Andrews University

Digital Commons @ Andrews University

Honors Theses Undergraduate Research
4-6-2018

A Note on the Onset of Synchronous Egg Laying in a Seabird
Behavior Model

Dorothea Gallos
Andrews University, dorotheag@andrews.edu

Christiane Gallos
Andrews University, christiane@andrews.edu

Follow this and additional works at: https://digitalcommons.andrews.edu/honors

6‘ Part of the Biology Commons, and the Ornithology Commons

Recommended Citation

Gallos, Dorothea and Gallos, Christiane, "A Note on the Onset of Synchronous Egg Laying in a Seabird
Behavior Model" (2018). Honors Theses. 174.

https://digitalcommons.andrews.edu/honors/174

This Honors Thesis is brought to you for free and open access by the Undergraduate Research at Digital Commons
@ Andrews University. It has been accepted for inclusion in Honors Theses by an authorized administrator of
Digital Commons @ Andrews University. For more information, please contact repository@andrews.edu.


https://digitalcommons.andrews.edu/
https://digitalcommons.andrews.edu/honors
https://digitalcommons.andrews.edu/undergrad
https://digitalcommons.andrews.edu/honors?utm_source=digitalcommons.andrews.edu%2Fhonors%2F174&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.andrews.edu%2Fhonors%2F174&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1190?utm_source=digitalcommons.andrews.edu%2Fhonors%2F174&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.andrews.edu/honors/174?utm_source=digitalcommons.andrews.edu%2Fhonors%2F174&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@andrews.edu

J. N. Andrews Honors Program
Andrews University

HONS 497
Honors Thesis

A note on the onset of synchronous egg laying in a seabird behavior model

Dorothea Gallos
Christiane Gallos

06 April 2018

Advisor: Dr. Shandelle M. Henson

\ |
Advisor Signature: )f@’b@kw u/(ﬁ //(/( ( {JQ,_& o

Department: Mathematics




Abstract: Protection Island, Washington hosts a large colony of Glaucous-winged gulls (Larus
glaucescens). These birds are known to exhibit every-other-day egg-laying synchrony in dense
areas of the colony in response to egg cannibalism, which is the main source of egg loss. Here
we present an equilibrium analysis of a discrete-time animal behavior model for egg laying. We
use Jury Conditions to find the stability criteria for the equilibrium as a function of the colony
density and show that a 2-cycle bifurcation occurs when the equilibrium loses stability. The 2-
cycle pattern in egg laying becomes increasingly synchronous as the colony density increases.

We also show that egg-laying synchrony benefits the colony by allowing more eggs to survive
cannibalism.



1 Introduction

Protection Island, Washington, USA hosts a large colony of Glaucous-
winged gulls (Larus glaucescens) [5]. The gull hens begin ovulating in the
spring, at the beginning of the annual breeding season. An individual’s
ovulation cycle is approximately two days long [4]. Halfway through the
ovulation cycle, a female gull experiences a luteinizing hormone (LH)
surge, immediately after which an ovulation occurs. After the next LH
surge approximately forty-eight hours later, a new ovulation occurs and
the previous egg is layed. On average, a gull hen repeats this cycle three
times, resulting in three eggs laid per clutch [5].

During years when sea surface temperature (SST) is high, gulls typi-
cally experience low food availability. As SSTs rise, feeder fish, the main
source of food for gulls, descend to lower depths to feed on the plankton,
which have moved to cooler temperatures in deeper water levels. Since
gulls are surface-feeding birds, they cannot dive and thus face a food
shortage [3]. A strategy the gulls in the Protection Island colony employ
to deal with this food shortage is egg cannibalism since one egg provides
half the calories an adult gull needs for one day [2].

Female gulls in the Protection Island colony combat egg cannibalism
through an adaptive tactic known as egg-laying synchrony [7]. Egg-
laying synchrony is a process in which female gulls in the colony lay
eggs together on an every-other-day schedule. This synchrony has been
observed to increase with increasing levels of colony density [4] and social
interaction [5]. This may occur because of hormone levels affecting the
cycles of other birds [4].

Previously, Burton and Henson [1] posed a two-dimensional discrete-
time animal behavior model for egg laying, where the “prime” indicates
LasSalle’s "next iterate" notation and the time step is one day:

' =be” + py (1)

y =,

Here 2 is the number of females in the first day of the ovuation cycle,
y 1s the number in the second day of the ovulation cycle, b > 0 is the
inherent number of birds that enter the system each day when z is small,
p € (0,1) is the probability that a bird in the y class returns to the z
class, and 1 — p is the probabilty that a bird leaves the system to begin
incubating. Using the parameter ¢ > 0, which is a "crowding factor"
representing colony density, as a bifurcation parameter, they showed the
existence and uniqueness of a positive equilibrium that was stable for all
¢ less than a critical point ¢... At ¢ = ¢, the system experiences a two-
cycle bifurcation corresponding to the advent of egg-laying synchrony.
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However, in that paper the synchronizing mechanism e=“*, which delays
the entry of birds into the system on days when z is large, depresses the
average number of eggs laid per day. Because of this, the authors were
not able to show that egg-laying synchrony could provide an advantage
in the presence of egg cannibalism.

In this study, we modify the Burton and Henson [1] model so that a
constant number of birds enter the system at each time step. We solve
for the equilibrium and determine its stability as a function of colony
density using the Jury Conditions. We then analyze the properties of the
2-cycle that occurs when the equilibrium loses stability. By extending
the model to include egg cannibalism, we also determine whether egg-

laying synchrony is beneficial to egg production at the population level
in the presence of egg cannibalism.

2 The Model

In this note we modify model (1) by adding a third compartment:

w=b+ (1 = e‘“) w
&’ =py 4+ we (2)

/
Yy =z

Here w is the number of females not yet ovulating. We assume that b
new birds enter the w class each day. We also assume that, each day,
birds in the w class move to the z class with a probability e=“*. The
other parameters and variables retain their meaning from [1]. A diagram
incorporating these assumptions is shown in Figure 1.

3 Equilibrium stability

Our goal is to study the equilibrium of model (2) as a function of the

crowding factor parameter c. From model (2) we obtain the unique
equilibrium

The Jacobian at the equilibrium is

l—e*Tb—C_p be O

be



and the characteristic equation is
AN =X\ (qg—bc) = A(p+bec) +pg=0 (4)

where ¢ is defined to be
be

g=1—¢e 17, (5)

Note that 0 < ¢ < 1 and that ¢ monotonically increases on [0,1) as a
function of ¢, with lim._. g = 1.

Using the Jury Conditions in Lewis [6], we obtain four conditions for
the stability of the equilibrium:

(1-p)(L=q)>0 (6)
(1—p)(1+q) —2bc >0 (7)

pg <1 (8)

11— p*¢*| > |(p+ be) + pg (be — q)| - (9)

Conditions (6) and (8) are clearly true for all values of ¢ > 0. We
now show that conditions (7) and (9) fail at unique values ¢ = ¢; and
¢ = ¢y, respectively.

Lemma 1 There is a unique c; > 0 satisfying (1 — p) (1 + q) —2bc; = 0.
Furthermore, (1 —p) (1 + ¢)—2bc > 0 forallc < ¢; and (1 — p) (1 + ¢)—
2bc < 0 for all ¢ > ¢;.

Proof. Define F' (¢) = (1 — p) (1 + ¢) —2bc. Then F (0) = 1—p > 0 and

by (5) we have lim, ., F' (c) = —oco. Also,

dF_
de
b(1 —gq
:<1—p)-—(1_ )
P
=b{l= g=32)
=—b(1+4q)
<0.

dq

1—p)=2 9
( p)dc

—2b

Thus, there exists a unique ¢; > 0 such that F (¢;) = 0. Also, F'(¢) >0
forc<cyand Fc) <Oforc>c. m

Lemma 2 There is a unique c; > 0 satisfying |1 — p*q*| = |(p + bez) + pq (bey — q)].
Furthermore, |1 — p*¢®| > |(p+ be) + pq (be — q)| for all ¢ < ¢ and
11— %@ < |(p+ be) + pq (be — q)| for all ¢ > cs.



Proof. First we show that the absolute value signs can be eliminated
on both sides of (9). Clearly 1 — p?¢? is positive. In order to show that
(p + be) + pg(be — q) is positive, we consider the sign of (be — ¢). The
derivative of bc — ¢ = be — (1 - e*%> with respect to ¢ is
b e

= T pe T-p,
It is easy to show that the zeros of the derivative occur when p = ¢. The
second derivative of ¢b — ¢ at this point is

b2 _ _be
(a )26 -p > ().
_])

Thus, bc — ¢ is concave up as a function of ¢, and so it has a local
minimum when ¢ = p. Thus be — g > be — p, and so

(p + bc) + pg(be — ) > p + be + pq(be — p)
=p(1 — pq) + be(1 + pq)
> 0.

Now we can drop the absolute value signs from the right hand side of
(9) and the Jury condition becomes

(1 =p*¢*) > (p + be) + pa(be — q).

Define G(c) = (1—p*¢*) — (p+be) — pg(be — q). Then lim,_,+ G(c) =
1 —p and lim._,o G(c) = —co. Also,

dG 5 dg dg dg
oty p e (b —g) —pg [B— 22
= pra— P, (be = q) pq< -

0 .1 — 1-— 1-—
= —2pgb—— — b — pbh——2 (be — q) —pq (b — b2
1—9p 1—p l—p

and so
1 —p)dG ;
%%=~2pzq(l—(ﬂ—(1—p)—p(1—f1) (bc —q) =pg((1 —p) = (1 —q))
==2p’¢(1—q) = (1—p)—p(1 —q) (bc — q) — pq (g — p)
=p +pg — bep + bepg — 2pg® — pPq + 2p°¢ — 1
=—2p¢® (1 —p) —bep (1l —q) — p*q— 14+ p+pq
=—2pg* (1 —p) —bep (1 —q) — (1 - pq) (1 — p)
< 0.



Thus, since dG/dc < 0, there exists a unique ¢; > 0 such that
G(cz) = 0. Also, G(c¢) > 0 for ¢ < ¢; and G(c) < 0 for ¢ > cy.
[

In the next Lemma we show that condition (7) fails first:

Lemma 3 ¢; < c¢s.

Proof. Tt is sufficient to show that G (¢) > F (c) for all ¢ > 0. To this
end, we note that

G (c) = F(c)=(1-p¢") — (p+be) — pglbc — q) — (1 — p)(1 + q) + 2bc
=1—p°¢ —p—cb—bepg+pg® — 1 — g+ p+ pqg + 2be
=bc — ¢+ pq — bepg + pg® — p*q’
=—q(1 = p) +be(1 - pqg) + pg*(1 — p)
= (—q+pg*)(1 = p) + be(1 — pq)
=—q(1 = pg)(1 = p) + be(1 - pq)
= (1= pg)(bc - q(1 - p)).

We know that 1—pq > 0 is positive; it suffices to show that be—q(1— p) >
0. Note that when ¢ = 0, we have bc = q(1 — p) = 0. As ¢ increases
from zero, the functions be and ¢(1 — p) both increase from zero. To
determine which function increases faster, we compare their derivatives

for ¢ > 0: P i
b
—(bc) =b > be T-F = d—c(q(l -p)).

dc
Therefore be — g(1 — p) > 0 and hence

G (c) = F(c) = (1 = pg)(be — g(1 — p) > 0.

[
The above lemmas lead to the stability theorem for the equilibria:

Theorem 4 The equilibrium (3) is locally asymptotically stable for ¢ <
1 and unstable for ¢ > ¢y, where ¢, satisfies (1 — p) (14 q) = 2bey.

Note from the characteristic equation (4) that A = —1 corresponds
to (1 —p) (14 ¢) = 2bc. Thus, from the Jury Conditions and previous
lemmas it is clear that an eigenvalue exits the unit circle in the complex
plane at the value A = —1 when ¢ = ¢;. This suggests that a 2-cycle
bifurcates from the equilibrium at ¢ = ¢;. To verify this, we must check

wt



that A exits the unit circle with non-zero speed. Differentiating (4) with
respect to ¢ and evaluating at A = —1 and 2bc = (1 — p) (1 + ¢) gives

dA dA dq dA dq
3—+2—(q—bc)— | ——-b| — — b b+p—=0
dcjL dc (g =) (dc > de p-t-be) + +pdc
dA
d—(3+2q~3bc—p) +b+bg=0,
c
but d)\/dc = 0 leads to a contradiction. Thus,
d\
= 0.
de |y 7

This shows that

Theorem 5 The equilibrium branch undergoes a 2-cycle bifurcation at

¢ = cy. The 2-cycle is locally asymptotically stable for ¢ > ¢, where ¢ is
sufficiently close to c;.

Figure 2 illutrates the destabilization of the equilibrium.

4 Existence of the 2-cycle for ¢ > ¢;

The values of the 2-cycle are equilibria of the first composite of model
(2). The equilibrium equations of the first composite map are

w=b+ (1- e—c(w+we*“)> (b+ (1 — ) w)

s=pr+ (b+ (1—e ) w) o clpyweer)

y=py +we"

which are equivalent to

w=b+ (1—e ) b+ (1-e ) w) (10)
I-pz=0b+(1-e")w)e™ (11)
(1-p)y=we . (12)

From (10) we can solve for w in terms of = and y:

- b(2—e ) (13)

e 4 o=y e—CcTe—cy’

and from (13) and (12), we can eliminate w to obtain

b(2—e V)e e
1— — 14
( p) Y e—CT L o—CY _ p—CTp—Cy ( )

b(2— =)

14+ e~Wecr — g=cy’
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From (14) we can write

—cx _ (1 — p) y i
8= (L—p)y(l—e¥)+b(2ev —1) (15)

From (11), (15), and (13), we obtain

= g be_cy+<1 ) [ 1-p)y D { be-c) ],

(I-py(l—e¥)+b(2ev —1) e™T 4 =W — e~ CTe—cy
Application of (15) leads to
L-p) (1-p)y
c  \(1—=-py(l—e¥)+b(2ev —1)

(1-py b(2—e™)

{ 1—p)y (1l —e¥)4+b(2e — 1 } (1=ply(l—e~cv) .
(1=p)y( )+b( ) ((1_p>y<1;ecy)+b(zecy~1>> +e—e

—be ¥ 4+ | 1—

e~ Y,

After considerable algebra, this leads to an equation for y:

= —cy e
(y) 2 v y(l p)@ - s e% = O
b(2e% — 1) + y(1 — p)(1 — e)
The roots of H are the equilibria of the first composite map. Tt is

easy to check that the equilibrium y = b/ (1 — p) of model (2) is a root
for all values of c. Tt is also easy to check that

H(0)=—¢T% <0 VYe>0, (16)
that .
H(2b/(1 —p)) =e™r >0, (17)

and that H has a vertical asymptote at y = y,, where y, > 2b/ (1 — p).
It is straightforward to show that

_(-») (2 _;?—”2) ~ % ”

y=b/(1-p) bei-r

dH
dy

The sign of (18) is determined by

(1-p) (z—efbé) —%c=(1-p)(1+q)— 2be.
Thus by Lemma 1,

dH
dy

> 0 for all ¢ < ¢, (19)

y=b/(1-p)



and
dH

<0 forall ¢ > ¢. (20)
dy

y=b/(1-p)

Thus, it follows that, locally, the root at y = b/ (1 — p) splits into
three roots of H as ¢ increases through c;. In order to establish that
these are the only roots of H, we now consider the derivative of H.

Lemma 6 H(y) has exactly one root if ¢ < ¢, and exactly three roots if
R

Proof. First we note that

dH _(1-p)(yPc(l-p)(2—e¥) —ybc(4— e ¥) +b(2—e¥))
dy (b(2e —1) +y(1 —p) (1 — BCy))2 ‘

The numerator of this expression excluding the factor (1 —p) determines
the sign of the derivative of H. We call this expression K:

K = 32¢(1 —p) (2—e¥) —ybe (4 — eV +b(2—eY).
We then take the derivative of K with respect to y:
%[}— =2yc(1 — p) (2 e%y) + 2 (1 — ple™ — be (4 — efcy) — ybc?e™ Y + bee™
Y
=2yc(l—p) (2—e Cy) y (1 — ple™ — be (4 - 2e™Y) — ybc’e™¥
=2c(l—p)(2—e ¥ V) 4+ y* (1 — ple™ — 2be (2 - e_cy) — ybcle W
=2c(2—e¥) (y(1 — p) — b) + ye™¥ (y(1 — p) — b)
=(y(1 —p) = b) (2c (2 — &) + c?ye ) .

The only value of y for which K’ can change sign is when y(l p) b= O
If y < ;= then K’ < 0, and i

deueaemg3 for y < —p and i 1n01ea91ng for y > ——, with a minimum at

Yy = Tp' By (19), we know that , and hence K is positive at y = Lp

for ¢ < ¢;. Thus K, and hence %]5, is positive for all y when ¢ < ¢;.
Therefore, by (16) and (17), H has exactly one root when ¢ < ¢;. By

(20), we see that K is negative at y = L for ¢ > ¢;. For a neighborhood

around y = -t K is negative, but for gleate1 or smaller y, K is positive.

Thus, the deuvatlve of H is first positive, then negative, then positive

again, and so by (16) and (17), H has exactly three roots for ¢ > ¢;. m
Thus we have proved:

Theorem 7 The composite map has exactly one equilibrium if ¢ < ¢
and exactly three equilibria if ¢ > c;.



5 Effect of egg cannibalization

Consider the following model, which is an extension of model (2):

w=b+ (1-e*)w
&' =py +we ™ (21)
y=u

E'=FE 4+ x — min {z, aP}

where E represents the total number of eggs laid that have escaped
cannibalization, P represents the number of gull cannibals present, and
a > 0 represents the number of eggs taken by a cannibal in one day.
The expression # — min {x, aP} denotes the number of eggs laid in the
current day which were not cannibalized. This construction is based on
the field observation that eggs tend to be cammibalized on the day they
are laid [7].

Note that in model (21), the first three equations are decoupled from

the fourth equation, meaning that w, z, and y have the same dynamics
as in model (2).

We define ; ;
M= —— —min ,aP (22)
L=p l=p
and 5 :
2
L=—— —min| - ,aP | . (23)
1-p l—»p
In equation (22), the value 1Ep is the equilibrium number of eggs laid

per day in model (2) if ¢ < ¢;. The value min (]pr, aP) represents the

number of eggs cannibalized per day at equilibrium in model (2). Thus
M is the number of eggs that escape cannibalization per day when ¢ < ¢;.
2

Similarly, in equation (23), the value i 1s the number of eggs laid

every other day in model (2) for arbitrarily large ¢, and min Ig_b_p’ (LP)
represents the number of eggs cannibalized every other day in that case.
Thus L is the number of eggs that survive cannibalization every other
day when ¢ > ¢;. Note that on the "in-between days", zero eggs are
laid, resulting in no eggs lost to cannibalism.

Consider the solution of the E equation in the extended model (21)
as it depends on a fixed value of ¢. Denote the solution by Ef, and
define £ to be the limiting solution for arbitrarily large ¢. We want to

compare Ef and Ef° for ¢ < ¢;. To this end we assume that the initial
values E§ = Fy are the same for all ¢ > 0.



It is easy to check that, for ¢ < ¢;, and when model (2) is at equili-
bium, the solution for the F equation is

Ef = Eo + tM.

It is also easy to check that if ¢ is arbitrarily large, and model (2) is on
the 2-cycle, with o starting on the lower branch (zo = 0), the limiting
solution for the [ equation is given on even and odd days by
Ey, =E3 ., = Ey+ 7L

If aP > Tz_—l’;, then L = M = 0; that is, no eggs survive cannibalism.
Hence, for ¢ < ¢, we have Ef = Ey = EX for all t > 0.

If 13}) < aP < %’), then M = 0 and L > 0. Thus, for ¢ < ¢, we
have Ef = Ey < E® for all ¢t > 2.

IfaP < ]—%5, then M > 0 and L > 0, and it is easy to check that

L=2M +aP.

That is, the number of eggs surviving every other day in a completely
synchronous colony is more than twice the number that would survive
every day in a completely nonsynchronous colony, and it exceeds that
value by aP. If we wish for the cumulative number of surviving eggs
to satisfy Ep° > Ef for each day t, we must look far enough down the
trajectory so that the extra aP surviving eggs that are added every
two days in the synchronous situation accumulate sufficiently to offset
the extra M surviving eggs that are added every second day in the
nonsynchronous situation.

If we consider the number of surviving eggs for 7 > M/(aP), we see
that, at even time steps,

E;ﬁ = EO + 7L
=Fy+27M + 1aP
M
> ES — | aP
5+ (55 )«
=E5,+ M
> B,
and that, at odd time steps,
Ex i =Ey+7L
= EO + 2T M + TaP

M
>Fy+ 21 M + ( P) aP

a
=Ey+(2r+ )M
:E§T+l'

10



The condition 7 > M /(aP) can be fulfilled by requiring the regular time
step t to satisfy ¢t > 2M/ (aP) + 1.
Thus we have proved:

Theorem 8 If aP < 1—2}—13 and ¢ < ¢, we have Ef < E® for all t >

oM/ (aP) + 1.

Thus in the presence of egg cannibalism, synchronous egg-laying can
be advantageous due to ‘predator satiation.” Since only new eggs are
cannibalized, if twice the equilibrium number of eggs are laid one day
and no eggs the next, fewer eggs are cannibalized overall than if no
synchrony exists.

6 Discussion

In this study we determined the stability criteria of the equilibrium as
a function of the crowding factor ¢ by using the Jury Conditions. We
showed the equilibrium destabilizes when the crowding factor exceeds a
critical value c;. This loss of stability coincides with a 2-cycle bifurcation
and results in the onset of egg-laying synchrony. We also showed that
egg-laying synchrony leads to an increase in the number of eggs that
survive cannibalism. Thus synchrony is beneficial at the population
level in the presence of egg cannibalism.

Model (2) is a proof-of-concept model rather than a biologically ac-
curate model. Two simplifiying mathematical assumptions are that the
number of birds entering the system has no limit and that the breeding
season is infinitely long. Also, the results of this study pertain to one
breeding season only as opposed to multiple seasons. That is, model
(2) is an animal behavior model for egg laying rather than a poulation
model.

In summary, increasing nest density leads to a 2-cycle oscillation in
egg laying. As the nest density continues to increase, egg laying becomes
more and more synchronized, resulting in twice the equilibrium number
of eggs laid one day and no eggs laid the next day, with this pattern
being repeated during the breeding season. Egg-laying synchrony can be
advantageous due to predator satiation since fewer eggs are cannibalized
overall when they are laid synchronously.
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FIGURE CAPTIONS
Figure 1. Discrete-time model for egg laying.

Figure 2. Bifurcation diagram. The equilibrium branch bifurcates into a 2-cycle at the critical
value ¢;. Each branch of the 2-cycle represents the number of eggs laid at every other time step,
that is, every other day.
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