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Abstract. The present paper investigates the Faraday effect and absorption and luminescence spectra of single-crystal 

TbF3 measured at 90 K and 300 K. The optical-quality single-phase TbF3 crystals (structural type β-YF3) were grown 

by the Bridgman technique. Faraday rotation angles were measured at remagnetization along the [100] crystallographic 

axis. Low temperature optical measurements were carried out along the [100] axis. “Quasi-doublet” sublevels with 

energy at 0 cm-1, 65 cm-1 and 190 cm-1, and also a singlet sublevel with energy at 114 cm-1 located in the ground 7F6 

multiplet were determined from the low temperature luminescence spectra. The Van-Vleck behavior of the magnetic 

susceptibility χb can be satisfactorily explained by the magnetic mixing of wave functions belonging to the ground and 

first excited “quasi-doublet” sublevels at 0 and 65 cm-1, respectively. Analysis of the oscillation dependences of the 

rotation angle showed that the value of the natural birefringence (Δn ≈ 0.0186) remains nearly constant within the 

wavelength and temperature ranges under investigation. As the temperature decreases, we find significant increases in 

the oscillation amplitude of the rotation angle and in the Verdet constant V. The spectral dependences V(χ) are linear 

throughout the temperature range. The magnetooptical activity of TbF3 can be explained by means of the spin- and 

parity-allowed electric-dipole 4f 5d transitions in the Tb3+ ions. 

 

I. Introduction 

Trifluorides of rare-earth ions [1] at low temperature demonstrate a wide variety of magnetic 

properties, which makes their investigation interesting for theoretical studies of magnetic ordering. 

For instance, in the 1970s, ferromagnetic ordering of the Tb3+ magnetic moment was unexpectedly 

revealed in a study of the temperature dependence of the magnetic susceptibility and specific heat 

capacity in orthorhombic crystals (TC = 3.95 K) [2], in contrast to other RE crystals with rhombic 

symmetry, where antiferromagnetic ordering is usually observed at a low temperature (TN  3.8 K) 

[3]. 

Crystallographic properties of trifluorides such as CeF3, PrF3, NdF3 differ greatly from those 

of HoF3 and TbF3. The CeF3 and NdF3 crystals have a the hexagonal tisonite-type structure (space 

group P-3c1) [1,4,5] with the third-order optical axis coinciding with the crystallographic c-axis. 

This has allowed for detailed investigation of the Faraday effect (FE) in an external magnetic field 

(0 – 15 kOe) oriented along the c-axis of these crystals within a wide temperature range (4.2 – 300 
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K). Interest in potential applications of these trifluorides in magnetooptical devices [6] is mainly 

due to their high transparency in a wide spectral range (0.2 – 6 μm) [7] and superior mechanical 

properties in comparison with other crystalline materials such as the rare-earth chlorides [8]. 

By contrast, the crystal structure of TbF3 (and HoF3) has orthorhombic symmetry (space 

group Pnma) [9] and is called a “quasi-uniaxial crystal,” as the optical axis does not coincide with a 

crystallographic axis of the orthorhombic structure (a, b, c). In this case, investigation of anisotropic 

materials in magnetooptical experiments must identify the precise orientation of the optical axis, 

since the presence of natural birefringence greatly complicates the measurement of the Faraday 

effect in any other orientation [10, 11]. For this reason, very few studies have been done to 

investigate the FE in trifluoride Tb3+ or Ho3+ crystals. 

The present paper investigates the Faraday effect and absorption and luminescence spectra of 

single-crystal TbF3. The FE angles were determined from the temperature and spectral dependences 

of the rotation angles of the major axis of the polarization ellipse of light, measured at 

remagnetization of the crystal along the [100] axis in the wavelength 430-700 nm at 92 K and 300 

K. The luminescence and absorption spectra were measured using unpolarized light in the spectral 

regions containing the visible and ultraviolet (UV) absorption bands, with a spectral resolution of 2 

– 3 cm-1 for the optical absorption and 3 – 5 cm-1 for the luminescence spectra. 

 

II. Measurement procedures and samples 

The TbF3 crystals were grown by the Bridgman technique using a graphite heater and 

multicellular crucibles. TbF3 crystals were synthesized from terbium oxide Tb4O7 (99.998% purity) 

by the hydrofluoride method in a CF4 (99.999% purity grade) atmosphere. The growth chamber was 

evacuated prior to growth by turbomolecular pumping to a pressure of 10-3 Pa. The growth was 

conducted with a temperature gradient in the growth zone of 80 K/cm and a crucible pulling rate of 

3 mm/h. The postgrowth cooling rate was about 50 K/h. 

The crystals obtained were up to 40 mm in diameter, with a slight rose tint, free of visually 

observed scattering inclusions (see Fig. 1). Occasionally, individual cracks along the (010) cleavage 

plane were observed in as-grown crystals. Oxygen contamination in the TbF3 crystal was lower than 

200 ppm, as assessed by the vacuum fusion technique. The single-crystal orientation was 

determined by the back-reflection Laue method. Crystals of optical quality were cut and polished 

along the main crystallographic (001), (010) and (001) planes. In the measurements of crystal 

properties, crystallographic axes of the samples were positioned to within 1 deg. 

Phase characterization of crystals were performed on a Rigaku MiniFlex 600 powder X-Ray 

diffractometer using CuK radiation in the 2 range from 10° to 100°. Unit-cell parameters were 

calculated using the DICVOL program. The single-phase TbF3 crystals belong to the structural type 
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β-YF3 (space group Pnma) and have lattice parameters: a = 6.5109 Å, b = 6.9482 Å, and c = 4.3886 

Å, in agreement with those reported in [9]. The refractive indices nx, ny, and nz were measured by 

the refractometric method along the major crystallographic axes [100], [010] and [001]. The values  

for  = 0.589 µm are nx = ng =1.602, ny = nm =1.588 and nz = np =1.569, close to data published in 

[12]. 

The absorption and fluorescence spectra were obtained with a high resolution diffraction 

monochromator MDR Model 23 (LOMO, Russia). The average instrumental resolution was 0.03 

nm for the absorption spectra and 0.05 nm for the fluorescence measurements in the wavelength 

range covered. Both the excitation and luminescence observations were done in a longitudinal 

geometry. Nonpolarized photoexcitation was produced by a mercury lamp with a UV filter. 

Detection of the absorption spectra was made using photomultiplier tubes sensitized by a technique 

described previously that stabilizes the average photomultiplier current at a constant level while 

scanning over a given line shape [13]. Optical spectra were recorded at 92 K and 300 K. For low 

temperature measurements the crystal was attached to a cold finger of conduction Dewar filled with 

liquid nitrogen (T = 78 K).  

         Measuring the Faraday effect for TbF3 in the orthorhombic crystal is challenging, due to the 

large background natural birefringence n   10-2 [10, 11, 14, 17]. The measured double-angle   

tangent to the major-axis polarization ellipse rotation has an oscillatory character that depends on 

the wavelength  , crystal thickness l, and temperature T [14,17]. The amplitude of the oscillations 

of the double-angle   is proportional to the Faraday effect angle F , and the period of the 

oscillations is proportional to the magnitude of the natural birefringence n  [14,17]. Note that the 

angle   is small, with values of a few arc minutes in a field of 10 kOe in the visible spectral range 

[15, 16].                       

           Additionally, the value of the natural birefringence (~10-2) complicates interpretation of 

precise optical measurements due to observation of the strongly oscillating dependence of the 

rotation angle of the major axis θ on the wavelength and temperature. Due to this feature, we use a 

highly sensitive method of dynamic registration to measure the angle θ [14,17]. In this case, the 

angle is defined by a relative change of the intensity of light passed through the “polarizer-sample-

analyzer” optical system in an external magnetic field. Magnetic reversal of the sample results in 

periodicity of the rotation angle θ with the frequency of the alternating magnetic field H. Hence, 

light flux coming into the photodetector consists of two terms: an alternating signal related to the 

rotation of the plane of light polarization (or major axis of the polarization ellipse) )( 0III  , 

and a constant signal 0I , with intensity defined by the light flux passing through the “polarizer-

sample-analyzer” optical system at H = 0. Using the Johns matrix [10], which describes relative 

http://dx.doi.org/10.1063/1.4989839


amplitudes and phases of the components of the electrical vector of the light flux passing through 

the magnetized orthorhombic sample [10], we consider the case of the transmission plane of the 

polarizer (P) oriented parallel to one of the crystal axis of the orthorhombic crystal, with a 45 deg 

angle between transmission planes of the polarizer (P) and analyzer (A). Then, the total light 

intensity I on the photodetector can be described as: 

       )sinsin1(0  II            (1) 

where  is the magnetooptical parameter defined by the off-diagonal element   of the dielectric 

tensor ̂ , whose modulus is proportional to an external magnetic field H; and l

2

 is the 

phase shift arising between the two orthogonal elliptically-polarized normal modes propagating into 

the rhombic crystal in the z-axis direction [10, 11], with l being the thickness of the crystal. The  

signs correspond to the two orthogonal positions of the transmission plane of the polarizer relative 

to the crystal axes. Hence, the expression describing the relative change of the light intensity 

0

0 )(

I

II 
  passing through the magnetized orthorhombic crystal (in the approximation of large 

natural birefringence, nn /   [15,16]) can be represented as: 
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




 







 ln
nnI

I


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            (2) 

since in the approximation of small rotation angles the relative change of the intensity   defines the 

double rotation angle   of the plane of polarization at the analyzer azimuth of 45 deg. Thus, in this 

experimental geometry, the relative change of the light intensity   is an oscillating function of 

wavelength and temperature, with amplitude determined by the FE angle (since F  n/   [15,16]) 

and period determined by the value of natural crystallographic birefringence n . As a result, the FE 

of TbF3 can be calculated from the spectral and temperature dependences of the rotation angle  , 

which is measured along the [100] axis between 430-700 nm, and at 92 K and 300 K, with the 

experimental setup described below. 

Light flux from a halogen lamp (KGM-100) passing the monochromator is focused by a lens 

on the sample placed in the electromagnet. The magnetic field alternates with a frequency of 80 Hz 

and amplitude of 7 kOe. A polarizer is placed before the sample, and the light passing the polarizer, 

sample and analyzer is focused on the photomultiplayer cathode by another lens. The 

photomultiplayer signal feeds a lock-in amplifier and synchronous detector, which are connected to 

a computer. The electromagnet is made of shell-type transformer core, which significantly reduces 

inductive interference on the measuring electronics from the modulating magnetic field. To make 

low temperature measurements, the samples are placed in a compact liquid nitrogen optical cryostat 
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made of thin-walled stainless steel. The rotation angle sensitivity of the setup is ≤ 0.1 arc minute in 

the visible range and is mainly controlled by the noise threshold of the measuring electronics. The 

relative error of the rotation angle measurement is 3 – 5%, and the positioning of the crystal axes is 

within 2 – 3 deg. 

 

III. Experimental results and discussion  

3.1. Absorption and luminescence visible spectra of TbF3 

All the optical measurements were made along the crystallographic axis [100] of the TbF3 

crystal. The low temperature (T = 92 K) absorption and emission lines are concentrated within the 

wavelength range from 482 to 497 nm (i.e., from 20120 cm-1 to 20747 cm-1). The absorption (dotted 

lines) and emission (solid lines) spectra are shown in Fig. 2.   

 The strong absorption due to the optical transitions from the lowest state of the ground 7F6 

multiplet of Tb3+ ion to the Stark levels of the excited 5D4 multiplet is shown by the dotted lines 

designated as 1 – 5 in Fig. 2. The remaining weak absorption lines indicated by the numbers from 6 

to 11 correspond to optical transitions originating from excited sublevels of the ground 7F6 

multiplet. The measured fluorescence spectra (solid lines and primed numbers) associated with 5D4 

luminescence to the 7F6 ground state multiplet levels of Tb3+ at 90 K is also shown in Fig. 2. As can 

be seen from this figure, similar bands (though with differing intensity) are observed in the 

absorption and luminescence spectra at   483, 488, and 489.5 nm. The wavelengths of the 

overlapping lines 1, 2, 3, 7, 8 and 9, 10, 11 observed in the luminescence spectra coincide with 

those of 1, 2, 3, 7, 8 and 9, 10, 11, respectively, found in the absorption spectra. 

The coincidence of energies of absorption and luminescence lines in the optical spectra of 

TbF3 and their temperature dependence facilitates construction of a scheme of the optical transitions 

in the absorption and luminescence spectra (see Fig. 3) and helps to establish the energies of most 

of the Stark sub-levels of the ground 7F6 and excited 5D4 multiplets split by the low-symmetry 

crystalline environment of the Tb3+ ion (CS symmetry [1, 9]) in the TbF3 orthorhombic crystal. The 

two panels of Fig. 3 present the energy level scheme determined from the absorption spectra (left 

panel) and from the luminescence spectra (right panel).  As can be seen in the two panels of Fig. 3, 

there is good coincidence in the Stark sub-level energies of the 7F6 and 5D4 multiplets found by 

analyzing the absorption and luminescence spectra for T = 90 K, notable exceptions being the sub-

levels with energy 65 cm-1 and 20670 cm-1, which are found in the luminescence spectra only. The 

“quasi-doublet” 65 cm-1 level was not found in [18], but a detailed comparison of the data from that 

paper with the current spectra measurements leads to a qualitative agreement with the rest of the 

quantum states.  The magnetic property analysis, given in section IV below, shows that the lowest 

state of the 7F6 ground multiplet is a “quasi-doublet.”  It then follows that the singlet, and “quasi-
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doublet” character of each of the other Stark sub-levels is as indicated in Fig. 3, in accordance with 

the results of [18]. 

 

3.2. Magnetooptical visible spectra of TbF3 

As mentioned in section II, the Faraday effect in TbF3 (as well as in the biaxial TbAlO3 

[14,17]) is measured against the background of a large natural birefringence n  [10,11]. 

Consequently, at a fixed temperature T and sample thickness l, the rotation angle   of the major 

axis of the polarization ellipse oscillates as a function of wavelength  , as shown in Fig. 4, where 

the tangent of 2  is plotted as a function of wavelength (in nm) at two different temperatures T = 

92 and 300 K. We see in Fig. 4 that the amplitude of oscillation of the angle   significantly 

increases as the temperature is lowered from 300 to 92 K, since the amplitude of the tangent of 2  

is proportional to the FE angle F [11].  

Comparing the dependences of angle   on wavelength   measured along the 

crystallographic direction a both for the TbF3 crystal with thickness 1.7 mm (Fig. 4) and for the 

TbAlO3 crystal with thickness 0.145 mm (Fig. 5), one can observe an increase in the oscillation 

period of angle   with a decrease in the crystal thickness. As a result, the FE of TbF3 can be 

calculated from the spectral and temperature dependences of the rotation angles   measured for 

remagnetized crystal along the [100] axis between 430-700 nm, and at temperatures 92 K and 300 

K using the following data processing scheme from [14, 17]. 

For this scheme, it is necessary first to define a spectral dependence of n using the fact that 

the phase shift between neighboring extrema of the spectral dependence of  angle is 180o for 

wavelengths 1 and 2. Then we can obtain from formula (2):  

l
n

)( 12

21





    (3) 

respectively, where l is the crystal thickness. Further, with the use of the relation between the 

Verdet constant V and rotation angle  in the external magnetic field H: 

                        








H

n
V




2
                 (4) 

we can find values of the Verdet constant corresponding to “mean” values of the wavelengths  

from the spectral intervals )( 12   . 

Analysis of the oscillation dependences of the angle   (Fig. 4 and Fig. 5) shows that in the 

TbF3 crystal, the value of the natural birefringence )0186.0( n  remains nearly constant within 

the wavelength range from 430 to 700 nm for temperatures 92 and 300 K. By contrast, in TbAlO3 
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the value n  monotonically decreases (from 0.0155 to 0.014) with increasing wavelength, which is 

in good agreement with similar data in [14].  

It is important to note that because of the relatively weak change in n  with respect to 

changing temperature (92 – 300 K) in the TbF3 crystal, it is not possible to observe a sufficient 

number (at least 5 or 6 are needed) of the oscillation peaks of the angle  (T) needed for reliable 

construction of the temperature dependence of the Verde constant V of this crystal. For example, in 

TbF3 for the wavelength 510  nm within the temperature range 92 – 300 K only three peak 

values of the angle   were found for the crystal thickness 1.7 mm. By contrast, six peak values of 

the angle  (T) at 506  nm were found in a 1.5 mm thick terbium orthoaluminate crystal TbAlO3 

within the same temperature range [17], allowing accurate determination of the temperature 

dependence of the Verde constant V of this crystal. 

The behavior of the spectral- and temperature-dependence of the natural birefringence n  

found in TbF3 and TbAlO3 crystals [14, 17] can be explained as follows. The lattice of TbF3 is 

purely orthorhombic while the lattice of terbium orthoaluminate can be represented as a 

combination of two “quasicubic” sublattices inserted inside each other and forming a perovskite 

structure [19]. Evidently, in TbAlO3 a differing temperature course of the lattice constants of these 

“quasicubic” sublattices leads to the complicated behavior of natural birefringence observed when 

there are changes in both crystal temperature and wavelength.                

The results for the Verdet constant V calculated using formula (4) and the experimental data 

measured in TbF3 along the axis [100] at 92 K and 300 K are presented in Fig. 6. As well as there 

being an increase in oscillation amplitude of the angle  with respect to decreasing sample 

temperature, as shown in Fig. 4, there is also an increase in the Verdet constant V when the 

temperature drops, as shown in Fig. 6. 

 

IV. Faraday rotation and magnetic susceptibility of TbF3 

4.1. Magnetic susceptibility of TbF3  

According to magnetic measurements [2], the Tb3+ ions occupy two crystallographically non-

equivalent positions of monoclinic symmetry [9] in the TbF3 crystal (similar to TbAlO3 

orthoaluminate [3,16]), as presented in the inset of Fig. 7. These positions differ from each other in 

orientation of both the crystalline environment and anisotropy axes (including the magnetic 

anisotropy [2]). 

Since Tb3+ (4f 8) is a non-Kramers ion [3], each 2S+1LJ multiplet splits into (2J+1) non-

degenerate Stark levels (singlets) when the RE ion enters low symmetry (CS) sites in the 

orthorhombic lattice of TbF3. As a result, the magnetization of the non-Kramers RE ion sublattice in 
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the TbF3 structure may arise only when the effect of mixing of Stark level wavefunctions having 

nearly the same energy (called “quasi-doublets” [3, 16]) in an external magnetic field H (the Van-

Vleck mechanism [3]) is taken into account.  

Following from previous results [2], the maximal magnetic susceptibility of the TbF3 crystal 

is observed in the ac plane, where it is strongly anisotropic )( ca   , whereas along the b axis b  

is less than a  and has a Van-Vleck character [3,16]. The similar anisotropic behavior of the TbF3 

magnetic susceptibility is due to the fact that the ground state of the 7F6 multiplet of the Tb3+ in the 

crystalline field CS symmetry is a “quasi-doublet”. It is important to note that this “quasi-doublet” 

state is formed by two Stark sub-levels with nearly identical energy values, but with wave functions 

described by two different irreducible representations of the point group CS: A and B [1,3,16]. 

The Tb3+ ion in TbF3 thus can be treated as an “Ising” ion with its Ising axis taken as the 

magnetic anisotropy axis lying in the ac plane of the orthorhombic crystal, at an angle of  

0
0 28  with respect to the a axis (see inset of Fig. 7). The ± signs belong to two 

crystallographically-nonequivalent sites differing in the orientation of the local axes. We then 

choose the “Ising” axis as the z-axis of the local coordinate system of the Tb3+ ion (located at one of 

the nonequivalent sites) so that the y-axis is parallel to the b ([010]) axis of the orthorhombic 

crystal. In this local coordinate system, the wave functions of the ground “quasidoublet”, which 

have different irreducible representations (irreps.) of the CS group (A and B), can be adequately 

approximated by the following linear combinations of “pure” |J,MJ> states  [2]: 

  6,6|6,6|
2

1
|,| JJ MJMJBA   (5) 

where the top (symmetric) sign of ± refers to the state A and the bottom (antisymmetric) sign refers 

to state B.   

This ground state of the Tb3+ ion in TbF3 leads to the fact that its magnetic moment is in the 

ac plane for any orientation of the external magnetic field and close to a maximally possible value 

Bm 90   along the “Ising” axis [3,16]. On the other hand, the Van-Vleck origin of the magnetic 

susceptibility b  along the b axis can be associated with a “quasi-doublet” state at an energy of 65 

cm-1 in the spectrum of the ground 7F6 multiplet. The wave functions of this first excited “quasi-

doublet” at 65 cm−1 have different symmetries A and B, and the molar magnetic susceptibility along 

the y-axis of the local coordinate system can be represented as [3]: 











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where g0 = 1.5 is the Lande factor of the ground 7F6 multiplet of the Tb3+ ion and NA is Avogadro’s 

number. The molar susceptibility is related to the dimensionless magnetic susceptibility  , as 


 Mm  , where  = 7.23 (g/cm3) is the density and М = 216 g/mole is the molar mass of TbF3. 

The value of the Van-Vleck susceptibility b  can be explained by assuming that the wave 

functions of the first excited “quasi-doublet” at 65 cm-1, |A>, |B> can be written as: 

 5,65,6
2

1
,  JJ MJMJBA    (7) 

In this case, assuming that )1()1(
BA EE   = kBT1 = 65 cm-1, where T1 = 94.5 K and 

)/(
8

1

3
3

2

moleKcm
k

N

B

BA 


, we obtain 
 

1

2

0)()(

8

36

T

gm
VV

m
b    = 0.05414 (cm3/mole), which is in 

good agreement with the experimental data [2] extrapolated to T = 0 K.  

          When the temperature is raised, the behavior of TbF3 magnetic properties becomes 

significantly more complicated. Then in addition to the above-mentioned anisotropy in  , the 

inverse magnetic susceptibility b  is nonlinearly dependent on T, as shown in Fig. 7. A part of the 

nontrivial temperature dependence of b  can be explained by a significant mixing of the wave 

functions |A>, |B> of the first excited “quasi-doublet” at 65 cm-1 with the wave function |B> of the 

Stark singlet lying near 114 cm-1. The wavefuntion for this Stark singlet can be approximated as: 

                                        4,64,6
2

1
 JJ MJMJB                 (8) 

             Another contribution to the temperature dependence of b  is made by the state located at 

190 cm-1, which becomes thermally populated at room temperature. This “quasi-doublet” state is 

formed from two excited Stark singlets whose wave functions transform according to the same irrep 

of the symmetry group CS (A, A). Note that the magnetic moment 1  associated with this state is 

directed along the y-axis of the local coordinate system of the RE ion (i.e., the [010] crystal axis) 

and shows “Ising-like” behavior. According to our estimation, its magnitude is nearly maximal, and 

has a value of 1  8.2 μB.  

         Therefore, if an external field is directed along the [010] axis of the orthorhombic crystal, we 

should take into account not only the mixing between the wavefunctions of the ground “quasi-

doublet” states (A, B) and the first excited “quasi-doublet” states (A, B), but also the mixing 

between the wavefunctions of the first excited “quasi-doublet” states (A, B) with the Stark singlet 

B located near 114 cm-1. Furthermore, the 190 cm-1 “quasidoublet” states (A, A) become 
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populated at higher temperatures, and consequently their contribution to the magnetic moment of 

the Tb3+ ion becomes significant. 

          In accordance with the above-mentioned details, an expression for the transverse molar 

magnetic susceptibility b  that is valid at high temperatures has the form: 

                 










 321
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b                   (9)                                            

where T2 = 164.5 K; 0 , 1 , 2  and 3  are the Boltzmann populations of the ground and first 

excited “quasi-doublet” states at 0 cm-1 and 65 cm-1, the singlet 114 cm-1 state, and the “quasi-

doublet” 190 cm-1 state, respectively. The statistical sum Z0 in the expressions for the Bolzmann 

populations 3,2,1,0  is determined as:  

       
)/443exp()/273exp()/257exp(

)/190exp(2)/181exp()/114exp()/65exp(220
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

     (10) 

The calculated results of the b  temperature dependence obtained from expression (9) are plotted in 

Fig. 7, from which it is seen that the experimental [2] and theoretical values of the transverse 

magnetic susceptibility b  in the investigated temperature range 4.2 – 300 K are in a good 

qualitative agreement.    

 

4.2. Faraday effect of TbF3  

According to Stephens [20], the temperature-dependent contribution to the Faraday effect of 

the non-Kramers RE ion, C
F  (the paramagnetic C-term [15,16]) can arise only if the effect of Van-

Vleck mixing in an external magnetic field H of two close-lying Stark singlets a and b (forming a 

ground-state “quasidoublet”) is taken into account. Then, the expression for the C-term of the FE at 

frequencies  far from the resonance “effective” frequency 0 of the spin- and parity-allowed 

electric-dipole (ED) transitions 4f 5d (or 5g), can be represented as [20]: 


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where YX PP


,  are the operators of the corresponding ED components of the RE ion, Z


 = 

ZB Jg


0  is the operator of the z-projection of the magnetic moment, N is the number of RE ions 

per cm3, and d0 = 2 is the degree of degeneracy of the ground state. The wave functions |a> and |b> 

correspond to the lowest-energy “quasidoublet” Stark sublevels, and |j> is the wave function of the 

Stark singlet of the excited 4f (n-1)5d configuration at which the optical transition with frequency 0 

takes place.  
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Thus, we can see that the “paramagnetic” contribution to the FE measured along the z-axis of 

the local coordinate system is proportional to the product of the matrix elements of the electric-

dipole (ED) transitions between the a, b states of the ground-state “quasidoublet” and the excited 

state j, and the magnetic dipole (MD) transitions between the Stark levels within the “quasidoublet.” 

Based on group theory arguments, one can show that the existence of the Faraday effect in TbF3 

along the [100] axis (i.e., in the ac plane) is connected with the opposite symmetry (A and B) of the 

two sublevels of the ground “quasi-doublet” in the 7F6 multiplet. This observation directly confirms 

the results obtained from the analysis of the magnetic susceptibility of TbF3 performed below, 

where it is shown that the wavefunctions of the ground “quasidoublet” can be approximated by a 

linear combination of pure |J, ±MJ> states |6, ±6> in the local “Ising” coordinate system of the Tb3+ 

ion in TbF3.  

             The Wigner-Eckhart theorem [19] can be used to evaluate the matrix elements in equation 

(11) for the spin- and parity-allowed ED 4f → 5d transitions arising between the ground (L0S0J0) 

multiplet of the 4f (n)-configuration and the (L = L0 – 1, S0) term of the excited 4f (n-1)5d 

configuration of the Tb3+ ion. If the splitting of the sublevels (following the Judd-Ofelt 

approximation [21]) in the summation of formula (11) over the excited states belonging to the 

mixed excited 4f (n-1)5d configuration of RE ion is also neglected, then it is possible to obtain the 

following expression for the “paramagnetic” contribution to the Verdet constant of TbF3: 

             CV = K
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The constant K in equation (12) can be approximated by examining its form in formula (13). For 

example, <r> = (4f|r|5d) is the radial integral for the 4f and 5d states, values of which can be 

modeled [21]; 00

11

LS
LSG = 

7

1
 is the genealogical coefficient (or coefficients of fractional parentage) 

[19]; 








L

LL

21

301  is a 6j-symbol [19], where L0 = 3 and L1 = 0 are the orbital moments of the Tb3+ 

ion the ground term and 4f (n-1) “core”, respectively; L = 2 is the orbital moment of the excited LS0 

term which results from the electrostatic interaction between the 5d electron and the 4f (n-1) “core” 

states of the RE ion. Note that in the approximation of the “average” crystal field [22] in Tb3+, the 

only allowed optical 4f  5d transitions are of the type: L0S0 → (L01)S0 (i.e., transitions from the 

ground term 7F to the excited term 7D). The numerical value for the coefficient K in expressions 
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(12) and (13) is 0.803 radcm-1Oe-1, based on optical and atomic parameters reported in the 

literature for Tb3+ in TbF3 [12,18]. 

These results (as well as those of the orthoaluminate TbAlO3 [14,16,17]) show that the 

spectral dependences )(V  for TbF3 are linear (following expression (12)) in the temperature range 

from 90 to 300 K. A detailed analysis of these dependences by the method described in [14] allows 

determination of the values for the coefficient K = 0.76 radcm-1Oe-1 and the “effective” frequency 

0  = 88.871014 s-1 (corresponding to 0 = 212 nm) of the allowed transitions responsible for the FE 

in TbF3. The difference in numerical and experimentally defined values of coefficient K reflects 

both the uncertainty in the experimental data and the assumptions made in calculating the given 

magneto-optical constant. Processing of the experimental data showed also that the temperature-

independent contribution B to FE for TbF3 is smaller than the experimental error. The above 

conducted analysis as well as the fact that the “effective” frequency in TbF3 is close to the similar 

frequency of the first allowed 4f 5d transitions of RE orthoaluminate TbAlO3 make us conclude 

that the FE of TbF3 in the investigated spectral range is generally due to electric-dipole transitions.  

 

V. Conclusions 

This study of the optical and magnetooptical spectra of the Tb3+ ion in TbF3 allows us to make 

the following conclusions. The optical-quality TbF3 crystals grown from melt by the Bridgman 

technique are single-phase, of structural type β -YF3 (space group Pnma) with lattice parameters a = 

6.5109 Å, b = 6.9482 Å, c = 4.3886 Å. Optical measurements made at low temperature (90 K) 

along the crystallographic axis [100] indicate the energy level structure of the ground 7F6 multiplet 

includes “quasi-doublet” states at energies of 0 cm-1 (A, B), 65 cm-1 (A′, B′) and 190 cm-1 (A″, A‴), 

and also a singlet sublevel 114 cm-1 (B″) that are important for understanding the FE of Tb3+ in 

TbF3. The Van-Vleck’s behavior of the magnetic susceptibility b  can be satisfactory explained by 

the magnetic mixing of the wavefunctions belonging to the ground and first excited “quasidoublet” 

states (lying at 65 cm-1) of the ground 7F6 multiplet of Tb3+ ion in the TbF3 structure. Analysis of the 

oscillation dependences of the rotation angle   shows that in the TbF3 crystal a value of the natural 

birefringence )0186.0( n  remains nearly constant within the wavelength of 430-700 nm for 

temperatures 92 K and 300 K in comparison with TbAlO3 where the value n  monotonically 

changes not only with increasing wavelength, but also with decreasing temperature. As the 

temperature decreases from 300 K down to 92 K, we find significant increases in the oscillation 

amplitude of the rotation angle and in the Verdet constant V. Our  experimental results show that the 

spectral dependences )(V  for TbF3 are linear in the temperature interval 92 – 300 K. Moreover, 

the experimental results allow us to conclude that the MOA of TbF3 in the investigated spectral 
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range is generally caused by the spin- and parity-allowed electric-dipole 4f 5d transitions in the 

Tb3+ ions. 
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Figure captions 

 

Fig. 1.  The optical elements fabricated from grown TbF3 crystals. 

 

Fig. 2. The optical spectra (absorption and luminescence) measured at 92 K in TbF3 for light 

propagated along the crystallographic axis [100] of orthorhombic crystal. Dotted and solid lines 

give the absorption and luminescence spectra, respectively. Absorption peaks indicated by numbers 

1 to 11 correspond to optical transitions originating from sublevels of the ground 7F6 multiplet. 

Luminescence peaks indicated by numbers 1 to 15 correspond to transitions originating from 

sublevels of the excited 5D4 multiplet. 

 

Fig. 3. Schematic diagrams of the optical transitions occurring between Stark components of 

the 7F6 ↔ 5D4 multiplet manifolds of Tb3+ in TbF3.  Numbered absorption transitions given on the 

left panel and luminescence transitions given on the right panel correspond to the numbered peaks 

in the spectra of Fig. 2. 

 

Fig. 4. Spectral dependences of the rotation angle   of the polarization ellipse major axis at 

92 K and 300 K in the TbF3 crystal recorded with a field H = 3 kOe directed along the 

crystallographic axis [100] of the orthorhombic crystal. The crystal thickness is 0.17 cm. 

 

Fig. 5. Spectral dependences of the rotation angle   of the polarization ellipse major axis at 

300 K in the TbAlO3 crystal recorded with a field 7 kOe directed along the crystallographic axis 

[100] of the orthorhombic crystal. The crystal thickness is 0.0145 cm. 
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Fig. 6. Spectral dependences of the Verdet constant measured along the [100] axis of the TbF3 

crystal at 92 K and 300 K. The Inset shows the functional dependence of the /V  ratio on the 

frequency factor  22
0

2 /   .  

 

Fig. 7. Temperature dependence of the inverse molar magnetic susceptibility b  of TbF3 

presented in CGS units (mole/cm3). Experimental data (solid dots) is taken from [2]; theoretical 

values (open dots) are calculated from equation (9) in the text. The Inset is a schematic description 

of the two crystallographically non-equivalent positions (symmetry CS) of Tb3+ ions in TbF3. 
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