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ESTIMATES OF LIFE SPAN OF

SOLUTIONS OF A CAUCHY PROBLEM

Joon Hyuk Kang

Department of Mathematics
Andrews University

Berrien Springs, MI, 49104, USA

Abstract: In this paper we get estimates of life span of a Cauchy problem

ut(x, t) = ∆u(x, t) + u(x, t)p, x ∈ Rn, t > 0,
u(x, 0) = λφ(x), x ∈ Rn

in terms of the positive constant parameter λ when φ(x) ∈ Lq is a nonnegative bounded

continuous function in Rn but not identically zero, where q is large enough. The technique

we used in this paper is the Comparison Principle.

1. Introduction

In this paper we consider the Cauchy problem

ut(x, t) = ∆u(x, t) + u(x, t)p, x ∈ Rn, t > 0,
u(x, 0) = λφ(x), x ∈ Rn,

(1)

where ∆ =
∑n

i=1(
∂2

∂x2
i

) is the Laplace operator, p > 1, φ ∈ Lq is a nonnegative

bounded continuous function in Rn but not identically zero, where q is large
enough, and λ is a positive constant parameter. It is well known that there
exists an Tλ > 0 such that (1) possesses a unique classical solution u(x, t, λ)
in [0, Tλ), i.e., u(x, t, λ) ∈ C2,1(Rn × (0, Tλ))

⋂
C(Rn × [0, Tλ)) is bounded in

[0, T ′] for any T ′ < Tλ and ‖ u(·, t, λ) ‖L∞→ ∞ when t → Tλ if Tλ is finite. We
call Tλ the life span of the solution u(x, t, λ) and say that u(x, t, λ) blows up in
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finite time if Tλ < ∞.
Since Fujita’s classic work [1], (1) has been studied extensively in a lot

of directions. For stability and instability results, the interested readers are
refered to [2] for a survey and some new developments; You can also refer to
[4] for some other related results. Motivated by a paper of Lee and Ni [5], we
are concerned with asymptotic behavior of the life span Tλ as λ → ∞ or λ → 0.
The following was proved in [5]:

Theorem 1.1. (1) Tλ ∼ λ−(p−1) as λ → ∞; i.e., there exist positive

constants C1 and C2 such that C1λ
−(p−1) ≤ Tλ ≤ C2λ

−(p−1) for large λ.

(2) If lim inf |x|→∞ φ(x) > 0, then Tλ < ∞ for any λ > 0 and Tλ ∼ λ−(p−1)

as λ → 0.

In [3] they improved the 1.1. The following was the result.

Theorem 1.2. (1) limλ→∞ Tλλ
p−1 = 1

p−1 ‖ φ ‖
−(p−1)
L∞ .

(2) If lim|x|→∞ φ(x) = φ∞ > 0, then

lim
λ→0

Tλλ
p−1 =

1

p− 1
φ−(p−1)
∞ .

In this research, we prove other estimates of the life span of (1) when we
assumed φ ∈ Lq for large enough q using the Comparison Principle.

2. Main Results

Theorem 2.1. (1) Tλ ≥ 1
2p−1(p−1)

λ1−p ‖ φ ‖
−(p−1)
Lq for some large enough

q. So, limλ→0 Tλ = ∞.

(2) Tλ ≤ 1
2(p−1)λ

1−p ‖ φ ‖
−(p−1)
Lr for some large enough r. So, limλ→∞ Tλ =

0.

Proof. (1) Let vλ(x, t) =
λ−1

2 u(λ
1−p

2 x, λ1−pt). Then vλ satisfies

∂vλ(x,t)
∂t

= λ−1

2 λ1−p ∂u(z,τ)
∂τ

= λ−p

2
∂u(z,τ)

∂τ

= λ−p

2 [∆zu(z, τ) + up(z, τ)]

= λ−p

2 ∆zu(z, τ) +
λ−p

2 up(z, τ)

= λ−1

2 λ1−p∆zu(z, τ) +
λ−p

2 up(z, τ)

= ∆vλ(x, t) + 2p−1v
p
λ(x, t), x ∈ Rn × (0, T̃λ),

vλ(x, 0) = 1
2φ(λ

1−p

2 x), x ∈ Rn,
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where T̃λ = λp−1Tλ is the life span of vλ, z = λ
1−p

2 x and τ = λ1−pt. Since
lims→∞ ‖ φ ‖Ls=‖ φ ‖L∞ , there is a large enough q such that
1
2 ‖ φ ‖L∞<‖ φ ‖Lq . Then we may consider the following ordinary differential
equation.

dv(t)
dt

= 2p−1v(t)p, t > 0,
v(0) =‖ φ ‖Lq .

The ordinary differential equation implies that

1

vp
dv = 2p−1dt,

so ∫
v−pdv =

∫
2p−1dt+C,

so
1

1− p
v1−p = 2p−1t+ C.

But, by applying the initial condition v(0) =‖ φ ‖Lq , we have

C =
1

1− p
‖ φ ‖1−p

Lq ,

and so
1

1− p
v1−p = 2p−1t+

1

1− p
‖ φ ‖1−p

Lq .

Therefore,

vp−1 =
1

2p−1(1− p)t+ ‖ φ ‖1−p
Lq

,

and so the life span of v is T = 1
2p−1(p−1)

‖ φ ‖
−(p−1)
Lq .

By the Comparison Principle(see [6]), we have

T̃λ = λp−1Tλ ≥
1

2p−1(p − 1)
‖ φ ‖

−(p−1)
Lq ,

and so we conclude (1).
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(2) Let vλ(x, t) = 2λ−1u(λ
1−p

2 x, λ1−pt). Then vλ satisfies

∂vλ(x,t)
∂t

= 2λ−1λ1−p ∂u(z,τ)
∂τ

= 2λ−p ∂u(z,τ)
∂τ

= 2λ−p[∆zu(z, τ) + up(z, τ)]
= 2λ−p∆zu(z, τ) + 2λ−pup(z, τ)
= 2λ−1λ1−p∆zu(z, τ) +

2
2pu

p(z, τ)

= 2λ−1∆u(λ
1−p

2 x, λ1−pt) + 1
2p−1 v

p
λ(x, t)

= ∆vλ(x, t) +
1

2p−1 vλ(x, t), x ∈ Rn × (0, T̃λ),

vλ(x, 0) = 2φ(λ
1−p

2 x), x ∈ Rn,

where T̃λ = λp−1Tλ is the life span of vλ, z = λ
1−p

2 x and τ = λ1−pt. Since
lims→∞ ‖ φ ‖Ls=‖ φ ‖L∞ , there is a large enough r such that

2 ‖ φ ‖L∞>‖ φ ‖Lr .

Then we may consider the following ordinary differential equation.

dv(t)
dt

= 1
2p−1 v(t)

p, t > 0,
v(0) =‖ φ ‖Lr .

The ordinary differential equation implies that

1

vp
dv =

1

2p−1
dt,

so ∫
1

v−p
dv =

∫
1

2p−1
dt+ C,

so
1

1− p
v1−p =

1

2p−1
t+ C.

But, by applying the initial condition v(0) =‖ φ ‖Lr , we have

C =
1

1− p
‖ φ ‖1−p

Lr ,

and so
1

1− p
v1−p =

1

2p−1
t+

1

1− p
‖ φ ‖1−p

Lr .

Therefore,

v1−p =
1− p

2p−1
t+ ‖ φ ‖1−p

Lr ,
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so

vp−1 =
1

1−p
2p−1 t+ ‖ φ ‖1−p

Lr

,

and so the life span of v is T = 2p−1

p−1 ‖ φ ‖
−(p−1)
Lr .

By the Comparison Principle(see [6]), we have

T̃λ = λp−1Tλ ≤
2p−1

p− 1
‖ φ ‖

−(p−1)
Lr ,

and so we conclude (2).
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