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REGION OF SMOOTH FUNCTIONS FOR POSITIVE

SOLUTIONS TO AN ELLIPTIC BIOLOGICAL MODEL

Timothy Robertson1, Joon H. Kang2 §

1,2Department of Mathematics
Andrews University

Berrien Springs, MI. 49104, USA

Abstract: The non-existence and existence of the positive solution to the generalized elliptic
model

∆u+ g(u, v) = 0 in Ω,
∆v + h(u, v) = 0 in Ω,
u = v = 0 on ∂Ω,

were investigated.

Key Words: non-existence and existence of the solution, positive solution, generalized

elliptic model

1. Introduction

The question in this paper concerns the existence of positive coexistence states
when all growth rates are nonlinear and combined, more precisely, the existence
of the positive steady state of

∆u+ g(u, v) = 0 in Ω,
∆v + h(u, v) = 0 in Ω,
u = v = 0 on ∂Ω,

where Ω is a bounded domain in RN with smooth boundary ∂Ω, and g, h ∈ C2

are such that guu < 0, hvv < 0, guv > 0, huv > 0.
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2. Preliminaries

In this section, we state some preliminary results which will be useful for our
later arguments.

Definition 2.1. (upper and lower solutions)

{

∆u+ f(x, u) = 0 in Ω,
u|∂Ω = 0

(1)

where f ∈ Cα(Ω̄×R) and Ω is a bounded domain in Rn.

(A) A function ū ∈ C2,α(Ω̄) satisfying

{

∆ū+ f(x, ū) ≤ 0 in Ω,
ū|∂Ω ≥ 0

is called an upper solution to (1).

(B) A function u ∈ C2,α(Ω̄) satisfying

{

∆u+ f(x, u) ≥ 0 in Ω,
u|∂Ω ≤ 0

is called a lower solution to (1).

Lemma 2.1. Let f(x, ξ) ∈ Cα(Ω̄ × R) and let ū, u ∈ C2,α(Ω̄) be respec-
tively, upper and lower solutions to (1) which satisfy u(x) ≤ ū(x), x ∈ Ω̄. Then
(1) has a solution u ∈ C2,α(Ω̄) with u(x) ≤ u(x) ≤ ū(x), x ∈ Ω̄.

We also need some information on the solutions of the following logistic
equations.

Lemma 2.2.
{

∆u+ uf(u) = 0 in Ω,
u|∂Ω = 0, u > 0,

where f is a decreasing C1 function such that there exists c0 > 0 such that
f(u) ≤ 0 for u ≥ c0 and Ω is a bounded domain in Rn.

If f(0) > λ1, then the above equation has a unique positive solution. We
denote this unique positive solution as θf .

The main property about this positive solution is that θf is increasing as f
is increasing.
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3. Existence and Nonexistence of Steady State

We consider
∆u+ g(u, v) = 0 in Ω
∆v + h(u, v) = 0 in Ω
u = v = 0 on ∂Ω,

(2)

where Ω is a bounded domain in RN with smooth boundary ∂Ω and g, h ∈ C2

are such that guu < 0, hvv < 0, guv > 0, huv > 0, g(0, v) ≥ 0, h(0, v) ≥ 0.
We derive the following nonexistence result, which establishes a necessary

condition for the existence of a positive solution to (2).

Theorem 3.1. Suppose gu(0, 0) > λ1, hv(0, 0) > λ1, where λ1 is the first
eigenvalue of −∆ with homogeneous boundary condition, and there is c0 > 0
such that gu(u, 0) < 0 and hv(0, v) < 0 for u > c0, v > c0.

(1) If gu(0, 0) ≥ hv(0, 0),−1 ≤ guu < 0, hvv ≤ −1 and

inf(huv) inf(guv) + inf(huv) + inf(hvv) sup(huv) + inf(hvv) ≥ 0,

then (2) has no positive solution.

(2) If gu(0, 0) ≤ hv(0, 0),−1 ≤ hvv < 0, guu ≤ −1 and

inf(guv) inf(huv) + inf(guv) + inf(guu) sup(guv) + inf(guu) ≥ 0,

then (2) has no positive solution.

Proof. Suppose the conditions in (1) or (2) holds and (2) has a positive
solution (u, v).

By the Mean Value Theorem, there is ū such that 0 ≤ ū ≤ u and g(u, v) −
g(0, v) = ugu(ū, v), and so by the monotonicity of gu

∆u+ ugu(u, v) ≤∆u+ ugu(ū, v)

=∆u+ g(u, v) − g(0, v)

=∆u+ g(u, v)

=0.

Similarly, we can prove that

∆v + vhv(u, v) ≤ 0.

Hence, (u, v) is an upper solution to

∆u+ ugu(u, v) = 0 in Ω
∆v + vhv(u, v) = 0 in Ω
u = v = 0 on ∂Ω.
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By the conditions (ũ, ṽ) = (θgu(·,0), θhv(0,·)) exist. We claim that for sufficiently
small ǫ > 0, (ǫũ, ǫṽ) is a lower solution to

∆u+ ugu(u, v) = 0 in Ω
∆v + vhv(u, v) = 0 in Ω
u = v = 0 on ∂Ω.

By the monotonicity of gu, we have

∆(ǫũ) + ǫũgu(ǫũ, ǫṽ) ≥ ∆(ǫũ) + ǫũgu(ũ, 0)
= ǫ[∆(ũ) + ũgu(ũ, 0)]
= 0.

Similarly, we can prove that

∆(ǫũ) + ǫũgu(ǫũ, ǫṽ) ≥ 0.

Hence, we conclude that (ǫũ, ǫṽ) is a lower solution to

∆u+ ugu(u, v) = 0 in Ω
∆v + vhv(u, v) = 0 in Ω
u = v = 0 on ∂Ω.

Therefore, by the Lemma 2.1, there is a positive solution to

∆u+ ugu(u, v) = 0 in Ω
∆v + vhv(u, v) = 0 in Ω
u = v = 0 on ∂Ω,

which contradicts to the result in [1]. We now establish a sufficient condition
for existence of a positive solution to (2).

Theorem 3.2. Suppose gu(0, 0) > λ1, hv(0, 0) > λ1, and there are M >

0, N > 0 such that g(M,N) < 0, h(M,N) < 0.
Then there is a positive solution to (2).

Proof. By the condition, we have an upper solution (M,N) to (2). Let φ be
the first eigenfunction of −∆ with homogeneous boundary condition. Then, by
the continuity of gu and hv and the assumption that gu(0, 0) > λ1, hv(0, 0) > λ1,
gu(ǫφ, ǫφ) > λ1 and hv(ǫφ, ǫφ) > λ1 for sufficiently small ǫ > 0.

By the Mean Value Theorem, there are ũ, ṽ such that 0 ≤ ũ ≤ ǫφ, 0 ≤ ṽ ≤ ǫφ

and
g(ǫφ, ǫφ) − g(0, ǫφ) = ǫφgu(ũ, ǫφ)
h(ǫφ, ǫφ)− h(ǫφ, 0) = ǫφhv(ǫφ, ṽ).
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Hence, by the monotonicity of gu and hv,

∆(ǫφ) + g(ǫφ, ǫφ) ≥∆(ǫφ) + g(ǫφ, ǫφ) − g(0, ǫφ)

=∆(ǫφ) + ǫφgu(ũ, ǫφ)

≥ǫ(−λ1φ) + ǫφgu(ǫφ, ǫφ)

=ǫφ[−λ1 + gu(ǫφ, ǫφ)]

>0,

and

∆(ǫφ) + h(ǫφ, ǫφ) ≥∆(ǫφ) + h(ǫφ, ǫφ) − h(ǫφ, 0)

=∆(ǫφ) + ǫφhv(ǫφ, ṽ)

≥ǫ(−λ1φ) + ǫφhv(ǫφ, ǫφ)

=ǫφ[−λ1 + hv(ǫφ, ǫφ)]

>0.

Hence, (ǫφ, ǫφ) is a lower solution to (2). Therefore, by the Lemma 2.1, there
is a positive solution to (2).

4. Existence Region for Steady State

We consider
∆u+ g(u, v) = 0 in Ω
∆v + h(u, v) = 0 in Ω
u = v = 0 on ∂Ω,

(3)

where Ω is a bounded domain in RN with smooth boundary ∂Ω and g, h ∈ C2.
We prove the following existence results.

Theorem 4.1. Suppose gu(0, 0) > λ1, g(0, v) ≥ 0, guu < 0, guv > 0 and
there is c0 > 0 such that gu(u, 0) < 0, g(u, v) < 0 for u > c0, v > c0.[hv(0, 0) >
λ1, h(u, 0) ≥ 0, hvv < 0, huv > 0 and there is c0 > 0 such that hv(0, v) <

0, h(u, v) < 0 for u > c0, v > c0.] Then there is a number M(g) < λ1 [N(h) <
λ1] such that for any h ∈ C2 such that h(u, 0) ≥ 0, huv > 0, hvv < 0, hv(0, v) <
0, h(u, v) < 0 for u > c0, v > c0 and hv(0, 0) > M(g)[for any g ∈ C2 such that
guu < 0, guv > 0, gu(u, 0) < 0, g(u, v) < 0 for u > c0, v > c0, and gu(0, 0) >

N(h)], (3) has a positive solution u+, v+ in Ω.

Proof. Let u = θgu(·,0) be the unique positive solution to

∆u+ ugu(u, 0) = 0 in Ω
u = 0 on ∂Ω.
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Let M(g) = λ1(−hv(θgu(·,0), 0)) be the smallest eigenvalue of

−∆Z − (hv(θgu(·,0), 0)− hv(0, 0))Z = µZ in Ω

Z = 0 on ∂Ω.

and ω0(x) be the corresponding normalized positive eigenfunction. By the
monotonicity, M(g) < λ1. Let v = ǫω0(x). Let h ∈ C2 be such that huv >

0, hvv < 0, hv(0, v) < 0, h(u, v) < 0 for u > c0, v > c0 and hv(0, 0) > M(g).
Then, by the Mean Value Theorem, there is ũ and ṽ such that

0 ≤ ũ ≤ u

0 ≤ ṽ ≤ v

g(u, v)− g(0, v) = ugu(ũ, v)
h(u, v)− h(v, 0) = vhu(u, ṽ),

so by the monotonicity of gu and hv, for sufficiently small ǫ > 0,

∆u+ g(u, v) ≥∆u+ g(u, v)− g(0, v)

=∆u+ ugu(ũ, v)

≥∆u+ ugu(u, v)

=∆u+ u[gu(u, 0) + gu(u, v)− gu(u, 0)]

=u[gu(u, v)− gu(u, 0)]

>0 in Ω

and

∆v + h(u, v) ≥∆v + h(u, v)− h(u, 0)

=∆v + vhv(u, ṽ)

≥∆v + vhv(u), v)

=∆(ǫω0) + ǫω0hv(θgu(·,0), ǫω0)

=∆(ǫω0) + ǫω0[hv(θgu(·,0), 0) + hv(θgu(·,0), ǫω0)− hv(θgu(·,0), 0)]

=ǫ[hv(0, 0)ω0 −M(g)ω0] + ǫω0[hv(θgu(·,0), ǫω0)− hv(θgu(·,0), 0)]

≥ǫω0[hv(0, 0) −M(g)] + ǫ2ω2
0 inf(hvv)

>0 in Ω.

So, u > 0, v > 0 is a lower solution to (3). But, by the condition, there is a
sufficiently large upper solution to (3). Therefore, there is a positive solution
u+, v+ of (3).
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For the next Theorem, we set

Sg = {h ∈ C2|huv > 0,M ≤ hvv < 0, h(u, 0) ≥ 0,

there is c0 > 0 such that h(u, v) < 0 for u > c0, v > c0} for g ∈ C2 such
that guu < 0, guv > 0, g(0, v) ≥ 0, there is c0 > 0 such that g(u, v) < 0 for
u > c0, v > c0 and

Sh = {g ∈ C2|N ≤ guu < 0, guv > 0, g(0, v) ≥ 0,

there is c0 > 0 such that g(u, v) < 0 for u > c0, v > c0} for h ∈ C2 such
that huv > 0, hvv < 0, h(u, 0) ≥ 0,there is c0 > 0 such that h(u, v) < 0 for
u > c0, v > c0.

Theorem 4.2. Let g ∈ C2 such that guu < 0, guv > 0, g(0, v) ≥ 0, there
is c0 > 0 such that g(u, v) < 0 for u > c0, v > c0 and gu(0, 0) ≤ λ1[h ∈ C2

such that huv > 0, hvv < 0, h(u, 0) ≥ 0,there is c0 > 0 such that h(u, v) <

0 for u > c0, v > c0 and hv(0, 0) ≤ λ1]. Then there is a number M(g) >

λ1[N(h) > λ1] such that for any h ∈ Sg satisfying hv(0, 0) > M(g) [for any g ∈
Sh satisfying gu(0, 0) > N(h)], (3) has a positive solution in Ω.

Proof. Suppose gu(0, 0) ≤ λ1. Let h ∈ Sg be such that hv(0, 0) > λ1. Since

lim
c→∞

λ1(−gu(0, θ c
−M

) + gu(0, 0)) ≤ lim
c→∞

λ1(− inf(guv)θ c
−M

+ gu(0, 0))

≤ lim
c→∞

λ1(− inf(guv)
c− λ1

−M
φ0 + gu(0, 0))

=−∞,

there is a number M(g) ≥ λ1 such that λ1(−gu(0, θ c
−M

) + gu(0, 0)) < gu(0, 0)

if c > M(g). Hence, if hv(0, 0) > M(g), then λ1(−gu(0, θ hv(0,0)
− inf(hvv)

) + gu(0, 0)) <

λ1(−gu(0, θhv(0,0)
−M

) + gu(0, 0)) < gu(0, 0).

Let hv(0, 0) > M(g) and u = ǫω0 and v = θ hv(0,0)
− inf(hvv)

, where ω0 is the nor-

malized positive eigenfunction corresponding to λ1(−gu(0, θ hv(0,0)
− inf(hvv)

)+gu(0, 0)).

Then by the Mean Value Theorem, there are ũ, ṽ such that 0 ≤ ũ ≤ u, 0 ≤ ṽ ≤ v

and

g(u, v)− g(0, v) = ugu(ũ, v)
h(u, v)− h(u, 0) = vhv(u, ṽ).
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Hence, by the monotonicy of gu and hv, for sufficiently small ǫ > 0,

∆u+ g(u, v)
≥ ∆u+ g(u, v)− g(0, v)
= ∆u+ ugu(ũ, v)
≥ ∆u+ ugu(u), v)
= ∆u+ u[gu(0, 0) + gu(u, v)− gu(0, v) + gu(0, v)− gu(0, 0))
≥ ∆u+ u[gu(0, 0) + inf(guu)u+ gu(0, v)− gu(0, 0)]
= ∆(ǫω0) + ǫω0[gu(0, 0) + inf(guu)ǫω0 + gu(0, θ hv(0,0)

− inf(hvv)

)− gu(0, 0)]

= −ǫλ1[−gu(0, θ hv(0,0)
− inf(hvv)

) + gu(0, 0)]ω0 + gu(0, 0)ǫω0 + ǫ2ω2
0 inf(guu)

= ǫω0[gu(0, 0) − λ1(−gu(0, θ hv(0,0)
− inf(hvv)

) + gu(0, 0))] + ǫ2ω2
0 inf(guu)

> 0 in Ω

and

∆v + h(u, v)
≥ ∆v + h(u, v)− h(u, 0)
= ∆v + vhv(u, ṽ)
≥ ∆v + vhv(u, v)
= ∆v + v[hv(0, 0) + hv(u, v)− hv(u, 0) + hv(u, 0)− h(0, 0)]
≥ ∆v + v(hv(0, 0) + inf(hvv)v + hv(u, 0)− hv(0, 0)]
= v[hv(u, 0) − hv(0, 0)]
> 0 in Ω.

So, u, v is a lower solution to (3). Hence, by the condition, if hv(0, 0) > M(g),
there is a positive solution to (3).
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