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Abstract

Charm production in deep inelastic ep scattering was measured with the ZEUS

detector using an integrated luminosity of 354 pb−1. Charm quarks were identi-

fied by reconstructing D± mesons in the D± → K∓π±π± decay channel. Lifetime

information was used to reduce combinatorial background substantially. Differ-

ential cross sections were measured in the kinematic region 5 < Q2 < 1000GeV2,

0.02 < y < 0.7, 1.5 < pT (D
±) < 15GeV and |η(D±)| < 1.6, where Q2 is the pho-

ton virtuality, y is the inelasticity, and pT (D
±) and η(D±) are the transverse mo-

mentum and the pseudorapidity of the D± meson, respectively. Next-to-leading-

order QCD predictions are compared to the data. The charm contribution, F cc̄
2 ,

to the proton structure-function F2 was extracted.

http://arxiv.org/abs/1302.5058v1
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I. Grabowska-Bo ld13, J. Grebenyuk15, I. Gregor15, G. Grigorescu36, G. Grzelak53, O. Gueta45,

M. Guzik13, C. Gwenlan38,ag, T. Haas15, W. Hain15, R. Hamatsu48, J.C. Hart44, H. Hartmann5,

G. Hartner57, E. Hilger5, D. Hochman55, R. Hori47, A. Hüttmann15, Z.A. Ibrahim10, Y. Iga42,
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1 Introduction

Measurements of charm production in deep inelastic ep scattering (DIS) at HERA provide

powerful constraints on the proton structure. The dominant production mechanism, the

boson-gluon fusion (BGF) process, γg → cc̄, provides direct access to the gluon content

of the proton. As charm-quark production contributes up to 30% of the inclusive DIS

cross sections at HERA, a correct modelling of this contribution in perturbative QCD

(pQCD) calculations is important for determining parton distribution functions (PDFs)

of the proton. One crucial issue is the treatment of charm-quark mass effects.

At HERA, several different charm-tagging techniques have been exploited to measure

charm production in DIS [1–12]. Recently, a combined analysis of these data was per-

formed [13], yielding results with both statistical and systematic uncertainties significantly

reduced. In general, perturbative QCD predictions at next-to-leading order (NLO) are in

reasonable agreement with the measurements. These data have also been used to obtain

a precise determination of the charm-quark mass [13, 14].

In the analysis presented here, a charm quark in the final state was identified by the

presence of a D+ meson1, using the D+ → K−π+π+ decay. The lifetime of D+ mesons

was used to suppress combinatorial background by reconstructing the corresponding sec-

ondary vertex. All data available after the HERA luminosity upgrade were used and this

publication supersedes a previous one [3] which was based on a subset of the data. Three

times more data were analysed for the current paper, with better control of the systematic

uncertainties.

Differential cross sections were measured as a function of the photon virtuality at the

electron vertex, Q2, the inelasticity, y, and the transverse momentum, pT (D
+), and pseu-

dorapidity, η(D+), of the D+ meson . The charm contribution to the proton structure-

function F2, denoted as F cc̄
2 , was extracted from the double-differential cross sections in

Q2 and y. Previous measurements, as well as NLO QCD predictions, are compared to

the data.

2 Experimental set-up

The analysis was performed with data taken from 2004 to 2007, when HERA collided

electrons or positrons with energy Ee = 27.5GeV and protons with Ep = 920GeV, cor-

responding to a centre-of-mass energy
√
s = 318GeV. The corresponding integrated

luminosity was L = 354± 7 pb−1.

1 Charge-conjugate modes are implied throughout the paper.
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A detailed description of the ZEUS detector can be found elsewhere [15]. A brief outline

of the components that are most relevant for this analysis is given below.

In the kinematic range of the analysis, charged particles were tracked in the central

tracking detector (CTD) [16] and the microvertex detector (MVD) [17]. These compo-

nents operated in a magnetic field of 1.43T provided by a thin superconducting solenoid.

The CTD consisted of 72 cylindrical drift-chamber layers, organised in nine superlayers

covering the polar-angle2 region 15◦ < θ < 164◦. The MVD silicon tracker consisted of

a barrel (BMVD) and a forward (FMVD) section. The BMVD contained three layers

and provided polar-angle coverage for tracks from 30◦ to 150◦. The four-layer FMVD

extended the polar-angle coverage in the forward region to 7◦. After alignment, the

single-hit resolution of the MVD was 24µm. The transverse distance of closest ap-

proach (DCA) of tracks to the nominal vertex in XY was measured to have a resolution,

averaged over the azimuthal angle, of (46 ⊕ 122/pT )µm, with pT in GeV. For CTD-

MVD tracks that pass through all nine CTD superlayers, the momentum resolution was

σ(pT )/pT = 0.0029pT ⊕ 0.0081⊕ 0.0012/pT , with pT in GeV.

The high-resolution uranium–scintillator calorimeter (CAL) [18] consisted of three parts:

the forward (FCAL), the barrel (BCAL) and the rear (RCAL) calorimeters. Each part

was subdivided transversely into towers and longitudinally into one electromagnetic sec-

tion (EMC) and either one (in RCAL) or two (in BCAL and FCAL) hadronic sections

(HAC). The smallest subdivision of the calorimeter is called a cell. The CAL energy res-

olutions, as measured under test-beam conditions, are σ(E)/E = 0.18/
√
E for electrons

and σ(E)/E = 0.35/
√
E for hadrons, with E in GeV.

The luminosity was measured using the Bethe-Heitler reaction ep → eγp by a luminosity

detector which consisted of independent lead–scintillator calorimeter [19] and magnetic

spectrometer [20] systems. The fractional systematic uncertainty on the measured lumi-

nosity was 1.9%.

3 Theoretical predictions

Charm production in DIS has been calculated at NLO (O(α2
s)) in the so-called fixed-

flavour-number scheme (FFNS) [21], in which the proton contains only light flavours and

heavy quarks are produced in the hard interaction.

2 The ZEUS coordinate system is a right-handed Cartesian system, with the Z axis pointing in the

proton beam direction, referred to as the “forward direction”, and the X axis pointing towards the

centre of HERA. The coordinate origin is at the nominal interaction point. The pseudorapidity is

defined as η = − ln
(

tan θ

2

)

, where the polar angle, θ, is measured with respect to the proton beam

direction.
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The HVQDIS program [22] has been used to calculate QCD predictions for comparison

to the results of this analysis, as well as to extrapolate the measured visible cross sections

to obtain F cc̄
2 . The renormalisation and factorisation scales were set to µR = µF =

√

Q2 + 4m2
c and the charm-quark pole mass to mc = 1.5GeV. The FFNS variant of

the ZEUS-S NLO QCD PDF fit [23] to inclusive structure-function data was used as the

parametrisation of the proton PDFs. The same charm mass and choice of scales was used

in the fit as in the HVQDIS calculation. The value of αs(MZ) in the three-flavour FFNS

was set to 0.105, corresponding to αs(MZ) = 0.116 in the five-flavour scheme.

To calculate D+ observables, events at the parton level were interfaced with a fragmenta-

tion model based on the Kartvelishvili function [24]. The fragmentation was performed in

the γ∗p centre-of-mass frame. The Kartvelishvili parameter, α, was parametrised [25] as

a smooth function of the invariant mass of the cc̄ system, Mcc̄, to fit the measurements of

the D∗ fragmentation function by ZEUS [26] and H1 [27]: α(Mcc̄) = 2.1+127/(M2
cc̄−4m2

c)

(with mc and Mcc̄ in GeV). In addition, the mean value of the fragmentation function

was scaled down by 0.95 since kinematic considerations [28] and direct measurements at

Belle [29] and CLEO [30] show that, on average, the momentum of D+ mesons is 5%

lower than that of D∗ mesons. This is due to some of the D+ mesons originating from

D∗ decays. For the hadronisation fraction, f(c → D+), the value 0.2297 ± 0.0078 was

used [31], having corrected the branching ratios to those in the PDG 2012 [32].

The uncertainties on the theoretical predictions were estimated as follows:

• the renormalisation and factorisation scales were independently varied up and down

by a factor 2;

• the charm-quark mass was consistently changed in the PDF fits and in the HVQDIS

calculations by ±0.15GeV;

• the proton PDFs were varied within the total uncertainties of the ZEUS-S PDF fit;

• the fragmentation function was varied by changing the functional dependence of the

parametrisation function α(Mcc̄) within uncertainties [25];

• the hadronisation fraction was varied within its uncertainties.

The total theoretical uncertainty was obtained by summing in quadrature the effects of

the individual variations. The dominant contributions originate from the variations of

the charm-quark mass and the scales. In previous studies [13] the uncertainty due to the

variation of αs(MZ) was found to be insignificant and therefore it was neglected here.

A second NLO calculation was used in this analysis. It is based on the general-mass

variable-flavour-number scheme (GM-VFNS) [33]. In this scheme, charm production is

treated in the FFNS in the low-Q2 region, where the mass effects are largest, and in the

zero-mass variable-flavour-number scheme (ZM-VFNS) [34] at high Q2. In the ZM-VFNS,

3



the charm-quark mass is set to zero in the computation of the matrix elements and the

kinematics. Charm is treated as an active flavour in the proton above the kinematic

threshold, Q2 ≈ m2
c . At intermediate scales, an interpolation is made in the GM-VFNS

between the FFNS and the ZM-VFNS, avoiding double counting of common terms.

4 Monte Carlo samples

Monte Carlo (MC) simulations were used to determine detector acceptances and to es-

timate and subtract the contributions of D+ mesons originating from beauty decays.

The MC events were generated with the RAPGAP 3.00 [35] program, interfaced with

HERACLES 4.6.1 [36] to incorporate first-order electroweak corrections. TheRAPGAP

generator uses the leading-order matrix element for the charm and beauty BGF process

and parton showers to simulate higher-order QCD effects. The CTEQ5L [37] PDFs

were used for the proton. The heavy-quark masses were set to mc = 1.5GeV and

mb = 4.75GeV. The heavy-quark fragmentation was modelled using the Lund string

model with the Bowler modifications for the longitudinal component [38].

The generated events were passed through a full simulation of the ZEUS detector based

on GEANT 3.21 [39]. They had then to fulfil the same trigger criteria and pass the same

reconstruction programs as the data.

5 Selection of DIS events

A three-level trigger system [15, 40] was used to select DIS events online. Most of the

first-level triggers (FLTs) used in this analysis had some requirements on the track mul-

tiplicity in the events. The efficiency of these criteria was measured using a trigger

without track requirements and the detector simulation was tuned to match the data.

The trigger-inefficiency corrections for the simulation were between 1 – 10% for different

tracking requirements. The corrections changed the overall efficiency of the triggers used

in the analysis [25] by a negligible amount for medium-Q2 values and up to ≈ 2% for the

low- and high-Q2 regions. At the third trigger level, DIS events were selected by requiring

a scattered electron to be detected in the CAL.

The kinematic variables Q2 and y were reconstructed offline using the double-angle (DA)

method [41], which relies on the angles of the scattered electron and the hadronic final

state. To select a clean DIS sample the following cuts were applied:

• Ee′ > 10GeV, where Ee′ is the energy of the reconstructed scattered electron;
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• Econe
non e′ < 5GeV, where Econe

non e′ is the energy deposit in the CAL in a cone around the

electron candidate, not originating from it. The cone was defined by the criterion
√

∆η2 +∆φ2 < 0.8, where φ is the azimuthal angle;

• for scattered electrons detected in the RCAL, the impact point of the candidate on

the surface of the RCAL was required to lie outside a rectangular region (±13 cm in

X and ±13 cm in Y ) centred on the origin of coordinates;

• 40 < δ < 65GeV, where δ =
∑

i Ei(1 − cos θi) and Ei and θi are the energy and the

polar angle of the i th energy-flow object (EFO) [42] reconstructed from CTD+MVD

tracks and energy clusters measured in the CAL. This cut was imposed to select fully

contained neutral-current ep events, for which δ = 2Ee = 55GeV and to suppress

photoproduction contamination and cosmic-ray background;

• |Zvtx| < 30 cm, where Zvtx is the Z position of the primary vertex;

• yJB > 0.02, where y was reconstructed using the Jacquet-Blondel method [43].

The selected kinematic region was 5 < Q2
DA < 1000GeV2 and 0.02 < yDA < 0.7.

6 Reconstruction of D+ mesons

The D+ mesons were reconstructed using the decay channel D+ → K−π+π+. In each

event, track pairs with equal charges were combined with a third track with the opposite

charge to form D+ candidates. The pion mass was assigned to the tracks with equal

charges and the kaon mass was assigned to the remaining track. The three tracks were then

fitted to a common vertex and the invariant mass, M(Kππ), was calculated. The tracks

were required to have a transverse momentum pT (K) > 0.5GeV and pT (π) > 0.35GeV,

respectively. To ensure high momentum and position resolution, all tracks were required

to be reconstructed within |η| < 1.75, to have passed through at least three superlayers of

the CTD and to have at least two BMVD hits in the XY plane and two in the Z direction.

A special study [44] was performed to assess the tracking inefficiency for charged pions

due to hadronic interactions in the detector material and how well the MC reproduces

these interactions. The MC simulation was found to underestimate the interaction rate by

about 40% for pT < 1.5GeV and to agree with the data for pT > 1.5GeV. A corresponding

correction was applied to the MC. The effect of the correction on the D+ production cross

section was about 3%.

The kinematic region for D+ candidates was 1.5 < pT (D
+) < 15GeV and |η(D+)| < 1.6.

The contribution from D∗+ → D0π+ → K−π+π+ was suppressed by removing combina-

tions with M(Kππ)−M(Kπ) < 0.15GeV. A small contribution from D+
s → φπ+ →

K−K+π+ was suppressed by assuming one of the pions to be a kaon and requiring the

5



invariant mass of the kaon pair to lie outside the φ mass peak region 1.0115 < M(KK) <

1.0275GeV. A remaining reflection from D+
s → K−K+π+ decays without intermediate

φ production was estimated using the RAPGAP MC sample. It was found to be ≈ 1%

and was subtracted from the mass distribution.

A powerful discriminating variable to suppress combinatorial background originating from

light-flavour production is the decay-length significance, Sl. It is defined as Sl = l/σl,

where l is the decay length in the transverse plane, projected on to the D+ meson mo-

mentum, and σl is the uncertainty associated with this distance. The decay length itself

was determined as the distance in XY between the secondary vertex fitted in 3D and the

interaction point. In the XY plane, the interaction point is defined as the position of the

primary vertex determined from selected tracks and using the beam-spot position [3] as

an additional constraint. The widths of the beam spot were 88µm (80µm) and 24µm

(22µm) in the X and Y directions, respectively, for the e+p (e−p) data.

Only candidates with a decay length in the XY plane less than 1.5 cm were selected in

the analysis to ensure that the vertex was inside the beam pipe, suppressing background

caused by interactions in the beam pipe or detector material. The Sl distribution is asym-

metric with respect to zero, with charm mesons dominating in the positive tail. Detector

resolution effects cause the negative tail, which is dominated by light-flavour events. A

smearing [25, 45] was applied to the decay length of a small fraction of the MC events

in order to reproduce the negative decay-length data. Finally, a cut Sl > 4 was applied;

according to MC studies this optimises the statistical precision of the measurement. In

addition, the χ2 of the fitted secondary vertex, χ2
sec.vtx., was required to be less than 10

for three degrees of freedom, to ensure good quality of the reconstructed D+ vertex.

Figure 1 shows the M(Kππ) distribution for the selected D+ candidates. To extract the

number of reconstructed D+ mesons, the mass distribution was fitted with the sum of a

modified Gaussian function for the signal and a second-order polynomial to parametrise

the background. The fit function was integrated over each bin. The modified Gaussian

function had the form:

Gaussmod ∝ exp[−0.5 · x1+1/(1+β·x)],

where x = |(M(Kππ) −M0)/σ| and β = 0.5. This functional form describes the signals

in both the data and MC simulations well. The signal position, M0, the width, σ, as

well as the number of D+ mesons were free parameters in the fit. The number of D+

mesons yielded by the fit was N(D+) = 8356± 198. The fitted position of the peak was

M0 = 1868.97 ± 0.26MeV, where only the statistical uncertainty is quoted, consistent

with the PDG value of 1869.62± 0.15MeV [32].
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7 Cross-section determination

For a given observable, Y , the differential cross section in the i th bin was determined as

dσ

dY
=

N i −N i
b

Ai
cLB∆Y i

· Ci
rad,

where N i is the number of reconstructed D+ mesons in bin i of size ∆Y i. The reconstruc-

tion acceptance, Ai
c, takes into account geometrical acceptances, detector efficiencies and

migrations due to the finite detector resolution. The values of Ai
c were determined using

the RAPGAP MC simulation for charm production in DIS (see Section 4). The quantity

L denotes the integrated luminosity and B the branching ratio for the D+ → K−π+π+

decay channel, which is 9.13 ± 0.19% [32]. The radiative corrections, Ci
rad, were used to

correct measured cross sections to the Born level. For the acceptance determination, the

charm MC events were reweighted [25] to reproduce the Q2, pT (D
+) and η(D+) distribu-

tions in the data.

For all measured cross sections, the contribution of reconstructed D+ mesons originating

from beauty production, N i
b, was subtracted using the prediction from the RAPGAP

MC simulation. This prediction was scaled by a factor 1.6, an average value which was

estimated from previous ZEUS measurements [4,46,47] of beauty production in DIS. The

subtraction of the b-quark contribution reduced the measured cross sections by 5% on

average.

The measured cross sections were corrected to the QED Born level, calculated using

a running coupling constant, α, such that they can be directly compared to the QCD

predictions by HVQDIS. The RAPGAP Monte Carlo was used to calculate Crad =

σBorn/σrad, where σrad is the predicted cross section with full QED corrections (as in the

default MC samples) and σBorn was obtained with QED corrections turned off, keeping α

running. The corrections are typically Crad ≈ 1.02 and reach 1.10 in the high-Q2 region.

Figure 2 shows important variables for the secondary-vertex reconstruction, distributions

for the DIS variables and the kinematics of the D+ meson. For all variables, the number

of reconstructed D+ mesons was extracted fitting the number of D+ mesons in each bin

of the distribution. The reweighted MC provides a reasonable description of the data.

8 Systematic uncertainties

The systematic uncertainties were determined by changing the analysis procedure or vary-

ing parameter values within their estimated uncertainties and repeating the extraction of

the signals and the cross-section calculations. The following sources of systematic uncer-

tainties were considered with the typical effect on the cross sections given in parentheses:
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• {δ1} the cut on the positions |X| and |Y | of the scattered electron in the RCAL was

varied by ±1 cm in both the data and the MC simulations, to account for potential

imperfections of the detector simulation near the inner edge of the CAL (±1%);

• {δ2} the reconstructed electron energy was varied by ±2% in the MC only, to account

for the uncertainty in the electromagnetic energy scale (< 1%);

• {δ3} the energy of the hadronic system was varied by ±3% in the MC only, to account

for the uncertainty in the hadronic energy scale (< 1%);

• {δ4} the FLT tracking-efficiency corrections for the MC (see Section 5) were varied

within the estimated uncertainties associated to them (< 1%);

• uncertainties due to the signal-extraction procedure were estimated repeating the fit

in both the data and the MC using:

- {δ5} an exponential function for the background parametrisation (< 1%);

- {δ6} a signal parametrisation changed by simultaneously varying the β parameter

of the modified Gaussian function in the data and MC by +0.1
−0.2 from the nominal

value 0.5. The range was chosen to cover the values which give the best description

of the mass peaks in the data and MC simulations in bins of the differential cross

sections (+0.7%
−1.5%);

• {δ7} the effect of the decay-length smearing procedure was varied by ±50% of its size,

to estimate the uncertainty due to the decay-length description (±1%). As a further

cross check, the cut on the decay-length significance was varied between 3 and 5. The

resulting variations of the cross sections were compatible with the variation of the

decay-length smearing and were therefore omitted to avoid double counting;

• {δ8} the scaling factor for the MC beauty-production cross sections was varied by ±0.6

from the nominal value 1.6. This was done to account for the range of the RAPGAP

beauty-prediction normalisation factors extracted in various analyses [4,46,47] (±2%);

• the uncertainties due to the model dependence of the acceptance corrections were

estimated by varying the shapes of the kinematic distributions in the charm MC

sample in a range of good description of the data [25]:

- {δ9} the η(D+) reweighting function was varied (±2%);

- {δ10} the shapes of the Q2 and pT (D
+) were varied simultaneously (±4%);

• {δ11} the uncertainty of the pion track inefficiency due to nuclear interactions (see

Section 6) was evaluated by varying the correction applied to the MC by its estimated

uncertainty of ±50% of its nominal size (±1.5%);

• overall normalisation uncertainties:

- {δ12} the simulation of the MVD hit efficiency (±0.9%);
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- {δ13} the effect of the imperfect description of χ2
sec.vtx. was checked by multiplying

χ2
sec.vtx. for D+ candidates in the MC simulations by a factor 1.1 to match the

distribution in the data (+2%);

- {δ14} the branching ratio uncertainty (±2.1%);

- {δ15} the measurement of the luminosity (±1.9%).

The size of each systematic effect was estimated bin-by-bin except for the normalisation

uncertainties (δ12 – δ15). The overall systematic uncertainty was determined by adding

the above uncertainties in quadrature. The normalisation uncertainties due to the lumi-

nosity measurement and that of the branching ratio were not included in the systematic

uncertainties on the differential cross sections.

9 Results

9.1 Cross sections

The production of D+ mesons in the process ep → e′cc̄X → e′D+X ′ (i.e. not including

D+ mesons from beauty decays) was measured in the kinematic range:

5 < Q2 < 1000GeV2, 0.02 < y < 0.7, 1.5 < pT (D
+) < 15GeV, |η(D+)| < 1.6.

The differential cross sections as a function of Q2 and y are shown in Fig. 3. The cross

section falls by about three orders of magnitude over the measured Q2 range and one order

of magnitude in y. The data presented here are in good agreement with the previous ZEUS

D+ measurement3 [3]. They have significantly smaller uncertainties and supersede the

previous results. The NLO QCD predictions calculated in the FFNS, using HVQDIS [23],

provide a good description of the measurements. The experimental uncertainties are

smaller than the theoretical uncertainties, apart from the high-Q2 region, where statistics

is limited.

Figure 4 shows that the D+ cross section also falls with the transverse momentum,

pT (D
+), but is only mildly dependent on the pseudorapidity, η(D+). The HVQDIS cal-

culation describes the behaviour of the data well. The results shown in Figs. 3 and 4 are

listed in Tables 1 and 2.

Figure 5 shows the differential cross sections as a function of y in five Q2 ranges. The

data are well reproduced by the HVQDIS calculation. The cross-section values are given

3 The contribution of D+ mesons from beauty decays was subtracted using the scaled RAPGAP MC

predictions.
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in Table 3. The effects of individual sources of systematic uncertainties (described in

Section 8) on the cross sections in bins of Q2 and y are given in Table 4.

9.2 Extraction of F cc̄
2

The inclusive double-differential cc̄ cross section in Q2 and x = Q2/sy can be expressed

as
dσcc̄

dx dQ2
=

2πα2

xQ4

[

(1 + (1− y)2)F cc̄
2 − y2 F cc̄

L

]

,

where F cc̄
2 and F cc̄

L denote the charm contributions to the structure-function F2 and the

longitudinal structure function, FL, respectively.

The differential D+ cross sections, σi,meas, measured in bins of Q2 and y (Table 3), were

used to extract F cc̄
2 at reference points Q2

i and xi within each bin, using the relationship

F cc̄
2,meas(xi, Q

2
i ) = σi,meas

F cc̄
2,theo(xi, Q

2
i )

σi,theo
, (1)

where F cc̄
2,theo and σi,theo were calculated at NLO in the FFNS using theHVQDIS program.

This procedure corrects for the f(c → D+) hadronisation fraction and for the extrapola-

tion from the restricted kinematic region of theD+ measurement (1.5 < pT (D
+) < 15GeV,

|η(D+)| < 1.6) to the full phase space. The extrapolation factors were found to vary from

1.5 at high Q2 to 3.0 at low Q2. The uncertainty on the extrapolation procedure was

estimated by applying the same variations that were used to determine the uncertainty

of the HVQDIS theoretical predictions (see Section 3) for the ratio F cc̄
2,theo(xi, Q

2
i )/σi,theo

and adding the resulting ratio uncertainties in quadrature. The procedure of Eq. (1) also

corrects for the FL contribution to the cross section. This assumes that the HVQDIS

calculation correctly predicts the ratio F cc̄
L /F cc̄

2 . This calculation yields a contribution of

F cc̄
L between 0% and 3% at low and high y, respectively.

The extracted values of F cc̄
2 are presented in Table 5 and Fig. 6. Figure 6 also shows

a comparison to a previous ZEUS measurement of F cc̄
2 using D∗ mesons [2]. The previ-

ous results were corrected to the Q2 grid used in the present analysis using NLO QCD

calculations. The two measurements are in good agreement and have similar precision.

NLO QCD predictions in the FFNS and GM-VFNS were also compared to the data.

The FFNS predictions correspond to the calculations that were used in the F cc̄
2 extrac-

tion. The GM-VFNS calculations are based on the HERAPDF1.5 [48] PDF set with the

charm-quark-mass parameter set to 1.4GeV. The band shows the result of the variation

of the charm-quark-mass parameter from 1.35GeV to 1.65GeV in the calculations. Both

predictions provide a good description of the data.
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9.3 Reduced cross section

The results on D+ presented here can be combined with other measurements on charm

production. Their systematics are largely independent of those using other tagging meth-

ods. In such combinations, the quantity used is the reduced charm cross section, defined

as

σcc̄
red =

dσcc̄

dx dQ2
· xQ4

2πα2 (1 + (1− y)2)
= F cc̄

2 − y2

1 + (1− y)2
F cc̄
L .

The extraction of σcc̄
red closely follows the determination of F cc̄

2 ; a modified version of

Eq. (1) is used, simply replacing on both sides the structure function by the reduced cross

section. The reduced cross sections of the present analysis are corrected to the same Q2

values as in the charm combination paper of H1 and ZEUS [13] and are presented in

Table 6.

10 Conclusions

The production of D+ mesons has been measured in DIS at HERA in the kinematic

region 5 < Q2 < 1000GeV2, 0.02 < y < 0.7, 1.5 < pT (D
+) < 15GeV and |η(D+)| < 1.6.

The present results supersede the previous ZEUS D+ measurement based on a subset

of the data used in this analysis. Predictions from NLO QCD describe the measured

cross sections well. The charm contribution to the structure-function F2 was extracted

and agrees with that extracted from previous D∗ measurements. NLO QCD calculations

describe the data well.

The results presented here are of similar or higher precision than measurements previously

published by ZEUS. The new precise data provide an improved check of pQCD and have

the potential to constrain further the parton densities in the proton.
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Q2 dσ/dQ2 ∆stat ∆syst Crad dσb/dQ
2

(GeV2) ( nb/GeV2) ( nb/GeV2)

5 : 10 0.382 ±0.022 +0.027
−0.017 1.018 0.007

10 : 20 0.150 ±0.007 +0.008
−0.010 1.016 0.003

20 : 40 0.047 ±0.003 +0.003
−0.004 1.020 0.002

40 : 80 0.0108 ±0.0008 +0.0008
−0.0009 1.025 0.0006

80 : 200 0.00192 ±0.00020 +0.00014
−0.00016 1.042 0.00016

200 :1000 0.000088 ±0.000021 +0.000006
−0.000007 1.113 0.000013

y dσ/dy ∆stat ∆syst Crad dσb/dy

( nb) ( nb)

0.02: 0.1 16.9 ±0.9 +0.9
−0.8 1.038 0.1

0.1 : 0.2 13.4 ±0.6 +0.5
−0.5 1.022 0.3

0.2 : 0.3 8.5 ±0.5 +0.4
−0.4 1.025 0.3

0.3 : 0.4 6.2 ±0.5 +0.3
−0.3 1.016 0.3

0.4 : 0.5 4.0 ±0.4 +0.3
−0.2 1.008 0.2

0.5 : 0.7 2.2 ±0.3 +0.2
−0.2 0.999 0.2

Table 1: Bin-averaged differential cross sections for D+ production in the process
ep → e′cc̄X → e′D+X ′ in bins of Q2 and y. The cross sections are given in the
kinematic region 5 < Q2 < 1000GeV 2, 0.02 < y < 0.7, 1.5 < pT (D

+) < 15GeV
and |η(D+)| < 1.6. The statistical and systematic uncertainties, ∆stat and ∆syst,
are presented separately. Normalisation uncertainties of 1.9% and 2.1% due to the
luminosity and the branching-ratio measurements, respectively, were not included
in ∆syst. The correction factors to the QED Born level, Crad are also listed. For
reference, the beauty cross section predicted by RAPGAP and scaled as described
in the text, σb, are also shown.
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pT (D
+) dσ/dpT (D

+) ∆stat ∆syst Crad dσb/dpT (D
+)

(GeV) ( nb/GeV) ( nb/GeV)

1.5 : 2.4 2.40 ±0.26 +0.14
−0.12 1.016 0.07

2.4 : 3 1.44 ±0.12 +0.07
−0.05 1.020 0.05

3 : 4 1.00 ±0.05 +0.04
−0.04 1.023 0.03

4 : 6 0.396 ±0.017 +0.014
−0.013 1.029 0.011

6 : 15 0.0349 ±0.0018 +0.0011
−0.0010 1.054 0.0011

η(D+) dσ/dη(D+) ∆stat ∆syst Crad dσb/dη(D
+)

( nb) ( nb)

−1.6:−0.8 1.04 ±0.09 +0.06
−0.06 1.034 0.02

−0.8:−0.4 1.67 ±0.10 +0.06
−0.06 1.025 0.05

−0.4: 0.0 1.70 ±0.10 +0.07
−0.05 1.023 0.05

0.0 : 0.4 1.63 ±0.10 +0.07
−0.07 1.017 0.06

0.4 : 0.8 1.84 ±0.12 +0.07
−0.08 1.013 0.06

0.8 : 1.6 1.81 ±0.16 +0.09
−0.09 1.016 0.05

Table 2: Bin-averaged differential cross sections for D+ production in the process
ep → e′cc̄X → e′D+X ′ in bins of pT (D

+) and η(D+). Other details are as in
Table 1.
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Bin Q2 y dσ/dy ∆stat ∆syst Crad dσb/dy

(GeV2) ( nb) ( nb)

1

5 : 9

0.02 : 0.12 5.46 ±0.59 +0.46
−0.30 1.026 0.04

2 0.12 : 0.32 3.40 ±0.31 +0.29
−0.16 1.022 0.06

3 0.32 : 0.7 1.18 ±0.17 +0.10
−0.08 1.006 0.04

4

9 : 23

0.02 : 0.12 7.02 ±0.45 +0.46
−0.49 1.028 0.05

5 0.12 : 0.32 3.72 ±0.23 +0.21
−0.26 1.017 0.09

6 0.32 : 0.7 1.36 ±0.14 +0.09
−0.10 0.998 0.06

7

23 : 45

0.02 : 0.12 2.84 ±0.27 +0.19
−0.22 1.040 0.03

8 0.12 : 0.32 1.63 ±0.12 +0.10
−0.12 1.020 0.05

9 0.32 : 0.7 0.609 ±0.097 +0.047
−0.053 1.009 0.035

10

45 : 100

0.02 : 0.12 1.14 ±0.18 +0.09
−0.10 1.046 0.03

11 0.12 : 0.32 0.867 ±0.083 +0.063
−0.074 1.024 0.050

12 0.32 : 0.7 0.313 ±0.052 +0.032
−0.037 1.012 0.033

13
100 : 1000

0.02 :0.275 0.560 ±0.085 +0.031
−0.038 1.117 0.033

14 0.275: 0.7 0.231 ±0.039 +0.020
−0.022 1.030 0.035

Table 3: Bin-averaged differential cross sections for D+ production in the process
ep → e′cc̄X → e′D+X ′ as a function of y in five regions of Q2. Other details are
as in Table 1.
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Bin δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10 δ11

1 +6.4%
−0.0%

0.0%
0.0%

−0.9%
+0.9%

−0.3%
+0.3%

+1.3%
−0.0%

+0.5%
−1.5%

−0.3%
+0.3%

+0.9%
−0.9%

−3.6%
+3.6%

+2.4%
−3.1%

+1.7%
−1.7%

2 +7.6%
−1.8%

−0.1%
+0.0%

+0.3%
−0.0%

−1.3%
+1.3%

+0.1%
−0.0%

+0.9%
−2.4%

−0.2%
+0.2%

+1.4%
−1.4%

+0.9%
−0.9%

+1.8%
−2.3%

+1.6%
−1.6%

3 +4.9%
−0.0%

+0.2%
−0.0%

+0.6%
−0.5%

−1.6%
+1.6%

+0.5%
−0.0%

+1.0%
−2.4%

−0.6%
+0.6%

+2.2%
−2.2%

+5.0%
−5.0%

+2.0%
−2.6%

+1.6%
−1.6%

4 +1.5%
−0.0%

0.0%
0.0%

−0.1%
+0.3%

−0.2%
+0.2%

+2.1%
−0.0%

+0.4%
−1.0%

−0.1%
+0.1%

+0.7%
−0.7%

−2.3%
+2.3%

+4.8%
−6.1%

+1.6%
−1.6%

5 −0.6%
+0.0%

0.0%
0.0%

−0.1%
+0.3%

−1.1%
+1.1%

+0.3%
−0.0%

+0.8%
−2.2%

−0.2%
+0.2%

+1.1%
−1.1%

+0.4%
−0.4%

+4.7%
−6.0%

+1.5%
−1.5%

6 +0.3%
−0.0%

−1.6%
+2.2%

−0.2%
+0.1%

−1.2%
+1.2%

+0.2%
−0.0%

+0.7%
−1.6%

−1.3%
+1.3%

+2.3%
−2.3%

+3.7%
−3.7%

+3.4%
−4.3%

+1.6%
−1.6%

7 +0.0%
−0.2%

0.0%
0.0%

−0.4%
+0.3%

−0.1%
+0.1%

+0.6%
−0.0%

+0.5%
−1.4%

+0.1%
−0.1%

+0.8%
−0.8%

−2.3%
+2.3%

+5.5%
−7.1%

+1.5%
−1.5%

8 0.0%
0.0%

0.0%
0.0%

−0.2%
+0.4%

−0.3%
+0.3%

+0.6%
−0.0%

+0.1%
−0.2%

−0.6%
+0.6%

+2.7%
−2.7%

0.0%
0.0%

+5.0%
−6.5%

+1.3%
−1.3%

9 +0.0%
−0.6%

−1.5%
+1.3%

+1.4%
−0.0%

−0.1%
+0.1%

−0.6%
+0.0%

+0.8%
−2.1%

−0.2%
+0.2%

+3.7%
−3.7%

+2.8%
−2.8%

+5.2%
−6.7%

+1.5%
−1.5%

10 0.0%
0.0%

0.0%
0.0%

−0.9%
+0.4%

0.0%
0.0%

+2.7%
−0.0%

+0.8%
−2.1%

−0.1%
+0.1%

+0.9%
−0.9%

−1.8%
+1.8%

+6.1%
−7.8%

+1.3%
−1.3%

11 −0.0%
+0.1%

0.0%
0.0%

−0.6%
+0.4%

0.0%
0.0%

+1.1%
−0.0%

+0.2%
−0.6%

−0.1%
+0.1%

+2.6%
−2.6%

−0.3%
+0.3%

+6.1%
−7.9%

+1.1%
−1.1%

12 +0.0%
−0.3%

−1.4%
+0.2%

+1.0%
−0.0%

0.0%
0.0%

+0.4%
−0.0%

+0.5%
−1.2%

−0.6%
+0.6%

+5.2%
−5.2%

+2.3%
−2.3%

+7.9%
−10.1%

+1.3%
−1.3%

13 +0.0%
−0.5%

0.0%
0.0%

−0.3%
+0.7%

0.0%
0.0%

−0.1%
+0.0%

+1.3%
−3.2%

0.0%
0.0%

+2.6%
−2.6%

−1.5%
+1.5%

+3.8%
−4.9%

+1.0%
−1.0%

14 −0.0%
+0.1%

−1.2%
+0.0%

−1.3%
+0.9%

−0.5%
+0.5%

+0.2%
−0.0%

+0.5%
−1.3%

−0.2%
+0.2%

+5.5%
−5.5%

+0.5%
−0.5%

+5.8%
−7.5%

+1.0%
−1.0%

Table 4: Contributions of individual sources of systematics for the differential
cross sections in bins of y in five ranges of Q2. The first column gives the bin
number that is consistent with Table 3. The systematic variation numbering is
consistent with Section 8. Normalisation uncertainties δ12 – δ15 are not shown.
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Q2 x F cc̄
2 ∆stat ∆syst ∆theo

(GeV2)

6.5

0.00016 0.238 ±0.033 +0.020
−0.017

+0.033
−0.041

0.00046 0.147 ±0.013 +0.013
−0.007

+0.023
−0.013

0.00202 0.073 ±0.008 +0.006
−0.004

+0.010
−0.009

20.4

0.0005 0.363 ±0.037 +0.025
−0.025

+0.032
−0.049

0.00135 0.209 ±0.013 +0.012
−0.014

+0.015
−0.013

0.0025 0.170 ±0.011 +0.011
−0.012

+0.017
−0.012

35

0.0008 0.377 ±0.060 +0.029
−0.033

+0.023
−0.027

0.0014 0.275 ±0.021 +0.017
−0.020

+0.016
−0.014

0.0034 0.211 ±0.020 +0.014
−0.017

+0.013
−0.020

60

0.0015 0.265 ±0.044 +0.027
−0.032

+0.015
−0.013

0.0032 0.212 ±0.020 +0.015
−0.018

+0.010
−0.010

0.008 0.138 ±0.022 +0.010
−0.012

+0.013
−0.009

200
0.005 0.215 ±0.036 +0.018

−0.021
+0.013
−0.008

0.013 0.175 ±0.026 +0.010
−0.012

+0.011
−0.008

Table 5: The values of F cc̄
2 at each Q2 and x. The statistical (∆stat), systematic

(∆syst) and theoretical (∆theo) uncertainties are given separately. Further uncer-
tainties of 1.9% and 2.1% due to the luminosity and the branching-ratio measure-
ments, respectively, were not included in ∆syst. The theoretical uncertainty, ∆theo,
represents the uncertainty due to the extrapolation.
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Q2 x σcc̄
red ∆stat ∆syst ∆theo

(GeV2) ( nb)

7

0.00016 0.249 ±0.035 +0.021
−0.017

+0.034
−0.043

0.00046 0.155 ±0.014 +0.013
−0.007

+0.025
−0.013

0.00202 0.077 ±0.008 +0.007
−0.004

+0.011
−0.009

18

0.0005 0.336 ±0.034 +0.023
−0.024

+0.029
−0.045

0.00135 0.198 ±0.012 +0.011
−0.014

+0.014
−0.012

0.0025 0.161 ±0.010 +0.011
−0.011

+0.017
−0.012

32

0.0008 0.352 ±0.056 +0.027
−0.031

+0.022
−0.025

0.0014 0.263 ±0.020 +0.017
−0.019

+0.015
−0.013

0.0034 0.203 ±0.020 +0.013
−0.016

+0.013
−0.019

60

0.0015 0.259 ±0.043 +0.026
−0.031

+0.015
−0.013

0.0032 0.211 ±0.020 +0.015
−0.018

+0.010
−0.010

0.008 0.138 ±0.022 +0.010
−0.012

+0.013
−0.009

200
0.005 0.210 ±0.035 +0.018

−0.020
+0.013
−0.008

0.013 0.175 ±0.026 +0.010
−0.012

+0.011
−0.008

Table 6: The values of reduced cross sections, σcc̄
red, as a function of Q2 and x.

Other details are as in Table 5.
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Figure 1: Mass distribution of the reconstructed D+ candidates. The solid curve
represents a fit by the sum of a modified Gaussian for the signal and a second-order
polynomial for the background.

21



ZEUS

lS
0 2 4 6 8 10 12 14 16 18 20

l
S∆

) 
/ 

+
N

(D
∆

0

1

2

3

4

5

310×

-1 354 pb+ZEUS D

RAPGAP c,b

RAPGAP b

sec.vtx.
2χ

0 2 4 6 8 10 12 14 16 18 20
se

c.
vt

x.
2 χ

∆
) 

/ 
+

N
(D

∆
0.0

0.5

1.0

1.5

2.0

310×

) (GeV)+(D
T

p
2 4 6 8 10 12 14

)
-1

 
) 

(G
eV

+
(D

Tp∆
) 

/ 
+

N
(D

∆

0.0

0.5

1.0

1.5

2.0

310×

)+ (Dη
-1.5 -1 -0.5 0 0.5 1 1.5

)+
 (

D
η

∆
) 

/ 
+

N
(D

∆

0

1

2

3

4

5
310×

)2 (GeV
DA
2Q

10 210 310

)
-2

 (
G

eV
D

A
2

Q
∆

) 
/ 

+
N

(D
∆

-110

1

10

210

DA
y

0.1 0.2 0.3 0.4 0.5 0.6 0.7

D
A

y∆
) 

/ 
+

N
(D

∆

0

10

20

30

310×

(a) (b)

(c) (d)

(e) (f)

Figure 2: Bin-averaged differential D+ distributions of (a) Sl , (b) χ2
sec.vtx.,

(c) pT (D
+), (d) η(D+), (e) Q2

DA, (f) yDA. The Sl and χ2
sec.vtx. distributions are

shown before the final selection cuts indicated by vertical arrows. The data are
shown as black points, with bars representing the statistical uncertainty. Also shown
are the simulated charm+beauty MC distributions (light shaded area). The beauty
contribution (dark shaded area) is shown separately. The sum of the charm+beauty
MC simulations was normalised to the data area.
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Figure 3: Bin-averaged differential cross sections for D+ meson production in
the process ep → e′cc̄X → e′D+X ′ as a function of (a) Q2 and (b) y. The cross
sections are given in the kinematic region 5 < Q2 < 1000GeV 2, 0.02 < y < 0.7,
1.5 < pT (D

+) < 15GeV and |η(D+)| < 1.6. The results obtained in this analy-
sis are shown as filled circles. The inner error bars correspond to the statistical
uncertainty, while the outer error bars represent the statistical and systematic un-
certainties added in quadrature. For the cross section as a function of Q2, the
results of the previous ZEUS measurement are also shown (open triangles). The
solid lines and the shaded bands represent the NLO QCD predictions in the FFNS
with estimated uncertainties.
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Figure 4: Bin-averaged differential cross sections for D+ meson production in
the process ep → e′cc̄X → e′D+X ′ as a function of (a) pT (D

+) and (b) η(D+).
Other details are as in Fig. 3.
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Figure 5: Bin-averaged differential cross sections for D+ meson production
in the process ep → e′cc̄X → e′D+X ′ as a function of y in different Q2

ranges: (a) 5 < Q2 < 9GeV 2, (b) 9 < Q2 < 23GeV 2, (c) 23 < Q2 < 45GeV 2,
(d) 45 < Q2 < 100GeV 2 and (e) 100 < Q2 < 1000GeV 2. Other details are as in
Fig. 3.
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Figure 6: Structure-function F cc̄
2 as a function of x for various values of Q2.

Results obtained in this analysis are shown as filled squares. Also shown are the
results of a previous F cc̄

2 measurement by ZEUS (open points) based on D∗ produc-
tion. The inner error bars correspond to the statistical uncertainty, while the outer
error bars represent the statistical, systematic and theoretical uncertainties added in
quadrature. Also shown are predictions in the GM-VFNS based on HERAPDF1.5
with the charm-quark-mass parameter set to 1.4GeV for the central value (solid
line) and its variation in the range 1.35GeV to 1.65GeV (filled band). Predictions
in the FFNS based on the ZEUS-S PDF set with the default settings described in
the text are shown as well (dashed line).
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