 0.71 + WEIB(0.0357,3.8)
Square Error: 0.00S117

Chi Square Test 
Number of intervals =7  
Degrees o f freedom =4 
Test Statistic = 6.68 
Corresponding p-value -  0.169

Kolmogorov-Smirnov Test 
Test Statistic -  0.0433 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 200
Min Data Value =0.715 
Max Data Value = 0.767 
Sample Mean = 0.742 
Sample Std Dev = 0.00942

Histogram Summary

Histogram Range = 0.71 to 0.78 
Number of Intervals = 14
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Cg Distribution Summary (300 Iterations) 

Distribution: Beta
Expression: 0.71 + 0.07 * BETA(5.55,6.25)
Square Enron 0.002486

Chi Square Test 
Number of intervals -  10 
Degrees o f freedom = 7  
Test Statistic -  5.75 
Corresponding p-value = 0.571

Kolmogorov-Smirnov Test 
Test Statistic = 0.0501 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 300
Min Data Value =0.715 
Max Data Value = 0.769 
Sample Mean = 0.743 
Sample Std Dev = 0.00977

Histogram Summary

Histogram Range 
Number of Intervals

= 0.71 to 0.78 
= 17
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Cg Distribution Summary (400 Iterations)

Distribution: Normal 
Expression: NORM(0.742,0.0102)
Square Error 0.001702

Chi Square Test 
Number o f intervals =11 
Degrees o f freedom =8 
Test Statistic = 6.32
Corresponding p-value = 0.612

Kolmogorov-Smirnov Test 
Test Statistic = 0.0375 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 400
Min Data Value = 0.713
Max Data Value = 0.769
Sample Mean = 0.742
Sample Std Dev = 0.0102

Histogram Summary

Histogram Range = 0.7 to 0.78
Number o f Intervals = 20
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Cg Distribution Summary (500 iterations) 

Distribution: Beta
Expression: 0.7 + 0.09 * BETA(8.4,9.5)
Square Error 0.002937

Chi Square Test 
Number of intervals = 11 
Degrees of freedom =8 
Test Statistic = 11.3 
Corresponding p-value -  0.197

Kolmogorov-Smirnov Test 
Test Statistic = 0.0371 
Corresponding p-value >0.15

Data Summary

Number of Data Points = 500
Min Data Value =0.713 
Max Data Value = 0.782 
Sample Mean = 0.742 
Sample Std Dev = 0.0103

Histogram Summary

Histogram Range = 0.7 to 0.79 
Number of Intervals = 22
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Cg Distribution Summary (1000 iterations) 

Distribution: Beta
Expression: 0.7 + 0.09 * BETA(8.59,9.64)
Square Error 0.000596

Chi Square Test 
Number of intervals = 17 
Degrees of freedom -1 4  
Test Statistic =9.31
Corresponding p-value > 0.75

Kolmogorov-Smirnov Test 
Test Statistic = 0.0234 
Corresponding p-value >0.15

Data Summary

Number of Data Points = 1000
Min Data Value = 0.71
Max Data Value = 0.782
Sample Mean = 0.742
Sample Std Dev = 0.0102

Histogram Summary

Histogram Range = 0.7 to 0.79
Number o f Intervals = 31
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Cg Distribution Summary (1500 iterations) 

Distribution: Beta
Expression: 0.7 + 0.09 * BETA(8.65, 9.82)
Square Error 0.00083S

Chi Square Test 
Number of intervals -2 2  
Degrees of freedom = 19 
Test Statistic -  20.2 
Corresponding p-value = 0.393

Kolmogorov-Smirnov Test 
Test Statistic = 0.0182 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 1500
Min Data Value =0.71 
Max Data Value = 0.782 
Sample Mean = 0.742 
Sample Std Dev = 0.0102

Histogram Summary

Histogram Range = 0.7 to 0.79 
Number of Intervals = 38
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Cg Distribution Summary (2000 iterations) 

Distribution: Beta
Expression: 0.7 + 0.09 * BETA(8.85,10.1)
Square Error 0.000677

Chi Square Test 
Number of intervals =23 
Degrees of freedom =20 
Test Statistic = 29
Corresponding p-value = 0.0905

Kolmogorov-Smirnov Test 
Test Statistic = 0.0215 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 2000
Min Data Value = 0.71
Max Data Value = 0.782
Sample Mean = 0.742
Sample Std Dev = 0.0101

Histogram Summary

Histogram Range = 0.7 to 0.79
Number of Intervals = 40
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Cm Distribution Summary (10 Iterations) 

Distribution: Beta
Expression: -0.02 + 0.06 * BETA(1.82, 1.33) 
Square Error: 0.011000

Kolmogorov-Smirnov Test 
Test Statistic = 0.145 
Corresponding p-value >0.15

Data Summary

Number of Data Points = 10
Min Data Value = -0.0141
Max Data Value -  0.0327
Sample Mean = 0.0147
Sample Std Dev = 0.0146

Histogram Summary

Histogram Range -  -0.02 to 0.04
Number of Intervals =5
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Cm Distribution Summary (25 Iterations) 

Distribution: Beta
Expression: -0.02 + 0.06 * BETA(2.1,1.58)
Square Error: 0.006224

Chi Square Test 
Number of intervals =3 
Degrees of freedom = 0  
Test Statistic = 0.742
Corresponding p-value < 0.005

Kolmogorov-Smirnov Test 
Test Statistic =0.105 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 25
Min Data Value = -0.0141
Max Data Value = 0.0327
Sample Mean = 0.0143
Sample Std Dev = 0.0137

Histogram Summary

Histogram Range -  -0.02 to 0.04
Number of Intervals = 5
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Cm Distribution Summary (SO Iterations)

Distribution: Triangular 
Expression: TRIA(-0.02,0.0242,0.05)
Square Error. 0.007382

Chi Square Test 
Number of intervals = S 
Degrees of freedom =3 
Test Statistic = 1.87 
Corresponding p-value = 0.607

Kolmogorov-Smirnov Test 
Test Statistic = 0.08S 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 50
Min Data Value =-0.0141 
Max Data Value = 0.0426 
Sample Mean =0.0181 
Sample Std Dev = 0.0135

Histogram Summary

Histogram Range = -0.02 to 0.05 
Number of Intervals = 7
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Cm Distribution Summary (100 Iterations)

Distribution: Triangular 
Expression: TRIA(-0.02,0.0225,0.05)
Square Error 0.014538

Chi Square Test 
Number of intervals =7 
Degrees of freedom =5 
Test Statistic = 10.3
Corresponding p-value = 0.0709

Kolmogorov-Smirnov Test 
Test Statistic = 0.0733 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 100
Min Data Value = -0.0141
Max Data Value = 0.0426
Sample Mean = 0.0175
Sample Std Dev = 0.013

Histogram Summary

Histogram Range = -0.02 to 0.05
Number of Intervals =10
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Cm Distribution Summary (200 Iterations)

Distribution: Weibull
Expression: -0.03 + WEIB(0.0526,4.6)
Square Error 0.004635

Chi Square Test 
Number o f intervals -  8 
Degrees o f freedom = 5 
Test Statistic =7.16 
Corresponding p-value = 0.219

Kolmogorov-Smirnov Test 
Test Statistic = 0.0555 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 200
Min Data Value = -0.0144 
Max Data Value = 0.0437 
Sample Mean =0.018 
Sample Std Dev = 0.0122

Histogram Summary

Histogram Range = -0.03 to 0.05 
Number of Intervals =14
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Cm Distribution Summary (300 Iterations)

Distribution: Weibull
Expression: -0.03 + WEIB(0.053,4.61)
Square Error 0.004852

Chi Square Test 
Number of intervals -1 0  
Degrees of freedom = 7 
Test Statistic = 11.6 
Corresponding p-value = 0.119

Kolmogorov-Smirnov Test 
Test Statistic = 0.0573 
Corresponding p-value >0.15

Data Summary

Number of Data Points = 300
Min Data Value =-0.0214 
Max Data Value = 0.0474 
Sample Mean =0.0184 
Sample Std Dev = 0.0122

Histogram Summary

Histogram Range = -0.03 to 0.06 
Number of Intervals =17
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Cm Distribution Summary (400 Iterations)

Distribution: Weibull
Expression: *0.03 + WEIB(0.0528,4.56)
Square Error 0.002321

Chi Square Test 
Number of intervals =11 
Degrees of freedom =8 
Test Statistic = 9.54
Corresponding p-value = 0.309

Kolmogorov-Smirnov Test 
Test Statistic -  0.0401 
Corresponding p-value >0.15

Data Summary

Number of Data Points = 400
Min Data Value = -0.0214
Max Data Value = 0.0474
Sample Mean = 0.0182
Sample Std Dev = 0.0122

Histogram Summary

Histogram Range = -0.03 to 0.06
Number of Intervals = 20
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Cm Distribution Summary (500 iterations)

Distribution: Weibull
Expression: -0.03 + WEIB(0.0527,4.64)
Square Error. 0.001370

Chi Square Test 
Number of intervals -  13 
Degrees of freedom = 10 
Test Statistic = 7.93 
Corresponding p-value = 0.636

Kolmogorov-Smirnov Test 
Test Statistic = 0.0365 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 500
Min Data Value = -0.0214 
Max Data Value = 0.0474 
Sample Mean = 0.0182 
Sample Std Dev = 0.0121

Histogram Summary

Histogram Range -  -0.03 to 0.06 
Number of Intervals = 22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



132

Cm Distribution Summary (1000 iterations)

Distribution: Weibull
Expression: -0.04 + WEIB(0.063,5.62)
Square Error 0.000641

Chi Square Test 
Number of intervals = 18 
Degrees of freedom = 15 
Test Statistic = 17.8 
Corresponding p-value = 0.277

Kolmogorov-Smirnov Test 
Test Statistic -  0.0228 
Corresponding p-value >0.15

Data Summary

Number of Data Points -  1000
Min Data Value = -0.0234 
Max Data Value = 0.0507 
Sample Mean =0.0184 
Sample Std Dev = 0.0124

Histogram Summary

Histogram Range = -0.04 to 0.06 
Number of Intervals =31
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Cm Distribution Summary (1500 iterations)

Distribution: Weibull
Expression: -0.04 + WEIB(0.063,5.62)
Square Error: 0.000492

Chi Square Test 
Number o f intervals =22 
Degrees o f freedom = 19 
Test Statistic = 20.6 
Corresponding p-value = 0.371

Kolmogorov-Smirnov Test 
Test Statistic = 0.0166 
Corresponding p-value >0.15

Data Summary

Number of Data Points = 1500
Min Data Value = -0.0236 
Max Data Value = 0.0521 
Sample Mean =0.0183 
Sample Std Dev = 0.0123

Histogram Summary

Histogram Range = -0.04 to 0.06 
Number of Intervals = 38
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Cm Distribution Summary (2000 iterations)

Distribution: Weibull
Expression: -0.04 + WEIB(0.063,5.62)
Square Error 0.000390

Chi Square Test 
Number of intervals =24 
Degrees of freedom -2 1  
Test Statistic = 27.9 
Corresponding p-value = 0.154

Kolmogorov-Smirnov Test 
Test Statistic = 0.0146 
Corresponding p-value >0.15

Data Summary

Number of Data Points = 2000
Min Data Value = -0.0236 
Max Data Value =0.0521 
Sample Mean = 0.0183 
Sample Std Dev = 0.0124

Histogram Summary

Histogram Range = -0.04 to 0.06 
Number of Intervals = 40
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APPENDIX G 
@Risk Cg and Cm Distributions Spreadsheet
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Actual Code 1 Code2
FR 5.5 0 0
WA 15 0 0
TFA 1.75 0 0
BFL 0.5 0 0
BL 0.02 -1.73472E-16
MR 8 0
alpha 10.66666667 0.316667
delev -10.2418 •0.81081
enrol -1E-05
error2 0.000032

eg 0.7412179 0.353632

cm 0.014715
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APPENDIX H 
Multiple Expert Opinion Aggregation Data
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Figure HI -  Expert Opinion Comparison
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Figure H2 -  Aggregated Discrete Distributions
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Figure H2(Continued) -  Aggregated Discrete Distributions
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APPENDIX I
Cg and Cm Distributions (Multiple Experts, Random Sampling)
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Cg Distribution Summary (10 Iterations -  Discrete Monte Carlo)

Distribution: Lognormal
Expression: 0.7 + LOGN(0.0365, 0.0148)
Square Error 0.080960

Kolmogorov-Smirnov Test 
Test Statistic = 0.149 
Corresponding p-value > 0.15

Data Summary

Number of Data Points -  10
Min Data Value = 0.714
Max Data Value -  0.753
Sample Mean = 0.736
Sample Std Dev = 0.0129

Histogram Summary

Histogram Range -  0.7 to 0.76 
Number of Intervals = 5
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Cg Distribution Summary (25 Iterations -  Discrete Monte Carlo)

Distribution: Weibull
Expression: 0.7 + WEIB(0.0439,4.33)
Square Error 0.003925

Chi Square Test 
Number of intervals - 2  
Degrees of freedom = -1 
Test Statistic = 0.0256 
Corresponding p-value < 0.005

Kolmogorov-Smirnov Test 
Test Statistic = 0.099 
Corresponding p-value >0.15

Data Summary

Number of Data Points = 25
Min Data Value -  0.714 
Max Data Value =0.761 
Sample Mean = 0.74 
Sample Std Dev = 0.0108

Histogram Summary

Histogram Range = 0.7 to 0.77 
Number of Intervals = 5
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Cg Distribution Summary ( 50 Iterations -  Discrete Monte Carlo)

Distribution: Erlang
Expression: 0.7 + ERLA(0.0031, 13)
Square Error 0.005862

Chi Square Test 
Number of intervals =4 
Degrees of freedom - 1  
Test Statistic -1 .8
Corresponding p-value = 0.198

Kolmogorov-Smirnov Test 
Test Statistic = 0.0701 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 50
Min Data Value = 0.714
Max Data Value -  0.762
Sample Mean = 0.74
Sample Std Dev = 0.0109

Histogram Summary

Histogram Range = 0.7 to 0.77
Number of Intervals =7
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Cg Distribution Summary (100 Iterations -  Discrete Monte Carlo)

Distribution: Gamma
Expression: 0.7 + GAMM(0.00276,14.3)
Square Error. 0.003873

Chi Square Test 
Number of intervals = 5 
Degrees of freedom = 2  
Test Statistic = 1.23 
Corresponding p-value = 0.S47

Kolmogorov-Smirnov Test 
Test Statistic = 0.064 
Corresponding p-value >0.15

Data Summary

Number of Data Points = 100
Min Data Value = 0.714
Max Data Value = 0.763
Sample Mean = 0.74
Sample Std Dev = 0.0101

Histogram Summary

Histogram Range 
Number of Intervals

= 0.7 to 0.77 
=  10
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Cg Distribution Summary (200 Iterations -  Discrete Monte Carlo)

Distribution: Lognormal
Expression: 0.7 + LOGN(0.0385, 0.0102)
Square Error 0.000825

Chi Square Test 
Number of intervals = 8 
Degrees o f freedom = 5 
Test Statistic = 1.33 
Corresponding p-value > 0.75

Kolmogorov-Smirnov Test 
Test Statistic = 0.0442 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 200
Min Data Value =0.714 
Max Data Value = 0.763 
Sample Mean = 0.738 
Sample Std Dev = 0.00964

Histogram Summary

Histogram Range = 0.7 to 0.77 
Number of Intervals = 14
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Cg Distribution Summary (300 Iterations -  Discrete Monte Carlo)

Distribution: Erlang
Expression: 0.7 + ERLA(0.00262, 15)
Square Error. 0.002702

Chi Square Test 
Number of intervals = 10 
Degrees of freedom = 7  
Test Statistic -  7.46
Corresponding p-value = 0.397

Kolmogorov-Smirnov Test 
Test Statistic -  0.0288 
Corresponding p-value >0.15

Data Summary

Number of Data Points = 300
Min Data Value = 0.714
Max Data Value = 0.764
Sample Mean = 0.739
Sample Std Dev = 0.00993

Histogram Summary

Histogram Range = 0.7 to 0.77
Number of Intervals =17
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Cg Distribution Summary (400 Iterations -  Discrete Monte Carlo)

Distribution: Erlang
Expression: 0.7+ERLA(0.00277,14)
Square Error. 0.001799

Chi Square Test 
Number of intervals -  12 
Degrees of freedom =9 
Test Statistic = 7.4
Corresponding p-value = 0.597

Kolmogorov-Smirnov Test 
Test Statistic = 0.0212 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 400
Min Data Value = 0.714
Max Data Value = 0.764
Sample Mean = 0.739
Sample Std Dev = 0.0102

Histogram Summary

Histogram Range -  0.7 to 0.77
Number of Intervals = 20
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Cg Distribution Summary (500 Iterations -  Discrete Monte Carlo)

Distribution: Gamma
Expression: 0.7 + GAMM(0.00283,13.7)
Square Error. 0.001065

Chi Square Test 
Number of intervals -  11 
Degrees of freedom - 8  
Test Statistic =4.18 
Corresponding p-value > 0.75

Kolmogorov-Smirnov Test 
Test Statistic = 0.026 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 500
Min Data Value =0.714 
Max Data Value = 0.779 
Sample Mean = 0.739 
Sample Std Dev = 0.0104

Histogram Summary

Histogram Range = 0.7 to 0.79 
Number of Intervals = 22
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Cg Distribution Summary (1000 Iterations -  Discrete Monte Carlo)

Distribution: Erlang
Expression: 0.7 + ERLA(0.00279,14)
Square Error. 0.000967

Chi Square Test 
Number of intervals = 17 
Degrees of freedom = 14 
Test Statistic = 26 
Corresponding p-value = 0.0262

Kolmogorov-Smirnov Test 
Test Statistic = 0.0257 
Corresponding p-value >0.15

Data Summary

Number of Data Points = 1000
Min Data Value = 0.714 
Max Data Value = 0.779 
Sample Mean -  0.739 
Sample Std Dev = 0.0103

Histogram Summary

Histogram Range -  0.7 to 0.79 
Number of Intervals =31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



152

Cg Distribution Summary (1500 Iterations -  Discrete Monte Carlo)

Distribution: Erlang
Expression: 0.7 + ERLA(0.00277,14)
Square Error 0.000522

Chi Square Test 
Number of intervals -2 2  
Degrees of freedom = 19 
Test Statistic =31.8 
Corresponding p-value = 0.0352

Kolmogorov-Smirnov Test 
Test Statistic = 0.015 
Corresponding p-value >0.15

Data Summary

Number of Data Points =1500
Min Data Value =0.711 
Max Data Value = 0.779 
Sample Mean = 0.739 
Sample Std Dev = 0.0102

Histogram Summary

Histogram Range = 0.7 to 0.79
Number of Intervals = 38
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Cg Distribution Summary (2000 Iterations -  Discrete Monte Carlo)

Distribution: Erlang
Expression: 0.7 + ERLA(0.00277,14)
Square Error 0.000439

Chi Square Test 
Number of intervals =24 
Degrees of freedom =21 
Test Statistic = 33.6
Corresponding p-value = 0.0421

Kolmogorov-Smirnov Test 
Test Statistic = 0.0146 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 2000
Min Data Value = 0.711
Max Data Value = 0.779
Sample Mean = 0.739
Sample Std Dev = 0.0102

Histogram Summary

Histogram Range = 0.7 to 0.79
Number of Intervals = 40
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Cm Distribution Summary (10 Iterations -  Discrete Monte Carlo)

Distribution: Triangular 
Expression: TRIA(-0.02,0.0346,0.05)
Square Error 0.010670

Kolmogorov-Smirnov Test 
Test Statistic = 0.121 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 10
Min Data Value = -0.00687
Max Data Value =0.041
Sample Mean =0.0215
Sample Std Dev = 0.0147

Histogram Summary

Histogram Range = -0.02 to 0.05
Number of Intervals = 5
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Cm Distribution Summary (25 Rerations -  Discrete Monte Carlo)

Distribution: Triangular 
Expression: TRIA(-0.02,0.032,0.05)
Square Error. 0.008093

Chi Square Test 
Number of intervals - 3  
Degrees of freedom = 1 
Test Statistic = 0.724
Corresponding p-value = 0.423

Kolmogorov-Smirnov Test 
Test Statistic = 0.0944 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 25
Min Data Value = -0.00687
Max Data Value = 0.041
Sample Mean = 0.0207
Sample Std Dev = 0.0135

Histogram Summary

Histogram Range = -0.02 to 0.05
Number of Intervals = 5
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Cm Distribution Summary (50 Iterations -  Discrete Monte Carlo)

Distribution: Weibull
Expression: -0.02+WEIB(0.049,4.05)
Square Error 0.016433

Chi Square Test 
Number of intervals - 4  
Degrees of freedom =1 
Test Statistic -1 .49
Corresponding p-value = 0.232

Kolmogorov-Smirnov Test 
Test Statistic = 0.0996 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 50
Min Data Value = -0.00687
Max Data Value = 0.0478
Sample Mean = 0.0244
Sample Std Dev = 0.013

Histogram Summary

Histogram Range = -0.02 to 0.06
Number of Intervals = 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission



157

Cm Distribution Summary (100 Iterations -  Discrete Monte Carlo) 

Distribution: Beta
Expression: -0.02 + 0.08 * BETA(4.73,3.85)
Square Error 0.002259

Chi Square Test 
Number of intervals -  5 
Degrees of freedom = 2  
Test Statistic -  0.822
Corresponding p-value = 0.674

Kolmogorov-Smirnov Test 
Test Statistic = 0.0683 
Corresponding p-value >0.15

Data Summary

Number of Data Points = 100
Min Data Value = -0.00687
Max Data Value = 0.049
Sample Mean = 0.0241
Sample Std Dev = 0.0129

Histogram Summary

Histogram Range = -0.02 to 0.06
Number of Intervals = 10
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Cm Distribution Summary (200 Iterations -  Discrete Monte Carlo)

Distribution: Weibull
Expression: -0.02 + WEIB(0.0494,4.25)
Square Error. 0.004625

Chi Square Test 
Number of intervals - 8  
Degrees of freedom =5 
Test Statistic = 8.3 
Corresponding p-value =0.154

Kolmogorov-Smirnov Test 
Test Statistic = 0.0547 
Corresponding p-value > 0.15

Data Summary

Number of Data Points =200
Min Data Value = -0.00738
Max Data Value = 0.049
Sample Mean = 0.0249
Sample Std Dev = 0.0124

Histogram Summary

Histogram Range = -0.02 to 0.06
Number of Intervals =14
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Cm Distribution Summary (300 Iterations -  Discrete Monte Carlo)

Distribution: Weibull
Expression: -0.03 + WEIB(0.06,5.24)
Square Enron 0.001081

Chi Square Test 
Number of intervals =8 
Degrees of freedom =5 
Test Statistic -  2.37
Corresponding p-value > 0.75

Kolmogorov-Smirnov Test 
Test Statistic = 0.0405 
Corresponding p-value >0.15

Data Summary

Number of Data Points = 300
Min Data Value = -0.0134
Max Data Value = 0.0553
Sample Mean = 0.0252
Sample Std Dev = 0.0123

Histogram Summary

Histogram Range = -0.03 to 0.07
Number of Intervals = 17
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Cm Distribution Summary (400 Iterations -  Discrete Monte Carlo)

Distribution: Weibull
Expression: -0.03 + WEIB(0.0598, 5.27)
Square Error 0.001182

Chi Square Test 
Number of intervals =11 
Degrees of freedom =8 
Test Statistic = 5.34
Corresponding p-value = 0.721

Kolmogorov-Smirnov Test 
Test Statistic = 0.0314 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 400
Min Data Value = -0.0134
Max Data Value = 0.0553
Sample Mean = 0.0251
Sample Std Dev = 0.0121

Histogram Summary

Histogram Range = -0.03 to 0.07
Number of Intervals =20
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Cm Distribution Summary (500 Iterations -  Discrete Monte Carlo)

Distribution: Weibull
Expression: -0.03 + WEIB(0.0599,5.39)
Square Error 0.001335

Chi Square Test 
Number o f intervals =11 
Degrees o f freedom =8 
Test Statistic = 9.04
Corresponding p-value = 0.353

Kolmogorov-Smirnov Test 
Test Statistic = 0.0304 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 500
Min Data Value = -0.0134
Max Data Value = 0.0553
Sample Mean = 0.0252
Sample Std Dev = 0.0119

Histogram Summary

Histogram Range = -0.03 to 0.07
Number o f Intervals = 22
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Cm Distribution Summary (1000 Iterations -  Discrete Monte Carlo)

Distribution: Weibull
Expression: -0.03 + WEIB(0.0599, 5.39)
Square Error 0.001214

Chi Square Test 
Number of intervals = 17 
Degrees of freedom -  14 
Test Statistic -18.3 
Corresponding p-value = 0.206

Kolmogorov-Smirnov Test 
Test Statistic = 0.0298 
Corresponding p-value >0.15

Data Summary

Number of Data Points = 1000
Min Data Value = -0.0142
Max Data Value = 0.0584
Sample Mean = 0.0255
Sample Std Dev = 0.0122

Histogram Summary

Histogram Range 
Number of Intervals

= -0.03 to 0.07 
= 31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



163

Cm Distribution Summary (1500 Iterations -  Discrete Monte Carlo)

Distribution: Weibull
Expression: -0.03 + WEIB(0.0599, 5.39)
Square Error: 0.000990

Chi Square Test 
Number of intervals = 22 
Degrees of freedom = 19 
Test Statistic = 36.3 
Corresponding p-value = 0.00975

Kolmogorov-Smimov Test 
Test Statistic = 0.0214 
Corresponding p-value >0.15

Data Summary

Number of Data Points =1500
Min Data Value = -0.0142 
Max Data Value = 0.0586 
Sample Mean = 0.0254 
Sample Std Dev = 0.0122

Histogram Summary

Histogram Range = -0.03 to 0.07 
Number of Intervals = 38
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Cm Distribution Summary (2000 Iterations -  Discrete Monte Carlo)

Distribution: Weibull
Expression: -0.03 + WEIB(0.0599, 5.39)
Square Error 0.000917

Chi Square Test 
Number of intervals =24 
Degrees of freedom = 21 
Test Statistic = 36.2 
Corresponding p-value = 0.0219

Kolmogorov-Smirnov Test 
Test Statistic = 0.0163 
Corresponding p-value >0.15

Data Summary

Number of Data Points = 2000
Min Data Value = -0.0142 
Max Data Value = 0.0586 
Sample Mean = 0.0254 
Sample Std Dev = 0.0122

Histogram Summary

Histogram Range = -0.03 to 0.07 
Number of Intervals = 40
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APPENDIX J
Cg and Cm Distributions (Single Expert, Latin Hypercube Sampling)
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Cg Distribution Summary (10 Iterations -  Latin Hypercube)

Distribution: Normal 
Expression: NORM(0.742,0.0104)
Square Error 0.022486

Kolmogorov-Smirnov Test 
Test Statistic = 0.151 
Corresponding p-value > 0.15

Data Summary

Number of Data Points -1 0
Min Data Value = 0.725
Max Data Value = 0.758
Sample Mean = 0.742
Sample Std Dev = 0.011

Histogram Summary

Histogram Range = 0.72 to 0.77
Number of Intervals = 5
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Cg Distribution Summary (25 Iterations -  Latin Hypercube)

Distribution: Lognormal 
Expression: 0.72 + LOGN(0.022,0.011)
Square Error: 0.003368

Chi Square Test 
Number of intervals =2 
Degrees o f freedom = -1 
Test Statistic = 0.054 
Corresponding p-value < 0.005

Kolmogorov-Smirnov Test 
Test Statistic -  0.0981 
Corresponding p-value >0.15

Data Summary

Number of Data Points = 25
Min Data Value = 0.728
Max Data Value = 0.765
Sample Mean = 0.742
Sample Std Dev = 0.0102

Histogram Summary

Histogram Range = 0.72 to 0.77
Number of Intervals = 5
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Cg Distribution Summary (SO Iterations -  Latin Hypercube)

Distribution: Normal 
Expression: NORM(0.742,0.00987)
Square Error 0.004057

Chi Square Test 
Number of intervals =3 
Degrees of freedom = 0  
Test Statistic = 0.262 
Corresponding p-value < 0.005

Kolmogorov-Smirnov Test 
Test Statistic = 0.0749 
Corresponding p-value >0.15

Data Summary

Number of Data Points = SO
Min Data Value =0.718 
Max Data Value = 0.775 
Sample Mean = 0.742 
Sample Std Dev = 0.00997

Histogram Summary

Histogram Range = 0.71 to 0.79 
Number of Intervals = 7
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Cg Distribution Summary (100 Iterations -  Latin Hypercube)

Distribution: Normal 
Expression: NORM(0.742,0.0109)
Square Error: 0.007487

Chi Square Test 
Number of intervals - 4  
Degrees of freedom = 1 
Test Statistic =2.16 
Corresponding p-value = 0.16

Kolmogorov-Smirnov Test 
Test Statistic = 0.0SS1 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 100
Min Data Value = 0.709
Max Data Value = 0.767
Sample Mean = 0.742
Sample Std Dev = 0.011

Histogram Summary

Histogram Range = 0.7 to 0.78
Number of Intervals = 10
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Cg Distribution Summary ( 200 Iterations -  Latin Hypercube) 

Distribution: Beta
Expression: 0.7 + 0.08 * BETA(6.84,6.21)
Square Error 0.005346

Chi Square Test 
Number of intervals =7  
Degrees o f freedom =4 
Test Statistic = 6.4
Corresponding p-value = 0.186

Kolmogorov-Smirnov Test 
Test Statistic = 0.0408 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 200
Min Data Value = 0.714
Max Data Value = 0.772
Sample Mean = 0.742
Sample Std Dev = 0.0107

Histogram Summary

Histogram Range = 0.7 to 0.78
Number of Intervals =14
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Cg Distribution Summary (300 Iterations -  Latin Hypercube)

Distribution: Normal 
Expression: NORM(0.742,0.0101)
Square Error 0.002972

Chi Square Test 
Number of intervals = 9 
Degrees of freedom = 6  
Test Statistic -  7.06
Corresponding p-value = 0.329

Kolmogorov-Smirnov Test 
Test Statistic = 0.0229 
Corresponding p-value > 0.15

Data Summary

Number of Data Points -  300
Min Data Value = 0.71S
Max Data Value = 0.772
Sample Mean = 0.742
Sample Std Dev = 0.0101

Histogram Summary

Histogram Range = 0.7 to 0.78
Number of Intervals = 17
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Cg Distribution Summary ( 400 Iterations -  Latin Hypercube) 

Distribution: Beta
Expression: 0.7 + 0.08 * BETA(7.18, 6.7)
Square Error: 0.000758

Chi Square Test 
Number of intervals = 11 
Degrees of freedom =8 
Test Statistic = 4.22
Corresponding p-value > 0.75

Kolmogorov-Smirnov Test 
Test Statistic -  0.0314 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 400
Min Data Value = 0.714
Max Data Value = 0.773
Sample Mean = 0.742
Sample Std Dev = 0.0103

Histogram Summary

Histogram Range = 0.7 to 0.78
Number of Intervals = 20
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Cg Distribution Summary (500 Iterations -  Latin Hypercube)

Distribution: Normal 
Expression: NORM(0.742,0.0104)
Square Error 0.002027

Chi Square Test 
Number of intervals = 13 
Degrees of freedom = 10 
Test Statistic = 12.2 
Corresponding p-value -  0.278

Kolmogorov-Smirnov Test 
Test Statistic = 0.043 
Corresponding p-value >0.15

Data Summary

Number of Data Points = 500
Min Data Value =0.712 
Max Data Value = 0.773 
Sample Mean = 0.742 
Sample Std Dev = 0.0104

Histogram Summary

Histogram Range = 0.7 to 0.78 
Number of Intervals = 22
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Cg Distribution Summary (1000 Iterations -  Latin Hypercube) 

Distribution: Beta
Expression: 0.7 + 0.09 * BETA(8.43,9.64)
Square Error. 0.001182

Chi Square Test 
Number of intervals -1 7  
Degrees of freedom = 14
Test Statistic = 24.9
Corresponding p-value -  0.038

Kolmogorov-Smirnov Test 
Test Statistic = 0.027 
Corresponding p-value > 0.1S

Data Summary

Number of Data Points = 1000
Min Data Value -  0.711
Max Data Value = 0.779
Sample Mean = 0.742
Sample Std Dev = 0.0103

Histogram Summary

Histogram Range = 0.7 to 0.79
Number of Intervals =31
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Cg Distribution Summary (1500 Iterations -  Latin Hypercube)

Distribution: Erlang
Expression: 0.7 +ERLA(0.00247,17)
Square Error: 0.000367

Chi Square Test 
Number of intervals = 22 
Degrees of freedom = 19 
Test Statistic = 29.4 
Corresponding p-value = 0.0625

Kolmogorov-Smirnov Test 
Test Statistic = 0.0162 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 1500
Min Data Value = 0.708 
Max Data Value = 0.777 
Sample Mean = 0.742 
Sample Std Dev = 0.0101

Histogram Summary

Histogram Range = 0.7 to 0.79 
Number of Intervals = 38
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Cg Distribution Summary (2000 Iterations -  Latin Hypercube) 

Distribution: Beta
Expression: 0.7 + 0.09 ♦ BETA(7.84, 8.97)
Square Error 0.0003S4

Chi Square Test 
Number of intervals =24 
Degrees of freedom =21 
Test Statistic = 15.2
Corresponding p-value > 0.75

Kolmogorov-Smirnov Test 
Test Statistic = 0.0213 
Corresponding p-value >0.15

Data Summary

Number of Data Points = 2000
Min Data Value = 0.71
Max Data Value = 0.777
Sample Mean = 0.742
Sample Std Dev = 0.0106

Histogram Summary

Histogram Range = 0.7 to 0.79
Number of Intervals = 40
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Cm Distribution Summary (10 Iterations -  Latin Hypercube)

Distribution: Beta
Expression: 0.01 + 0.03 * BETA(1.6,1.59)
Square Error: 0.014427

Kolmogorov-Smirnov Test 
Test Statistic =0.131 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 10
Min Data Value = 0.0142
Max Data Value -  0.0346
Sample Mean = 0.025
Sample Std Dev = 0.00733

Histogram Summary

Histogram Range = 0.01 to 0.04 
Number of Intervals = 5
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Cm Distribution Summary (25 Iterations -  Latin Hypercube)

Distribution: Beta
Expression: -0.03 + 0.08 * BETA(3.15,1.88)
Square Error 0.009663

Chi Square Test 
Number of intervals =3 
Degrees of freedom =0 
Test Statistic =0.194 
Corresponding p-value < 0.005

Kolmogorov-Smirnov Test 
Test Statistic =0.13 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 25
Min Data Value =-0.0153 
Max Data Value = 0.044 
Sample Mean = 0.0203 
Sample Std Dev = 0.017

Histogram Summary

Histogram Range = -0.03 to 0.05 
Number of Intervals = 5
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Cm Distribution Summary ( SO Iterations -  Latin Hypercube)

Distribution: Weibull
Expression: *0.02 + WEIB(0.0448,3.27)
Square Error 0.004883

Chi Square Test 
Number of intervals = 4  
Degrees of freedom -  1 
Test Statistic =1.26 
Corresponding p-value = 0.269

Kolmogorov-Smirnov Test 
Test Statistic = 0.0902 
Corresponding p-value > 0.15

Data Summary

Number o f Data Points = SO 
Min Data Value = -0.00743
Max Data Value = 0.0S47
Sample Mean = 0.0201
Sample Std Dev = 0.013S

Histogram Summary

Histogram Range = -0.02 to 0.07 
Number of Intervals = 7
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Cm Distribution Summary (100 Iterations -  Latin Hypercube)

Distribution: Normal 
Expression: NORM(0.0191,0.0127)
Square Error: 0.007921

Chi Square Test 
Number of intervals =5 
Degrees of freedom = 2 
Test Statistic =2.15 
Corresponding p-value = 0.362

Kolmogorov-Smirnov Test 
Test Statistic = 0.063 
Corresponding p-value >0.15

Data Summary

Number of Data Points = 100
Min Data Value =-0.0127 
Max Data Value = 0.0499 
Sample Mean = 0.0191 
Sample Std Dev = 0.0127

Histogram Summary

Histogram Range = -0.02 to 0.06 
Number of Intervals = 10
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Cm Distribution Summary (200 Iterations -  Latin Hypercube)

Distribution: Normal 
Expression: NORM(0.0182,0.0126)
Square Error: 0.002321

Chi Square Test 
Number of intervals =8 
Degrees of freedom =5 
Test Statistic = 3.61 
Corresponding p-value = 0.611

Kolmogorov-Smirnov Test 
Test Statistic = 0.0404 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 200
Min Data Value = -0.012 
Max Data Value = 0.0504 
Sample Mean =0.0182 
Sample Std Dev = 0.0127

Histogram Summary

Histogram Range = -0.02 to 0.06 
Number of Intervals = 14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



182

Cm Distribution Summary (300 Iterations -  Latin Hypercube)

Distribution: Weibull
Expression: -0.04+WEIB(0.0632,5.23)
Square Error 0.002137

Chi Square Test 
Number of intervals =9  
Degrees of freedom =6 
Test Statistic = 5.57
Corresponding p-value = 0.478

Kolmogorov-Smirnov Test 
Test Statistic = 0.0319 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 300
Min Data Value = -0.0226
Max Data Value = 0.0519
Sample Mean = 0.0182
Sample Std Dev = 0.0127

Histogram Summary

Histogram Range -  -0.04 to 0.06
Number o f Intervals -  17
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Cm Distribution Summary (400 Iterations -  Latin Hypercube)

Distribution: Weibull
Expression: -0.03 + WEIB(0.0529,4.S3)
Square Error. 0.002480

Chi Square Test 
Number of intervals -  11 
Degrees o f freedom = 8  
Test Statistic -1 2 .6  
Corresponding p-value = 0.134

Kolmogorov-Smirnov Test 
Test Statistic = 0.0327 
Corresponding p-value >0.15

Data Summary

Number of Data Points = 400
Min Data Value = -0.0206 
Max Data Value = 0.0513 
Sample Mean =0.0183
Sample Std Dev = 0.0122

Histogram Summary

Histogram Range 
Number of Intervals

= -0.03 to 0.06 
=  20
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Cm Distribution Summary (500 Iterations -  Latin Hypercube)

Distribution: Weibull
Expression: -0.04 + WEIB(0.0633,5.44)
Square Error 0.001421

Chi Square Test 
Number of intervals = 12 
Degrees of freedom =9 
Test Statistic =7.31 
Corresponding p-value = 0.605

Kolmogorov-Smirnov Test 
Test Statistic = 0.0249 
Corresponding p-value >0.15

Data Summary

Number of Data Points = 500
Min Data Value = -0.0256
Max Data Value = 0.0465
Sample Mean = 0.0184
Sample Std Dev = 0.0125

Histogram Summary

Histogram Range 
Number of Intervals

= -0.04 to 0.06 
=  22
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Cm Distribution Summary (1000 Iterations -  Latin Hypercube)

Distribution: Weibull
Expression: -0.03 + WEIB(0.0531,4.86)
Square Error 0.000689

Chi Square Test 
Number of intervals = 17 
Degrees of freedom = 14 
Test Statistic = 20.8 
Corresponding p-value =0.109

Kolmogorov-Smirnov Test 
Test Statistic = 0.0378 
Corresponding p-value = 0.114

Data Summary

Number of Data Points = 1000
Min Data Value = -0.0175 
Max Data Value = 0.0537 
Sample Mean = 0.0183 
Sample Std Dev = 0.0121

Histogram Summary

Histogram Range = -0.03 to 0.07 
Number of Intervals = 31
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Cm Distribution Summary (1500 Iterations -  Latin Hypercube)

Distribution: Weibull
Expression: -0.03 + WEIB(0.0528,4.36)
Square Error 0.000768

Chi Square Test 
Number of intervals =26 
Degrees o f freedom =23 
Test Statistic = 33.7
Corresponding p-value = 0.0738

Kolmogorov-Smirnov Test 
Test Statistic = 0.0211 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 1500
Min Data Value = -0.0165
Max Data Value = 0.0515
Sample Mean = 0.0183
Sample Std Dev = 0.0125

Histogram Summary

Histogram Range = -0.03 to 0.06
Number of Intervals =38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



187

Cm Distribution Summary (2000 Iterations -  Latin Hypercube)

Distribution: Weibull
Expression: -0.04 + WEIB(0.0624, S.49)
Square Error 0.000485

Chi Square Test 
Number o f intervals =22 
Degrees o f freedom = 19 
Test Statistic = 22.7 
Corresponding p-value = 0.251

Kolmogorov-Smirnov Test 
Test Statistic = 0.0269 
Corresponding p-value =0.111

Data Summary

Number o f Data Points = 2000
Min Data Value = -0.0299 
Max Data Value = 0.0542 
Sample Mean =0.0182 
Sample Std Dev = 0.0123

Histogram Summary

Histogram Range = -0.04 to 0.07 
Number o f Intervals = 40
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APPENDIX K
Cg and Cm Distributions (Multiple Experts, Latin Hypercube Sampling)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Cg Distribution Summary (10 Iterations -  Discrete Latin Hypercube)

Distribution: Normal 
Expression: NORM(0.739,0.0119)
Square Error 0.036328

Kolmogorov-Smirnov Test 
Test Statistic = 0.177 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 10
Min Data Value = 0.718
Max Data Value = 0.7S9
Sample Mean = 0.739
Sample Std Dev = 0.0126

Histogram Summary

Histogram Range = 0.71 to 0.77
Number of Intervals =5
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Cg Distribution Summary (25 Iterations -  Discrete Latin Hypercube)

Distribution: Lognormal
Expression: 0.71 + LOGN(0.029,0.0112)
Square Error 0.001411

Chi Square Test 
Number of intervals =3 
Degrees of freedom = 0 
Test Statistic = 0.167 
Corresponding p-value < 0.005

Kolmogorov-Smirnov Test 
Test Statistic = 0.0658 
Corresponding p-value > 0.15

Data Summary

Number of Data Points -  25
Min Data Value = 0.722
Max Data Value = 0.764
Sample Mean -  0.739
Sample Std Dev = 0.0112

Histogram Summary

Histogram Range = 0.71 to 0.77
Number of Intervals = 5
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Cg Distribution Summary (SO Iterations -  Discrete Latin Hypercube)

Distribution: Beta
Expression: 0.7 + 0.08 * BETA(6.42,6.83)
Square Error 0.013684

Chi Square Test 
Number of intervals =3 
Degrees of freedom = 0  
Test Statistic -1 .22  
Corresponding p-value < 0.005

Kolmogorov-Smirnov Test 
Test Statistic -  0.0657 
Corresponding p-value >0.15

Data Summary

Number of Data Points = 50
Min Data Value = 0.713 
Max Data Value =0.771 
Sample Mean = 0.739 
Sample Std Dev = 0.0106

Histogram Summary

Histogram Range = 0.7 to 0.78 
Number of Intervals = 7
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Cg Distribution Summary (100 Iterations -  Discrete Latin Hypercube)

Distribution: Normal 
Expression: NORM(0.739,0.0119)
Square Error 0.011008

Chi Square Test 
Number of intervals = 5 
Degrees of freedom =2 
Test Statistic = 6.23
Corresponding p-value = 0.0456

Kolmogorov-Smirnov Test 
Test Statistic = 0.059 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 100
Min Data Value = 0.705
Max Data Value = 0.769
Sample Mean = 0.739
Sample Std Dev = 0.012

Histogram Summary

Histogram Range = 0.69 to 0.78
Number of Intervals = 10
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Cg Distribution Summary (200 Iterations -  Discrete Latin Hypercube) 

Distribution: Beta
Expression: 0.7 + 0.08 ♦ BETA(5.14, 5.47)
Square Error 0.006677

Chi Square Test 
Number o f intervals =8 
Degrees o f freedom - 5  
Test Statistic -10 .4  
Corresponding p-value -  0.069

Kolmogorov-Smirnov Test 
Test Statistic = 0.0545 
Corresponding p-value > 0.15

Data Summary

Number o f Data Points = 200
Min Data Value =0.71 
Max Data Value = 0.771 
Sample Mean = 0.739 
Sample Std Dev = 0.0117

Histogram Summary

Histogram Range = 0.7 to 0.78 
Number of Intervals = 14
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Cg Distribution Summary (300 Iterations -  Discrete Latin Hypercube)

Distribution: Normal 
Expression: NORM(0.739,0.0111)
Square Error. 0.000970

Chi Square Test 
Number of intervals = 10 
Degrees of freedom =7 
Test Statistic = 2.64 
Corresponding p-value > 0.75

Kolmogorov-Smirnov Test 
Test Statistic = 0.0296 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 300
Min Data Value = 0.711 
Max Data Value =0.771 
Sample Mean = 0.739 
Sample Std Dev = 0.0111

Histogram Summary

Histogram Range = 0.7 to 0.78 
Number of Intervals = 17
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Cg Distribution Summary (400 Iterations -  Discrete Latin Hypercube) 

Distribution: Beta
Expression: 0.7 + 0.08 * BETA(5.66, 6.01)
Square Error. 0.001593

Chi Square Test 
Number o f intervals -  12 
Degrees o f freedom = 9 
Test Statistic = 7.67
Corresponding p-value = 0.569

Kolmogorov-Smirnov Test 
Test Statistic = 0.0426 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 400
Min Data Value = 0.71
Max Data Value -  0.771
Sample Mean -  0.739
Sample Std Dev = 0.0112

Histogram Summary

Histogram Range -  0.7 to 0.78
Number of Intervals =20
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Cg Distribution Summary ( 500 Iterations -  Discrete l-atin Hypercube)

Distribution: Normal 
Expression: NORM(0.739,0.0114)
Square Error 0.002775

Chi Square Test 
Number of intervals -  13 
Degrees of freedom -1 0  
Test Statistic = 13.3
Corresponding p-value -  0.218

Kolmogorov-Smimov Test 
Test Statistic = 0.0531 
Corresponding p-value = 0.117

Data Summary

Number of Data Points = 500
Min Data Value -  0.707
Max Data Value = 0.774
Sample Mean = 0.739
Sample Std Dev = 0.0114

Histogram Summary

Histogram Range = 0.7 to 0.79
Number of Intervals = 22
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Cg Distribution Summary (1000 Iterations -  Discrete Latin Hypercube)

Distribution: Erlang
Expression: 0.69 + ERLA(0.00271, 18)
Square Error: 0.000525

Chi Square Test 
Number of intervals -  16 
Degrees of freedom = 13 
Test Statistic = 18.9 
Corresponding p-value =0.136

Kolmogorov-Smirnov Test 
Test Statistic = 0.0166 
Corresponding p-value >0.15

Data Summary

Number of Data Points = 1000
Min Data Value = 0.706
Max Data Value = 0.778
Sample Mean = 0.739
Sample Std Dev =0.0113

Histogram Summary

Histogram Range = 0.69 to 0.79 
Number of Intervals =31
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Cg Distribution Summary (1500 Iterations -  Discrete Latin Hypercube)

Distribution: Erlang
Expression: 0.69 + ERLA(0.00257, 19)
Square Error. 0.000403

Chi Square Test 
Number of intervals =23 
Degrees of freedom =20 
Test Statistic =11.6 
Corresponding p-value > 0.75

Kolmogorov-Smirnov Test 
Test Statistic = 0.0118 
Corresponding p-value >0.15

Data Summary

Number of Data Points = 1500 
Min Data Value = 0.706 
Max Data Value = 0.773 
Sample Mean = 0.739 
Sample Std Dev =0.0111

Histogram Summary

Histogram Range = 0.69 to 0.78 
Number o f Intervals = 38
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Cg Distribution Summary (2000 Iterations -  Discrete Latin Hypercube)

Distribution: Erlang
Expression: 0.69 + ERLA(0.00287,17)
Square Error. 0.000459

Chi Square Test 
Number of intervals -24 
Degrees of freedom = 21 
Test Statistic = 27.4 
Corresponding p-value = 0.172

Kolmogorov-Smirnov Test 
Test Statistic = 0.0188 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 2000
Min Data Value = 0.706
Max Data Value = 0.776
Sample Mean = 0.739
Sample Std Dev = 0.0117

Histogram Summary

Histogram Range = 0.69 to 0.79
Number of Intervals = 40
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Cm Distribution Summary (10 Iterations -  Discrete Latin Hypercube)

Distribution: Gamma
Expression: 0.01 + GAMM(0.00226,8.96)
Square Error. 0.041730

Kolmogorov-Smirnov Test 
Test Statistic = 0.20S 
Corresponding p-value > 0. IS

Data Summary

Number of Data Points -  10
Min Data Value = 0.0191
Max Data Value = 0.042
Sample Mean = 0.0302
Sample Std Dev = 0.00667

Histogram Summary

Histogram Range = 0.01 to 0.05 
Number of Intervals = S
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Cm Distribution Summary (25 Iterations -  Discrete Latin Hypercube)

Distribution: Triangular 
Expression: TRIA(-0.02,0.0393,0.06)
Square Error 0.001594

Chi Square Test 
Number of intervals =3 
Degrees of freedom = 1 
Test Statistic =0.151
Corresponding p-value =0.715

Kolmogorov-Smirnov Test 
Test Statistic = 0.0812 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 25
Min Data Value = -0.00704
Max Data Value = 0.0484
Sample Mean = 0.0264
Sample Std Dev = 0.0166

Histogram Summary

Histogram Range = -0.02 to 0.06
Number of Intervals = 5
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Cm Distribution Summary (SO Iterations -  Discrete Latin Hypercube)

Distribution: Beta 
Expression: BETA(2.02,3.21369)
Square Error 0.001710

Chi Square Test 
Number of intervals = S 
Degrees of freedom = 2  
Test Statistic = 0.63
Corresponding p-value = 0.733

Kolmogorov-Smirnov Test 
Test Statistic = 0.0454 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 50
Min Data Value = 0.000726
Max Data Value = 0.0572
Sample Mean = 0.027
Sample Std Dev = 0.0136

Histogram Summary

Histogram Range = 0 to 0.07
Number of Intervals = 7
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Cm Distribution Summary (100 Iterations -  Discrete Latin Hypercube)

Distribution: Weibull
Expression: -0.02 + WEIB(0.0506,4.3)
Square Error 0.011926

Chi Square Test 
Number of intervals -  S 
Degrees o f freedom =2 
Test Statistic — 3.47
Corresponding p-value = 0.193

Kolmogorov-Smirnov Test 
Test Statistic = 0.0662 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 100
Min Data Value = -0.00468
Max Data Value = 0.0524
Sample Mean -  0.026
Sample Std Dev = 0.0124

Histogram Summary

Histogram Range = -0.02 to 0.06
Number of Intervals = 10
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Cg Distribution Summary (200 Iterations -  Discrete Latin Hypercube)

Distribution: Weibull
Expression: -0.02 + WEIB(0.0499,4.16)
Square Error 0.005053

Chi Square Test 
Number of intervals =8 
Degrees o f freedom =5 
Test Statistic -  9.72
Corresponding p-value = 0.0869

Kolmogorov-Smirnov Test 
Test Statistic = 0.046 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 200
Min Data Value =-0.00513
Max Data Value = 0.0529
Sample Mean = 0.0253
Sample Std Dev = 0.0123

Histogram Summary

Histogram Range = -0.02 to 0.06
Number of Intervals = 14
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Cm Distribution Summary ( 300 Iterations -  Discrete Latin Hypercube)

Distribution: Weibull
Expression: -0.03 + WEIB(0.0602, 5.03)
Square Error 0.004455

Chi Square Test 
Number of intervals = 9  
Degrees o f freedom = 6  
Test Statistic = 10.3 
Corresponding p-value = 0.118

Kolmogorov-Smirnov Test 
Test Statistic = 0.0346 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 300
Min Data Value =-0.0161 
Max Data Value = 0.0577 
Sample Mean = 0.0253 
Sample Std Dev = 0.0127

Histogram Summary

Histogram Range = -0.03 to 0.07 
Number o f Intervals = 17
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Cm Distribution Summary (400 Iterations -  Discrete Latin Hypercube)

Distribution: Weibull
Expression: -0 .02 +  W EIB(0.0498,4.24)
Square Error: 0.001300

Chi Square Test 
Number of intervals = 12 
Degrees of freedom = 9 
Test Statistic - 10.5
Corresponding p-value -  0.325

Kolmogorov-Smirnov Test 
Test Statistic -  0.0285  
Corresponding p-value > 0 .1 5

Data Summary

Number of Data Points = 400
Min Data Value = -0.0117
Max Data Value = 0.0576
Sample Mean = 0.0253
Sample Std Dev = 0.0122

Histogram Summary

Histogram Range = -0.02 to 0.07
Number of Intervals = 20
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Cm Distribution Summary (500 Iterations -  Discrete l-atin Hypercube)

Distribution: Weibull
Expression: -0.03 +WEIB(0.0603,5.18)
Square Error: 0.001562

Chi Square Test 
Number of intervals -  14 
Degrees of freedom -  11 
Test Statistic = 9.75 
Corresponding p-value = 0.553

Kolmogorov-Smirnov Test 
Test Statistic = 0.0243 
Corresponding p-value >0.15

Data Summary

Number of Data Points = 500
Min Data Value = -0.0216 
Max Data Value = 0.0526 
Sample Mean = 0.0254 
Sample Std Dev = 0.0123

Histogram Summary

Histogram Range = -0.03 to 0.06 
Number of Intervals = 22
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Cm Distribution Summary (1000 Iterations -  Discrete Latin Hypercube)

Distribution: Weibull
Expression: -0.02+WEIB(0.0502,4.57)
Square Error 0.000596

Chi Square Test 
Number of intervals -1 9  
Degrees o f freedom = 16 
Test Statistic = 24.6 
Corresponding p-value = 0.081

Kolmogorov-Smirnov Test 
Test Statistic = 0.0335 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 1000
Min Data Value =-0.0111 
Max Data Value = 0.0599 
Sample Mean = 0.0254 
Sample Std Dev = 0.012

Histogram Summary

Histogram Range = -0.02 to 0.07 
Number of Intervals =31
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Cm Distribution Summary (1500 Iterations -  Discrete Latin Hypercube)

Distribution: Weibull
Expression: -0.02 + WEIB(0.0497,4.05)
Square Error 0.000277

Chi Square Test 
Number of intervals =25 
Degrees of freedom =22 
Test Statistic = 9.7
Corresponding p-value > 0.75

Kolmogorov-Smirnov Test 
Test Statistic = 0.0276 
Corresponding p-value >0.15

Data Summary

Number of Data Points =1500
Min Data Value = -0.0111
Max Data Value = 0.0584
Sample Mean = 0.0254
Sample Std Dev = 0.0124

Histogram Summary

Histogram Range = -0.02 to 0.07
Number of Intervals = 38
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Cm Distribution Summary (2000 Iterations -  Discrete Latin Hypercube)

Distribution: Weibull
Expression: -0.04 + WEIB(0.0698,6.08)
Square Error: 0.000283

Chi Square Test 
Number of intervals =23 
Degrees o f freedom =20 
Test Statistic = 26.3 
Corresponding p-value = 0.17

Kolmogorov-Smirnov Test 
Test Statistic = 0.0251 
Corresponding p-value > 0.15

Data Summary

Number of Data Points = 2000
Min Data Value =-0.0219 
Max Data Value = 0.0614 
Sample Mean = 0.0253 
Sample Std Dev = 0.0122

Histogram Summary

Histogram Range = -0.04 to 0.07 
Number of Intervals =40
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APPENDIX L 
Cg and Cm Statistics Comparison (Random Sampling vs Latin Hypercube 

Sampling)
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Iterations  CgMmean CgL moan
10 0.730 0.742
25 0.744 0.742
50 0.744 0.742

100 0.744 0.742
200 0.742 0.742
300 0.743 0.742
400 0.742 0.742
500 0.742 0.742

1000 0.742 0.742
1500 0.742 0.742
2000 0.742 0.742

Iteations CgMStdDev CgLStdDev
10 0.0127 0.011
25 0.0108 0.0102
50 0.0106 0.00887

100 0.00894 0.011
200 0.00842 0.0107
300 0.00877 0.0101
400 0.0102 0.0103
500 0.0103 0.0104

1000 0.0102 0.0103
1500 0.0102 0.0101
2000 0.0101 0.0106

FlQura L-1 Slngl* Expert Cg Comparison (Random Sampling vs. Latin Hypatctibe Sampling)
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Itwations  CmM mean CmL nmn
10 0.0147 0.025
25 0.0143 0.0203
50 0.0181 0.0201

100 0.0175 0.0191
200 0.018 0.0182
300 0.0184 0.0182
400 0.0182 0.0183
500 0.0182 0.0184

1000 0.0184 0.0163
1500 0.0183 0.0183
2000 0.0183 0.0182

Itaatione CmM Std Dav CmLStdDev
10 0.0146 0.00733
25 0.0137 0.017
50 0.0136 0.0135

100 0.013 0.0127
200 0.0122 0.0127
300 0.0122 0.0127
400 0.0122 0.0122
500 0.0121 0.0125

1000 0.0124 0.0121
1500 0.0123 0.0125
2000 0.0124 0.0123

-CmMStdOav 
-CmL Std Dav

Itarattona

Figure L-2 single Expart Cm Comparison (Random Sampling vs. Latin H yperaiba Sampling)
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Iterations CgM moan CgLmaan
10 0.736 0.738
25 0.74 0.736
50 0.74 0.736

100 0.74 0.736
200 0.738 0.736
300 0.736 0.738
400 0.736 0.736
500 0.736 0.736

1000 0.736 0.736
1500 0.736 0.736
2000 0.736 0.736

Itestions CgM Std Dsv CgL Std Dsv
10 0.0128 0.0126
25 0.0108 0.0112
so 0.0106 0.0106

100 0.0101 0.012
200 0.00664 0.0117
300 0.00663 0.0111
400 0.0102 0.0112
500 0.0104 0.0114

1000 0.0103 0.0113
1500 0.0102 0.0111
2000 0.0102 0.0117

Flgura L-3 MuMpte Expert Cg Comparison (Random Sampling vs. Latin Hyptrcuba Sampling)
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Itsrations CmM mean CmL mean
0.0215 0.0302
0.0207 0.0264
0.0244 0.027
0.0241 0.02B
0.0248 0.0253
0.0252 0.0253
0.0251 0.0253
0.0252 0.0254
0.0256 0.0254
0.0254 0.0254
0.0254 0.0253

CmM Std Dsv CmL Std Dav
0.0147 0.00667
0.0136 0.0166
0.013 0.0136

0.0129 0.0124
0.0124 0.0123
0.0123 0.0127
0.0121 0.0122
0.0119 0.0123
0.0122 0.012
0.0122 0.0124
0.0122 0.0122

Flguia L-4 MuMpla Expaft Cm Comparison (Random Sampling vs. Latin Hyparcuba Sampling)
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APPENDIX M 
Cg and Cm Statistics Comparison (Multiple Expert vs Single Expert)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



217

Iterations CgSmsan CgAmssn
10 0.730 0.736
25 0.744 0.74
50 0.744 0.74

100 0.744 0.74
200 0.742 0.738
300 0.743 0.730
400 0.742 0.730
500 0.742 0.730

1000 0.742 0.730
1500 0.742 0.730
2000 0.742 0.730

Itestfons CgS Std Osv CgA Std Dsv
10 0.0127 0.0128
25 0.0108 0.0108
50 0.0106 0.0100

100 0.00804 0.0101
200 0.00042 0.00064
300 0.00077 0.00803
400 0.0102 0.0102
500 0.0103 0.0104

1000 0.0102 0.0103
1500 0.0102 0.0102
2000 0.0101 0.0102

Figure M-1 Cg Comparison (Slngls Expsit vs. Aggregated Export Opinion)
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Iterations Cm Sm tan CmAmaan
10 0.0147 0.0215
25 0.0143 0.0207
50 0.0181 0.0244

100 0.0175 0.0241
200 0.018 0.0248
300 0.0184 0.0252
400 0.0182 0.02St
500 0.0182 0.0252

1000 0.0184 0.0256
1500 0.0183 0.0254
2000 0.0183 0.0254

Iteslions CmSStdDsv CmASUOsv
10 0.0146 0.0147
25 0.0137 0.0135
50 0.0136 0.013

100 0.013 0.0129
200 0.0122 0.0124
300 0.0122 0.0123
400 0.0122 0.0121
500 0.0121 0.0119

1000 0.0124 0.0122
1500 0.0123 0.0122
2000 0.0124 0.0122

CmS Std Dsv 
CmA Std Dsv

Flguis M-2 Cm Comparison (Singla Export vs. Aggregated Export Opinion)
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APPENDIX N 
@Rislt Cg and Cm Statistics Comparisons
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Itwationa CgM msan CgLmsan
10 0.7441 0.741
25 0.7438 0.741
50 0.7368 0.741

100 0.7300 0.741
200 0.7428 0.741
300 0.7417 0.741
400 0.742 0.741
500 0.7415 0.741

1000 0.7417 0.741
1500 0.7410 0.741
2000 0.7422 0.741

ItMtions CgM Std Dsv CgLStd Dsv
10 0.01106 0.0066
25 0.00008 0.0113
50 0.01066 0.0174

100 0.0130 0.0103
200 0.00032 0.0106
300 0.00066 0.00660
400 0.00663 0.00063
500 0.0102 0.0067

1000 0.01023 0.0101
1500 0.0101 0.01
2000 0.01 0.01032

0.744
J a7«

0.742

a7«i
a740.738

a738
a737 I ^ P W W W W W

♦  C g M w n  
— » - C J . m w n

Flgurs N-1 Slngls Expart Cg Comparison (Random Sampling vs. Latin Hypareuba Sampling)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



221

Itwations  CmM m m  CmL maan
10 0.01777 0.01776
25 0.0176 0.01782
50 0.0196 0.01795

100 0.0206 0.0181
200 0.0162 0.01831
300 0.0175 0.01817
400 0.01847 0.01816
500 0.0178 0.0182

1000 0.01845 0.01808
1500 0.0176 0.01814
2000 0.01796 0.018

Itsationa CmM Std Dav CmL Std Dav
10 0.0088 0.01382
25 0.01297 0.01061
50 0.0121 0.0128

100 0.0116 0.01403
200 0.01142 0.0116
300 0.01165 0.0122
400 0.01219 0.01227
500 0.01229 0.01217

1000 0.0124 0.01248
1500 0.01228 0.01231
2000 0.0125 0.0125

Figura N-2 Slngla Expert Cm Comparison (Random Sampling vs. Lain Hyparcuba Sampling)
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Itacations  CgM nrwan CgL mean
0.7422 0.741
0.742 0.7401
0.741 0.7368

0.7401 0.7367
0.730 017366
0.74 0.7366
0.74 0.7366
0.74 0.7366

0.7366 0.7366
0.74 0.7367

0.736 0.7366

CgM Std Dav CgLStdOav
0.00866 0.01347
0.00663 0.0066

0.0138 0.0063
0.0102 0.0101

0.00675 0.0104
0.0106 0.0106
0.0106 0.0102
0.0126 0.01013
0.0106 0.0101
0.0106 0.0102
0.0128 0.0103

Flflura N-3 Multlpla Expart Cg Comparison (Random Sampling vs. Latin Hyparcuba Sam pling)
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Itscationa CmM mean CmL mean
10 0.01647 0.018996
25 0.017386 0.0196
50 0.0183 0.01923

100 0.0196 0.01866
200 0.0166 0.01867
300 0.0182 0.01871
400 0.0192 0.01879
500 0.0183 0.01866

1000 0.0184 0.0186
1500 0.0189 0.0187
2000 0.0191 0.0187

ItMtiona CmM Std Dav CmL Std Dav
10 0.01285 0.00627
25 0.01277 0.0125
50 0.01342 0.01046

100 0.01416 0.01339
200 0.0125 0.0116
300 0.0127 0.01246
400 0.01187 0.01217
500 0.0124 0.01205

1000 0.01271 0.01234
1500 0.0126 0.01231
2000 0.0123 0.01246

Ftgura N-4 Multlpla Expart Cm Comparison (Random Sampling vs. Latin Hyparcuba Sampling)
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Iterations CgS m ssn CgAmssn
0.7441 0.7422
0.7436 0.742
0.7380 0.741
0.7300 0.7401
0.7428 0.730
0.7417 0.74
0.742 0.74

0.7415 0.74
0.7417 0.7306
0.7410 0.74
0.7422 0.730

CgS Std Dsv CgA Std Dsv
0.01106 0.00066
0.00008 0.00063
0.01066 0.0138
0.0130 0.0102

0.00032 0.00075
0.00066 0.0106
0.00063 0.0106

0.0102 0.0126
0.01023 0.0106

0.0101 0.0100
0.01 0.0128

Flgura N-S Cg Comparison (Slngla Export vs. Aggragated Export Opinion)
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Itsrationa C m Sm m  CmA im in
0.01777 0.01647
0.0176 0.017396
0.0196 0.0183
0.0206 0.0196
0.0162 0.0166
0.0175 0.0182

0.01847 0.0192
0.0178 0.0183

0.01845 0.0184
0.0176 0.0186

0.01796 0.0191

CmS Std Dsv CmA Std Dav
0.0068 0.01285

0.01297 0.01277
0.0121 0.01342
0.0116 0.01416

0.01142 0.0125
0.01165 0.0127
0.01219 0.01187
0.01229 0.0124

0.0124 0.01271
0.01228 0.0125

0.0125 0.0123

CmS Std Dav 
CmA Std Dsv

Figure N-4 Cm Comparison (Slngla Expart vs. Aggregated Export Opinion)
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APPENDIX O 
Pareto Optimal Solutions
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PITCHING MOMENT COEFFICIENT RISK ANALYSIS OPTIMIZATION
(Weighting Factors: W1 = 0.5, W2 = 0.5)

The mean square error of the mean optimal solution is: 0.002008
The mean of the mean optimal solution is: -0.003290
The variance of the mean optimal solution is: 0.000030
Fineness Ratio (xl) is: 6.500000
Wing Area Ratio (x2) is: 15.000000
Tip Fin Area Ratio (x3) is: 1.949199
Body Flap Area Ratio (x4) is: 0.600000
Ballast Weight (x5) is: 0.024844
Mass Ratio (x6) is: 8.000000
Elevon Deflection (x8) is: -6.637315

The variance of the variance optimal solution is: 0.000000166
The mean of the variance optimal solution is: 0.057642
Fineness Ratio (xl) is: 5.000000
Wing Area Ratio (x2) is: 10.000000
Tip Fin Area Ratio (x3) is: 1.689469
Body Flap Area Ratio (x4) is: 0.000000
Ballast Weight (x5) is: 0.022683
Mass Ratio (x6) is: 8.000000
Elevon Deflection (x8) is: -14.066860

The objective function of the Pareto optimum solution is: 9.892864
The variance of the pareto optimal solution is: 0.000000664
The mean of the pareto optimal solution is: 0.025155
Fineness Ratio (xl) is: 4.250000
Wing Area Ratio (x2) is: 13.000000
Tip Fin Area Ratio (x3) is: 1.995444
Body Flap Area Ratio (x4) is: 0.200000
Ballast Weight (x5) is: 0.018767
Mass Ratio (x6) is: 7.850000
Elevon Deflection (x8) is: -8.270349
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PITCHING MOMENT COEFFICIENT RISK ANALYSIS OPTIMIZATION
(Weighting Factors: W1 = 0.75, W2 = 0.25)

The mean square error of the mean optimal solution is: 0.002008
The mean of the mean optimal solution is: -0.003290
The variance of the mean optimal solution is: 0.000030
Fineness Ratio (xl) is: €.500000
Wing Area Ratio (x2) is: 15.000000
Tip Fin Area Ratio (x3) is: 1.949199
Body Flap Area Ratio (x4) is: 0.600000
Ballast Weight (x5) is: 0.024844
Mass Ratio (x6) is: 8.000000
Elevon Deflection (x8) is: -6.637315

The variance of the variance optimal solution is: 0.000000166
The mean of the variance optimal solution is: 0.057642
Fineness Ratio (xl) is: 5.000000
Wing Area Ratio (x2) is: 10.000000
Tip Fin Area Ratio (x3) is: 1.689469
Body Flap Area Ratio (x4) is: 0.000000
Ballast Weight (x5) is: 0.022683
Mass Ratio (x6) is: 8.000000
Elevon Deflection (x8) is: -14.066860

The objective function of the Pareto optimum solution is: 11.552882
The variance of the pareto optimal solution is: 0.000002061
The mean of the pareto optimal solution is: 0.021212
Fineness Ratio (xl) is: 5.000000
Wing Area Ratio (x2) is: 13.000000
Tip Fin Area Ratio (x3) is: 2.211422
Body Flap Area Ratio (x4) is: 0.410000
Ballast Weight (x5) is: 0.001899
Mass Ratio (x6) is: 8.030000
Elevon Deflection (x8) is: -7.661563
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PITCHING MOMENT COEFFICIENT RISK ANALYSIS OPTIMIZATION
(Weighting Factors: W1 = 0.9, W2 = 0.1)

The mean square error of the mean optimal solution is: 0.002008
The mean of the mean optimal solution is: -0.003290
The variance of the mean optimal solution is: 0.000030
Fineness Ratio (xl) is: 6.500000
Wing Area Ratio (x2) is: 15.000000
Tip Fin Area Ratio (x3) is: 1.949199
Body Flap Area Ratio (x4) is: 0.600000
Ballast Weight (x5) is: 0.024844
Mass Ratio (x6) is: 8.000000
Elevon Deflection (x8) is: -6.637315

The variance of the variance optimal solution is: 0.000000166
The mean of the variance optimal solution is: 0.057642
Fineness Ratio (xl) is: 5.000000
Wing Area Ratio (x2) is: 10.000000
Tip Fin Area Ratio (x3) is: 1.689469
Body Flap Area Ratio (x4) is: 0.000000
Ballast Weight (x5) is: 0.022683
Mass Ratio (x6) is: 8.000000
Elevon Deflection (x8) is: -14.066860

The objective function of the Pareto optimum solution is: 7.073742
The variance of the pareto optimal solution is: 0.000009207
The mean of the pareto optimal solution is: 0.007656
Fineness Ratio (xl) is: 5.750000
Wing Area Ratio (x2) is: 12.000000
Tip Fin Area Ratio (x3) is: 1.249278
Body Flap Area Ratio (x4) is: 0.200000
Ballast Weight (x5) is: 0.015466
Mass Ratio (x6) is: 7.850000
Elevon Deflection (x8) is: -5.256107
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PITCHING MOMENT COEFFICIENT RISK ANALYSIS OPTIMIZATION
(Weighting Factors: W1 = 0.95, W2 = 0.05)

The mean square error of the mean optimal solution is: 0.002008
The mean of the mean optimal solution is: -0.003290
The variance of the mean optimal solution is: 0.000030
Fineness Ratio (xl) is: 6.500000
Wing Area Ratio (x2) is: 15.000000
Tip Fin Area Ratio (x3) is: 1.949199
Body Flap Area Ratio (x4) is: 0.600000
Ballast Weight (x5) is: 0.024844
Mass Ratio (x6) is: 8.000000
Elevon Deflection (x8) is: -6.637315

The variance of the variance optimal solution is: 0.000000166
The mean of the variance optimal solution is: 0.057642
Fineness Ratio (xl) is: 5.000000
Wing Area Ratio (x2) is: 10.000000
Tip Fin Area Ratio (x3) is: 1.689469
Body Flap Area Ratio (x4) is: 0.000000
Ballast Weight (x5) is: 0.022683
Mass Ratio (x6) is: 8.000000
Elevon Deflection (x8) is: -14.066860

The objective function of the Pareto optimum solution is: 4.379223
The variance of the pareto optimal solution is: 0.000009207
The mean of the pareto optimal solution is: 0.007656
Fineness Ratio (xl) is: 5.750000
Wing Area Ratio (x2) is: 12.000000
Tip Fin Area Ratio (x3) is: 1.249278
Body Flap Area Ratio (x4) is: 0.200000
Ballast Weight (x5) is: 0.015466
Mass Ratio (x6) is: 7.850000
Elevon Deflection (x8) is: -5.256107
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