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ABSTRACT

Title of Dissertation: The Technical and Economical Aspects of Marine

Engine Selection

Degree: MSc

This study is based on a description regarding the development of the marine

diesel engine; machinery design principles, technical and economical comparisons

and finally the selection procedure taking into consideration operational behaviour

and environmental aspects. The project can give guidance to shipowners/shipyards

for the proper selection of a marine diesel engine and it can also serve as a guide for

marine engineers and technicians on board ship.

The dissertation is a study of the selection procedure of marine diesel engine,

which is both economically competitive and technically appropriate in terms of

reliability, simplicity, durability and environmental aspects.

A brief look is taken at the history of the marine diesel engine and achievements

due to the development of marine propulsion plants in the recent years. The thermal

efficiency of marine diesel engines has increased to well over 50%, as have reliability

and durability been improved. Effort has been made for all the possibilities of

utilising the waste heat from the marine diesel engines.

The operational behaviour i.e. the vibration & noise effects and environmental

aspects have also been enhanced. Hence, the marine engine selection programme is a

comprehensive and complicated task.

The economical comparison among the four alternatives in Chapter 4 shows that,

the MAN B&W SS60MC two stroke slow speed engine, choosing the power take

off (PTO) with turbo-compound system (TCS) is the best choice for the selected

Bulk Carrier, because of a high degree of reliability, low capital and maintenance

costs, short pay back period and considerable amount of the net present value (NPV).
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CHAPTER 1

Introduction

In the past thirty years, the marine diesel engine has become the most eflicient

propulsion plant for ships, through continuous development and technical

innovations. Although it has superior competition for some types of propulsion, it

can be used successfully in almost any application, and is generally considered to be

the best in a wider range of marine applications than any other engine.

The specific fuel consumption of the diesel engine in most applications is lower

than either steam or gas turbine and the fuel is usually at least as cheap per unit of

heating value as theirs. Compared to the steam propulsion plant, the diesel also

enjoys the advantages of internal combustion, which makes it compact, available in

essentially a complete package, and simple to control.

There are various types of engines which are used as marine power propulsion.

The shipowners have a choice for selection of engines for their ships to meet at short

notice, the requirements as they emerged. The selection of an engine may be made

as per type, size, and other technical & environmental requirements of the ship.

Before 1973, attention had been given to higher specific power per cylinder, high

power-to-weight ratios and more power per unit cost, and since then the

preoccupation has changed with fuel consumption.

The two most important factors in overall marine plant efficiency are fuel

consumption and the thermal efficiency. Today’s updated engines already achieved

both of them but, equally as important is the need to modify existing installations.



Following the 1973-74 oil crises, comprehensive efforts were made by all diesel

engines builders to reduce the specific fuel oil consumption of diesel engines.

For the diesel engines remarkable improvements have been achieved in the last

fifteen years to reduce the specific fuel oil consumption. About a 25% reduction of

fuel consumption has been reached and a total overall efficiency of over 50% has

now been accomplished. Much improvement has been done by utilising waste heat

for heating and electrical generation. Also by using a more economic way of

operating machinery , and a better use of waste heat.

In large, two-stroke slow speed diesel engines the increases in stroke/bore ratio

and brake mean effective pressure, the adoption of constari_t,p,ressure_t1,r,fio_o;;har.ging

and un@>w’&ay_en\ge,Ahave characterised the period from the mid-seventies to date.

It has appeared that by the mid-nineties increased witness advances in

microprocessor-base regulation of engine elements such as fuel injector pump

mechanisms or exhaust valve drives have taken place. In such arrangements, the

various engine actuators will no longer be contained by mechanical linkage to the

engine to ensure a secure and repeatable functions.

Nowadays the two-stroke slow speed engine is dominant in the area of propulsion

machinery for merchant ships. The statistics of the installed power on board ships

above 2000 dwt is approximately 75%. In small sized and specialized ships, the

medium speed engines have covered the largest proportion in main propulsion plants.

Finally, the shjpowners have to select an optimum marine diesel engine for their

ships by considering the vital technical and economical aspects:

1. Capital cost

2. Operating cost:

-manning ( crews )

-fuel oil consumption

-lubricating oil consumption

-maintenance

3. Choice of speed/flexibility



4. Reliability

5. Durability

6. Environment aspects.

Towards this end, an attempt will be made in this study to discuss “The

Technical and Economical Aspects of Marine Engine Selection”.

This study has been prepared using a descriptive method obtained by reference

to books, lecture handouts, periodicals, various reports, publications on marine diesel

engines, conference and seminar papers.

Chapter 1 is a general introduction into the subject. It includes the previous and

present situation of the marine diesel engine and the necessity of the diesel engine as

main propulsion power.

Chapter 2 gives a brief description of the history of the marine diesel engine.

The machinery arrangement, the demand of marine diesel engine in comparison with

steam turbine and the development of marine diesel engines, especially with

particular reference to all possible methods of utilizing waste heat from marine

engine.

The machinery concepts for the new type of marine diesel engine has been dealt

with in Chapter 3. The main goal, is the overall economy, which includes the

following factors:

- reliability

- simplicity

- economy

- operational flexibility

- operational behaviour

The ship’s propulsion power selection is a comprehensive and difficult task.

Hence, before selection of an engine as a propulsion power for a ship, a technical

study is obviously needed as well as an economical comparison. In Chapter 4 the

economical comparison has been made by considering four different alternatives on

equal terms, such as same propeller diameter, speed and propulsive efficiency.



The selection of a marine engine is dependent upon many factors, such as

poyefipeed matching, propeller diameter and speed,”’eco_nomicpratings (low SFOC),

engine roomuoptimisation and degree oflautomatign. In mosLcases, the shipowneis

like selecting the marine engines depend on man-power, experience, and short term

targets. Therefore, in Chapter 5 the engine selection process has been discussed.

The operation behaviours of marine diesel engines include vibration, noise and

the environmental aspects. The noise and exhaust gas emission control, especially

new Regulation on limits of harmful exhaust gas emission should also be considered

in engine selection. These important aspects will be included in Chapter 6.

Chapter 7 concludes the technical and economical aspects of marine engine

selection that have been mentioned in the previous chapters.



CHAPTER 2

Development of Diesel Engines

2. 1. The History of Marine Diesel Engines

The history of the marine diesel engines is very young when compared with the

history of shipbuilding. The diesel engine was developed in 1900, after Dr. Rudolf

Diesel formulated his original engine cycle concept, as set out in his 1892 paper “

Theory and construction of a rational heat engine “, he envisaged a prime mover of

unprecedented efficiency. For this he saw the need for high cycle temperatures,

achieved by very high firing pressures, a thermo-dynarnic relationship which is

equally valid today.

There were very serious difficulties to be overcome with the diesel engines,

development proceeded slowly, and it was not until 1903, when the first diesel

engine ( horizontal opposed-piston ) of a 25 bhp, 210 mm bore and 300 mm stroke,

was built by Dyckhoff for the French canal barge, “Petite Pierre” (Brown D: 1985)

The first Sulzer marine diesel engine was a 40 bhp two-cylinder four stroke unit

of 260 mm bore and 450 mm stroke installed in the Lake Geneva cargo vessel “

Venoge". Once this had been achieved, however rapid progress was made, and in a

few years many firms in continental Europe were actively building diesels with as

much as 500 HP per cylinder (Brown D: 1985).

The first B&W Diesel Engine was built in 1904. Then the first submarine diesels

to enter service were four 300 bhp MAN four-cylinder four-stroke engines, of 330

mm bore by 360 mm stroke, delivered in 1907 for the two French submarines



“Circe" and "Calypso". The diesel engine was invented while the steam turbine was

quickly advancing. The steam reciprocating engine was in decline.

The diesel engine was able to enter the marine field at that time due to its higher

efficiency, low fiiel consumption, and the smaller space occupied due to the absence

of a boiler. In 1912 the world's first ocean- going diesel motor ship “Selandia" was

launched by “Burmeister and Wain”. Afier that the marine diesel engines were

greatly developed for use in the German submarines. The challenges to the coal-fired

low pressure reciprocating steam engine came fi'om the steam turbine and the diesel

engine about the same time at the turn of the century. World war I retracted

developments, however, and maintained the supremacy of coal for a little while

longer. After the war oil found preference either as diesel engine fuel or for raising

steam. It also reduced crew requirements and fuel storage was an easier task. After

the Second World War the experience and confidence gained with diesel engines

caused the demand of the marine diesel engine to increase rapidly.

The development of diesel engines continued, and till now. Fig. 2. 1 shows the

total output of various engines from 1975 - 88.

2. 2 Ship and machinery arrangements

The various factors of marine machines all relate to its operation in a safe,

reliable, efficient and economic manner. The main propulsion machinery installation

will influence the machinery layout. This will determine the operational and

maintenance requirements of the ship and the significance of engine selection.

Basically, ship’s propulsion means that a certain power needs to be transmitted

fi'om a piece of machinery, via a propelling device, to the water. With marine diesel

engine this can be done in several ways, e. g. one engine direct-coupled to a

propeller, one engine coupled via a gear to a propeller or multi-engine plant coupled

via gears to one or more propellers. In this study only the first two will be discussed.



Slow speed diesel engine
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Highand mediumspeeddieselengine $

N team turbine
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Fig. 2. 1 The total output of various engines from 1975- 88.

Source: J. Listewnik (1995) and Al-Batati (1990)

2. 2. 1 Machinery space with diesel engine

Three principal types of machinery installation are to be found at sea today.

Their individual merits change with technological advances and improvements and

economic factors such as the change in oil prices. It is intended therefore only to

describe the layouts fiom an engineering point of view: the direct-coupled slow

speed diesel engines, medium-speed diesels with a gearbox, and the steam turbine

with a gearbox drive to the propeller.

Generally t.hemachinery installation is of a compact and complicated nature. The

main two items are the main engine and the boiler.

The more usual plan and elevation drawings of a typical slow and medium-speed

diesel installation are shown in Figs. 2. 2 & 2. 3 respectively. An auxiliary boiler and

an exhaust gas heat exchanger would be located in the uptake region leading to the

funnel.

J
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Section looking to port Section looking forward

Fig. 2. 2 Slow-speed diesel machinery arrangement

Source: D. A Taylor (1990)

Analysis of ship and machinery arrangements

The goal of shipping is transportation of cargo from one place to another safely.

From this point of view of propulsion, the utmost requirements for engines are

efficiency, operational preparedness, safety, reliability and systemisation.

From the architectural side, in most ship design configuration an intensive effort

is made to minimise the machinery required for the machinery space is considered to

be deducted fiom that which can be used for other purposes ( e.g. carrying cargo ),

and a maximum effort is accordingly made to restrain the dimension of the

machineryspace. spacerequirementsarealmostimpossibleto generalise

satisfactory for different types of power plants. There is no substitute for making at

least a preliminary ship arrangement layout to determine the effect of the power plant

on the overall machinery space configuration.



units Ballast

diesel Engine room layout

Section

Fig. 2. 3 Medium-speed diesel machinery arrangement

Source: D A Taylor(l990)

2. 3 The demand of diesel engines.

A target has been made by all diesel engine-makers to catch-up with the modern

requirements ( e.g. Reliability, simplicity, cost-effectiveness, comport, environment

etc. ) of marine engines for the new generation of ship, also a Statistics have shown

that most of the engine-makers have been making a series of technological

improvements, and the diesel engine demand is kept high level. In the Fig. 2.1 it can

be seen that diesel engines have already covered all the merchant ships demand,

except ships which are still driven by steam turbines.

The relation between specific fuel consumption and power output is shown in



Fig. 2. 4, where it is observed that the specific fuel consumption in the case of marine

diesel engine of medium and low speed are lower than a steam turbine of 16000 HP

to 35000 HP. Also there is a tendency towards the reduction of engine output by

reducing a vessel's speed for fuel saving reasons.

The demand for diesel engine is more than that of steam turbine due to the

following advantages

- The higher thermal efficiency ( above 50% ) and lower specific fuel

consumption.

- The lower specific weight of marine diesel engine plant than that of the steam

turbine plant, (specially at the lower range ).

- The low capital cost.

- The low operating cost.

200 - ,
' _16,000 HP Steam turbine

180 4 .
Steam turbine

\\ /
\\ approx.35,000HP

160- \ ¥ R
\.\ \ \ 226g/SHP\

140 

Specificfuelconsumption%
‘#190 gm?

120- Medium speed diesel engine

__Low speed dieselengine

100 3- I - 150gm?
20 4o*ao___3n___1oo.12o g/HP

% Output
so 

Fig. 2. 4 Relation between specific fuel consumption and power output



2. 4. 1 Types of diesel enginesI)
Diesel engines are divided into various types for descriptive purposes. The

descriptive divisions include,

(a) Cycle: Two-suoke & four-stroke engines.

(b) Cooling: Air or liquid cooled engines.

(c) Cylinder arrangement: In-line, v, w, or x.

(d) Air supply: Naturally, aspirated, scavenged, or supercharged.

(e) Starting means: High-pressure, hydraulic or electric motor.

(0 Direction of rotation: Reversing or non-reversing.

(g) Speed of rotation: High, medium and low speed engines.

ii) Engine speed classification

Engines are referred to as being high, medium or low speed. There is no clear

line of demarcation between the classifications, but according to ‘Harrington Roy L.

(ed.) (1980) and Morton, Thomas Dunn (1978), they can be categorised as per

following:

Engine Shafi speed, rprn power/output

1. Low speed 60 - 300 2000- 93,000 bhp

2. Medium speed 400 - 900 200 -47,500 bhp

3. High speed 1000 - 4000 up to 6,000 bhp

Considering the power transfer mode, output of engine, weight fuel consumption,

cost involvement and maintenance considerations such as availability of spare parts

low and medium speed diesel engines are used in marine power propulsion.



It was noted that the more usual prime mover are the slow-speed diesel engines

directly coupled to the propeller shafi for bulk carrier, big tankers and other large size

ships. But in some cases, considering the low capital cost, engine weight and overall

dimension, easy maintenance, two or more medium speed diesel engines are coupled

through clutch and couplings to a reduction gearbox to drive propellers.

Medium speed engines are mainly employed in specialised ships, i.e. for those

ships in which a low headroom is required, in which a multi- engine propulsion

system is needed to achieve a high degree of operational flexibility and redundancy,

or in which a low machinery weight is of importance.

Such ships include: - Ferries, Cruise ships, Ro - Ro vessels, Ice - going ships,

Trawlers etc.

2. 4. 2 The main differences between the slow-speed and medium-speed diesel

engines

The major difference between slow-speed and medium speed engines is that the

slow speed engines are directly connected to the propeller shaft, where the speed is

very low and is suitable to the required revolution of the propeller. In the case of

medium-speed engines where the speed is higher than that of the required revolution

for the propeller, a reduction gear 3 to 4 reduction ratio is provided between the

propeller shaft and engine. As a result the gear losses occur in that case.

The slow-speed engines are simple in construction. They are mainly of the cross

head engines in-line, while the medium-speed engines are of trunk piston, in-line or

v-type.

Presently, medium-speed diesel engines can burn the same heavy fuel as that

used for slow-speed marine diesel engines. The specific fuel consumption of slow

speed engine is less than that of the medium-speed engines.

Lubricating oil consumption of slow-speed engines is lower than that of the

medium-speed engines.



Slow-speed engines have long life time, which means longer economical life than

medium speed engines.

2. 5 The Development of Marine Diesel Engines in the 1990's.

The demand of two-stroke slow-speed marine diesel engines has increased

remarkably in the last decade. Therefore, development of such engines must be

focused on product refinement and adaptation, both with a view to comply with

altered operating conditions and production facilities and to meet requirements raised

by changing trade patterns.

The development of marine diesel engines is progressing every day. Most of all

the engine-makers have the goal of the refinement of diesel engines technology to

meet the contemporary and future requirements of ship operators.

The two large market holders of marine diesel engine makers MAN B&W with

their MC-engines and New Sulzer Diesel, with their RTA engine series taking

development programme in every year. This section focuses on the MAN B&W

engine programme.

2. 5. 1 New development in reliability

These two engine manufacturers have modified the following four major

components for gaining higher reliability and heat efficiency.

1 ) Piston

The developed MC-pistons are of oil cooled piston crown, which is made of heat

resistant chrome-molybdenum steel, rigidly bolted to the piston rod to allow

distortion-free transmission of the firing pressure.

The piston has four ring grooves which are hard chrome plated on both the upper

and lower surfaces of the grooves.



A cast iron piston skin is bolted to the underside of the piston crown. It is shown

in Fig. 2. 5

The significant difference between the new and old type of pistons are:

0 Locking method for screws and nuts modified

0 Piston skin modified for mounting with flange screws

0 Bronze band in piston skirt introduced for improving running in condition.

With the modification of the above the new type piston has following advantages:

- Increasing firing pressures

- It is oil cooled - the advantage of eliminating any accident from corrosion and

mixing of cooling media.

- The utter simplicity of piston crown gives low production costs.

- Low failure rate

K/S-MC Mk 5 S-50/60/70 MC-C and
Execution L70MC Mk 6

with high topland

Fig. 2. 5 Piston I ring pack assembly MC vs MC-C

Source: MAN B&W Catalogue (1996)



2 ) The new combustion chamber and cylinder liner

The most noticeable improvements introduced in conjunction with the present

ratings are centred around the combustion chamber. The new combustion chamber

configuration, features a sturdier cylinder liner with a bore cooled upper part and

with increased thickness. The liner has been made shorter and the cylinder cover

correspondingly deeper, which means that more of the combustion space is now

surrounded by heat resistant steel which is better able to absorb the higher heat flux

associated with the present ratings. (See Appendix 3).

3 ) Exhaust valve & valve housing

Nimonic exhaust valves are used in MC engines. To ensure extended service life

of the exhaust valve, Nimonic valve spindles and hardened steel bottom pieces are

standard on the large bore engines. ‘The exhaust valve housing is made with an

increased wall thickness so as to raise the surface temperature and thus reduce the

risk of cold corrosion. In addition, the damped closing of the exhaust valve has been

introduced to ensure sofier landing of the spindle on the seat, thus preventing valve

knocking, and ensuring a longer life time of the seats.

4) Fuel pump

The fuel pumps for the larger engines incorporate variable injection timing for

optimising the fuel economy at part load, the start of the fuel injection being

conuolled by altering the pump barrel position by means of a toothed rack and a

servo unit. Individual adjustment can be made on each cylinder and, furthermore,

collective adjustment of the maximum pressure level of the engine can be carried out

to compensate for varying firel qualities, wear, etc.



Both adjustments can be carried out while the engine is running. The fuel oil

pump is furnished with a puncture valve, which prevents fuel injection during normal

stopping and shutdown.

2. 6 Waste heat recovery system

2. 6. 1 Exhaust gas utilisation

The exhaust gas heat energy is the most attractive heat energy source to be

utilised for auxiliary use due to the amount and the relative high temperature level.

The normal mode of conversion of the exhaust gas heat energy to useful energy is

by means of a steam plant in which the waste heat energy is used to vaporise water in

a boiler.

In practice, when heat energy is tal_(enfrom gas or any other fluid, the temperature

falls from an initial value TH at the heat exchanger inlet to a final value TL at the

outlet. The heat energy transferred per unit mass of gas will be

Q1'=C|>(TH—TL)"""""""""" "(1)

Where Cp is a heat transfer coefficient of gas

The total work obtainable with an ideal cycle with a surrounding temperature of

To is QMAX= Ci>( TH — TH — To 1“ TH / TL )'""(2 )

Dividing equation ( 2 ) by equation (1), the maximum possible thermal efficiency

of the heat energy recovery becomes,

Tl:= 1— To’ TH—TLInTH/T1,"""""" "( 3 )

Thus, a high degree of utilisation of the exhaust gas heat energy requires an

exhaust gas outlet temperature as low as possible.

Every attempt has taken to utilise energy in waste heat and recovery from exhaust

gas and coolant is established practice. Sufficient heat energy potential is normally

available in exhaust gas at full engine power to supply total electrical and heating

services for the ship. The amount of heat actually recovered from the exhaust gases



depends upon various factors such as steam pressure, temperature and evaporative

rate required; exhaust gas inlet temperature, mass flow of gas, condition of heating

surfaces, etc. Waste heat boilers can recover up to 56% of the losses to atmosphere

in exhaust gases. From jacket water temperature and scavenge air are used for

heating water and heat recovery 3.1% and 4.6% respectively. It is shown in Fig. 2. 6.

_ _ PTO
Reduction -_--—~ Ehcmcig,

Stack _
Propulsion

Cooling

Wu" ‘Log’ Steam or
hot water

Hot water

Hot water

Fig. 2. 6 71.7% Available useful energy

Source: J. Listewnik (1995)

( l ) Boiler and turbo-generator system

The main type of exhaust gas boilers and steam/condensate systems may be

divided into two categories, one for low and one for high degree of heat utilisation. A

low utilisation system based on the exhaust gas heat will normally only supply

saturated steam for heating services, where a high utilisation system also incorporates

the production of superheated steam for a turbo-generator.



In both cases the obtainable steam production depends on the following

parameters:

- Exhaust temperature before exhaust gas boiler

- Lower limit of exhaust temperature

- Exhaust gas amount

- Steam pressure

- Exhaust gas boiler system.

When the exhaust gas boiler steam production is used to drive a turbo-generator,

the additional factors will influence the electric power production,

- Superheated steam temperature

- Condenser pressure

- Turbine efficiency

If the heating service requirements, are smaller than what can be produced by

utilising the available exhaust gas temperature, then electric energy production may

be a viable alternative. 

Due to simplicity and low cost, the single pressure system is most common in

high utilisation boiler turbo-generator systems. An example of such a system is

shown in Fig 2. 7. The system is fitted with a regenerative feed water heat exchanger.

The economiser is integrated with the evaporator and hence the circulation amount of

about four times the feed water flow, circulates through the economiser and

evaporator. The large circulation through the economiser increases the heat transfer.

(2 ) Turbo compound system

Over the recent years the efficiency of turbochargers has increased. These high

efficiency turbochargers available today makes it possible to extract more energy

from the exhaust gases than needed for an ample air supply to the engines. This have

introduced solutions with a turbo-compound system where the exu'a power is

introduced to the engine shafi by Brown Brovery Corporation ( BBC )
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Fig. 2. 7 Single pressure boiler turbo-generator system

Source: Engja, Hallvard (1989)

2. 6. 2 Utilisation of scavenging air heat energy

Due to relative the high temperature of the scavenging air heat energy makes it

an attractive heat source. The temperature drops rapidly at part load on the engine

and thus available heat energy.

One requirement which must be met in order to utilise the temperature level is

that the air cooler has two or more sections, so that parts of the heat energy can be



utilised at a high temperature level in addition to other sections which can bring the

scavenging air temperature down to an acceptable level. Heat energy recovery will

then only be possible in the first section of the air cooler. The systems alternatives

are shown in Fig. 2. 8, are in use,

- Scavenging air high temperature section is connected to jacket cooling water

system.

- Scavenging air high temperature section is connected to a separate recovery

circulation system.

The first system alternative is mostly used for medium speed engines. This is

partly due to generally higher cooling water temperatures for these engines compared

to slow-speed engines, and that scavenging air heat energy is a smaller proportion of

the total heat loss.

E 1.‘. A r . _

Gas Inlet S'°°":: H°l :52‘:

Cornpresssr
WHR rn nl

Tfiw<Toir_i

-'ThwQ¥ WU"! Th“-1

Tm,‘ CHE " A
‘ I J“; Heolmg Coils!

i .ng \'[;|u_- H90‘Exchangers for
Fuel Tanks.

' ‘ °° ' T 53:“ Lace.-n.-.-naaoIicn.e::
- I S::.'o:.'~ 1 ' Fr.-55;*——"/ AIf'COOl-P-' Volve

-'-'lp.'nen' I

C"¢U'-‘-'V'-‘*9 Pu-‘TIP ‘\'mt1'nlHa'. water cii-:.iil
Cop. 10lIkWhMCR

Fig. 2. 8 Warm/hot water flow system - scavenge air heat recovery

Source:Ena, Hallvard(1989)

20



System with separate recovery-circulation is mostly used for slow-speed engines.

The relative low cooling water temperature used for these engines makes a combined

waste heat energy utilisation less attractive due to smaller energy recovery, and will

require a large heat transfer area.

2. 6. 3 Jacket cooling water heat energy

As shown in Fig. 2. 6 the jacket cooling water heat energy 3.1% of the heat

energy supplied to the engine which amounts to 6-7% of the engine power. The

common utilisation of this heat energy is through a separate waste heat circulation

system inorder to avoid contamination of the cooling water. Fig. 2. 9 shows an

example of a system for jacket cooling water utilisation.
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Fig. 2. 9 Jacket cooling water heat energy recovery

Source: Engja, Hallvard (1989)
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2. 6. 4 Summary of heat recovery system

About half of the energy supplied to the main engines in rhips is what has been

named waste heat. Competitive pressure on shipping and the increasing fuel crisis

created an increasing need to utilise this waste energy for useful purposes. In the last

few years many sophisticated solutions have been proposed to maximise utili:ation.

The choice of a power recovery system depends on many factors. Dominating all

is the life-cycle cost of the entire machinery installation. When all factors are

considered it is not always the complicated system that is sophisticated. Money is

the deciding factor

2. 7 Future development

Because of the outspoken desire in the market for further improved and securing

more reliability of marine diesel, all engine manufacturers have adopted a long term

programme with the aim of developing the necessary systems and components so as

to produce a future engine generation with greater flexibility in terms of operating

modes, and with the highest degree of reliability.

To meet the reliability target, a condition monitoring system will be used to

evaluate the general engine condition so as to maintain engine performance and keep

its operating parameters within the prescribed limits.

Another intention to further develop systems for detecting severe faults such as

piston ring blow-by, cylinder liner scuffing, abnonnal combustion, etc.

To meet the operational flexibility target, electronically controlled systems for

operating the fuel injection and exhaust valve systems may be applied, possibly also

including control of the turbocharger system. The control system will contain data or

optimum operation in a number of different modes, such as “Fuel Economy Mode”,

“Emission Control Mode”, & “Reversing/Crash Stop Mode".



Both the exhaust valve system and the fuel injection system could be operated

without a conventional camshaft, but controlled by means of a hydraulic/electronic

system. Whereas the need for controlling the exhaust valve operation is limited to

control of the timing for opening and closing the valve, the control system will be

simpler than for the fuel injection system, where several parameters can be varied.

The cylinder lubrication system is controllable from the condition evaluation

system so that the lubricating oil amount can be controlled in accordance with the

engine bed, with increased lubrication in connection with load changes, and with

increased lubricating oil doses in the event of scuffing and blow-by indications.

Such systems are already available for existing engines.

The turbocharging system may incorporate control of the scavenge air pressure

when using a turbocharger with variable turbine nozzle geometry, control of by-pass

valves, turbocompound system valves and turbocharger cut-off valves.

The operating modes may be selected from the bridge control system or by the

system's own control system. The former case applies to the Fuel Economy Modes

and the Emission Controlled Modes. The engine protection mode, in contrast, will

be selected by the condition monitoring and evaluation system independent of the

actual operating modes, when this is not considered to endanger the ship’s safety.

The world is constantly changing, thus creating new challenges to the

development of diesel engines, the marine diesel engines, developed in the days

when the battle for promoting the reliability and reducing SFOC rated, have evolved

into a highly reliable and very fuel-efficient engine with low spares consumption.

In view of the increasing costs of obtaining even lower SFOC for the engine

itself, and the current modest level of fuel oil prices, future development will

continue, besides concentrating on means to optimise total economy. Further items

such as operational behaviour and environmental aspects will be discussed in

subsequent chapters.
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CHAPTER 3

Machinery Design Principles

The machinery design should be made by follow certain principles to meet the

requirements in operations. It is clear that overall economical efficiency is the key

point in machinery design, operation, maintenance, and comparisons.

Overall economical efficiency means:

-Reliability at sea, with durability and low maintenance.

-Low capital cost

-Low manning level

-High fuel economy.

Therefore, overall economical efficiency will be the main consideration for future

propulsion plants.

3. 1. System Engineering

For a system engineer, whether working for a shipowner, a shiyard or an engine

maker, a good engine programme to propose for selection of an engine with a scope

of offering a number of engine alternatives for easy installation and overall energy

conservation.

There are several possibilities amongst the existing systems and engines, together

with the inherent flexibility of the individual units in an engine programme provide

the means for finding ideal solutions to virtually any conceivable specification

requirement.
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It is well known from statistical data that a two-stroke direct-coupled engine

selection to a propulsion plant is the first choice and that such a selection is in fact,

also the final choice except in such special cases where all two-stroke possibilities

have been exhausted.

The first estimate on a suggested propulsion system will often have to be given

on the basis of very preliminary physical data of a ship. The preliminary data for a

certain ship and an outline of the engine selection process can be seen in Fig. 3. 1.

Fig. 3. 2. shows a calculated speed / power curve with corresponding propeller

speed. When these characteristics are entered in the engine programme, a number of

engine alternatives will be appeared. Estimations of ship's load profile, electricity

and heating requirements will offer a further study to select the most economical

engine / propulsion plant for the ship. Such system engineering analysis comprising

of an economical analysis of the capital cost and the operating costs of a number of

altemative engines electricity producing equipment has been introduced.

This is also the case for vibration aspects, which is an essential item analysed in

the course of a project. An analysis of auxiliary equipment for the engine is also

carried out.

In the course of analysis and preparatory system engineering for the entire engine

room it is better to look into an evaluation of engines with and without turbo

compound system and with and without main engine driving generators.

As a result of such an analysis, many engines currently have been equipped with

Power Take Off (PTO)/ Power Take In (PTI) systems. It is also not worthy that such

systems as the Integrated Charged System (ICS), which allows an auxiliary engine to

run under idling conditions using heavy fuel.

The system allows a practically 100% utilisation of a turbo-generators, without

having a power turbine on the auxiliary engine thereby maintaining the full

simplicity of the main engine, and still benefiting from the economies of turbo

compound system.



System engineering will be further developed and provides an increasingly

important additional feature of the engine programme

I BASIC SHIP DATA l

[ Ship type, Dead-weight and Speedw

Main Particulars

Ship Propellers

Length Diameter
Breadth No of blades
Draught Disc area ratio

Power Optimisation
Power prediction

Propulsion figures

Sea margin
Engine margin
Light rtmning

Engine Selection

Engine room optimisation
Shaft generator
Diesel generator
Turbo compound system
Steam turbine

Fig. 3. 1 Engine selection process on the basis of ship particulars.

Source: Engine selection guide MAN B&W 3rd edition 1993.
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3. 2 Reliability Aspects

In the selection of the most suitable type of machinery, reliability in service is

one of the most important factors and should be given proper emphasis. The design

effort devoted to this consideration has been receiving increasing emphasis during

recent years. This has been attributed to the increasing complexity of the modern

equipment and the increased reliability requirements, which are associated with the

trend torward reduced manning. Breakdown in the propelling machinery may mean

the loss of ship availability, which is very serious matter for the owners and

operators. Considerations other than reliability, such as fuel economy, weight/space,

and first cost, which may seen to be important in the early stages of design, later

become surprisingly insignificant when compared with irritating and costly service

intemrptions which can result from inadequate reliability.

Evaluating the service and design margin is difficult; the type of fuels and the

pressures, temperatures, and pressure ratios used in the design have a significant

effect on the plant reliability. However realistic u'ade-off studies require that either

the degree of conservation be consistent between various candidate power plants or

an allowance be made for the differences.

Influencing Factors

The reliability of a propulsion power plant is influenced by various factors; the

most important factors are:

0 Basic engine design.

0 Working parameters

0 Quality of manufacturing

0 Quality of assembling

0 Quality of maintenance

0 Quality of operation



0 Monitoring

Engine Design

Qualityof 0 Qualityof

manufacturing % Q maintenance

Quality of ¢> ENGINE <3 Quality of
assembling RELIABILITY operation

Monitoring <7‘ ‘~'>Qua1ityof fuel &
lubricating oil cooling

Fig. 3. 3 Engine Reliability

Related standards and requirements about the reliability are:

- Extending the time between overhauls (TBO) up to 15,000 hours for the

main components e. g. piston, exhaust valves.

- Keeping low wear rate, for example the liner & ring wear to 0.06mm /1000

hour and 0.4mm / 1000 hours respectively, and at the lowest possible

lubricating oil consumption.

- Minirnising the amount of intermediate maintenance for fuel nozzles and

other components needing routine maintenance.

- Developing software and hardware certain for an efficient condition

monitoring system.

3. 3 Simplification

‘Simplicity is a quality. When quality ends genius gone’ - Prof. J. Listewnik

(1995).

To the operators simplicity means that practically no damage is fatal. The

intemally accumulated energy that needs to be absorbed in a particular part of the
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engine in case of a mechanical mishap is moderate due to the low speed, and the risk

of consequential damage is therefore limited. In a design principle of the slow speed

engine, a damaged engine can practically operate, for which reason low speed diesel

engine installations are designed as single- engine installation with no “take-home“

power. Therefore, a simple slow speed engine is invariably been chosen, where great

reliability must be ensured under any circumstances.

3. 4 Economical Aspects

3. 4. 1 Capital cost

The most important task with respect to engine manufacturing today is the

competitive commercial environment asking for still further reductions in

manufacturing costs per unit power.

The engines of any manufacturer which are built by their licensees are in

accordance with licenser’s drawings and standards. In few cases, some local

standards may be applied to facilitate production; however all spare parts are

interchangeable with main manufacturer’s designed parts.

Each large and small component is continuously surveyed before fitting so as to

make it possible to adjust to present and new facilities, for production cost contract.

By using production experience as well as service feed-back from previous engine

designs in the design process, the number of production hours has been reduced by

approximately 20% compared to previous engines ( MAN B&W ).

This is because, the number of components used for certain engine sections has

been remarkable reduced, thereby achieving a reduction of production cost as well as

assembling cost.

In addition to the engine manufacturing cost, the engine related installation costs,

such as auxiliary power requirements, the cost of the fuel and lubricating oil
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treatment plant, and cooling equipments are also taken into consideration. This

means the cost of the whole propulsion plant.

3. 4. 2 Operational Costs

The operational cost comprises of the following:

0 Manning (crew)

0 Fuel oil consumption rate of engines.

0 Lubricating oil consumption rate of engines.

0 Maintenance cost (spare parts)

1. Fuel consumption rates of engines

Due to high fuel prices in the past ( 1980- 1985 ) engine development has been

expanding with respect to finding- ways of reducing the fuel consumption rates

engines. Up to now the specific fuel consumption rate has been decreased by about

50% in last 20 years ( shown in Fig. 3. 4 ).

At present fuel prices are comparatively low and they can without doubt be

expected to remain so in the near future, fuel costs still take a share of 40% to 60% of

the ship’s running costs. So it can be said that high economic efficiency means first

and foremost low fuel consumption rates. Therefore, Specific Fuel Oil Consumption

(SFOC ) is still the key point for engine manufacturers to pursue.

Fuel costs are related with following factors ( shown in Fig. 3. S ).

0 Power / speed selection

0 Engine optimisation overload range;

0 Recoverable waste heat;

0 Auxiliary power need.
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2 ) Lubricating oil consumption

Another important factor influencing the overall economic efficiency of a

propulsion plant is the lubricating oil ( LO ) consumption rate. Usually the prices of

L0 is 8 times higher than Fuel Oil ( F0 )

Utilising modem techniques of engine design and advantage of lubricator, it

significantly reduction in L0 consumption rates have been achieved.

The Medium speed engines are of very low LO consumption rates, more over

can have a corresponding contaminating effect on the system oil, which in some

cases can make replacement of the oil charge.

3 ) Spare parts

Other important factor of operational cost is the price of spare parts. Nowadays

considering longer service period by metallurgical technology development spare

parts consumption costs are also reduced.

4) Manning

In the recent years the shipowners are meeting tough competition . This causes

in an increasing desire to cut costs to improve a competitive position. A possible

solution is only to reduce the crew number.

The trend towards a further reduction in manning levels will continue.

Henceforth the reliability of engine must be further improved and the simplification

of propulsion plants.

3. 4. 3 Compound system

Other than lowering specific firel consumption on the diesel engine the propulsion

system as a whole is now included in economic efficiency considerations.

Effective utilisation of waste heat from diesel engine plants offer an optimum

measure of energy saving, such as exhaust gas boiler and economiser.



The turbo compound system has reduced specific fuel oil consumption by 5

7g/kWh. without making the propulsion system more complicated.

3. 5 Operating behaviour

3. 5. l Vibration & noise

The two most important issues with respect to operating behaviour of a ship are

vibration and noise.

The introduction of super-longstroke crosshead engines with a few cylinders,

high combustion pressures and huge rotating and reciprocating masses made

vibration a problem for ship designers.

Presently, in many passenger vessels direct resiliently mounted engines are being

installed in order to keep disturbing engine vibrations away from the body of the

shop, thus making life more comfortable for passengers and crews as regards the

noise and vibration levels in the vessel.

3. 5. 2 Heavy fuel capability

It is well known that today’s marine diesel engines are capable to bum low

quality fuel oil, but engine builders must be well prepared for fl.l.l1.hCI'deterioration in

fuel quality. The selection will may cope with fuels that are more difficult to burn.

The bore-cooled piston with welded high temperature protection layer of 1nconel

625 and the particular exhaust valve design combines to give the engines of recent

years a unique capability for sufficient time between overhauls when burning low

quality fuel oils
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3. 6 Environment concern

In the maritime field environment problems will come into focus more, and

demands for the reduction in pollutant emissions will increase, especially for traffic

on the coast and in port. This may lead for engines being developed with better

combustion with catalysts of flue gas cleaning.

The health aspect will be taken into consideration in the design of fuel systems

for an engine and will have an influence on marine engine selection

As proposed by IMO Regulation 14 on Nitrogen Oxides ( NOX ), diesel engines

with a power output of more than 100 kW which are installed on ships constructed

on or after 1 January’98 need to comply with the emission of nitrogen oxides

(calculated as the total weighted emission of N02 ) from the engine is within the

following limits: ( shown in Fig. 3. 6 ).

i) 17 g/kWh when rated engine speed (N) less than 130 rpm

ii) 45 Xn ‘M g/kWh when “N” is 130 or more but less than 2000 rpm

iii) 9-84 g/kWh when “N” is 2000 rpm or more.

Max. Allowable NO: Emissions tor Marine Diesel Engines

No-wt-wn) D2lE2IE3|C||cytbu'IlhII'ID'lldO-I‘

‘O ______ trim rp-n_. 17 gllwh
Ifilififlflfirpi-I.—o45'n"' gllwh

rvifll-pn_. 0'04 gniwn

0 § Q @ E 1% 1g I@ 1% ‘E T T

RATEDEIBINE SPEED

Fig. 3. 6 Proposed IMO emission limits

Source: IMO, MEPC 38/9/_10,(April, 1996)
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3. 6. 1 Proposed IMO Regulation 15 on Sulphur Oxides ( S0,‘)

General Requirements

The sulphur content of any fuel oil used on board ships shall not exceed ( 5-0%

m/m )

Special Requirement:

While ships are within special areas, at least one of the following conditions shall

be fulfilled.

( a ) The sulphur content of fiiel oil used on board ships in a special area shall not

exceed ( 1-5% rn/m ).

( b ) An exhaust gas cleaning system approved by the Adminisuation in

accordance with the guideline developed by the organisation, shall be applied to

reduce the total emission of sulphur oxides from ships, including both auxiliary and

main propulsion engines, to ( 6-0 g S05‘ / kWh ) or less calculated as totalled weight

emission of sulphur dioxide.

( c ) Any other technological method that is verifiable and enforceable to limit

SOX emissions to a level equivalent to that described in paragraph (b) shall be

applied. These methods shall be approved by the Administration.



CHAPTER 4

Economical Comparison

In these days the selection of a ship's propulsion power is a comprehensive and

difficult task. Hence whenever a shipowner/shipyard decides to select a propulsion

power for a ship it obviously needs to make a technical study as well as an

economical comparison. This economical comparison should be made by taking

different propulsion alternatives and on equal terms, such as propeller diameter,

speed and propulsive efficiency.

Therefore, the comparison will be made on the basis of a standard ship a M. Bulk

Carrier of 46,800 dwt and it would be assumed that the basic ship data are the same

irrespective of the propulsion system chosen. The basic ship data is shown in table 4.1

Table 4. 1 Basic Ship Data

M. Bulk Carrier Parameters

Length 190-0 rn

Breadth 31.54 m

Draught 11-65 m

Block Coefficient 0-8

Ship Speed 15-25 knots

Source: Lloyd's Register of Shipping, 1996



The comparison has been concentrated mainly on the basis of capital cost and the

operating cost. The following factors have been taken into consideration for

economical comparison.

a) Capital cost

- Propulsion power related capital investment

b) Operating cost

- Fuel oil

- Lubricating oil

- Spare parts

- Maintenance cost

4. 1 Capital Cost

The capital investment for the power propulsion plant being dependent on place,

time and engine builders/suppliers. The real differences in the capital costs of the

engines are hidden in the ship price. Nevertheless, no economical study can neglect

the capital and operating costs. Hence either the shipowner or the shipyard must

carry out an economical study. Some elements of operating expenses must also be

evaluated in relation to differences in capital investments.

Generally speaking when a choice is given between medium speed and low speed

main engines, the traditional thinking of the shipowner will favour low speed engines

in spite of lower initial cost of medium speed engines. That is why a technical and

economical comparison between the alternatives should be carried out. Emphasis on

costs and difference of revenue should be kept in mind.

4. 2 Operating Cost

A typical breakdown of operating cost is shown in table 4. 2.
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Table 4. 2 Operating Cost

CXPCIISCS

expenses

Source: C. R. Cushing (1996) and Butman (1996)

From the above table it is observed that the main power propulsion plant selection

primarily affects the fiiel/lubricating oil expenses and maintenance costs, i.e. 57% of

the operating cost.

Cr_e:LExp.enses

At the present time the degree of ship board automation and their nations of

origin influence on crew expenses. However as the man-hours used for overhauling

are to some degree of quantifiable, they are taken into account with the maintenance

CXPCTISCS.

Maintenansuxpenses

By experience it has been seen that the maintenance expenses for a medium

speed engine are higher than for the equivalent low speed engine.

Marine propulsion power plants, whatever types they are, have to fulfil the

following conditions: I

-Number of crew and man-hours needed for operation and maintenance of the

power plant should be minimum.
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Generally it is considered that the overhauling of the engine components is

expensive due to the greater number of cylinders in the ease of a medium speed

engines are installed as propulsion power.m
Presently the medium speed and low speed engines have almost the same specific

lubricating oil consumption.

Eu.el_QiI_Cnnsummi9n

Now-a-days the medium speed diesel engines are capable of burning the heavy

fuel oil but with some particular difficulties in maintenance and lubricating

consumption. Most of the medium speed engines use heavy fuel oil with lower

viscosity, whereas the low speed engines usually use heavy fuel oil with higher

viscosity’s. Now the medium and low speed engines have almost the same specific

fuel oil consumption (SFOC).

4. 3 Economical Comparison I

The economical comparison has been made here on the basis of economical

aspect, of four different types of engines. Three of them are two stroke slow speed

engines and the 4th one is a four-stroke medium speed engine.

4. 3. 1 Investment and Operating Cost

With regard to investment and operating costs, the following items are assumed;

I. Contracted maximum continuous rating (CMCR) for all the engines is equal to

10,000 kW.
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2. Machinery prices are based on an average cost/kW and not on quoted prices by

manufacturers and the prices are for comparison only.

3. The continuous service rating (CSR) is fixed at 80% of maximum continuous

rating (MCR).

4. The ship is a M. Bulk Carrier.

5. When the prices are used for an economic comparison, all assumption have to be

made on an equal term basis. ‘Therefore,prices are based on those for engines

manufactured in European countries at the beginning of 1990's.

6. Maintenance costs are average maintenance costs per kW power in European

countries.

7. Fuel oil and lubricating oil prices are based on the prices of May 1996.

8. The intention of this study is to explain the economic comparison.

9. Sailing days of the ship is 250 days in a year.

10. The interest rates 8% (see Table 4. 3. 7)

11. The inflation rates 3% (see Table 4. 3. 7)

12. Required life time 15 years.

The following Tables 4.3.1 to 4.3.3 are the basic cost data for economical

comparison.

Table 4. 3. 1 Assumed Machinery Costs

generator

generator

generator

Source: e.g.

Alpha Diesel, Denmark and SEMT Peilstick, France.

B&W Diesel A/S,



Table 4. 3. 2 Assumed Machinery Investment

type

generator

generator

generator

gear etc. 230,000

** The prices are assumed fi'om the manufacturers recommendations.

Table 4. 3. 3 Fuel and lub. oil prices

type

Source: The Llyod’s List May 1996
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4. 3. 2 CMCR & RPM of four different kind of engines based on four alternatives

assumed:

Table 4. 3. 4 Main Engine Alternatives

As per engines layout SFOC & fuel cost per year are shown in Table 4. 3. 5

Fuel cost calculation has been made taking correction factor 1.05 for the difference in

lower calorific value between MDO and I-IFO.

Medium speed engine used heavy fuel oil of low viscosity i.e. 180 CST.

250 sailing days assumed in a year.

Table 4. 3. 5 SFOC of Engines & Fuel Cost per year

type

g/kWh. USS/year

" Method of calculation:

l0,0O0><(170/l0°)X24><250><1-05X108 = US$l,l56,680.
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Table 4. 3. 6 Assumed Maintenance and Spare parts costs for M/E

alternatives

Power kW Cost USS/year Cost USS/year

4. 3. 3 Correction of the rate of interest

For an economical study of different alternatives of marine diesel engines the

following calculation for correction of interest rate is should be carried out for 15

years. The calculation done here as per method of I. L. Buxton (1987), which is

most relevant for the economical evaluation of maritime industry.

Rate of inflation (e) = 3-0%

Rate of interest (i) = 80%

Required life time (n) = 15 years

The effective discount rate (EDR) = (r) can be calculated by using the equation,

1 +1 1 +0.08
(1+r)= - 4 =1.0485

1 + e 1 + 0.03

Then , (1 + r) = 1.0485 r = 1.0485 —1 = 0.0485 or 4.85%

The Series Present Worth Factor (SPWF) is obtained by using the following

formula,

(1 +r)"— 1 (1 + 0.0435)"—1
s1>w1== = = 10.43

r(l + r)" 0.0485 (1 + 0.0435)“



The Series Present Worth Factors (SPWF) at different inflation rates and different

rates of interest are shown in Table 4. 3. 7.

Table 4. 3. 7 Series Present Worth Factor (SPWF)

Inflation 2 % 3 %

The Capital Recovery Factor (CRF), the ratio between uniform savings per year

and the difference of capital investment is calculated by the following process:

Savings per year
CRF =

Difference of capital investment

1

Simple pay back period = ——
CRF

Payback Period:

Payback period is the number of years, which takes the net revenue to accumulate

to the level where it equals the investment. The payback period can be found by

using the calculated CRF and a given rate of discount r = 4.85% as per table 7 of

I. L. Buxton (1987). (See Appendix 4)

Net Present Value (NPV):

NPV = (SPWF x Savings per year) —(difference of investment)

Internal Rate of Return (IRR):

Internal rate of return can be found by using calculated CRF and the given

required life time (n) = 15 years as per table 7 of I. L. Buxton (1987).

These calculations of four alternative engines are shown in Table 4. 3. 8.
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Table 4. 3. 8 Economical Comparison 1

Engines type SRTA 62U 5S60MC 6L60MC 8PC—40

gear etc.

l’€COVCfy

present

rate return

The basic alternative ‘B’ propulsion is a MAN B&W 5S6OMC low speed engine

developing 10,200 kW at 105 RPM. Alternatives ‘A’ & ‘C’ are both two stroke low

speed engines. Alternative ‘D’ is a four-stroke medium speed engine. It has been

assumed that all the alternatives have the same propeller diameter, speed and

propulsive efficiency.

For the economical comparison the points of interest here are the number of

engine units and the initial capital investment.

From the Table 4. 3. 8 it has been observed that altematives ‘A’ and ‘B’ have the

same number of units i.e. 5 cylinders. But the initial capital investment of alternative
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‘A’ is higher than alternative ‘B' and ‘D’ by US$284,000 and US$866,000

respectively. But alternative ‘A’ gives savings in fuel consumption amounting to

US$68,844 per year and has a positive net present value (NPV), which is preferable

for a shipowner but higher maintenance cost and payback period is 5-75 years which

is unfavourable for shipowner.

The initial capital investment of alternative ‘B’ is lower than alternative ‘A’ and

‘C’ by US$284,000 and US$468,6OOrespectively. But higher than alternative ‘D’ by

US$582,000. The economical study is shown graphically in Fig. 4. 1.

Alternative ‘C’ has a higher capital investment cost, fuel consumption cost and

more number of units i.e. higher maintenance cost and a negative net present value

(NW)

The alternative ‘D’ has lowest capital investment cost. On the other hand it has

the highest number of units i.e. higher maintenance cost.

From an economical point of view alternative ‘D’ is the better choice due to the

lowest investment cost US$582,000, which is cheaper than the basic alternative ‘B’

When taking into consideration the significant factors, influencing main engine

selection. The alternatives ‘B’ is the 1st choice and ‘A’ is the 2nd choice, (because

alternative ‘A’ has a 5.75 years payback period and higher maintenance cost) due to

the following advantages:

- Low capital cost of alternative ‘B’ in comparison with alternatives ‘A’ & ‘C’

- Lower number of cylinders, and lowest maintenance cost in comparison with

all other alternatives.

- Directly coupled to the propeller. Hence there is no reduction gear loss.

- Simplicity on maintenance and overhauling

- More reliable than alternative ‘D’ due to low RPM.

Further comparison will be made on the basis of 1st choice i.e. the basic

alternative ‘B’.
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Fig. 4.1 Economical study of four different M/E alternatives

To obtain the minimum fuel consumption, the engine 5S60MC has to be run at

80 % of the MCR. The continuous service rating (CSR) will be then:

CSR = 0.80 x 10200 = 8160 kW.

By using the engine layout with Turbo Charger System and without Turbo

Charger System in Fig. 4. 2 the specific fuel oil consumptions (SFOC) at CSR B&W

Project guide 1993 are:

SFOC without TCS = 170 g/kWh

SFOC with TCS = 165 g/ kWh

Fuel cost US$/ year without TCS = US$943,851

Fuel cost USS/year with TCS = US$9l,69l

5g/kWh
Power delivery by turbo charger compound system = x 8160 = 240 kW.

170
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Fig. 4. 2 SFOC as per engine layout with /without TCS at CSR

Source: MAN B&W Catalogue (1994)

Table 4. 3. 9 Cost of Maintenance and spare parts

Diesel generator, PTO & TCS/PTI

ype

generator

generator

generator

Table 4. 3. 10 Cost of Lubricating Oil Consumption

ype

generator

generator
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4.4 Econo|nlcalComparlson II

System Alternative ‘B’ is the basic 5S60MC without TCS/PTI. Alternative ‘F’

is 5S60MC with TCS/PTI

Table 4. 4. 1 Economical Comparison with & without TCS

COIIS. COSI

From the Table 4. 4. 1 it has been calculated that the alternative ‘B’ has a

payback period of 7.5 years, which is unfavourable period for the shjpowners. But

from the economic point of view the TCS/PTI is better due to the positive value of

NPV USS 103432.
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4. 5 Economical Comparison III; with I without Shaft generator

Alternative ‘G’ is the basic: 3 diesel generator sets using heavy fiiel oil of 180

CST.

Alternative ‘H’ : 1 Shafl generator PTO 500 kW and two diesel generators.

Fuel cost calculation US$/ year:

Fuel cost for PTO = US$57,834

Fuel cost for diesel generator = US$74,088

Table: 4. 5. 1 Economical Comparison, Example Ill

USS/year

a payout

period of 3.75 years, which is a favourable period for a shipowner. Also it has a

positive net present value US$269,l38 i.e. it is economically better.



4.6 EconomlcalComparlson IV

Alternative ‘J’ is the basic with 3 diesel generator sets using MDO

Alternative ‘K’ is 1 Shaft generator with TCS/PTI and two diesel generator

Fuel cost calculation:

F.0. cost for PTO = US$56133/year

F.0. cost for diesel generator = US$116,850/year

F.0. cost saving by TCS = US$27,543/year

Table 4. 6. 1 Economical Comparison with Diesel generator & l Shaft

generator with TCS/PTI and two diesel generators

USS/year

USS/year



From the Table 4. 6. 1 it is seen that alternative ‘K’ PTO/PT! has a Payback

Period of 3-5 years and a positive net present value more than 0-7 million.

4. 7 Conclusion of this chapter:

By comparing all the alternatives, it may be concluded that, choosing the power

take-off with turbo-compound system is the better choice fiom an economic point of

view due to:

- The payback period is only 3-5 years, which is a favourable period for the

shipowner, (in the Example IV).

- The net present value (NPV), more than 0.7 million, which is a considerable

amount for the shipowner compared with the payback period.

- The internal rate of return (IRR), is >30 %, which is about four times higher

than the assumed rate of interest (i) = 8 %.



CHAPTER 5

Engine Selection Process

The selection of the main engine for shipboard use is a comprehensive and

difficult task. The selection can not be based on one single factor. There are many

possible engine designs, which are capable of meeting most performance

requirements, and numerous factors must be considered such as fuel consumption,

cost, availability of competitive engines, weight and maintenance considerations

such as availability of spare parts, necessity for special tools and the number, type

and fiequency of the maintenance required. Therefore, the factors that should be

considered are operational flexibility, SFOC, obtainable power, possible shafi

generator application and propulsion efficiency.

The first and possibly the most important consideration leading to the selection

of a diesel engine is to obtain the speed-power cur'ves for all important modes of

operation such as fully and lightly loaded; clean hull and calm weather, fouled hull

and heavy weather; with and without power take-off loads.

In this study the engine selection process is based on the MAN B&W MC-engine

series, in order to select the optimum marine engine. Therefore detailed information

on a particular engine is being obtained from project guide.

The current development programme of MAN B&W MC engines comprises

engines with all relevant combinations of speed and power for ship propulsion,

power range fiom 1000 bhp to 93000 bhp and speed fi'om 60 r/min to 250 r/rnin.

The main criteria for an engine selection process have been shown in Fig. 3. 1.

Here it would be concenuated on a simple method which can be used, to estimate the



ship's main particulars, the power/speed combination, and then to choose the main

engine that fulfils the ship's requirements.

5. l Ship's Power Requirement

At the initial stage of the process, the shipowner or shipyard generally stipulate

the ship type, ship size and the design speed of the ship. From these limited data, the

estimation of the power/speed requirement can be an approximation.

On the basis of the main particulars of the ship i.e. length, breadth, draught, block

coefficient dead-weight and speed the power requirement can be ascertained by the

power-speed curve as shown in Fig. 5. 1.

Installed
power

BHP

50

40.
.000
000

500 .00010.000 20.000 50.000 100.000 dut

Fig. 5. 1 Installed power for bulk carrier, tankers and general cargo ships

Source: MAN B&W Catalogue (1992)
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5. 1. 1 Propeller Diameter & Speed

When power requirement has been found, the optimum propeller speed can be

found using the optimum propeller diameter.

Using the diagram in Fig. 5. 2 the optimum propeller diameter and speed can be

found.

BHP

30.

20.

U1

(pl5U‘C‘qcmoa

M

.000
60.
50.

000

ooeller diomet
inm

50
0
L0N

60 70 80 90
100 110 120 130 140 150 160 170 180 190 200

Propeller speed
h min

Fig. 5. 2 Engine power, propeller diameter and propeller speed for four

bladed propellers

Source: MAN B&W Catalogue (1993)
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5. 2 Engine Selection

Once the optimum power/speed combination is established, an engine can be

selected which will develop the required horse power at the appropriate rate. It is

assumed that the ship under consideration is one which is expected to operate the

majority of its time at less than full load.

The main engine selection procedure is to start by finding the relevant engine

types and sizes in a certain engine speed range, for example between 100 and 140

r/min.

In Fig. 5. 3 the curves I, II, III are called 0.-curves ( as per MAN B&W), and can

be used to compare different engine alternatives at varying propeller speeds. It has

been seen that, whenever increasing the propeller speed by choosing a smaller

diameter i. e. by moving the propeller curve to the right - will decrease the propeller

efficiency. However, such a speed increase may make it possible to choose a smaller

cylinder diameter and a less expensive engine. The final choice may then depend on

a number of factors, such as maximum permissible propeller diameter, the engine

room layout, operating costs and vibration aspects.

The increase in power requirement with increasing propeller speed can be

illustrated by the so-called a-curves. This curve is often called the “equal ship speed

curve,” and the correlation can be described as follows:

P =Pref " (H/nut)“

n, , ,-: reference propeller speed

n : selected propeller speed

P” f 2 power at reference propeller speed ( n,, f)

P : necessary power at propeller speed 11

For general cargo, bulk carriers and tanker, the following data may be applied :

a = 0.15 for a ship ofup to 10,000 dwt

0. = 0.20 for a ship from 10,000 to 30,000 dwt

or= 0.25 for a ship of more than 30,000 dwt
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.. 12.000

The a.-curve can be used to compare different engine altematives at varying

propeller speeds.

lfiflw
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Q shlD
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4flO0

60 70 80 90 120 130 140 150
Propeller

spec
r/min

n ref.

Fig. 5. 3 Engine choice for a 46,800 dwt M. Bulk Carrier with 12,100bhp

at 100 rpm

Source: MAN B&W Catalogue (1992)

5. 3 Fuel Saving

Fuel cost is an important parameter of the daily operative costs. Hence the

possibilities of utilising high efficiency turbochargers for reducing the SFOC have
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therefore been kept as the basic version, having the conventional turbochargers as an

option.

Higher efficiency tmbochargers have been introduced, and the fuel saving

potential in using the excess efficiency in a turbo compound system ( TCS ) is well

experienced.

It has already been verified that an increase of the thermal efficiency

corresponding to a 2 g/BI-IPh reduction of the SFOC at all loads can be obtained by

applying high efficiency turbochargers and optimising the fuel injection system.

The large-bore low speed engines are therefore now available in three categories

with respect to the SFOC, is shown in Fig. 5. 4

- With conventional turbochargers

- With high efficiency turbochargers

- With high efficiency turbochargers and TCS.

. (A)with conventional turbocharger

o (B)With high efficiency turbocharger

0 (C) With TCS

ASFOC
9/Bflph

40% 50% 602 70% 802 90% 100% 1107

Power

Fig. 5. 4 Part load SFOC curves for the available engine versions

Source: MAN B&W Catalogue (1994)
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For the turbocompound system, the power produced by the power turbine is fed

back to the crankshaft through a reduction gear thereby allowing a decrease in the

power produced by the engine itself and thus a reduction of the specific fuel oil

consumption referred to the total power output of the main engine.

The SFOC curves in Fig. 5. 4 are based on the reference ambient conditions

stated in ISO 3046/1-1986:

1,000 mbar ambient air pressure

25° C ambient air temperature

25° C scavenge air coolant temperature

and is related to a fuel oil with a lower calorific value of 42,707 kJ/kg. (10,200

kcal/kg)

For lower calorific values and for ambient conditions that are different fiom the

ISO reference conditions, the SFOC will be adjusted according to the conversion

factors in the below table provided that the maximum combustion pressure ( Pm ) is

adjusted to the nominal value.

Table 5.] Conversion factors for adjustment of SFOC

temp.

temperature

pressure

5. 3. 1 Optimising Point

The optimising point is the rating at which the turbocharger is matched, and at

which the engine timing and compression ratio are adjusted.
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As per the power optimising method applied by MAN B&W the optimising point

is placed on propeller curve ( linel) in Fig. 5. 5 and the optimised power can be from

85 to 100% of specified maximum continuous rating ( MCR ) power, when

turbocharger and engine timing are taken into consideration. In the case of optimised

power between 95.3% and 100% of MCR's power, overload nmning will be

possible.

The optimising point should be placed inside the engine layout diagram. Only in

special cases, the optimised point can be placed outside the layout diagram, but only

by exceeding constant speed line and of course, only provided that the optimising

point is located inside the layout diagram and provided that the MCR power is not

higher than the nominal maximum continuous rating power.

Fig. 5. 5 shows the point ‘A’ is a 100% speed and power reference point of the

load diagram, and is defined as the point on the propeller curve (line) through the

optimising point ‘O’ having the specified MCR power. Point M is normally equal to

point A but point M may in special cases, for example if a shafi generator is installed,

can be placed to the right of point A on line 7.

Engine chaff hour. 2 of A

H0
16
«co

66-8%l8$3d8fl8&

Fig. 5. 5 Engine load diagram

Source: MAN B&W Catalogue (1996)



5. 3. 2 Fuel Consumption at an Arbltrary Load

When the engine has been optimised in point 0 in Fig. 5. 6 the SFOC in an

arbitrary point S,, S2,or S, can be estimated based on the SFOC in the points ‘I’ and
‘2’.

Then the SFOC for point S, can be calculated as an interpolation between the

SFOC in points “1” and for point S3as an extrapolation.

The SFOC curve through points S2, to the left of point 1, is symmetrical about

point 1 i.e. at speeds lower than that of point 1, the SFOC will also increase.

of A(M)

110'/.

-700%

80%

70%

307. 90:: 1oo'/. 1 107
Spaod. Z 07 A

Fig. 5. 6 Specific fuel oil consumption at an Arbitrary Load

Source: MAN B&W Catalogue (1995)



5. 4 Engine Room Optimisation

The engine room packages have evolved from all renowned engine builders and

are of well designed. The packages could include all or some of the following units:

0 Main engine

Diesel generating sets

Controllable pitch propeller

Power Take Off ( PTO )

Remote control system

Other auxiliary machinery/equipment

5. 4. 1 Electricity Production Units

The electricity is produced on board ship by using the following types of

machinery, either running alone or in parallel.

0 Diesel generating sets

0 Steam driven turbogenerators

0 Main engine driven generators

0 Emergency diesel generating sets

The selection of above units should be based on an economic evaluation of capital

cost, operating costs, and the demand of man-hours for maintenance.

5. 4. 2 Power Take Off (PTO)

Usually a generator driven by a gear box fitted on the front of the main engine

coupled to a power take off (PTO), can produce electricity based on the main

engine’s low SFOC and using of low quality fuel oil. A space saving method is to

place the generator adjacent to the engine e.g. integral power PTO system. ( See

Appendix I).
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5. 4. 3 Controllable Pltcli Propeller

Controllable pitch propeller equipments are now handling the engines output

from 340 bhp to more than 20,000 bhp, and for propellers up to 7 m in diameter.

(See Appendix 2).

5. 4. 4 Optimising the Complete Propulsion Plant

The design of the propeller, giving regard to the main variables such as diameter,

speed, area ratio etc., is determined by the requirements for maximum efficiency and

minimum vibrations and noise levels.

In the case of two-stroke direct drive engines having a flexible layout diagram,

the chosen diameter should be as large as the hull can accommodate, allowing the

propeller speed to be selected according to optimum efficiency. The optimum

propeller speed corresponding to the chosen diameter can be found from Fig. 5. 2.

5. 4. 5 Auxiliary Units

The trend has been towards modulisation of many shipboard installations, as it

has been proved that the preparation of individual auxiliary machinery installations

often has often been pai1icularlytime- consuming for the shipyard.

Therefore, on the basis of experience in combining selected optimum components

for auxiliary machinery, almost all engine-makers have designed units for:

0 Fuel oil supply unit, which consists of two F.O. supply pumps, two F.O.

circulating pumps, two steam preheaters, automatic full flow filter, alarm

sensors and control box.

0 Crankshaft lubricating oil unit, which consists of magnetic filter, drain tank,

two circulating pumps, duplex full flow filter, CJS fine filter with pump in

by-pass, alarm sensors and confiol box.



0 Stuffing box drain oil filtration and Piston rod unit. e. g. One drain tank,

circulating tank with steam heating coil, circulating pump. CJC fine filter,

and pertaining alarm sensors.

o Other auxiliary equipment, such as pumps, coolers, filters for fuel and

lubricating oil system; pumps and coolers for cooling water; starting air

receiver and compressors; exhaust gas silencer etc.



CHAPTER 6

Operation Behaviours

In the case of a new installation of propulsion power for a ship, attention should

be given into the operation behaviours of the engine, which include the vibration

characteristics, environmental aspects and exhaust gas emission. The outline

measures that can also be taken to counteract any adverse influences arising in the

ship.

In the last two decades, there have been drastic changes in the uaditions of the

shipping and shipbuilding industries. From the statistics it is clear that, the number

of 4 and 5-cylinder engines has increased over the years at the expenses of 7 and 8

cylinder engines.

From the technical point of view, two-stroke low speed diesel engines with a low

number of cylinders have become very popular for the propulsion of ocean-going

ships, mainly on account of their low installation and operating costs.

The concern about vibration and noise on board ships most often stems fiom a

wish to provide comfortable conditions. However, if not adequately dealt with

vibrations can reach levels, which threaten the safe operation of mechanical and

electronic components and even the stability of major parts of the ship's steel

structures.
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6. l_Ylhntlnn

The vibration characteristics of marine diesels, especially two-stroke low speed

engines, which may influence the hull of the ship can be split up into four categories.

(1) External unbalanced moments; (2) Guide force moments; (3) Axial vibration in

the shaft system; and (4) Torsional vibration in the shaft system. The influence of

the excitation sources can be minimised, if necessary measures are considered from

the early stage.6.1.1
Piston, piston rod, and crosshead reciprocate, hence accelerate continuously in

the vertical direction; the connecting rod reciprocates at its upper end, and rotates at

its lower end. The resulting inertia forces create unbalanced external moments.

Among these moments, only the 1st order and 2nd order need to be considered

and only for the engines with a low number of cylinders.

The natural frequency of the hull depends on the hull’s rigidity and distribution

of masses, whereas the vibration level at resonance depends mainly on the magnitude

of the external moment and the engine's position in relation to the vibration nodes of

the ship.l
The 1st order moments occur both in the horizontal and vertical direction of the

engine bedplate. These moments usually may vary both in magnitude and phase the

z-axis (Longitudinal axis), often having a maximum in the middle part of the engine.

For the engines with five cylinders or more, effect of this moment is insignificant to

the ship. Resonance with a moment(lst order) may occur for hull vibrations with

two or three nodes. Normally, four-cylinder large-bore engines are fitted with
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adequate countcrweights on the crankshafi, as shown in Fig. 6. 1. These

counterweights can reduce the vertical moment to an insignificant value.

Seen from or?

Re5gll7..'*.g F51 20"‘ an
¢ompe."SC'\|"§ :":e

Centrirugcz :O’C€
rotating with
the cronksh3*?

Fig. 6. 1 1st order moment compensator

Source: MAN B&W Catalogue (1993)2
The vertical force produced by gas-pressure on the piston crown is, of course,

transmitted to the crankshaft by the piston rod, crosshead, and connected rod.

Because this last component transmits a force at a cyclically varying angle to the

vertical, it produces a horizontal component of force on crosshead bearings and

crankshafi bearings. This force produces cylinder-to-cylinder moments in the

manner of the inertia forces. The result may be a transverse bending vibration of the
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engine. Resonance with 2nd order moment may occur at hull vibrations with more

than three nodes.

Precautions need only to be considered for engines with six or less number of

cylinders. This moment can be minimised by fitting moment compensators.

3. Eo.w.:LRelated.llnh.a1an.ce

If there is a possibility of risk from excitement of 1st order external moment, the

concept Power Related Unbalance (PRU) can be used as a guidance to evaluate it.

External momentPRU=as Nm/kW
Engine power

By using the PRU - value, it is possible to give an estimate of the risk of hull

vibration for a given engine. It is shown in Fig. 6. 2. A general study by a

manufacturer predicts that an engine with PRU value more than 120 Nm/kW is likely

to be fitted with a compensator to eliminate probable adverse consequences of

vibrations. As is evident in the figure 6. 2, large bore low speed engines with

configuration of up to six units have PRU value more than 120 Nm/kW, hence they

are fitted with compensators.

6-1-2LM2mm

The guide force components together with their reactions at the crankshafi

bearings produce the following two types of moments:

I) Moments about the longitudinal axis

2) Moment about a vertical axis
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Fig. 6. 2 Power Related Unbalance (PRU)

Source: MAN B&W Catalogue (1993)

These moments are equal to the corresponding harmonic components of the

engine output torque and tend to rock the engine athwartship. Forward and aft ends

of the engine top are vibrating in phase as under these conditions the guide force

components of all cylinders are in phase.
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From experience it is revealed that mainly the 4 and 5-cylinder engine may suffer

from vibration problem excited by this lcindof moment.

2. Moments about 3 Vertical Axis

These moments occur at all minor orders. These moments, which will twist the

cylinder sections with respect to each other producing a vibratory mode, are strongly

dependent upon cylinder number and firing order.

From experience it is revealed that the 8 and 10-cylinder engines may suffer fi'om

vibration problems due to vertical axis moments.

If this form of engine vibration (Longitudinal or vertical axis moment) becomes

excessive, it is suggested as a criterion that for a large two-stroke engines running at

about 100 to 120 RPM, the amplitude at the engine ends should not significantly

exceed :h0-5mm. For a 4—strokemedium speed engine these amplitudes should not

exceed :r:0-1mm.

6.1.3 Inrsinnallihratinns

These vibration stresses arise fi'om the crankshaft twisting and untwisting,

winding up rhythmically first in one direction and then in other, due to vibration of

the whole shafiing system. The vibration stress in a shaft depends also on the

number of cylinders, cycles of operation of the engines, arrangement of the

crankarms, and magnitude of individual torsional forces. In general, torsional

vibration stress will decrease as the order number increases. The torsional vibration

conditions may require the for following installations.

-Plants with controllable pitch propeller

-Plants with unusual shafting layout and for special requirements

-Plants with 8, 10, 11 or 12 cylinders engines

Engines with 6 or less cylinder numbers require special attention. Due to heavy

excitation, the natural fiequency of the system with on-node vibration should be



situated away from the nonnal operating speed range, to avoid its effect. This can be

minimised either by changing the masses or the stiffiiess of the system, so as to give

a much higher, or much lower, natural frequency, called undercritical or overcritical

nmning, respectively.6.l.4
The axial vibration arises fi'om the crankshafi being alternately compressed and

stretched along its axis in a concertina-like manner. This form of vibration is not so

commonly encountered as torsional vibration.

Generally, only zero-node axial vibrations are of interest. Thus the effects of the

additional bending stresses in the crankshafl and possible vibrations of the ship’s

structure due to the reaction force in the thrust bearing are to be considered.

Normally, an axial damper is used to the engines when necessary, to minimise

the effects of the axial vibrations.

6. 2 Environmental Aspects

Nowadays, more emphasis is being given to environmental issues. Noise is an

undesirable sound. Excessive noise is considered as a form of pollution that, in the

long nm, may cause permanently reduced hearing. As a consequence, authorities

now demand that noise levels are kept below certain specified limits. The greater

demand for noise limitations in the maritime area has of course, prompted wide

interest. Consequently, greater demands are now made on the engine designer/

manufacturers to provide more detailed and precise information regarding the various

types of noise emission fi'om the engine.

The sensitivity of the human ear is closely related to frequency (Hz = vibrations

per second). Sensitivity is low at low frequencies, for which reason it is oflen

necessary to take measurements at different frequency ranges. Normally, these



measurements are made in the so - called Octave bands frequencies, which are named

according to their geometrical average fiequencies 31.5, 63, 125, 250 etc. Up to

16,000 Hz, are determined by ISO.

On the basis of theoretical calculations and actual measurements it was introduced

computerised application system to provide data regarding the sound levels of the

following engine-related noise emissions, which are typical for two-stroke low speed

engines.

1. Exhaust gas noise

2. Airbome noise

3. Structure - bome noise excitation.6-2-1
The exhaust stack is perhaps the strongest source of engine noise, and must be

provided with a muffler within the exhaust line. Ofien the waste-heat heat exchanger

is sufficient for this duty. Two-stroke slow speed engines are normally equipped

with a large gas-receiver located between the cylinder's gas outlets and the

turbocharger.

Due to its proper location, this gas-receiver also functions as a kind of exhaust

gas silencer, particularly dampening the low frequency gas pu1sation’s that are

inherent to the exhaust gas from the cylinders.

The noise level is based on an actual distance of 15 meues from the top of the

funnel to the bridge wing. The curve sheet (Fig. 6. 3 ) shows that the noise level in

the octave band frequencies among 125 and 1,000 Hz is decisive for the total noise

level of NR8] and that the A- weighted sound level corresponds to 85 dB(A). To

meet the maximum permissible noise level of 65 dB(A) on the bridge wing, a

relatively volumes 25 dB(A) exhaust gas silencer of the absorption type will,

normally, be adequate, as this darnpens the dominating frequency ranges.
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6.2.2
Within the machinery space, the turbocharger is the strongest source of airborne

noise, with the noise being radiated from the turbocharger surfaces, fiom the surfaces

of adjoining intake and exhaust ducting, and from the air intake opening. To combat

this, engine builders insulate the surfaces, and fit sound baffles around intake

openings. The engine's average noise levels is measured in accordance with

International Council on Combustion Engines (CIMAC's) recommendations for

measurements of the overall noise for reciprocating engines.

The calculated average sound level corresponds to the average value of sound

intensity measured at different points around the engine. Measuring points are

located at two or three metres height levels around the engine, and at a distance of

approximately 1 metre fi'om the engine’s surface.6.2.3
The vibration energy, t:ransferred between the contract surfaces of the engine

bedplate and the ships are largely amplitude-dependent, for which reason the level of

velocity can normally, be employed as a unit of measurement. An example of

sources that can generate vibrational energy is the pulses caused by the engine’s

combustion process and the reciprocating movement of the pistons.

Similar to the sound pressure level, the level of velocity is best expressed in dB:

Velocity level (dB),

1...,= 2oxLog,., (v/v.,); re“, = 5x1o"‘ mls.

The reference velocity value (rem) used corresponds to the intensity and sound

pressure reference value.(This value is ofien used 109 m/s).

The velocity level of a two-stroke engine is, on average, approximately 15-20 dB

lower than that of a medium speed four-stroke engine that, therefore, may sometimes

have special vibration isolators built-in between the engine feet and the tank top of
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the ship. The achieved structure-borne sound insulation is of some 15-20 dB, which

means that the final result corresponds to the level of two-stroke engines mounted on

cast iron or epoxy chocks.
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Fig. 6. 3 ISO’s NR curves and noise levels for a low speed diesel engine

Source: MAN B&W Catalogue (1995)
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6.3
Environmental considerations will become an increasingly important factor in

the future when planning marine propulsion and electrical power generating systems.

New enviromnental legislation will impose limits to harmful exhaust gas emissions.

Such requirements may differ from area to area.

Sulphur Oxide (S0,) and Nitrogen Oxides (NOQ are the gases from marine

diesel engines that might primarily be affected in the future through various

regulations. The Marine Environment Protection Committee ( MEPC ) of the

International Maritime Organisation (IMO) has set a target to reduce SO,‘ emissions

by 50% and NOX emissions by 30% by the year 2000. A maximum fuel bunker

sulphur content of 1.5% has been proposed.

J
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Dilvl Ian ala

Fig. 6. 4 Schematic layout of SCR system for a low speed diesel engine

Source: MAN B&W Catalogue (1993)
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Two-stroke low speed diesel engine normally has a very clean combustion,

meeting the soot and particle emission limits but, as a consequence of its high

thermal efficiency, the emission of N0, is comparatively high, SO, emission can be

controlled either by lowering the sulphur content in the fuel oil, or by employing

exhaust gas desulphurization techniques.

N0, control will, dependent on the possible limits, require some additional

equipment. Although water emulsification of fuel oil will reduce NOXby up to 30%,

a simple new equipment to control the emission of NOX by means of a technique

using selective catalytic reduction (SCR) by ammonia as shown in Fig. 6.4. Such

equipment makes it possible to comply with virtually potential legislative NO,‘

emission limits.



CHAPTER 7

Summary and Conclusions

In the past twenty years the diesel engine has captured a large market share in the

propulsion power of merchant ships. It can be said with a degree of certainty, that

the diesel engine will continue to remain the first choice as propulsion for the

merchant fleet in the foreseeable future.

Hundreds of developments of low and medium speed diesel engines have been

made by the engine makers to improve the thermal efficiency and reduce the specific

fuel oil consumption (SFOC). Much improvement has been done by utilising waste

heat for heating and electrical generation.

It has already been achieved, and further development will continue for

optimising the total economy, also focusing on achieving even better reliability.

The selection of marine diesel engine is a system engineering. Although the

criteria in simplification, capital cost, operating cost and propeller speed etc. must be

given the priorities, the other factors also have a substantial influence on overall

economy.

From the technical study and economical comparison of the slow and medium

speed engines in Chapter 4, the slow speed engine compared with medium speed

diesel engine is more economical in terms of fuel economy and maintenance

expenses, although the medium speed engines are of lower capital cost.

For ships with sufficient space for engine room, the low speed engine provides

the simplest possible propulsion arrangement without gearing arrangements and less

cylinder numbers, than medium speed engine delivering same power.



The main advantages of low speed diesel engines are reliability, simplicity and

durability. ‘That is why, whenever technically and economically possible, a low

speed engine is, and will always be, the first choice for a ship.

The medium speed diesel engine, on the other hand, has clear advantages for

applications such as multi-engine propulsion system with operational flexibility, and

where low-head room is required.

The main criterion such as reliability, durability and safety at sea have been

improved greatly in medium speed engines, since the major components have been

modified and the time between overhaul (TBO) has been lengthened.

The economical comparison between the four different alternatives in Chapter 4

shows that, the MAN B&W 5S60MC two stroke slow speed engine is the most

suitable engine for the selected Bulk Carrier, because of high degree of reliability,

low capital cost and low maintenance cost. On the other hand SULZER SRTA 62U

slow speed engine has an advantage of fuel economy over the engine MAN B&W

5S60MC. Fig. 4. 1 shows the initial capital investment of alternative ‘B’ is lower

than alternative ‘A’ and ‘C’, but higher than alternative ‘D’. Alternative ‘C’ has a

higher capital invesunent, fuel consumption cost and more number of units i.e.

higher maintenance cost. The alternative ‘D’ requires the lowest capital invesunent

but has highest number of units i.e. higher maintenance cost.

Besides the consideration of the economic aspects, the other selection factors,

such as speed power curve, required engine power, propeller revolutions etc. are also

important.

Environmental consideration are gaining importance in the future. The two

stroke low speed engine normally has very clean combustion meeting the soot and

particle emission limits but, as a consequence of its high thermal efficiency, the

emission of NOX is comparatively high. The emission of NOX is controlled by

means of a technique using Selective Catalytic Reduction (SCR) by ammonia.

The two stroke slow speed diesel engine is the most well established marine

propulsion engine and the development in terms of output power has been vigorous.
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So, the selection of slow speed diesel engine for marine propulsion power is the best

choice.
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Several Standard PTO Systems
Appendix 1
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Fig. 5. 7 Types of PTO
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Turbo compound system: TCSIPTI

BW L60/R/TCS 450

i
Nominal output in KWof power turbine

Turbo compound system

Renk

Engine type on which it is applied

Make: MAN B&W

Power take oft: PTO

BW iii L60/RCF 1100-60

50: 50 Hz
60: 60 Hz

kWon generator tenninals

0 0 RCF: Renk constant frequency unit
GCH:Step-up gear with constant ratio

E
Engine type on which it is applied

Positioning of PTO: See Fig. 4.01

Make: MAN B&W

Power take off/power take-in: PTOIPTI

BW iii L60/RCF 700-60/TCS 450

Nominal output in kW of power turbine

Turbo compound system

50: 50 Hz
60: 60 Hz

kWon generator tenninals

FICF: Renk constant frequency unit
GCR: Step-up gear with constant ratio

Engine type on which it is applied

Positioning of PTO: See Fig. 4.01

Make: MAN B&W

ii?
Fig. 5. 8 Designation of TCS/PTI, PTO and PTOIPTI
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Appendix 3

The new combustion chamber and cylinder liner

Nirnonic valve

cylinder
COME!

Changed contact
sudace

Shoner and
thicker
cylinder liner

Changed cooling
water now

Fig. 2. 10 Thenew combustion chamber design



TABLE 7: CAPITAL aecoveav FACTOR

IIAI I
1 1.010000
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