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Abstract: Two species of animals are competing or cooperating in the same
environment. Under what conditions do they coexist peacefully? Or under
what conditions does either one of the two species become extinct, that is,
is either one of the two species excluded by the other? We investigate this
phenomena in mathematical point of view.

In this paper we concentrate on coexistence solutions of the competition or
cooperation model

Au + ug(u,v) =0,
Av + vh(u,v) =0,
u‘ag = ’U’ag = 0.

in €,

This system is the general model for the steady state of a competitive or co-
operative interacting system depending on growth conditions for g and h. The
techniques used in this paper are elliptic theory, super-sub solutions, maximum
principles, and spectrum estimates. The arguments also rely on some detailed
properties of the solution of logistic equations.
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1. Introduction

A lot of research has been focused on reaction-diffusion equations modeling
various systems in mathematical biology, especially the elliptic steady states of
competitive and cooperative interacting processes with various boundary con-
ditions. In earlier literature, investigations into mathematical biology models
were concerned with studying those with homogeneous Neumann boundary
conditions. Later on, the more important Dirichlet problems, which allow flux
across the boundary, became the subject of study.

Suppose two species of animals, rabbits and squirrels for instance, are com-
peting or cooperating in a bounded domain Q. Let u(x,t) and v(z,t) be densi-
ties of the two habitats in the place x of €2 at time ¢. Then we have the following
biological interpretation of terms.

(A) The partial derivatives ui(z,t) and v(z,t) mean the rate of change of
densities with respect to time t.

(B) The laplacians Au(z,t) and Av(z,t) stand for the diffusion or migration
rates.

(C) The rates of self-reproduction of each species of animals are expressed
as multiples of some positive constants a,d and current densities u(z,t),v(z,t),
ie. au(x,t) and dv(x,t) which will increase the rate of change of densities in
(A), where a > 0,d > 0 are called the self-reproduction constants.

(D) The rates of self-limitation of each species of animals are multiples
of some positive constants b, f and the frequency of encounters among them-
selves u?(z,t),v?(x,t), i.e. bu(x,t) and fv?(x,t) which will decrease the rate
of change of densities in (A), where b > 0, f > 0 are called the self-limitation
constants.

(E) The rates of competition or cooperation of each species of animals are
multiples of some positive constants ¢, e and the frequency of encounters of each
species with the other u(x,t)v(z,t), i.e. cu(z,t)v(x,t) and eu(x,t)v(z,t) which
will decrease in competition and increase in cooperation the rate of change of
densities in (A), where ¢ > 0,e > 0 are called the competition constants.

(F') We assume that none of the species of animals is staying on the bound-
ary of ).
Combining all those together, we have the dynamic competition model

u(z,t) = Au(a,t) + au(z, t) — bu?(x,t) — cu(z, t)v(x,t)
ve(x,t) = Av(z,t) + do(x, t) — fo?(z,t) — eu(x, t)v(x,t)
u(z,t) =v(x,t) =0 for z € 01,

in Q x [0, 00),
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or equivalently,

= Au(z,t) + u(z,t)(a — bu(z,t) — cv(z,t))

+o(z, t)(d — fo(x,t) — eu(z,t))

) in Q x [0,00),
u(z,t) =v(x,t) =0 for z € 0,

or cooperation model
u(z,t) = Au(x,t) + au(z, t) — bu?(x,t) + cu(z, t)v(x,t)

v(x,t) = Av(z,t) + do(x, t) — fo?(z,t) + eu(x, t)v(x,t)
u(z,t) =v(x,t) =0 for z € 01,

in Q x [0,00),

or equivalently,

)+ u(a, t)(a — bu(z, t) + co(a, 1)) |
Ao(z, 1) + vz, B)(d — fola.t) +eu(z,t)) L3100
0 for x € 0f).

ug(x,t) = Au(z,
v(z,t) =

u(z,t) =v(x,t) =

Here we are interested in the time independent, positive solutions, i.e. the
positive solutions u(x),v(z) of

Au(z) + u(z)(a — bu(:r) —cv(x)) =0 m Q
Av(z) +v(z)(d — fo(z) —eu(z)) =0 ’ (1)
uloo = vlon =0,
. Au(z) + u(z)(a — bu(x) + cv(x)) =0 O
Av(z) + v(z)(d — fo(x) + eu(z)) =0 ’ (2)

ulan = vlan =0,

which are called the coexistence state or the steady state. The coexistence state
is the positive density solution depending only on the spatial variable x, not on
the time variable ¢, and so its existence means the two species of animals can
live peacefully and forever.

A lot of work about the existence and uniqueness of the coexistence state of
the above steady state models has already been done during the last decades.(See
2], 3, [4), [7], [6], [12], [(13])

In [4], Cosner and Lazer established a sufficient and necessary conditions
for the existence of positive solution to the competing system.

The following is their result:

Theorem 1.1. In order that there exist positive smooth functions u and
v in ) satisfying (1) with a = d, it is necessary and sufficient that one of the
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following three sets of conditions hold, where Ay is as described in the Lemma
2.2.

(Da > A,b>ec< f

(2)a > A\, b=e,c=f

(3)a > Ai,b<ec>f

Biologically, the Theorem 1.1 implies that they can coexist peacefully if their
reproduction rates are large enough and their self-limitation and competition
rates are balanced each other.

In [13], Korman and Leung established a sufficient and necessary conditions
for the existence of positive solution to the cooperation system. The following
is their result:

Theorem 1.2. For existence of a positive solution to (2) it is necessary
and sufficient that ce < 1.

Biologically, the Theorem 1.2 indicates that their strong cooperation may
decrease reproduction capacities and increase self-limitation abilities that cause
their extinction.

However, in reality, the rates of change of population densities may vary in
a more complicated and irregular manner than can be described by the simple
competition model. In this paper we study rather general types of the system.
We are concerned with the existence of positive coexistence when the relative
growth rates are nonlinear, more precisely, the existence and uniqueness of a
positive steady state of

Au+ ug(u,v) =0
Av + vh(u,v) =0
ulon = vlga =0,

in €,

where ¢ and h are C! functions, © is a bounded domain in R" and w,v are
densities of the two competitive or cooperative species.

The functions g and h describe how species 1 (u) and 2 (v) interact among
themselves and with each other.

The followings are questions raised in the general model with nonlinear
growth rates.

Problem 1: Under what conditions do the species coexist?
Problem 2: When does either one of the species become extinct?

In Section 3, some sufficient and necessary conditions for the existence of
positive solution in the competition system are obtained that generalizes the
Theorem 1.1, and we can also see some nonexistence result. In Section 4. we
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establish sufficient and necessary conditions for the existence of positive solution
in the cooperating system that generalizes the Theorem 1.2.

2. Preliminaries

Before entering into our primary arguments and results, we must first present
a few preliminary items that we later employ throughout the proofs detailed in
this paper. The following definition and lemmas are established and accepted
throughout the literature on our topic.

Definition 2.1. (Super and sub solutions) Consider
{ Au+ f(z,u) =0 in Q,
ulag =0,
where f € C%(Q x R) and 2 is a bounded domain in R".
(A) A function 4 € C**() satisfying
At + f(zx,u) <0 in Q,
ulon > 0
is called a super solution to (3).
(B) A function u € C%(Q) satisfying
Au+ f(w,u) >0 in Q,
ulogn < 0
is called a sub solution to (3).

Lemma 2.1. Let f(z,£) € C%Q x R) and let @,u € C**()) be, respec-
tively, super and sub solutions to (3) which satisfy u(z) < (x),r € . Then
(3) has a solution u € C%*(Q) with u(x) < u(z) < u(x),z € Q.

In our proof, we also employ accepted conclusions concerning the solutions
of the following logistic equations.

Lemma 2.2. (Established in [15]) Consider

Au+uf(u) =0 in £,
ulon = 0,u > 0,

where f is a decreasing C' function such that there exists co > 0 such that
f(u) <0 for u > ¢y and Q is a bounded domain in R™.
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If f(0) > Ay, then the above equation has a unique positive solution, where
A1 Is the first eigenvalue of —A with homogeneous boundary conditions whose
corresponding eigenfunction is denoted by ¢1. We denote this unique positive
solution as 0.

The most important property of this positive solution is that ¢ is increasing
as f is increasing.
We specifically note that for a > A1, the unique positive solution of

Au+u(a—u) =0 in Q,
u’agzo,u>0,

is denoted by w, = 0,_,. Hence, 0, is increasing as a > 0 is increasing.
Consider the system

Au+ f(x,u) = 0 in, Q, ()
u = 0 on 01,

where u = (u1,...,un) and f = (f1,..., fm) 1S quasimonotone increasing, i.e.
fi(x,u) is increasing in u; for all j # i.

Lemma 2.3. ([13]) Let wy be a family of subsolutions(cc < A < 3) to (4),
increasing in \ such that

Awy + f(z,wy) >0 in Q,wy =0 on 0.

Assume also u > w,, wy does not satisfy (4) for any A, and 88% changes
continuously in A on 0f). Then u > sup w.

3. Competing Species
Consider the system for two competing species of anmials
Au(z) + u(z)g(u,v) =0

Av(z) 4+ v(z)h(u,v) =0
ulon = vlon = 0,

in Q, (5)

where g,h € C' are such that g, < 0,9, < 0,h, < 0,h, < 0, there exist
constants ¢g > 0,¢; > 0 such that g(u,0) < 0 for u > ¢y and h(0,v) < 0 for
V> C.
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If there were no competition between the species, that is, if we consider
Au + ug(u,0)
Av+vh(0,v) = 0
u=v=0 on 0f,

in €,

then the condition ¢g(0,0) > Ay, 2(0,0) > Aq(i.e. reproductions are relatively
large) were sufficient to guarantee the existence of a positive density solution
0y(.,0)s On(0,-)- But, if there is some competition between them, then as we see
in the following Theorem 3.1, we should have the balance conditions for self-
limitation and competition rates.

The following theorem provides a sufficient condition for the existence of a
positive smooth solution to (5).

Theorem 3.1. Suppose g(0,0) = h(0,0) and one of the following three
sets of conditions holds.
(1)g(0,0) > A1, inf(gy) < inf(hy), inf(g,) > inf(h,)
(2)g(0,0) > A1, inf(g,) = inf(hy), inf(g,) = inf(hy)
(3)g(0,0) > A1, inf(gy) > inf(hy), inf(g,) < inf(hy)

Then (5) has a positive smooth solution.

Proof. By the Theorem 1.1, if one of the above three sets of conditions holds,
then there is a positive smooth solution (u,v) to
Au+u[g(0,0) — (= inf(gy))u — (—inf(gy))v] =0
Av + v[h(0,0) — (—inf(hy))u — (—inf(hy))v] =0
u|pa = v]an = 0.
But, by the Mean Value Theorem,

in Q

Au + ug(u,v)
= Au+ulg(0,0) + g(u,v) — g(0,0)]
= Au+uf[g(0,0) 4+ g(u,v) — g(0,v) + g(0,v) — g(0,0)]
> Au+ uf[g(0,0) +in ( w)u - inf(gy )v]
- OAu +u[g(0,0) — (—inf(gy))u — (—inf(g,))v]
and
Av + vh(u,v)
= Av+v[h(0,0) + h(u,v) — h(0,0)]
= Av+v[h(0,0) 4+ h(u,v) — h(0,v) + h(0,v) — h(0,0)]
> Av+v[h(0,0) + inf(h,)u + mf(hy)v]
= Av+v[h(0,0) — (—inf(h,))u — (—inf(hy))v]

I
e
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Hence, (u,v) is a subsolution to (5).

But by the conditions of g, h, any large positive constant M satisfying u <
M,v < M in Q is a supersolution to (5).

Therefore, by the Lemma 2.1, (5) has a positive smooth solution.

The next theorem establishes a necessary condition for the existence of a
positive smooth solution to (5).

Theorem 3.2. Suppose ¢(0,0) = h(0,0). If (5) has a positive smooth
solution, then ¢g(0,0) > Ay and one of the following six sets of conditions holds.

(1)

(2) inf(hy) = sup(gy) sup(h ) > inf(gy,), inf(h,) < sup(gy)
(3)inf(hy) > sup(gy ), inf(h,) < sup(gy)

(4)inf(hy) < sup(gu),sup(hy) = inf(gu),sup(hy) = inf(gy)
(5) inf(hy) < sup(gu),sup(hy) < inf(gy),sup(hy) > inf(gy)
(6)inf(hy) < sup(gy),sup(hy) > inf(g,)

Proof. Suppose (u,v) is a positive smooth solution to (5).
By the Mean Value Theorem, there are u,v with 0 < o < u,0 < v < v such
that
g(uv 0) - g(ov 0) = gu(QL 0)“7
g(u, U) - g(u, 0) = gv(u7 {})U'

Hence, by the Green’s Identity,

Joupi[A1 —g(0,0) — g
= Joudi[M —g(0,0) +g
= fﬂ upr [\ — g(u,v)|dz
Jo &1[—ug(u, v)] + uliprdx
fQ o1Au — ulApidx
0.

u

(u
(0, + g(u,0) — g(u,v)]dz

But, since —gy,(@, 0)u — g, (u, 9)v > 0 in €2, g(0,0) > A;.
By the Mean Value Theorem again, there are uy, uo, vy, v9 with 0 < up, us <
u,0 < wvy,v9 < v such that
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Therefore, by the Green’s Identity again,

Jo wo([hy(u2, v) = gu(ur, v)]u + [hy(0,v2) — gu(0,v1)]v)dz

= Jquv[hy(ug, v)u + hy(0,v2)v — gu(u1,v)u — g, (0, v1)v]dz

= Jouvlh(u,v) — h(0,v) + h(0,v) — h(0,0) + g(0,v) — g(u,v) — g(0,v)
+¢(0,0)]dx

= Jquv[h(u,v) — g(u,v)]dz

= JovAu— uAvdz

= 0,

and so,

Jo uv([inf (hy) — sup(gy)]u + [inf(h,) — sup(g,)]v)dz < 0,
Jo uv([sup(hy) — inf(g,)]Ju + [sup(h,) — inf(g,)]v)dz > 0,

which derives

(B) inf(hy) > sup(gu), inf(hy) < sup(gy),
(C)inf(hy) < sup(gu),

and
(A") sup(hy) = inf(gy),sup(hy) > inf(gy),
(B")sup(hy,) < inf(gy),sup(hy) > inf(gy),
(C") sup(hy) > inf(gu).

Combining (A), (B), (C) and (A"), (B’), (C") together, we may have

However, it is clear that (B”),(D”),(E”) are not possible, so we establish the
result of the Theorem.

We easily recognize that combining the Theorems 3.1 and 3.2 generalizes
the result of Theorem 1.1 with linear growth rates.
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We also prove a nonexistence result. In biological terms, this result con-
firms that sufficiently large reproduction capacity of the species 1 with fixed
reproduction rate of the species 2 results in their extinction.

Theorem 3.3. If g(0,0) > %h(0,0),—l < gy <0, and h, < —1, where
@ = min[—sup(hy),1] and v = max|—inf(g,), 1], then there is no positive
solution to (5).

Proof. Suppose there is a positive solution (u,v) to (5).
Then by the Mean Value Theorem, the Green’s Identity and the inequality
conditions,

Jo(9(0,0) — h(0,0) + [—sup(hy) — 1u + [1 4 inf(gy)|v)uvdz
< Jo(9(0,0) = 7(0,0) + [inf(gu) — sup(ha)]u + [inf(g0)

— sup( U)] )uvd:r
< fQ [9(0,0) — h(0,0) + g(u,0) — g(0,0) — h(u,v) + h(0,v)

+9g(u,v) — g(u 0) ©)
—h(0,v) 4+ h(0,0)]uvdx

= [ylg(u,v) — h(u,v)]uvdz

Jo(wAU — ulAv)dzx

0.

But, if ¢(0,0) > ﬁh(0,0), then since ¢(0,0) > u and h(0,0) > v
9(0,0) = h(0,0) + [=sup(hy) — 1u + [1 4 inf(gy)]v = pg(0,0) — vh(0,0) > 0,

which contradicts to (6).

4. Cooperating Species

Consider the system for two cooperating species of animals

Au(r) +u(z)g(u(r),v(r)) =
Av(z) + v(z)h(u(z),v(z))
ulpo = v]on = 0,

8 in €,

where g, h € C' are such that g, < 0,g, > 0, hy > 0,h, < 0.
The following Theorem proves a necessary condition for the existence of a
positive solution to (7).
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Theorem 4.1. Ifg(0,0) > A1, h(0,0) > Ay, inf(h,) > —1, and inf(h,,) > 0,
then for the existence of a positive solution to (7) implies

inf(gy) inf(h,) + inf(g,) < 0.

Proof. Suppose inf(g,)inf(h,) + inf(g,) > 0. Consider a family (uy,vy) =
(Ap1, Ainf(hy)¢1) with any A > 0.
Then by the assumption and Mean Value Theorem,

Auy +upg(ux,vy)
= —A\d1 + Ap1g(Agr, Ainf (hy)¢1)
Ap1(—=A1 + g(Ap1, Ainf(hy)¢1)
A1 (=A1 + g(Ap1, Ainf(hy)d1) — g(Ag1,0) + g(Ag1,0) — g(0,0) + g(0,0))
)\qﬁlég( 0) — A1 + g(Adr, Ainf(hy )1 — g(Ag1,0) + g(Ag1,0) — g(0,0))

> A1(9(0,0) — Ay + inf(gy) inf(hy)Ad1 + inf(gu) A1)
> 0,
and
Avy + vyh(uy,vy)
—  Xinf(ha)Aé1 + Ainf(hu)dih(Ab1, Aint ()1 )
= Anf(hy)d1(=A1 + ~(Ad1, Ainf(hy)¢1))
= Ainf(hy)d1 (=M1 + h(Ag1, Ainf(hy ) 1) — h(Ad1,0) + h(Ad1,0) — R(0,0)
+h(0,0))
= Ainf(hy)$1(h(0,0) — A1 + A(Ad1, Ainf(hy) 1) — h(A¢1,0) + h(A¢1,0)
—h(0,0))
> Anf(hy)é1(h(0,0) — At + inf(ho) A inf(hy )1 + inf(hy) A1)
> 0.

Therefore, (uy,vy) = (A¢1, Ainf(hy)¢p1) with any A > 0 is a family of subsolu-
tions to (7).

Furthermore, if (u,v) is a positive solution to (7), then u > Ao¢1 and
v > Aginf(hy )¢y for sufficiently small A\g > 0, and so by the lemma 2.3, we
conclude that u > A¢y and v > Ainf(h,)p; for any A > \.

Hence, there is no positive solution to (7).

For a sufficient condition for the existence of a positive solution to (7), we
need the following Lemma.

Lemma 4.2. Ifbf > ce, then we can choose arbitrary large M, N > 0

such that
a—bM + cN <0,

d+eu— fN <O.
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We now establish a sufficient condition for the existence of a positive solution
to (7).
Theorem 4.3. If g(0,0) > Ay, h(0,0) > A\ and

sup(gy) sup(hy) < sup(gu) sup(hy),

then (7) has a positive solution.

Proof. Let u = a¢y,v = f¢1, where o, 5 > 0.
Then since ¢(0,0) > A1 and h(0,0) > Ay, by the Mean Value Theorem, for

small enough a, 5 > 0,

Au + ug(u,v)

—al ¢ + api1g(ady, Bor)

agi[—A1 + gladr, Bor)]

agi[=A1 +9(0,0) + g(ad1, Bé1) — g(0, Ber) + g(0, Bp1) — g(0,0)]

> a¢1 [_)‘1 + g(ov 0) + inf(gu)a¢1 + inf(gv)6¢1]
> 0,
and
Av + vh(u,v)

= —PBM¢1+ Boih(adr, Bér)

= B[+ hagr, Bor)]

= pé1[=A1+ h(0,0) + h(ady, Bé1) — h(0, Bo1) + h(0, Bé1) — h(0,0)]
> Boi[—A1 + h(0,0) + inf(hy)aps + inf(hy)Bo1]

> 0,

and so, (u,v) = (a¢1, f¢1) is a subsolution to (7) for sufficiently small o, 5 > 0.
But, for all (u,v), by the Mean Value Theorem again,

< ¢(0,0) 4+ sup(gy)v + sup(gy )u,
and
h(u,v) = h(0,0) + h(u,v) — h(u,0) + h(u,0) — h(0,0)
< 1(0,0) + sup(n)u + sup( ),

so by the condition and the Lemma 4.2, there are constants M, N > 0 with
app < M, B¢ < N such that

AM + Mg(M,N) < M[g(0,0) + sup(g,)N + sup(g.)M] <0,
AN + Nh(M,N) < N[h(0,0) + sup(hy )N + sup(hy)M] < 0,
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in other words, (M, N) is a supersolution to (7).
We conclude by the Lemma 2.1 that there is a positive solution (u,v) to (7)
with ag; <u < M, B¢ <v < N.

In biological terms, the Theorems 4.1 and 4.3 illustrate that the reproduc-
tion rates must be large enough, and self-limitation rates should be relatively
larger that cooperation ones for their peaceful coexistence.

We easily recognize that combining the Theorems 4.1 and 4.3 generalizes
the result of Theorem 1.2 with linear growth rates.

5. Conclusions

In this paper, our investigation of the effects of nonlinear growth rates on the
competition and cooperation models resulted in the development and proof of
Theorems 3.1, 3.2, 3.3, 4.1 and 4.3, as detailed above. The results together as-
sert that right choice of functions g(u,v) and h(u,v) will maintain the existence
of the positive steady state. Indeed, our results specifically outline conditions
sufficient and necessary to maintain the positive, steady state solution when
rates of reproduction, self-limitation, competition and cooperation are nonlin-
ear.

Applying this mathematical results to real world situations, our results
establish that two species residing in the same environment can vary their
interactions, within certain limitations, and continue to survive together in-
definitely at densities. The conditions necessary for coexistence, as described in
the Theorems, simply require that competing members’ rates of reproduction,
self-limitation and competition are well-balanced, and cooperating members of
each species interact strongly with themselves and weakly with members of the
other species.

While our research in this paper therefore represents a progression in the
field, the results obtained have an important limitation. Our model describes
the interactions of only two species who reside in the same environment, so
the parallel conditions required for the coexistence of more than two species
need to be investigated in future research(For example, see [8] that has results
of perturbation of the model with arbitrary N species of animals, and is the
development of [14] that has the results with two species of animals.). Math-
ematically, analysis of competition and cooperation models for N populations
would expand the community’s understanding of the behavior of functions and
extend established theory in the field. Biologically, the investigation of models
for NV species would increase knowledge on the nature of interactions between
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any number of species within the same environment. Thus, the results achieved
through our research will enable both fields to continue the development of the-
ory on interaction of populations.

1]
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