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Modeling Animal Behavior
in a Changing Environment

Shandelle M. Henson
Department of Mathematics,
Andrews University

I. M. Cushing

Department of Mathematics
Pragram in Applied Mathematics,
University of Arizona

James L. Hayward
Department of Biclogy,
Andrews University

The following article describes the
joint research the three authors have
conducted for many years at Protection
Island, a federally protected National
Wildlife Refuge in the Strait of Juan
de Fuca in Washington State, and at
Galidpagos National Park, Ecuador.
Their research, which is sponsored

by the National Science Foundation,
includes a great number of students.
Two of the authors, Shandelle Henson
and Jim Cushing, are keynote speakers
at the World Conference on Natural
Resource Modeling to be held in June
2016 in Flagstaff, Arizona. They will
make a joint, two-part presentation on
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lanet Earth has entered the Anthropocene Epoch, an era in

which humans have earned the dubious distinction of acting
both as biologic and geologic forces of environmental change
(Waters et al. 2016). The rapid pace and enormous scale of
planetary change driven by human activity is leading rapidly to
abrupt changes in ecological and social systems, some of which
may be irreversible. Mathematical approaches for understanding
the dynamics and bifurcations of such systems are imminently
important,

For the past 14 years, we have studied the effects of environmental
change on the behavior of marine birds, mammals, and reptiles. We
have focused primarily on colonial seabirds breeding in the Pacific
Northwest. To this end our group engages in three main activities.
1) We collect large sets of temporally-dense behavior data in the
field; 2) we construct realistic models, tied rigorously to data, which
describe, explain, and predict behavioral dynamics as functions

of environmental variables; 3) we construct simplified proof-of-
concept models to probe dynamic mechanisms, to clarify ideas

and suggest testable hypotheses, and to study population dynamic
consequences of environmental perturbations and evolving traits.

contimred on next page
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Modeling the aggregate:
Scale and determinism

We use ordinary differential equation (ODE) and
difference equation models in which state variables
measure the density of organisms in a particular
behavioral state at a particular time. Thus, our models
aggregate individuals under simplifying assumptions
and track dynamics at the aggregate or population level.
Some researchers feel that this approach is too coarse,
that modeling animal behavior must involve individual-
based models. Although our approach is not the only
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way or always the best way to model animal behavior,
our results show that ODEs and difference equations can
indeed accurately predict the dynamics of animal groups
{Henson et al. 2007a, Henson and Hayward 2010).

Dynamic patterns depend, of course, on scale (Levin
1992). A seabird colony, for example, is a complicated
place at the scale of the individual. Single birds appear
quite autonomous, and exhibit a wide variety of
complicated behavioral choices; yet we have shown
that some behaviors at the aggregate level are highly
deterministic and can be predicted as a function of
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Fig. 1

Loafing in glawcous-winged gulls
{Larus glaucescens) depends on
the tide hreight T, solar elevation 5,
and a seasonal envelope K,.

and lide height (blue). Each
daily panel is identified with
the day of the year. Each row
af 14 panels corresponds to one
2-week tidal cycle. Tidal nodes
(W) occur on or near days 142
aid 155. Each column of panels
counrking similar patterns

in data,

A. Model equation.
B. Gulls loafing on a pier.

C. A priori model prediction (red),
data from spring 2002 (circles),

D. Model predictions for the
spring of 2002, Oscillations are
present on daily, bi-weekly, and
wearly fine scales. The detted
curoe is the seasonal envelope
oscillation K.

oy
s

F. Tidal oscillation for the data
callection Fime period in 2002,
The tidal nodes are indicated
with arrows. See Henson el
al. (2004) and Hayward et al.
(20009),

E. Data observations corresponding

fo the predictions in D,
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environmental variables. For example, gulls leave colony Fig. 2
loafing areas in large numbers to feed when the tide
is going out and the sun is high, and they return with
an incoming tide in the evening (Fig. 1; Henson et al.

Harbor seal (Phoca vitulina) haulout depends on
current speed C, and tide height T.

2004, Hayward et al. 2009); harbor seals leave the beach A. Student research assistant uses spotting scope
and move into the water with rising tides because the to count seals (arrow) from a blind on Protection
incoming current brings in food (Fig. 2; Hayward et al. Island, Washington.

2005, Cowles et al. 2013); Galdpagos marine iguanas move B. Harbor seals hauled out on the beach,
from land to feeding sites in the sea primarily in response
to changing patterns of solar radiation (Fig. 3; Payne et al.
2015). Some behaviors are more deterministic than others,
and it is possible to rank them according to the degree of
determinism (Fig. 4).

C. Algebraic model for steady state dynamics.

D. Model prediction (red), seal hawl-out data (circles),
Fidal curve (Wue solid curve), and current velocity
(blue dashed curve). Each panel corresponds o ong
day. A bypical 14-day tidal period for Profection
Island is shown at the bottons; tidal nodes are
indicated with arrows, See Hayward et al. (2005)
and Coudles et al, (2013),

comdinned on next page
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ODE and difference equation models

of animal behavior m

Models designed to quantitatively predict animal (1) N (“‘1} & EF:]N; (I}
behavior in field populations function as testable %

scientific hypotheses, with measurable dependent and for discrete-time systems and
independent variables operating on scales at which

deterministic trends emerge from variability among (2) ﬂ - zriij - Er_ﬁﬁi
individuals. dt Jjul =l

for continuous-time systems, where N, is the density of
We use compartmental models in which each individuals in the i* behavioral state, p, is the discrete-

compartment represents a specific behavioral state

time probability that an individual in the /" state will
at a specific spatial location, and in which the state

. move to the i state, and r, is the continuous-time per
variables track the densities of individuals in each capita rate at which individuals move from compartment
compartment (Henson et al. 2007a). If all individuals j to compartment i. If some animals in a compartment

in each compartment are eligible to move to any other are not eligible to make a given transition, then the

compartment, then (ignoring birth and death processes)  djscrete-time equation for the i'* compartment is
the dynamics of the " compartment are governed by

Fig. 3 ety
Marine iguana
A {Amblyrhynchus cristatus) hanlont

247.7 +125.2sin(0.448 1(day of year +1/24))) e axolor isnygen. O hest

index HL . and tide height T,

Al
N(@) =
A Algebraic model for steady state
dynamics of hauled oul iguanas
on a beach al Isla Fernandina,
Galidpagos, Ecuador.

B. Hauled ont marine ignanas.

C. Model predictions (curve) and
observations (circles). See Payne ol
al. (2015).

Fig L3 {right)

Some animal behaviors are

highly determined by abiotic

environmenlal variables; others

are inflwenced relatively litde,

c From left to right: sealbivd rest

{unpublished data), seabird preen

400 { A {Henson et al. 2007), seal haulout

(Hayzard el al, 2005), seabird slecp

{Henson et al. 2007), seabivd colony

atlendance (Henson ef al, 2007),

seabird loafing (Hayward et al.

2009). After Henson and Hayward

(2010).
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and the continuous-time equation is

dN L] L

(4) —L=Mrfi-Yrf:
LYY

where f < N, is the density of individuals in

compartment j that are eligible to move to compartment

m
i. If the total population size K= EN" remains constant

i=l

on the time scale of the model, we can eliminate one of

-1
the state variables by setting N_ = K - EN" .
]

Applying these models to any particular biological

system requires specifying f. p,, r, by means of
modeling assumptions. In general, these coefficients
are functions of population densities and time, which

renders the models nonlinear and nonautonomous.

If the system recovers rapidly after disturbance, the
ODEs (4) can be reduced to algebraic models on two time
scales, one for disturbance dynamics and one for steady
state dynamics (Figs. 2c and 3a ; Henson et al. 2006).

Data

In order to capture the dynamic patterns of animal
behavior, data should be collected on a finer temporal
scale than the behavioral and environmental
fluctuations. For marine organisms whose behaviors
often are driven by tidal and diurnal patterns, we have
found that hourly data collected over a complete two-
week tidal cycle is best. Typically we collect data at the
top of each hour for 16 or 17 hours per day for several
weeks. This kind of dense data collection requires
student assistants and offers many opportunities for
student participation in research (Henson and
Hayward 2010).

continued on next page
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Non-cannibalistic population
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Sample trajectories of a three stage, discrete Hme structured cannibalism is introduced into this population with a sufficient
population model whose stale variables ave juveniles (open squares), positive benefit lo adull survival, Note in D that this caimibalistic
reproductively ackive adults (solid civcles), and reproductively population does nol go extinct in the degraded environment. Also
imaclive adulls (open circles). Juveniles are viclims of cannibalism note thal the canmibals’ attractor is a eycle of period 2 in which
by botl adult classes. The first vrow of graphs is for a population the o adult classes are oub-of-phase (reproductive synchrony),
withowt canmibalism and placed in hwo different environments: The explanation for this is that a backward bifurcation at v = 1 has
A healthy (r = 1) and B. degraded (r < 1). Each graph shows a plot created a sktrong Allee effect, i.e. the existence of bwo aliraclors: a
of initial transients for 10 time steps separated by a plot of e firtal survival 2-cycle and the extinction equilibrium. Initial conditions
r|f|’nr(hu'_,r'|lr the last 7 :::fﬁ,-[]ﬁ‘{} e steps, Note in B Hiat this non- otleer than those used in D can resull in extinction. C.nilpﬁrs taken
cannibalisfic population goes extinct in e degraded environment. from Veprauskas and Cushing (2016b),

The second row of graphs shows the trajectories that resull when
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Parameterization

Estimati ng parameters requires a stochastic version of
the model that accounts for the noise structure {Cushing
et al. 2002). For example, in many of the systems we have
studied, stochastic perturbations are largely uncorrelated
in the hourly sample times and the stochastic model can
be written

(5) @(N(@+1)=p(G(7,N(x))) +E(z)

where N = [N.,NI-.."',NM} is the vector of state
variables, E is a vector from a multivariate normal
random distribution with variance-covariance matrix

Z -(Uu) , and G[r,N{r)} is the deterministic
prediction at hour T +1 based on the state of the system at
hour T . Here @ is a variance-stabilizing transformation;
the transformations @(x)=Inx and @(x)= \fr;
render environmental and demographic stochasticity,

respectively, approximately additive (Cushing et al. 2002).

The one-step conditioned residual error vectors are

(6) plr+1)= @(n(z+1)) —m(G(t, n(7)))

where n is the vector of observations. The likelihood
function, which measures the likelihood that the
residuals arose from a joint normal distribution, is a
function of the model parameters, and its maximizer is
the vector of parameter estimates (Cushing et al. 2002).

Alternative models and model selection

If models serve as testable hy potheses, then we can

pose alternative models as a means to test alternative

hy potheses. Information theoretic methods of model
selection such as the Akaike Information Criterion

(AIC) take into account both the value of the likelihood
function and the number of parameters, so that models
with more parameters are penalized for over-fitting. This
criterion allows one to select the best model from a suite
of alternatives (Burnham and Anderson 2010).

Model validation

A good model not only describes and explains, but
also predicts. Validating a model means testing its
predictability on an independent data set not used to
estimate its parameters. One can validate a model by
estimating parameters from a “calibration” data set and
computing the goodness-of-fit of the fitted model on
that data set, and then comparing that to the goodness-

RMA | Spring 2016

of-fit on an independent “validation™ data set without
re-estimating the parameters. Goodness-of-fit can be
computed with a generalized R?(Cushing et al. 2002). For
example, when we developed a model to predict numbers
of gulls loafing on a pier, R*>= (1.58 for the calibration

data set and R*= 0.61 for the validation data set (Henson
et al. 2004); for Galdpagos marine iguana haul-out
numbers, R*=0.77 for the calibration data set and R?=
0.80 for the validation data set (Payne et al. 2015). Close
correspondence in goodness-of-fit between calibration
and validation data sets, as in these cases, suggests that a
model captures the major dynamics of a system.

The most convincing models, of course, are those that
make unexpected a priori predictions that are borne

out by new experiments. Most seabird biologists, for
example, would have predicted that during high tides
gulls, which are intertidal feeders, should be loafing near
the colony and not away feeding. Our model predictions,
however, counterintuitively suggested that during

high tides close to tidal nodes (when high tide occurs

at midday) gulls should be away feeding — which is
exactly what we observed (Fig. 1c, days 142 and 155).

Proof-of-concept models and
evolutionary game theory models

In addition to realistic models that are tied rigorously
to data, we also use simplified proof-of-concept models

to probe dynamic consequences, sharpen ideas and
definitions, and suggest hypotheses.

Currently we are using discrete-time proof-of-concept
models to study the effects of rising sea surface
temperatures and concomitant resource paucity on

continued on next page




the feeding and reproductive strategies of colonial
seabirds. The phenomena of interest involve interactions
of individuals from different lifecycle stages and
behavioral categories (eggs, juveniles, reproductively
active and inactive adults, etc) and therefore require

that we build structured matrix models of the form
(Caswell 2001)

(7) N(t +1) = PN@) N()

where the (density-dependent)
entries of the m » m projection
matrix P describe the
reproductive, survival, and
category transition rates. This
matrix is nonnegative (i.e. its
entries are nonnegative) and is
assumed to be irreducible so

that each category of individuals
is reachable (through birth or
transition processes) from any
other category. With regard to
population survival, the extinction
equilibrium Nit) = 0

and its stability are of fundamental interest. The
Linearization Principles says that its stability can be
determined by the eigenvalues of the Jacobian at 0,
which is the (inherent or density-free) projection matrix
P(0). Perron-Frobenius theory implies the existence of a
positive dominant eigenvalue r, the inherent population
growth rate. The extinction equilibrium loses stability
as r increases through 1, which introduces survival
(positive) equilibria through a transcritical bifurcation
(Cushing 1998). (Other bifurcation parameters are
usually more convenient to use, such as the inherent
net reproduction number K, or other model-specific
parameters.) Our modeling efforts so far have
concentrated on the nature of this bifurcation and

how it is related to specific biological mechanisms,

in particular to adult-on-juvenile cannibalism,
reproductive timing, and environmental resource
degradation (due to climate and environmental change).

For example, a low dimensional cannibalism model
that includes the negative and positive effects on
juvenile (victim) and adult (cannibal) survival rates,
respectively, and a trade-off between environmental
resource availability and cannibalism activity shows
that cannibalism can result in a stable survival
equilibrium in circumstances under which the absence
of cannibalism would lead to extinction (namely, when

environmental resource is low and the positive effect
of cannibalism on adult survival is significant enough).
Mathematically, this is due to a backward bifurcation
at r = 1, which in turn creates a strong Allee effect

and its corresponding survival equilibrium when r <

1 (Cushing et al. 2015). In the absence of cannibalism
the bifurcation is forward and r < 1 (a degraded
environment) implies extinction.

Another model, designed to
explore the effects of reproductive
synchrony by adults, has a

more complicated bifurcation.
Mathematically, this is caused by
the imprimitivity of P(0) (r is not
a strictly dominant eigenvalue).
The result is the simultaneous
bifurcation of periodic cycles

at r = 1, cycles whose adult
components are out-of-phase and
represent reproductive synchrony.
The stability of these cycles is
promoted by environmental
degradation, the resulting
increase in cannibalism, and an assumed victim (prey)
saturation effect of cannibals (predators) (Veprauskas
and Cushing 2016b).

These findings support our hypotheses concerning

the observed correlations between cannibalism,
reproductive synchrony, and climate change (for
which mean sea surface temperature is a surrogate) in
seabird colonies (Henson et al. 2010, Henson et al. 2011,
Hayward et al. 2014).

To explore whether the traits that produce these
conclusions are adaptive in an evolutionary sense, we
have begun investigations of evolutionary versions
of the models using the methodology of evolutionary
game theory. This methodology assumes the individual
vital rates modeled by the entries in the projection
matrix are functions of a vector v of phenotypic traits
of the individual, subject to Darwinian evolution, as
well as the traits of other individuals (which is why
“game” appears in the name of this methodology) as
represented by the population mean trait vector u.
Thus, P = P(N,v,u). Evolutionary game theory models
population dynamics by

(8) Nit +1) = PIN(,v,u() ]+ - uin N(t)
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The canonical assumption of Darwinian evolution states
that the change in the mean trait u is proportional to
the fitness gradient (with respect to v). In the multi-trait
context this assumption is expressed by the equation

||‘9‘] 'l.ll:f ‘II} = l:l[-” + Cv...Fl:N{-r:l_,\-"‘.u“]jlx ufl)

where C is a variance-covariance matrix among the
traits. This is often called the Breeder’s or Fisher's

or Lande’s equation. The connection between the
population and trait dynamics (together called
Darwinian dynamics) is made by relating fitness F to
the projection matrix P. The most commonly adopted
definition of fitness is F(N,v,u) = In r(N,v,u). For these
Darwinian dynamic models we have established
extensions of the fundamental bifurcation theorems

that occur as the extinction equilibrium destabilizes
(Veprauskas and Cushing 2016a) and used them (and
numerical simulation explorations) to study evolutionary
versions of our cannibalism and reproductive synchrony
models. For example, by use of this methodology

we have shown that cannibalism rates that produce
population survival in degraded environments can be

an evolutionary adaptive strategy (evolutionary stability
strategy or E5S5) (Veprauskas and Cushing 2016h).

Closing thoughts

The role of the burgeoning human populace as a major
planet changer provides a rich field of opportunities for
applied mathematicians and ecologists. As we look to
the future, a serious problem is the lack of quantitative
training for biologists; in many universities, biology
majors are no longer required to take calculus. As a
consequence, biologists sometimes do not have enough
basic mathematical training to collaborate effectively
with mathematicians. Mathematicians, on the other
hand, often are more interested in finding applications
of a particular theorem than in actually addressing

a scientific problem with its attendant messiness of
data and stochasticity. Never has there been a more
opportune time, however, for mathematicians and
biologists to work together to solve pressing scientific
problems.
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