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A GENERAL ELLIPTIC NONLINEAR SYSTEM

OF TWO FUNCTIONS WITH APPLICATION

Timothy Robertson1, Joon Hyuk Kang2 §

1,2Department of Mathematics
Andrews University

Berrien Springs, MI. 49104, USA

Abstract: The purpose of this paper is to give a sufficient condition for the ex-
istence and nonexistence of positive solutions to a rather general type of elliptic
system of the Dirichlet problem on the bounded domain Ω in Rn. Also consid-
ered are the effects of perturbations on the coexistence state and uniqueness. The
techniques used in this paper are upper-lower solutions, eigenvalues of operators,
maximum principles and spectrum estimates. The arguments also rely on some
detailed properties for the solution of logistic equations. These results yield an al-
gebraically computable criterion for the positive coexistence of competing species of
animals in many biological models.

AMS Subject Classification: 35A05, 35A07, 35B50, 35G30, 35J25, 35K20
Key Words: general elliptic system, positive solution

1. Introduction

The most general type of elliptic interacting system of two functions with homoge-
neous boundary condition is

{

∆u+ g(u, v) = 0,
∆v + h(u, v) = 0,

in Ω,

(u, v)|∂Ω = (0, 0),
(1)

where we assume that the C2 functions g and h are relative growth rates satisfying
the following so-called growth rate conditions:
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116 T. Robertson, J.H. Kang

(G1) gv < 0, guu(u, v) < 0, guv(u, v) < 0, hu < 0, huv(u, v) < 0, hvv(u, v) < 0,

(G2) g(0, v) ≥ 0, h(u, 0) ≥ 0,

(G3) There exist constants c0 > 0 such that g(u, 0) < 0, gu(u, 0) < 0, h(0, v) <
0, hv(0, v) < 0 for u > c0 and v > c0.

The goal of this paper is to answer the following questions about positive solu-
tions of (1).

Problem 1. What are the sufficient conditions for existence of positive solu-
tions?

Problem 2. What are the sufficient conditions for nonexistence of positive
solutions?

Problem 3. What is the effect of perturbation for existence and uniqueness?

2. Preliminaries

In this section we state some preliminary results which will be useful for our later
arguments.

Definition 2.1. (Upper and Lower solutions)
The vector functions (ū1, ..., ūN ), (u1, ..., uN ) form an upper/lower solution pair for
the system

{

∆ui + gi(u1, ..., uN ) = 0 in Ω
ui = 0 on ∂Ω

if for i = 1, ..., N






∆ūi + gi(u1, ..., ui−1, ūi, ui+1, ..., uN ) ≤ 0
∆ui + gi(u1, ..., ui−1, ui, ui+1, ..., uN ) ≥ 0

in Ω for uj ≤ uj ≤ ūj , j 6= i,

and
ui ≤ ūi on Ω
ui ≤ 0 ≤ ūi on ∂Ω.

Lemma 2.1. If gi in the Definition 2.1 are in C1 and the system admits an
upper/lower solution pair (u1, ..., uN ), (ū1, ..., ūN ), then there is a solution of the
system in 2.1 with ui ≤ ui ≤ ūi in Ω̄. If

∆ūi + gi(ū1, ..., ūN ) 6= 0,
∆ui + gi(u1, ..., uN ) 6= 0

in Ω for i = 1, ..., N , then ui < ui < ūi in Ω.In
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A GENERAL ELLIPTIC NONLINEAR SYSTEM... 117

Lemma 2.2. (The first eigenvalue)
{

−∆u+ q(x)u = λu in Ω,
u|∂Ω = 0,

(2)

where q(x) is a smooth function from Ω to R and Ω is a bounded domain in Rn.
(A) The first eigenvalue λ1(q) of (2), denoted by simply λ1 when q ≡ 0, is simple
with a positive eigenfunction.
(B) If q1(x) < q2(x) for all x ∈ Ω, then λ1(q1) < λ1(q2).
(C)(Variational Characterization of the first eigenvalue)

λ1(q) = min
φ∈W 1

0
(Ω),φ 6=0

∫

Ω(|∇φ|2 + qφ2)dx
∫

Ω φ2dx
.

Lemma 2.3. (Maximum Principles)

Lu =
n
∑

i,j=1

aij(x)Diju+
n
∑

i=1

ai(x)Diu+ a(x)u = f(x) in Ω,

where Ω is a bounded domain in Rn.
(M1) ∂Ω ∈ C2,α(0 < α < 1)
(M2) |aij(x)|α, |ai(x)|α, |a(x)|α ≤ M(i, j = 1, ..., n)
(M3) L is uniformly elliptic in Ω̄, with ellipticity constant γ, i.e., for every x ∈ Ω̄
and every real vector ξ = (ξ1, ..., ξn)

n
∑

i,j=1

aij(x)ξiξj ≥ γ

n
∑

i=1

|ξi|
2.

Let u ∈ C2(Ω) ∩ C(Ω̄) be a solution of Lu ≥ 0(Lu ≤ 0) in Ω.
(A) If a(x) ≡ 0, then maxΩ̄ u = max∂Ω u(minΩ̄ u = min∂Ω u).
(B) If a(x) ≡ 0 and u attains its maximum (minimum) at an interior point of Ω,
then u is identically a constant in Ω.

Lemma 2.4.
{

∆u+ uf(u) = 0 in Ω,
u|∂Ω = 0, u > 0,

where f is a decreasing C1 function such that there exists c0 > 0 such that f(u) ≤ 0
for u ≥ c0 and Ω is a bounded domain in Rn.

(1) If f(0) > λ1, then the above equation has a unique positive solution, where λ1 is
the first eigenvalue of −∆ with homogeneous boundary condition. We denote this
unique positive solution as θf .
(2) If f(0) ≤ λ1, then the above equation does not have any positive solution.
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118 T. Robertson, J.H. Kang

3. Existence, Nonexistence

We consider the system (1) with conditions (G1), (G2) and (G3).

Theorem 3.1. (A) If gu(0, c0) > λ1 and hv(c0, 0) > λ1, then (1) has a solution
(u, v) with u > 0, v > 0.
Any solution (u, v) of (1) with u > 0, v > 0 in Ω satisfies

θgu(·,c0) < u ≤ c0
θhv(c0,·) < v ≤ c0.

(B) If gu(0, 0) ≤ λ1 or hv(0, 0) ≤ λ1, then (1) does not have any positive solutions.

Proof. (A) By the result in [8], there is a positive solution (u1, v1) to

∆u+ ugu(u, v) = 0,
∆v + vhv(u, v) = 0 in Ω,

(u, v)|∂Ω = (0, 0).

But, by the Mean Value Theorem, there is ũ such that 0 ≤ ũ ≤ u1 and g(u1, v1) −
g(0, v1) = u1gu(ũ, v1), so by the monotonicity of gu and (G2),

∆u1 + g(u1, v1)
≥ ∆u1 + g(u1, v1)− g(0, v1)
= ∆u1 + u1gu(ũ, v1)
≥ ∆u1 + u1gu(u1, v1)
= 0.

Similarly,

∆v1 + h(u1, v1) ≥ 0.

Hence, (u1, v1) is a subsolution to (1).
But, by (G1) and (G3) , any (M,M) with large enough M > 0 is a supersolution to
(1).
Therefore, by Lemma 2.1, there is a positive solution to (1).
Suppose (u, v) is a solution to (1) with u > 0, v > 0.
Then by the Mean Value Theorem, there is ū such that 0 ≤ ū ≤ u and g(u, v) −
g(0, v) = ugu(ū, v), so by the monotonicity of gu,

∆u+ ugu(u, v)
≤ ∆u+ ugu(ū, v)
= ∆u+ g(u, v)− g(0, v)
≤ ∆u+ g(u, v)
= 0.In
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A GENERAL ELLIPTIC NONLINEAR SYSTEM... 119

Similarly,
∆v + vhv(u, v) ≤ 0.

Hence, (u, v) is a supersolution to

∆u+ ugu(u, v) = 0,
∆v + vhv(u, v) = 0 in Ω,

(u, v)|∂Ω = (0, 0).

For sufficiently large n ∈ N , by the monotonicity of gu,

∆[ 1
n
θgu(·,c0)] +

1
n
θgu(·,c0)gu(

1
n
θgu(·,c0),

1
n
θhv(c0,·))

= 1
n
[∆[θgu(·,c0)] + θgu(·,c0)gu(

1
n
θgu(·,c0),

1
n
θhv(c0,·))]

≥ 1
n
[∆[θgu(·,c0)] + θgu(·,c0)gu(θgu(·,c0), c0)]

= 0,

and similarly,

∆[
1

n
θhv(c0,·)] +

1

n
θhv(c0,·)hv(

1

n
θgu(·,c0),

1

n
θhv(c0,·)) ≥ 0,

so ( 1
n
θgu(·,c0),

1
n
θhv(c0,·)) is a subsolution to

∆u+ ugu(u, v) = 0,
∆v + vhv(u, v) = 0,

(u, v)|∂Ω = (0, 0).

Hence, by Lemma 2.1, there is a positive solution (u1, v1) to






∆u+ ugu(u, v) = 0,
∆v + vhv(u, v) = 0,

(u, v)|∂Ω = (0, 0),

with u1 ≤ u, v1 ≤ v.
By the solution estimates in [8], we conclude

θgu(·,c0) < u

θhv(c0,·) < v.
(3)

We prove u(x) ≤ c0, v(x) ≤ c0 for x ∈ Ω̄.
If u(x) > c0 at some x ∈ Ω, then by the continuity of u, there is r > 0 such that
u(y) > c0 for all y ∈ Br(x) = {y ∈ Rn| ‖ y − x ‖< r}, so by the monotonicity of g,

∆u = −g(u, v) > −g(c0, 0) ≥ 0 on Br(x),

which contradicts the Maximum Principles.
Hence, we conclude

u ≤ c0, v ≤ c0. (4)In
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120 T. Robertson, J.H. Kang

By (3) and (4), we have the desired inequalities.

(B) Assume gu(0, 0) ≤ λ1. The other cases are proved similarly. Suppose (ū, v̄) is a
positive solution to (1). Then, by the same way in (A), we have a positive solution
(u1, v1) to







∆u+ ugu(u, v) = 0,
∆v + vhv(u, v) = 0,

(u, v)|∂Ω = (0, 0).

Hence, we again obtain a contradiction to Lemma 2.4 by the same reason as in [8].
Therefore, there is no positive solution to (1).

4. Uniqueness with Perturbation

We consider the model






∆u+ g(u, v) = 0
∆v + h(u, v) = 0

in Ω,

u|∂Ω = v|∂Ω = 0,
(5)

where Ω is a smooth, bounded domain in Rn and (P1) g, h ∈ C2
B, where C

2
B is the set

of all two variables functions f(u, v) such that all the first-order partial derivatives
of f are decreasing, and all the second-order partial derivatives of f are bounded
and continuous,
(P2) there are c0, c1 > 0 such that gu(u, 0) < 0 for u > c0 and hv(0, v) < 0 for
v > c1.

The following theorem is our main result about the perturbation of uniqueness.

Theorem 4.1. Suppose
(A) λ1(−gu(0, θhv(0,·))) < 0, λ1(−hv(θgu(·,0), 0)) < 0, where in general, λ1(q) is the
smallest eigenvalue of −∆ + q with homogeneous boundary conditions, denoted
simply by λ1 when q ≡ 0,
(B) (5) has a unique coexistence state (u, v),
(C) the Frechet derivative of (5) at (u, v) is invertible.
Then there is a neighborhood V of (g, h) in [C2

B(R
2)]2 such that if (ḡ, h̄) ∈ V , then

(5) with (ḡ, h̄) has a unique positive solution.

Prooof. Since the Frechet derivative of (5) at (u, v) is invertible, then by the
Implicit Function Theorem there is a neighborhood V of (g, h) in C2

B and a neigh-

borhood W of (u, v) in [C2,α
0 (Ω̄)]2 such that for all (ḡ, h̄) ∈ V there is a unique

positive solution (ū, v̄) ∈ W of (5). Thus, the local uniqueness of the solution is
guaranteed.
To prove global uniqueness, suppose that the conclusion of Theorem 4.1 is false.In
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A GENERAL ELLIPTIC NONLINEAR SYSTEM... 121

Then, there are sequences (gn, hn, un, vn), (gn, hn, ūn, v̄n) in V × [C2,α
0 (Ω̄)]2 such that

(un, vn) and (ūn, v̄n) are positive solutions of (5) with (gn, hn) and (un, vn) 6= (ūn, v̄n)
and (gn, hn) → (g, h). By Schauder’s estimate in elliptic theory, the convergence of
(gn, hn), and the solution estimate in the proof of Theorem 3.1, there are constants
k1 > 0, k2 > 0, k3 > 0, k4 > 0 such that

|un|2,α ≤ k1[|gn(un, vn)|α + supx∈Ω̄(un(x))] ≤ k1(k3 + c0),
|vn|2,α ≤ k2[|hn(un, vn)|α + supx∈Ω̄(vn(x))] ≤ k2(k4 + c1)

for all n = 1, 2, ..., and so
we conclude that |un|2,α and |vn|2,α are uniformly bounded. Therefore, there are
uniformly convergent subsequences of un and vn, which again will be denoted by un
and vn.
Thus, let

(un, vn) → (û, v̂),
(ūn, v̄n) → (ū, v̄)

Then (û, v̂), (ū, v̄) ∈ (C2,α)2 are also solutions of (5) with (g, h). We claim that
û > 0, v̂ > 0, ū > 0, v̄ > 0.
By the same proof as in Section 3, for each n = 1, 2, ..., there is a positive solution
(ũn, ṽn) to







∆u+ u(gn)u(u, v) = 0
∆v + v(hn)v(u, v) = 0

in Ω,

u|∂Ω = v|∂Ω = 0
(6)

such that ũn ≤ un, ṽn ≤ vn.
By exactly the same proof as in [7], there are uniformly convergent subsequences of
ũn and ṽn, which again will be denoted by ũn and ṽn, ũn → ũ, ṽn → ṽ, (ũ, ṽ) is a
solution to (6) with (gu, hv), and ũ > 0, ṽ > 0.
But, since ũn ≤ un, ṽn ≤ vn, 0 < ũ ≤ û, 0 < ṽ ≤ v̂.
By the same procedure with the sequence (ūn, v̄n), we also have ū > 0, v̄ > 0.
In conclusion, both (û, v̂) and (ū, v̄) are positive solutions to (6) with (g, h). But,
by condition (B), û = ū = u, v̂ = v̄ = v. This is a contradiction to the Implicit
Function Theorem, since (un, vn) 6= (ūn, v̄n).

5. Uniqueness with Perturbation of Region

We consider the model






∆u+ g(u, v) = 0
∆v + h(u, v) = 0

in Ω,

u|∂Ω = v|∂Ω = 0,
(7)

where Ω is a smooth, bounded domain in Rn and g, h ∈ C2
B, where C2

B is the set of
all two variables functions f(u, v) such that all the first-order partial derivatives ofIn

te
rn

a
ti
o
n
a
l
E
le
ct
ro

n
ic

J
o
u
rn

a
l
o
f
P
u
re

a
n
d

A
p
p
li
e
d

M
a
th

e
m
a
ti
cs

–
IE

J
P
A
M

,
V
o
lu
m
e
1
0
,
N
o
.
2
(2
0
1
6
)



122 T. Robertson, J.H. Kang

f are decreasing, and all the second-order partial derivatives of f are bounded and
continuous.

The following Theorem is the main result.

Theorem 5.1. Suppose
(A) Γis a closed, bounded, convex region in [C1

B]
2 such that for all (g, h) ∈ Γ,

λ1(−gu(0, θhv(0,·))) < 0 and λ1(−hv(θgu(·,0), 0)) < 0,
(B) there exist c0 > 0 and c1 > 0 such that for all (g, h) ∈ Γ, gu(u, 0) < 0 for u > c0
and hv(0, v) < 0 for v > c1,
(C) (7) has a unique positive solution for every (g, h) ∈ ∂LΓ,
where ∂LΓ = {(λh, h) ∈ Γ|for any fixed h, λh = inf{‖ g ‖ |(g, h) ∈ Γ}},

(D) for all (g, h) ∈ Γ, the Frèchet derivative of (7) at every positive solution
to (7) is invertible.

Then for all (g, h) ∈ Γ, (7) has a unique positive solution. Furthermore, there is an
open set W in [C1

B]
2 such that Γ ⊆ W and for every (g, h) ∈ W , (7) has a unique

positive solution.

Theorem 5.1 goes even further than Theorem 4.1. Theorem 5.1 states uniqueness
in the whole region of (g, h) whenever we have uniqueness on the left boundary and
invertibility of the linearized operator at any particular solution inside the domain.

Proof. For each fixed h, consider (g, h) ∈ ∂LΓ and (ḡ, h) ∈ Γ. We need to
show that for all 0 ≤ t ≤ 1, (7) with (1 − t)(g, h) + t(ḡ, h) has a unique positive
solution. Since (7) with (g, h) has a unique positive solution (u, v) and the Frechet
derivative of (7) at (u, v) is invertible, Theorem 4.1 implies that there is an open
neighborhood V of (g, h) in (C1

B)
2 such that if (g0, h0) ∈ V , then (7) with (g0, h0)

has a unique positive solution. Let λs = sup{0 ≤ λ ≤ 1| (7) with (1 − t)(g, h) +
t(ḡ, h) has a unique coexistence state for 0 ≤ tλ.}. We need to show that λs =
1. Suppose λs < 1. From the definition of λs, there is a sequence {λn} such
that λn → λ−

s and there is a sequence (un, vn) of the unique positive solutions of
(7) with (1 − λn)(g, h) + λn(ḡ, h). Then by elliptic theory, there is (u0, v0) such
that (un, vn) converges to (u0, v0) uniformly and (u0, v0) is a solution of (7) with
(1− λs)(g, h) + λs(ḡ, h). We claim that both u0 and v0 are positive.

By the same proof as in the Section 3, for each n = 1, 2, ..., there is a positive
solution (ũn, ṽn) to







∆u+ u[(1− λn)gu + λnḡu](u, v) = 0
∆v + v[(1− λn)hv + λnhv](u, v) = 0

in Ω,

u|∂Ω = v|∂Ω = 0
(8)

such that ũn ≤ un, ṽn ≤ vn.
By exactly the same proof as in [7], there are uniformly convergent subsequences of
ũn and ṽn, which again will be denoted by ũn and ṽn, ũn → ũ, ṽn → ṽ, (ũ, ṽ) is aIn
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A GENERAL ELLIPTIC NONLINEAR SYSTEM... 123

solution to (8) with (1− λs)(gu, hv) + λs(ḡu, hv), and ũ > 0, ṽ > 0.
But, since ũn ≤ un, ṽn ≤ vn, it follows that 0 < ũ ≤ u0, 0 < ṽ ≤ v0.
We claim that (7) has a unique coexistence state with (1 − λs)(g, h) + λs(ḡ, h). In
fact, if not, assume that (ū0, v̄0) 6= (u0, v0) is another coexistence state. By the
Implicit Function Theorem, there exists 0 < ã < λs and very close to λs such that
(7) with (1 − ã)(g, h) + ã(ḡ, h) has a coexistence state very close to (ū0, v̄0), which
means that (7) with (1− ã)(g, h)+ ã(ḡ, h) has more than one coexistence state. This
is a contradiction to the definition of λs. But, since (7) with (1−λs)(g, h)+λs(ḡ, h)
has a unique coexistence state and the Frechet derivative is invertible, Theorem
4.1 implies that λs can not be as defined. Therefore, for each (g, h) ∈ Γ, (7) with
(g, h) has a unique coexistence state (u, v). Furthermore, by the assumption, for
each (g, h) ∈ Γ, the Frechet derivative of (7) with (g, h) at the unique solution (u, v)
is invertible. Hence, Theorem 4.1 concluded that there is an open neighborhood
V(g,h) of (g, h) in (C1

B)
2 such that if (ḡ, h̄) ∈ V(g,h), then (7) with (ḡ, h̄) has a unique

coexistence state. Let W =
⋃

(g,h)∈Γ V(g,h). Then W is an open set in (C1
B)

2 such

that Γ ⊆ W and for each (ḡ, h̄) ∈ W , (7) with (ḡ, h̄) has a unique coexistence state.

6. Application

Within the academia of mathematical biology, extensive academic work has been
devoted to investigation of the simple competition model, commonly known as the
Lotka-Volterra competition model. This system describes the competitive interac-
tion of two species residing in the same environment in the following manner:







ut(x, t) = ∆u(x, t) + u(x, t)(a− bu(x, t)− cv(x, t))
vt(x, t) = ∆v(x, t) + v(x, t)(d− fv(x, t)− eu(x, t))

in Ω×R+,

u(x, t)|∂Ω = v(x, t)|∂Ω = 0,
(9)

where Ω is a bounded domain in Rn. Here, u(x, t) and v(x, t) designate the pop-
ulation densities of the two competing species. The positive constant coefficients
in this system represent growth rates (a and d), self-limitation rates (b and f) and
competition rates (c and e). Furthermore, we assume that both species are not
residing on the boundary of Ω.

The mathematical community has already established several results for the exis-
tence, uniqueness and stability of the positive steady state solution to (9) (see [1],
[2], [3], [4], [5]). The positive steady state solution is simply the positive solution
to the time-independent system







∆u(x) + u(x)(a− bu(x)− cv(x)) = 0
∆v(x) + v(x)(d− fv(x)− eu(x)) = 0

in Ω,

u(x)|∂Ω = v(x)|∂Ω = 0.
(10)
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One of the important initial results for the time-independent Lotka-Volterra model
was obtained by Cosner and Lazer. In 1984, they published the following sufficient
conditions for the existence and uniqueness of a positive steady state solution to
(10):

Theorem 6.1. (in [4])
Suppose
(A) a > λ1 + cd

f
, d > λ1 + ae

b
, where λ1 is the smallest eigenvalue of −∆ with

homogeneous boundary conditions,

(B) 4bf > fc2

b
supx∈Ω[

ωa(x)
ωd−ae

b
(x) ]+2ce+ be2

f
supx∈Ω[

ωd(x)
ω
a− cd

f

(x) ], where ωM (x) for M > 0

is the unique positive solution to the logistic equation as mentioned in the next
section.

Then (2) has a unique positive solution.

Cosner and Lazer’s theorem implies that if the self-reproduction and self-limitation
rates are relatively large, and the competition rates are relatively small, then there
is a unique positive steady state solution to (10). In other words, the two species
will coexist indefinitely at unique population densities.

In 1989, Cantrell and Cosner extended these results by proving that the reproduc-
tion and self-limitation rates may vary within bounds without losing the uniqueness
result, given certain conditions. Biologically, Cantrell and Cosner’s theorem sug-
gests that two species can relax ecologically and maintain a coexistence state. Their
primary result is given below:

Theorem 6.2. (in [3])
If a = d > λ1, b = f = 1, and 0 < c, e < 1, then there is a neighborhood V of
(a, a) such that if (a0, d0) ∈ V , then (10) with (a, d) = (a0, d0) has a unique positive
solution.

In Theorem 6.2, the condition 0 < c, e < 1 biologically implies that the competi-
tion rates of both species must be relatively small. This condition plays an important
role in the proof of Cantrell and Cosner’s theorem by implying the invertibility of
the Frechet derivative (linearization) of (10) at a fixed reproduction rate (a, a).
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