
Andrews University
Digital Commons @ Andrews University

Faculty Publications

11-2016

A General Elliptic Nonlinear System of Multiple
Functions with Application
Timothy Robertson
Andrews University, robertsont@andrews.edu

Joon Hyuk Kang
Andrews University, kang@andrews.edu

Follow this and additional works at: https://digitalcommons.andrews.edu/pubs

Part of the Geometry and Topology Commons

This Article is brought to you for free and open access by Digital Commons @ Andrews University. It has been accepted for inclusion in Faculty
Publications by an authorized administrator of Digital Commons @ Andrews University. For more information, please contact
repository@andrews.edu.

Recommended Citation
Robertson, Timothy and Hyuk Kang, Joon, "A General Elliptic Nonlinear System of Multiple Functions with Application" (2016).
Faculty Publications. 270.
https://digitalcommons.andrews.edu/pubs/270

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Andrews University

https://core.ac.uk/display/232864325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.andrews.edu?utm_source=digitalcommons.andrews.edu%2Fpubs%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.andrews.edu/pubs?utm_source=digitalcommons.andrews.edu%2Fpubs%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.andrews.edu/pubs?utm_source=digitalcommons.andrews.edu%2Fpubs%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/180?utm_source=digitalcommons.andrews.edu%2Fpubs%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.andrews.edu/pubs/270?utm_source=digitalcommons.andrews.edu%2Fpubs%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@andrews.edu


International Electronic Journal of Pure and Applied Mathematics
——————————————————————————————
Volume 10 No. 2 2016, 139-150
ISSN: 1314-0744
url: http://www.e.ijpam.eu
doi: http://dx.doi.org/10.12732/iejpam.v10i2.4

A GENERAL ELLIPTIC NONLINEAR SYSTEM OF

MULTIPLE FUNCTIONS WITH APPLICATION

Timothy Robertson1, Joon Hyuk Kang2 §

1,2Department of Mathematics
Andrews University

Berrien Springs, MI. 49104, USA

Abstract: The purpose of this paper is to give a sufficient condition for the
existence, nonexistence and uniqueness of positive solutions to a rather general type
of elliptic system of the Dirichlet problem on a bounded domain Ω in Rn. We also
investigate the effects of perturbation on the positive solutions to the system.

The techniques used in this paper are upper-lower solutions, eigenvalues of oper-
ators, the maximum principles and spectrum estimates. The arguments also rely on
some detailed properties for the solution of logistic equations. This result yields an
algebraically computable criterion for the positive coexistence of competing species
of animals in many biological models.

AMS Subject Classification: 35A05, 35A07, 35B50, 35G30, 35J25, 35K20
Key Words: general elliptic system, positive solution

1. Introduction

The most general type of elliptic interacting system with homogeneous boundary
condition is

{

∆ui + gi(u1, u2, ..., ui−1, ui, ui+1, ..., uN ) = 0 in Ω,

ui|∂Ω = 0,
(1)

for i = 1, 2, ..., N , where we assume that the C2 functions gi’s are relative growth
rates satisfying the following so-called growth rate conditions:

(G1) (gi)uj
< 0, (gi)uiuj

< 0 for i, j = 1, 2, ..., N ,
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140 T. Robertson, J.H. Kang

(G2) gi(u1, u2, ..., ui−1, 0, ui+1, ..., uN ) = 0 for i = 1, 2, ..., N ,

(G3) There exist constants c0 > 0 such that gi(0, ..., 0, ui, 0, ..., 0) < 0, (gi)ui
(0,

..., 0, ui, 0, ..., 0) < 0 for ui > c0 for i = 1, ..., N .
The goal of this paper is to answer the following questions about positive solu-

tions of (1).

Problem 1: What are sufficient conditions for the existence of a positive solution?

Problem 2: What are sufficient conditions for the nonexistence of positive solu-
tions?

Problem 3: What is the effect of perturbation on the positive solution?

2. Preliminaries

In this section we state some preliminary results which will be useful for our later
arguments.

Definition 2.1. (Upper and Lower solutions) The vector functions (ū1, ..., ūN ),
(u1, ..., uN ) form an upper/lower solution pair for the system

{

∆ui + gi(u1, ..., uN ) = 0 in Ω,

ui = 0 on ∂Ω,

if for i = 1, ..., N















∆ūi + gi(u1, ..., ui−1, ūi, ui+1, ..., uN ) ≤ 0,

∆ui + gi(u1, ..., ui−1, ui, ui+1, ..., uN ) ≥ 0,

in Ω for uj ≤ uj ≤ ūj , j 6= i,

and
ui ≤ ūi on Ω,

ui ≤ 0 ≤ ūi on ∂Ω.

Lemma 2.1. (see [1]) If gi in the Definition 2.1 are in C1 and the system admits
an upper/lower solution pair (u1, ..., uN ), (ū1, ..., ūN ), then there is a solution of the
system in 2.1 with ui ≤ ui ≤ ūi in Ω̄. If

∆ūi + gi(ū1, ..., ūN ) 6= 0,

∆ui + gi(u1, ..., uN ) 6= 0

in Ω for i = 1, ..., N , then ui < ui < ūi in Ω.In
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A GENERAL ELLIPTIC NONLINEAR SYSTEM OF... 141

Lemma 2.2. (The First Eigenvalue)

{

−∆u+ q(x)u = λu in Ω,

u|∂Ω = 0,
(2)

where q(x) is a smooth function from Ω to R and Ω is a bounded domain in Rn.

(A) The first eigenvalue λ1(q) of (2), denoted by simply λ1 when q ≡ 0, is simple
with a positive eigenfunction.

(B) If q1(x) < q2(x) for all x ∈ Ω, then λ1(q1) < λ1(q2).

(C) (Variational Characterization of the First Eigenvalue)

λ1(q) = min
φ∈W 1

0
(Ω),φ 6=0

∫

Ω(|∇φ|2 + qφ2)dx
∫

Ω φ2dx
.

Lemma 2.3. (Maximum Principles)

Lu =
n
∑

i,j=1

aij(x)Diju+
n
∑

i=1

ai(x)Diu+ a(x)u = f(x) in Ω,

where Ω is a bounded domain in Rn.

(M1) ∂Ω ∈ C2,α(0 < α < 1).

(M2) |aij(x)|α, |ai(x)|α, |a(x)|α ≤ M(i, j = 1, ..., n).

(M3) L is uniformly elliptic in Ω̄, with ellipticity constant γ, i.e., for every x ∈ Ω̄
and every real vector ξ = (ξ1, ..., ξn)

n
∑

i,j=1

aij(x)ξiξj ≥ γ

n
∑

i=1

|ξi|
2.

Let u ∈ C2(Ω) ∩ C(Ω̄) be a solution of Lu ≥ 0(Lu ≤ 0) in Ω.
(A) If a(x) ≡ 0, then maxΩ̄ u = max∂Ω u(minΩ̄ u = min∂Ω u).
(B) If a(x) ≤ 0, then maxΩ̄ u ≤ max∂Ω u+(minΩ̄ u ≥ −max∂Ω u−), where u+ =

max(u, 0), u− = −min(u, 0).
(C) If a(x) ≡ 0 and u attains its maximum (minimum) at an interior point of

Ω, then u is identically a constant in Ω.
(D) If a(x) ≤ 0 and u attains a nonnegative maximum (nonpositive minimum)

at an interior point of Ω, then u is identically a constant in Ω.

Lemma 2.4.
{

∆u+ uf(u) = 0 in Ω,

u|∂Ω = 0, u > 0,In
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142 T. Robertson, J.H. Kang

where f is a decreasing C1 function such that there exists c0 > 0 such that f(u) ≤ 0
for u ≥ c0 and Ω is a bounded domain in Rn.

(1) If f(0) > λ1, then the above equation has a unique positive solution, where
λ1 is the first eigenvalue of −∆ with homogeneous boundary condition. We denote
this unique positive solution as θf .

(2) If f(0) ≤ λ1, then the above equation does not have any positive solution.

3. Existence and Nonexistence

We consider the system (1) with conditions (G1), (G2) and (G3).

Theorem 3.1. (A) If (gi)ui
(c0, ..., c0, 0, c0, ..., c0) > λ1 for i = 1, ..., N , then (1)

has a solution (u1, ..., uN ) with u1 > 0, ..., uN > 0.
Any solution (u1, ..., uN ) of (1) with u1 > 0, ..., uN > 0 in Ω satisfies

θ(gi)ui (c0,...,c0,·,c0,...,c0)
< u ≤ c0.

(B) If (gi)ui
(0, ..., 0) ≤ λ1 for some i = 1, ..., N , then (1) does not have any positive

solutions.

Proof. (A) By the result in [7], there is a positive solution (u1, ..., uN ) to
{

∆ui + ui(gi)ui
(u1, ..., uN ) = 0 in Ω,

ui|∂Ω = 0

for i = 1, ..., N .
But, by the Mean Value Theorem, for i = 1, ..., N , there is ũi such that 0 ≤ ũi ≤

ui and

gi(u1, ..., ui−1, ui, ui+1, ..., uN )− gi(u1, ..., ui−1, 0, ui+1, ..., uN )

= ui(gi)ui
(u1, ..., ui−1, ũi, ui+1, ..., uN ),

so by the monotonicity of (gi)ui
,

∆ui + gi(u1, ..., uN ) =∆ui + gi(u1, ..., uN )− gi(u1, ..., ui−1, 0, ui+1, ..., uN )

=∆ui + ui(gi)ui
(u1, ..., ui−1, ũi, ui+1, ..., uN )

≥∆ui + ui(gi)ui
(u1, ..., uN )

=0.

Hence, (u1, ..., uN ) is a subsolution to (1).
But, by the conditions, any (M, ...,M) with large enough M > 0 is a supersolu-

tion to (1).In
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A GENERAL ELLIPTIC NONLINEAR SYSTEM OF... 143

Therefore, by Lemma 2.1, there is a positive solution to (1).
Suppose (u1, ..., uN ) is a solution to (1) with ui > 0 for i = 1, ..., N .
By the Mean Value Theorem, for i = 1, ..., N , there is ūi such that 0 ≤ ūi ≤ ui

and

gi(u1, ..., ui−1, ui, ui+1, ..., uN )− gi(u1, ..., ui−1, 0, ui+1, ..., uN )

= ui(gi)ui
(u1, ..., ui−1, ūi, ui+1, ..., uN ),

so by the monotonicity of (gi)ui
,

∆ui + ui(gi)ui
(u1, ..., uN ) ≤∆ui + ui(gi)ui

(u1, ..., ui−1, ūi, ui+1, ..., uN )

=∆ui + gi(u1, ..., ui−1, ui, ui+1, ..., uN )

− gi(u1, ..., ui−1, 0, ui+1, ..., uN )

=∆ui + gi(u1, ..., ui−1, ui, ui+1, ..., uN )

=0.

Hence, (u1, ..., uN ) is a supersolution to

{

∆ui + ui(gi)ui
(u1, ..., uN ) = 0,

ui|∂Ω = 0, i = 1, ..., N.

For sufficiently large n ∈ N , and for i = 1, ..., N by the monotonicity of (gi)ui
,

∆[ 1
n
θ(gi)ui (c0,...,c0,·,c0,...,c0)

] + 1
n
θ(gi)ui (c0,...,c0,·,c0,...,c0)

(gi)ui
( 1
n
θ(g1)u1 (·,c0,...,c0),

1
n
θ(g2)u2 (c0,·,c0,...,c0), ...,

1
n
θ(gN )uN (c0,...,c0,·))

= 1
n
[∆θ(gi)ui (c0,...,c0,·,c0,...,c0)

+ θ(gi)ui (c0,...,c0,·,c0,...,c0)
(gi)ui

( 1
n
θ(g1)u1 (·,c0,...,c0),

1
n
θ(g2)u2 (c0,·,c0,...,c0), ...,

1
n
θ(gN )uN (c0,...,c0,·))]

≥ 1
n
[∆θ(gi)ui (c0,...,c0,·,c0,...,c0)

+ θ(gi)ui (c0,...,c0,·,c0,...,c0)
(gi)ui

(c0, ..., c0, θ(gi)ui (c0,...,c0,·,c0,...,c0), c0, ..., c0)]

= 0,

for i = 1, ..., N , so ( 1
n
θ(g1)u1 (·,c0,...,c0),

1
n
θ(g2)u2 (c0,·,c0,...,c0), ...,

1
n
θ(gN )uN (c0,...,c0,·)) is a

subsolution to
{

∆ui + ui(gi)ui
(u1, ..., uN ) = 0,

ui|∂Ω = 0, i = 1, ..., N.

Hence, by Lemma 2.1, there is a positive solution (ũ1, ..., ũN ) to

{

∆ui + ui(gi)ui
(u1, ..., uN ) = 0,

ui|∂Ω = 0, i = 1, ..., N.

with ũi ≤ ui for i = 1, ..., N .In
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144 T. Robertson, J.H. Kang

But, by the solution estimates in [7], we conclude

θ(gi)ui (c0,...,c0,·,c0,...,c0)
< ui, i = 1, ..., N (3)

We prove ui(x) ≤ c0 for x ∈ Ω̄ and i = 1, ..., N .

If ui(x) > c0 at some x ∈ Ω, then by the continuity of ui, there is r > 0 such
that ui(y) > c0 for all y ∈ Br(x) = {y ∈ Rn| ‖ y − x ‖< r}, so by the monotonicity
of gi,

∆ui = −gi(u1, ..., uN ) > −g(0, ..., 0, c0, 0, ..., 0) ≥ 0 on Br(x),

which contradicts the Maximum Principles.
Hence, we conclude

ui ≤ c0, i = 1, ...N. (4)

By (3) and (4), we have the desired inequalities.

(B) Assume (gi)ui
(0, ..., 0) ≤ λ1 for some i = 1, ...N . Suppose (ū1, ..., ūN ) is a

positive solution to (1). Then by the same way as in (A), we have a positive solution
(u1, ..., uN ) to

{

∆ui + ui(gi)ui
(u1, ..., uN ) = 0,

ui|∂Ω = 0, i = 1, ..., N.

Hence, we again contradict Lemma 2.4 by the same reason in [7]. So, there is no
positive solution to (1).

4. Uniqueness with Perturbation

We consider the model

{

∆ui + gi(u1, u2, ..., ui−1, ui, ui+1, ..., uN ) = 0, in Ω,

ui|∂Ω = 0, i = 1, 2, ..., N,
(5)

where Ω is a smooth, bounded domain in Rn and (P1) gi ∈ C2
B for i = 1, 2, ..., N ,

where C2
B is the set of all two variables functions f(u, v) such that all the first-order

partial derivatives of f are decreasing, and all the second-order partial derivatives
of f are bounded and continuous,

(P2) for i = 1, 2, ..., N , there is ci > 0 such that (gi)ui
(0, ..., 0, ui, 0, ..., 0) < 0 for

ui > cI .

The following theorem is our main result about the uniqueness.

Theorem 4.1. Suppose:In
te
rn

a
ti
o
n
a
l
E
le
ct
ro

n
ic

J
o
u
rn

a
l
o
f
P
u
re

a
n
d

A
p
p
li
e
d

M
a
th

e
m
a
ti
cs

–
IE

J
P
A
M

,
V
o
lu
m
e
1
0
,
N
o
.
2
(2
0
1
6
)



A GENERAL ELLIPTIC NONLINEAR SYSTEM OF... 145

(A) λ1[−(gi)ui
(θ(g1)ui (·,0,...,0), ..., θ(gi−1)ui−1

(0,...,0,·,0,...,0), 0, θ(gi+1)ui+1
(·,0,...,0), ...,

θ(gN )uN (0,...,0·))] < 0 for i = 1, ..., N , where in general, λ1(q) is the smallest eigen-
value of −∆+q with homogeneous boundary conditions, denoted simply by λ1 when
q ≡ 0,

(B) (5) has a unique coexistence state (u1, ..., uN ),

(C) the Frechet derivative of (5) at (u1, ..., uN ) is invertible.

Then there is a neighborhood V of (g1, ..., gN ) in [C2
B(R

2)]N such that if (ḡ1, ..., ḡN )
∈ V , then (5) with (ḡ1, ..., ḡN ) has a unique positive solution.

Proof. Since the Frechet derivative of (5) at (u1, u2, ..., uN ) is invertible, then, by
the Implicit Function Theorem, there is a neighborhood V of (g1, ..., gN ) in CN

B and a

neighborhoodW of (u1, u2, ..., uN ) in [C2,α
0 (Ω̄)]N such that for all (ḡ1, ḡ2, ..., ḡN ) ∈ V ,

there is a unique positive solution (ū1, ū2, ..., ūN ) ∈ W of (5). Thus, the local
uniqueness of the solution is guaranteed.

To prove global uniqueness, suppose that the conclusion of Theorem 4.1 is
false. Then there are sequences ((g1)n, ..., (gN )n, (u1)n, ..., (uN )n), ((g1)n, ..., (gN )n,
¯(u1)n, ..., ¯(uN )n) in V × [C2,α

0 (Ω̄)]N such that ((u1)n, ..., (uN )n) and ( ¯(u1)n, ..., ¯(uN )n)
are positive solutions of (5) with ((g1)n, ..., (gN )n) and ((u1)n, ..., (uN )n) 6= ( ¯(u1)n, ...,

¯(uN )n) and ((g1)n, ..., (gN )n) → (g1, ..., gN ). By Schauder’s estimate in elliptic the-
ory, the convergence of ((g1)n, ..., (gN )n), and the solution estimate in the proof of
Theorem 3.1, for i = 1, ..., N , there are constants ki > 0, li > 0 such that

|(ui)n|2,α ≤ ki[|(gi)n((u1)n, ..., (uN )n)|α + supx∈Ω̄((ui)n(x))] ≤ ki(li + c0),

for all n = 1, 2, ..., and so we conclude that |(ui)n|2,α is uniformly bounded for each
i = 1, ..., N . Therefore, there are uniformly convergent subsequence of (ui)n for each
i = 1, ..., N , which again will be denoted by (ui)n.

Thus, let
((u1)n, ..., (uN )n) → (û1, ..., ûN ),

( ¯(u1)n, ..., ¯(uN )n) → (ū1, ..., ūN )

Then (û1, ..., ûN ), (ū1, ..., ūN ) ∈ (C2,α)N are also solutions of (5) with (g1, ..., gN ).
We claim that û1 > 0, ..., ûN > 0, ū1 > 0, ..., ūN > 0.

By the same proof as in Section 3, for each n = 1, 2, ..., there is a positive solution
( ˜(u1)n, ..., ˜(uN )n) to

{

∆ui + ui((gi)n)ui
(u1, ..., uN ) = 0 in Ω,

ui|∂Ω = 0, i = 1, ..., N
(6)

such that ˜(u1)n ≤ (u1)n, ..., ˜(uN )n ≤ (uN )n.

By the exactly same proof as in [6], there are uniformly convergent subse-
quences of ˜(u1)n, ..., ˜(uN )n, which again will be denoted by ˜(u1)n, ..., ˜(uN )n, ˜(u1)n →In
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146 T. Robertson, J.H. Kang

ũ1, ...,
˜(uN )n → ũN , (ũ1, ..., ũN ) is a solution to (6) with

((g1)u1
, ..., (gN )uN

), and ũ1 > 0, ..., ũn > 0.

But, since ˜(u1)n ≤ (u1)n, ..., ˜(uN )n ≤ (uN )n, it follows that

0 < ũ1 ≤ û1, ..., 0 < ũN ≤ ûN .

By the same procedure to the sequence ( ¯(u1)n, ..., ¯(uN )n), we also have

ū1 > 0, ..., ūN > 0.

In conclusion, both (û1, ..., ûN ) and (ū1, ..., ūN ) are positive solutions to (6) with
(g1, ..., gN ). But, by the condition (B), û1 = ū1 = u1, ..., ûN = ūN = vN , which is a
contradiction to the Implicit Function Theorem since

((u1)n, ..., (uN )n) 6= ( ¯(u1)n, ..., ¯(uN )n).

5. Uniqueness with Perturbation of Region

Consider the model

∆ui + uigi(u1, u2, ..., ui, ui+1, ..., uN ) = 0 in Ω, ui|∂Ω = 0, (7)

for i = 1, ..., N . Here Ω is a bounded smooth domain in Rn and

gi ∈ C2
B =

{

f : RN → R ∈ C1| All the first order partial derivarives of f

are strictly decreasing with respect to each ui, f

and all of its second order partial derivatives are continuous and bounded
}

.

The following theorem is the main result.

Theorem 5.1. Suppose:

(A) Γis a closed, bounded, convex region in [C2
B]

N such that for all (g1, ..., gN ) ∈
Γ,

λ1((−gi)ui
(θ(g1)u1 (·,0,...,0), ..., θ(gi−1)ui−1

(0,...,0,·,0,...,0), 0, θ(gi+1)ui+1
(0,...,0,·,0,...,0), ...,

θ(gN )uN (0,...,0,·))) < 0

for i = 1, ..., N ,In
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A GENERAL ELLIPTIC NONLINEAR SYSTEM OF... 147

(B) there exist ci > 0 such that for all (g1, ..., gN ) ∈ Γ, (gi)ui
(0, ..., 0, ui, 0, ..., 0) <

0 for ui > ci, i = 1, ..., N .

(C) (7) has a unique positive solution for every (g1, ..., gN ) ∈ ∂LΓ, where

∂LΓ = {(λg2,...,gN , g2, ..., gN ) ∈ Γ|for any fixed g2, ..., gN , ‖ λg2,...,gN ‖

= inf{‖ g1 ‖ |(g1, ..., gN ) ∈ Γ}},

(D) for all (g1, ..., gN ) ∈ Γ, the Frèchet derivative of (7) at every positive solution
to (7) is invertible.

Then for all (g1, ..., gN ) ∈ Γ, (7) has a unique positive solution. Furthermore,
there is an open set W in [C2

B]
N such that Γ ⊆ W and for every (g1, ..., gN ) ∈ W ,

(7) has a unique positive solution.

Theorem 5.1 goes even further than Theorem 4.1. Theorem 5.1 states uniqueness
in the whole region of (g1, ..., gN ) whenever we have uniqueness on the left bound-
ary and invertibility of the linearized operator at any particular solution inside the
domain.

Proof. For each fixed g2, ..., gN , consider (g1, g2, ..., gN ) ∈ ∂LΓ and (ḡ1, g2, ..., gN ) ∈
Γ. We need to show that for all 0 ≤ t ≤ 1, (7) with (1−t)(g1, ..., gN )+t(ḡ1, g2, ..., gN )
has a unique positive solution. Since (7) with (g1, ..., gN ) has a unique positive solu-
tion (u1, ..., uN ) and the Frechet derivative of (7) at (u1, ..., uN ) is invertible, Theo-
rem 4.1 implies that there is an open neighborhood V of (g1, ..., gN ) in (C1

B)
N such

that if (g10, g20, ..., gN0) ∈ V , then (7) with (g10, g20, ..., gN0) has a unique positive
solution.

Let

λs = sup{0 ≤ λ ≤ 1| (7) with (1− t)(g1, ..., gN ) + t(ḡ1, g2, ..., gN )

has a unique positive solution for 0 ≤ t ≤ λ.}.

We need to show that λs = 1. Suppose λs < 1. From the definition of λs, there
is a sequence {λn} such that λn → λ−

s and there is a sequence (u1n, u2n, ..., uNn)
of the unique positive solution of (7) with (1 − λn)(g1, ..., gN ) + λn(ḡ1, g2, ..., gN ).
Then by the elliptic theory, there is (u10, u20, ..., uN0) such that (u1n, u2n, ..., uNn)
converges to (u10, u20, ..., uN0) uniformly and (u10, u20, ..., uN0) is a solution of (7)
with (1 − λs)(g1, ..., gN ) + λs(ḡ1, g2, ..., gN ). We claim that ui0 is positive for i =
1, ..., N .

By the same proof as in the previous section, for each n = 1, 2, ..., there is a
positive solution ( ˜(u1)n, ..., ˜(uN )n) to

{

∆ui + ui(gi)ui
(u1, ..., uN ) = 0, in Ω,

ui|∂Ω = 0, i = 1, ..., NIn
te
rn

a
ti
o
n
a
l
E
le
ct
ro

n
ic

J
o
u
rn

a
l
o
f
P
u
re

a
n
d

A
p
p
li
e
d

M
a
th

e
m
a
ti
cs

–
IE

J
P
A
M

,
V
o
lu
m
e
1
0
,
N
o
.
2
(2
0
1
6
)



148 T. Robertson, J.H. Kang

with (1 − λn)(g1, ..., gN ) + λn(ḡ1, g2, ..., gN ) such that ˜(u1)n ≤ (u1)n, ..., ˜(uN )n ≤
(uN )n.

By the exactly same proof as in [5], there are uniformly convergent subse-
quences of ˜(u1)n, ..., ˜(uN )n, which again will be denoted by ˜(u1)n, ..., ˜(uN )n, ˜(u1)n →
ũ1, ...,

˜(uN )n → ũN , (ũ1, ..., ũN ) is a solution to (6) with

((g1)u1
, ..., (gN )uN

), and ũ1 > 0, ..., ũn > 0.

But, since ˜(u1)n ≤ (u1n), ..., ˜(uN )n ≤ (uNn), 0 < ũ1 ≤ u10, ..., 0 < ũN ≤ uN0. We
claim that (7) has a unique coexistence state with (1−λs)(g1, ..., gN )+λs(ḡ1, g2, ..., gN ).
In fact, if not, assume that (ū10, ..., ¯uN0) 6= (u10, ..., uN0) is another coexistence state.
By the Implicit Function Theorem, there exists 0 < ã < λs and very close to λs,
(7) with (1 − ã)(g1, ..., gN ) + ã(ḡ1, g2, ..., gN ) has a coexistence state very close to
(ū10, ..., ¯uN0) which means that (7) with (1 − ã)(g1, ..., gN ) + ã(ḡ1, g2, ..., gN ) has
more than one coexistence state. This is a contradiction to the definition of λs.
But, since (7) with (1 − λs)(g1, ..., gN ) + λs(ḡ1, g2, ..., gN ) has a unique coexistence
state and the Frechet derivative is invertible, Theorem 4.1 concluded that λs can
not be as defined. Therefore, for each (g1, ..., gN ) ∈ Γ, (7) with (g1, ..., gN ) has
a unique coexistence state (u1, ..., uN ). Furthermore, by the assumption, for each
(g1, ..., gN ) ∈ Γ, the Frechet derivative of (7) with (g1, ..., gN ) at the unique solution
(u1, ..., uN ) is invertible. Hence, Theorem 4.1 concluded that there is an open neigh-
borhood V(g1,...,gN ) of (g1, ..., gN ) in (C2

B)
N such that if (ḡ1, ..., ḡN ) ∈ V(g1,...,gN ), then

(7) with (ḡ1, ..., ḡN ) has a unique coexistence state. Let W =
⋃

(g1,...,gN )∈Γ V(g1,...,gN ).

Then W is an open set in (C2
B)

N such that Γ ⊆ W and for each (ḡ1, ..., ḡN ) ∈ W ,
(7) with (ḡ1, ..., ḡN ) has a unique coexistence state.

6. Application

Within the academia of mathematical biology, extensive academic work has been
devoted to investigation of the simple competition model, commonly known as the
Lotka-Volterra competition model. This system describes the competitive interac-
tion of two species residing in the same environment in the following manner:











ut(x, t) = ∆u(x, t) + u(x, t)(a− bu(x, t)− cv(x, t))

vt(x, t) = ∆v(x, t) + v(x, t)(d− fv(x, t)− eu(x, t))
in Ω×R+,

u(x, t)|∂Ω = v(x, t)|∂Ω = 0,

(8)

where Ω is a bounded domain in Rn. Here, u(x, t) and v(x, t) designate the pop-
ulation densities for the two competing species. The positive constant coefficients
in this system represent growth rates (a and d), self-limitation rates (b and f) and
competition rates (c and e). Furthermore, we assume that both species are not
residing on the boundary of Ω.In
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The mathematical community has already established several results for the
existence, uniqueness and stability of the positive steady state solution to (8) (see
[1], [2], [3], [4]). The positive steady state solution is simply the positive solution
to the time-independent system







∆u(x) + u(x)(a− bu(x)− cv(x)) = 0
∆v(x) + v(x)(d− fv(x)− eu(x)) = 0

in Ω,

u(x)|∂Ω = v(x)|∂Ω = 0.
(9)

One of the important initial results for the time-independent Lotka-Volterra model
was obtained by Cosner and Lazer. In 1984, they published the following sufficient
conditions for the existence and uniqueness of a positive steady state solution to (9):

Theorem 6.1. (see [4]) Suppose:

(A) a > λ1 +
cd
f
, d > λ1 +

ae
b
, where λ1 is the smallest eigenvalue of −∆ with

homogeneous boundary conditions,

(B) 4bf > fc2

b
supx∈Ω[

ωa(x)
ωd−ae

b
(x) ] + 2ce + be2

f
supx∈Ω[

ωd(x)
ω
a− cd

f

(x) ], where ωM (x) for

M > 0 is the unique positive solution to the logistic equation as mentioned in the
next section.

Then (2) has a unique positive solution.

Cosner and Lazer’s theorem implies that if the self-reproduction and self-limitation
rates are relatively large, and the competition rates are relatively small, then there
is a unique positive steady state solution to (9). In other words, the two species will
coexist indefinitely at unique population densities.

In 1989, Cantrell and Cosner extended these results by proving that the repro-
duction and self-limitation rates may vary within bounds without losing the unique-
ness result, given certain conditions. Biologically, Cantrell and Cosner’s theorem
suggests that two species can relax ecologically and maintain a coexistence state.
Their primary result is given below:

Theorem 6.2. (see [3]) If a = d > λ1, b = f = 1, and 0 < c, e < 1, then there
is a neighborhood V of (a, a) such that if (a0, d0) ∈ V , then (9) with (a, d) = (a0, d0)
has a unique positive solution.

In Theorem 6.2, the condition 0 < c, e < 1 biologically implies that the competi-
tion rates of both species must be relatively small. This condition plays an important
role in the proof of Cantrell and Cosner’s theorem by implying the invertibility of
the Frechet derivative (linearization) of (9) at a fixed reproduction rate (a, a).
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