
Andrews University Andrews University

Digital Commons @ Andrews University Digital Commons @ Andrews University

Honors Theses Undergraduate Research

12-3-2015

Adapting Architectural Models for Visualization Using Virtual Adapting Architectural Models for Visualization Using Virtual

Reality Headsets Reality Headsets

Bernardo Martinez
Andrews University, bernardm@andrews.edu

Follow this and additional works at: https://digitalcommons.andrews.edu/honors

 Part of the Architectural Technology Commons, and the Computer and Systems Architecture

Commons

Recommended Citation Recommended Citation
Martinez, Bernardo, "Adapting Architectural Models for Visualization Using Virtual Reality Headsets"
(2015). Honors Theses. 128.
https://digitalcommons.andrews.edu/honors/128

This Honors Thesis is brought to you for free and open access by the Undergraduate Research at Digital Commons
@ Andrews University. It has been accepted for inclusion in Honors Theses by an authorized administrator of
Digital Commons @ Andrews University. For more information, please contact repository@andrews.edu.

https://digitalcommons.andrews.edu/
https://digitalcommons.andrews.edu/honors
https://digitalcommons.andrews.edu/undergrad
https://digitalcommons.andrews.edu/honors?utm_source=digitalcommons.andrews.edu%2Fhonors%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1194?utm_source=digitalcommons.andrews.edu%2Fhonors%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.andrews.edu%2Fhonors%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.andrews.edu%2Fhonors%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.andrews.edu/honors/128?utm_source=digitalcommons.andrews.edu%2Fhonors%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@andrews.edu

Thank you for your interest in the

Andrews University Digital Library

of Dissertations and Theses.

Please honor the copyright of this document by

not duplicating or distributing additional copies

in any form without the author’s express written

permission. Thanks for your cooperation.

1

Adapting Architectural Models For Visualization
Using Virtual Reality Headsets
Bernardo Martinez⇤‡, Dr. Rodney Summercales⇤, Prof. Ariel Solis†

⇤Department of Computer Science, Andrews University †Department of Architecture, Andrews University
‡ J. N. Andrews Honors Program

Abstract—Business contracts represent a main source of in-
come for Architects. Acquiring these contracts requires the latest
and most immersive technology that improves their sales against
competitors. Virtual reality provides an in-depth experience that
allows clients to have a reasonable assurance that the building
meets their physical expectations. Videos and photos are detached
and mundane; while they provide some visual representation they
will not allow the user to compare his physical characteristics
(height, length, width) with a 3D model. In this paper, I describe a
procedure for automatically importing 3D models from Revit into
Unreal4. I also describe the workflow required which includes
constraints and benefits found along the way. As my focus was
based on VR, a lot of my work was around the Oculus VR
headset which provides an immersive experience into future and
current buildings. The software tools I wrote modify 3D models
to be compliant with UE4 materials, textures, groupings and it
allows developers to split buildings into multiple slices improving
performance and polygon counts.

I. INTRODUCTION

Architects need better ways to sell 3D models. Currently
they design their buildings and let their clients watch a video
rendering of how it will look. Videos and Snapshots do not
allow clients to visualize the proportions of walls, windows,
doors. Oculus recently developed one of the first practical
virtual reality headsets called the Rift. Because the oculus
is a new technological gadget, there’s a lack of interactions
between game companies and architectural models. My task
is to create tools and a procedure [1] for architects/artist to
utilize Unreal4 [2] and the Oculus Rift to display their 3D
models.

A. Related Work

Artists and designers work with tools like 3Dsmax, Maya
and Blender to create virtual environments. They usually
build their models from blueprints in order to achieve the
highest performance and levels of detail required by the
industry. Similarly, architects use Revit (see figure 1 to develop
blueprints and advertise their buildings, but architects although
knowledgeable are restricted by their profession. Recently,
there have been only a handful of companies that provide
virtual walkthroughs. However, their software and methods are
proprietary and not publicly documented. ArchVirtual and Vir-
tualdutchmen are small companies that develop walkthroughs
with the Oculus Rift Dk2 but their targets are corporate
environments. For my project I am targeting the small to
medium markets. IrisVr relates to my project, but they focuse

on a bigger market due to their multiple angel investors.
Architecture models are mostly visualized through software
tools like Lumion, which allow architects with small budgets
to create videos of their 3D Models. Lumion has certain
limitations that Unreal4 can fix for example: Lumion is a
rendering engine, it wont allow the world to be animated,
since everything around you is just a photo map. The inherent
limitations of Lumion are only offset by it’s plugins.

Fig. 1: AutoDesk Revit workflow environment

One of the main reasons artists and architects will not use
Revit models is due to the high polygon count that certain
blueprints are based of. Similarly, exporting a file with the
FBX format would destroy the object layers, requiring an artist
to join each polygon face manually making it an exhaustive
task. Revit provides a uniform editor that allows architects to
test their models under different views (2D and 3D). Sadly,
Revit was made for precision and easy/quick development,
regardless of optimization. There are certain tools that crush
polygons and reduce the size of a mesh, but they destroy the
appearance of the object.

In order to incorporate Virtual Reality I used the Oculus
Rift, a wearable device that allows the user to perceive its
environment with an extra axis of depth. Currently this device
has been used by video games and simulations to demonstrate
a fully fledge experience on a virtual environment. Although
there are alternative devices to the Oculus, its market provided
the biggest pool of potential clients.

II. METHODOLOGY

By following my procedure and using the automated tools
I wrote, architects and artists can regroup objects into layers,
replace proprietary materials and split a building into multiple
files. All the models are compatible with the Oculus Rift and
optimized to improve frame rate. Given a FBXmodel from
Revit, the user imports the model into 3Dsmax, overrides the
proprietary materials, with standard materials (ex. phong) and
run the C++ automated scripts. Once the scripts run the user
will find their original model split, and reorganized by layers.

As my research developed I encountered constraints that
played an important role. Some of them related to material
incompatibilities, Polygons not optimized [3], shadows and
many others. Figure 7 showcases each polygon as a black line,
notice multiple lines at vertices and edges. I developed solu-
tions to address each one of them and I grouped the solutions
into tools that allow a significant decrease on development
time. I divided my time into three phases which included mul-
tiple iterations of sprints. Each sprint consistent of research,
development and testing of prominent solutions. Phase one
was based on familiarizing with the environment, learning
the tools(3Dsmax,UE4,Revit) [4], [5], [6] and figuring which
aspects could be optimized. During phase one I programmed
on 3Dsmax scripts and developed the grouping and repainting
algorithms. Phase two consisted on improving and enhancing
the capabilities of some scripts while researching how to
improve speed and performance. During this faced I looked at
the FBX SDK (software development kit), which allow me to
get ride of 3Dsmax interface for the most part. By avoiding the
need of loading 3Dsmax into memory times were significantly
reduced. Phase three consisted on expanding my research
through an algorithm that would split buildings into separate
pieces that could be loaded into memory independently. As an
example see Figure 5.

I summarized results and optimize the scripts, allowing
clients to have an easier experience. Details about specific
sections will allow a deeper understanding of the requirements
and constraints of building such an applications.

A. Analyzing 3D models
Initially, I tested 3D model’s incompatibilities (parame-

ters that will make significant difference between buildings).
I loaded different models with different characteristics to
identify the interactions between the model and 3Dsmax.
Subsequently, I explored different procedures to import Revit
files into UE4[7]. Different solutions drove slightly different
outputs. At first, my scripts on 3Dsmax would allowed me
to replace encrypted material but the editor will only run if I
opened 3Dsmax interface and loaded the model. Due to the
increasing size of my 3D models, the interface become an
issue; I had extra overhead of loading the whole interface.
There are two different ways of importing objects from Revit,
either you import the rvt file (this is also referred as a link
to Revit) from 3Dsmax, or you export Revit as a FBX and
import it into 3Dsmax. Both ways have some advantages
and disadvantages. For example: I generated the FBX from
3Dsmax using a link to Revit rvt file. Once imported, the mesh

Fig. 2: Light-map wraps around the image

consisted of only one color. A single material meant that the
level of detail was crushed(level of details refers to the number
of colors inside an object). Figure 2 contains an example of
an object imported with a single material and another with
material instances being remapped. Similarly I tried exporting
an FBX file from Revit and importing it on 3Dsmax, but then I
would get hundreds of different pieces (every object in a layer
would be broken into its own instance) that Unreal4 welded
(joined together) in order to save space. Welded polygons
would only take one material. After researching why material
detection was not being applied inside Unreal4, I found that
Unreal4 only supported certain kinds of materials, and that in
order for this feature to work I had to use either mental rays or
Vrays. Mental rays and Vrays are production quality rendering
applications that have their unique set of materials. Fortunately
Mental rays were provided already by 3Dsmax. Once I applied
the right materials, and group the objects inside the mesh into
64 (threshold of objects per mesh in UE4) or less layers, I
acquire the ability to modify textures and colors at will on the
surfaces that were needed.

B. Multimaterial vs Single Material
Materials imported from 3Dsmax had to re-mapped into

standard phong/Mental Ray materials [8]. Unreal4 does not
support V-Rays hence one of my scripts had to deal with re-
mapping and reducing the amount of materials in a object.
Importing directly from Autodesk Revit was also tested, but
their materials are encrypted and they do not allow any other
engines to use them. Interestingly enough, textures[9] that
were not attached to a specific material transfer in perfectly.
Figure 4 represents the same 3Dmodel with different levels of
detail.

Fig. 4: Three different models, each one made with a higher
material count.

2

Fig. 3: Static Light-map wraps around the image

C. Static & Dynamic Shadows
Shadows played a major role in how realistic an object was

perceived. Unreal4 allowed shadows to be calculated dynami-
cally or statically with Lightmaps. When I started the project,
Unreal4.3 did not have a good dynamic lighting implementa-
tion, so I had to turn to static lights. Static lights are harder
than normal due to the high level of detail inside architecture
models (too many polygon faces)[10], [11]. Traditionally,
artists create models that are as low poly (polygon count) as
possible allowing them to modify polygon faces manually into
a 0 to 1 map. Because my model was not optimized, I would
get as much as 10 times more polygon faces that an artist
would get. Figure 6 provides an example on how static lights
affect a 3D model. Static lights require handpick lightmaps in
order to achieve inside and outside corners that reflect realistic
details. To illustrate how handpicked shadows can improve or
destroy a model looked at Figure 3. Although some algorithms
exist the are only useful for meshes are optimized below a
threshold.

Fig. 6: Static LightMap dims real time lightening.

Since material conflicts had a higher priority I decided

to work on shadows later, since later updates might help
resolve this issue. About 3 months later, Unreal4 had an
improved algorithm in which dynamic lights increased their
quality about 75%, so I decided to apply them. By the end of
the first semester, I developed scripts that would replace the
materials and produce a mesh I could play with on Unreal4.
Throughout the second semester I increased the quality of my
scripts as well as the quality of my demos. By Spring Break, I
realized that I needed to improve my performance, so I looked
into optimizing the process, which brought me over to the
FBX SDK in C++. I had seen the SDK before, but it lacked
documentation and it was at this point that I felt confident of
tackling this task. Within the FBX SDK I was able to enhance
the speed of my procedure, since I did not have to deal with
the graphical interface of 3Dsmax.

D. Client Optimizations
Since my project was focused on getting architects as

prospective clients, I had requests to increase the quality (ma-
terials, lightening, textures) of the final product which brought
me onto designing a workflow for optimizing and increasing
the appeal of the models inside UE4. Three sets of models
were made utilizing different technologies that allowed Prof.
Ariel Solis and I to showcase to one of his clients the potential
of UE4. My first design used simple materials and one or two
positional lights appealing to the afternoon look inside the
house. At this point, materials consisted only of simple colors
and standard lights. The second design incorporated new assets
that I brought and transferred over from Unreal4 demos and
their market place. Besides including complex objects, this
design allowed us to explore textures, which enhanced the
level of detail in the mesh. As the quality increased some

3

Fig. 5: Optimization algorithm Output. Layers developed horizontally allow faster loads time

issues related to the geometrical positioning on Revit also
came to surface. We encountered some glitches in the level due
to walls and columns overlapping. As objects with different
materials overlap Unreal4 will flicker, due to UE4 double
buffer real time rendering. The final design was made with
some alterations from the main script that allowed the user
to have a high level of accuracy when deciding which items
to pick and join as a layer for later usage in the project. By
eliminating most glitches the third demo became the best of
on performance and appeal.

E. Scaling inside UE4

3Dsmax has different measures when exporting onto UE4
due to the UE4 grid set in cm, while 3Dsmax was in inches.
Although both could be set to the same scale, their standards
were different.

Fig. 7: Multi-polygon object

F. UE4 updates
UE4 is a professional game engine. Periodic updates to the

engine required extra time to adapt my procedures to the newer
version of the engine.

G. UE4 level streaming
While working on this project I got to test three different

structures which were a small house design, a small one-floor
apartment, and an apartment complex. Each model increased
in size, which became proportional to the loading time inside
Unreal4. This load dropped the FPS (Frames per Second) from
a good 35 to 3-6 frame. Lag was present at that rate mainly
because of the number of objects loaded into memory at one
time. To increase performance I researched level streaming.
It allow different parts of the world to be loaded on demand,
saving resources that are highly needed for the oculus rift to
perform in optimal conditions. Level streaming works best
if objects can be split into units. That is why I turn into
optimizing the buildings by breaking them into different levels.

H. FBX SDK
By creating an optimized interface on C++ with the FBX

SDK [12], the amount of time parsing a file was significantly
reduced. This allowed the file to be loaded on laptops with a
smaller graphics card. The materials remapped and automatic
layers were done in both in 3Dsmax scripting language and
C++. After I translated my code from 3Dsmax scripting
language to C++ I incorporated new features. I developed
an algorithm that will analyze a 3D mesh and depending

4

on the global coordinates of each object, it will place them
into a new 3D model and export them. Once a 3D model is
loaded into 3Dsmax, there are two parameters that had to be
changed before my scripts can split a mesh. First the mesh
coordinate system has to be changed onto a global system.
3D models can have multiple coordinates systems per object.
Secondly, the encrypted materials have to be replace by any
standard material. Subsequently, I will run my script which
parses all the nodes inside the FBX mesh placing the ones
below a threshold inside different buckets and then exporting
the buckets as different files. In order to have a smart slicing
algorithm, I read the size of the mesh and split it into the
amount of pieces the user needs. For objects which go above a
certain threshold, the algorithm will place them onto the lower
bound bucket. Through my testing CPU times were reduced
by a third. A high-performance graphics computer that took
11.3 minutes to load a model was cut down to 3.8.

Algorithm 1 My algorithm
1: function SPLITMESH(SceneRef, FBXNode, index)
2: NodeCounter number of Nodes per Mesh
3: top:
4: if NodeCounter == 0 then return false
5: zvalueofmesh = FBXNode.zaxis()
6: arrayofboundaries

Global variable previously initialized
7: loop:
8: if index == 0 then
9: if zvalueofmesh < arrayofboundaries[0] then

10: continue
11: else
12: SceneRef.AddChild()

Transfers node onto a new scene
13: if index > 0 then
14: if FBXNode.GetChild! = null then
15: zvalueofmesh

Updates current node on Mesh
16: if izvalueofmesh > arrayofboundaries.lower AND

izvalueofmesh < arrayofboundaries.higher then
17: SceneRef.AddChild()

Transfers node onto a new scene
18: else
19: continue
20: goto loop.
21: close;

III. RESULTS

Multiple demos were made to showcase the different effects
that materials, textures, lightening, and others have on objects
made with Revit. Revit makes 3D objects harder for artists and
programmers but it has a lot powerful tools for sketching. The
splitting algorithm allows architects to load big buildings on
a fraction of the time, by following the procedure I developed
they inherent a significant time reduction on research and
development.

Fig. 8: Performance difference from an object that is split.

Fig. 9: Workflow developed, from Revit to Unreal4

IV. CONCLUSION

Artists might still need training to use some of my scripts,
but once they get it they will find it incredible time saving. As
my future work I would like to work along with an artist. I
focused on getting the algorithms and the appearance, which
limited my time to focused on either one.

V. ACKNOWLEDGEMENT

I want to thank Prof. Ariel Solis from the architecture
department for providing the 3Dmodels and some inside
knowledge on Revit Architecture. He was key on the success
of this project due to his knowledge and expertise. To my
honors advisor Dr. Rodney Summercales, I am grateful for
your assistance and suggestions throughout my project.

APPENDIX

5

Fig. 10: Frontal Image of the living room with multiple objects

Fig. 11: Final Demo, showcasing a side view of the appart-
ment

Fig. 12: Evening Demo with multiple coloring on the roof

Fig. 13: 3Dsmax Scripting Language, Randomizing materials

Fig. 14: 3Dsmax Scripting Language, Regrouping objects

REFERENCES

[1] (2015) Game asset production pipeline. [On-
line]. Available: http://www.digitaltutors.com/tutorial/
1635-Game-Asset-Production-Pipeline-in-Unreal-Engine#play-42004

[2] EpicGames. (2014) Runnning unreal engine. [Online].
Available: https://docs.unrealengine.com/latest/INT/GettingStarted/
RunningUnrealEngine/index.html

[3] Polygon crusher for 3dsmax. [Online]. Available: www.moontools.com
[4] (2012) Fbx sdk documentation 2013. [Online]. Available: http://docs.

autodesk.com/FBX/2013/ENU/FBX-SDK-Documentation/index.html
[5] Sanvfx, “3ds max — tutorials.”
[6] EpicGames. (2014) Unreal4 engine documentation. [Online]. Available:

https://docs.unrealengine.com/latest/INT/
[7] (2014) Intro to bim modeling. [Online]. Available: https://www.youtube.

com/channel/UC0y73dD7p4gjV2x9etIeL4w
[8] S. Butler. (2009) Random material to random object script. [Online].

Available: http://www.scriptspot.com/forums/3ds-max/scripts-wanted/
random-material-to-random-object-script

[9] J. E. Ltd. Remove textures in 3dsmax. [Online]. Available: http:
//www.polycount.com/forum/showthread.php?t=58410

[10] (2014) Invalid lightmap settings. [Online]. Available: https://forums.
unrealengine.com/showthread.php?888-Invalid-lightmap-settings

[11] B. S. (2010) Creating lightmaps in 3ds max 2009.
[Online]. Available: http://www.dxstudio.com/guide content.aspx?id=
0a927204-bb25-4b4f-8a71-b744c08cb8de

[12] (2015) Autodesk fbx sdk 2015. [Online]. Avail-
able: http://help.autodesk.com/view/FBX/2015/ENU/?guid= files
GUID 75CD0DC4 05C8 4497 AC6E EA11406EAE26 htm

[13] Twinsavior. (2011) Autodesk revit architecture section box. [Online].
Available: https://www.youtube.com/watch?v=OuM3aacc-aQ

[14] j0k. (2011) How to reduce the number of
polygons of 3d model using 3ds max 9.0.
[Online]. Available: http://stackoverflow.com/questions/5217894/
how-to-reduce-the-no-of-polygons-of-3d-model-using-3ds-max-9-0

[15] AutoDesk, “How to -introduction to the tutorials,”
2015. [Online]. Available: http://docs.autodesk.com/
3DSMAX/15/ENU/MAXScript-Help/index.html?url=files/
GUID-676FB825-84C1-4708-A398-993266E4D2AD.htm,
topicNumber=d30e98789

[16] C. Grant. (2014) 3ds max — tutorials. [Online]. Available: http:
//www.scruptspot.com/3ds-max/tutorials

[17] O. VR. (2015) Start building. [Online]. Available: https://developer.
oculus.com

[18] EpicGames. (2015) News epic games. [Online]. Available: https:
//www.unrealengine.com/news/

6

	Adapting Architectural Models for Visualization Using Virtual Reality Headsets
	Recommended Citation

	Latex

