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Abstract 

The objective of the study was to use time series forecasting techniques to model Windhoek 

rainfall based on secondary monthly data from 1891 to 2011. Descriptive summary statistics in 

the form of measures of centrality and dispersion, time series plots, and autocorrelation functions 

were generated using R time series statistical software. The Box Jenkin’s ARIMA modelling 

procedure (model identification, model estimation, model validation) was used to determine the 

best models for the data. Model diagnostics based on residual analysis were performed to assess 

the adequacy of the identified models. The final model was then used to forecast monthly rainfall 

for Windhoek up to year 2047. The forecast values suggest that for instance in the 2046/47 , the 

winter season monthly rainfall point estimates are around 15mm (June 14.5mm; July 14.5 mm; 

and August 14.3mm) which can technically be higher than expected. However, the lower 95% 

confidence limits for the same winter months are zero highlighting the possibility of no rainfall 

during those periods. Based on the ARIMA modelling of the Windhoek rainfall, despite the 

seasonal and irregular fluctuations, the mean monthly rainfall levels did not suggest an upward 

or downward trend over the century. Even though the results indicate constant mean monthly 

rainfall, the limitation of the results is that the analysis is based on a small spatial area to 

completely rule out climate change effects. Therefore, more adaptive governance initiatives 

should be explored on the available secondary sources for water security and the sustainable 

development of the USB.  

 

1. Introduction 

Times series analysis plays a significant role in modelling meteorological data such as 

humidity, temperature, rainfall and other environmental variables (Collischonn et al., 2005; 

Hung et al., 2009; Meher & Jha, 2013; Kanna et al., 2010; Mahsin et al., 2012; Ansari, 2013; 

Htike & Khalifa, 2010). Rainfall forecasting is crucial for making important decisions and 

performing strategic planning. The ability to predict and forecast rainfall quantitatively guides 

the management of water related problems such as extreme rainfall conditions like floods and 

droughts among other issues (Htike & Khalifa, 2010; Ansari, 2013; Kanna et al., 2010; Meher & 

Jha, 2013). 

Therefore, predicting hydrological variables like rainfall, floodstream and run-off flow as 

probabilistic events is a key subject in water resources planning. These hydrological variables are 

usually measured longitudinally across time. This makes times series analysis of their 

occurrences in discrete time appropriate for monitoring and simulating their hydrological 

behaviours (Ansari, 2013). Rainfall is among the sophisticated and challenging components of 
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the hydrological cycle to model and forecast because of various dynamic and environmental 

factors and random variations both spatially and temporally (Htike & Khalifa., 2010).  

Time Series Analysis 

A time series analysis often exhibits four main components such as trends, seasonality, 

cycles and irregular fluctuations. Trends are the long term underlying movements representing 

growth or decline in a time series over an extended period of time due to natural, human, 

economic and other processes. They are usually described by a smooth, continuous curve or a 

straight line. Trends can be captured using times series regression, double exponential smoothing 

and moving average methods. Seasonal variations are fluctuations in a time series that are 

repeated at regular short intervals usually within a year (e.g. daily, weekly, monthly, quarterly). 

These variations are usually due to recurring environmental influences such as climatic 

conditions (seasons and climate change, Wegner, 2010).  Seasonal patterns are usually measured 

using index numbers, which can be very useful in the estimation of short term forecasts. Cyclical 

variations are wavelike fluctuations around a trend which can vary substantially in duration and 

amplitude, suggesting possible existence of periodicity with longer intervals. To a limited extent, 

index numbers can also be used to measure cyclical fluctuations in terms of the phase of the 

cycle through which a particular time series is moving and this can be used to adjust forecasts 

and to account for the likely influence of cyclical forces. Irregular fluctuations are the residuals 

after other components of the time series have been removed. Causes of irregular components 

are generally unpredictable once-off events such as natural disasters (floods, droughts, fires) or 

man-made disasters (strikes, boycotts, accidents, and acts of violence, Wegner, 2010).  

Time series decomposition facilitates the separation of the components either additively or 

multiplicatively. Additive time series decomposition is according to the model given in Equation 

1, while multiplicative decomposition is according to the model given in Equation 2 

𝒀𝒕 = 𝑻𝒕 + 𝑺𝒕 + 𝑪𝒕 + 𝑰𝒕     Equation 1 

 

𝒀𝒕 = 𝑻𝒕. 𝑺𝒕. 𝑪𝒕. 𝑰𝒕      Equation 2 

 

where 𝑌𝑡 is the observed time series, 𝑇𝑡 is the trend component, 𝑆𝑡 is the seasonal component,  𝐶𝑡 

is the cyclical component, and 𝐼𝑡 is the irregular component. 

Among the popular statistical techniques used for rainfall forecasting are the Box-Jenkins 

Auto-regressive Moving Average (ARIMA) models ARIMA models possess many desirable 

features. They allow the analyst who has observations only on past years (e.g. historical data on 

rainfall) to forecast future events without having to search for other related time series data (e.g. 

temperature). ARIMA models have been widely applied in a variety of water and environmental 

management applications (Otok & Suhartono, 2009; Rabenja et al., 2009; Mauludiyanto et al., 

2010; Abudu et al., 2010; Turalam & Ilahee, 2010; Chattopadhyay & Chattopadyay, 2010; 

Shamsinia et al., 2011; Babu et al., 2011; Mahsin et al., 2012).  

If historical data on the dependent variable (e.g. water demand) is available, ARIMA 

models can be employed for analysis and forecasting as they account for autocorrelation in the 

water demand time series and use the previous period’s value (day, week, month or year) as an 

independent variable.  

An autoregressive model of order p is conventionally classified as AR (p) and a moving 

average model with q terms is known as an MA (q). A combined model that contains p 

autoregressive terms and q moving average terms is called ARMA (p,q). If the object series is 
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differenced d times to achieve stationarity, the model is classified as ARIMA (p,d,q) where the 

letter “I” stands for “Integrated”. This means that an ARIMA model is a combination of an 

autoregressive (AR) process and a moving average (MA) process applied to a non-stationary 

data series (Mahsin et al., 2012; Jakasa et al., 2011; Meher & Jha, 2013). Thus the general non-

seasonal ARIMA (p,d,q) model as given in Equation 3 is composed of : 

AR:p=order of the autoregressive part,  

I: d=degree of differencing involved and, 

MA: q=order of the moving average part. 

𝒀𝒕 = 𝒄 + ∅𝟏𝒀𝒕−𝟏 + ∅𝟐𝒀𝒕−𝟐 + ⋯ + ∅𝒑𝒀𝒕−𝒑 + 𝒆𝒕 − 𝝑𝟏𝒆𝒕−𝟏 − 𝝑𝟐𝒆𝒕−𝟐 − ⋯ − 𝝑𝒒𝒆𝒕−𝒒 

Equation 3 

 

The same equation can also be presented using the backshift notation as given in Equation 4: 

(𝟏 − ∅𝟏𝑩 − ∅𝟐𝑩𝟐 − ⋯ − ∅𝒑𝑩𝒑)𝒀𝒕 = 𝒄 + (𝟏 − 𝝑𝟏𝑩 − 𝝑𝟐𝑩𝟐 − ⋯ − 𝝑𝒒𝑩𝒒)   

       Equation 4 

 

Where for both equations, c= constant term, ∅𝑖 =ith autoregressive parameter, 𝜗𝑗 =jth 

moving average parameter, 𝑒𝑡 is the error term at time t, and 𝐵𝑘 is the kth order backward shift 

operator.  

Further to the non-seasonal ARIMA (p,d,q), one can identify Seasonal ARIMA(P,D,Q) 

parameters for the time series data known as SARIMA. These parameters are seasonal 

autoregressive (P), seasonal differencing (D) and seasonal moving average (Q). The general form 

of the SARIMA(p,d,q)(P,D,Q)s model using the backshift notation is given by equation 5. 

∅𝑨𝑹(𝑩𝒔𝑨𝑹)(𝑩𝒔)(𝟏 − 𝑩)𝒅(𝟏 − 𝑩𝒔)𝑫𝒀𝒕 = 𝝑𝑴𝑨(𝑩)𝝑𝒔𝑴𝑨(𝑩𝒔)𝒆𝒕 Equation 5 

 

where s = number of periods per season; 

∅𝐴𝑅 = non-seasonal autoregressive parameter 

𝜗𝑀𝐴 = non-seasonal moving average parameter 

𝜗𝑠𝑀𝐴 = seasonal moving average parameter 

The Box-Jenkins methodology applies ARMA, ARIMA or SARIMA to establish the best 

fit of a time series historical values to make forecasts. The methodology consists of four stages 

namely model identification, estimation of model parameters, diagnostic checking for the 

identified model appropriateness for modelling, and application of the model (i.e. forecasting). 

Model identification involves testing whether the time series is stationary and if there is 

significant seasonality to be modelled. The data can be examined to check for the most 

appropriate class of ARIMA processes by selecting the order of the successive seasonal 

differencing required to make the series stationary as well as the specification of the order or 

regular and Seasonal Autoregressive Integrated Moving Average (SARIMA) polynomial 

required to sufficiently represent the time series model. The autocorrelation function (ACF) and 

the partial autocorrelation function (PACF) are the most important tools for time series analysis 

and forecasting. The ACF quantifies the extent of linear dependence between time series 

observations separated by lag k. The PACF plot is used to determine how many auto regressive 

terms are necessary to reveal one or more of the following characteristics: time lags where high 

correlations appear; seasonality of the series; and the trends either in the means or variances of 

the series. Stationarity of data can be assessed by the Ljung-Box test with test statistic as given 

by Equation 6. 
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𝑸 = 𝒏(𝒏 + 𝟐) ∑
𝒓𝒌

𝟐

𝒏−𝒌

𝒏
𝒌=𝟏              ~    ᵡ𝒉−𝒎

𝟐 Equation 6 

where 

𝑟𝑘 is the autocorrelation at lag k 

h is the maximum lag being considered 

n is the sample size 

m is the number of parameters in the model which has been fitted to the data. 

 

The Akaike Information Criterion (AIC) is mostly used to choose the best model from among 

competing models and is given by Equation 7. 

𝑨𝑰𝑪 = −𝟐 𝐥𝐨𝐠(𝑳) + 𝟐(𝒑 + 𝒒 + 𝑷 + 𝑸 + 𝒌)    Equation 7 

 

The model which has the minimum AIC is considered the best model (Mahsin et al., 2012). 

When the most appropriate model has been chosen, the model parameters can be estimated using 

the least squares method. The values of the parameters can be chosen such that they minimize 

the Sum of Squared Residuals (SSR) between the actual data and the estimated values. 

Alternatively, non-linear estimation can be used to estimate the identified parameters using the 

generally preferred maximum likelihood estimation techniques. The next stage of the process is 

the diagnostic checking where the residuals from the fitted model are examined, usually by 

correlation analysis with the aid of ACF plots. If the residuals are correlated, the model will need 

to be revisited. Otherwise the correlations are Gaussian white noise (i.e. normal with zero mean 

and constant variance) and the model is adequate to represent the time series.  

 

2. Data and Methods 

Daily rainfall data were measured and collected from Namibia Meteorological Service, who used 

standard rain gauges in millimetres according the World Meteorological Organization (WMO) 

standards (WMO, 2015). Descriptive summary statistics in the form of measures of centrality 

and dispersion, time series plots, and autocorrelation functions were generated using R time 

series statistical software. The Box Jenkin’s ARIMA modelling procedure (model identification, 

model estimation, model validation) was used to determine the best models for the data. Model 

diagnostics based on residual analysis were performed to assess the adequacy of the identified 

models. The final models were then used to forecast monthly rainfall for Windhoek up to year 

2050.  

3. Results and Discussion 

The time series plot of the monthly rainfall is presented in Figure 1. Monthly rainfall was very 

varied with a minimum of 0 mm and a maximum of 321 mm. The average monthly rainfall was 

31.21 mm (95% confidence interval: 28.21 mm, 33.77 mm) with a standard deviation of 48.81 

mm. There were notably high rainfall figures in February 1923 (303.00 mm), January 1893 

(308.00 mm), March 1954 (312.20 mm), January 2011 (320.90 mm) and January 2006 (321.30 

mm).  
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Figure 1 Time series plot of Windhoek monthly rainfall from 1891 to 2012 

 

The time series plot suggests that the time series is stationary since the mean and the 

variance of the series do not seem to vary with the level of the series, making additive 

decomposition ideal for the separation of the time series components.  The results of the additive 

time series decomposition are presented in Figure 2. 
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Figure 2 Decomposition of the Windhoek Rainfall Time Series 

 

The ACF and the PACF of the rainfall series are presented in Figure 3 and they show 

seasonality in the data. Therefore, a general ARIMA (p,0,q)(P,0,Q)12 was proposed for the 

rainfall data. After model identification, the p, q, P, and Q parameters were estimated. 
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Figure 3 ACF and the PACF of the Windhoek rainfall series 

 

On the basis of automatic ARIMA forecasting, the selected model was a seasonal 

ARIMA(1,0,1)(1,0,2)12 i.e. SARIMA(1,0,1)(1,0,2)12. This model was adequate to represent the 

data and could be used to forecast future rainfall. The maximum likelihood estimates of the 

SARIMA(1,0,1)(1,0,2)12  model and their standard errors are presented in Table 3. The forecast 

residual ACF, time plot, Normal Q-Q plot and histogram are displayed in Figure 4. 

 

Table 2 Maximum likelihood estimates of the SARIMA(1,0,1)(1,0,2)12 model and 

their standard errors 

Coefficients Estimate Standard Error 

Constant 31.1735 12.1868 

Ar1 0.6135 0.1168 

Ma1 -0.5122 0.1265 

Sar1 0.9852 0.0006 

Sma1 -0.9154 0.0270 

Sma2 0.0502 0.0264 

�̂�𝑒
2 = 1505, log likelihood=-7371.98, AIC=14758.13 
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Figure 4 Diagnostics for the SARIMA (1,0,1)(1,0,2)12 fit on the rainfall data 

a) ACF of forecast residuals; b) Forecast residual time plot; c) Normal Q- Q 

plot of forecast residuals; d) Histogram of forecast residuals  
 

The ACF of the residuals shows no serious violations of model assumption suggesting 

that this model is good (Ljung-Box Chi-squared statistic = 0.1877, p-value = 0.6648). On the 

basis of the developed model, the forecasted monthly rainfall along with the 95% confidence 

intervals is as shown in Figure 5.  
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Figure 5 Windhoek Monthly Rainfall forecast with 80% and 95% confidence Interval 

 

An extract of the actual forecast values for together with their corresponding confidence intervals 

are listed in Table 3.  

 

Table 3 Forecasted Monthly Rainfall with 95% Confidence Intervals  

  95% Confidence Interval 

Year Point Forecast Lower Upper 

Sep 2046 16.013 0 103.447 

Oct 2046 20.880 0 108.494 

Nov 2046 37.344 0 124.960 

Dec 2046 32.284 0 119.901 

Jan 2047 85.604 0 173.221 

Feb 2047 81.319 0 168.936 

Mar 2047 62.818 0 150.434 

Apr 2047 43.441 0 131.056 

May 2047 20.196 0 107.056 

Jun 2047 14.472 0 102.088 

July 2047 14.470 0 102.095 

Aug 2047 14.372 0 101.988 

Sept 2047 16.238 0 103.855 

.    

.    

.    

 

The forecast values suggest that for instance in the 2046/47 , the winter season monthly rainfall 

point estimates are around 15mm (June 14.5mm, 95% Confidence Interval:0 - 102.09; July 14.5, 

Forecasts from ARIMA(1,0,1)(1,0,2)[12] with non-zero mean
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95% Confidence Interval:0 - 102.10 mm; and August 14.3mm, 95% Confidence Interval:0 – 

101.99) which can technically be higher than expected. However, the lower 95% confidence 

limits for the same winter months are zero highlighting the possibility of no rainfall during those 

periods. The confidence intervals are symmetrical and mathematically include negative values 

which do not make sense for physical quantities like rainfall which is always greater than or 

equal to zero. In this case the confidence bands were adjusted to zero in the event of a negative 

value. 

4. Conclusions and Recommendations 

Based on the ARIMA modelling of the Windhoek rainfall, despite the seasonal and irregular 

fluctuations, the mean monthly rainfall levels did not suggest an upward or downward trend over 

the century. Even though the results indicate constant mean monthly rainfall, the limitation of the 

results is that the analysis is based on a small spatial area to completely rule out climate change 

effects. 
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