Andrews University Digital Commons @ Andrews University

Faculty Publications

2017

Estimates of Life Span of Solutions of a Cauchy Problem

Joon Hyuk Kang Andrews University, kang@andrews.edu

Follow this and additional works at: https://digitalcommons.andrews.edu/pubs Part of the <u>Numerical Analysis and Computation Commons</u>

Recommended Citation

Hyuk Kang, Joon, "Estimates of Life Span of Solutions of a Cauchy Problem" (2017). *Faculty Publications*. 707. https://digitalcommons.andrews.edu/pubs/707

This Article is brought to you for free and open access by Digital Commons @ Andrews University. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Digital Commons @ Andrews University. For more information, please contact repository@andrews.edu.

International Journal of Pure and Applied Mathematics

Volume 116 No. 3 2017, 637-641 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v116i3.9

ESTIMATES OF LIFE SPAN OF SOLUTIONS OF A CAUCHY PROBLEM

Joon Hyuk Kang

Department of Mathematics Andrews University Berrien Springs, MI, 49104, USA

Abstract: In this paper we get estimates of life span of a Cauchy problem $u_t(x,t) = \Delta u(x,t) + u(x,t)^p, \quad x \in \mathbb{R}^n, t > 0,$ $u(x,0) = \lambda \phi(x), \quad x \in \mathbb{R}^n$

in terms of the positive constant parameter λ when $\phi(x) \in L^q$ is a nonnegative bounded continuous function in \mathbb{R}^n but not identically zero, where q is large enough. The technique we used in this paper is the Comparison Principle.

1. Introduction

In this paper we consider the Cauchy problem

$$u_t(x,t) = \Delta u(x,t) + u(x,t)^p, \quad x \in \mathbb{R}^n, t > 0, u(x,0) = \lambda \phi(x), \quad x \in \mathbb{R}^n,$$
(1)

where $\Delta = \sum_{i=1}^{n} \left(\frac{\partial^2}{\partial x_i^2}\right)$ is the Laplace operator, $p > 1, \phi \in L^q$ is a nonnegative bounded continuous function in \mathbb{R}^n but not identically zero, where q is large enough, and λ is a positive constant parameter. It is well known that there exists an $T_{\lambda} > 0$ such that (1) possesses a unique classical solution $u(x, t, \lambda)$ in $[0, T_{\lambda})$, i.e., $u(x, t, \lambda) \in C^{2,1}(\mathbb{R}^n \times (0, T_{\lambda})) \bigcap C(\mathbb{R}^n \times [0, T_{\lambda}))$ is bounded in [0, T'] for any $T' < T_{\lambda}$ and $|| u(\cdot, t, \lambda) ||_{L^{\infty}} \to \infty$ when $t \to T_{\lambda}$ if T_{λ} is finite. We call T_{λ} the life span of the solution $u(x, t, \lambda)$ and say that $u(x, t, \lambda)$ blows up in

Received:	April 5, 2017
Revised:	September 13, 2017
Published:	October 25, 2017

© 2017 Academic Publications, Ltd. url: www.acadpubl.eu finite time if $T_{\lambda} < \infty$.

Since Fujita's classic work [1], (1) has been studied extensively in a lot of directions. For stability and instability results, the interested readers are referred to [2] for a survey and some new developments; You can also refer to [4] for some other related results. Motivated by a paper of Lee and Ni [5], we are concerned with asymptotic behavior of the life span T_{λ} as $\lambda \to \infty$ or $\lambda \to 0$. The following was proved in [5]:

Theorem 1.1. (1) $T_{\lambda} \sim \lambda^{-(p-1)}$ as $\lambda \to \infty$; i.e., there exist positive constants C_1 and C_2 such that $C_1 \lambda^{-(p-1)} \leq T_{\lambda} \leq C_2 \lambda^{-(p-1)}$ for large λ .

(2) If $\liminf_{|x|\to\infty} \phi(x) > 0$, then $T_{\lambda} < \infty$ for any $\lambda > 0$ and $T_{\lambda} \sim \lambda^{-(p-1)}$ as $\lambda \to 0$.

In [3] they improved the 1.1. The following was the result.

Theorem 1.2. (1)
$$\lim_{\lambda\to\infty} T_{\lambda}\lambda^{p-1} = \frac{1}{p-1} \parallel \phi \parallel_{L^{\infty}}^{-(p-1)}$$

(2) If $\lim_{|x|\to\infty} \phi(x) = \phi_{\infty} > 0$, then

$$\lim_{\lambda \to 0} T_{\lambda} \lambda^{p-1} = \frac{1}{p-1} \phi_{\infty}^{-(p-1)}.$$

In this research, we prove other estimates of the life span of (1) when we assumed $\phi \in L^q$ for large enough q using the Comparison Principle.

2. Main Results

Theorem 2.1. (1) $T_{\lambda} \geq \frac{1}{2^{p-1}(p-1)} \lambda^{1-p} \parallel \phi \parallel_{L^q}^{-(p-1)}$ for some large enough q. So, $\lim_{\lambda \to 0} T_{\lambda} = \infty$.

(2) $T_{\lambda} \leq \frac{1}{2(p-1)} \lambda^{1-p} \parallel \phi \parallel_{L^r}^{-(p-1)}$ for some large enough r. So, $\lim_{\lambda \to \infty} T_{\lambda} = 0$.

Proof. (1) Let $v_{\lambda}(x,t) = \frac{\lambda^{-1}}{2}u(\lambda^{\frac{1-p}{2}}x,\lambda^{1-p}t)$. Then v_{λ} satisfies

$$\frac{\partial v_{\lambda}(x,t)}{\partial t} = \frac{\lambda^{-1}}{2} \lambda^{1-p} \frac{\partial u(z,\tau)}{\partial \tau}
= \frac{\lambda^{-p}}{2} \frac{\partial u(z,\tau)}{\partial \tau}
= \frac{\lambda^{-p}}{2} [\Delta_z u(z,\tau) + u^p(z,\tau)]
= \frac{\lambda^{-p}}{2} \Delta_z u(z,\tau) + \frac{\lambda^{-p}}{2} u^p(z,\tau)
= \frac{\lambda^{-1}}{2} \lambda^{1-p} \Delta_z u(z,\tau) + \frac{\lambda^{-p}}{2} u^p(z,\tau)
= \Delta v_{\lambda}(x,t) + 2^{p-1} v_{\lambda}^p(x,t), x \in \mathbb{R}^n \times (0,\tilde{T}_{\lambda}),
v_{\lambda}(x,0) = \frac{1}{2} \phi(\lambda^{\frac{1-p}{2}} x), x \in \mathbb{R}^n,$$

where $\tilde{T}_{\lambda} = \lambda^{p-1}T_{\lambda}$ is the life span of v_{λ} , $z = \lambda^{\frac{1-p}{2}}x$ and $\tau = \lambda_{1-p}t$. Since $\lim_{s\to\infty} \|\phi\|_{L^s} = \|\phi\|_{L^{\infty}}$, there is a large enough q such that $\frac{1}{2} \|\phi\|_{L^{\infty}} < \|\phi\|_{L^q}$. Then we may consider the following ordinary differential

 $\overline{2} \parallel \varphi \parallel_{L^{\infty}} < \parallel \varphi \parallel_{L^{q}}$. Then we may consider the following ordinary differential equation.

$$\frac{dv(t)}{dt} = 2^{p-1}v(t)^p, t > 0, v(0) = \|\phi\|_{L^q}.$$

The ordinary differential equation implies that

$$\frac{1}{v^p}dv = 2^{p-1}dt,$$

 \mathbf{SO}

$$\int v^{-p}dv = \int 2^{p-1}dt + C,$$

 \mathbf{SO}

$$\frac{1}{1-p}v^{1-p} = 2^{p-1}t + C.$$

But, by applying the initial condition $v(0) = \parallel \phi \parallel_{L^q}$, we have

$$C = \frac{1}{1-p} \| \phi \|_{L^q}^{1-p},$$

and so

$$\frac{1}{1-p}v^{1-p} = 2^{p-1}t + \frac{1}{1-p} \parallel \phi \parallel_{L^q}^{1-p}.$$

Therefore,

$$v^{p-1} = \frac{1}{2^{p-1}(1-p)t + \|\phi\|_{L^q}^{1-p}},$$

and so the life span of v is $T = \frac{1}{2^{p-1}(p-1)} \| \phi \|_{L^q}^{-(p-1)}$. By the Comparison Principle(see [6]), we have

$$\tilde{T}_{\lambda} = \lambda^{p-1} T_{\lambda} \ge \frac{1}{2^{p-1}(p-1)} \parallel \phi \parallel_{L^q}^{-(p-1)},$$

and so we conclude (1).

(2) Let
$$v_{\lambda}(x,t) = 2\lambda^{-1}u(\lambda^{\frac{1-p}{2}}x,\lambda^{1-p}t)$$
. Then v_{λ} satisfies

$$\frac{\partial v_{\lambda}(x,t)}{\partial t} = 2\lambda^{-1}\lambda^{1-p}\frac{\partial u(z,\tau)}{\partial \tau}$$

$$= 2\lambda^{-p}[\Delta_{z}u(z,\tau) + u^{p}(z,\tau)]$$

$$= 2\lambda^{-p}\Delta_{z}u(z,\tau) + 2\lambda^{-p}u^{p}(z,\tau)$$

$$= 2\lambda^{-1}\lambda^{1-p}\Delta_{z}u(z,\tau) + \frac{2}{2^{p}}u^{p}(z,\tau)$$

$$= 2\lambda^{-1}\Delta u(\lambda^{\frac{1-p}{2}}x,\lambda^{1-p}t) + \frac{1}{2^{p-1}}v_{\lambda}^{p}(x,t)$$

$$= \Delta v_{\lambda}(x,t) + \frac{1}{2^{p-1}}v_{\lambda}(x,t), x \in \mathbb{R}^{n} \times (0,\tilde{T}_{\lambda}),$$

$$v_{\lambda}(x,0) = 2\phi(\lambda^{\frac{1-p}{2}}x), x \in \mathbb{R}^{n},$$

where $\tilde{T}_{\lambda} = \lambda^{p-1}T_{\lambda}$ is the life span of v_{λ} , $z = \lambda^{\frac{1-p}{2}}x$ and $\tau = \lambda_{1-p}t$. Since $\lim_{s\to\infty} \|\phi\|_{L^s} = \|\phi\|_{L^{\infty}}$, there is a large enough r such that

$$2 \parallel \phi \parallel_{L^{\infty}} > \parallel \phi \parallel_{L^r}$$
.

Then we may consider the following ordinary differential equation.

$$\frac{dv(t)}{dt} = \frac{1}{2^{p-1}}v(t)^p, t > 0, v(0) = \|\phi\|_{L^r}.$$

The ordinary differential equation implies that

$$\frac{1}{v^p}dv = \frac{1}{2^{p-1}}dt,$$

 \mathbf{SO}

$$\int \frac{1}{v^{-p}} dv = \int \frac{1}{2^{p-1}} dt + C,$$

 \mathbf{SO}

$$\frac{1}{1-p}v^{1-p} = \frac{1}{2^{p-1}}t + C.$$

But, by applying the initial condition $v(0) = \parallel \phi \parallel_{L^r}$, we have

$$C = \frac{1}{1-p} \| \phi \|_{L^r}^{1-p},$$

and so

$$\frac{1}{1-p}v^{1-p} = \frac{1}{2^{p-1}}t + \frac{1}{1-p} \parallel \phi \parallel_{L^r}^{1-p}$$

Therefore,

$$v^{1-p} = \frac{1-p}{2^{p-1}}t + \parallel \phi \parallel_{L^r}^{1-p},$$

so

$$v^{p-1} = \frac{1}{\frac{1-p}{2^{p-1}}t + \parallel \phi \parallel_{L^r}^{1-p}},$$

and so the life span of v is $T = \frac{2^{p-1}}{p-1} \parallel \phi \parallel_{L^r}^{-(p-1)}$. By the Comparison Principle(see [6]), we have

$$\tilde{T}_{\lambda} = \lambda^{p-1} T_{\lambda} \le \frac{2^{p-1}}{p-1} \parallel \phi \parallel_{L^{r}}^{-(p-1)},$$

and so we conclude (2).

References

- [1] H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta_u + u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 16 (1966), 105-113.
- [2] C. Gui, W.-M. Ni, and X. Wang, On the stability and instability of positive steady states of a semilinear heat equation in \mathbb{R}^n , Comm. Pure Appl. Math., XLV (1992), 1153-1181.
- [3] C. Gui, X. Wang, Life span of solutions of the Cauchy problem for a semilinear heat equation, Journal of Differential Equations, 115 (1995), 166-172.
- [4] H. Levine, The role of critical exponents on blow-up theorems, SIAM Rev., **32** (1990), 262-288.
- [5] T.-Y. Lee and W.-M. Ni, Global existence, large time behavior and life span of solutions of a semilinear parabolic Cauchy problem, Trans. Amer. Math. Soc., 333 (1992), 365-371.
- [6] M.H. Protter, H.F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, 1967.
- [7] X. Wang, On Cauchy problems for reaction-diffusion equations, Trans. Amer. Math. Soc., **337** (1993), 549-590.