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Abstract  
 

The species Pseudomonas putida produces hydrogen cyanide (HCN) through the transcription 

of the hcnABC operon. Previous research by Myrna Biswas (2010) demonstrated that microaerobic 

+FeCl3 cultures had the greatest HCN production, but the effects of varying iron and oxygen levels 

on HCN production were unclear. Isaac Kim (2011) assessed HCN production of P. putida in sand 

versus soil using different iron concentrations and found that iron was necessary for HCN 

production. The purpose of this experiment was to determine how the hcnABC operon is affected 

by varying levels of iron and oxygen, and age of bacteria culture. To test this, P. putida was grown 

under four conditions: the presence of iron, the absence of iron, with aeration, and without aeration. 

At 8, 18, and 30 hours, the cultures were assessed for HCN production and cell density. HCN 

production was measured via bioluminescence; light emission occurs whenever HCN is produced 

because the modified form of P. putida contains the luciferase gene. The cell density was determined 

using spread plating. Bacterial cultures with iron and minimal aeration had higher bioluminescence 

levels, suggesting these conditions promote HCN production, but these results were not significant 

(F(3,2) = 0.561, p = 0.05). 

 
 

Introduction 
 

The plant-associated bacterial genus Pseudomonas produces the secondary metabolite 

hydrogen cyanide (HCN). HCN is an inhibitor of the electron transport chain at cytochrome c 

oxidase and is poisonous to plants and mammals, resulting in instant death (Pessi and Haas 2000). 

While cyanide is toxic and is produced in the soil by Pseudomonas, plants and mammals are not usually 

affected by the poison (Blumer and Haas 2000a). In fact, the production of HCN by Pseudomonas 

helps to prevent plant-root fungal diseases such as tobacco black root (Blumer and Haas 2000a). 
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Furthermore, HCN suppresses seedling growth of a competitive weed species Velvetleaf (Myrna 

Biswas 2010).  

Upon closer examination, the tightly regulated production of HCN synthase encoded by the 

hcnABC operon prevents the production of lethal doses of hydrogen cyanide. Hydrogen cyanide is 

produced by the enzyme HCN synthase (Blumer and Haas 2000b). The hcnABC genes form the 

hcnABC operon, which encodes for HCN synthase (Blumer and Haas 2000a). Figure 1 demonstrates 

the mechanism for HCN production.   

 

Figure 1. The hcnABC operon is a cluster of  genes that encodes for HCN synthase, the 
enzyme responsible for HCN production. The modified form of  P. putida contains the 
luxAB gene so that whenever HCN synthase is made, bioluminescence occurs. Upstream 
from the operon are the promoter and ANR regulator, which regulate the transcription of  
the hcnABC operon.  
 

If  HCN is produced, light will be emitted because of  the modified hcnABC operon. This modified 

operon contains the luciferase gene, which endows light production when expressed. Whenever the 

hcnABC operon undergoes transcription, the luciferase gene will also be encoded, resulting in light 

emission.   

The regulation of  HCN can be categorized at two levels: first, at the level of  transcription 

and secondly, at the enzymatic level (Blumer and Haas 2000a). Various substrates can influence 

HCN synthase activity and hence, affect hydrogen cyanide production. At the level of  transcription, 

the hcnABC operon is influenced by two factors: the anaerobic regulator ANR and the global 

activator GacA (Blumer and Haas 2000b). ANR senses the intracellular levels of  oxygen and can 

activate or repress the transcription of  target genes, including the hcnABC genes encoding HCN 

Transcription of hcnABC operon 

luxAB gene Promoter 

ANR 
Regulator 
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synthase (Blumer and Haas 2000b). Optimal production of  HCN occurs with lower levels of  

oxygen (Blumer and Haas 2000b; Blumer and Haas 2000a). At low oxygen concentrations, less than 

10 μM, ANR is converted to its activated form and turns on transcription of  the hcnABC genes 

(Pessi and Haas 2000). When oxygen is present in high concentrations, ANR is inactivated and 

transcription of  the hcnABC operon is prevented (Blumer and Haas 2000a).  

In addition to low levels of  oxygen, high levels of  iron result in maximal HCN production 

(Blumer and Haas 2000a). Iron levels affect the regulation of  the ANR protein; hence, under 

depleted iron supplies ANR is inactivated even though low concentrations of  oxygen favor the 

active ANR form (Blumer and Haas 2000a). The global activator GacA is the second factor 

contributing to the regulation of  the hcnABC operon. GacA is a component of  the GacA/GacS 

system, acting as the response regulator for this system (Blumer and Haas 2000a). The system relies 

on a cell-density dependent mechanism termed ‘quorum sensing’, with GacA responding positively 

to higher cell densities (Pessi and Haas 2001). Greater cell densities activate GacA, which upregulates 

transcription of  the hcnABC genes to produce HCN synthase and results in HCN production 

(Blumer and Haas 2000a). 

My experiment investigated the effects of  varying levels of  iron and oxygen on the 

regulation of  a modified version of  the hcnABC operon in P. putida ATH2-1RI/9, more specifically 

through ANR and GacA. Another factor that was measured was the effect of  the age of  bacteria 

culture on HCN production. Blumer and Haas (2000a) and Pessi and Haas (2001) have researched 

HCN production by other bacterium of  the genus Pseudomonas, such as P. fluorescens CHA0 and P. 

aeruginosa. Previous research by Myrna Biswas (2010) demonstrated that microaerobic +FeCl3 

stationary and log phase cultures had the greatest HCN production in P. putida, but the effects of  

varying iron and oxygen levels on HCN production were unclear. Isaac Kim (2011) assessed HCN 

production of  P. putida in sand versus soil using different iron concentrations and found that iron 
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was necessary for HCN production, although his results were not significant. My research attempted 

to provide clarity on these previous studies for the species P. putida by testing the effects of  iron and 

oxygen on HCN production in vitro.  

 

Methodology 

Culture Conditions and Enumeration  
 

The bacterial strain P. putida ATH2-1RI/9 (containing the lux-modified hcnABC operon) was 

cultured in a shaking water bath at 28°C in King’s B broth for 24 hours. Cells were recovered via 

centrifugation and resuspended in 0.5 mL of water. This cell suspension served as the inoculum, 

which was used in the test tubes during the experiment. My experiment investigated four conditions 

that could affect P. putida: the presence of iron, (+Fe), the absence of iron (-Fe), aeration (+O2), and 

no aeration (-O2). Each condition had three test tubes to ensure more than one sample per category. 

Every test tube contained 10 μL of inoculum in addition to 10 mL of MMC media. All test tubes 

contained an iron solution of 0.0003244 g FeCl3/100 mL MMC media except for the -Fe test tubes. 

After 90 mL of the MMC media were used for the nine -Fe test tubes, 3 mL of iron solution was 

added to 300 mL of MMC media to use for the remaining 27 tubes.  

For each condition, a total of nine test tubes were used, with three test tubes allotted for 

each of the time periods: 8, 18, and 30 hours. In all, there were 36 test tubes (see below). 

 
Figure 2. The bacterial culture was tested under four conditions, each represented by an 
individual square. For each condition, three tubes were measured at 8, 18, and 30 hours for a 
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total of nine test tubes. Light production and bacterial population determination were 
measured for all 36 test tubes at their respective times.  

 
Each group of variables contained the iron solution except for the -Fe group, and each group was 

aerated except for the -O2 group. The +Fe, -Fe, and +O2 cultures were agitated in a shaking water 

bath at 28°C. The -O2 group was incubated without shaking at 28°C. For each time period (8, 18, 

and 30 hours), bacterial populations were determined by serial dilution and spread plating in 

triplicate. Dilutions were performed by transferring 1 mL of culture into a test tube with 9 mL of 

0.1% peptone, then transferring 1 mL into the next 9 mL test tube, and so on. For cultures at 8, 18, 

and 30 hours, there were 5, 6, and 7 dilutions performed respectively. The last three dilutions at each 

time period were used for spread plating in triplicate. 0.1 mL of culture from the dilution tubes were 

added to each plate.  

Luminometery and Spectrophotometry  
 

Each of the cultures were processed using a luminometer. 0.5 mL from the culture was 

added to a luminometer tube. A solution of 10 μL of 1% decyl alcohol in 100% alcohol was added 

to the luminometer tube. Luminescence readings were recorded for 2 minutes via the Spreadsheet 

Interface Software. The relative light units (RLU) produced over 2 minutes were then summed to 

represent light production in the culture. The turbidity or growth of each culture was determined by 

measuring the absorbance of the culture at 600 nm.  

Statistics 

 Each treatment contained 3 samples and was spread in triplicate. These samples were 

averaged to derive the absorption values and CFU/mL (x 105). The RLU for each sample was 

summed after 2 minutes and divided by the averaged CFU/mL (x 105) from the plates. The 

RLU/CFU (x 105) values were averaged from three experiments. To assess whether the treatments 

(+Fe, -Fe, +O2, and -O2) and age of bacteria culture (8, 18, and 30 hours) affected the results, a two-

way ANOVA was utilized. The t-test was used to compare the +Fe and -Fe cultures at a certain time 
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period (for example, at 8 hours). The +O2 and -O2 cultures were also compared at a specific time 

period using the t-test.  Comparisons were made within treatments using the t-test (for example, a 

comparison between 8 and 18 hours for the +Fe group). 

 

Results 

 For cultures with iron and minimal aeration (-O2 treatment), bioluminescence levels 

measured in RLU/CFU (x 105) were higher than cultures with aeration (Figure 3). These results were 

not statistically significant (F(3,2) = 0.561, p = 0.05). Bioluminescence levels were greatest for -O2 

cultures at all time periods, with the highest levels of bioluminescence occurring at 8 hours (Figure 

3). This trend for the -O2 cultures was not significant (t(3) = 0.447, p = 0.05; t(3) = 0.067, p = 0.05; t(3) 

= 0.395, p = 0.05). The bioluminescence of -O2 cultures decreased exponentially from 8 to 18 hours 

by a factor of 8 and decreased by half from 18 to 30 hours, but this was not statistically significant 

(t(3) = 0.393, p = 0.05; t(3) = 0.182, p = 0.05). The normalized data also showed that -O2 cultures had 

greater bioluminescence than cultures with aeration, except the bioluminescence increased from 8 to 

18 hours and decreased from 18 to 30 hours (Figure 4). The results from Figure 4 were not 

significant (F(3,2) = 1.293, p = 0.05). 

In Figure 3, the +Fe group had higher levels of bioluminescence overall in comparison to 

cultures without iron, but this was not statistically significant (F(3,2) = 0.561, p = 0.05). At 8 hours, 

cultures without iron had greater bioluminescence levels than cultures with iron, but this was not 

significant (t(3) = 0.436, p = 0.05). At 18 and 30 hours, cultures with iron had greater 

bioluminescence levels than cultures without iron, but this pattern was not significant (t(3) = 0.221, p 

= 0.05; t(3) = 0.038, p = 0.05). The normalized data showed that bioluminescence levels for the +Fe 

group were greater at all time periods, and that bioluminescence increased over time (Figure 4). 

These results were not significant (F(3,2) = 1.293, p = 0.05). In Figure 3, the +Fe group had similar 
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levels of bioluminescence at 18 and 30 hours, although this trend was not significant (t(3) = 0.952, p 

= 0.05). The -Fe cultures decreased from 8 to 18 hours and from 18 to 30 hours, but these results 

were not significant (t(3) = 0.357, p = 0.05; t(3) = 0.292, p = 0.05).  

As the bacterial cell density (in CFU/mL x 105) increased, the absorption also increased 

(Figure 4). This positive correlation was not significant (r(35) = 0.20, p = 0.05). The +Fe treatment 

did not demonstrate increasing levels of bioluminescence with mature culture age, but these results 

were not statistically significant (F(3,2) = 0.561, p = 0.05). The normalized data in Figure 4 showed 

that bioluminescence levels increased as bacterial density increased, but these results were not 

significant (F(3,2) = 1.293, p = 0.05). For the -O2 treatment, bioluminescence was greatest at 8 hours 

and decreased from 18 to 30 hours, but these results were not statistically significant (F(3,2) = 0.561, p 

= 0.05).  

 

 
Figure 3. The graph above displays the average RLU/CFU x 105 for three experiments. In each 
experiment, the relative light units (RLU) after two minutes were summed for a treatment at a 
particular time period. This was done for all three samples of the same treatment. The RLU of the 
three samples was divided by the same CFU/mL (x 105) value and averaged together. These 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fe No Fe O2 No O2

B
io

lu
m

in
es

ce
nc

e 
R

L
U

/C
FU

 x
 1

05 

Treatment 

8 hrs

18 hrs

30 hrs



9 
 

calculations were done separately for each experiment. The graph above shows the average of three 
experiments with standard error bars. A two-way ANOVA statistical test revealed that there was no 
significant relationship between the different treatments and culture age on bioluminescence (F(3,2) = 
0.561, p = 0.05).   
 
 
 

Figure 4. Each time period indicates the average relative light units (RLU) divided by the number of 
colony-forming units (CFU x 105). Within each experiment, the RLU/CFU x 105 values were 
averaged for each condition at their respective times. The RLU/CFU x 105 values at 8, 18, and 30 
hours for +O2 cultures were set at 100%. At 8 hours, the RLU/CFU x 105 values of all conditions 
were divided by the RLU/CFU x 105 value of the +O2 condition. At 18 hours, all RLU/CFU x 105 
values were divided by the value for the +O2 condition. This calculation was repeated at 30 hours. 
After normalizing the data, values from the three experiments were averaged and graphed with 
standard error bars. A two-way ANOVA statistical test revealed that there was no significant 
relationship between the different treatments and culture age on bioluminescence (F(3,2) = 1.293, p = 
0.05).   
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Figure 5. The absorption of each culture was measured at 600 nm for 8, 18, and 30 hours. The 
absorption values were plotted against the number of colony-forming units, and the x-axis was 
scaled by a logarithm of 10. The 3 samples from each condition were averaged and then plotted. The 
graph contains the absorbance from 3 experiments. As the CFU/mL (x 105) increased, the 
absorption at 600 nm also increased, but this correlation was not significant (r(35) = 0.20, p = 0.05).  
 
 
 

Discussion  

Varying levels of iron and oxygen were tested with control groups to demonstrate how their 

presence affected HCN production in culture. I predicted that bioluminescence levels would be 

greater for cultures with iron compared to those without iron. Previous research by Laville et al 

(1998) demonstrated that in the species P. fluorescens CHA0, iron was necessary for the activation of 

ANR. The activated ANR protein regulates the transcription of the hcnABC operon by turning on 

hcnA’-lacZ’ expression in the presence of iron. My results confirmed previous findings by Laville et al 

(1998) and showed that overall, iron was necessary for HCN production, although these results were 

not significant (F(3,2) = 0.561, p = 0.05). Figure 3 indicated that cultures with iron had greater 

bioluminescence (and hence HCN production) compared to cultures without iron at 18 and 30 

hours, but these results were not statistically significant (t(3) = 0.221, p = 0.05; t(3) = 0.038, p = 0.05). 
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The normalized data in Figure 4 showed that cultures with iron had greater levels of 

bioluminescence than iron-depleted cultures, although this trend was not significant (F(3,2) = 1.293, p 

= 0.05). The variation between experiments was also noted by Myrna Biswas (2010), who found 

inconsistencies in her results: in culture, one of three experiments demonstrated a significant 

increase in bioluminescence in the presence of iron, but the other two experiments did not show 

significance. Difficulties with obtaining consistent results both in culture and the rhizosphere were 

reflected in previous research by Myrna Biswas (2010), Isaac Kim (2011), and my own research.  

For conditions testing aeration, I predicted that optimal levels of HCN production would 

occur with high levels of iron and minimal aeration. Research by Blumer and Haas (2000a) 

demonstrated that the greatest levels of HCN production in P. fluorescens CHA0 occurred with high 

levels of iron and low levels of oxygen. In the absence of oxygen, the FNR/ANR recognition 

sequence in the -40 promoter region underwent transcription and the hcnABC operon was expressed 

(Blumer and Haas 2000a). Iron also influenced the expression of the FNR/ANR recognition 

sequence through the activation of ANR (Blumer and Haas 2000a). Pessi and Haas (2000) found 

that in P. aeruginosa, low oxygen levels activated ANR and enabled expression of the hcnA promoter, 

resulting in the activation of the T2 start site for transcription of the hcnABC operon. On the 

contrary, high levels of oxygen deactivated ANR and prevented transcription of the hcnABC genes 

(Blumer and Haas 2000a). Results from Figure 3 showed that high levels of iron and minimal 

aeration produced greater levels of HCN than cultures with high levels of iron and maximum 

aeration, but these results were not statistically significant (F(3,2) = 0.561, p = 0.05).  

For mature cultures, I expected the absorption and HCN production to increase because of 

increasing bacterial density. Figure 5 showed an increase in absorption as the bacterial density 

increased. Although there appeared to be a positive correlation, these results were not statistically 

significant (r(35) = 0.20, p = 0.05). Previous research by Pessi and Haas (2001) confirmed that 
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hydrogen cyanide levels increased in P. aeruginosa PAO1 with exponential bacterial growth. Greater 

cell densities positively affected the transcription of the hcnABC genes via GacA, which in turn 

expressed the rhlI gene (Pessi and Haas 2001). The rhlI gene is responsible for the cell-density 

dependent mechanism of GacA, termed as ‘quorum sensing’ (Pessi and Haas 2001). Maximum 

bioluminescence occurred at 8 hours for cultures under the -O2 condition and decreased at 18 and 

30 hours, although these results were not significant (F(3,2) = 0.561, p = 0.05). In Figure 4, the 

maximum bioluminescence levels occurred at 18 hours and decreased from 18 to 30 hours, but these 

results were not significant (F(3,2) = 1.293, p = 0.05).One possible explanation for this trend is that 

initially, cell growth activated GacA which enabled transcription and expressed the rhlI gene, but 

after reaching optimum levels of cell growth and rhlI expression, transcription was turned off 

through quorum sensing via the global activator (Pessi and Haas 2000).  

My research confirmed previous findings by Myrna Biswas (2010), Isaac Kim (2011), as well 

as other researchers who looked at the effects of iron and oxygen in different species from the genus 

Pseudomonas. The species P. putida requires iron for the transcription of the hcnABC operon, and my 

results showed that overall, cultures with iron had greater HCN production compared to iron-

depleted, although these results were not statistically significant (F(3,2) = 0.561, p = 0.05). In P. putida, 

the greatest levels of HCN production are expected to occur with high levels of iron and minimal 

aeration. My results supported this, but it was not significant (F(3,2) = 0.561, p = 0.05). The 

relationship between bacterial density and HCN production was unclear for +Fe cultures in Figure 3 

but showed that bioluminescence increased with culture age in Figure 4; these results were not 

significant (F(3,2) = 0.561, p = 0.05; F(3,2) = 1.293, p = 0.05). For -O2 cultures, exponential cell growth 

initially lead to increased bioluminescence but then decreased; these results were not significant (F(3,2) 

= 0.561, p = 0.05). 
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