
Andrews University Andrews University

Digital Commons @ Andrews University Digital Commons @ Andrews University

Master's Theses Graduate Research

2014

A Hierarchical Framework for Estimating Heterogeneous A Hierarchical Framework for Estimating Heterogeneous

Architecture-based Software Reliability Architecture-based Software Reliability

Wayne Morris
Andrews University

Follow this and additional works at: https://digitalcommons.andrews.edu/theses

Recommended Citation Recommended Citation
Morris, Wayne, "A Hierarchical Framework for Estimating Heterogeneous Architecture-based Software
Reliability" (2014). Master's Theses. 19.
https://digitalcommons.andrews.edu/theses/19

This Thesis is brought to you for free and open access by the Graduate Research at Digital Commons @ Andrews
University. It has been accepted for inclusion in Master's Theses by an authorized administrator of Digital
Commons @ Andrews University. For more information, please contact repository@andrews.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Andrews University

https://core.ac.uk/display/232856047?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.andrews.edu/
https://digitalcommons.andrews.edu/theses
https://digitalcommons.andrews.edu/graduate
https://digitalcommons.andrews.edu/theses?utm_source=digitalcommons.andrews.edu%2Ftheses%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.andrews.edu/theses/19?utm_source=digitalcommons.andrews.edu%2Ftheses%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@andrews.edu

Thank you for your interest in the

Andrews University Digital Library

of Dissertations and Theses.

Please honor the copyright of this document by

not duplicating or distributing additional copies

in any form without the author’s express written

permission. Thanks for your cooperation.

ABSTRACT

A HIERARCHICAL FRAMEWORK FOR ESTIMATING
HETEROGENEOUS ARCHITECTURE-BASED

SOFTWARE RELIABILITY

by

Wayne Morris

Chair: Roy Villafane

ABSTRACT OF GRADUATE STUDENT RESEARCH

Thesis

Andrews University

College of Arts and Sciences

Title: A HIERARCHICAL FRAMEWORK FOR ESTIMATING HETEROGENEOUS
ARCHITECTURE-BASED SOFTWARE RELIABILITY

Name of researcher: Wayne Morris

Name and degree of faculty chair: Roy Villfane, Ph.D.

Date completed: July 2014

Problem

The composite model approach that follows a DTMC process with constant

failure rate is not analytically tractable for improving its method of solution for

estimating software reliability. In this case, a hierarchical approach is preferred to

improve accuracy for the method of solution for estimating reliability. Very few studies

have been conducted on heterogeneous architecture-based software reliability, and those

that have been done use the composite model for reliability estimation. To my

knowledge, no research has been done where a hierarchical approach is taken to estimate

heterogeneous architecture-based software reliability. This paper explores the use and

effectiveness of a hierarchical framework to estimate heterogeneous architecture-based

software reliability.

Method

Concepts of reliability and reliability prediction models for heterogeneous

software architecture were surveyed. The different architectural styles were identified as

batch-sequential, parallel filter, fault tolerance, and call and return. A method for

evaluating these four styles solely on the basis of transition probability was proposed.

Four case studies were selected from similar researches which have been done to test the

effectiveness of the proposed hierarchical framework. The study assumes that the method

of extracting the information about the software architecture was accurate and that the

actual reliability of the systems used were free of software errors.

Results

The percentage difference in results of the reliability estimated by the proposed

hierarchical framework compared with the actual reliability was 5.12%, 11.09%, 0.82%,

and 52.14% for Cases 1, 2, 3, and 4 respectively. The proposed hierarchical framework

did not work for Case 4, which showed much higher values in component utilization and

therefore higher interactions between components when compared with the other cases.

Conclusions

The proposed hierarchical framework generally showed close comparison with

the actual reliability of the software systems used in the case studies. However, the results

obtained by the proposed hierarchical framework compared to the actual reliability were

in disagreement for Case 4. This is due to the higher component interactions in Case 4

when compared with other cases and showed that there are limitations to the extent to

which the proposed hierarchical framework can be applied. The reasoning for the

limitations of the hierarchical approach has not been cited in any research on the subject

matter. Even with the limitations, the hierarchical framework for estimating

heterogeneous architecture-based software reliability can still be applied when high

accuracy is not required and not too high interactions among components in the software

system exist.

Andrews University

College of Arts and Sciences

A HIERARCHICAL FRAMEWORK FOR ESTIMATING
HETEROGENEOUS ARCHITECTURE-BASED

SOFTWARE RELIABILITY

A Thesis

Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Wayne Morris

2014

©Copyright by Wayne Morris 2014
All Rights Reserved

A HIERARCHICAL FRAMEWORK FOR ESTIMATING
HETEROGENEOUS ARCHITECTURE-BASED

SOFTWARE RELIABILITY

A thesis
presented in partial fulfillment

of the requirements for the degree
Master of Science

by

Wayne Morris

APPROVAL BY THE COMMITTEE:

Roy Villafane, Ph.D., Chair

Stephen Thorman, Ph.D.

Rodney Summerscales, Ph.D.

______________________________ ________________________
William Wolfer, M.S. Date approved

iii

TABLE OF CONTENTS

LIST OF FIGURES ... v

LIST OF TABLES ... vii

LIST OF EQUATIONS ... ix

ACKNOWLEDGMENTS ... x

Chapter

1. INTRODUCTION .. 1

Purpose of Study ... 5
Contributions ... 5
Thesis Organization ... 6

2. LITERATURE REVIEW ... 8

Related Work ... 8
Software Reliability ... 11
Software Reliability Models .. 12
Architecture-Based Software Reliability Models ... 14
Markov Chain .. 15
DTMC Application to Architecture-Based Software Reliability 16
Cheung Model ... 17
Wang, Wu, & Chen Model .. 18

Batch-Sequential/Pipeline Architectural Style .. 19
Parallel/Pipe-filter style ... 20
Fault Tolerance .. 21
Call and Return Architecture Style .. 23
Estimating Overall Reliability ... 24

Gokhale et al Model .. 24
Reliability Prediction Based on Time .. 29

Extracting the Software Architecture .. 30

3. HIERARCHICAL FRAMEWORK FOR ESTIMATING HETEROGENEOUS
ARCHITECTURE-BASED SOFTWARE RELIABILITY 32

iv

Introduction ... 32
Information on the Software Architecture .. 33
Reliability Metrics ... 33
My Approach ... 34

Evaluating the Transition Probability Matrix of Batch/Sequential
Architectural Style ... 35
Evaluating the Transition Probability Matrix of Parallel/Pipe Filter
Architectural Style ... 35
Evaluating the Transition Matrix of the Fault Tolerance Architectural
Style ... 38
Evaluating the Transition Probability for the Call and Return Architectural
Style ... 39

Determining the Overall Software Reliability Based on the Hierarchical
Framework .. 40
Description of Case Studies .. 41

Case 1: Description of the Empirical Structure of the Software
Architecture ... 42
Case 2: Description of the Empirical Structure of the Software
Architecture ... 45
Case 3: Description of the Stock Trading System 47
Case 4: Description of the ATM Bank System Simulator 49

4. RESULTS AND DISCUSSIONS ... 52

Transforming the Transition Probability Matrix for the Different Cases 52
Analysis of Results .. 56
The Limitations of the Hierarchical Approach and the Proposed Hierarchical
Framework .. 60

5. CONCLUSION ... 64

Future Work .. 66

Appendix: Details of Results ... 67

REFERENCE LIST ... 70

v

LIST OF FIGURES

1. Reliability Transition Matrix ... 17

2. Batch-Sequential and Pipeline styles ... 19

3. Parallel/Pipe Filter Style .. 20

4. Fault Tolerance .. 22

5. Call and Return Architectural Style ... 23

6. System Architecture Represented by Its Components That Follow an Absorbing
DTMC Process ... 28

7. Batch/Sequential Architecture Style .. 35

8. Transition Between Components in a Parallel Architecture 36

9. Transition Probability Matrix for the Parallel Structure 37

10. Transformed Transition Probability Matrix ... 37

11. Fault Tolerance Architecture ... 38

12. Transition Probability Matrix for the Fault Tolerance Structure 39

13. Transformed Transition Probability Matrix of the Fault Tolerance Architecture 39

14. Call and Return Architecture ... 40

15. Software Architecture of Case 1 .. 44

16. Software Architecture of Case 2 .. 46

17. Software Architecture of Case 3: Stock Trading System 49

18. Software Architecture of Case 4: ATM Bank System Simulator 51

vi

19. Comparison of the Reliability Obtained Based on the Proposed Framework with
the Actual Reliability .. 57

20. Comparison of the Expected Number of Visits per Components for the Different
Cases .. 58

21. Expected Number of Visits per Component for Case 1 Architecture 61

22. Expected Number of Visits per Component for Case 2 Architecture 62

23. Expected Number of Visits per Component for Case 3 Architecture 62

24. Number of Visits per Component for Case 4 Architecture.................................. 63

vii

LIST OF TABLES

1. Classification of Software Reliability Growth Models .. 13

2. Reliability of Component in Figure 6: ... 27

3. Transition Probabilities of Components in Figure 6: ... 27

4. Reliability calculated based on Gokhale et al Model Considering the
Variance of the Expected Number of Visits .. 29

5. Transition Probabilities of Case 1 .. 43

6. Component Reliabilities of Case 1 .. 43

7. Transition Probabilities of Case 2 .. 45

8. Component Reliabilities of Case 2 .. 46

9. Transition Probabilities of Case 3 .. 48

10. Component Reliabilities of Case 3 .. 48

11. Transition Probabilities of Case 4 .. 50

12. Component Reliabilities of Case 4 .. 51

13. Transition Probability Matrix of Case 1 .. 52

14. Transformed Transition Probability Matrix of Case 1 ... 53

15. Transition Probability Matrix of Case 2 .. 53

16. Transformed Transition Probability Matrix of Case 2 ... 54

17. Transition Probability Matrix of Case 3 .. 54

18. Transformed Transition Probability Matrix of Case 3 ... 55

19. Transition Probability Matrix of Case 4 .. 55

viii

20. Transformed Transition Probability Matrix of Case 4 ... 56

21. The Overall System Reliability for Each Case Compared to the Actual
Reliability ... 57

22. Component Reliability, Expected Number of Visits and Overall Reliability from

the Proposed Hierarchical Framework Applied to Case 1 68

23. Component Reliability, Expected Number of Visits and Overall Reliability from
the Proposed Hierarchical Framework Applied to Case 2 68

24. Component Reliability, Expected Number of Visits and Overall Reliability from
the Proposed Hierarchical Framework Applied to Case 3 69

25. Component Reliability, Expected Number of Visits and Overall Reliability from
the Proposed Hierarchical Framework Applied to Case 4 69

ix

LIST OF EQUATIONS

1. Failure Rate Expression ... 11

2. Survival Rate Expression ... 11

3. Hazard Rate .. 12

4. Basic Reliability Expressions and Model .. 12

5. Reliability Evaluation by Transition Matrix .. 17

6. Expression for Finding Fundamental Matrix ... 18

7. Fundamental Matrix Expression .. 18

8. Cheung Method for Overall Reliability ... 18

9. Gokhale Expression for Overall Reliability ... 25

10. Gokhale Expression for Overall Reliability Using Second Order Taylor Series
Expansion ... 26

11. Expression for Variance of the Expected Number of Visits, 𝜎1, 𝑗2 26

12. Overall Reliability Expression with the inclusion of Time and Failure Rate 29

13. Second Order Taylor series Expression for Reliability with Failure
Rate and Time .. 30

x

ACKNOWLEDGMENTS

I would first like to thank God for making this journey a successful one. His

words have been my encouragement and guidance for overcoming the challenges

throughout the pursuit of my endeavors. To my wife and child, Terrian and Gabrielle,

who have been very encouraging and supportive in every way possible, I could not have

asked for anything more. To my parents and family for believing in me and their prayers

which have kept me strong and focused throughout this journey. Special thanks to

Felicia, for her continuous spiritual encouragement, faith, and her very special assistance

to my family. You have played a great role in the achievement of this milestone.

I would like to thank Dr. Villafane for doing a superb job as a teacher and an

adviser who is always willing to give assistance. I would like to thank Prof. Wolfer for

his encouragement, invaluable advice, and guidance which he has generously offered

throughout the years. I would like to thank Dr. Thorman for his contributions to my

development both academically and professionally. I would also like to extend thanks to

the Department Chair, the entire ECS department, and the Andrews University

community for the support, friends, and the various activities that were undertaken to

help bolster our development while we continue to make progress and strides in our field.

I would like to also extend special thanks to friends: Dexter, Roberto, Jonathan,

Rayon, Daci, Theo, Dueal, Veto, Jose, Nettleton, Denry, Ricardo and Melanie for all their

support, encouragement, faith, and inspiring hope when all seems lost. Thank you all for

your great support and contributions in making this journey a story of success.

1

CHAPTER 1

INTRODUCTION

Software reliability estimation is a critical activity of the software development

process which must be understood to prevent or minimize the risks of software failures. It

has continued to be an area of focus for developing new ways to measure, analyze, and

predict failures so that preemptive actions can be taken in the software development

process as well as to have in place well-established and prompt corrective response

regime in the event of software failure.

There are several models in existence for carrying out software reliability

analyses. In the earlier years of software development, software reliability analysis was

mainly done using black box models which only provided information of the overall

software reliability (Goseva-Popstojanova & Kamavaram, 2003). While these models

were effective and very useful, it lacks the ability to provide information or analysis of

the internal structure of software components (Goseva-Popstojanova & Trivedi, 2001).

Hamlet (1992) and Horgan and Mathur (1996) have highlighted that black box models

are applicable very late in the life-cycle of the software and ignore information about

testing and reliabilities of the components that make up the software. In addition, black

box models do not take into consideration the architecture of the software.

As the software process continued to evolve to its present state, most, if not all,

software development practitioners have started using object-oriented approaches or

2

incorporating commercially off the shelf (COTS) software components as part of the

whole software system to enhance or add functionalities instead of completely

redesigning or remodeling the software architecture (Goseva-Popstojanova & Trivedi,

2001). Using black box models for an object-oriented or component-based approach to

building software system would require retesting the entire system to determine system

reliability, which means that reliability analysis can be applied only very late in the life

cycle of the software development process. However, with architecture-based approach,

only information about the specific component that is being added or replaced is needed,

and retesting of the entire system would not be necessary. Instead, a reassessment, based

on the application of the reliability model, would be needed to predict the overall system

reliability. This approach considers the software architecture and it is done by analyzing

each component of the software architecture within a model framework for estimating the

overall system reliability. It also allows for prediction of system reliability to be made

based on formal, stochastic software models. Using these models, developers can identify

critical software components and quantify their influence on the overall system reliability

to optimize future testing activities (Koziolek, Schlich, & Bilich, 2010).

Architecture-based reliability modeling has gained substantial momentum and has

shown much promise as documented in several researches. The approach for applying

architecture based reliability has been classified into three categories: state-based, path-

based, and additive (Goseva-Popstojanova & Trivedi, 2001), of which state-based has

been the focus of earlier researches while path-based has become one of more recent

interest. State-based approaches assume that the transfer of control between components

has a Markov property which can be modeled as discrete time Markov chain (DTMC),

3

Semi-Markov process (SMP), or continuous time Markov chain (CTMC). Path-based

models compute software reliability considering the possible execution paths of the

program and can be done experimentally or algorithmically. Additive models assume that

each component can be modeled by a non-homogeneous Poisson process (NHPP)

(Goseva-Popstanova, Mathur, & Kishor, 2001).

State-based approaches to estimating software reliability have been further

classified into composite and hierarchical models (Gokhale & Trivedi, 2002). Composite

models combine the architecture of the software and the failure behavior of its

component as a single model, whereas the hierarchical model solves the architectural

model and superimposes the failure behavior of the modules and that of the interfaces

onto the solution to predict reliability.

While several studies have focused on architecture-based software reliability, very

few have considered software as a heterogeneous architecture. Wang, Wu, and Chen

(1999) developed a framework for estimating reliability of heterogeneous software

architecture based on the Cheung (1980) model. Cheung’s model is one of the most used

state-based and composite models for estimating architecture-based software reliability

and takes the operational profile into account by utilizing transition probabilities from

one component to another. Wang, Wu, and Chen (1999) highlighted that the Cheung

model lacked the flexibility to be applied to different architectural styles and therefore

could pose a challenge for practitioners to configure the architecture to fit a particular

reliability framework that best meets quality demand. Gokhale (2002) also stated that the

composite model that follows a DTMC process with constant failure rate was analytically

intractable as it combines both reliability and failure behavior as a single component

4

which makes the solution to the model difficult when high accuracy is required. As a

result, the hierarchical approach is preferred when the desire is to improve upon the

accuracy of the method of solution for reliability prediction.

As several different architectural styles continue to emerge (Shaw, 1993) and

given the heterogeneous nature of software system components, it is important to

consider the different architectural styles as performance and availability could be

impacted based on the architectural styles of the system (Wang, Chen, & Tang, 1999). It

is also important that a reliability framework not only takes the heterogeneity of the

architecture into account but is also analytically tractable for improving accuracy of the

method of solution for reliability prediction. This is a deficiency in the model developed

by Wang, Wu, and Chen (1999) as it is a composite model based on the model developed

by Cheung (1980). As a result, exploring a hierarchical framework for estimating

reliability in systems of heterogeneous architectural styles would be a basis for presenting

more flexible ways of improving the accuracy of reliability models than with the

composite model approach. It is much easier for the hierarchical approach to be

represented as SMP or CTMC processes which also takes failure behavior, failure

intensity, and time dependency into consideration (Gokhale & Trivedi, 1997).

Given the lack of flexibility for analysis observed in the model developed by

Wang, Wu, and Chen (1999), the aim of this research was to explore a hierarchical

framework for estimating and analyzing heterogeneous architecture-based software

reliability. The successful application of the hierarchical framework would present a

platform not only for more in-depth analysis of software reliability but also exploits its

5

flexibility for considering additional factors which the composite model by Wang, Wu,

and Chen (1999) would not otherwise consider.

Purpose of Study

This study aims at applying a hierarchical framework to accurately estimate

heterogeneous architecture-based software reliability as an enhancement to the model

developed by Wang, Wu, and Chen (1999). The purpose of this study is as follows:

1. To find an alternative and simpler approach for estimating software reliability of

heterogeneous architectural styles

2. To identify the limitations, if any, of applying the hierarchical framework to

heterogeneous architectural styles

3. To validate the application of the hierarchical framework not only to heterogeneous

architecture but of its general use for predicting reliability

4. Successful use of the hierarchical framework would set the platform where other

models could be easily derived or parameters could be added for improving accuracy.

The hierarchical approach offers much more flexibility for mathematically

expressing reliability and taking into consideration additional parameters for improving

accuracy which would be difficult using the composite approach.

Contributions

The main contribution of this study is to provide an alternative for estimating

reliability of heterogeneous architectural styles from which analytical expressions can be

developed to improve accuracy and include additional parameters. Very few studies have

tackled the subject of estimating software reliability for heterogeneous architectural

6

styles, and those including Wang, Wu, and Chen (1999) have all used the composite

approach as a method of solution. The hierarchical approach has been applied to other

systems having a specific or strict architectural designed structure, but no research, to my

knowledge, has been conducted where the hierarchical framework has been applied to

heterogeneous architectural styles. A number of studies have mentioned the use of

hierarchical approach for estimating reliability but none have explored the extent to

which the model can be applied or the limitations to the type of system architecture for

which it can be applied.

In addition, the hierarchical approach that most studies have applied usually either

follow a SMP or CTMC process which can be tedious to interpret mathematically. The

hierarchical approach taken in this research is one that follows a DTMC process and is

much more easily applied than models based on the SMP or CTMC process. While the

study utilizes the hierarchical framework based on the DTMC process, it still has the

ability to include failure rate and time domain as parameters, which is the characteristic

of SMP and CTMC process models.

This study aims to fill these gaps which have been observed and to identify areas

of deficiency in the software reliability estimation for heterogeneous architectural styles

from which improvements can be developed. Doing so will set the platform for further

studies where the model can be either refined or enhanced for higher accuracy as

necessary.

Thesis Organization

The thesis is comprised of five chapters. This first chapter contains background

information on the motivation for conducting research in the area of architecture-based

7

software reliability. The chapter provided an overview of the concepts and deficiencies in

studies that have been conducted in this area as well as justifications for proposing an

alternative approach to current models in existence. The chapter also highlighted the

importance of the research and its contributions.

Chapter 2 outlines details of the related work which have been done on

architecture-based reliability and provides details of the concepts and principles of

architecture-based reliability models.

Chapter 3 outlines in detail the methodology for the methods and approach taken

in applying the proposed hierarchical framework for estimating software reliability of

heterogeneous architectural styles. It also provides a detailed description of the case

studies which were used in this research.

Chapter 4 provides the detailed analysis of the results obtained, while chapter 5

provides a conclusion which summarizes the study. Following this chapter are the

appendix and reference list.

8

CHAPTER 2

LITERATURE REVIEW

Related Work

Various studies have been done and several mathematical models have been

proposed for assessing architecture-based software reliability. One of the earliest models

in assessing architecture-based software reliability model was developed by Cheung

(1980). This model considers the software reliability with respect to the module’s

utilization and its reliabilities. It assumes that the program flow graph of a terminating

application has a single entry and a single exit node, and that the transfer of control can

be described by an absorbing DTMC with a transition probability matrix of P = [pij]

(Goseva-Popstojanova & Trivedi, 2001). It is often used as a basis for accuracy and

deriving other architecture-based reliability models (Gokhale & Trivedi, 2002). Despite

its effectiveness and accuracy, the model’s method of solution is not analytically tractable

and is not very reliable when high accuracy is required (Gokhale, 2002).

As a result, the model developed by Gokhale and Trivedi (2002) takes into

consideration the number of visits to each state based on transition probabilities while

incorporating failure behavior and expected time spent in each state as parameters. This

model assumes that the failure behavior follows a Poisson process and is derived by

Taylor series expansion. Therefore, the value estimated for reliability is an approximate

9

value and expected to be more accurate when higher orders of the Taylor series

expansion are considered. Since the model by Gokhale (2002) follows a Poisson process,

components are assumed to fail at constant failure rate.

Despite these enhancements made to the Cheung’s architecture-based model, it

still lacks the ability to provide a framework for representing different architectural

styles. Wang, Wu, and Chen (1999) proposed a framework based on Cheung’s model for

applying different software architectural styles and highlighted the importance of refining

the model developed by Cheung (1980) when considering heterogeneous and complex

architectures. Wang, Wu, and Chen (1999) developed a reliability model based on the

following architectural styles: batch-sequential/pipeline style, parallel/pipe filter style,

fault tolerance, and call and return. These styles are said to be a general representation of

the different software architectural styles. For example, a client-server style would

represent that of a call and return, a hierarchical and layered style would be similar to

batch-sequential/pipeline, a multiprocessor environment would be that of a parallel/pipe

filter style, and database distribution network could be seen as that of a fault tolerance

style. The results of using the heterogeneous architectural style proposed by Wang, Wu,

and Chen (1999) were very comparable with that of the actual reliability of the software

system that was used. It must be noted that the Cheung’s approach is purely maintained

when considering a batch-sequential/pipeline where both the failure behavior and

reliability of components are accounted for together. However, with other architectural

styles, variations will be observed and therefore the need to evaluate the different

architectural styles for predicting overall reliability.

Even with the refinement of Cheung’s approach, the model proposed by Wang,

10

Wu, and Chen (1999) does not separate reliability from failure behavior and therefore

takes a composite approach to estimating reliability. As a result, the model becomes very

difficult to evaluate if parameters such as failure behavior and time spent in each state as

parameters are to be considered. In this case, a hierarchical approach could make the

derivation of other mathematical expressions more easily to improve the accuracy of the

solution. Gokhale (2002) outlined the importance or relevance for the use of the

hierarchical approach as follows:

1. To readily analyze sensitivity of system reliability to the reliabilities of its

components

2. To analyze the sensitivity of system reliability to the structural statistics of the system

3. To rank the components of the system in the order of their importance from the

system reliability perspective, and thus identify the components that are critical to the

system

4. To determine the allocation of reliability to individual components so that the overall

reliability target of the system is achieved

5. To readily identify and analyze performance bottlenecks within components to

improve overall performance of the software.

This would make the process of evaluating system reliability to be extended

beyond treating the system as a DTMC into treating the system more like a semi-Markov

process or continuous time Markov Chain (CTMC) through which real-time software

reliability can be evaluated. Further, with this approach, traditional reliability analysis

such as mean time to failure (MTTF), mean time between failure (MTBF), among others

could be conveniently incorporated in the software reliability analysis. The Wang, Wu,

11

and Chen (1999) model for estimating reliability of heterogeneous software architecture

does not offer that level of flexibility, which this study had sought to address.

Software Reliability

Software reliability is defined as the probability of failure-free software operation

for a specified period of time in a specified environment. It is one of the attributes of

software quality, a multidimensional property including other customer satisfaction such

as functionality, usability, performance, serviceability, capability, installability,

maintainability, and documentation (Michael, 1996). Software reliability is generally

accepted as the key factor in determining software quality since failures within a system

can be quantified.

According to Nikora and Lyu (1999), software reliability is defined

mathematically as follows:

Let "T" be a random variable representing the failure time or lifetime of a

physical system. For this system, the probability that it will fail by time "t" is:

∫=≤=
t

dxxftTPtF
0

)(][)(

Eq. 1: Failure Rate Expression

The probability of the system surviving until time t is:

∫
∞

=−=>=
t

dxxftFtTPtR)()(1][)(

Eq. 2: Survival Rate Expression

Based on Eq. 2, failure rate, which is the probability that a failure will occur in the

interval [t1, t2] given that a failure has not occurred before time t1, can be written as:

12

)()(
)()(

][)(
][]|[

112

12

112

21

12

121

tRtt
tFtF

tTPtt
tttP

tt
tTtttP

−
−

=

>−
≤≤

=
−

>≤≤

 And Hazard rate, the limit of the failure rate as the length of the interval approaches

zero, can be written as:

)(
)(

)(
)()(lim)(

0

tR
tf

ttR
tFttFtz

t

=

∆
−∆+

=
→∆

Eq. 3: Hazard Rate

This is the instantaneous failure rate at time t, given that the system survived until time t.

The terms hazard rate and failure rate are often used interchangeably.

A reliability objective expressed in terms of one reliability measure can be easily

converted into another measure as follows (assuming an “average” failure rate, λ , is

measured):

()

() ()etR
MTTF

MTTF

tt

tµ

λ
λ

λµ

−=

=

=

∗=

1

1

Eq. 4: Basic Reliability Expressions and Model

Where ()tµ is the failure intensity and MTTF is the mean time to failure.

Software Reliability Models

Software reliability models can be grouped into two categories: black box model

and white box model or architecture-based approaches. The black box models tend to

treat the software as a monolithic whole while the white box approach analyzes the

system based on its individual components (Goseva-Popstojanova & Trivedi, 2001). The

13

most used or more established black box software reliability models are classified into a

group called software reliability growth model (SRGM). They use the observed failure

information and predict future failures that reflect the growth of reliability. A broad

classification of SRGMs is given in Table 1 (Chandran, Dimove, & Punnekkat, 2010).

SRGMs are classified under three major groups: finite, infinite based on the total number

of failures expressed in infinite time, and Bayesian models. Tools such as CASRE

(Nikora, 2002) and SMERFS (Fair & Smith, 1988) are available for analyzing SRGMs.

These models depend only on the number of failures observed or time between failures.

Table 1

Classification of Software Reliability Growth Models

Finite Infinite
Bayesian Model Exponential Weibull and

Gamma Exponential

Jelinski-
Moranda

S-Shaped
Reliability
Growth

Geometric Littlewood-
Verrall

Shooman Weibull Musa-Okumoto
Logarithmic

Musa Basic
execution time Duane

Goel-Okumoto
Schneidewind

Perugupalli (2004) stated that with the growing emphasis on reuse, an increasing

number of organizations are developing and using software not just as all-inclusive

applications, as in the past, but also as component parts of larger applications. This makes

existing black box models clearly inappropriate to model such a large component-based

system. Instead, there is a need for modeling technique which can be used to analyze

14

software components and how they fit together. The goal of the white box approach is to

estimate the system reliability, taking the information about the components of software

into account (Goseva-Popstojanova & Trivedi, 2001). While the approach may be

different in quantifying software reliability, the aim of both models is to capture the

reliability of the system as a function of failure behavior.

Architecture-Based Software Reliability Models

There are a number of architecture based models in existence for estimating

reliability. Goseva-Popstojanova and Trivedi (2001) have done a survey of the various

models and provide details of the assumptions that are made when using particular

models. The survey conducted by Goseva-Popstojanova and Trivedi (2001) also

highlighted the major common requirements for estimating reliability using architecture-

based approaches. These include: module identification, software architecture, failure

behavior, and combining architecture with failure behavior.

In addition to the advantage of architecture-based approaches over black box

approaches, Goseva-Popstanova et al. (2001) have rationalized the motivation to apply

architecture based software reliability as follows:

1. Understanding how the system reliability depends on its component reliabilities and

their interaction

2. Studying the sensitivity of the application reliability to reliabilities of components

and interfaces

3. Guiding the process of identifying critical components and interfaces for a given

architecture

4. Selecting an architecture that is most appropriate for the system under study.

15

Gokhale and Trivedi (2002) corroborated the ease to which information, based on

the motivation to use architecture-based approach as stated by Goseva-Popstanova et al.

(2001), could be analyzed based on how each component affects the overall reliability.

While architecture-based approaches for estimating reliability have been a major

focus in recent times, extracting the architecture on how components interact with each

other can be challenging based on the assumptions, parameters considered, and the

uncertainty which exist in reliability estimation (Goseva-Popstojanova & Kamavaram,

2003). In addition, the assumptions made based on extracting the structure could also

lead to inaccurate reliability estimation (Parnas, 1975). As a result, accurate depiction of

the software structure is critical for accurate reliability estimation.

According to Goseva-Popstanova et al. (2000), architecture-based approaches

have been proposed mostly by ad hoc methods without any relationship among them. As

a result, relationships among models are not clearly established. However, most of the

approaches which have been researched are state-based models, which follow a DTMC,

SMP, or CTMC process. Attempts to improve these models have been made through

developing new models or new framework upon which the model can be applied.

Markov Chain

All state-based models are assumed to follow a Markov process. The proposed

framework in this study utilizes the DTMC process and therefore only details of the

DTMC process are presented in this literature.

The definition of a Markov chain is as follows (Grinstead & Snell, 2006):

Considering a set of states, S = {s1, s2, s3, s4… sr} where the process starts in one of these

states and moves from one state to the next. If the chain is currently in state si, then it

16

moves to state sj at the next step with a probability denoted by pij and this probability

does not depend upon which states the chain was in before the current state. This

statement can be expressed formally as (Markov Chain, 2014):

Let X1, X2, X3, ...represent a sequence of random variables with Markov property.

Since the present state, the future and past states are independent, therefore

The Probability, Pr(Xn+1 = ϰ | X1 = ϰ1, X2 = ϰ2,…, Xn = ϰn) = Pr(Xn+1 = ϰ | Xn =

ϰn)

If both sides of the equation are well defined.

The probabilities pij are called transition probabilities.

DTMC Application to Architecture-Based Software Reliability

In the DTMC process, both time and space are discrete. DTMCs can be classified

into the following two categories (Gokhale, 2002):

1. Irreducible: A DTMC is said to be irreducible if every state can be reached from

every other state

2. Absorbing: A DTMC is said to be absorbing, if there is at least one state i, from

which there is no outgoing transition. A DTMC upon reaching an absorbing state is

destined to remain there forever.

A DTMC is characterized by its one-step transition probability matrix, P = [pi;j].

P is a stochastic matrix since all the elements in a row of P sum to one, and each element

lies in the range [0; 1] (Gokhale & Trivedi, 2002). Since the architecture of the

application follows the Markov Chain properties based on the formal definition

presented, it means that components to be executed in the next state will depend only on

the components of current state and the components of the next state will not have any

17

dependency to the past history of the current state (Wang, Wu, & Chen, 1999).

Cheung Model

This model assumes that the architecture has a single entry node and a single exit

node. Each node can be representative of a state or component. Let Ni and Nj represent an

individual node where 0< i < j and Ri the reliability of Ni, and the probability of moving

from Ni to Nj is the transition probability Ni,,j. Therefore, the reliability of successfully

reaching state Ni,,j is estimated as RiNi,,j. Based on the state diagram, a transition matrix M

can be defined for the value of M(i,j) as follows:

N1 N2 N3 Ni .. Nn-1 Nn

N1 0 R1N1,2 R1N1,3 .. R1N1,i .. R1N1,n-1 R1N1,n
N2 R2N2,1 0 R2N2,3 .. R2N2,i .. R2N2,n-1 R2N2,n
N3 R3N3,1 R3N3,2 0 .. R4N3,i .. R3N3,n-1 R3N3,n
Ni R4N4,1 R4N4,2 R4N4,3 .. 0 .. R4N4,n-1 R4N4,n

…

…

…

…

…

…

…

…

…

Nn-1 Rn-1Nn-1,1 Rn-1Nn-1,2 Rn-1Nn-1,3 .. Rn-1Nn-1,i .. 0 Rn-1Nn-1,n
Nn RnNn,1 RnNn,2 RnNn,3 .. RnNn,4 .. RnNn-1,n-1 0

Figure 1: Reliability Transition Matrix.

Let N = { N1 , N2 , ….., Nn } be the set of states or components in the state diagram where

N1 is the initial state and Nn is the final state. M k (i, j) represents the probability of

reaching state Sj from Si through k transitions. Therefore, the reliability R beginning from

Si to Sj with total k transitions is represented as

R = Mk (i, j) × Rj

Eq. 5: Reliability Evaluation by Transition Matrix

18

From initial state N1 to final state Nn , the number of transitions k may vary from 0

to infinity, where 0 means that the initial state is also the final state and infinity means

that a cyclic loop may occur indefinitely among the states. Therefore, it is necessary to

consider every possible outcome of state transitions. Let T be a matrix such that:

T = I + M + M2 + M3 +……..= � 𝑀𝑘∞

𝑘=0

Eq. 6: Expression for Finding Fundamental Matrix

Therefore, as k approaches infinity, it can be shown that it results in the fundamental

matrix which can be expressed as:

T = (I - M)-1 = � 𝑀𝑘∞
𝑘=0

Eq. 7: Fundamental Matrix Expression

Where I is the identity matrix.

From this expression, the overall system reliability is calculated as:

R = T(1,n) × Rn,

Eq. 8: Cheung Method for Overall Reliability

where Rn is the reliability of the component of state n.

Wang, Wu, & Chen Model

This model utilizes the premises on which Cheung’s model was developed by

assuming that the architecture of the application follows a Markov’s process. It combines

both the reliability and failure behavior to determine overall system reliability. However,

it goes further to evaluate the overall system reliability based on varying architectural

19

styles. It takes into consideration four characteristics of the software architecture, namely,

batch-sequential/pipeline style, parallel-pipe filter style, fault tolerance, and call and

return style. These architectural styles are used to represent how software generally

functions.

Mathematical models for calculating reliability of each architectural style were

developed and are presented in the following sections.

Batch-Sequential/Pipeline Architectural Style

Both batch-sequential and pipeline styles are running in a sequential order. They

share the same architecture view and state view. Figure 2 shows a diagram of the batch-

sequential/pipeline style.

Figure 2: Batch-sequential and pipeline styles.

Assuming that the architecture is composed of k components, there will be k states

in the Markov chain. The transition matrix M can be obtained as follows:

�
𝑀(𝑖, 𝑗) = 𝑅𝑖𝑃𝑖,𝑗 𝑤ℎ𝑒𝑟𝑒 𝑆𝑖 𝑐𝑎𝑛 𝑟𝑒𝑎𝑐ℎ 𝑆𝑗
𝑀(𝑖, 𝑗) = 0 𝑤ℎ𝑒𝑟𝑒 𝑆𝑖 𝑐𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑎𝑐ℎ 𝑆𝑗

 for 1 ≤ i, j ≤ k

20

Where M(i,j) is the probability of successfully reaching state Sj from Si.

The batch-sequential/pipeline architecture purely follows the process of

estimating reliability using the Cheung’s model as shown. An example of this

architectural style is demonstrated in software that functions in performing one task at a

time in a sequential manner.

Parallel/Pipe-filter style

In this architecture style, concurrent executions take place where components are

running simultaneously as shown in Figure 3.

Figure 3: Parallel/pipe filter style.

The component reliabilities and transition probabilities are all independent of each

other. As a result, the value of M({ Sp1 },{ Sk }) or the reliability of this architectural style

is expressed as:

21

𝑀({ 𝑆𝑝1 }, { 𝑆𝑘 }) = �𝑅𝑛𝑃𝑛𝑘

𝑘−1

𝑛=2

which is the product of all the component reliabilities in this state and the transition

probabilities from components C2 , C3 , …, and Ck-1 to component Ck , respectively.

For k components, the transition matrix, taking into consideration the

parallel/pipeline filter style that can be obtained is:

�
𝑀(𝑖, 𝑗) = 𝑅𝑖𝑃𝑖,𝑗 𝑤ℎ𝑒𝑟𝑒 𝑆𝑖 𝑐𝑎𝑛 𝑟𝑒𝑎𝑐ℎ 𝑆𝑗
𝑀(𝑖, 𝑗) = ∏ 𝑅𝑛𝑃𝑛𝑗, 𝑆𝑖 ∈ 𝑆𝑝𝑐𝑛 𝑖𝑛 𝑆𝑖
𝑀(𝑖, 𝑗) = 0 𝑤ℎ𝑒𝑟𝑒 𝑁𝑖 𝑐𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑎𝑐ℎ 𝑁𝑗

 for 1 ≤ i, j ≤ |S| and 1 ≤ n ≤ k

An example of this architectural style can be found in a multiprocessor or

multithreaded environment where more than one tasks are being done at the same time.

Fault Tolerance

A fault-tolerance architectural style consists of a primary component and a set of

backup components, which may be implemented in different algorithms or data

structures, from the primary component as shown in Figure 4.

These components, including the primary and the backups, are placed in parallel

so that when one component fails, the others can still provide services.

It is assumed that all the backup components have the same transition

probabilities as the primary component to each subsequent component. Let there be k

components in which l=k-4 components are running as fault tolerance in the same state;

therefore, the total number of states is k-l+1 according to Figure 4. By induction, entry

M(1,{ Sb1 }) can be expressed as:

22

𝑀(1, { 𝑆𝑏1 }) = 𝑅2 + ���(1 − 𝑅𝑚)
𝑛−1

𝑚=2

�

𝑘−3

𝑛=3

Rn

To represent the transition matrix with fault tolerance architectural style, considering k

components can be expressed as:

⎩
⎪
⎨

⎪
⎧

𝑀(𝑖, 𝑗) = 𝑅𝑖𝑃𝑖,𝑗 𝑤ℎ𝑒𝑟𝑒 𝑆𝑖 ∉ 𝑆𝑗

𝑀(𝑖, 𝑗) = 𝑅𝑎1 + � �∏ (1 − 𝑅𝑚)𝑞−1
𝑚=𝑎2 �

ar

𝑞=𝑎2
𝑅𝑛 ,

𝑆𝑖 ∈ 𝑆𝑏 𝑎𝑛𝑑 𝑆𝑖 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠 𝐶𝑎1 𝑡𝑜 𝐶𝑎𝑟
𝑀(𝑖, 𝑗) = 0 𝑤ℎ𝑒𝑟𝑒 𝑆𝑖 𝑐𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑎𝑐ℎ 𝑆𝑗

 for 1 ≤ i, j ≤ |S| and 1 ≤ ar ≤ k

An example of this architectural style can be found in a distributive system such

as that of a distributive database system where there are back-ups to make the database

continue to function even though one or more database components have failed. This type

of system is especially important in transaction processing such as that used by the banks,

hospitals, and airlines, among others.

Figure 4: Fault tolerance.

23

Call-and-Return Architecture Style

In the call-and-return style, the execution of one component may request some

services provided by the other components before transferring its complete control

authority to others. Thus, after such a request is fulfilled by the called components, the

control still returns to the calling component and executes the next statement from where

the component left. Therefore, the called components may execute multiple times with

only one time execution of the calling component. This is shown in Figure 5.

Figure 5: Call-and-return architectural style.

The expression for the transition matrix representing the call-and-return

architectural style assuming that the total number of states is k with k components is:

⎩
⎪
⎨

⎪
⎧ 𝑀(𝑖, 𝑗) = 𝑅𝑖𝑃𝑖,𝑗 , 𝑆𝑖 𝑐𝑎𝑛 𝑟𝑒𝑎𝑐ℎ 𝑆𝑗
𝑀(𝑖, 𝑗) = 𝑃𝑖𝑗 , 𝑆𝑖 𝑐𝑎𝑛 𝑟𝑒𝑎𝑐ℎ 𝑆𝑗 𝑎𝑛𝑑 𝑆𝑗 𝑖𝑠 𝑎 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

𝑓𝑜𝑟 1 ≤ 𝑖, 𝑗 ≤ 𝑘
𝑀(𝑖, 𝑗) = 0, 𝑆𝑖 𝑐𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑎𝑐ℎ 𝑆𝑗

24

An example of this architectural style can be found in web services where there is

a server/client interaction. The client makes a request to server and the server returns a

response to the client’s request.

Estimating Overall Reliability

Considering the four architectural styles that have been presented by Wang, Wu,

and Chen (1999), the framework for estimating system reliability of heterogeneous

architecture is as follows:

⎩
⎪
⎪
⎨

⎪
⎪
⎧
𝑀(𝑖, 𝑗) = 0 𝑤ℎ𝑒𝑟𝑒 𝑆𝑖 𝑐𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑎𝑐ℎ 𝑆𝑗
𝑀(𝑖, 𝑗) = 𝑅𝑖𝑃𝑖,𝑗 𝑤ℎ𝑒𝑟𝑒 𝑆𝑖 ∉ 𝑆𝑝 𝑎𝑛𝑑 𝑆𝑖 ∉ 𝑆𝑏
𝑀(𝑖, 𝑗) = ∏ 𝑅𝑛𝑃𝑛𝑗, 𝑆𝑖 ∈ 𝑆𝑝𝑐𝑛 𝑖𝑛 𝑆𝑖

𝑀(𝑖, 𝑗) = 𝑅𝑎1 + � �∏ (1 − 𝑅𝑚)𝑞−1
𝑚=𝑎2 �

ar

𝑞=𝑎2
Rn ,

𝑆𝑖 ∈ 𝑆𝑏 𝑎𝑛𝑑 𝑆𝑖 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠 𝐶𝑎1 𝑡𝑜 𝐶𝑎𝑟
𝑀(𝑖, 𝑗) = 𝑃𝑖,𝑗 , 𝑆𝑗 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑎 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

 for 1 ≤ i, j, ar, n ≤ k

Gokhale & Trivedi Model

This model of estimating architecture-based software reliability utilizes transition

probabilities between states as that of the Cheung model but goes further by including the

expected number of visits per component, failure behavior (constant failure rate) and time

as parameters. The assumptions are the same as Cheung’s which states that the structure

of the system follows an absorbing DTMC and the system consists of n components, and

has a single initial state denoted by 1, and a single absorbing or exit state denoted by n

(Gokhale, 2002; Gokhale & Trivedi, 2002). However, unlike the Cheung model, Gokhale

and Trivedi (2002) is a hierarchical model that superimposes failure behavior on

25

reliability.

The parameters considered for determining reliability in the Gokhale and Trivedi

(2002) model are transition probability, pi,j, number of visits per component, Xi,,j , time

spent per visit per component, τ, and constant failure rate, λ, which are assumed to be

known along with the reliability of each component and the structure of the system.

If there are n components that make up the software system and the reliability and

the expected number of visits to each component are known, then the Gokhale and

Trivedi (2002) model for calculating the overall reliability of the system is as follows:

R = ∏ 𝑅𝑖
𝑋𝑖,𝑗𝑛

𝑖=1

Eq. 9: Gokhale Expression for Overall Reliability

Where Ri is the reliability of the component and R is the overall system reliability.

Eq. 9 can be expanded and be made more accurate by the Taylor series expansion.

Thus Eq. 9 is a first order Taylor series expression. This is one of the drawbacks of the

hierarchical approach where it becomes more accurate when higher order expressions of

the Taylor series are used. With higher order Taylor series expansion of Eq. 9,

mathematically it becomes more tedious to compute, thus making reliability

determination more impractical. However, Goseva-Popstanova et al. (2001) showed that

using the first order Taylor series expansion of the Gokhale hierarchical approach

produced accurate reliability results when compared to the actual reliability. This was

also corroborated by close accurate results which were obtained by Gokhale and Trivedi

(2002) and Goseva-Popstojanova, Hamill, and Perugupalli (2005).

Gokhale and Trivedi (2002) showed how estimating the reliability using

26

hierarchical approach, as expressed, gave comparable results when compared to that of

Cheung (1980), a composite approach. The overall reliability of the system architecture

in Figure 6 was calculated using the Cheung (1980) and Gokhale and Trivedi (2002)

method. The component reliabilities and transition probabilities for are shown in Table 2

and Table 3 respectively.

The overall reliability was estimated to be 0.8299 for the Cheung’s approach and

0.8264 for the Gokhale and Trivedi (2002) approach using the first order Taylor series

expression. However, the Gokhale approach became more accurate and produced 0.8280

for the overall reliability when second order Taylor series expression, which included the

variance of the expected number of visits, is used. The second order Taylor series

expression for Eq. 9 can be expressed as:

𝑅 = ∏ (𝑅𝑋𝑖,𝑗𝑛

𝑖=1 + 1
2

(𝑅𝑋𝑖,𝑗)(𝑙𝑜𝑔𝑅𝑖)2 𝜎1,𝑗
2)

Eq. 10: Gokhale Expression for Overall Reliability using Second Order Taylor
Series Expansion

Where 𝜎1,𝑗

2 is the variance of the expected number of visits and 𝑙𝑜𝑔𝑅𝑖.is the natural log

of the reliability of component i.

The variance can be obtained from the fundamental matrix, as expressed in Eq. 6,

as follows:

 𝜎1,𝑗
2 = 𝑀(2𝑀𝑑𝑔 − 𝐼) −𝑀𝑠𝑞

Eq. 11: Expression for Variance of the Expected Number of Visits, 𝝈𝟏,𝒋

𝟐

27

Table 2

Reliability of Component in Figure 6

Component Reliability
1 0.999
2 0.980
3 0.990
4 0.970
5 0.950
6 0.995
7 0.985
8 0.950
9 0.975
10 0.985

Table 3

Transition Probabilities of Components in Figure 6

p1,2 = 0:60 p1,3 = 0.20 p1,4 = 0.20

p2,3 = 0.70 p2,5 = 0.30

p3,5 = 1.00

p4,5 = 0.40 p4,6 = 0.60

p5,7 = 0.40 p5,8 = 0.60

p6,3 = 0.30 p6,7 = 0.30 p6,8 = 0.10 p6,9 = 0.30

p7,2 = 0.50 p7,9 = 0.50

p8,4 = 0.25 p8,10 = 0.75

p9,8 = 0.10 p9,10 = 0.90

28

1

2 3 4

5 6

87 9

10

P1,2 P1,4

P1,3

P2,3

P7,2

P5,7

P6,7

P5,8
P6,8

P4,8P6,9

P9,8

P7,9 P9,10

P6,3
P3,5P2,5

P4,6

Figure 6: System Architecture represented by its components that follow an absorbing
DTMC process.

A comparison of the reliability computed for each component with and without

the consideration of the variance of expected number of visits is shown in Table 4. When

variance is considered, the accuracy of reliability is slightly improved when compared to

the composite method and therefore first order Taylor expression for the Gokhale and

Trivedi (2002) model is satisfactory for providing estimation when high accuracy is not

desired.

29

Table 4

Reliability Calculated Based on Gokhale and Trivedi Model Considering the Variance of
the Expected Number of Visits

Component Reliability 𝑹𝑿𝒊,𝒋 𝑹𝑿𝒊,𝒋 with 𝝈𝟏,𝒋
𝟐 𝝈𝟏,𝒋

𝟐
1 0.999 0.99900 0.99900 0.00000
2 0.980 0.98183 0.98196 0.64437
3 0.990 0.99089 0.99092 0.54991
4 0.970 0.98734 0.98752 0.39284
5 0.950 0.93308 0.93396 0.71853
6 0.995 0.99874 0.99875 0.23185
7 0.985 0.99074 0.99081 0.62613
8 0.950 0.95618 0.95671 0.42252
9 0.975 0.99035 0.99043 0.24620
10 0.985 0.98500 0.98500 0.00000

Reliability Prediction Based on Time

One of the advantages of using the hierarchical approach in estimating reliability

is that the model can be transformed into a SMP with the additional parameter of time.

Gokhale and Trivedi (2002) developed an expression for evaluating performance analysis

based on the Eq. 9.

Considering the reliability expression (Nikora & Lyu, 1999):

() ()etR tµ−= where µ(t) represents failure rate as a function of time.

Since the assumption of constant failure rate is made, we can express µ(t) as λ.

Therefore, the reliability can be expressed in terms of failure rate, λ, time spent per

component, τ, and expected number of visit per component, Xi,j, as:

R =∏ 𝑅𝑖
𝑋𝑖,𝑗𝑛

𝑖=1 = ∏ 𝑒−𝜆𝜏𝑋𝑖,𝑗𝑛
𝑖=1

Eq. 12: Overall Reliability Expression with the inclusion of Time and Failure Rate

30

Based on Eq. 12, Eq. 10 can be rewritten with consideration of second order Taylor

expression as follows:

𝑅 = ∏ (𝑒−𝜆𝜏𝑋𝑖,𝑗𝑛
𝑖=1 + 1

2
𝜆2 𝑒−𝜆𝜏𝑋𝑖,𝑗 𝜏𝑖2 𝜎1,𝑗

2)

Eq. 13: Second Order Taylor series Expression for Reliability with Failure Rate and
Time

While the study is not focused on taking an SMP approach to estimating

reliability, it is important to show the flexibility of the hierarchical approach and the

extent to which other mathematical expressions could be derived to improve reliability

prediction. This was what Gokhale (2002) meant by stating that the hierarchical approach

is more analytically tractable as it is much easier to extract other information or analysis

such as performance and sensitivity than the composite method to perform more accurate

and in-depth reliability analysis.

Extracting the Software Architecture

Accurately extracting the software architecture is important for estimating

reliability using architecture-based approaches (Parnas, 1975). The architecture can be

extracted from the design phase by expert consultations or from prior release of the

application. This approach is intended only if the architecture-based reliability analysis is

to be carried out from the design stage of the software development life cycle (Gokhale &

Trivedi, 2002). Yacoub, Cukic, and Ammar (1999) have shown that information on the

architecture could also be obtained from the occurrence probabilities of various scenarios

based on the operational profile of the system in the design phase.

31

Often, information on the architecture is not available and therefore has to be

extracted from the source code of the application (Gokhale, 2002). This could be done

using profilers (Fenlason & Stallman, 2013) or test coverage tools (Team, 1998).

Component reliability can be obtained using failure data collected during unit testing of

each component to estimate the parameters of the software reliability growth model (Farr,

1996). Non-failed executions and failures in the validation phase could also be used to

estimate component reliabilities when information on the software architecture is scarce

(Miller et al., 1992).

32

CHAPTER 3

HIERARCHICAL FRAMEWORK FOR ESTIMATING HETEROGENEOUS

ARCHITECTURE-BASED SOFTWARE RELIABILITY

Introduction

The approach taken in applying the proposed hierarchical framework to estimate

software reliability of heterogeneous architectural styles involves applying the concepts

of the model proposed by Wang, Wu, and Chen (1999) and Gokhale and Trivedi (2002).

Wang, Wu, and Chen (1999) described a composite approach and the concepts of

analyzing the different architectural styles for reliability, while Gokhale and Trivedi

(2002) described a hierarchical approach that applied to the number of expected visits to

each component (component utilization) which could be used to transform the model into

a SMP approach which included time and failure behavior as additional parameters for

evaluating reliability. While this study is not focused on applying a SMP approach, the

hierarchical approach remains important due to its flexibility and ability for other

reliability expressions to be developed, which could change the entire perspective of

software reliability analysis.

Four case studies were used in this study to explore the effectiveness of the

proposed hierarchical framework. The data of these studies have been taken from

previous studies and will be applied to the hierarchical framework being explored in this

study. Comparative assessments of the results are provided between those obtained

33

from the proposed hierarchical framework and actual results which have been obtained

from the case studies. The assumptions and limitations of the study are also provided.

Information on the Software Architecture

Information on the architecture is needed to determine how the components of the

software interact with each other. Component interactions are captured by the transition

probabilities among its components. In many cases, this information is not known and

can be extracted from various sources depending on the phase of the software cycle

(Gokhale & Trivedi, 2002).

This study is not focused on extracting information about the architecture but

assumes that the information is known. This information has already been given by the

data which have been taken from the case studies. As a result, it is assumed that the

methodology for extracting the information about the architecture is accurate and that all

software errors have been found through the testing mechanism applied.

Reliability Metrics

Estimating overall reliability by architecture-based approaches requires that the

reliability of each component is known. The reliability of components can be obtained by

using failure data collected during the unit testing of each component to estimate the

parameters of a software reliability growth model (Farr, 1996), or can be estimated by

considering non-failed executions and failures in the validation phase (Miller et al.,

1992). These activities are carried out in the operational phase of the software cycle

where the extraction of information on reliability is done from the source code.

This study assumes that the reliability of each component is known and the

34

reliability of each component has been given from the data obtained from the case studies

under consideration. It is also assumed that the actual reliability, which our results will be

compared with, is free of failure errors and that the methodology used for determining

reliability is accurate and true.

My Approach

Our approach takes the four architectural styles identified by Wang, Wu, and

Chen (1999) into consideration, namely, batch-sequential, parallel filter, fault tolerance

and the call and return architectural style. The approach taken by Wang, Wu, and Chen

(1999) involved combining the reliability with failure behavior for each architectural

style through a DTMC process to establish a reliability transition matrix.

The main difference with my approach is that each architectural style is evaluated

solely on the basis of the transition probability matrix from which the expected number of

visits to each component or component utilization will be determined and applied to the

heterogeneous software architecture. Therefore, a framework for evaluating the transition

probabilities of each architectural style is developed to determine the component

utilization so that the overall reliability can be found. Overall reliability is estimated by

applying Eq. 7 to obtain the transition probability fundamental matrix and the Gokhale

and Trivedi model as shown in Eq. 9.

The following sections of this study provide details of how the transition

probability matrix is developed for finding the component utilization and subsequently

estimating the overall reliability of the software system.

35

Evaluating the Transition Probability Matrix
of Batch/Sequential Architectural Style

Given n components within a system that follow a batch/sequential architectural

style, the architecture can be represented with its transitional probabilities as shown in

Figure 7.

C1 P1,2 C2 CnPk,n

Figure 7: Batch/sequential architecture style.

Since a DTMC process is assumed, it therefore signifies that the stochastic

process is purely maintained in this architecture which means that the transition

probabilities within a row of the transition probability matrix sums to unity. As a result,

the components within this architecture do not require any modifications since the

execution is done in a sequential manner.

Evaluating the Transition Probability Matrix
of Parallel/Pipe Filter Architectural Style

In the parallel filter architecture, components are executing concurrently. Since

C2, C3 and Cn-1 are executed concurrently by C1 and C2, C3 and Cn-1 concurrently execute

Cn, C2, C3 and Cn-1 can be represented by the same transition probability and therefore can

be grouped collectively as a single component as shown by the demarcation in Figure 8.

36

As a result, the transition probability matrix can be transformed from the matrix (Figure

9) representing Figure 8 to the transition probability matrix in Figure 10.

The transition probability matrix can be evaluated for the component utilization

(Eq. 7) and reliability (Eq. 9) with the assumption that the components functioning in the

parallel structure are utilized equally at the same utilization rate.

P1,3C1

Cn - 1

C2

C3 Cn Pn,k

Figure 8: Transition between components in a parallel architecture

37

C1 C2 C3

………
Cn-1 Cn

C1 - P1,2 P1,3
………

P1,n-1 -

C2 - - -
………

P2,n

C3 - - -
………

P3,n

.
.

.

.

.

.

.

.

.
-

.

.

.
-

………
.
.
.

.

.

.
-

.

.

.

Cn-1 - - -
………

- Pn-1,n

Cn - - -
………

- -

Where P1,2 = P1,3 = P1,n-1= Pc and P2,n = P3,n = Pn-1,n = Pk

Figure 9: Transition Probability Matrix for the Parallel Structure.

C1 Cp Cn

C1 - Pc -

Cp - - Pk

Cn - - -

Figure 10: Transformed transition probability matrix.

38

Evaluating the Transition Matrix of the
Fault Tolerance Architectural Style

In this architecture, one component functions as primary and the others as backup

if the primary component fails, as shown Figure 11. This means that if C2 fails, C3 acts as

backup, and if C3 fails, the next component within the demarcation acts as backup and so

on up to Cn-3. Therefore, only one component at a time will function within this

architecture. However, there is some level of parallelism which exists in this architecture

as shown by the demarcation.

As a result, the components in the fault tolerance architecture can also be grouped

collectively with the assumption that they all have the same transition probability. The

transition probability matrix of the architecture (Figure 11) shown in Figure 12 can be

transformed to the transition probability matrix as shown in Figure 13. The component

utilization and the reliability can then be evaluated by applying Eq. 7 and Eq. 9

respectively.

P1,3C1

Cn - 3

C2

C3

Cn-2

Cn-1

Cn

Figure 11: Fault tolerance architecture.

39

C1 C2 C3 ……… Cn-3 Cn-2 Cn-1 Cn

C1 - P1,2 P1,2 ……… P1,2 - - -
C2 - - - ……… - P2,n-2 P2,n-1 -
C3 - - - ………

P2,n-2 P2,n-1 -

.
.

.

.

.

.

.

.

.
-

.

.

.
-

………
.
.
.

.

.

.
-

.

.

.

.

.

.
-

.

.

.

Cn-3 - - - . - P2,n-2 P2,n-1
Cn-2 - - - - - - - Pn-2, n

Cn-1 - - - ……… - - - Pn-1, n

Cn - - - ……… - - - -

Figure 12: Transition probability matrix for the fault tolerance structure.

C1 Cf Cn-2 Cn-1 Cn

C1 - P1,2 - - -

Cf - - P2,n-2 P2,n-1 -

Cn-2 - - - - Pn-2, n

Cn-1 - - - - Pn-1, n

Cn - - - - -

Figure 13: Transformed transition probability matrix of the fault tolerance architecture.

Evaluating the Transition Probability for the
Call-and-Return Architectural Style

In the call-and-return architecture, C1 calls C2 and C2 returns control to C1 as

shown in Figure 14. The transition probability in this architecture is similar to that of the

batch-sequential architecture where no transformation of the transition probability matrix

is required. Therefore, the transition probability within a row of the matrix is stochastic.

40

C2C1

C3

Figure 14: Call-and-return architecture.

Determining the Overall Software Reliability
Based on the Hierarchical Framework

The requirements and steps for computing the overall reliability of a

heterogeneous software system using the hierarchical framework are detailed as follows:

Input: Number of components, n, in the software.

 Transition probability, Pi,j, from Component Ci to Component Cjj.

 Reliability of component Ci, Ri,

 Case for different architectural styles: Case 1 – batch-sequential or call and return,

Case 2 – parallel and Case 3 – fault tolerance.

Output: The overall reliability, R, of the heterogeneous software architecture.

The steps to finding the overall reliability are as follows:

1. Identify the architectural styles in a system, based on the design specification of a

system.

2. Develop the transition probability matrix based on the transition probability between

components of the software.

41

3. Transform the transition matrix based on the architectural styles identified. If the

transition probability is within a batch sequential or call-and-return style, the

stochastic characteristics are not affected. However, if the style is parallel or fault-

tolerance architecture, then the transition probability of components in this

architecture should be grouped into a single entity to maintain the matrix stochastic

characteristics.

4. Compute the component utilization or the expected number of visits per component.

5. Apply the value of the expected number of visits per component to the respective

component reliability to compute the new component reliability based on component

utilization.

6. Compute the overall reliability of the system.

Description of Case Studies

Four case studies were chosen to explore the application of the proposed

hierarchical framework based on the Wang, Wu, and Chen (1999) and Gokhale and

Trivedi (2002) model. Two cases are empirical structure of the software architecture and

the other two are real systems which were used to test the accuracy of the reliability

obtained for heterogeneous software architecture.

The case of the two empirical structures of the architecture and real systems was

chosen from the study conducted by Wang, Wu, and Chen (1999) and Si, Yang, Wang,

Huang, and Kavs (2010). The case studies provided the data needed for this study which

included:

1. The structure of the software architecture

2. The functions of each component

42

3. Transition probabilities of the components

4. The reliability of each component.

Having this information from the selected case studies, the need to extract the structure of

the software architecture, and determine the transition probabilities and reliability of each

component was not necessary.

The four cases that will be analyzed are as follow:

1. Case 1 is an empirical structure of the software architecture used by Wang, Wu, and

Chen (1999) to test the application of the model.

2. Case 2 is an empirical structure of the software architecture used by Si et al. (2010) to

test the application of the model.

3. Case 3 is the architecture of the simulator of an ATM bank.

4. Case 4 is the architecture of the example of a Stock Trading System.

Case 1: Description of the Empirical Structure
of the Software Architecture

Case 1 represents an empirical structure of a software architecture that has all the

architectural styles described by Wang, Wu, and Chen (1999). The details of the software

architecture, transition , and component reliabilities of Case 1 are shown in Figure 15,

Table 5, and Table 6, respectively.

Case 1 architecture has 15 components where Component 1, C1, represents the

start state and component 15, C15, the end state. The parallel structure within the

architecture is represented by C3 and C4. This means that both components are executing

simultaneously. C5, C8, and C11 represent the call-and-return style and C10 represents the

backup of C9. C11 and C12 transfer control back to C1 and C2 respectively to form a cyclic

43

loop. The other components are running in a sequential manner where one executes

followed by the other.

Table 5

Transition Probabilities of Case 1

p1,2 = 0.40 p1,3 = p1,4 = 0.60

p2,6 = p3,7 = p4,7 = p5,8 = 1.00
p6,7 = 0.10 p6,9 = p6,10 = 0.90
p7,11 = 0.25 p7,9 = p7,10 = 0.75
p8,5 = 0.20 p8,11 = 0.80

p9,12 = p10,12 = 0.70 p9,13 = p10,13 = 0.30
p11,1 = 0.15 p11,8 = 0.20
p11,13 = 0.50 p11,14 = 0.15

p12,2 = p12,13 = 0.50
p13,14 = 0.40 p13,15 = 0.60
p14,15 = 1.00

Table 6

Component Reliabilities of Case 1

Component Reliability
1 0.998
2 0.990
3 0.980
4 0.995
5 0.999
6 0.985
7 0.996
8 0.975
9 0.990
10 0.998
11 0.950
12 0.965
13 0.970
14 0.980
15 0.992

44

1

2 3 4

5
6

14

7

9 10

12 13
11

15

8

Figure 15: Software architecture of Case 1.

45

Case 2: Description of the Empirical Structure
of the Software Architecture

Case 2 represents another empirical structure of a software architecture that has

all the architectural styles described by Wang, Wu, and Chen (1999). The details of the

software architecture, transition probabilities, and component reliabilities of Case 2 are

shown in Figure 16, Table 7, and Table 8, respectively.

Case 2 architecture has 10 components where Component 1, C1, represents the

start state and component 10, C10, the end state. The parallel structure within the

architecture is represented by C3 and C4. This means that these components are executing

simultaneously. C6 and C7 are in a fault-tolerance structure where C6 is the primary

component. C8, and C9 represent the call-and-return style C5 transfers control back to C1

and forms a cyclic loop. The other components are running in a sequential manner where

one executes followed by the other.

Table 7

Transition Probabilities of Case 2

p1,2 = 0.40 p1,3 = p1,4 = 0.60

p2,6 = p2,7 = 1.00
P3,5 = 1.00
P4,5 = 1.00
P5,1 = 0.20 P5,10 = 0.80

P6,5 = 0.70 P6,8 = 0.30
P7,5 = 0.70 P7,8 = 0.30
P8,9 = 0.60 P8,10 = 0.40

P9,8 = 1.00

46

Table 8

Component Reliabilities of Case 2

Component Reliability
1 0.975
2 0.990
3 0.985
4 0.987
5 0.970
6 0.999
7 0.985
8 0.992
9 0.985
10 0.994

1

2 3 4

6

5

7

9

10

8

Figure 16: Software architecture of Case 2.

47

Case 3: Description of the Stock Trading System

This software is comprised of 11 components, and the transition probabilities,

component reliabilities, and the software architecture are shown in Table 9, Table 10, and

Figure 17 respectively. Failure data have been collected by this software for almost 3

years and were used to estimate the actual reliability of the system, which the results of

the model were compared with. The components are listed as follows:

1. C1 – represents the start component where the software is initiated.

2. C2 – is the Trader.

3. C3 – is the Exchange.

4. C4 – is the Dispatcher.

5. C5 – is the Dispatcher.

6. C6 – is the Stock Manager.

7. C7 – is the Stock Manager.

8. C8 – is the Stock Manager.

9. C9 – is the Printer.

10. C10 – is the Price Manager.

11. C11 – is the End state.

The Trader and Exchange make request to the Dispatcher, which is responsible

for dispatching the request to the Stock Manager. The Stock Manager manages all the

operations required during the trading session. The Price Manager provides the current

price to the Stock Manager. The Transactor is responsible for processing the transactions,

after which the information on trading is printed by the Printing component.

The parallel architectural style is represented by the three Stock Managers, C6, C7,

48

and C8, which are executing simultaneously. There are two Dispatchers, C4 and C5, where

C4 is the primary and C5 is its backup. The other components execute in a sequential

manner.

Table 9

Transition Probabilities of Case 4

p1,2 = 0.489 p1,3 = 0.511

p2,4 = p2,5 = 1
P3,4 =P3,5 = 1
P4,6 = P4,7= P4,8 = 0.333
P5,6 = P5,7= P5,8 = 0.3333

P6,9 = 0.7 P6,10 = 0.3
P7,9 = 0.7 P7,10 = 0.3
P8,9 = 0.7 P8,10 = 0.3
P9,11 = 1
P10,6 = P10,7 = P10,8 = 0.3333

Table 10

Component Reliabilities of Case 3

Component Reliability
1 1.0
2 0.974
3 0.970
4 0.982
5 0.960
6 0.999
7 0.999
8 0.999
9 0.975
10 0.964
11 1.0

49

1

2 3

4

6 7 8

5

9 11

10

Figure 17: Software architecture of Case 3: Stock trading system.

Case 4: Description of the ATM Bank System Simulator

This software is comprised of 11 components, and the reliability of each

component was found. The software has seven versions of which the overall reliability of

the final version (version 7) was used as the actual reliability. The transition probabilities,

component reliabilities, and the software architecture are shown in Table 11, Table 12,

and Figure 18, respectively. The function of each component is listed as follows:

1. C1 – represents the start component where the software is initiated.

2. C2 – is the graphic user interface (GUI).

50

3. C3 is the primary Database Management System (DBMS1).

4. C4 – is the backup Database Management System (DBMS2) to C3.

5. C5 – is the identifier.

6. C6 – is the Account Manager.

7. C7 – is the Helper.

8. C8 – is the Messenger.

9. C9 – is the Transactor.

10. C10 – is the Verifier.

11. C11 – represents the end state.

C3 and C4 follow a fault tolerance style where C4 acts as backup of C3. C6 and C7

follow a call and return style where the account manager can call the helper multiple

times before the account manager transfers control to other components.

Table 11

Transition Probabilities of Case 4

p1,2 = 1.00

p2,3 = p2,4 = 0.999 p2,11 = 0.001

P3,5 = 0.227 P3,6 = 0.669 P3,8 = 0.104

P4,5 = 0.227 P4,6 = 0.669 P4,8 = 0.104

P5,2 = 0.048 P5,6 = 0.951 P5,11 = 0.001

P6,3 = 0.4239 P6,4 = 0.4239 P6,7 = 0.1 P6,9 = 0.4149 P6,3 = 0.0612

P7,6 = P8,6 = 1.00

51

Table 12

Component Reliabilities of Case 4

Component Reliability
1 1.0
2 0.982
3 0.97
4 0.96
5 1.0
6 0.996
7 0.99
8 1.0
9 1.0
10 0.8999
11 1.0

1

2 3

5

6
7

4

9

11

8

10

Figure 18: Software architecture of Case 4: ATM bank system simulator.

52

CHAPTER 4

RESULTS AND DISCUSSIONS

Transforming the Transition Probability Matrix for the Different Cases

The transition probability matrix and the transformed probability matrix for each

case is shown in Tables 13 to 20.

Table 13

Transition Probability Matrix of Case 1

Components

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Co
m

po
ne

nt
s

1 0 0.4 0.6 0.6 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0.1 0 0.9 0.9 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0.75 0.75 0.25 0 0 0 0

8 0 0 0 0 0.2 0 0 0 0 0 0.8 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0.7 0.3 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0.7 0.3 0 0

11 0.15 0 0 0 0 0 0 0.2 0 0 0 0 0.5 0.15 0

12 0 0.5 0 0 0 0 0 0 0 0 0 0 0.5 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0.6

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

53

Table 14

Transformed Transition Probability Matrix of Case 1

Components

1 2 Cp 5 6 7 8 Cf 11 12 13 14 15

Co
m

po
ne

nt
s

1 0 0.4 0.6 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 1 0 0 0 0 0 0 0 0

Cp 0 0 0 0 0 1 0 0 0 0 0 0 0
5 0 0 0 0 0 0 1 0 0 0 0 0 0
6 0 0 0 0 0 0.1 0 0.9 0 0 0 0 0
7 0 0 0 0 0 0 0 0.75 0.25 0 0 0 0
8 0 0 0 0.2 0 0 0 0 0.8 0 0 0 0

Cf 0 0 0 0 0 0 0 0 0 0.7 0.3 0 0
11 0.15 0 0 0 0 0 0.2 0 0 0 0.5 0.15 0
12 0 0.5 0 0 0 0 0 0 0 0 0.5 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0.4 0.6
14 0 0 0 0 0 0 0 0 0 0 0 0 1
15 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 15

Transition Probability Matrix of Case 2

Components

1 2 3 4 5 6 7 8 9 10

Co
m

po
ne

nt
s

1 0 0.4 0.6 0.6 0 0 0 0 0 0
2 0 0 0 0 0 1 1 0 0 0
3 0 0 0 0 1 0 0 0 0 0
4 0 0 0 0 1 0 0 0 0 0
5 0.2 0 0 0 0 0 0 0 0 0.8
6 0 0 0 0 0.7 0 0 0.3 0 0
7 0 0 0 0 0.7 0 0 0.3 0 0
8 0 0 0 0 0 0 0 0 0.6 0.4
9 0 0 0 0 0 0 0 1 0 0

10 0 0 0 0 0 0 0 0 0 0

54

Table 16

Transformed Transition Probability Matrix of Case 2

Components

1 2 Cp 5 Cf 8 9 10

Co
m

po
ne

nt
s

1 0 0.4 0.6 0 0 0 0 0

2 0 0 0 0 1 0 0 0

Cp 0 0 0 1 0 0 0 0

5 0.2 0 0 0 0 0 0 0.8

Cf 0 0 0 0.7 0 0.3 0 0

8 0 0 0 0 0 0 0.6 0.4

9 0 0 0 0 0 1 0 0

10 0 0 0 0 0 0 0 0

Table 17

Transition Probability Matrix of Case 3

Components

1 2 3 4 5 6 7 8 9 10 11

Co
m

po
ne

nt
s

1 0 1 0 0 0 0 0 0 0 0 0

2 0 0 0.999 0.999 0 0 0 0 0 0 0.001

3 0 0 0 0 0.227 0.669 0 0.104 0 0 0

4 0 0 0 0 0.227 0.669 0 0.104 0 0 0

5 0 0.048 0 0 0 0.951 0 0.001 0 0 0

6 0 0 0.4239 0.4239 0 0 0.1 0 0.4149 0 0.0612

7 0 0 0 0 0 1 0 0 0 0 0

8 0 0 0 0 0 1 0 0 0 0 0

9 0 0 0 0 0 0.01 0 0 0 0.99 0

10 0 0 0 0 0 1 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0

55

 Table 18

 Transformed Transition Probability Matrix of Case 3

Components

1 2 Cf 5 6 7 8 9 10 11

Co
m

po
ne

nt
s

1 0 1 0 0 0 0 0 0 0 0

2 0 0 0.999 0 0 0 0 0 0 0.001

Cf 0 0 0 0.227 0.669 0 0.104 0 0 0

5 0 0.048 0 0 0.951 0 0.001 0 0 0

6 0 0 0.4239 0 0 0.1 0 0.4149 0 0.0612

7 0 0 0 0 1 0 0 0 0 0

8 0 0 0 0 1 0 0 0 0 0

9 0 0 0 0 0.01 0 0 0 0.99 0

10 0 0 0 0 1 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0

 Table 19

 Transition Probability Matrix of Case 4

Components

1 2 3 4 5 6 7 8 9 10 11

Co
m

po
ne

nt
s

1 0 0.489 0.511 0 0 0 0 0 0 0 0
2 0 0 0 1 1 0 0 0 0 0 0
3 0 0 0 1 1 0 0 0 0 0 0
4 0 0 0 0 0 0.33 0.33 0.34 0 0 0
5 0 0 0 0 0 0.33 0.33 0.34 0 0 0
6 0 0 0 0 0 0 0 0 0.7 0.3 0
7 0 0 0 0 0 0 0 0 0.7 0.3 0
8 0 0 0 0 0 0 0 0 0.7 0.3 0
9 0 0 0 0 0 0 0 0 0 0 1

10 0 0 0 0 0 0.33 0.33 0.34 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0

56

 Table 20

 Transformed Transition Probability Matrix of Case 4

Components

1 2 3 Cf 6 7 8 9 10 11

Co
m

po
ne

nt
s

1 0 0.489 0.511 0 0 0 0 0 0 0

2 0 0 0 1 0 0 0 0 0 0

3 0 0 0 1 0 0 0 0 0 0

Cf 0 0 0 0 0.33 0.33 0.34 0 0 0

6 0 0 0 0 0 0 0 0.7 0.3 0

7 0 0 0 0 0 0 0 0.7 0.3 0

8 0 0 0 0 0 0 0 0.7 0.3 0

9 0 0 0 0 0 0 0 0 0 1

10 0 0 0 0 0.33 0.33 0.34 0 0 0

11 0 0 0 0 0 0 0 0 0 0

Analysis of Results

The results based on the hierarchical approach taken for estimating the overall

system reliability for each case are shown in Table 21. It showed that the hierarchical

framework could be used within reasonable accuracy for estimating reliability in

heterogeneous architecture based on the results for Cases 1, 2, and 3, as the difference

between the actual reliability and the reliability estimated was under 12%. The difference

between the actual reliability and that of the hierarchical framework that was used in this

study for Cases 2 and 3, in particular, were 5.12% and 0.82%. Figure 19 graphically

shows the extent to which the actual reliability was in agreement with the reliability

obtained by the proposed hierarchical framework.

57

Table 21

The Overall System Reliability for each Case compared to the Actual Reliability

Case
System Reliability based on
proposed approach

Actual System
Reliability

%
Difference

Case 1 0.83317 0.878183 5.12%
Case 2 0.893038 0.8039 11.09%
Case 3 0.872053 0.865 0.82%
Case 4 0.251755 0.526 -52.14%

Figure 19: Comparison of the reliability obtained based on the proposed framework with
the actual reliability.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Case 1 Case 2 Case 3 Case 4

Re
lia

bi
lit

y

Cases for the Heterogenuous Architectures

Comparison of the Overall Reliability Obtained based
on the Different Framework Applied

Reliability Based on Proposed
Framework

Actual Reliability

58

Figure 20: Comparison of the expected number of visits per components for the different
cases.

The hierarchical approach, however, was not valid for estimating the overall

reliability of the architecture of Case 4 as the reliability estimated was not in agreement

with the actual reliability of the system. This was most likely due to the more frequent

interactions or utilization of the components in Case 4 architecture as shown in Figure 20.

 The number of visits per component in Case 4 is much higher when compared to

the other cases and therefore resulted in much lower reliability estimation.

The model for calculating reliability relies on the expected number of visits as an

input parameter, and thus a greater value for the expected number of visits would result in

a lower reliability. This is true from a practical perspective of software components that

the more frequent a component is utilized, the greater the likelihood for failure. This

shows that the hierarchical approach has its limitations for estimating reliability

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

14.0000

16.0000

18.0000

1 2 3 4 5 6 7 8 9 10 11 12 13

Comparison of the Expected Number of Visits per
Components for the Different Cases

Case 1

Case 2

Case 3

Case 4

59

depending on the architectural styles, the utilization frequency of components, and the

complexity of how components interact with each other.

Given the assumptions that were made for evaluating heterogeneous architecture,

the model does not purely represent the consistency or extent to which software fails and

therefore introduces a certain level of uncertainty when determining software reliability

by using the Markov’s process to capture the number of visits per component. Additional

factors, such as the methodology used to extract the architectural information, would

have to be considered when analyzing the heterogeneity of the software architecture for

accurately and consistently using the expected number of visits as a parameter for

determining the overall reliability of heterogeneous architectural styles.

While the hierarchical approach has its limitations in respect of the complexity of

the software architecture to which it can be applied, it could be very useful as a reliability

indicator to identify how components will be expected to be utilized and which

component most likely would require special resources to ensure that high system

reliability is maintained. The accuracy of the hierarchical approach could be improved by

using higher order Taylor series. In addition, this approach also could be extended to

analyze or improve performance within a heterogeneous architectural setting where the

parameter of time is introduced as the composite approach makes performance and

sensitivity analysis intractable and thus the analysis of reliability and failure becomes

generalized.

The results further support Koseva assessment that the hierarchical approach does

not accurately estimate software reliability for every system. However, this study went

further by critically exploring the usefulness of the hierarchical approach on

60

heterogeneous architectural styles and, in the process, observed that the frequency of

component interactions strongly influenced accuracy of the method, which was not

highlighted as a major drawback in other research work. While accuracy is required at

times for estimating reliability, most often data are not available and therefore very

accurate estimation may not be possible even with models that are considered highly

accurate. As a result, the hierarchical approach could be applicable to provide reasonable

reliability estimation in the software design stage and used to critically provide insights

on failure and time dependency. With the inclusion of failure behavior and time

dependency in the estimation of reliability for heterogeneous architecture, mean time to

failure would also be incorporated as another parameter that coincides with failure

behavior and provides added tractability for reliability, sensitivity, and performance

analysis.

The Limitations of the Hierarchical Approach and the

Proposed Hierarchical Framework

Most studies had focused on systems that function in a sequential manner and did

not explore the limitations of the hierarchical approach for complex systems with

different architectural structures, which is what was revealed from the results obtained

from the cases that were analyzed. The hierarchical approach tends to be much more

accurate when applied to estimating reliability for sequential systems or where

components are not frequently utilized. This can be observed in Case 3 where

components (Figure 23), though having heterogeneous architectural styles, do not have

much interaction among each other. In comparison to component 6 of Case 4 (Figure 20),

which has the highest number of visits, it was observed that this component was utilized

61

most and thus had a much greater tendency to fail. The utilization of components in

Cases 1, 2 and 3 (Figure 21, Figure 22 and Figure 23) was less than one and thus did not

substantially affect the accuracy of the reliability estimation. However, the opposite was

true for Case 4 (Figure 24).

With high component utilization, the proposed hierarchical approach becomes

less accurate and would require other approaches for estimating reliability more

accurately. For systems that do not have a great level of complexity where components

interaction is not very frequent, the hierarchical approach can be accurate and reasonably

useful in estimating reliability for heterogeneous architecture.

Figure 21: Expected number of visits per component for Case 1 architecture.

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

1.4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ex
pe

ct
ed

 N
um

be
r o

f V
is

its

Components

Expected Number of Visits per Component for Case 1

62

Figure 22: Expected number of visits per component for Case 2 architecture.

Figure 23: Expected number of visits per component for Case 3 architecture.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 10

Ex
pe

ct
ed

 N
um

be
r o

f V
is

its

Components

Expected Number of Visits per Component for Case 2

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11

Ex
pe

ct
ed

 N
um

be
r o

f V
is

its

Components

Expected Number of Visits per Component for Case 3

63

Figure 24: Expected number of visits per component for Case 4 architecture.

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11

Ex
pe

ct
ed

 N
um

be
r o

f V
is

its

Components

Expected Number of Visits per Component for Case 4

64

CHAPTER 5

CONCLUSION

An exploration of the use of a hierarchical framework to estimate reliability for

heterogeneous software architecture was conducted. A hierarchical approach for

estimating software reliability becomes relevant and useful due to its ability to offer more

flexibility and in-depth reliability analysis for improving its method of solution than does

the composite model approach.

Very few studies have been done on finding reliability models for heterogeneous

software architecture, and none, to my knowledge, have been done on using the

hierarchical approach for estimating reliability for heterogeneous software architecture.

As a result, my main purpose and contributions from this study were to present a simpler,

accurate alternative approach while observing the effectiveness of the proposed

hierarchical framework for reliability estimation of heterogeneous software architecture.

The proposed hierarchical framework was developed based on the concepts

proposed by Wang, Wu, and Chen (1999) and Gokhale and Trivedi (2002). Both models

are state-based models and assumed an absorbing DTMC process. This means that there

is a start and end state (absorbing states), and that components to be executed in the next

state will only depend on components of the current state and the component of the next

state will not have any dependency to the past history of the current state.

65

Wang, Wu, and Chen (1999) follow a composite approach to estimating

heterogeneous software reliability and identified four software architectural styles: batch-

sequential, parallel filter, fault tolerance, and call-and-return. Gokhale and Trivedi (2002)

uses a hierarchical approach based on component reliability and component utilization or

expected number of visits per component but had been applied only to a system that

functions in a sequential manner.

The approach to developing the proposed hierarchical framework involved: the

identification of the architectural styles, development of the transition probability matrix,

transformation of the transition matrix based on the architectural styles identified, finding

the component utilization and applying the Gokhale and Trivedi (2002) model to

compute overall reliability.

To test the proposed hierarchical framework of this study, four case studies were

taken from research conducted by Wang, Wu, and Chen (1999) and Si et al. (2010) as the

basis for comparison. It was assumed that the data from the case studies were an accurate

representation of the software systems that were used.

Generally, the proposed hierarchical framework was comparable to the actual

reliability of the software systems used in the case studies with the exception of Case 4

where results were in total disagreement. This was due most likely to the much higher

interactions of the components in Case 4 architecture as the components utilization was

much higher when compared to other cases. However, based on the results, the proposed

hierarchical framework of this study is more accurate and useful in software systems that

do not have very high interactions among its components. This was, to my knowledge, a

newly discovered observation that has not been expressed by other studies using the

66

hierarchical approach. While there are limitations in the proposed hierarchical framework

of this study, it still can be used as a reliability indicator when very high accuracy is not

desired.

Future Work

The use of a hierarchical approach for estimating reliability of heterogeneous

software architecture has great potential and there is much that is left to be explored. One

area that would be the focus of future interest is to apply this framework to other software

systems to validate the range to which the proposed hierarchical framework can be

applied. With this information, it is possible to state with absolute certainty the extent of

the application of the framework which would better improve its effectiveness in areas

where it might be needed. In addition, quantification of the impact of component

utilization and transition probabilities on overall reliability based on the different

architectural styles could also be determined. This would introduce innovative ways for

conducting sensitivity analysis on heterogeneous component systems so that more light

could be shed on discovering more information on how reliability is affected and

subsequently its improvement.

Exploring a CTMC or SMP approach to estimating reliability of heterogeneous

software architecture is also worth investigating. In addition to the benefits of finding

new ways to perform sensitivity analysis, the CTMC or SMP goes further by including

performance analysis. As a result, the improvement of these areas will not only improve

reliability but also improve software efficiency and performance as well.

67

APPENDIX

DETAILS OF RESULTS

Table 22

Component Reliability, Expected Number of Visits and Overall Reliability from the Proposed Hierarchical Framework Applied to
Case 1

Case 1

Component 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reliability 0.998 0.99 0.98 0.995 0.999 0.985 0.996 0.975 0.99 0.998 0.95 0.965 0.97 0.98 0.992

Xi,j 1.0332 0.8744 0.6199 0.0111 0.8744 0.7073 0.0553 1.3174 0.2210 0.9222 0.9668 0.4199 1.00

RXi,j
 0.9979 0.9913 0.9876 0.9969 0.9991 0.9894 0.9998 0.9672 0.9868 0.9974 0.9516 0.9852 0.97 1 1

�𝑹𝒊
𝑿𝒊,𝒋

𝒏

𝒊=𝟏

0.83317

Table 23

Component Reliability, Expected Number of Visits and Overall Reliability from the Proposed Hierarchical Framework Applied to
Case 2

Case 2

Component 1 2 3 4 5 6 7 8 9 10

Reliability 0.975 0.99 0.985 0.987 0.97 0.99 0.985 0.992 0.985 0.994

Xi,j 1.213592 0.485437 0.728155 0.728155 1.067961 0.485437 0.485437 0.364078 0.218447 1

RXi,j
 0.969742 0.995133 0.989055 0.990517 0.967994 0.995133 0.99269 0.99708 0.996704 0.994

�𝑹𝒊
𝑿𝒊,𝒋

𝒏

𝒊=𝟏

0.893038

68

69

Table 24

Component Reliability, Expected Number of Visits and Overall Reliability from the Proposed Hierarchical Framework Applied to
Case 3

Case 3

Component 1 2 3 4 5 6 7 8 9 10 11

Reliability 1 0.974 0.97 0.982 0.96 0.999 0.999 0.999 0.975 0.964 1

Xi,j 1 0.489 0.511 1 1 0.471429 0.485714 1 0.428571 1 1

RXi,j
 1 0.9872 0.984556 0.982 0.96 0.999528 0.999514 0.999 0.989208 0.964 1

�𝑹𝒊
𝑿𝒊,𝒋

𝒏

𝒊=𝟏

0.872053

Table 25

Component Reliability, Expected Number of Visits and Overall Reliability from the Proposed Hierarchical Framework Applied to
Case 4

Case 4

Component 1 2 3 4 5 6 7 8 9 10 11

Reliability 1 0.982 0.97 0.96 1 0.996 0.99 1 1 0.8999 1

Xi,j 1 1.087223 8.005076 8.005076 1.817152 16.3221 1.63221 0.834345 6.772041 6.704321 1

RXi,j
 1 0.980445 0.783622 0.72124 1 0.936675 0.98373 1 1 0.493064 1

�𝑹𝒊
𝑿𝒊,𝒋

𝒏

𝒊=𝟏

0.251755

70

REFERENCE LIST

71

REFERENCE LIST

Chandran, S. K., Dimove, A., & Punnekkat, S. (2010). Modeling uncertainties in the

estimation of software reliability–A pragmatic approach. Fourth IEEE
International Conference on Secure Software Integration and Reliability
Improvement, Singapore.

Cheung, R. (1980, March). A user-oriented software reliability model. IEEE
Transactions on Software Engineering, SE-6.

Fair, W., & Smith, O. (1988). Statistical modeling and estimation of reliability functions
for software (SMERFS) user's guide (1st ed.). Dahlgren,VA: NSWC.

Farr, W. (1996). Handbook of software reliability engineering. In M. Lyu (Ed.), Software
reliability modeling survey (pp. 71-117). New York: McGraw-Hill.

Fenlason, J., & Stallman, R. (2013, September 17). Gnu gprof. Retrieved December 18,
2013, from GNU Operating System: http://www.gnu.org/doc/doc.html

Gokhale, S. (2002). Accurate reliability prediction based on software structure.
Retrieved December 17, 2013, from http://www.engr.uconn.edu/~ssg/cse300/397-
232.pdf

Gokhale, S., & Trivedi, K. (1997). Structure-based software reliability prediction.
Proceedings of the 5th International Conference of Advanced Computing
(ADCOMP), 447-452.

Gokhale, S., & Trivedi, K. S. (2002). Reliability prediction and sensitivity analysis based
on software architecture. Proceedings of the 13th International Symposium on
Software Reliability Engineering (ISSRE’02), Washington, DC.

Goseva-Popstanova, K., Mathur, A., & Kishor, T. (2001). Comparison of software
reliability models. Software Reliability Engineering, 22-31.

Goseva-Popstojanova, K., & Kamavaram, S. (2003). Assessing uncertainty in reliability
of component-based software systems. International Symposium on Software
Reliability Engineering, Morgantown, WV.

Goseva-Popstojanova, K., & Trivedi, K. S. (2001). Architecture-based approach to
reliability assessment of software systems. Performanc Evaluation: An
International Journal, 179-204.

72

Goseva-Popstojanova, K., Hamill, M., & Perugupalli, R. (2005). Large empirical case
study of architecture-based software reliability. Proceedings of the 16th IEEE
International Symposium on Software Reliability Engineering (ISSRE’05),
Washington, DC.

Goseva-Popstojanova, K., Trivedi, K., & Mathur, A. (2000). How different architecture
based software reliability models are related. International Symposium on
Software Reliability Engineering (ISSRE), San Jose, CA.

Grinstead, C., & Snell, J. L. (2006). Introduction to probability (2nd ed.). The American
Mathematical Society. Retrieved November 19, 2013, from
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_boo
k/Chapter11.pdf

Hamlet, D. (1992). Are we testing for true reliability? IEEE Software, 13(4), 21-27.

Horgan, J. R., & Mathur, A. P. (1996). Software testing and reliability. In M. Lyu (Ed.),
Handbook of software reliability engineering (pp. 531-566). New York: McGraw-
Hill.

Koziolek, H., Schlich, B., & Bilich, C. (2010). A large-scale industrial case study on
architecture-based software reliability analysis. IEEE Computer Society, 279-288.

Markov chain. (2014, February 9). In Wikipedia, the free encyclopedia. Retrieved
February 14, 2014, from: http://en.wikipedia.org/wiki/Markov_chain

Michael, L. R. (1996). Handbook of software reliability engineering. New York:
McGraw-Hill.

Miller, K., Morell, L., Noonan, R., Park, S., Nicol, D., Murrill, B., & Voas, J. (1992,
January). Estimating the probability of failure when resting reveals no failures.
IEEE Transactions on Software Engineering, 18(1), 33-42.

Nikora, A. (2002). Computer-aided software reliability estimation user’s guide (CASRE).
Pasadena, CA: Author.

Nikora, A., & Lyu, M. (1999). Software reliability and risk management: Techniques and
tools. International Symposium on Software Reliability Engineering, Boca Raton,
FL.

Parnas, D. (1975). Influence of software structure on reliability. Proceedings 1975
International Conference on Reliable Software, Los Angeles, CA.

Perugupalli, R. (2004). Empirical assessment of architecture-based reliability of open-
source software. Morgantown, WV: West Virginia University.

73

Shaw, M. (1993). Software architectures for shared information systems (Technical
Report). Carnegie Mellon University, School of Computer Science, Pittburgh, PA.

Si, Y., Yang, X., Wang, X., Huang, C., & Kavs, A. J. (2010). An architecture-based
reliability estimation framework through component composition mechanisms.
2nd International Conference on Computer Engineering and Technology, 2, 165-
170.

Team, T. S. (1998). χSuds software understanding system: User's manual. Retrieved
from https://www.cs.purdue.edu/homes/apm/foundationsBook/Labs/coverage/
xsuds.pdf

Wang, W., Chen, M., & Tang, M. (1999). Software architecture analysis--A case study.

Proceeding of the 23rd Computer Software and Application Conference,
Washington, DC.

Wang, W.-L., Wu, Y., & Chen, M.-H. (1999, December). An architecture-based software
reliability model. Proceedings of Pacific Rim Dependability Symposium, Hong
Kong.

Yacoub, S., Cukic, B., & Ammar, H. (1999). Scenario-based analysis of component-
based software. Proceedings of Tenth International Symposium on Software
Reliability Engineering, Boca Raton, FL.

	A Hierarchical Framework for Estimating Heterogeneous Architecture-based Software Reliability
	Recommended Citation

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF EQUATIONS
	ACKNOWLEDGMENTS
	INTRODUCTION
	Purpose of Study
	Contributions
	Thesis Organization

	LITERATURE REVIEW
	Related Work
	Software Reliability
	Software Reliability Models
	Architecture-Based Software Reliability Models
	Markov Chain
	DTMC Application to Architecture-Based Software Reliability
	Cheung Model
	Wang, Wu, & Chen Model
	Batch-Sequential/Pipeline Architectural Style
	Parallel/Pipe-filter style
	Fault Tolerance
	Call-and-Return Architecture Style
	Estimating Overall Reliability

	Gokhale & Trivedi Model
	Reliability Prediction Based on Time

	Extracting the Software Architecture

	HIERARCHICAL FRAMEWORK FOR ESTIMATING HETEROGENEOUS ARCHITECTURE-BASED SOFTWARE RELIABILITY
	Introduction
	Information on the Software Architecture
	Reliability Metrics
	My Approach
	Evaluating the Transition Probability Matrix
	of Batch/Sequential Architectural Style
	Evaluating the Transition Probability Matrix
	of Parallel/Pipe Filter Architectural Style
	Evaluating the Transition Matrix of the
	Fault Tolerance Architectural Style
	Evaluating the Transition Probability for the
	Call-and-Return Architectural Style

	Determining the Overall Software Reliability
	Based on the Hierarchical Framework
	Description of Case Studies
	Case 1: Description of the Empirical Structure
	of the Software Architecture
	Case 2: Description of the Empirical Structure
	of the Software Architecture
	Case 3: Description of the Stock Trading System
	Case 4: Description of the ATM Bank System Simulator

	RESULTS AND DISCUSSIONS
	Transforming the Transition Probability Matrix for the Different Cases
	Analysis of Results
	The Limitations of the Hierarchical Approach and the
	Proposed Hierarchical Framework

	CONCLUSION
	Future Work

	APPENDIX
	DETAILS OF RESULTS
	REFERENCE LIST

