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Metallocarboxypeptidases are found in most organisms and function in the 

digestion and maturation of proteins. Ecm14 is a putative metallocarboxypeptidase found 

in the yeast Saccharomyces cerevisiae vacuole. The function of Ecm14 as an enzyme has 

been unclear due to the presence of active site amino acids not typically found in 

metallocarboxypeptidases, suggesting either no enzymatic activity or a unique 

mechanism. In order to investigate the enzymatic mechanism of Ecm14, expression of 

histidine-tagged Ecm14 protein was attempted in human HEK293T cell culture, S. 

cerevisiae, and baculovirus expression systems. No expression was detected in HEK293T 

cells in preliminary experiments. Expression in the yeast system resulted in insolubility 

of Ecm14, regardless of induction time, temperature, or inducer concentration.  



In contrast, following expression of Ecm14 in Sf9 cells using the baculovirus 

system, approximately 31% of Ecm14 was soluble and detected as a 40 kDa histidine-

tagged protein by western blotting. Sf9-expressed Ecm14 was purified using metal 

affinity chromatography. No enzymatic activity could be detected for purified Ecm14 in 

the presence of substrate consisting of chromogenic 3-(2-furyl) acryloyl conjugated to a 

C-terminal dipeptide, PhePhe. Activation of Ecm14 by enzymatic removal of the 

prodomain was successful with the addition of chymotrypsin. Ecm14 cleaved of its 

prodomain showed activity in the presence of the above substrate with a preference for 

substrate at a pH of 6.0, similar to the known pH of the yeast vacuole. Ecm14 showed 

activity towards substrate proportional to the amount of enzyme present, suggesting that 

Ecm14 is non-catalytic in activity. Ecm14 can bind to substrate and limit the activity of a 

carboxypeptidase with known activity, CPA1, indicating that Ecm14 binds and cleaves 

but does not release the cleavage products. 
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CHAPTER 1 

INTRODUCTION 

Peptidases, also termed proteases, proteolytic enzymes or proteinases, are 

enzymes that are responsible for performing proteolysis, the catabolism of peptide bonds 

linking amino acids in a protein polypeptide chain. This catabolism functions to digest 

long protein chains into smaller fragments. Proteolytic enzyme activity can serve a 

multitude of functions, such as food digestion or the regulation of catalytic cascades. The 

enzymes can break single, specific peptide bonds or break down an entire peptide into 

individual amino acids. Peptidases can function to activate processes, break down 

proteins for digestion or to render the protein nonfunctional, and act as a signal in a more 

complex signaling pathway. There is evidence that peptidases are present in animals, 

plants, bacteria, archaea, and viruses, illustrating their essential nature to all types of life. 

Rawlings and Barrett founded the MEROPS classification system for peptidases 

in 1993 and introduced the MEROPS database for peptidases in 1996 (N. D. Rawlings & 

Barrett, 1993; Neil D. Rawlings, Morton, & Barrett, 2006). MEROPS provides 

classification and nomenclature for all known proteolytic enzymes and their inhibitors 

(Neil D. Rawlings et al., 2006). As recently as 1999, only 600 distinct peptidases could 

be recognized (Barrett, 1999) but by 2009 nearly 2,500 peptidases had been identified 

(Neil D. Rawlings, 2009). Roughly 13,000 physiological cleavages have been described, 

representing 45% of all peptidases known (Neil D. Rawlings, 2009). With so many 
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peptidases performing a wide range of functions existing in nature, and even more when 

considering synthetics, the MEROPS system is an essential tool for researchers. 

Classifications under MEROPS are hierarchical and derived from a single, 

structural peptidase domain where activity is present in the multi-domain protein (Neil D. 

Rawlings, Barrett, & Bateman, 2012). The highest level of the hierarchy is the clan and 

represents proteins grouped by similar tertiary structures (Neil D. Rawlings et al., 2012) 

and by the residue present in the active site. The active site is the location on the enzyme 

where the substrate, in this case another protein, binds and proteolysis occurs. Peptidases 

may use aspartate, cysteine, glutamic acid, asparagine, serine, threonine, a metal ion, or a 

mixed combination of cysteine/serine/threonine in the active site. These active site 

residues determine which clan each peptidase belongs to, with each clan representing a 

type that arose from a single evolutionary origin (Neil D. Rawlings et al., 2012). Within 

each clan are one or more families that show evolutionary relationship to one another 

based on similar tertiary structures, active site residues and common active site sequence 

motifs (Neil D. Rawlings et al., 2006). 

MEROPS classification also indicates various data about each family, including 

whether the proteins are endo- or exopeptidases, history, activities and specificities, 

molecular structure, distribution, and biological significance (Neil D. Rawlings et al., 

2006). Every family may contain hundreds of related peptidases. At the bottom of the 

hierarchy is the peptidase unit. Genetic sequences that represent the same protein, even if 

they are from different organisms, are categorized as a single protein species (Neil D. 

Rawlings et al., 2012). A peptidase must demonstrate a completely different specificity 

from the other members of its family to be classified as unique, or a new “holotype” (Neil 
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D. Rawlings et al., 2012). Essentially it must cleave different substrates, cleave the same 

substrates in different places, or interact with a different set of inhibitors to warrant its 

own holotype (Neil D. Rawlings et al., 2012). 

Metallopeptidases, or M-type peptidases, represent the most diverse clan, with 

over 50 unique families. First grouped in 1993, metallopeptidases require a metal ion to 

perform their catalytic activity. The largest group of metallopeptidases belongs to the MA 

clan and represents a wide range of functions, including aminopeptidase, metallo-

exopeptidase, peptidyl-dipeptidase, oligopeptidase and endopeptidase activity. Clan MC 

contains primarily the metallocarboxypeptidases and clan MD represents a small number 

of peptidases that facilitate bacterial cell wall biosynthesis and lysis. All members of the 

M-type peptidases use water nucleophiles, and the majority of metallopeptidases require 

a zinc ion in the active site, but also can utilize ions such as nickel, cobalt, or manganese.  

One particular type of metallopeptidases is grouped into the M14 subfamily and 

includes a number of proteins from several species. Members of this subfamily hydrolyze 

single, C-terminal amino acids from polypeptide chains and share the zinc-dependency 

common to most metallopeptidases. However, a distinctive characteristic of the M14 

subfamily exists in the sequence motif that is responsible for binding a tetrahedrally 

coordinated zinc ion (Jongeneel, Bouvier, & Bairoch, 1989).. Rather than the typical 

HEXXH motif, M14 peptidases present a HXXE motif, or His-Xaa-Xaa-Glu (Neil D. 

Rawlings, 2009). A second histidine is typically found between 103 and 143 amino acids 

C-terminal to the HXXE motif (Becker & Roth, 1992). It was confirmed that the HXXE 

sequence was indeed the active site for catalytic activity when the histidines were 

mutated to arginine and the glutamate to glutamine in Drosophila melanogaster Protease 
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III (Becker & Roth, 1992). The histidine mutants possessed no proteolytic activity and 

showed negligible zinc signals, confirming their role in coordinating the zinc ion (Becker 

& Roth, 1992).  

The first of the M14 proteins was identified over 80 years ago in bovine 

pancreatic extracts. Given the name carboxypeptidase (CP), it was found to be produced 

by the pancreas before secretion into the intestine for digestion of proteins (Waldschmidt-

Leitz & Purr, 1929). A second metallocarboxypeptidase was discovered in 1956 and 

given the name basic carboxypeptidase (CPB), owing to the fact that it hydrolyzes basic 

C-terminal amino acids (Folk, 1956). The original carboxypeptidase, CP, was renamed 

CPA because its own cleavage of aliphatic/aromatic amino acids. CPA underwent a 

further name change in 1988 to CPA1 when a second pancreatic enzyme was discovered 

and named CPA2 (Gardell et al., 1988). Many other metallocarboxypeptidases have since 

been discovered, with dozens identified and spread across four M-subfamilies in plants, 

animals, bacteria, fungi, protozoa and archaea (Rodriguez de la Vega et al., 2007). These 

metallocarboxypeptidases share an affinity for hydrolyzing C-terminal amino acids and 

contain a metal in the active site. All of the metallocarboxypeptidases that share 

homologies with the original CPA are currently grouped into the M14A subfamily. This 

group contains the original two CPAs expressed in the human pancreas, as well as four 

other human CPAs that are not expressed in the pancreas but share CPA1/2-like function 

and the characteristic active site metal and affinity for aliphatic/aromatic amino acids 

(Huang et al., 1999; Reynolds, Gurley, & Austen, 1992; Wei et al., 2002). The M14A 

subfamily also includes CPB as well as CPO, the first metallocarboxypeptidase identified 

to cleave acidic C-terminal amino acids (Lyons & Fricker, 2011).  
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Unique among the metallocarboxypeptidases, but still a member of the M14 

subfamily, is Ecm14, a putative enzyme found in the yeast Saccharomyces cerevisiae. 

Ecm14 possesses a lysine at position 270 in its putative active site, while all known 

CPA/CPB-type metallocarboxypeptidases have a glutamate at position 270 in the active 

site. Wu, Zhang, Xu, and Guo (2010) showed that along with amino acid residues 

Arg127, Tyr248, Arg71, Asn144, and Arg145, the Glu270 forms a shell around the active 

site and contributes to the catalytic function of CPA through the stabilization of substrate 

molecules. The Glu270 functions as a general base to activate the water molecule, which 

functions as a nucleophile. After substrate cleavage, it is hypothesized that the Glu270 

functions as a general acid giving up the proton to the amide group of the cleaved amino 

acid, releasing the product. The Lys270 present in Ecm14 is an important variation 

because while glutamate is negatively charged, lysine is positively charged. This change 

may alter the ability of the Lys270 to perform the actions of a Glu270. Although the 

lysine at amino acid site 270 is unique to Ecm14 among the M14 subfamily, there are 

many fungal orthologs of Ecm14 that present a lysine in an identical manner, suggesting 

that this is an evolutionarily conserved portion of the gene and not a single mutation 

distinctive only in S. cerevisiae (Fig. 1).  

Ecm14 consists of two domains, a prodomain and a catalytic domain (Fig. 2). 

This is typical for most related carboxypeptidases. A prodomain commonly functions to 

promote folding (Baker, Shiau, & Agard, 1993) and secretion (Vernet et al., 1990), and 

its presence maintains the peptidase in its inactive state (Segundo, Martinez, Vilanova, 

Cuchillo, & Aviles, 1982). Proteolytic cleavage of the prodomain catalyzes activation of 
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the peptidase; its removal is required to generate an active enzyme. The prodomain of 

carboxypeptidases is usually cleaved by an enzyme such as trypsin, which will 

preferentially cleave at arginine. However, Ecm14 does not contain a conserved arginine 

at this cleavage site; rather, a conserved Phe-Phe motif is present in most Ecm14 

orthologs (Fig 1). With a PhePhe sequence present at the end of its prodomain, Ecm14 is 

likely to be cleaved by an enzyme that preferentially cleaves at phenylalanine. One 

potential such enzyme is proteinase A, which has preference for hydrolyzing hydrophobic 

residues with a PhePhe sequence (Kondo et al., 1998) (Fig. 2). 

Localization data for Ecm14 indicate that it is located in the yeast vacuole (Huh et 

al., 2003) and has been quantified at 468 protein molecules per cell (Ghaemmaghami et 

al., 2003). Previous studies have proposed that Ecm14 is required for normal cell wall 

assembly (Jonson, Rehfeld, & Johnsen, 2004; Lussier et al., 1997) but its presence in 

yeast cell vacuoles suggests that there are perhaps other functions, as yeast cell vacuoles 

are often involved in many processes including homeostasis and osmoregulation.  

In order to characterize the potential enzymatic activity of Ecm14, expression of 

histidine-tagged Ecm14 protein was attempted in three expression systems, human 

HEK293T cell culture, S. cerevisiae, and baculovirus. Ecm14 was successfully expressed 

in Sf9 cells using the baculovirus system in a soluble form. This Ecm14 was detectable 

by western blotting and was purified using Cobalt-metal affinity chromatography. 

Purified Ecm14 was activated by the enzymatic removal of the prodomain using 

chymotrypsin. 
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CHAPTER 2 

MATERIALS AND METHODS 

Saccharomyces cerevisiae Cell Culture and Expression System 

Y1239 yeast cells with an Ecm14 deletion had previously been transformed with a 

pEMBL plasmid (Dente, Cesareni, & Cortese, 1983) expressing histidine-tagged Ecm14 

under the control of a galactose inducible promoter. The cells were retrieved from cold 

storage (-80°C) and grown on SC-Ura (6.8 g/L yeast nitrogen base, 0.79 g/L dropout mix, 

15 g/L agarose in H2O). Individual colonies were selected from the plates and grown in 

SC-Ura w/ dextrose nutrient broth overnight at 30°C. The cells were washed in ddH2O 

and induced for 16 hours in SC-Ura w/ 2.0% galactose at room temperature. In alternate 

trials the cells were induced at 17°C, for 1, 2, 4 and 8 hours, and in the presence of 0.2% 

galactose.  

Saccharomyces cerevisiae Cell Lysis 

After Ecm14 induction, the cells underwent an alkaline lysis in 0.1 N NaOH 

(Kushnirov, 2000) to loosen the cell walls, followed by the addition of 1% NP-40 buffer 

(150 mM NaCl, 1% NP-40, 50 mM Tris-HCl pH 7.5, 1 mM EDTA, 1 mM PMSF) to 

weaken the cell walls without denaturing the proteins. The cells were spun down in a 

centrifuge at 14,000 rpm for 1 minute. The insoluble portion was dissolved in 1% SDS. 

Both the insoluble and soluble portions were stored in SDS-PAGE sample buffer (62.5 

mM Tris-HCl pH 6.8, 2.5% sodium dodecyl sulfate, .002% bromophenol blue, 5% β-
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mercaptoethanol, 10% glycerol) for detection by western blotting. For guanidine and urea 

treatments, alkaline lysis was performed but treatment with NP-40 buffer was replaced 

with a guanidine treatment. Cells were introduced into guanidine buffers of varying 

concentration (6M, 3M or 1.5M guanidine, 50 mM Tris-HCl pH 7.5), and heated at 35°C 

for 15 minutes. The cells were spun down in a centrifuge at 14,000 RPM for 1 minute. 

The insoluble portion was dissolved in 1% SDS. Both the insoluble and soluble portions 

were stored in SDS-PAGE sample buffer for detection by western blotting. Denaturation 

in urea followed a similar protocol. Yeast cells were grown as above but introduced into 

urea (8M, 6M, 4M, 2M, 1M, 0.75M, 0.5M or 0.25M urea, 50 mM Tris-HCl pH 7.5) at 

room temperature for 2 hours. The cells were spun down, separated into insoluble and 

soluble portions and stored as above. 

SDS-PAGE 

Polyacrylamide gels were cast at the desired percentage, typically 10%. Samples 

were loaded along with Precision Plus Dual Color Standard molecular weight marker 

(BioRad). The gels were run at 140V in 1X running buffer (25 mM Tris-Hcl, 192 mM 

glycine, 0.1% SDS). 

Coomassie Blue Staining 

Polyacrylamide gels were washed three times for 5 minutes in H2O to remove 

excess SDS. The gel was then incubated in 50 mL of Bio-Safe Coomassie stain (BioRad) 

on a rocking table for 1 hour. The gel was washed in 200 mL of H2O for 30 minutes. An 

image of the stained gel was documented. 
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Western blotting 

Transfer of Proteins to Nitrocellulose 

Proteins resolved on the SDS-PAGE gel were transferred to nitrocellulose in 

transfer buffer (25 mM Tris-Hcl, 192 mM glycine, 0.1% SDS, 10% MeOH) at 100V for 1 

hour. 

Antibody Staining 

Following protein transfer, the nitrocellulose membrane was placed in a container 

with 25 mL of blocking solution (5% skim milk in TBST (137 mM NaCl, 2.7 mM KCl, 

19 mM Tris-HCl pH 7.5, 0.1% Tween-20)) for 30 minutes at room temperature on a 

rocking table.  The blocking solution was discarded and membrane was incubated with 

10 mL of primary antibody (mouse anti-His6 antibody (Thermo Scientific Cat#MA1-

21315)), diluted 1:2000 in 5% skim milk/TBST for 1 hour on a rocking table. The 

nitrocellulose membrane was washed three times for thirty minutes total in TBST. After 

the third wash, the membrane was incubated with 10 mL of secondary antibody (α-mouse 

IgG, HRP-linked antibody (Cell Signaling Technology Cat #7076S)), diluted 1:2000 in 

5% skim milk/TBST for 1 hour on a rocking table. The nitrocellulose membrane was 

washed three times for 30 minutes again in TBST. After the final wash, the TBST was 

discarded and the membrane was incubated for 1 minute with 10 mL of 

chemiluminescent substrate (0.5 mL 20X LumiGLO, 0.5 mL 20X peroxide (Cell 

Signaling Technology) diluted in 9 mL of H2O). In a dark room, visualization of proteins 

bound to the secondary antibody was performed using x-ray film. 
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Ponceau S Staining 

The nitrocellulose membrane with bound proteins was incubated in Ponceau S 

stain (0.1% Ponceau S in 1% acetic acid) for 5 minutes. The membrane was then washed 

in 5% acetic acid for 5 minutes and twice in H2O for 5 minutes. Bound proteins were 

visualized as they were stained red by the Ponceau S. 

Plasmid Preparation 

DH5α competent cells (New England BioLabs) transformed with pRS316 

plasmids expressing C-terminal histidine-tagged Ecm14 (Ecm14-His6) were prepared 

using the NID method (Lezin, Kosaka, Yost, Kuehn, & Brunelli, 2011). The NID method 

allows for isolation using non-ionic detergents in a one-tube application that results in 

sufficiently pure plasmid DNA without the need for harsh alkaline or SDS treatments.  

 Plasmid Construction 

 In order to amplify the Ecm14 DNA insert, PCR was performed on 10 ng pRS316 

plasmid with primers purchased from Invitrogen and PfuUltra DNA polymerase 

(Agilent). Proteinase K (Carolina) treatment as described by Crowe et al. (1991) was 

performed to improve cloning efficiency.  DNA amplicons were purified using the 

QIAquick Gel Extraction Kit (Qiagen) and diluted in 30 μL of water. Purified amplicons 

were digested with restriction enzymes NotI and BamHI (Invitrogen). 

Ligation of Ecm14-His6 insert into pVL1392  

Plasmid and Transformation Into DH5α Cells 

Recipient plasmid pVL1392 was digested with restriction enzymes NotI and 

BamHI. The ligation of the Ecm14-His6 insert into the pVL1392 recipient plasmid was 

performed using T4 DNA Ligase (Promega). Ligated pVL1392 plasmid was transformed 



11 

 

into competent DH5α cells and plated on LB/amp plates at 37°C overnight. Restriction 

digest of the newly transformed cells was performed with NotI and BamHI to confirm 

that the insert was properly transformed into the DH5α cells. Five samples of pVL1392 

plasmid with the Ecm14-His6 insert were sent for sequencing (GenScript). 

Ligation of Ecm14-His6 Insert Into pcDNA3.1+ Plasmid  

and Transformation Into DH5α Cells 

Sequencing results confirmed that the pVL1392 plasmid transformation contained 

the correct Ecm14-His6 insert. Plasmid preparation was performed as before on the 

DH5α cells containing the pVL1392 plasmid with the Ecm14-His6 insert. The plasmid 

was digested with NotI and BamHI as above. The Ecm14-His6 insert was then ligated 

into a new plasmid, pcDNA3.1+. The plasmid was transformed into competent DH5α 

cells which were plated on LB/amp plates at 37°C overnight. Restriction digest of these 

cells with NotI and BamHI was performed to confirm that the Ecm14-His6 inserts were 

properly transformed into the DH5α cells. 

HEK293T Cell Culture, Transfection and Cell Lysis 

HEK293T cells were retrieved from liquid nitrogen storage, were thawed and 

grown in a monolayer in Dulbecco’s Modified Eagle Medium (Sigma) supplemented 

with 10% FBS and penicillin/streptomycin in 75 cm2 culture flasks in a 5% CO2 

incubator at 37°C. pcDNA3.1+ plasmids containing the Ecm14-His6 insert were 

transfected into the HEK293T cells using polyethylenimine (PEI) (Ehrhardt et al., 2006). 

Cells were lysed 48 hours post-transfection in NP-40 buffer (150 mM NaCl, 1% NP-40, 

50 mM Tris-HCl pH 8.0, 0.2 mM PMSF, 1% P8849 protease inhibitor cocktail purchased 
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from Sigma). Samples of media and soluble and insoluble cell lysate fractions were 

collected and added to SDS-PAGE sample buffer for detection by western blotting. 

Sf9 Cell Culture, Transfection and Cell Lysis 

Sf9 cells were retrieved from liquid nitrogen storage, were thawed and grown in 

suspension culture in Sf9 media (Gibco) in 250 mL polycarbonate Erlenmeyer shaker 

flasks at 28°C. In order to produce recombinant baculovirus expressing Ecm14, 0.1 μg of 

pVL1392 plasmid containing the Ecm14 insert was mixed with 2.5 μL of Progreen 

baculovirus vector DNA and brought to a total volume of 25 μL in H2O. Twenty-five μL 

of Profectin transfection agent diluted to 10% in water was added dropwise to the 

baculovirus DNA and plasmid mixture (AB Vector). The mixture prepared above was 

added dropwise to 1 mL of Sf9 cells in adherent culture at 5x105 cells/mL. The virus was 

harvested from this culture after 60 hours and saved as a P0 stock. The P0 stock (0.5mL) 

was added to 15 mL of Sf9 cells at a density of 1x106 cells/mL in order to create a P1 

stock with a high titer of baculovirus expressing Ecm14. The P1 stock was grown for 7 

days at room temperature. A P2 stock with an even more amplified virus titer was created 

by adding 1 mL of the P1 stock to 50 mL of Sf9 cells that had reached a density of 2x106 

cells/mL. The cells were placed on a shaking table at room temperature. Sixty hours post 

viral infection the Sf9 cells were spun down at 5000 RPM. The recovered Sf9 media was 

composed of a high-titer of Ecm14-expressing baculovirus and was saved at 4°C for 

future infections. The pelleted cells were lysed in NP-40 buffer for analysis. 
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Purification of Ecm14 

Ecm14 that had been denatured in urea or successfully expressed by the 

baculovirus expression system was purified using a modified version of the TALON 

IMAC (immobilized metal affinity chromatography) protocol (Clontech). One mL of 

metal affinity resin (0.5 mL bed volume) was resuspended in a 15 mL conical tube. The 

resin was spun down at 1500 RPM for 2 minutes and the supernatant was discarded. The 

resin was equilibrated in 10 mL of denaturing wash buffer for Ecm14 denatured in urea 

(50 mM Sodium Phosphate, 8 M urea, 300 mM NaCl) or native wash buffer (50 mM 

Sodium Phosphate, 300 mM NaCl) at pH 7.0 for 10 minutes and spun down at 1500 RPM 

for 2 minutes. The supernatant was discarded. The wash was repeated twice. After 

discarding the supernatant from the second wash, 10 mL of crude Ecm14 was added to 

the resin and shaken on a rocking table for 1 hour. After 1 hour, the resin bound with 

Ecm14 was spun down at 1500 RPM for 3 minutes. Two more washes as above were 

performed. After the supernatant from the second wash was discarded, 1 mL of wash 

buffer was added to the resin and was transferred to a 2 mL disposable gravity column 

(Clontech). Ten mL of wash buffer was allowed to run through the column for a final 

wash. The Ecm14 was eluted from the column using either a denaturing elution buffer 

(45 mM Sodium Phosphate, 7.2M urea, 270 mM NaCl, 150 mM imidazole) or native 

elution buffer (50mM Sodium Phosphate, 300 mM NaCl, 150 mM imidazole) at pH 7.0. 

Purified Ecm14 was collected in 0.5 mL fractions. 

Enzyme Assay 

Carboxypeptidase substrates in which chromogenic 3-(2-furyl) acryloyl is 

conjugated to a C-terminal dipeptide (either phenylalanine-alanine or phenylalanine-
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phenylalanine) were purchased from Bachem. The substrates were dissolved in a buffer 

(50 mM Sodium Acetate, 50 mM Tris, 150 mM NaCl) at the appropriate concentration 

and pH. Proteins were incubated with substrate at room temperature. Cleavage of the 

substrate was recorded as a decrease in absorbance at 340 nm. All trials were repeated at 

least three times. Statistical calculations were performed using a paired Student’s t-test. 
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CHAPTER 3 

RESULTS 

Ecm14 Expressed in Yeast 

The first obstacle in studying Ecm14, from the yeast Saccharomyces cerevisiae, 

was obtaining soluble protein, a requirement in order to further study its unique 

characteristics. As Ecm14 is a protein native to yeast, the most sensible system to use to 

overexpress and produce sufficient amounts of protein for study was the yeast cell itself.  

In addition, expressing proteins in yeast is a relatively simple methodology that requires 

simple media that is easily prepared in the lab and is much less expensive and time 

consuming than other expression systems. In order to investigate the function of the 

putative Ecm14 enzyme from Saccharomyces cerevisiae, Y1239 yeast cells with an 

Ecm14 gene deletion were transformed with a plasmid expressing histidine-tagged 

Ecm14 under the control of a galactose-inducible promoter (pEMBL).  

To purify and analyze Ecm14, NP-40 detergent was added to the induced cells in 

order to solubilize the cell membranes without denaturing the proteins. Centrifugation at 

14,000 rpm separated the soluble fraction from the insoluble which was subsequently 

dissolved in 1% SDS. Prominent immunoreactive bands were seen at roughly 40 kDa, 

intermediate between the known molecular weights for proEcm14 before proteolytic 

cleavage of the prodomain (50 kDa) and mature, cleaved Ecm14 (35 kDa). The molecular 

weights for both the pro and mature forms of Ecm14 were derived from their respective 

amino acid compositions and length.  However, Ecm14 was insoluble. The length of 
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induction time can affect protein expression and solubility. To test if decreasing the 

induction time would increase solubility, cells were induced for 1, 2, 4, and 8 hours 

instead of 16 and while all showed immunoreactive bands at 40 kDa via western blotting, 

all Ecm14 protein was insoluble (Fig. 3A). With 8 hours of induction there appeared to 

be a small amount of soluble expressed protein but this result was not reproducible. In 

order to investigate whether growing the yeast at a higher or lower temperature would 

alter expression and potentially increase solubility of Ecm14, Y1239 cells were also 

induced at both 30°C and 17°C instead of at room temperature. Histidine-tagged Ecm14 

was detected via western blotting at roughly 40 kDa but again only in the insoluble 

fraction (Fig. 3B). In order to test the potential of lower concentrations of galactose 

during induction, limiting the expression of Ecm14 and increasing the probability that 

Ecm14 was properly folded, cells were induced in SC-Ura media with 0.2% galactose 

instead of 2.0%. All immunoreactive bands, specifically the 40 kDa band, remained 

insoluble (Fig. 3C). These experiments confirmed that Ecm14 can be overexpressed in S. 

cerevisiae, but in an insoluble form. This result may be due to an inability for the yeast 

cell to properly fold the Ecm14 protein when required to do so on such a large scale. 

Ecm14 Protein Denatured in Urea 

With the ability to faithfully overexpress Ecm14 in a yeast cell expression system, 

it was believed that the improperly folded protein could be denatured with either 

guanidine or urea, purified and refolded from its denatured state into a properly folded, 

soluble protein. Denaturing of proteins in guanidine or urea and subsequent refolding is 

possible, whereas refolding from an SDS-denatured state is uncommon. An additional 

benefit is the ion metal affinity chromatography (IMAC) purification protocol, which 
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allows purification of denatured protein (if necessary) before refolding. The IMAC resin 

consists of a chelator charged with cobalt and exhibits both affinity to and specificity for 

histidine-tagged proteins (Porath, Carlsson, Olsson, & Belfrage, 1975), such as Ecm14.  

Y1239 yeast cells were grown overnight and subsequently induced in 2.0% 

galactose as before. Alkaline lysis was performed but extraction with NP-40 buffer was 

replaced with a guanidine extraction. Proteins were extracted with guanidine buffers of 

varying concentration (6M, 3M and 1.5M), and heated at 35°C for fifteen minutes to 

increase solubility of guanidine and assist in the denaturing process. Western blotting 

showed apparent immunoreactive bands at roughly 40 kDa in some fractions but repeated 

tests showed inconsistencies in results, possibly caused by precipitation of SDS-PAGE 

samples by guanidine and subsequent distortion of the bands seen by western blotting. It 

was decided that the denaturing agent would be switched to urea. The efficacy of urea to 

denature Ecm14 protein was initially tested with urea denaturation buffer (8M and 6M) at 

room temperature for twenty minutes. Both concentrations of urea were effective in 

denaturing and solubilizing Ecm14 (results not shown). 

IMAC Purification of Denatured Ecm14 Expressed in Yeast 

Purification of urea-denatured Ecm14 was attempted by IMAC. Although Ecm14 

solubilized by urea was not present in the flow-through, suggesting it was able to bind to 

the resin, eluting it with the addition of a competitive binding agent (imidazole) proved 

unsuccessful (Fig. 4). Attempts to remove Ecm14 from the resin using higher 

concentrations of imidazole and SDS-PAGE sample buffer also proved unsuccessful. 

Refolding Ecm14 was not possible with the unsuccessful purification. 
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Ecm14 Expressed in HEK 293T Cells 

Expression of Ecm14 in insect and/or mammalian cells required the construction 

of new expression plasmids. PCR was performed to amplify the histidine-tagged Ecm14 

insert present in pRS316 plasmids stored in the lab. DNA sequencing (GenScript) 

confirmed that the amplified Ecm14 insert was successfully ligated into the pVL1392 

plasmids to be used during the baculovirus transfection process. Once the pVL1392-

Ecm14-His6 plasmid sequence was confirmed, the insert was cut out and inserted by 

ligation into another plasmid, pcDNA3.1+, designed for expression of proteins in 

mammalian cells. 

The first expression system attempted was a mammalian expression system using 

human HEK293T cells. The cells were grown in a 5% CO2 incubator at 37°C. The cells 

were transfected with the pcDNA3.1-Ecm14-His6 plasmid and proteins harvested after 

48 hours in NP-40 buffer. Initial western blotting results showed an immunoreactive band 

at roughly 40 kDa in the secreted (media) sample and no bands in either the soluble or 

insoluble fractions of HEK293T cells (results not shown). However, these results were 

not consistent, overall suggesting weak or no expression of histidine-tagged Ecm14 in 

HEK293T cells.  

Ecm14 Expressed in Sf9 Insect Cells 

 In order to examine the expression of Ecm14 in Sf9 cells, recombinant Ecm14-

expressing baculovirus was made (see methods). Sf9 cells were infected with Ecm14-

expressing baculovirus and collected 60 hours post infection. Western blotting of media 

and cell lysate showed an immunoreactive band at roughly 40 kDa in the soluble and 

insoluble portions of cell lysate and no bands in the media (Fig. 5). Processing of the 
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results using ImageJ showed the soluble portion to represent an average of 31% of the 

total protein present across three trials.  

IMAC Purification of Histidine-tagged Ecm14 From Insect Cells 

The next step was to purify the soluble Ecm14 using the TALON IMAC resin 

previously used in attempts to purify urea-denatured Ecm14. Purification using this 

method proved successful with Ecm14 from the baculovirus expression system. Ponceau 

S staining indicated that the very large number of proteins present in the crude Ecm14 

extract was reduced to very few after purification (Fig 6A). Analysis of western blotting 

results (Fig. 6B) by ImageJ determined that approximately half of the soluble Ecm14 was 

recovered through the purification process. In addition, approximately half of the eluted 

proteins appear unrelated to Ecm14, as seen by Ponceau S staining.  

Enzymatic Activity Assay of Purified Ecm14 

With purified Ecm14 available, the next step was to determine if it was 

enzymatically active. Activity of purified Ecm14 could be measured as a decrease in the 

absorbance at 340nm of a synthetic 3-(2-furyl)acryloyl (FA) peptide carboxypeptidase 

substrate upon incubation with enzyme. Ten micrograms of Ecm14, as well as 

commercially available CPA1, were incubated with FA-PhePhe and FA-PheAla for 90 

minutes at room temperature and at both pH 5.5 and 7.5. While the control enzyme, 

CPA1, showed robust activity upon incubation with both substrates and at both pH 

values, no activity was observed for purified Ecm14 (Fig. 7). 
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Enzymatic Removal of the Prodomain of Ecm14 

It was hypothesized that Sf9 insect cells may not have a mechanism for removing 

the prodomain of Ecm14. In order to do so, 200 μg of purified Ecm14 was incubated with 

either 10 μg of trypsin or chymotrypsin. To stop the reaction, trypsin and chymotrypsin 

were inhibited at appropriate time points by the addition of 10 μg of PMSF, a serine 

protease inhibitor. Chymotrypsin digestion of Ecm14 resulted in the production of a new 

band at 35 kDa. This digestion appeared complete at 2 minutes, and the 35 kDa band 

remained stable over at least a 3-hour time period (Fig. 8A). Trypsin digestion of Ecm14 

also resulted in a new 35 kDa band at 5 minutes that also remained stable over at least a 

3-hour time period (Fig. 8B).  

Activity Assay of Ecm14 Cleaved of Its Prodomain 

Enzymatic assays previously done to test for Ecm14 activity were now performed 

with mature Ecm14, lacking the prodomain. Ecm14 (10 μg), previously cleaved with 

chymotrypsin,  showed a small amount of activity after 2 hours of incubation with 

carboxypeptidase substrate FA-PhePhe (0.5 mM) at pH 7.5 (Fig. 9). Ecm14 samples 

tested were from multiple batches prepared on different days. Repeated assays confirmed 

that this level of activity was significantly greater than a no enzyme control (p = 

0.002886). CPA1 (10 μg) again showed much more robust activity against the substrate 

(results not shown). No activity was observed for purified Ecm14 (10 μg) not treated with 

endoprotease, confirming previous results, as well as for Ecm14 (10 ug) treated with 

trypsin. Chymotrypsin and trypsin were also incubated alone with substrate and showed 

no activity against this substrate.  
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Increasing the Purity of Ecm14 

Previously enzymatic cleavage of the prodomain of Ecm14 was performed after 

Ecm14 had been purified via metal affinity chromatography. Mature Ecm14 used in the 

above enzymatic assays was complicated by the fact that it necessarily contained 

chymotrypsin or trypsin, as well as the PMSF inhibitor. In order to eliminate these 

contaminants, purification of Ecm14 from 10 ml crude Sf9 lysate (2x107 cells) was 

performed after incubation for 10 minutes with 500 μg of either trypsin or chymotrypsin. 

This resulted in purified mature Ecm14 (35 kDa) of much higher quality (Fig. 10). 

Quantification of Coomassie stained gels using ImageJ shows that Ecm14 that was 

trypsinized prior to purification results in an 80% pure sample. Ecm14 chymotrypsinized 

prior to purification results in a sample that was > 95% pure. This is higher than seen in 

previous purifications of Ecm14, which were limited to about 50% purity. 

Activity Assay Using Highly Purified Ecm14 

Ecm14 shows enzymatic activity against carboxypeptidase substrate FA-PhePhe 

when the prodomain has been cleaved by chymotrypsin. Testing a range of pH values for 

the substrate shows that Ecm14 has the greatest activity in the presence of substrate at a 

pH of 6.0 (Fig. 11). 

As a result of the minimal activity seen for chymotrypsinized Ecm14, it was 

hypothesized that the chymotrypsinized Ecm14 was binding the FA-PhePhe substrate and 

cleaving it but not releasing the product. To further test the theory that chymotrypsinized 

Ecm14 is non-catalytic, Ecm14 (1 or 5 μg) was incubated with FA-PhePhe substrate at 

pH 7.5, at a concentration of 10 μM. If Ecm14 activity was not catalytic it would be 

presumed that roughly five times more activity would be seen in the presence of five 
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times more substrate. Ecm14 incubated in five times more substrate resulted in three to 

five times more activity (Fig. 12), suggesting that Ecm14 binds to and cleaves substrate 

but does not release the product. 

Catalytic Activity of Ecm14 

If Ecm14 was binding the substrate but not releasing any product, it was 

necessary to further investigate the binding properties of Ecm14 as they relate to 

function. The concentration of substrate was reduced significantly to compare activity 

against a CPA1 control. Decreasing the concentration of carboxypeptidase substrate FA-

PhePhe to 1 μM at pH 7.5 revealed activity for chymotrypsinized Ecm14 (10 μg) similar 

to that seen for CPA1 (10 μg) upon 1 minute of incubation (Fig. 13). No additional 

activity was recorded for either enzyme after longer incubations, suggesting that all 

substrate had been cleaved. Ecm14 cleaved with trypsin (10 μg) showed no activity, 

confirming previous results. Trypsinized Ecm14 (10 μg) was incubated with substrate for 

5 minutes prior to the addition of CPA1 (10 μg). This resulted in a decrease in activity for 

CPA1, indicating that trypsinized Ecm14 was binding to the substrate and inhibiting 

complete binding by CPA1; however, it was not enzymatically active. Bovine serum 

albumen was also incubated with carboxypeptidase substrate for 5 minutes prior to the 

addition of CPA1 as a control and did not inhibit CPA1 activity, as the cleaved Ecm14 

did. These results show that both trypsinized and chymotrypsinized Ecm14 can bind 

substrate. The trypsinized Ecm14 binds the substrate but does not cleave it, while 

chymotrypsinized Ecm14 both binds and cleaves but appears to lack catalytic properties. 
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CHAPTER 4 

DISCUSSION 

In this study of the function of Ecm14, three expression systems were employed 

with the goal of expressing and purifying Ecm14. The initial system chosen was a 

Saccharomyces cerevisiae yeast cell expression system. Ecm14 is a protein native to S. 

cerevisiae. Previous studies have shown success in overexpressing carboxypeptidase Y 

(Takegawa et al., 2003) and carboxypeptidase G2 from Pseudomonas (Clarke, Gibson, 

Sherwood, & Minton, 1985) in a similar expression system. Goda, Kyyaly, Al-Jabiry, 

Walls, and Al Sayrafi (2012) were able only to express human mast cell 

carboxypeptidase A in E. coli as inclusion bodies but found success producing soluble 

CPA using S. cerevisiae. However, a more commonly used system for expressing 

proteins is the yeast Pichia pastoris, first described by Ogata K (1969). Over 200 

heterologous proteins have been successfully expressed in P. pastoris (Cregg, Cereghino, 

Shi, & Higgins, 2000), including human carboxypeptidase M (Craveiro et al., 2006) and 

human carboxypeptidase A4 (Tanco et al., 2010) among other M14 carboxypeptidases, 

the family Ecm14 belongs to. An inability to produce soluble Ecm14 using a S. cerevisiae 

expression system suggests issues in folding of this protein, a problem that might not be 

present in another yeast expression system such as P. pastoris. 
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 Due to the inability to express soluble Ecm14 in a yeast cell expression system, a 

mammalian cell expression system was employed, human embryonic kidney or 

HEK293T cells (Graham, Smiley, Russell, & Nairn, 1977). Mammalian cells have been 

used for the expression of metallocarboxypeptidases, such as carboxypeptidase M 

(Zhang, Tan, Zhang, & Skidgel, 2008) and CPA6 (Lyons & Fricker, 2010), but these 

proteins are native to humans. There are examples of yeast proteins being successfully 

expressed in HEK293 cells (Yin et al., 2005) but these are not carboxypeptidases. There 

is no evidence in the literature of the successful expression of a fungal carboxypeptidase 

in a mammalian cell expression system, which may explain the difficulties in expressing 

Ecm14 in HEK293T cells. 

Expression of proteins using baculovirus-infected insect cells has been for the 

past few decades a method of choice for heterologous protein expression. Thousands of 

recombinant proteins have been produced with this methodology, and the field continues 

to advance as insect cell lines are engineered to handle the specific molecular functions of 

the organisms from which the expressed proteins were originally derived (Kost, 

Condreay, & Jarvis, 2005). Carboxypeptidase E-1 from Aplysia californica was 

successfully expressed in baculovirus-infected Sf9 cells (Juvvadi, Fan, Nagle, & Fricker, 

1997). MeCPA, a fungal, A-type carboxypeptidase from Metarhizium anisopliae, was 

successfully expressed using baculovirus-infected Sf9 and Sf21 cells (Brian P. Austin, 

Tözsér, Bagossi, Tropea, & Waugh, 2011; Joshi & Leger, 1999). Ecm14 expressed in 

baculovirus-infected Sf9 cells proved successful as well, suggesting that the production 

of soluble, fungal carboxypeptidases using a baculovirus expression system is an 

acceptable method. 
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 There are many chromatographic methods for the purification of proteins. 

Immobilized metal ion affinity chromatography (IMAC) is one such method for isolating 

proteins (Porath, 1992). A metal ion such as cobalt binds the histidine-tagged protein, as 

all other untagged proteins pass through a column. Eluting the column with a competitive 

binding agent, such as imidazole, results in a sample of purified protein. There is ample 

evidence of the ability to successfully purify histidine-tagged metallocarboxypeptidases 

using ion metal affinity chromatography (Figueiredo & Duque-Magalhaes, 1994; 

Raksakulthai & Haard, 2001), including the purification of fungal carboxypeptidase 

MeCPA (B. P. Austin & Waugh, 2012). Ecm14 was successfully isolated to purity levels 

above 70% using this method. However, in order to increase the purity of the protein 

sample, secondary and even tertiary methods should be employed. Other typical methods 

of purification for carboxypeptidases include gel filtration and ion exchange 

chromatography (B. P. Austin & Waugh, 2012; Craveiro et al., 2006), as well as potato 

carboxypeptidase inhibitor (PCI) affinity chromatography (Goldstein, Kaempfer, Kealey, 

& Wintroub, 1989; Lyons & Fricker, 2010, 2011). Purification protocols combining at 

least two methods result in the greatest purity of final product. Employing a secondary 

purification method would likely increase the purity of Ecm14. 

 Metallocarboxypeptidases from the M14 family, such as Ecm14, that contain a 

prodomain, require its removal for activation of the enzyme (Gomis-Rüth, 2008; Ventura, 

Gomis-Ruth, Puigserver, Aviles, & Vendrell, 1997). The typical carboxypeptidase 

prodomain ends with a conserved arginine and can be proteolytically cleaved by an 

enzyme with a preference for arginine, such as trypsin (Tanco et al., 2010). Ecm14 is 
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unique in that the prodomain ends with a PhePhe sequence and therefore is unlikely to be 

cleaved by a tryspin-like enzyme. An enzyme more likely to cleave the prodomain from 

Ecm14 is proteinase A. Proteinase A shows substantial homology to another protease, 

pepsin, which itself preferentially cleaves at phenylalanine, and was determined to be the 

enzyme responsible for activating several yeast vacuolar zymogens (Ammerer et al., 

1986).  Other studies have shown that proteinase A is most effective at acidic pH 

(Sorensen, van den Hazel, Kielland-Brandt, & Winther, 1994) and preferentially cleaves 

between two hydrophobic amino acids (Dreyer, 1989), like the PhePhe sequence in 

Ecm14. To investigate the involvement of proteinase A in the cleavage of the prodomain, 

I co-expressed PEP4, the gene responsible for encoding proteinase A, with Ecm14 in 

yeast cells. This was an attempt to remedy the continual production of insoluble Ecm14. 

It was hypothesized that with sufficient proteinase A present, the overexpressed Ecm14 

would be cleaved of its prodomain and matured into its active state. The addition of PEP4 

did not change either the solubility or size of expressed Ecm14 (results not shown). It is 

likely that the improperly folded Ecm14 expressed in yeast cells did not allow proteinase 

A access to the PhePhe cleavage site and, therefore, was not able to cleave the prodomain 

at all. An additional enzyme that may be responsible for cleaving the prodomain from 

Ecm14 is Kex2. Kex2 is another yeast endoprotease but it cleaves preferentially at 

dibasic amino acids (Fuller, Brake, & Thorner, 1989), which do not exist in the Ecm14 

prodomain. It is possible there is weak cleavage at a single arginine site in the prodomain 

but this gives further evidence towards proteinase A being the likely enzyme cleaving the 

prodomain. 

 



27 

 

 Ecm14 expressed from the baculovirus expression system appeared to have no 

enzymatic activity towards a substrate consisting of chromogenic 3-(2-furyl) acryloyl 

conjugated to a C-terminal dipeptide (PhePhe). It was hypothesized that the prodomain of 

Ecm14 still remained after protein expression. Purified Ecm14 was incubated with 

trypsin, an enzyme known to cleave the prodomain of CPA/B-type carboxypeptidases 

(Tanco et al., 2010) and chymotrypsin, an enzyme shown to cleave the prodomain from 

MeCPA (Sangawa et al., 2013). Both trypsin and chymotrypsin appeared to successfully 

cleave the prodomain, resulting in a roughly 35 kDa mature protein. Trypsin, as stated 

above, preferentially cleaves arginine. There are several sites in the prodomain of Ecm14 

where trypsin might cleave (see Fig. 1), releasing the prodomain. However, these sites 

are N-terminal to the PhePhe likely to be the prodomain cleavage site and may result in a 

fragment of the prodomain blocking the active site; this is consistent with the lack of 

enzymatic activity seen with trypsinized Ecm14. Chymotrypsinized Ecm14 does appear 

to have activity, suggesting that chymotrypsin may be cleaving at the PhePhe site in vitro.  

Although enzymatic activity for Ecm14, activated by removal of the prodomain 

with chymotrypsin, was recorded, it was discovered that the amount of activity was 

directly proportional to the concentration of Ecm14 incubated with substrate. This 

suggests that Ecm14 is binding the substrate and cleaving but is not releasing the product, 

making Ecm14 enzymatically non-catalytic. One hypothesis for this phenomenon is 

directly related to the presence of a Lys270 in Ecm14 instead of the Glu270 typically 

seen in carboxypeptidases. Christianson and Lipscomb (1989) hypothesized that after 

cleavage of the substrate by typical carboxypeptidases, the negatively charged Glu270 

repels the ionized product, facilitating its release. The Lys270 of Ecm14 might act as a 
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base and subsequent acid, similar to Glu270, in order to facilitate cleavage of the 

substrate but may not release the product when the Lys270 returns to its uncharged state.  

Ecm14 from S. cerevisiae can be expressed in soluble form using a baculovirus-

infected insect cell expression system and purified using ion metal affinity 

chromatography. It does not exhibit activity when expressed in this system but can be 

activated by proteolytic cleavage of the prodomain using chymotrypsin. Greatest activity 

for Ecm14 was observed when incubated with a FA-PhePhe substrate with pH 6.0. 

Although activity was seen, it was non-catalytic, which may be a result of the Lys270 

atypical of M14 carboxypeptidases. Further research into this putative enzyme should 

investigate the activity of Ecm14 towards other substrates. Site-directed mutagenesis 

would provide confirmation of the activity of chymotrypsinized Ecm14. Edman 

degradation would provide insight into the differences in observed activity for Ecm14 

cleaved of its prodomain by either trypsin or chymotrypsin. Using X-ray crystallography 

to determine the 3d structure of Ecm14 would provide a more detailed explanation of the 

mechanisms by which the prodomain is cleaved and the enzymatic activities of this 

unique protein. 
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Table 1. Plasmids Used in This Study 

Plasmid name Origin Relevant characteristics Reference 

pEMBLyEX4-

Ecm14-His6 

Dr. Peter 

Lyons 

Contains histidine-tagged Ecm14. 

Galactose inducible promoter. 

(Cesareni & 

Murray, 1987) 

pRS316-Ecm14-His6 Dr. Peter 

Lyons 

Contains histidine-tagged Ecm14. (Sikorski & Hieter, 

1989) 

pcDNA3.1(+)-

Ecm14-His6 

This study. Contains histidine-tagged Ecm14. 

Mammalian expression. 

 

pVL1392-Ecm14-

His6 

This study. Contains histidine-tagged Ecm14. 

Baculovirus expression. 
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Figure 1. Amino acid sequence for Saccharomyces cerevisiae Ecm14 and four other 

related proteins.  

Sequences for Saccaharomyces cerevisiae Ecm14 (50 kDa, prodomain: 13 kDa; 

NM_001179262.1), Candida maltosa Ecm14 (54 kDa, prodomain: 17 kDa; M3K6C1), 

Wickerhamomyces ciferrii carboxypeptidase (58 kDa, prodomain: 21 kDa; K0KG05), 

Metarhizium anisopliae zinc carboxypeptidase (61 kDa, prodomain: 20 kDa; E9EUG8) 

and Aspergillus fumigatus zinc carboxypeptidase (66 kDa, prodomain: 21 kDa; 

A0A084BIB7) reveal many similarities. These sequences were chosen as they illustrate 

conservation of amino acid sequences across a wide range of fungal organisms. The black 

and grey shading represents amino acid homologies between two or more species. The 

PhePhe sequence found at the end of the prodomain is present in all five species (*). The 

lysine found in the active site is also found in all five species (+). 
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A.                                                                                           

 

 

Figure 2. Ecm14 is similar in structure to other metallocarboxypeptidases, such as CPA1. 

A. The structure of Ecm14 was modeled with the homology modelling program 

SwissModeller using the X-ray crystal structure available for bovine CPA1 (PDB ID 

1PYT) as a template. The prodomain of Ecm14 is shown in blue, while the mature form 

of Ecm14 (the catalytic domain only) is shown in green. Most carboxypeptidases contain 

a zinc in the active site, shown here as a red sphere. B. Potential cleavage sites in the 

prodomain (>90% probability as determined by the ExPASy PeptideCutter) for trypsin 

and chymotrypsin are shown in red and magenta, respectively. The predicted PhePhe 

cleavage site for the prodomain, a potential cleavage site for chymotrypsin, is shown in 

orange. Image created with Pymol. 

 

 

 

B. 
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Figure 3. Ecm14 is expressed in yeast as an insoluble 40 kDa protein. 

Ecm14 expression was induced for varying lengths of time (A), at varying temperatures 

(B), and in 0.2% galactose (C). Histidine-tagged Ecm14 was detected by western 

blotting. ProECM14 was detected as a 40 kDa histidine-tagged protein (arrow). Higher 

molecular weight bands are thought to be multimeric forms of Ecm14. 
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Figure 4. Denatured Ecm14 expressed in yeast cannot be purified using a Cobalt-metal 

affinity column. 

Attempts to purify urea-denatured Ecm14 (clarified) failed to result in any eluted protein. 

Histidine-tagged Ecm14 was detected by western blotting. The lack of a band seen in the 

flowthough (flow) suggests that Ecm14 successfully bound the IMAC resin. No bands 

are seen in the wash which suggests Ecm14 did not wash away due to weak binding. 

Washing the column with either 150 mM (elute 150) or 200 mM (elute 200) imidazole 

resulted in no eluted protein. Washing with EDTA also failed to elute the column, 

suggesting that urea-denatured Ecm14 is bound too strongly to the resin to be removed. 

Insoluble Ecm14 expressed in yeast is seen in the final lane as a control. 
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Figure 5. Ecm14 is expressed in Sf9 insect cells in soluble form. 

 

Histidine-tagged Ecm14 expressed in Sf9 cells with a baculovirus system was detected by 

western blotting. Intracellular Ecm14 was detected in both soluble and insoluble forms as 

a 40 kDa protein.  
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Figure 6. Histidine-tagged Ecm14 can be purified using Cobalt-metal affinity 

chromatography. 

Proteins were extracted from Sf9 cells and clarified by centrifugation (clarified). Proteins 

that did not bind were discarded (flow). Two washes with native wash buffer (wash 1/2) 

were performed to further reduce the number of contaminants in the sample. Purified 

Ecm14 was eluted from the column with imidazole (elute). Following purification of 

Ecm14 by metal affinity chromatography, a 40 kDa protein predicted to be Ecm14 was 

detected by Ponceau S staining (A) and histidine-tagged Ecm14 was detected by western 

blotting (B). 
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Figure 7. Purified ProEcm14 is inactive. 

Ecm14 and CPA1 (10 μg) were incubated for 90 minutes at room temperature with 

carboxypeptidase substrates FA-PhePhe and FA-PheAla (0.5 mM). Cleavage of these 

substrates resulted in a decrease in absorbance at 340 nm. While the control CPA1 

showed robust activity, no activity was observed for Ecm14. Error bars indicate standard 

error, n=3. 
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Figure 8. The prodomain of Ecm14 can be cleaved with the addition of trypsin or 

chymotrypsin. 

Ecm14 was incubated with chymotrypsin (A) or trypsin (B), resolved by SDS-PAGE, and 

detected by Coomassie stain. Both enzymes resulted in the appearance of a 35 kDa band 

likely to be mature Ecm14 (arrows). Ecm14 not incubated with trypsin or chymotrypsin 

resolves as a 40 kDa protein (*). Bands observed at about 25 kDa are the trypsin and 

chymotrypsin used to cleave Ecm14. 
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Figure 9. Chymotrypsinized Ecm14 exhibits weak enzymatic activity. 

Ecm14 cleaved with chymotrypsin (10 μg) shows activity after 2 hours of incubation 

with carboxypeptidase substrate FA-PhePhe (0.5 mM) at pH 7.5. No activity is observed 

for either purified Ecm14 or trypsinized Ecm14. Chymotrypsin and trypsin were 

incubated without Ecm14 as a control. Error bars indicate standard error, n=3. ** p < 

0.01. 

 

 

 

 

 

 

 

 

 

 

 

 

 

**

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Su
b

st
ra

te
 O

n
ly

P
u

re
 E

cm
1

4

Tr
yp

si
n

 O
n

ly

Tr
yp

si
n

iz
ed

 E
cm

1
4

C
h

ym
o

tr
yp

si
n

O
n

ly

C
h

ym
o

tr
yp

si
n

iz
e

d
Ec

m
1

4

En
zy

m
e

 A
ct

iv
it

y 
(Δ

A
3

40
)



39 

 

 

Figure 10. Cleaving the prodomain from Ecm14 with trypsin or chymotrypsin prior to 

IMAC purification increases purity of eluted Ecm14. 

Ecm14 purified by cobalt-metal affinity chromatography is seen as a 40 kDa protein (*) 

by Coomassie staining. This Ecm14 was previously quantified as being roughly 50% 

pure. In order to cleave the prodomain prior to purification, 10 mL of crude Ecm14 was 

incubated with 500 μg of trypsin or chymotrypsin for 10 minutes at room temperature. 

This incubation was followed by purification as performed before. A roughly 35 kDa 

protein is clearly visible in both trypsinized and chymotrypsinized Ecm14. Cleavage of 

the prodomain prior to purification increased the purity of Ecm14 within the sample for 

both trypsin (80% pure) and chymotrypsin (> 95% pure) as determined by ImageJ. 
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Figure 11. Ecm14 cleaved by chymotrypsin shows greatest enzymatic activity for 

carboxypeptidase substrate FA-PhePhe at pH 6.0. 

Ecm14 cleaved with chymotrypsin prior to purification (10 μg) shows activity after 5 

minutes of incubation with carboxypeptidase substrate FA-PhePhe (10 μM) at a range of 

pH values. The greatest activity is seen with a substrate pH of 6.0. Error bars indicate 

standard error, n=3. * p < 0.05; ** p < 0.01.  
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Figure 12. Chymotrypsinized Ecm14 acts in a non-catalytic manner. 

Chymotrypsinized Ecm14 (1 μg and 5 μg) was incubated with FA-PhePhe substrate (10 

μM) at pH 7.5 for 2 minutes at room temperature. Increasing the concentration of Ecm14 

five-fold resulted in three to five times more activity. No activity was recorded for either 

sample of Ecm14 after 1 minute of incubation. Error bars indicate standard error, n=3. p 

< 0.01.  
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Figure 13. Trypsinized Ecm14 can bind to substrate and limit the activity of CPA1. 

Ecm14 cleaved with chymotrypsin and CPA1 (10 μg) show similar activity after 1 

minute of incubation with carboxypeptidase substrate FA-PhePhe (1 μM) at pH 7.5. 

Ecm14 cleaved with trypsin (10 μg) shows no activity as seen previously. Incubating 

substrate with trypsinized Ecm14 for 5 minutes prior to the addition of CPA1 greatly 

reduces the observed activity of CPA1. Error bars indicate standard error, n=3. * p < 

0.005. 
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