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Problem 

The composite model approach that follows a DTMC process with constant 

failure rate is not analytically tractable for improving its method of solution for 

estimating software reliability. In this case, a hierarchical approach is preferred to 

improve accuracy for the method of solution for estimating reliability. Very few studies 

have been conducted on heterogeneous architecture-based software reliability, and those 

that have been done use the composite model for reliability estimation. To my 

knowledge, no research has been done where a hierarchical approach is taken to estimate 

heterogeneous architecture-based software reliability. This paper explores the use and 



 

 

effectiveness of a hierarchical framework to estimate heterogeneous architecture-based 

software reliability. 

Method 

Concepts of reliability and reliability prediction models for heterogeneous 

software architecture were surveyed. The different architectural styles were identified as 

batch-sequential, parallel filter, fault tolerance, and call and return. A method for 

evaluating these four styles solely on the basis of transition probability was proposed. 

Four case studies were selected from similar researches which have been done to test the 

effectiveness of the proposed hierarchical framework. The study assumes that the method 

of extracting the information about the software architecture was accurate and that the 

actual reliability of the systems used were free of software errors.  

Results 

The percentage difference in results of the reliability estimated by the proposed 

hierarchical framework compared with the actual reliability was 5.12%, 11.09%, 0.82%, 

and 52.14% for Cases 1, 2, 3, and 4 respectively. The proposed hierarchical framework 

did not work for Case 4, which showed much higher values in component utilization and 

therefore higher interactions between components when compared with the other cases.  

Conclusions 

The proposed hierarchical framework generally showed close comparison with 

the actual reliability of the software systems used in the case studies. However, the results 

obtained by the proposed hierarchical framework compared to the actual reliability were 

in disagreement for Case 4. This is due to the higher component interactions in Case 4 

when compared with other cases and showed that there are limitations to the extent to 



 

 

which the proposed hierarchical framework can be applied. The reasoning for the 

limitations of the hierarchical approach has not been cited in any research on the subject 

matter. Even with the limitations, the hierarchical framework for estimating 

heterogeneous architecture-based software reliability can still be applied when high 

accuracy is not required and not too high interactions among components in the software 

system exist. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

Software reliability estimation is a critical activity of the software development 

process which must be understood to prevent or minimize the risks of software failures. It 

has continued to be an area of focus for developing new ways to measure, analyze, and 

predict failures so that preemptive actions can be taken in the software development 

process as well as to have in place well-established and prompt corrective response 

regime in the event of software failure.  

There are several models in existence for carrying out software reliability 

analyses. In the earlier years of software development, software reliability analysis was 

mainly done using black box models which only provided information of the overall 

software reliability (Goseva-Popstojanova & Kamavaram, 2003). While these models 

were effective and very useful, it lacks the ability to provide information or analysis of 

the internal structure of software components (Goseva-Popstojanova & Trivedi, 2001). 

Hamlet (1992) and Horgan and Mathur (1996) have highlighted that black box models 

are applicable very late in the life-cycle of the software and ignore information about 

testing and reliabilities of the components that make up the software. In addition, black 

box models do not take into consideration the architecture of the software. 

As the software process continued to evolve to its present state, most, if not all, 

software development practitioners have started using object-oriented approaches or 
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incorporating commercially off the shelf (COTS) software components as part of the 

whole software system to enhance or add functionalities instead of completely 

redesigning or remodeling the software architecture (Goseva-Popstojanova & Trivedi, 

2001). Using black box models for an object-oriented or component-based approach to 

building software system would require retesting the entire system to determine system 

reliability, which means that reliability analysis can be applied only very late in the life 

cycle of the software development process. However, with architecture-based approach, 

only information about the specific component that is being added or replaced is needed, 

and retesting of the entire system would not be necessary. Instead, a reassessment, based 

on the application of the reliability model, would be needed to predict the overall system 

reliability. This approach considers the software architecture and it is done by analyzing 

each component of the software architecture within a model framework for estimating the 

overall system reliability. It also allows for prediction of system reliability to be made 

based on formal, stochastic software models. Using these models, developers can identify 

critical software components and quantify their influence on the overall system reliability 

to optimize future testing activities (Koziolek, Schlich, & Bilich, 2010). 

Architecture-based reliability modeling has gained substantial momentum and has 

shown much promise as documented in several researches. The approach for applying 

architecture based reliability has been classified into three categories: state-based, path-

based, and additive (Goseva-Popstojanova & Trivedi, 2001), of which state-based has 

been the focus of earlier researches while path-based has become one of more recent 

interest. State-based approaches assume that the transfer of control between components 

has a Markov property which can be modeled as discrete time Markov chain (DTMC), 
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Semi-Markov process (SMP), or continuous time Markov chain (CTMC). Path-based 

models compute software reliability considering the possible execution paths of the 

program and can be done experimentally or algorithmically. Additive models assume that 

each component can be modeled by a non-homogeneous Poisson process (NHPP) 

(Goseva-Popstanova, Mathur, & Kishor, 2001).  

State-based approaches to estimating software reliability have been further 

classified into composite and hierarchical models (Gokhale & Trivedi, 2002). Composite 

models combine the architecture of the software and the failure behavior of its 

component as a single model, whereas the hierarchical model solves the architectural 

model and superimposes the failure behavior of the modules and that of the interfaces 

onto the solution to predict reliability. 

While several studies have focused on architecture-based software reliability, very 

few have considered software as a heterogeneous architecture. Wang, Wu, and Chen 

(1999) developed a framework for estimating reliability of heterogeneous software 

architecture based on the Cheung (1980) model. Cheung’s model is one of the most used 

state-based and composite models for estimating architecture-based software reliability 

and takes the operational profile into account by utilizing transition probabilities from 

one component to another. Wang, Wu, and Chen (1999) highlighted that the Cheung 

model lacked the flexibility to be applied to different architectural styles and therefore 

could pose a challenge for practitioners to configure the architecture to fit a particular 

reliability framework that best meets quality demand. Gokhale (2002) also stated that the 

composite model that follows a DTMC process with constant failure rate was analytically 

intractable as it combines both reliability and failure behavior as a single component 
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which makes the solution to the model difficult when high accuracy is required. As a 

result, the hierarchical approach is preferred when the desire is to improve upon the 

accuracy of the method of solution for reliability prediction.  

As several different architectural styles continue to emerge (Shaw, 1993) and 

given the heterogeneous nature of software system components, it is important to 

consider the different architectural styles as performance and availability could be 

impacted based on the architectural styles of the system (Wang, Chen, & Tang, 1999). It 

is also important that a reliability framework not only takes the heterogeneity of the 

architecture into account but is also analytically tractable for improving accuracy of the 

method of solution for reliability prediction. This is a deficiency in the model developed 

by Wang, Wu, and Chen (1999) as it is a composite model based on the model developed 

by Cheung (1980). As a result, exploring a hierarchical framework for estimating 

reliability in systems of heterogeneous architectural styles would be a basis for presenting 

more flexible ways of improving the accuracy of reliability models than with the 

composite model approach. It is much easier for the hierarchical approach to be 

represented as SMP or CTMC processes which also takes failure behavior, failure 

intensity, and time dependency into consideration (Gokhale & Trivedi, 1997). 

Given the lack of flexibility for analysis observed in the model developed by 

Wang, Wu, and Chen (1999), the aim of this research was to explore a hierarchical 

framework for estimating and analyzing heterogeneous architecture-based software 

reliability. The successful application of the hierarchical framework would present a 

platform not only for more in-depth analysis of software reliability but also exploits its 
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flexibility for considering additional factors which the composite model by Wang, Wu, 

and Chen (1999) would not otherwise consider.  

 
Purpose of Study 

This study aims at applying a hierarchical framework to accurately estimate 

heterogeneous architecture-based software reliability as an enhancement to the model 

developed by Wang, Wu, and Chen (1999). The purpose of this study is as follows: 

1. To find an alternative and simpler approach for estimating software reliability of 

heterogeneous architectural styles 

2. To identify the limitations, if any, of applying the hierarchical framework to 

heterogeneous architectural styles 

3. To validate the application of the hierarchical framework not only to heterogeneous 

architecture but of its general use for predicting reliability 

4. Successful use of the hierarchical framework would set the platform where other 

models could be easily derived or parameters could be added for improving accuracy.  

The hierarchical approach offers much more flexibility for mathematically 

expressing reliability and taking into consideration additional parameters for improving 

accuracy which would be difficult using the composite approach.  

 
Contributions 

The main contribution of this study is to provide an alternative for estimating 

reliability of heterogeneous architectural styles from which analytical expressions can be 

developed to improve accuracy and include additional parameters. Very few studies have 

tackled the subject of estimating software reliability for heterogeneous architectural 
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styles, and those including Wang, Wu, and Chen (1999) have all used the composite 

approach as a method of solution. The hierarchical approach has been applied to other 

systems having a specific or strict architectural designed structure, but no research, to my 

knowledge, has been conducted where the hierarchical framework has been applied to 

heterogeneous architectural styles. A number of studies have mentioned the use of 

hierarchical approach for estimating reliability but none have explored the extent to 

which the model can be applied or the limitations to the type of system architecture for 

which it can be applied.  

In addition, the hierarchical approach that most studies have applied usually either 

follow a SMP or CTMC process which can be tedious to interpret mathematically. The 

hierarchical approach taken in this research is one that follows a DTMC process and is 

much more easily applied than models based on the SMP or CTMC process. While the 

study utilizes the hierarchical framework based on the DTMC process, it still has the 

ability to include failure rate and time domain as parameters, which is the characteristic 

of SMP and CTMC process models.  

This study aims to fill these gaps which have been observed and to identify areas 

of deficiency in the software reliability estimation for heterogeneous architectural styles 

from which improvements can be developed. Doing so will set the platform for further 

studies where the model can be either refined or enhanced for higher accuracy as 

necessary. 

 
Thesis Organization 

The thesis is comprised of five chapters. This first chapter contains background 

information on the motivation for conducting research in the area of architecture-based 
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software reliability. The chapter provided an overview of the concepts and deficiencies in 

studies that have been conducted in this area as well as justifications for proposing an 

alternative approach to current models in existence. The chapter also highlighted the 

importance of the research and its contributions. 

Chapter 2 outlines details of the related work which have been done on 

architecture-based reliability and provides details of the concepts and principles of 

architecture-based reliability models. 

Chapter 3 outlines in detail the methodology for the methods and approach taken 

in applying the proposed hierarchical framework for estimating software reliability of 

heterogeneous architectural styles. It also provides a detailed description of the case 

studies which were used in this research. 

Chapter 4 provides the detailed analysis of the results obtained, while chapter 5 

provides a conclusion which summarizes the study. Following this chapter are the 

appendix and reference list.  
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CHAPTER 2 
 
 

LITERATURE REVIEW 
 
 

Related Work 

Various studies have been done and several mathematical models have been 

proposed for assessing architecture-based software reliability. One of the earliest models 

in assessing architecture-based software reliability model was developed by Cheung 

(1980). This model considers the software reliability with respect to the module’s 

utilization and its reliabilities. It assumes that the program flow graph of a terminating 

application has a single entry and a single exit node, and that the transfer of control can 

be described by an absorbing DTMC with a transition probability matrix of P = [pij] 

(Goseva-Popstojanova & Trivedi, 2001). It is often used as a basis for accuracy and 

deriving other architecture-based reliability models (Gokhale & Trivedi, 2002). Despite 

its effectiveness and accuracy, the model’s method of solution is not analytically tractable 

and is not very reliable when high accuracy is required (Gokhale, 2002).  

As a result, the model developed by Gokhale and Trivedi (2002) takes into 

consideration the number of visits to each state based on transition probabilities while 

incorporating failure behavior and expected time spent in each state as parameters. This 

model assumes that the failure behavior follows a Poisson process and is derived by 

Taylor series expansion. Therefore, the value estimated for reliability is an approximate 
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value and expected to be more accurate when higher orders of the Taylor series 

expansion are  considered. Since the model by Gokhale (2002) follows a Poisson process, 

components are assumed to fail at constant failure rate.  

Despite these enhancements made to the Cheung’s architecture-based model, it 

still lacks the ability to provide a framework for representing different architectural 

styles. Wang, Wu, and Chen (1999) proposed a framework based on Cheung’s model for 

applying different software architectural styles and highlighted the importance of refining 

the model developed by Cheung (1980) when considering heterogeneous and complex 

architectures. Wang, Wu, and Chen (1999) developed a reliability model based on the 

following architectural styles: batch-sequential/pipeline style, parallel/pipe filter style, 

fault tolerance, and call and return. These styles are said to be a general representation of 

the different software architectural styles. For example, a client-server style would 

represent that of a call and return, a hierarchical and layered style would be similar to 

batch-sequential/pipeline, a multiprocessor environment would be that of a parallel/pipe 

filter style, and database distribution network could be seen as that of a fault tolerance 

style. The results of using the heterogeneous architectural style proposed by Wang, Wu, 

and Chen (1999) were very comparable with that of the actual reliability of the software 

system that was used. It must be noted that the Cheung’s approach is purely maintained 

when considering a batch-sequential/pipeline where both the failure behavior and 

reliability of components are accounted for together. However, with other architectural 

styles, variations will be observed and therefore the need to evaluate the different 

architectural styles for predicting overall reliability. 

Even with the refinement of Cheung’s approach, the model proposed by Wang, 
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Wu, and Chen (1999) does not separate reliability from failure behavior and therefore 

takes a composite approach to estimating reliability. As a result, the model becomes very 

difficult to evaluate if parameters such as failure behavior and time spent in each state as 

parameters are to be considered. In this case, a hierarchical approach could make the 

derivation of other mathematical expressions more easily to improve the accuracy of the 

solution. Gokhale (2002) outlined the importance or relevance for the use of the 

hierarchical approach as follows:  

1. To readily analyze sensitivity of system reliability to the reliabilities of its 

components 

2. To analyze the sensitivity of system reliability to the structural statistics of the system 

3. To rank the components of the system in the order of their importance from the 

system reliability perspective, and thus identify the components that are critical to the 

system 

4. To determine the allocation of reliability to individual components so that the overall 

reliability target of the system is achieved  

5. To readily identify and analyze performance bottlenecks within components to 

improve overall performance of the software. 

This would make the process of evaluating system reliability to be extended 

beyond treating the system as a DTMC into treating the system more like a semi-Markov 

process or continuous time Markov Chain (CTMC) through which real-time software 

reliability can be evaluated. Further, with this approach, traditional reliability analysis 

such as mean time to failure (MTTF), mean time between failure (MTBF), among others 

could be conveniently incorporated in the software reliability analysis. The Wang, Wu, 
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and Chen (1999) model for estimating reliability of heterogeneous software architecture 

does not offer that level of flexibility, which this study had sought to address. 

 
Software Reliability 

Software reliability is defined as the probability of failure-free software operation 

for a specified period of time in a specified environment. It is one of the attributes of 

software quality, a multidimensional property including other customer satisfaction such 

as functionality, usability, performance, serviceability, capability, installability, 

maintainability, and documentation (Michael, 1996). Software reliability is generally 

accepted as the key factor in determining software quality since failures within a system 

can be quantified. 

According to Nikora and Lyu (1999), software reliability is defined 

mathematically as follows:  

Let "T" be a random variable representing the failure time or lifetime of a 

physical system. For this system, the probability that it will fail by time "t" is: 

∫=≤=
t

dxxftTPtF
0

)(][)(  

Eq. 1: Failure Rate Expression 

The probability of the system surviving until time t is: 

∫
∞

=−=>=
t

dxxftFtTPtR )()(1][)(  

Eq. 2: Survival Rate Expression 

Based on Eq. 2, failure rate, which is the probability that a failure will occur in the 

interval [t1, t2] given that a failure has not occurred before time t1,  can be written as: 
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 And Hazard rate, the limit of the failure rate as the length of the interval approaches 

zero, can be written as: 
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Eq. 3: Hazard Rate 

This is the instantaneous failure rate at time t, given that the system survived until time t.  

The terms hazard rate and failure rate are often used interchangeably. 

A reliability objective expressed in terms of one reliability measure can be easily 

converted into another measure as follows (assuming an “average” failure rate, λ , is 

measured):  

( )

( ) ( )etR
MTTF

MTTF

tt

tµ

λ
λ

λµ

−=

=

=

∗=

1

1
 

Eq. 4: Basic Reliability Expressions and Model 

Where ( )tµ is the failure intensity and MTTF is the mean time to failure. 

 
Software Reliability Models 

Software reliability models can be grouped into two categories: black box model 

and white box model or architecture-based approaches. The black box models tend to 

treat the software as a monolithic whole while the white box approach analyzes the 

system based on its individual components (Goseva-Popstojanova & Trivedi, 2001). The 
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most used or more established black box software reliability models are classified into a 

group called software reliability growth model (SRGM). They use the observed failure 

information and predict future failures that reflect the growth of reliability. A broad 

classification of SRGMs is given in Table 1 (Chandran, Dimove, & Punnekkat, 2010). 

SRGMs are classified under three major groups: finite, infinite based on the total number 

of failures expressed in infinite time, and Bayesian models. Tools such as CASRE 

(Nikora, 2002) and SMERFS (Fair & Smith, 1988) are available for analyzing SRGMs. 

These models depend only on the number of failures observed or time between failures. 

 
 

Table 1 

Classification of Software Reliability Growth Models  

Finite Infinite 
Bayesian Model Exponential Weibull and 

Gamma Exponential 

Jelinski- 
Moranda 

S-Shaped 
Reliability 
Growth 

Geometric Littlewood- 
Verrall 

Shooman Weibull Musa-Okumoto 
Logarithmic  

Musa Basic 
execution time  Duane  

Goel-Okumoto 
Schneidewind    

 

 
Perugupalli (2004) stated that with the growing emphasis on reuse, an increasing 

number of organizations are developing and using software not just as all-inclusive 

applications, as in the past, but also as component parts of larger applications. This makes 

existing black box models clearly inappropriate to model such a large component-based 

system. Instead, there is a need for modeling technique which can be used to analyze 
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software components and how they fit together. The goal of the white box approach is to 

estimate the system reliability, taking the information about the components of software 

into account (Goseva-Popstojanova & Trivedi, 2001). While the approach may be 

different in quantifying software reliability, the aim of both models is to capture the 

reliability of the system as a function of failure behavior.  

 
Architecture-Based Software Reliability Models 

There are a number of architecture based models in existence for estimating 

reliability. Goseva-Popstojanova and Trivedi (2001) have done a survey of the various 

models and provide details of the assumptions that are made when using particular 

models. The survey conducted by Goseva-Popstojanova and Trivedi (2001) also 

highlighted the major common requirements for estimating reliability using architecture-

based approaches. These include: module identification, software architecture, failure 

behavior, and combining architecture with failure behavior.  

In addition to the advantage of architecture-based approaches over black box 

approaches, Goseva-Popstanova et al. (2001) have rationalized the motivation to apply 

architecture based software reliability as follows:  

1. Understanding how the system reliability depends on its component reliabilities and 

their interaction 

2. Studying the sensitivity of the application reliability to  reliabilities of components 

and interfaces 

3. Guiding the process of identifying critical components and interfaces for a given 

architecture 

4. Selecting an architecture that is most appropriate for the system under study. 
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Gokhale and Trivedi (2002) corroborated the ease to which information, based on 

the motivation to use architecture-based approach as stated by Goseva-Popstanova et al. 

(2001), could be analyzed based on how each component affects the overall reliability.  

While architecture-based approaches for estimating reliability have been a major 

focus in recent times, extracting the architecture on how components interact with each 

other can be challenging based on the assumptions, parameters considered, and the 

uncertainty which exist in reliability estimation (Goseva-Popstojanova & Kamavaram, 

2003). In addition, the assumptions made based on extracting the structure could also 

lead to inaccurate reliability estimation (Parnas, 1975). As a result, accurate depiction of 

the software structure is critical for accurate reliability estimation. 

According to Goseva-Popstanova et al. (2000), architecture-based approaches 

have been proposed mostly by ad hoc methods without any relationship among them. As 

a result, relationships among models are not clearly established. However, most of the 

approaches which have been researched are state-based models, which follow a DTMC, 

SMP, or CTMC process. Attempts to improve these models have been made through 

developing new models or new framework upon which the model can be applied.  

 
Markov Chain 

All state-based models are assumed to follow a Markov process. The proposed 

framework in this study utilizes the DTMC process and therefore only details of the 

DTMC process are presented in this literature.  

The definition of a Markov chain is as follows (Grinstead & Snell, 2006): 

Considering a set of states, S = {s1, s2, s3, s4… sr} where the process starts in one of these 

states and moves from one state to the next. If the chain is currently in state si, then it 
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moves to state sj at the next step with a probability denoted by pij and this probability 

does not depend upon which states the chain was in before the current state. This 

statement can be expressed formally as (Markov Chain, 2014):  

Let X1, X2, X3, ...represent a sequence of random variables with Markov property. 

Since the present state, the future and past states are independent, therefore 

The Probability, Pr(Xn+1 = ϰ | X1 = ϰ1, X2 = ϰ2,…, Xn = ϰn) = Pr(Xn+1 = ϰ | Xn = 

ϰn) 

If both sides of the equation are well defined. 

The probabilities pij are called transition probabilities. 

 
DTMC Application to Architecture-Based Software Reliability 

In the DTMC process, both time and space are discrete. DTMCs can be classified 

into the following two categories (Gokhale, 2002): 

1. Irreducible: A DTMC is said to be irreducible if every state can be reached from 

every other state 

2. Absorbing: A DTMC is said to be absorbing, if there is at least one state i, from 

which there is no outgoing transition. A DTMC upon reaching an absorbing state is 

destined to remain there forever. 

A DTMC is characterized by its one-step transition probability matrix, P = [pi;j ]. 

P is a stochastic matrix since all the elements in a row of P sum to one, and each element 

lies in the range [0; 1] (Gokhale & Trivedi, 2002). Since the architecture of the 

application follows the Markov Chain properties based on the formal definition 

presented, it means that components to be executed in the next state will depend only on 

the components of current state and the components of the next state will not have any 
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dependency to the past history of the current state (Wang, Wu, & Chen, 1999).  

 
Cheung Model 

This model assumes that the architecture has a single entry node and a single exit 

node. Each node can be representative of a state or component. Let Ni and Nj represent an 

individual node where 0< i < j and Ri the reliability of Ni, and the probability of moving 

from Ni to Nj is the transition probability Ni,,j. Therefore, the reliability of successfully 

reaching state Ni,,j is estimated as RiNi,,j. Based on the state diagram, a transition matrix M 

can be defined for the value of M(i,j) as follows:  

 

 
N1 N2 N3  Ni .. Nn-1 Nn 

N1 0 R1N1,2 R1N1,3 .. R1N1,i .. R1N1,n-1 R1N1,n 
N2 R2N2,1 0 R2N2,3 .. R2N2,i .. R2N2,n-1 R2N2,n 
N3 R3N3,1 R3N3,2 0 .. R4N3,i .. R3N3,n-1 R3N3,n 
Ni R4N4,1 R4N4,2 R4N4,3 .. 0 .. R4N4,n-1 R4N4,n 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

Nn-1 Rn-1Nn-1,1 Rn-1Nn-1,2 Rn-1Nn-1,3 .. Rn-1Nn-1,i .. 0 Rn-1Nn-1,n 
Nn RnNn,1 RnNn,2 RnNn,3 .. RnNn,4 .. RnNn-1,n-1 0 

 
 

Figure 1: Reliability Transition Matrix. 
 
 
Let N = { N1 , N2 , ….., Nn } be the set of states or components in the state diagram where 

N1 is the initial state and Nn is the final state. M k (i, j) represents the probability of 

reaching state Sj from Si through k transitions. Therefore, the reliability R beginning from 

Si to Sj with total k transitions is represented as  

 
R = Mk (i, j) × Rj 

 
Eq. 5: Reliability Evaluation by Transition Matrix 
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From initial state N1 to final state Nn , the number of transitions k may vary from 0 

to infinity, where 0 means that the initial state is also the final state and infinity means 

that a cyclic loop may occur indefinitely among the states. Therefore, it is necessary to 

consider every possible outcome of state transitions. Let T be a matrix such that: 

 
T = I + M + M2 + M3 +……..= � 𝑀𝑘∞

𝑘=0  
 

Eq. 6: Expression for Finding Fundamental Matrix 
 
 
Therefore, as k approaches infinity, it can be shown that it results in the fundamental 

matrix which can be expressed as:  

T = (I - M)-1 = � 𝑀𝑘∞
𝑘=0   

 
Eq. 7: Fundamental Matrix Expression 

Where I is the identity matrix. 

 
From this expression, the overall system reliability is calculated as: 

R = T(1,n) × Rn,  
 

Eq. 8: Cheung Method for Overall Reliability 

 
where Rn is the reliability of the component of state n. 

 
Wang, Wu, & Chen Model 

This model utilizes the premises on which Cheung’s model was developed by 

assuming that the architecture of the application follows a Markov’s process. It combines 

both the reliability and failure behavior to determine overall system reliability. However, 

it goes further to evaluate the overall system reliability based on varying architectural 
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styles. It takes into consideration four characteristics of the software architecture, namely, 

batch-sequential/pipeline style, parallel-pipe filter style, fault tolerance, and call and 

return style. These architectural styles are used to represent how software generally 

functions.  

Mathematical models for calculating reliability of each architectural style were 

developed and are presented in the following sections.  

Batch-Sequential/Pipeline Architectural Style 

Both batch-sequential and pipeline styles are running in a sequential order. They 

share the same architecture view and state view. Figure 2  shows a diagram of the batch-

sequential/pipeline style.  

 

 
 
 
Figure 2: Batch-sequential and pipeline styles. 
 

Assuming that the architecture is composed of k components, there will be k states 

in the Markov chain. The transition matrix M can be obtained as follows: 

�
𝑀(𝑖, 𝑗) = 𝑅𝑖𝑃𝑖,𝑗  𝑤ℎ𝑒𝑟𝑒 𝑆𝑖 𝑐𝑎𝑛 𝑟𝑒𝑎𝑐ℎ 𝑆𝑗
𝑀(𝑖, 𝑗) = 0 𝑤ℎ𝑒𝑟𝑒  𝑆𝑖 𝑐𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑎𝑐ℎ 𝑆𝑗

      for 1 ≤ i, j ≤ k 
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Where M(i,j) is the probability of successfully reaching state Sj from Si. 

The batch-sequential/pipeline architecture purely follows the process of 

estimating reliability using the Cheung’s model as shown. An example of this 

architectural style is demonstrated in software that functions in performing one task at a 

time in a sequential manner. 

Parallel/Pipe-filter style 

In this architecture style, concurrent executions take place where components are 

running simultaneously as shown in Figure 3.  

 
 
 
Figure 3: Parallel/pipe filter style. 
 

The component reliabilities and transition probabilities are all independent of each 

other. As a result, the value of M({ Sp1 },{ Sk }) or the reliability of this architectural style 

is expressed as:  
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𝑀({ 𝑆𝑝1 }, {  𝑆𝑘 }) = �𝑅𝑛𝑃𝑛𝑘

𝑘−1

𝑛=2

 

which is the product of all the component reliabilities in this state and the transition 

probabilities from components C2 , C3 , …, and Ck-1 to component Ck , respectively.  

For k components, the transition matrix, taking into consideration the 

parallel/pipeline filter style that can be obtained is:  

�
𝑀(𝑖, 𝑗) = 𝑅𝑖𝑃𝑖,𝑗 𝑤ℎ𝑒𝑟𝑒 𝑆𝑖 𝑐𝑎𝑛 𝑟𝑒𝑎𝑐ℎ 𝑆𝑗
𝑀(𝑖, 𝑗) = ∏ 𝑅𝑛𝑃𝑛𝑗, 𝑆𝑖  ∈  𝑆𝑝𝑐𝑛 𝑖𝑛 𝑆𝑖             
𝑀(𝑖, 𝑗) = 0 𝑤ℎ𝑒𝑟𝑒  𝑁𝑖 𝑐𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑎𝑐ℎ 𝑁𝑗

      for 1 ≤ i, j ≤ |S| and 1 ≤ n ≤ k 

 
An example of this architectural style can be found in a multiprocessor or 

multithreaded environment where more than one tasks are being done at the same time. 

 
Fault Tolerance 

A fault-tolerance architectural style consists of a primary component and a set of 

backup components, which may be implemented in different algorithms or data 

structures, from the primary component as shown in Figure 4.  

These components, including the primary and the backups, are placed in parallel 

so that when one component fails, the others can still provide services. 

It is assumed that all the backup components have the same transition 

probabilities as the primary component to each subsequent component. Let there be k 

components in which l=k-4 components are running as fault tolerance in the same state; 

therefore, the total number of states is k-l+1 according to Figure 4. By induction, entry 

M(1,{ Sb1 }) can be expressed as: 
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𝑀(1, { 𝑆𝑏1 }) = 𝑅2 + ���(1 − 𝑅𝑚)
𝑛−1

𝑚=2

�

𝑘−3

𝑛=3

Rn 

 
To represent the transition matrix with fault tolerance architectural style, considering k 

components can be expressed as:  

⎩
⎪
⎨

⎪
⎧

𝑀(𝑖, 𝑗) = 𝑅𝑖𝑃𝑖,𝑗  𝑤ℎ𝑒𝑟𝑒 𝑆𝑖  ∉ 𝑆𝑗                                                                                         

𝑀(𝑖, 𝑗) = 𝑅𝑎1 + � �∏ (1 − 𝑅𝑚)𝑞−1
𝑚=𝑎2 �

ar

𝑞=𝑎2
𝑅𝑛 ,                                                                   

𝑆𝑖  ∈ 𝑆𝑏 𝑎𝑛𝑑 𝑆𝑖 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠 𝐶𝑎1 𝑡𝑜 𝐶𝑎𝑟                                                           
𝑀(𝑖, 𝑗) = 0 𝑤ℎ𝑒𝑟𝑒  𝑆𝑖 𝑐𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑎𝑐ℎ 𝑆𝑗                                                                          

  

  for 1 ≤ i, j ≤ |S| and 1 ≤ ar ≤ k 

 
An example of this architectural style can be found in a distributive system such 

as that of a distributive database system where there are back-ups to make the database 

continue to function even though one or more database components have failed. This type 

of system is especially important in transaction processing such as that used by the banks, 

hospitals, and airlines, among others. 

 
 
Figure 4: Fault tolerance. 
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Call-and-Return Architecture Style 

In the call-and-return style, the execution of one component may request some 

services provided by the other components before transferring its complete control 

authority to others. Thus, after such a request is fulfilled by the called components, the 

control still returns to the calling component and executes the next statement from where 

the component left. Therefore, the called components may execute multiple times with 

only one time execution of the calling component. This is shown in Figure 5. 

 
 
 
Figure 5: Call-and-return architectural style. 

 
The expression for the transition matrix representing the call-and-return 

architectural style assuming that the total number of states is k with k components is: 

⎩
⎪
⎨

⎪
⎧ 𝑀(𝑖, 𝑗) = 𝑅𝑖𝑃𝑖,𝑗 , 𝑆𝑖 𝑐𝑎𝑛 𝑟𝑒𝑎𝑐ℎ 𝑆𝑗                                                                                         
𝑀(𝑖, 𝑗) = 𝑃𝑖𝑗 ,     𝑆𝑖 𝑐𝑎𝑛 𝑟𝑒𝑎𝑐ℎ 𝑆𝑗  𝑎𝑛𝑑 𝑆𝑗  𝑖𝑠 𝑎 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡                                                          

𝑓𝑜𝑟 1 ≤ 𝑖, 𝑗 ≤ 𝑘                                                                                              
𝑀(𝑖, 𝑗) = 0, 𝑆𝑖 𝑐𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑎𝑐ℎ 𝑆𝑗                                                                                            
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An example of this architectural style can be found in web services where there is 

a server/client interaction. The client makes a request to server and the server returns a 

response to the client’s request. 

 
Estimating Overall Reliability 

Considering the four architectural styles that have been presented by Wang, Wu, 

and Chen (1999), the framework for estimating system reliability of heterogeneous 

architecture is as follows: 

⎩
⎪
⎪
⎨

⎪
⎪
⎧
𝑀(𝑖, 𝑗) = 0 𝑤ℎ𝑒𝑟𝑒  𝑆𝑖 𝑐𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑎𝑐ℎ 𝑆𝑗                                                                                   
𝑀(𝑖, 𝑗) = 𝑅𝑖𝑃𝑖,𝑗 𝑤ℎ𝑒𝑟𝑒 𝑆𝑖  ∉ 𝑆𝑝 𝑎𝑛𝑑 𝑆𝑖  ∉ 𝑆𝑏                                                                          
𝑀(𝑖, 𝑗) = ∏ 𝑅𝑛𝑃𝑛𝑗, 𝑆𝑖  ∈  𝑆𝑝𝑐𝑛 𝑖𝑛 𝑆𝑖                                                                                              

𝑀(𝑖, 𝑗) = 𝑅𝑎1 + � �∏ (1 − 𝑅𝑚)𝑞−1
𝑚=𝑎2 �

ar

𝑞=𝑎2
Rn ,                                                                   

𝑆𝑖  ∈ 𝑆𝑏 𝑎𝑛𝑑 𝑆𝑖 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑠 𝐶𝑎1 𝑡𝑜 𝐶𝑎𝑟                                                           
𝑀(𝑖, 𝑗) = 𝑃𝑖,𝑗 , 𝑆𝑗 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑎 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡                                                                             

  

  for 1 ≤ i, j, ar, n ≤ k 
 
 

Gokhale & Trivedi Model 

This model of estimating architecture-based software reliability utilizes transition 

probabilities between states as that of the Cheung model but goes further by including the 

expected number of visits per component, failure behavior (constant failure rate) and time 

as parameters. The assumptions are the same as Cheung’s which states that the structure 

of the system follows an absorbing DTMC and the system consists of n components, and 

has a single initial state denoted by 1, and a single absorbing or exit state denoted by n 

(Gokhale, 2002; Gokhale & Trivedi, 2002). However, unlike the Cheung model, Gokhale 

and Trivedi (2002) is a hierarchical model that superimposes failure behavior on 
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reliability.  

The parameters considered for determining reliability in the Gokhale and Trivedi 

(2002) model are transition probability, pi,j, number of visits per component, Xi,,j , time 

spent per visit per component, τ, and constant failure rate, λ, which are assumed to be 

known along with the reliability of each component and the structure of the system.  

If there are n components that make up the software system and the reliability and 

the expected number of visits to each component are known, then the Gokhale and 

Trivedi (2002) model for calculating the overall reliability of the system is as follows:  

 

R = ∏ 𝑅𝑖
𝑋𝑖,𝑗𝑛

𝑖=1  

Eq. 9: Gokhale Expression for Overall Reliability 

 
Where Ri is the reliability of the component and R is the overall system reliability. 

Eq. 9 can be expanded and be made more accurate by the Taylor series expansion. 

Thus Eq. 9 is a first order Taylor series expression. This is one of the drawbacks of the 

hierarchical approach where it becomes more accurate when higher order expressions of 

the Taylor series are used. With higher order Taylor series expansion of Eq. 9, 

mathematically it becomes more tedious to compute, thus making reliability 

determination more impractical. However, Goseva-Popstanova et al. (2001) showed that 

using the first order Taylor series expansion of the Gokhale hierarchical approach 

produced accurate reliability results when compared to the actual reliability. This was 

also corroborated by close accurate results which were obtained by Gokhale and Trivedi 

(2002)  and Goseva-Popstojanova, Hamill, and Perugupalli (2005). 

Gokhale and Trivedi (2002) showed how estimating the reliability using 
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hierarchical approach, as expressed, gave comparable results when compared to that of 

Cheung (1980), a composite approach. The overall reliability of the system architecture 

in Figure 6 was calculated using the Cheung (1980) and Gokhale and Trivedi (2002) 

method. The component reliabilities and transition probabilities for are shown in Table 2 

and Table 3 respectively. 

The overall reliability was estimated to be 0.8299 for the Cheung’s approach and 

0.8264 for the Gokhale and Trivedi (2002) approach using the first order Taylor series 

expression. However, the Gokhale approach became more accurate and produced 0.8280 

for the overall reliability when second order Taylor series expression, which included the 

variance of the expected number of visits, is used. The second order Taylor series 

expression for Eq. 9 can be expressed as: 

 
𝑅  =  ∏ (𝑅𝑋𝑖,𝑗𝑛

𝑖=1 + 1
2

(𝑅𝑋𝑖,𝑗  )(𝑙𝑜𝑔𝑅𝑖)2 𝜎1,𝑗
2 ) 

 
Eq. 10: Gokhale Expression for Overall Reliability using Second Order Taylor 
Series Expansion 

 
Where 𝜎1,𝑗

2   is the variance of the expected number of visits and 𝑙𝑜𝑔𝑅𝑖.is the natural log 

of the reliability of component i. 

The variance can be obtained from the fundamental matrix, as expressed in Eq. 6, 

as follows: 

 
 𝜎1,𝑗
2 = 𝑀(2𝑀𝑑𝑔 −  𝐼) −𝑀𝑠𝑞 

 
Eq. 11: Expression for Variance of the Expected Number of Visits,  𝝈𝟏,𝒋

𝟐  
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Table 2  

Reliability of Component in Figure 6 

Component Reliability 
1 0.999 
2 0.980 
3 0.990 
4 0.970 
5 0.950 
6 0.995 
7 0.985 
8 0.950 
9 0.975 
10 0.985 
 
 

Table 3  

Transition Probabilities of Components in Figure 6 

p1,2 = 0:60 p1,3 = 0.20 p1,4 = 0.20  

p2,3 = 0.70 p2,5 = 0.30   

p3,5 = 1.00    

p4,5 = 0.40 p4,6 = 0.60   

p5,7 = 0.40 p5,8 = 0.60   

p6,3 = 0.30 p6,7 = 0.30 p6,8 = 0.10 p6,9 = 0.30 

p7,2 = 0.50 p7,9 = 0.50   

p8,4 = 0.25 p8,10 = 0.75   

p9,8 = 0.10 p9,10 = 0.90   
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Figure 6: System Architecture represented by its components that follow an absorbing 
DTMC process. 
 
 

A comparison of the reliability computed for each component with and without 

the consideration of the variance of expected number of visits is shown in Table 4. When 

variance is considered, the accuracy of reliability is slightly improved when compared to 

the composite method and therefore first order Taylor expression for the Gokhale and 

Trivedi (2002) model is satisfactory for providing estimation when high accuracy is not 

desired.    
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Table 4  

Reliability Calculated Based on Gokhale and Trivedi Model Considering the Variance of 
the Expected Number of Visits 

Component Reliability 𝑹𝑿𝒊,𝒋 𝑹𝑿𝒊,𝒋  with  𝝈𝟏,𝒋
𝟐   𝝈𝟏,𝒋

𝟐  
1 0.999 0.99900 0.99900 0.00000 
2 0.980 0.98183 0.98196 0.64437 
3 0.990 0.99089 0.99092 0.54991 
4 0.970 0.98734 0.98752 0.39284 
5 0.950 0.93308 0.93396 0.71853 
6 0.995 0.99874 0.99875 0.23185 
7 0.985 0.99074 0.99081 0.62613 
8 0.950 0.95618 0.95671 0.42252 
9 0.975 0.99035 0.99043 0.24620 
10 0.985 0.98500 0.98500 0.00000 

 
 

Reliability Prediction Based on Time 

One of the advantages of using the hierarchical approach in estimating reliability 

is that the model can be transformed into a SMP with the additional parameter of time. 

Gokhale and Trivedi (2002) developed an expression for evaluating performance analysis 

based on the Eq. 9.  

Considering the reliability expression (Nikora & Lyu, 1999): 

( ) ( )etR tµ−=  where µ(t) represents failure rate as a function of time. 

Since the assumption of constant failure rate is made, we can express µ(t) as λ. 

Therefore, the reliability can be expressed in terms of failure rate, λ, time spent per 

component, τ, and expected number of visit per component, Xi,j, as: 

R =∏ 𝑅𝑖
𝑋𝑖,𝑗𝑛

𝑖=1 = ∏ 𝑒−𝜆𝜏𝑋𝑖,𝑗𝑛
𝑖=1  

 
Eq. 12: Overall Reliability Expression with the inclusion of Time and Failure Rate 
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Based on Eq. 12, Eq. 10 can be rewritten with consideration of second order Taylor 

expression as follows: 

 

𝑅  =  ∏ (𝑒−𝜆𝜏𝑋𝑖,𝑗𝑛
𝑖=1 + 1

2 
𝜆2 𝑒−𝜆𝜏𝑋𝑖,𝑗 𝜏𝑖2 𝜎1,𝑗

2 ) 
 
Eq. 13: Second Order Taylor series Expression for Reliability with Failure Rate and 
Time 

 
While the study is not focused on taking an SMP approach to estimating 

reliability, it is important to show the flexibility of the hierarchical approach and the 

extent to which other mathematical expressions could be derived to improve reliability 

prediction. This was what Gokhale (2002) meant by stating that the hierarchical approach 

is more analytically tractable as it is much easier to extract other information or analysis 

such as performance and sensitivity than the composite method to perform more accurate 

and in-depth reliability analysis.  

 
Extracting the Software Architecture 

Accurately extracting the software architecture is important for estimating 

reliability using architecture-based approaches (Parnas, 1975). The architecture can be 

extracted from the design phase by expert consultations or from prior release of the 

application. This approach is intended only if the architecture-based reliability analysis is 

to be carried out from the design stage of the software development life cycle (Gokhale & 

Trivedi, 2002). Yacoub, Cukic, and Ammar (1999) have shown that information on the 

architecture could also be obtained from the occurrence probabilities of various scenarios 

based on the operational profile of the system in the design phase. 
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Often, information on the architecture is not available and therefore has to be 

extracted from the source code of the application (Gokhale, 2002). This could be done 

using profilers (Fenlason & Stallman, 2013) or test coverage tools (Team, 1998). 

Component reliability can be obtained using failure data collected during unit testing of 

each component to estimate the parameters of the software reliability growth model (Farr, 

1996). Non-failed executions and failures in the validation phase could also be used to 

estimate component reliabilities when information on the software architecture is scarce 

(Miller et al., 1992). 



 

32 

CHAPTER 3 
 
 

HIERARCHICAL FRAMEWORK FOR ESTIMATING HETEROGENEOUS 

ARCHITECTURE-BASED SOFTWARE RELIABILITY  

 
Introduction 

The approach taken in applying the proposed hierarchical framework to estimate 

software reliability of heterogeneous architectural styles involves applying the concepts 

of the model proposed by Wang, Wu, and Chen (1999) and Gokhale and Trivedi (2002). 

Wang, Wu, and Chen (1999) described a composite approach and the concepts of 

analyzing the different architectural styles for reliability, while Gokhale and Trivedi 

(2002) described a hierarchical approach that applied to the number of expected visits to 

each component (component utilization) which could be used to transform the model into 

a SMP approach which included time and failure behavior as additional parameters for 

evaluating reliability. While this study is not focused on applying a SMP approach, the 

hierarchical approach remains important due to its flexibility and ability for other 

reliability expressions to be developed, which could change the entire perspective of 

software reliability analysis.  

Four case studies were used in this study to explore the effectiveness of the 

proposed hierarchical framework. The data of these studies have been taken from 

previous studies and will be applied to the hierarchical framework being explored in this 

study. Comparative assessments of the results are provided between those obtained 
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from the proposed hierarchical framework and actual results which have been obtained 

from the case studies. The assumptions and limitations of the study are also provided. 

 
Information on the Software Architecture 

Information on the architecture is needed to determine how the components of the 

software interact with each other. Component interactions are captured by the transition 

probabilities among its components. In many cases, this information is not known and 

can be extracted from various sources depending on the phase of the software cycle 

(Gokhale & Trivedi, 2002).  

This study is not focused on extracting information about the architecture but 

assumes that the information is known. This information has already been given by the 

data which have been taken from the case studies. As a result, it is assumed that the 

methodology for extracting the information about the architecture is accurate and that all 

software errors have been found through the testing mechanism applied. 

 
Reliability Metrics 

Estimating overall reliability by architecture-based approaches requires that the 

reliability of each component is known. The reliability of components can be obtained by 

using failure data collected during the unit testing of each component to estimate the 

parameters of a software reliability growth model (Farr, 1996), or can be estimated by 

considering non-failed executions and failures in the validation phase (Miller et al., 

1992). These activities are carried out in the operational phase of the software cycle 

where the extraction of information on reliability is done from the source code.  

This study assumes that the reliability of each component is known and the 
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reliability of each component has been given from the data obtained from the case studies 

under consideration. It is also assumed that the actual reliability, which our results will be 

compared with, is free of failure errors and that the methodology used for determining 

reliability is accurate and true.   

 
My Approach 

Our approach takes the four architectural styles identified by Wang, Wu, and 

Chen (1999) into consideration, namely, batch-sequential, parallel filter, fault tolerance 

and the call and return architectural style. The approach taken by Wang, Wu, and Chen 

(1999) involved combining the reliability with failure behavior for each architectural 

style through a DTMC process to establish a reliability transition matrix.  

The main difference with my approach is that each architectural style is evaluated 

solely on the basis of the transition probability matrix from which the expected number of 

visits to each component or component utilization will be determined and applied to the 

heterogeneous software architecture. Therefore, a framework for evaluating the transition 

probabilities of each architectural style is developed to determine the component 

utilization so that the overall reliability can be found. Overall reliability is estimated by 

applying Eq. 7 to obtain the transition probability fundamental matrix and the Gokhale 

and Trivedi  model as shown in Eq. 9. 

The following sections of this study provide details of how the transition 

probability matrix is developed for finding the component utilization and subsequently 

estimating the overall reliability of the software system. 
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Evaluating the Transition Probability Matrix 
of Batch/Sequential Architectural Style 

Given n components within a system that follow a batch/sequential architectural 

style, the architecture can be represented with its transitional probabilities as shown in 

Figure 7.  

 

C1 P1,2 C2 CnPk,n

 
 
 
Figure 7: Batch/sequential architecture style.  

 
Since a DTMC process is assumed, it therefore signifies that the stochastic 

process is purely maintained in this architecture which means that the transition 

probabilities within a row of the transition probability matrix sums to unity. As a result, 

the components within this architecture do not require any modifications since the 

execution is done in a sequential manner.  

Evaluating the Transition Probability Matrix  
of Parallel/Pipe Filter Architectural Style 

In the parallel filter architecture, components are executing concurrently. Since 

C2, C3 and Cn-1 are executed concurrently by C1 and C2, C3 and Cn-1 concurrently execute 

Cn, C2, C3 and Cn-1 can be represented by the same transition probability and therefore can 

be grouped collectively as a single component as shown by the demarcation in Figure 8. 
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As a result, the transition probability matrix can be transformed from the matrix (Figure 

9) representing Figure 8 to the transition probability matrix in Figure 10. 

The transition probability matrix can be evaluated for the component utilization 

(Eq. 7) and reliability (Eq. 9) with the assumption that the components functioning in the 

parallel structure are utilized equally at the same utilization rate. 

P1,3C1

Cn - 1

C2

C3 Cn Pn,k

 
 
 

Figure 8: Transition between components in a parallel architecture 
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C1 C2 C3 

……… 
Cn-1 Cn 

C1 - P1,2 P1,3 
……… 

P1,n-1 - 

C2 - - - 
……… 

 
P2,n 

C3 - - - 
……… 

 
P3,n 

 
. 
. 
 

. 

. 

. 

. 

. 

. 

. 
- 

. 

. 

. 
- 

……… 
. 
. 
. 

. 

. 

. 
- 

. 

. 

. 
 

Cn-1 - - - 
……… 

- Pn-1,n 

Cn - - - 
……… 

- - 
 

Where P1,2 = P1,3 = P1,n-1= Pc and P2,n = P3,n = Pn-1,n  = Pk 

 
Figure 9: Transition Probability Matrix for the Parallel Structure. 
 

 

 
C1 Cp Cn 

C1 - Pc - 

Cp - - Pk 

Cn - - - 
 
 
Figure 10: Transformed transition probability matrix.
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Evaluating the Transition Matrix of the 
Fault Tolerance Architectural Style 

In this architecture, one component functions as primary and the others as backup 

if the primary component fails, as shown Figure 11. This means that if C2 fails, C3 acts as 

backup, and if C3 fails, the next component within the demarcation acts as backup and so 

on up to Cn-3. Therefore, only one component at a time will function within this 

architecture. However, there is some level of parallelism which exists in this architecture 

as shown by the demarcation.  

As a result, the components in the fault tolerance architecture can also be grouped 

collectively with the assumption that they all have the same transition probability. The 

transition probability matrix of the architecture (Figure 11) shown in Figure 12 can be 

transformed to the transition probability matrix as shown in Figure 13. The component 

utilization and the reliability can then be evaluated by applying Eq. 7 and Eq. 9 

respectively. 

P1,3C1

Cn - 3

C2

C3

Cn-2

Cn-1

Cn

 
 
Figure 11: Fault tolerance architecture. 
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C1 C2 C3 ……… Cn-3 Cn-2 Cn-1 Cn 

C1 - P1,2 P1,2 ……… P1,2 - - - 
C2 - - - ……… - P2,n-2 P2,n-1 - 
C3 - - - ……… 

 
P2,n-2 P2,n-1 - 

 
. 
. 
 

. 

. 

. 

. 

. 

. 

. 
- 

. 

. 

. 
- 

……… 
. 
. 
. 

. 

. 

. 
- 

. 

. 

. 
 

. 

. 

. 
- 

. 

. 

. 
 

Cn-3 - - - . - P2,n-2 P2,n-1  
Cn-2 - - - - - - - Pn-2, n 

Cn-1 - - - ……… - - - Pn-1, n 

Cn - - - ……… - - - - 
 
 
Figure 12: Transition probability matrix for the fault tolerance structure. 
 
 
 
 

 
C1 Cf Cn-2 Cn-1 Cn 

C1 - P1,2 - - - 

Cf - - P2,n-2 P2,n-1 - 

Cn-2 - - - - Pn-2, n 

Cn-1 - - - - Pn-1, n 

Cn - - - - - 
 
 
Figure 13: Transformed transition probability matrix of the fault tolerance architecture. 
 
 

Evaluating the Transition Probability for the  
Call-and-Return Architectural Style 

In the call-and-return architecture, C1 calls C2 and C2 returns control to C1 as 

shown in Figure 14. The transition probability in this architecture is similar to that of the 

batch-sequential architecture where no transformation of the transition probability matrix 

is required. Therefore, the transition probability within a row of the matrix is stochastic. 
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C2C1

C3
 

 
 

Figure 14: Call-and-return architecture. 
 
 

Determining the Overall Software Reliability  
Based on the Hierarchical Framework 

The requirements and steps for computing the overall reliability of a 

heterogeneous software system using the hierarchical framework are detailed as follows:  

Input:  Number of components, n, in the software. 

 Transition probability, Pi,j, from Component Ci to Component Cjj. 

 Reliability of component Ci, Ri,  

 Case for different architectural styles: Case 1 – batch-sequential or call and return, 

Case 2 – parallel and Case 3 – fault tolerance. 

Output: The overall reliability, R, of the heterogeneous software architecture.  

The steps to finding the overall reliability are as follows: 

1. Identify the architectural styles in a system, based on the design specification of a 

system. 

2. Develop the transition probability matrix based on the transition probability between 

components of the software. 
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3. Transform the transition matrix based on the architectural styles identified. If the 

transition probability is within a batch sequential or call-and-return style, the 

stochastic characteristics are not affected. However, if the style is parallel or fault-

tolerance architecture, then the transition probability of components in this 

architecture should be grouped into a single entity to maintain the matrix stochastic 

characteristics. 

4. Compute the component utilization or the expected number of visits per component. 

5. Apply the value of the expected number of visits per component to the respective 

component reliability to compute the new component reliability based on component 

utilization. 

6. Compute the overall reliability of the system. 

 
Description of Case Studies 

Four case studies were chosen to explore the application of the proposed 

hierarchical framework based on the Wang, Wu, and Chen (1999) and Gokhale and 

Trivedi (2002) model. Two cases are empirical structure of the software architecture and 

the other two are real systems which were used to test the accuracy of the reliability 

obtained for heterogeneous software architecture.  

The case of the two empirical structures of the architecture and real systems was 

chosen from the study conducted by Wang, Wu, and Chen (1999) and Si, Yang, Wang, 

Huang, and Kavs (2010). The case studies provided the data needed for this study which 

included: 

1. The structure of the software architecture 

2. The functions of each component 
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3. Transition probabilities of the components  

4. The reliability of each component. 

Having this information from the selected case studies, the need to extract the structure of 

the software architecture, and determine the transition probabilities and reliability of each 

component was not necessary. 

The four cases that will be analyzed are as follow: 

1. Case 1 is an empirical structure of the software architecture used by Wang, Wu, and 

Chen (1999) to test the application of the model. 

2. Case 2 is an empirical structure of the software architecture used by Si et al. (2010) to 

test the application of the model. 

3. Case 3 is the architecture of the simulator of an ATM bank. 

4. Case 4 is the architecture of the example of a Stock Trading System. 

 
Case 1: Description of the Empirical Structure  
of the Software Architecture 
 

Case 1 represents an empirical structure of a software architecture that has all the 

architectural styles described by Wang, Wu, and Chen (1999). The details of the software 

architecture, transition , and component reliabilities of Case 1 are shown in Figure 15, 

Table 5, and Table 6, respectively.  

Case 1 architecture has 15 components where Component 1, C1, represents the 

start state and component 15, C15, the end state. The parallel structure within the 

architecture is represented by C3 and C4. This means that both components are executing 

simultaneously. C5, C8, and C11 represent the call-and-return style and C10 represents the 

backup of C9. C11 and C12 transfer control back to C1 and C2 respectively to form a cyclic 
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loop. The other components are running in a sequential manner where one executes 

followed by the other.  

Table 5 

Transition Probabilities of Case 1 

p1,2 = 0.40 p1,3 = p1,4 = 0.60 

p2,6 = p3,7 = p4,7 = p5,8 = 1.00  
p6,7 = 0.10 p6,9 = p6,10 = 0.90 
p7,11 = 0.25 p7,9 = p7,10 = 0.75 
p8,5 = 0.20 p8,11 = 0.80 

p9,12 = p10,12 = 0.70 p9,13  = p10,13 = 0.30 
p11,1 = 0.15 p11,8 = 0.20 
p11,13 = 0.50 p11,14 = 0.15 

p12,2 = p12,13 = 0.50  
p13,14 = 0.40 p13,15 = 0.60 
p14,15 = 1.00  

 
 
 
 
Table 6  

Component Reliabilities of Case 1 

Component Reliability 
1 0.998 
2 0.990 
3 0.980 
4 0.995 
5 0.999 
6 0.985 
7 0.996 
8 0.975 
9 0.990 
10 0.998 
11 0.950 
12 0.965 
13 0.970 
14 0.980 
15 0.992 
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Figure 15: Software architecture of Case 1.
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Case 2: Description of the Empirical Structure  
of the Software Architecture 
 

Case 2 represents another empirical structure of a software architecture that has 

all the architectural styles described by Wang, Wu, and Chen (1999). The details of the 

software architecture, transition probabilities, and component reliabilities of Case 2 are 

shown in Figure 16, Table 7, and Table 8, respectively.  

Case 2 architecture has 10 components where Component 1, C1, represents the 

start state and component 10, C10, the end state. The parallel structure within the 

architecture is represented by C3 and C4. This means that these components are executing 

simultaneously. C6 and C7 are in a fault-tolerance structure where C6 is the primary 

component. C8, and C9 represent the call-and-return style C5 transfers control back to C1 

and forms a cyclic loop. The other components are running in a sequential manner where 

one executes followed by the other.  

 
 

Table 7 

Transition Probabilities of Case 2 

p1,2 = 0.40 p1,3 = p1,4 = 0.60 

p2,6 = p2,7 = 1.00  
P3,5 = 1.00  
P4,5 = 1.00  
P5,1 = 0.20 P5,10 = 0.80 

P6,5 = 0.70 P6,8  = 0.30 
P7,5 = 0.70 P7,8 = 0.30 
P8,9 = 0.60 P8,10 = 0.40 

P9,8 = 1.00  
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Table 8 

Component Reliabilities of Case 2 

Component Reliability 
1 0.975 
2 0.990 
3 0.985 
4 0.987 
5 0.970 
6 0.999 
7 0.985 
8 0.992 
9 0.985 
10 0.994 
 
 

1

2 3 4
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5

7

9

10

8

 
 
 
Figure 16: Software architecture of Case 2. 
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Case 3: Description of the Stock Trading System  

This software is comprised of 11 components, and the transition probabilities, 

component reliabilities, and the software architecture are shown in Table 9, Table 10, and 

Figure 17 respectively. Failure data have been collected by this software for almost 3 

years and were used to estimate the actual reliability of the system, which the results of 

the model were compared with. The components are listed as follows:  

1. C1 – represents the start component where the software is initiated. 

2. C2 – is the Trader. 

3. C3 – is the Exchange. 

4. C4 – is the Dispatcher. 

5. C5 – is the Dispatcher. 

6. C6 – is the Stock Manager. 

7. C7 – is the Stock Manager. 

8. C8 – is the Stock Manager. 

9. C9 – is the Printer. 

10. C10 – is the Price Manager. 

11. C11 – is the End state. 

The Trader and Exchange make request to the Dispatcher, which is responsible 

for dispatching the request to the Stock Manager. The Stock Manager manages all the 

operations required during the trading session. The Price Manager provides the current 

price to the Stock Manager. The Transactor is responsible for processing the transactions, 

after which the information on trading is printed by the Printing component. 

The parallel architectural style is represented by the three Stock Managers, C6, C7, 
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and C8, which are executing simultaneously. There are two Dispatchers, C4 and C5, where 

C4 is the primary and C5 is its backup. The other components execute in a sequential 

manner. 

 
 

Table 9 

Transition Probabilities of Case 4 

p1,2 = 0.489 p1,3 = 0.511 

p2,4 = p2,5 = 1  
P3,4 =P3,5 = 1  
P4,6 = P4,7= P4,8 = 0.333  
P5,6 = P5,7= P5,8 = 0.3333  

P6,9 = 0.7 P6,10 = 0.3 
P7,9 = 0.7 P7,10 = 0.3 
P8,9 = 0.7 P8,10 = 0.3 
P9,11 = 1  
P10,6 = P10,7 = P10,8 = 0.3333  
 
 
 
 
Table 10  

Component Reliabilities of Case 3 

Component Reliability 
1 1.0 
2 0.974 
3 0.970 
4 0.982 
5 0.960 
6 0.999 
7 0.999 
8 0.999 
9 0.975 
10 0.964 
11 1.0 
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Figure 17: Software architecture of Case 3: Stock trading system. 
 

Case 4: Description of the ATM Bank System Simulator 

This software is comprised of 11 components, and the reliability of each 

component was found. The software has seven versions of which the overall reliability of 

the final version (version 7) was used as the actual reliability. The transition probabilities, 

component reliabilities, and the software architecture are shown in Table 11, Table 12, 

and Figure 18, respectively. The function of each component is listed as follows: 

1. C1 – represents the start component where the software is initiated. 

2. C2 – is the graphic user interface (GUI). 
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3. C3  is the primary Database Management System (DBMS1). 

4. C4 –  is the backup Database Management System (DBMS2) to C3. 

5. C5 – is the identifier. 

6. C6 – is the Account Manager. 

7. C7 – is the Helper. 

8. C8 – is the Messenger. 

9. C9 – is the Transactor. 

10. C10 – is the Verifier. 

11. C11 – represents the end state. 

C3 and C4 follow a fault tolerance style where C4 acts as backup of C3. C6 and C7 

follow a call and return style where the account manager can call the helper multiple 

times before the account manager transfers control to other components. 

 
 
 

Table 11 

Transition Probabilities of Case 4 

p1,2 = 1.00     

p2,3 = p2,4 = 0.999 p2,11 = 0.001 

   

P3,5 = 0.227 P3,6 = 0.669 P3,8 = 0.104   

P4,5 = 0.227 P4,6 = 0.669 P4,8 = 0.104   

P5,2 = 0.048 P5,6 = 0.951 P5,11 = 0.001   

P6,3 = 0.4239 P6,4 = 0.4239 P6,7 = 0.1 P6,9 = 0.4149 P6,3 = 0.0612 

P7,6 = P8,6 = 1.00     
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Table 12 

Component Reliabilities of Case 4 

Component Reliability 
1 1.0 
2 0.982 
3 0.97 
4 0.96 
5 1.0 
6 0.996 
7 0.99 
8 1.0 
9 1.0 
10 0.8999 
11 1.0 
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Figure 18: Software architecture of Case 4: ATM bank system simulator. 
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CHAPTER 4 
 
 

RESULTS AND DISCUSSIONS 
 
 

Transforming the Transition Probability Matrix for the Different Cases 

The transition probability matrix and the transformed probability matrix for each 

case is shown in Tables 13 to 20. 

Table 13  

Transition Probability Matrix of Case 1 
 

 
Components 

 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Co
m

po
ne

nt
s 

1 0 0.4 0.6 0.6 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0.1 0 0.9 0.9 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0.75 0.75 0.25 0 0 0 0 

8 0 0 0 0 0.2 0 0 0 0 0 0.8 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 0 0.7 0.3 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0.7 0.3 0 0 

11 0.15 0 0 0 0 0 0 0.2 0 0 0 0 0.5 0.15 0 

12 0 0.5 0 0 0 0 0 0 0 0 0 0 0.5 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0.6 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 14 

Transformed Transition Probability Matrix of Case 1 

 
 

Components 
 

 
1 2 Cp 5 6 7 8 Cf 11 12 13 14 15 

Co
m

po
ne

nt
s 

1 0 0.4 0.6 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 1 0 0 0 0 0 0 0 0 

Cp 0 0 0 0 0 1 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 1 0 0 0 0 0 0 
6 0 0 0 0 0 0.1 0 0.9 0 0 0 0 0 
7 0 0 0 0 0 0 0 0.75 0.25 0 0 0 0 
8 0 0 0 0.2 0 0 0 0 0.8 0 0 0 0 

Cf 0 0 0 0 0 0 0 0 0 0.7 0.3 0 0 
11 0.15 0 0 0 0 0 0.2 0 0 0 0.5 0.15 0 
12 0 0.5 0 0 0 0 0 0 0 0 0.5 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0.4 0.6 
14 0 0 0 0 0 0 0 0 0 0 0 0 1 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
 
 

Table 15  

Transition Probability Matrix of Case 2 

  
Components 

  
1 2 3 4 5 6 7 8 9 10 

Co
m

po
ne

nt
s 

1 0 0.4 0.6 0.6 0 0 0 0 0 0 
2 0 0 0 0 0 1 1 0 0 0 
3 0 0 0 0 1 0 0 0 0 0 
4 0 0 0 0 1 0 0 0 0 0 
5 0.2 0 0 0 0 0 0 0 0 0.8 
6 0 0 0 0 0.7 0 0 0.3 0 0 
7 0 0 0 0 0.7 0 0 0.3 0 0 
8 0 0 0 0 0 0 0 0 0.6 0.4 
9 0 0 0 0 0 0 0 1 0 0 

10 0 0 0 0 0 0 0 0 0 0 
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Table 16 

Transformed Transition Probability Matrix of Case 2 

 

 
Components 

 

 
1 2 Cp 5 Cf 8 9 10 

Co
m

po
ne

nt
s 

1 0 0.4 0.6 0 0 0 0 0 

2 0 0 0 0 1 0 0 0 

Cp 0 0 0 1 0 0 0 0 

5 0.2 0 0 0 0 0 0 0.8 

Cf 0 0 0 0.7 0 0.3 0 0 

8 0 0 0 0 0 0 0.6 0.4 

9 0 0 0 0 0 1 0 0 

10 0 0 0 0 0 0 0 0 
 
 
 

Table 17 

Transition Probability Matrix of Case 3 
 

 
Components 

 

 
1 2 3 4 5 6 7 8 9 10 11 

Co
m

po
ne

nt
s 

1 0 1 0 0 0 0 0 0 0 0 0 

2 0 0 0.999 0.999 0 0 0 0 0 0 0.001 

3 0 0 0 0 0.227 0.669 0 0.104 0 0 0 

4 0 0 0 0 0.227 0.669 0 0.104 0 0 0 

5 0 0.048 0 0 0 0.951 0 0.001 0 0 0 

6 0 0 0.4239 0.4239 0 0 0.1 0 0.4149 0 0.0612 

7 0 0 0 0 0 1 0 0 0 0 0 

8 0 0 0 0 0 1 0 0 0 0 0 

9 0 0 0 0 0 0.01 0 0 0 0.99 0 

10 0 0 0 0 0 1 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 
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      Table 18 

      Transformed Transition Probability Matrix of Case 3 

 

 
Components 

 

 
1 2 Cf 5 6 7 8 9 10 11 

Co
m

po
ne

nt
s 

1 0 1 0 0 0 0 0 0 0 0 

2 0 0 0.999 0 0 0 0 0 0 0.001 

Cf 0 0 0 0.227 0.669 0 0.104 0 0 0 

5 0 0.048 0 0 0.951 0 0.001 0 0 0 

6 0 0 0.4239 0 0 0.1 0 0.4149 0 0.0612 

7 0 0 0 0 1 0 0 0 0 0 

8 0 0 0 0 1 0 0 0 0 0 

9 0 0 0 0 0.01 0 0 0 0.99 0 

10 0 0 0 0 1 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 
 
 
 

            Table 19  

            Transition Probability Matrix of Case 4 
 

 
Components 

 
 

1 2 3 4 5 6 7 8 9 10 11 

Co
m

po
ne

nt
s 

1 0 0.489 0.511 0 0 0 0 0 0 0 0 
2 0 0 0 1 1 0 0 0 0 0 0 
3 0 0 0 1 1 0 0 0 0 0 0 
4 0 0 0 0 0 0.33 0.33 0.34 0 0 0 
5 0 0 0 0 0 0.33 0.33 0.34 0 0 0 
6 0 0 0 0 0 0 0 0 0.7 0.3 0 
7 0 0 0 0 0 0 0 0 0.7 0.3 0 
8 0 0 0 0 0 0 0 0 0.7 0.3 0 
9 0 0 0 0 0 0 0 0 0 0 1 

10 0 0 0 0 0 0.33 0.33 0.34 0 0 0 
11 0 0 0 0 0 0 0 0 0 0 0 
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               Table 20  

               Transformed Transition Probability Matrix of Case 4 

 

 
Components 

 

 
1 2 3 Cf 6 7 8 9 10 11 

Co
m

po
ne

nt
s 

1 0 0.489 0.511 0 0 0 0 0 0 0 

2 0 0 0 1 0 0 0 0 0 0 

3 0 0 0 1 0 0 0 0 0 0 

Cf 0 0 0 0 0.33 0.33 0.34 0 0 0 

6 0 0 0 0 0 0 0 0.7 0.3 0 

7 0 0 0 0 0 0 0 0.7 0.3 0 

8 0 0 0 0 0 0 0 0.7 0.3 0 

9 0 0 0 0 0 0 0 0 0 1 

10 0 0 0 0 0.33 0.33 0.34 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 
 
 

 

Analysis of Results 

The results based on the hierarchical approach taken for estimating the overall 

system reliability for each case are shown in Table 21. It showed that the hierarchical 

framework could be used within reasonable accuracy for estimating reliability in 

heterogeneous architecture based on the results for Cases 1, 2, and 3, as the difference 

between the actual reliability and the reliability estimated was under 12%. The difference 

between the actual reliability and that of the hierarchical framework that was used in this 

study for Cases 2 and 3, in particular, were 5.12% and 0.82%. Figure 19 graphically 

shows the extent to which the actual reliability was in agreement with the reliability 

obtained by the proposed hierarchical framework. 
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Table 21 

The Overall System Reliability for each Case compared to the Actual Reliability 

Case 
System Reliability based on 
proposed approach 

Actual System 
Reliability 

% 
Difference 

Case 1 0.83317 0.878183 5.12% 
Case 2 0.893038 0.8039 11.09% 
Case 3 0.872053 0.865 0.82% 
Case 4 0.251755 0.526 -52.14% 

 

Figure 19: Comparison of the reliability obtained based on the proposed framework with 
the actual reliability. 
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Figure 20: Comparison of the expected number of visits per components for the different 
cases. 

 
The hierarchical approach, however, was not valid for estimating the overall 

reliability of the architecture of Case 4 as the reliability estimated was not in agreement 

with the actual reliability of the system. This was most likely due to the more frequent 

interactions or utilization of the components in Case 4 architecture as shown in Figure 20. 

 The number of visits per component in Case 4 is much higher when compared to 

the other cases and therefore resulted in much lower reliability estimation.  

The model for calculating reliability relies on the expected number of visits as an 

input parameter, and thus a greater value for the expected number of visits would result in 

a lower reliability. This is true from a practical perspective of software components that 

the more frequent a component is utilized, the greater the likelihood for failure. This 

shows that the hierarchical approach has its limitations for estimating reliability 
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depending on the architectural styles, the utilization frequency of components, and the 

complexity of how components interact with each other. 

Given the assumptions that were made for evaluating heterogeneous architecture, 

the model does not purely represent the consistency or extent to which software fails and 

therefore introduces a certain level of uncertainty when determining software reliability 

by using the Markov’s process to capture the number of visits per component. Additional 

factors, such as the methodology used to extract the architectural information, would 

have to be considered when analyzing the heterogeneity of the software architecture for 

accurately and consistently using the expected number of visits as a parameter for 

determining the overall reliability of heterogeneous architectural styles.  

While the hierarchical approach has its limitations in respect of the complexity of 

the software architecture to which it can be applied, it could be very useful as a reliability 

indicator to identify how components will be expected to be utilized and which 

component most likely would require special resources to ensure that high system 

reliability is maintained. The accuracy of the hierarchical approach could be improved by 

using higher order Taylor series. In addition, this approach also could be extended to 

analyze or improve performance within a heterogeneous architectural setting where the 

parameter of time is introduced as the composite approach makes performance and 

sensitivity analysis intractable and thus the analysis of reliability and failure becomes 

generalized. 

The results further support Koseva assessment that the hierarchical approach does 

not accurately estimate software reliability for every system. However, this study went 

further by critically exploring the usefulness of the hierarchical approach on 
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heterogeneous architectural styles and, in the process, observed that the frequency of 

component interactions strongly influenced accuracy of the method, which was not 

highlighted as a major drawback in other research work. While accuracy is required at 

times for estimating reliability, most often data are not available and therefore very 

accurate estimation may not be possible even with models that are considered highly 

accurate. As a result, the hierarchical approach could be applicable to provide reasonable 

reliability estimation in the software design stage and used to critically provide insights 

on failure and time dependency. With the inclusion of failure behavior and time 

dependency in the estimation of reliability for heterogeneous architecture, mean time to 

failure would also be incorporated as another parameter that coincides with failure 

behavior and provides added tractability for reliability, sensitivity, and performance 

analysis. 

 
The Limitations of the Hierarchical Approach and the  

Proposed Hierarchical Framework 

Most studies had focused on systems that function in a sequential manner and did 

not explore the limitations of the hierarchical approach for complex systems with 

different architectural structures, which is what was revealed from the results obtained 

from the cases that were analyzed. The hierarchical approach tends to be much more 

accurate when applied to estimating reliability for sequential systems or where 

components are not frequently utilized. This can be observed in Case 3 where 

components (Figure 23), though having heterogeneous architectural styles, do not have 

much interaction among each other. In comparison to component 6 of Case 4 (Figure 20), 

which has the highest number of visits, it was observed that this component was utilized 
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most and thus had a much greater tendency to fail. The utilization of components in 

Cases 1, 2 and 3 (Figure 21, Figure 22 and Figure 23) was less than one and thus did not 

substantially affect the accuracy of the reliability estimation. However, the opposite was 

true for Case 4 (Figure 24).  

With high component utilization, the proposed hierarchical approach becomes 

less accurate and would require other approaches for estimating reliability more 

accurately. For systems that do not have a great level of complexity where components 

interaction is not very frequent, the hierarchical approach can be accurate and reasonably 

useful in estimating reliability for heterogeneous architecture. 

 

 
 
Figure 21: Expected number of visits per component for Case 1 architecture. 
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Figure 22: Expected number of visits per component for Case 2 architecture. 
 
 

 
 
Figure 23: Expected number of visits per component for Case 3 architecture. 
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Figure 24: Expected number of visits per component for Case 4 architecture. 
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CHAPTER 5 
 
 

CONCLUSION 

 
An exploration of the use of a hierarchical framework to estimate reliability for 

heterogeneous software architecture was conducted. A hierarchical approach for 

estimating software reliability becomes relevant and useful due to its ability to offer more 

flexibility and in-depth reliability analysis for improving its method of solution than does 

the composite model approach.  

Very few studies have been done on finding reliability models for heterogeneous 

software architecture, and none, to my knowledge, have been done on using the 

hierarchical approach for estimating reliability for heterogeneous software architecture. 

As a result, my main purpose and contributions from this study were to present a simpler, 

accurate alternative approach while observing the effectiveness of the proposed 

hierarchical framework for reliability estimation of heterogeneous software architecture.  

The proposed hierarchical framework was developed based on the concepts 

proposed by Wang, Wu, and Chen (1999) and Gokhale and Trivedi (2002). Both models 

are state-based models and assumed an absorbing DTMC process. This means that there 

is a start and end state (absorbing states), and that components to be executed in the next 

state will only depend on components of the current state and the component of the next 

state will not have any dependency to the past history of the current state. 
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Wang, Wu, and Chen (1999) follow a composite approach to estimating 

heterogeneous software reliability and identified four software architectural styles: batch-

sequential, parallel filter, fault tolerance, and call-and-return. Gokhale and Trivedi (2002) 

uses a hierarchical approach based on component reliability and component utilization or 

expected number of visits per component but had been applied only to a system that 

functions in a sequential manner.  

The approach to developing the proposed hierarchical framework involved: the 

identification of the architectural styles, development of the transition probability matrix, 

transformation of the transition matrix based on the architectural styles identified, finding 

the component utilization and applying the Gokhale and Trivedi (2002) model to 

compute overall reliability. 

To test the proposed hierarchical framework of this study, four case studies were 

taken from research conducted by Wang, Wu, and Chen (1999) and Si et al. (2010) as the 

basis for comparison. It was assumed that the data from the case studies were an accurate 

representation of the software systems that were used.  

Generally, the proposed hierarchical framework was comparable to the actual 

reliability of the software systems used in the case studies with the exception of Case 4 

where results were in total disagreement. This was due most likely to the much higher 

interactions of the components in Case 4 architecture as the components utilization was 

much higher when compared to other cases. However, based on the results, the proposed 

hierarchical framework of this study is more accurate and useful in software systems that 

do not have very high interactions among its components. This was, to my knowledge, a 

newly discovered observation that has not been expressed by other studies using the 
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hierarchical approach. While there are limitations in the proposed hierarchical framework 

of this study, it still can be used as a reliability indicator when very high accuracy is not 

desired. 

 
Future Work 

The use of a hierarchical approach for estimating reliability of heterogeneous 

software architecture has great potential and there is much that is left to be explored. One 

area that would be the focus of future interest is to apply this framework to other software 

systems to validate the range to which the proposed hierarchical framework can be 

applied. With this information, it is possible to state with absolute certainty the extent of 

the application of the framework which would better improve its effectiveness in areas 

where it might be needed. In addition, quantification of the impact of component 

utilization and transition probabilities on overall reliability based on the different 

architectural styles could also be determined. This would introduce innovative ways for 

conducting sensitivity analysis on heterogeneous component systems so that more light 

could be shed on discovering more information on how reliability is affected and 

subsequently its improvement. 

Exploring a CTMC or SMP approach to estimating reliability of heterogeneous 

software architecture is also worth investigating. In addition to the benefits of finding 

new ways to perform sensitivity analysis, the CTMC or SMP goes further by including 

performance analysis. As a result, the improvement of these areas will not only improve 

reliability but also improve software efficiency and performance as well.  
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APPENDIX 

DETAILS OF RESULTS



 

 

Table 22 

Component Reliability, Expected Number of Visits and Overall Reliability from the Proposed Hierarchical Framework Applied to 
Case 1 

Case 1 

Component 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Reliability 0.998 0.99 0.98 0.995 0.999 0.985 0.996 0.975 0.99 0.998 0.95 0.965 0.97 0.98 0.992 

Xi,j 1.0332 0.8744 0.6199 0.0111 0.8744 0.7073 0.0553 1.3174 0.2210 0.9222 0.9668 0.4199 1.00 
  

RXi,j
 0.9979 0.9913 0.9876 0.9969 0.9991 0.9894 0.9998 0.9672 0.9868 0.9974 0.9516 0.9852 0.97 1 1 

�𝑹𝒊
𝑿𝒊,𝒋

𝒏

𝒊=𝟏

 
0.83317 

               
 
Table 23 

Component Reliability, Expected Number of Visits and Overall Reliability from the Proposed Hierarchical Framework Applied to 
Case 2  

Case 2 

Component 1 2 3 4 5 6 7 8 9 10 

Reliability 0.975 0.99 0.985 0.987 0.97 0.99 0.985 0.992 0.985 0.994 

Xi,j 1.213592 0.485437 0.728155 0.728155 1.067961 0.485437 0.485437 0.364078 0.218447 1 

RXi,j
 0.969742 0.995133 0.989055 0.990517 0.967994 0.995133 0.99269 0.99708 0.996704 0.994 

�𝑹𝒊
𝑿𝒊,𝒋

𝒏

𝒊=𝟏

 
0.893038 
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Table 24 

Component Reliability, Expected Number of Visits and Overall Reliability from the Proposed Hierarchical Framework Applied to 
Case 3 

Case 3 

Component 1 2 3 4 5 6 7 8 9 10 11 

Reliability 1 0.974 0.97 0.982 0.96 0.999 0.999 0.999 0.975 0.964 1 

Xi,j 1 0.489 0.511 1 1 0.471429 0.485714 1 0.428571 1 1 

RXi,j
 1 0.9872 0.984556 0.982 0.96 0.999528 0.999514 0.999 0.989208 0.964 1 

�𝑹𝒊
𝑿𝒊,𝒋

𝒏

𝒊=𝟏

 
0.872053 

           
 
Table 25  

Component Reliability, Expected Number of Visits and Overall Reliability from the Proposed Hierarchical Framework Applied to 
Case 4 

Case 4 

Component 1 2 3 4 5 6 7 8 9 10 11 

Reliability 1 0.982 0.97 0.96 1 0.996 0.99 1 1 0.8999 1 

Xi,j 1 1.087223 8.005076 8.005076 1.817152 16.3221 1.63221 0.834345 6.772041 6.704321 1 

RXi,j
 1 0.980445 0.783622 0.72124 1 0.936675 0.98373 1 1 0.493064 1 

�𝑹𝒊
𝑿𝒊,𝒋

𝒏

𝒊=𝟏

 
0.251755 
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