
University of Louisville
ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

8-2019

A distinct pattern of sterile inflammation induced
by zinc oxide nanowires.
Ruqaih Salem Alghsham
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd
Part of the Medical Immunology Commons, and the Medical Toxicology Commons

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional
Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact
thinkir@louisville.edu.

Recommended Citation
Alghsham, Ruqaih Salem, "A distinct pattern of sterile inflammation induced by zinc oxide nanowires." (2019). Electronic Theses and
Dissertations. Paper 3257.
https://doi.org/10.18297/etd/3257

https://ir.library.louisville.edu/?utm_source=ir.library.louisville.edu%2Fetd%2F3257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3257&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/671?utm_source=ir.library.louisville.edu%2Fetd%2F3257&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/678?utm_source=ir.library.louisville.edu%2Fetd%2F3257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/3257
mailto:thinkir@louisville.edu


A DISTINCT PATTERN OF STERILE INFLAMMATION INDUCED BY ZINC 

OXIDE NANOWIRES 

By 

Ruqaih Salem Alghsham 

B.S. King Abdul-Aziz University, 2008 

M.S. University of Louisville, 2016 

A Dissertation Submitted to the Faculty of the School of Medicine of the 

University of Louisville 

in Partial Fulfillment of the Requirements 

for the Degree of 

Doctor of Philosophy in Microbiology and Immunology 

Department of Microbiology and Immunology 

University of Louisville 

Louisville, Kentucky 

August, 2019 



Copyright 2019 by Ruqaih Salem Alghsham 

© All Rights Reserved 





ii 

A DISTINCT PATTERN OF STERILE INFLAMMATION INDUCED BY ZINC 

OXIDE NANOWIRES 

By 

Ruqaih Salem Alghsham 

B.S. King Abdul-Aziz University, 2008 

M.S. University of Louisville, 2016 

A Dissertation Approved on: 

August 2, 2019 

by the following Dissertation Committee: 

____________________________ 

Dr. Haribabu Bodduluri (Chair) 

____________________________ 

Dr. Pascale Alard 

____________________________ 

Dr. Venkatakrishna Rao Jala 

____________________________ 

Dr. Russell D. Salter 

____________________________ 

Dr. Mahendra Sunkara 



iii 

DEDICATION 

I dedicate this dissertation to the memory of a very special person that left us too 

soon, my mother, Lulwa Aldawway. I will always love you and remember you. 

You are deeply missed! 



iv 

ACKNOWLEDGEMENTS 

All praises belong to Almighty Allah, the most beneficent, gracious, and 

merciful, for providing me with strength, resolution, and learning opportunities in 

carrying out and completing this dissertation. 

I want to express my deepest gratitude to my mentor, Dr. Haribabu 

Bodduluri, for his continual support, patience, motivation, and unlimited 

encouragement in the course of my PhD studies. I believe that his invaluable 

advice, on both the personal and professional levels, contributed greatly to my 

success. 

I also extend my gratitude to my committee members for their guidance, 

support, and valuable input and suggestions, beginning with Dr. Russell D. 

Salter, Dr. Mahendra Sunkara, Dr. Pascale Alard, and Dr. Venkatakrishna Rao 

Jala. 

Special thanks are due to Dr. Sohba Bodduluri and Dr. Shuchismita 

Satpathy, who are wonderful people. Shuchi helped me a great deal in starting 

my project, providing all the tools and methodology to carry it out. Dr. Sohba, 

your valuable feedback helped me to continue my project. You are a great 

person and a wonderful friend, and it was a great pleasure to work with you and 

get to know you. 



  

v 

 

I thank all the past and present members of the Bodduluri lab for making 

the time I worked in the lab more enjoyable. 

I also thank Dr. Joseph A Burlison, of the medicinal chemistry facility, for 

his help in the fluorescent labeling of zinc oxide nanoparticles.  

My sincere thanks go to Alqassim University and the government of Saudi 

Arabia for supporting and sponsoring me, providing the opportunity to pursue my 

graduate studies, and to the department of microbiology and immunology for 

supporting me in the pursuit of my PhD. 

I am very thankful to my wonderful family, including my loving father 

Salem Alghsham, whose great encouragement kept me going and determined to 

complete my PhD, and my sisters Areej, Maram, Muneerah, Samiah, Modi, and 

Sara.  

I thank my wonderful friends here in Louisville—Ruoaa, Huda, and 

Wadha—for their help and support and for being there for me in every struggle 

and success. I also send my thanks overseas to my friends Amera, Wed, and 

Abrar.  

Thanks to my daughters, Roudina and Lulwa. I could not imagine my life 

without both of you. Thanks for bringing joy to my life during my hardest times. 

Your smiles and laughter lifted my hopes and helped me to endure every 

hardship. Roudina, you are a bright, wonderful girl. Your words gave me the 

strength to be a better person. 

Lastly, I am very thankful to my precious husband, Mazen. When we first 

came to the United States, Mazen was my only friend and family. I appreciate all 



vi 

you did to help me start and finish my PhD. Thanks for giving up your work and 

career for me. Thanks for all your sacrifice and your efforts to make us happy 

and comfortable. Thanks for taking care of me and our lovely daughters. Your 

tremendous, sustained support made possible my success in this graduate 

program.



vii 

ABSTRACT 

A DISTINCT PATTERN OF STERILE INFLAMMATION INDUCED BY ZINC 

OXIDE NANOWIRES 

Ruqaih Salem Alghsham 

August 2, 2019 

In recent years, there has been an increasing interest in nanotechnology. 

Engineered nanomaterials (ENMs) become an increasingly important area in 

nanotechnology. Recent developments in ENMs have drawn commercial and 

research attention in many areas such as agriculture, medicine, and Industry. 

High-aspect ratio zinc oxide nanowires (ZnONWs) have become one of the most 

significant ENMs due to their remarkable physical properties which makes them 

useful in a wide-range of applications. However, questions have been raised 

about ZnONW safety uses and biological consequences. 

In this dissertation, we investigated the inflammatory potential of ZnONWs 

in mouse models. C57BL/6 mice were exposed to ZnONW via intra-tracheal 

route. Two days post-instillation, the broncho-alveolar lavage fluid (BALF) was 

analyzed for inflammatory cells and for presence of pro-inflammatory cytokines. 
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We found that the intratracheal instillation of ZnONW in C57BL/6 mice induced a 

significant increase in the total numbers of immune cells in BALFs two days after 

instillation. Macrophages and eosinophils were the predominant cellular infiltrates 

of ZnONW-exposed mouse lungs. In an air-pouch mouse model that simulates 

local exposure to ZnONW, similar cellular infiltrates were observed. Analysis of 

lavage fluids revealed that pro-inflammatory cytokines IL-6 and TNF-α as well as 

chemokines CCL11 and CCL2 were increased both in BALFs and air-pouch 

lavage fluids. The cellular basis of inflammatory mediators that were induced by 

ZnONW were investigated in cultured cells. ZnONW exposure induced both IL-6 

and TNF-α production only in macrophages but not in lung epithelial cells 

(LKR13). Exposure of macrophages to ZnONW induced the production of CCL11 

only while LKR13 cells induced both CCL11 and CCL2. Confocal microscopy 

showed rapid phagocytic uptake of FITC-ZnONW aggregates by macrophages. 

The phagocytosis of ZnONW particles is essential for the production of both IL-6 

and TNF-α.  These results suggest that exposure to ZnONW may induce distinct 

inflammatory mediators through phagocytic uptake. 
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CHAPTER 1 

INTRODUCTION 

Engineered nanomaterials (ENMs) 

Material with a one or more dimensional shape in the size range from 1 to 100 

nanometers (nm) are referred to as nanomaterials [1, 2]. There are two types of 

nanomaterials: naturally occurring nanoparticles, which are also referred to as 

ultrafine nanoparticles, and engineered nanoparticles (ENPs). The naturally 

occurring nanoparticles include volcanic ash soot from forest fires or diesel 

engines [3-6]. These naturally occurring nanomaterials are usually physically and 

chemically heterogeneous [7]. On the other hand, engineered nano-materials 

(ENMs) are created by the manipulation of matter at the nano-scale to produce new 

materials and structures [8, 9]. A myriad of new ENMs are being rapidly developed and 

introduced into many different sectors, such as commerce, agriculture, and medicine [10-

12]. 
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ENMs are designed with very specific properties related to chemistry, 

shape, size, and surface area. Their novel physicochemical properties facilitate 

wide-range of applications in consumer products, such as food additives, 

batteries, cosmetics, drug delivery system, and sunscreens [12].  ENMs are 

being produced in large-scale quantities, thereby posing unknown environmental, 

human, and occupational exposure hazards. The tiny size and light weight of 

these ENMs make control, such as filtration or dampening, difficult. 

Types of engineered nanomaterials 

There are different types of ENMs exist; however, for the purpose of this 

dissertation, the focus is on two types of ENMs: metal-based ENMs and carbon-

based ENMs. Metal-based ENMs are defined by particles that are made of metal 

precursors while carbon-based ENMs contain predominantly carbon atoms that 

are arranged in a unique way. 

Commonly used ENMs 

 Metal-based ENMs

 Silicon dioxide nanoparticles (SiONP): SiONP is the main component

for the manufacturing of several consumer products, such as glass, 

paints, plastics, cosmetics, food additives, and rubber [13, 14]. 

 Titanium oxide nanoparticles (TiONP): TiONP has applications in the

manufacturing of cosmetics, food, and sunscreen products. The unique 

properties and the size of TiONPs allow them to form a protective layer 

on the skin without being completely absorbed [13]. 
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 Zinc oxide nanoparticles (ZnONP): With the significant advancement

in the alternative energy market, ZnONP has become one of the 

leading metal oxide ENMs used in electronics, optical devices. ZnONP 

is also used in battery storage due to its photocatalytic activity [15]. 

 Aluminum oxide nanoparticles (AlONP): AlONP is commonly used in

making cement, paints, and aircrafts. 

 Carbon-based ENMs

 Graphene: Graphene is a nanomaterial composed of an allotropic, two-

dimensional hexagonal structure of carbon atoms, which was first 

described in the 1970s; however, nano-scale graphene was introduced 

in 2004 with different structures, such as single layers, nanotubes, and 

fibers. Recently, graphene has become a promising nanomaterial for 

many bio-technological applications, in the field of environmental 

engineering and biomedicine [16]. 

 Single or multi-walled carbon nanotubes (CNTs): CNTs are derived

from graphene, which is considered one of the oldest and most widely 

used natural nanomaterial. CNTs are used in many applications, such 

as biomedical and electronic devices [17, 18]. 

ENMs market dynamics 

In 2015, the global market for nanotechnology was predicted to grow and 

to employ up to two million workers [19]. By 2022, the anticipated benefits from 
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the ENMs market will be $55 Billion (Fig1) [20]. The US and Japan have over a 

half of the world’s demand for ENMs. The U.S. leads the global market and the 

recent developments in the field of ENMs by 46%, especially in the global health 

sector [20]. Hence, in the U.S. alone, 800,000 workers face a high probability for 

occupational exposure hazards to ENMs [21]. According to Nanowerk, there are 

more than 1,000 consumer products containing ENMs. Approximately 2,500 

commercial ENMs are used, that including 27% metal oxide nanoparticles, such 

as ZnONP and SiONP [.http://www.nanowerk.com/ phpscripts/ndbsearch.php]. 

The growing production of ENMs has raised concerns related to their potential 

effects on the environment and biological health. In addition, ENMs are 

synthesized in and with varying shapes, sizes, coatings, surface charges, and 

surface areas, which makes both biological and environmental potential hazards 

unpredictable. Hence, the biological and environmental impacts of ENMs must 

be determined. 

Dynamics of the global nanomaterials demand by regions bases is 

listed below from the highest to the lower demand 

• North America includes the U.S., Canada, and Mexico.

• Europe includes the UK, Germany, France, and Italy.

• The Asian Pacific region includes China, India, and Japan.

• Central and South America (Brazil).

• The Middle East includes Saudi Arabia and Turkey.
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Figure 1: The ENMs market growth from the base year 2010 to 2022 in 

terms of revenue (USD billion) [20].  
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The environmental and biological impacts of ENMs 

In the past two decades, nano-toxicology has become a highly important 

field in science due to an increase in the utilization of ENMs. This has increased 

the need for studying the potential side effects of ENMs in biological and 

ecological systems, which will ultimately contribute to understanding and 

generating rules and safety measurements when using and synthesizing ENMs. 

In this section, the implications of ENMs for environmental and biological 

systems are discussed. 

The environmental impacts 

     Without doubt, the volume of ENMs released into the environment will 

increase due to the widespread use of products containing ENMs either during 

manufacture, transport, use, or disposal [22]. Consequently, the entire 

environmental compartment will be affected. The eco-toxicological effects of 

ENMs are not well-defined and require further investigation [23] for several 

reasons. First, the current data on the actual volume release of ENMs and the 

accumulated concentration into the environment are poorly understood and 

limited [24-26]. This is because the lack of data on the production volumes of 

ENMs creates a fundamental obstacle to future investigations into their release 

[27, 28]. Another challenge is that different ENMs accumulate at different sizes 

and rates in the environment depending on the variable abiotic factors in the 

environment (pH soil, ionic composition, and soil texture), which leads to 

differences in eco-toxicological outcomes. Furthermore, there is a lack of suitable 

tools, analytical approaches, and methods to study the environmental impact of 
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ENMs. Another important question that needs to be addressed is what is the fate 

of the end-of-life product of ENMs and their proper safe disposal methods? 

Therefore, there is a compelling need to study and to investigate the actual 

release and distributions of ENMs in the environment to better understand their 

impacts [29-32]. Previous studies have shown that soluble metal oxide ENMs, 

such as TiO2 and ZnO, might accumulate in environmental components (soils, 

soil’s organisms, and freshwater) as particulates in concentrations that exceed 

the sub-toxic levels [27, 33-35]. Furthermore, some metal oxide materials, such 

as TiO2 and ZnO, which are essential elements in many consumer products, 

have antimicrobial properties that may pose a direct or indirect impact, triggering 

alterations in the ecosystem, including fish, bacteria, and plants [36]. Table 1 

presents the environmental concentrations of some ENMs in three main 

pathways into the environment. 
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Table 1: Predicted environmental concentrations of highly used ENMs in three 

main pathways into the environment (modified and reproduced from Ref [37]). 

ENMs Surface water WWTP Sludge WWTP Waste and 

Sewage 

ZnONP 1−10 000 ng/L 13.6−64.7 mg/kg, 0.22−1.42 μg/L, 

TiONP 21−10 000 ng/L 100−2000 mg/kg 1−100 μg/L 

CNP 0.001−0.8 ng/L 0.0093−0.147 

mg/kg 

3.69−32.66 ng/L 

AgNP 0.088−10 000 ng/L 1.29−39 mg/kg 0.0164−17 μg/L 
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The biological impacts 

     The potential consequences of ENMs on biological systems strongly 

depend on the physical and chemical properties as well as the route of exposure 

[38]. Several studies have reported the toxicity of ENMs in both in vitro and in 

vivo experimental models [39-52]; however, the biological effects of many of the 

ENMs are not well-defined. The small sizes of ENMs allow them to infiltrate 

epithelial barriers, causing their accumulation and deposition into vital organs 

and tissues, including the kidneys, heart, and liver [53-57]. In addition, some 

forms of ENMs may cross blood-brain barriers, leading to brain damage and 

neurological side effects [55]. Furthermore, studies have shown that exposure to 

ENMs via several routes, such as inhalation, ingestion, or dermal contact, could 

lead to a variety of disorders, such as myocardial infarction, stroke, thrombosis 

caused by platelet enhanced aggregation by ENMs [58-60], and lung injury or 

inflammation [61, 62]. Moreover, at the cellular level, ENMs may induce cell 

death, mitochondrial damages, and genotoxicity (DNA damage and mutation) 

[53, 63, 64]. The leakage of ENMs ions from their core may elicit biological 

consequences, especially if the metal ion released has biological and 

physiological functions. Earlier studies have suggested that the production of 

reactive oxygen species (ROS) and free radicals are the underlying mechanisms 

of ENMs cytotoxicity. Cell death and cell damage could result from ROS or 

ENMs’ physical damage of cell membranes. In addition to oxidative stress, 

inflammation, DNA damage, and apoptosis have also been suggested to be 

mechanisms of ENMs toxicity [65-71]. Other proposed mechanisms in which 
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ENMs induce toxicity have been suggested, such as the disruption of intracellular 

transport and cell division, a disturbance in DNA transcription, mitochondrial 

damage and dysfunction, and lysosomal destabilization, leading to autophagy 

and cell death [72].  Moreover, genotoxicity is one of the biological side effects of 

ENMs exposure, and ENMs genotoxicity is defined by the damage of the 

intracellular DNA that could result from direct ENM interactions with DNA or 

indirect interactions via ROS production after ENM exposure; however, long-term 

secondary adverse effects, such as chronic respiratory distress syndrome, of 

ENMs are overlooked and require further investigation. 

OSHA’s exposure limit recommendations 

• Respirable carbon nanotubes and carbon nanofibers should not exceed 

1.0 (μg/m3) as an eight-hour time-weighted average (TWA). 

• TiONPs (particle size less than 100 nm) should not exceed 0.3 (mg/m3). 

• TiONPs (particle size greater than 100 nm) should be 2.4 mg/m3.  

OSHA’s permissible exposure limits to zinc oxide fumes 

•  5 mg/m3 (TWA). 

• 10 mg/m3 short-term exposure limit (STEL).  

Exposure limits for other nanomaterials do not exist yet. 
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Figure 2: The schematic model illustrates the mechanisms in which ENM 

induces cytotoxicity: ENMs induce ROS generation, which leads to oxidative 

stress. Oxidative stress could either be induced cell death or DNA damage that 

could lead to an inflammatory response. ENMs could also prompt inflammation 

through damage-associated molecular patterns (DAMP). 

Inflammation

Apoptosis and 
cell death 

Oxidative stress

DNA damage

ENMs
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Factors influence ENMs toxicity 

The physicochemical properties of ENMs, including dissolution, size, 

shape, chemical composition, surface area, and charge, influence the biological-

interaction of ENMs. Thus, for a complete understanding of the biological impacts 

of ENMs, it is important to evaluate the physicochemical properties of ENMs and 

to understand the interaction between these properties to determine the toxic 

potential of ENMs in the biological system. There are underlying factors that 

contribute to ENMs toxicity: size, shape, surface area, charge, and chemical 

composition. 

Size 

Size is an important factor that determines the effective interaction 

mechanism between ENMs and biological systems, especially the immune 

system. It has been suggested that the smaller the particles, the more 

toxic they are [73]. ENMs with a size less than 20 nm can easily traverse 

through epithelium and endothelium barriers and enter cells. The small 

size of ENMs, which is similar to the size of spheroproteins (2-10 nm), not 

only enable their translocation through cellular membranes but also allows 

them to enter the nuclei and other cell organelles [74]. According to Huo et 

al., six nm gold NPs were found in the nucleus, while 16 nm gold NPs 

were only found in the cytoplasm [75]. Furthermore, size controls the 

recognition, uptake, and clearance of ENMs by immune cells, such as 

macrophages. ENMs with a size less than five nm enter the cell 

membrane via nonspecific transport mechanisms, whereas 10 to 25 nm 
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ENMs are taken up by immune cells through pinocytosis. Larger particles 

are believed to be prime for the phagocytosis mechanisms, such as 

micropinocytosis [76, 77]. Due to the small size, ENMs of 5-10 nm will be 

not cleared effectively by immune cells, which leads to the accumulation 

and translocation of ENMs in vital organs [78-80]. Aggregation and 

agglomeration also contribute to the size and toxicity of ENMs. Once 

ENMs interact with biological media, they can aggregate or agglomerate1, 

which can influence the particle size and can lead to different biological 

effects. 

Shape 

ENMs have different shapes, such as spheres, sheets, cubes, rods, 

and ellipsoids. The shape as well as the aspect ratio are the two essential 

elements that influence the toxicity of ENMs. Several studies have 

investigated shape-dependent toxicity [81-84]. According to Holian et al., 

the clearance of TiONPs, either spherical or nano-belts, was affected by 

particle shape after pulmonary lung exposure in mice. TiONP spheres 

were cleared more effectively than TiONP nano-belts [85]. Moreover, rod-

like or needle-like ENMs induced more cell death and damage compared 

to spherical ENMs [86]. Overall, shape controls the uptake and clearance 

of ENMs by phagocytes and could lead to cell death and damage. 

_____________________________________________________________________________ 

1Aggregation is different from agglomeration: aggregation cannot be reversible under any certain 

conditions, while in agglomeration, under some chemical/biological conditions, the release of the 

actual primary individual particles is possible [21]. 
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Surface area and charge 

      ENMs are characterized by a large surface area, which provide them 

with a high reaction capacity and a high catalytic activity compared to 

micro-particle of the same material. Because the first interactions between 

ENMs and biological systems begin at the surface of the ENMs, the 

surface area plays a role in toxicity. The smaller the size, the more surface 

area they have and the higher toxicity [73]. The surface charge 

significantly contributes to the toxicity of ENMs [87, 88]. Surface charges 

affects the interaction and translocation of ENMs. Positively charged 

ENMs were found to be more toxic than negative or neutral ENMs [89]. 

The electrostatic attraction between the negative charges of the cell 

membrane (glycoprotein) and the positive charge of ENMs allows them to 

enter the cell easily compared to neutral or negatively charged ENMs [90]. 

Moreover, positively charged ENMs adsorb protein more efficiently than 

those with a negative charge. The adsorption with serum protein and other 

proteins allows ENMs to form a protein corona. This formation has a direct 

effect on the uptake and recognition of ENMs by immune cells [91]. 

Chemical composition 

  Particle chemistry is a crucial aspect of cell molecular mechanisms 

and oxidative stress. The chemical stability of ENMs is affected by the 

environmental conditions inside the cells, e.g., the pH level. Therefore, 

chemical composition is another factor that affects ENMs toxicity. Some 
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ENMs, such as ZnONP, is known to have a high dissolution rate with a low 

pH [92]. Although Zn and other metal ions have biological benefits for the 

cell, studies have shown that ZnONP induces toxicity and cell death due 

to the dissolution of ZnONP inside the acidic vacuoles of cells, leading to 

an increase in the Zn ions inside the cells [92]. The type of metal also 

contributes to the toxicity and has different toxic effects. A comparison 

study was performed to study the toxicity effect of SiONPs and ZnONP. 

SiONP induce toxicity by altering the DNA structure of the cells, whereas 

toxicity induced by ZnONP is caused by the production of ROS and 

oxidative stress [93], indicating that particle chemical composition played a 

primary role in the cytotoxic function. 

In summary, shape, size, chemical composition, surface charge, and area 

are major factors that determine and influence the toxicity of ENMs; however, 

other factors must be investigated, such as coating and surface roughness. 
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Sterile inflammation 

 The immune system plays a vital role in host defense against intrusion, 

including by pathogens, through the process of inflammation. For microbial 

infections, an inflammatory cascade promotes the recruitment and activation of 

innate immune cells, such as macrophages and neutrophils [94]. These cells 

have a role-clearing microbe though phagocytosis and the production of pro-

inflammatory cytokines and chemokines to activate an adaptive immune 

response. Inflammation can also be triggered in response to non-microbial 

agents. This type of inflammation is known as sterile inflammation, which is an 

inflammation triggered by pathogen-free agents, such as physical, chemical, or 

metabolic insults, including environmental particles, such as asbestos and silicon 

dioxide crystals [94, 95]. Sterile inflammation is considered one of the underlying 

factors that lead to many inflammatory diseases. ENMs, such as metal-oxide and 

carbon-based nanoparticles, may initiate sterile inflammation [96]. Similar to 

pathogen-induced inflammation, ENMs may prompt sterile inflammation and may 

induce the recruitment of inflammatory cells, such as macrophages and 

neutrophils, and the production of pro-inflammatory cytokines because they can 

function as danger signals (DAMP) [96]. The inflammation cascade may be 

induced by damage-associated molecular patterns (DAMP) [97]; Previous 

studies reported that ENMs promote the secretion of chromatin associates 

protein high-mobility group box-1 (HMGB-1) which considered as highly active 

danger signal that initiate inflammatory cascade [98]. However, the process of 
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inflammation induced by ENMs is not fully understood, and the possible 

biological consequences of ENMs-induced sterile inflammation requires further 

investigation [96]. Table 2 provides a list of in vitro studies that investigated the 

signaling pathway of sterile nanoparticles-induced sterile inflammation.  [96, 99-

103]. 
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Table 2: In vitro studies that investigated the signaling pathway of sterile nano-

particles induced inflammation.  

Type of 
nanomaterial 

Cell type Signaling pathways Biological effect 

MWCNT A549 lung epithelial 
cells 

NLRP-3 
inflammasome 
activation 

Activation of the 
inflammasome 
–caspase-1 related
pathway leading to 
IL- 
β and IL-18 
release 

TiO2-NP Human intestinal 
epithelial cells, 
human epithelial, 
colorectal 
adenocarcinoma 
Caco-2 cells, and 
THP-
1macrophages 

NLRP-3 
inflammasome 
activation 

Exposure to TiO2-
NPs induces 
NLRP-3- 
ASC-caspase-1 
assembly and 
caspase-
1cleavage;  
The activation of 
NLRP-3 complex 
causes the release 
of functionally 
active IL-1β. 

SiONP Murine bone 
marrow-derived 
dendritic cells, 
murine bone 
marrow derived 
macrophages, 
human 
macrophage cell 
lineTHP1,  
and primary human 
keratinocytes 

NLRP-3 
inflammasome 

activation 

Induced caspase-1 
cleavage and IL-1β 
secretion via the 
NLRP-3 
inflammasome 

ZnO-NP Macrophages and 
A549 cells 

NF-kB; 
NLRP-3 
inflammasome 
activation 

Activation of the 
inflammasome –
caspase-1 related 
pathway leading to 
IL-β and IL-18 
release. 
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Zinc oxide nanoparticle (ZnONP) 

   ZnONP applications 

Zinc oxide nanoparticles (ZnONP) have become one of the most important 

and promising metal oxide nanoparticles that are commonly used in many 

different areas due to their unique physical and chemical properties [104, 105]. 

ZnONP have been used in many industrial products. In 2015, worldwide 

production was estimated to be about one million tons per year. The rubber 

industry was the first known to use ZnONP based on their waterproof function 

and enhancement of the performance of high polymers in rubber [106, 107]. 

Later, due to ZnONP’ UV absorption properties, they were used in many 

personal consumer products, such as cosmetics and sunscreen [108]. Moreover, 

ZnO has an antimicrobial activity, and thus ZnONP is commonly used as food 

additives as well as in the textile industry and for deodorants and antibacterial 

products [109]. ZnONP has a promising application in the field of electro, opto, 

and photo technology, electronic/electrical devices, and batteries [110-112]. 

Apart from these applications, ZnONP have attracted considerable attention in 

the medical field and are used in drug delivery systems and anticancer 

treatments, and they have the potential to enhance other drugs’ activities, such 

as insulin [110, 113, 114]. The tremendous increase in production and the use of 

ZnONP poses a large risk of exposure to both the public and workers, who could 

be exposed through different routes, such as ingestion, inhalation, or skin contact 

[21]; however, the biological effect of ZnONP remains controversial in recent 

studies. Previous studies have shown that ZnONP has anti-inflammatory 
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properties due to the suppression of the mRNA expression of many inflammatory 

cytokines, such as IL-1β and TNF-α [115-121]. Moreover, the U.S. Food and 

Drug Administration (FDA) categorized the use of ZnO in micron sizes as safe, 

“GRAS” (generally recognized as safe), for use as food additives but not ZnONP. 

On the other hand, many other studies have suggested that ZnONP indeed 

exhibit inflammatory potential both in vivo and in vitro. 

  Potential exposure hazards and side effects of ZnONP 

It has been known for some time that metal fume fever syndrome is 

caused by the inhalation of ZnO fumes among foundry workers [122-125]. 

Exposure to ZnONP may also lead to health complication. Consequently, there is 

a need for an evaluation of the health consequences of ZnONP exposure. 

ZnONP could be recognized by the immune system as danger signals. 

Consequently, inflammatory responses to ZnONP could lead to a wide range of 

disorders. Several studies have demonstrated that ZnONP have the ability to 

induce toxicity both in vivo and in vitro. 

 In vitro toxicity of ZnONP 

Extensive studies have investigated the toxicity effect of ZnONP in 

different cell lines. 

Production of reactive oxygen species (ROS) 

ROS is formed as a result of mitochondrial oxidative metabolism 

and cellular responses to bacterial infections. It is composed of different 

oxidative species, which include superoxide anion, hydrogen peroxide, 
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singlet oxygen, and hydroxyl radicals. ROS is known for its regulatory role 

in cell signaling and homeostasis [126]. There are two types of sources 

that induce ROS formation within the cells: endogenous and exogenous. 

Mitochondrial respiration and inflammatory responses are some of 

endogenous sources for ROS generation, while bacterial invasion, 

pollution, and ENMs act as exogenous sources. Several studies have 

shown that ZnONP induce a substantial increase in the ROS level in vitro 

after ZnONP exposure [127-131]. Thus, ROS production leads to oxidative 

stress and mitochondrial damage [132]. 

Oxidative stress 

Upon ZnONP exposure, the intracellular levels of ROS increases. 

This triggers the enzymatic and non-enzymatic antioxidant system in cells. 

When the antioxidant system in the cell is exhausted, the cells fail to 

reduce the intracellular ROS level, leading to ROS accumulation and a 

disturbance in the cellular homeostasis. As a result, oxidative stress 

occurs. Oxidative stress contributes to cell damage, mitochondrial 

damage, and autophagy [132-137]. 

Another cellular response to ZnONP is the production of pro-

inflammatory cytokines. The interaction of ENMs with cell surface 

receptors leads to the activation of intracellular signaling pathways. 

According to Roy et al., Toll-like receptor 6 (TLR6) mediates the 

inflammatory responses of ZnONP in peritoneal macrophages [138]. The 

production of pro-inflammatory cytokines, such as IL-8 and TNF-α, is 



  

22 

 

mediated through the activation and upregulation of inflammatory 

pathways, including nuclear factor kappa-light-chain enhancer of activated 

Bcells (NF-κβ), mitogen-activated protein kinase (MAPK), and other 

pathways involved in Myeloid differentiation primary response 88 (myD88) 

[139-141]. 

Genotoxicity 

Genotoxicity is a potential biological response to ZnONP exposure.  

It has been shown that high doses of ZnONP leads to cellular toxicity and 

cell death; however, the effect of a low dose of ZnONP exposure has been 

overlooked. Low doses of ZnONP could lead to genetic alterations, 

causing DNA damage [142-145]. According to Heim et al., ZnONP 

induces a DNA double strand break [146]. These genetic alterations could 

lead to mutations and carcinogenesis. The genotoxicity of ZnONP was 

investigated in kidney epithelial cells and other cell types [147]. ZnONP 

induces DNA damage due to an increase in ROS generation, which 

results from an increase in intracellular Zn2+ ion concentrations. ZnONP 

also induces dysregulation in cardiac functions and vascular homeostasis. 

Intra-tracheal instillation of ZnONP to Wistar rats induced systemic 

inflammation, dyslipidemia, increase levels of serum biomarkers of 

atherosclerogenesis (heme oxygenase-1 [HO-1] and platelet endothelial 

cell adhesion molecules-1 ,and aortic pathological damage [148].  

The underlying factor that leads to ZnONP toxicity is the solubility of 

ZnONP in the acidic vacuole of the cells, such as phagolysosome. This leads to 
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an increase in the intracellular Zn2+ ions concentration [149-152]. The Zn2+ ion is 

an essential element in many biological reactions. It is important for enzyme 

activity and many nuclear proteins, such as zinc finger nucleases [113]. 

   In vivo ZnONP toxicity 

Several studies have investigated the toxicological effect of ZnONP in vivo 

[153-156]. The intra-tracheal instillation of ZnONP in mice induced acute lung 

inflammation and lung injury with a significant increase in the LDH level detected 

in bronchial alveolar lavage fluids (BALF) [157, 158]. Moreover, ZnONP induced 

the recruitment of macrophages and neutrophils with high levels of pro-

inflammatory cytokines, such as IL-6 in BALF, after pulmonary exposure in mice 

[159-161]. Furthermore, ZnONP appears to have an adjuvant-like response to 

allergen ovalbumin (OVA) and induce Th2 responses in mice [154]. Oral 

exposure to ZnONP in rats for five days revealed significant hepatic damage and 

severe nephrotoxicity [162, 163]. According to Attia et al., neurotoxicity in rats 

was observed after oral exposure to ZnONP resulting in oxidative stress and 

genotoxicity, inflammation, and apoptosis [133]. In addition, a study conducted 

with human volunteers showed that the inhalation of ZnONP induces flu-like 

symptoms and a significant increase in serum amyloid A (SAA), and two acute 

phase proteins C-reactive protein (CRP) [164]. It has been suggested that the 

toxicity of ZnONP in vivo is similar to the in vitro finding of the solubility of ZnONP 

in the acidic pH of cell vacuoles [165]; however, a study conducted by Xia et al. 

showed that dietary ZnONP improved intestinal microbiota and inflammation 

responses in weaned piglets [166]. 
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ZnONP and the innate immune cells 

The innate immune system (nonspecific) is the first line of defense against 

foreign insults, including ENMs. The interaction of ENMs with innate immune 

cells may induce an immunomodulatory response either by the activation or the 

suppression of the innate immune system (Fig3) [98, 167]. The key mechanism 

of the innate immune system is the process of phagocytosis. Phagocytic cells, 

such as macrophages, and other phagocyte cells mediate the phagocytosis 

process through pattern recognition receptors (PRPs) on phagocytic cells, (e.g. 

toll-like receptors (TLR)), that recognize a wide variety of pathogens’ molecular 

patterns referred to as pathogen-associated molecular patterns (PAMPs) such as 

lipopolysaccharides (LPS) on the bacterial cell wall [168]. Similarly, macrophages 

could recognize ENMs. ENMs may interfere with  It has been suggested that 

ENMs may serve as DAMP signals that could induce innate immune reactions 

[96].Several studies have shown that ZnONP induces the activation and 

recruitment of innate immune cells upon exposure either in vitro or in vivo 

correspondingly. 

Macrophages and ZnONP 

     Macrophages are the first responders to danger signals. They are 

professional phagocytic cells that mediate recognition and phagocytosis via 

different reporters, including scavenger receptors (SR), mannose receptors (MR), 

and complement receptors (CR) [169]. Furthermore, receptors on macrophage 

such as TLRs play a vital role in the early recognition of ZnONP and 

subsequently induce a pro-inflammatory response [141, 170]. According to Roy 
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et al., the inflammatory responses of activated macrophages triggered by ZnONP 

depend on TLR6, which induces the expression of genes involved in 

inflammation. Briefly, ZnONP promoted the expression of CD1d, MHC-II, CD86, 

and CD71, which are activation and maturation markers, on macrophages as 

well as the production of pro-inflammatory cytokines, such as IL-6, IL-1β, and 

TNF-α. The production of these pro-inflammatory cytokines was suppressed after 

inhibiting MAPKs pathways and TLR6 signaling using siRNA [138]. Moreover, the 

downstream signaling of TLRs mediates the activation of many inflammatory 

pathways, such as MAPK, ERK1/2, JNK, p38, and NF-κB. The activation of these 

pathways leads to the production of pro-inflammatory cytokines and chemokines 

by the recruitment of a specific set of adaptor molecules, such as MyD88 and 

TRIF [171]. It has been suggested that ZnONP induces inflammatory responses 

through the activation of MyD88, NF-κB, and MAPK [139]. Furthermore, the 

activation of TLR signaling not only induces inflammation and the production of 

pro-inflammatory cytokines but also increases the phagocytosis process by 

macrophages such as TLR6 [169]. 

Macrophages have the ability to infiltrate tissues during inflammation 

[172]. Alveolar macrophages play a major role in the onset and progression of 

pulmonary diseases, such as asthma, chronic obstructive pulmonary disease 

(COPD), and pulmonary fibrosis [173]. Because inhalation is the common 

exposure route of ZnONP, alveolar macrophages are one of the first cells to 

come in contact with ZnONP in the lungs [159, 174]. The interaction between 

these cells and ZnONP is not well-understood. Some researchers have proposed 
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that the interaction between alveolar macrophages and ZnONP is mediated by 

non-specific binding, and some believe that it is mediated via scavenger 

receptors, such as the B1 scavenger receptor [134]. Moreover, ZnONP inhalation 

in mice infected with Haemophilus influenza (NTHi) reduced the bacterial 

clearance in BALF and in lung tissues by impairing alveolar macrophage 

activation [175]. 

Lung epithelial cells and ZnONP 

    Lung epithelial cells play an important role in immune responses upon 

ZnONP exposure. In vitro, ZnONP exhibited the highest toxicity to lung epithelial 

cells compared to other ENMs, such as TiO2, CeO2, and Al2O3NP [176]. The 

toxicity was linked to oxidative stress and DNA damage after ZnONP exposure 

[177, 178]. According to Wu et al., ZnONP induced IL-8 expression in bronchial 

epithelial cells through the phosphorylation of the proteins p65 and IkB-α, which 

are both part of the NF-КB signaling pathway [140]. A previous study showed that 

challenged mice with ZnONP after ovalbumin (OVA) administration, lead to 

induce Th2 responses in the lungs. These results indicated that ZnONP could act 

as adjuvants to OVA, [179]. 

Eosinophils 

    Eosinophils were first discovered in 1879 by Paul Ehrlich. Eosinophils 

account for around 3% of the leukocyte sub-population in human circulation with 

a half-life ranging from 8-18 hours, while in the tissues, the half-life could extend 

up to six days [180]. Eosinophils are characterized by a distinctive dark pink 

intracellular granule in standard hematoxylin and eosin (H&E) staining. 
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Eosinophils’ granules contain hydrolytic enzymes, such as the major basic 

protein (MBP), eosinophil peroxidase (EPO), eosinophil-derived neurotoxin 

(EDN), and cationic granule proteins [181]. Moreover, it has been acknowledged 

that eosinophilic granules not only contain hydrolytic enzymes but also contain 

various cytokines and chemokines. These pre-made cytokines and chemokines 

have many diverse biological functions and are available for rapid release upon 

stimulation [182-184]. Initially, it was believed that eosinophils only play a major 

role in controlling parasitic infections (helminth) and are involved in allergy 

diseases, such as asthma [185-188]. Later, eosinophils’ functions were found to 

be involved in many physiological processes, such as organ development [189, 

190], tissue repair and degradation [191-193], maintaining and recruiting 

lymphocytes [194-196], anti-microbial activity [197-199], fungal immunity [200, 

201], and tumor immunity [202]. 

Previous studies have suggested that ZnONP may promote eosinophilic 

airway inflammation in rodents. In OVA, challenged mice models, ZnONP 

exposure was found to increase the eosinophilic inflammation in the broncho 

alveolar lavage fluid (BALF) at seven days after oropharyngeal aspiration [154]. 

In another study, the intra-tracheal instillation of ZnONP induced the recruitment 

of eosinophils in the alveolar interstitium in C57BL/6 mice [153]. In contrast, 

according to Silva et al., ZnONP provides anti-apoptotic properties to human 

eosinophils by preventing caspase activation and Bcl-xL degradation, leading to 

delayed human eosinophils apoptosis [203]. In addition, ZnONP did not induce 

the production of ROS in human eosinophils [203]. 
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Cellular mediators induced by ZnONP (cytokines and chemokines)  

Interlukins-6 (IL-6) and Tumor necrosis factor alpha (TNF-α) 

    For most acute inflammatory conditions, both IL-6 and TNF-α are 

elevated. IL-6 induces fever reactions, while TNF-α promotes hypertension 

through endothelia cell activation [204]. Furthermore, IL-6 and TNF-α activate 

immune cells and are involved in the progression of many inflammatory 

diseases, such as rheumatoid arthritis [205]. IL-6 is a cytokine involved in many 

physiological processes, such as inflammation, infection, and regulation of 

metabolic, regenerative, and neural processes [206]. TNF-α is a pleotropic 

cytokine with diverse biological functions, including acute and chronic 

inflammation and the regulation of cell growth and proliferation [207]. As 

mentioned above, ZnONP induce toxicity in the cells via oxidative stress. The 

overwhelming oxidative stress response by the cells promotes the activation of 

several signaling pathways, such as MAPK and NF-κB, triggering cell signaling 

cascades that lead to an increase in cytokine expression, such as interleukins 

and TNF-𝛼 [208]. Several studies showed that ZnONP exposure induces the 

production of IL-6 and TNF-α both in vivo and in vitro [123, 138, 178, 209, 210]. 

Once ZnONP are engulfed by macrophages or exposed to epithelial cells, a 

variety of pro-inflammatory cytokines, such as IL-6 and TNF-α, and chemokines, 

such as CCL2, CCL3, CXCL1, and CCL11, are secreted; however, the exact 

sequence of the events that occur in these cells that result in the production of 

these cytokines/chemokines is not defined.  
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Monocyte chemoattractant protein 1 

    Monocyte chemoattractant protein 1(MCP-1), also known as CCL2, is a 

potent macrophage chemoattractant involved in the polarization and recruitment 

of murine macrophages during inflammation [211]. Previous data suggest that 

elevated levels of CCL2 are linked to chronic inflammatory diseases, such as 

obesity associated-type 2 diabetes and cardiovascular diseases [212, 213]. 

Regarding ZnONP exposure, earlier studies reported a significant increase in 

CCL2 levels after ZnONP exposure either in vivo (lung) or in vitro [158, 179, 

214]. According to Sahu et al., ZnONP promote the expression of the MCP-1 

mRNA level in THP-1 cells in vitro after exposure [215]. Moreover, in Balb/c 

mice, exposure to ZnONPs induced the production of CCL2 in lung, leading to a 

T helper cell (Th2) response. 

Eotaxin (CCL11) 

   Eotaxin (CCL11) is an eosinophils chemoattractant that was first defined 

in the BALF of OVA-sensitized guinea pigs to promote eosinophils recruitment 

[216]. In asthma and animal pulmonary allergic inflammation models, there is a 

positive correlation between the number of eosinophils recruited to the lungs and 

the local CCL11 level [217-220]. As stated, ZnONP promotes lung inflammation 

and induce the accumulation of eosinophils in BALF or the alveolar interstitium in 

rodent inflammation models with or without OVA sensitization, respectively. 

Saptarshi et al. reported the upregulation of CCL11 mRNA in the lung tissue after 

ZnONP exposure in mice. Furthermore, the CCL11 level was significantly 

elevated in BALF within 24 hours of ZnONPs exposure in mice [153, 221]. 
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Figure 3: Schematic model illustrating ENMs inducing an immunomodulatory 

response in the innate immune system: ENMs could induce an innate immune 

response by a direct interaction with innate immune cells, such as macrophage 

and mast cells, or by recruiting the innate immune cells to the site of exposure 

through cellular mediators, such as through cytokines and cell-specific 

chemokines, leading to the recruitment of more immune cells, such as 

neutrophils, basophiles, and eosinophils. Figure adopted from [95]. 
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Zinc oxide nanowires (ZnONWs) 

Zinc oxide nanowires (ZnONWs) with a one-dimensional (1D) shape have 

recently been synthesized by Advanced Energy Materials, LLC. (Fig 4). They 

have developed novel vapor-phase methods for generating these nanowires, 

which have numerous potential industrial applications; however, finite information 

is available regarding the potential biological effects of these novel nanowires. 

ZnONW share the same chemical composition as the commercial spherical 

ZnONP, which induce toxicity both in vivo and in vitro. The toxicity is mainly due 

to the solubility of ZnO particles in the acidic pH inside the phagolysosomal 

compartment of the cell. On the other hand, the change in the physical form of 

ZnONW to 1D may elicit different biological responses, especially an immune 

response [38, 92]. In addition, there are other ENMs that have a 1D shape, such 

as a carbon nanotube (CNT). Carbon nanotubes have been widely used in many 

areas such as biomedical and electronic devices [18, 19]. Due to the unique 1D 

shape and small size of CNT, it has been linked to many pulmonary diseases, 

such as lung fibrosis and asthma [222]. According to Rydman et al., CNTs induce 

inflammation in mice lungs by recruiting macrophages and eosinophils [223]. 

Furthermore, CNTs lead to inflammation and progressive fibrosis on the parietal 

pleura in mice. The cellular mechanism of CNTs inducing inflammation is ROS 

generation, which leads to activation in AP-1, NF-𝜅B, p38, and Akt signaling 

pathways [68]. Due to the large-scale production and increasing utilization of 

ZnONWs, concerns regarding ZnONW toxicity and whether ZnONWs are safe 
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are increasing. Thus, it would be highly beneficial to study and to investigate the 

safety of these ZnONWs. 

Figure 4: Scan electron microscopy (SEM) image of ZnONWs (left); 

transmission electron microscopy (TEM) of ZnONWs (right). 



33 

Significance and Aim of the study 

ZnONW has become one of the most important products in optical and 

electronic applications. They are being produced in large-scale quantities using 

different methods, such as vapor-phase, solution-phase, and hydrothermal 

methods, which could lead to occupational health risks. The potential exposure 

routes of these ZnONWs may vary depending on both occupational and 

environmental exposure. Human exposure to ZnONW and under acidic 

conditions in the cells (ZnO has a sensitive dissolution point) eventually trigger 

the release of Zn ions within the cells, leading to cell toxicity and death. 

Therefore, for this dissertation, the biological effect of ZnONW was assessed. 

First, the way such cellular and molecular responses are integrated into an 

inflammatory response in mouse models was determined. In addition, the cell 

types involved in the production of pro-inflammatory cytokines and chemokines 

were delineated. Therefore, the specific aims were as follows. 

AIM I: Investigate the potential of ZnONW to induce sterile inflammation in 

a mouse model. The large-scale production and ZnONW may lead to 

environmental pollution which increased risk of human exposure to ZnONW. 

Since the common exposure routes for these particles are skin contact, and lung, 

the inflammatory response in the following models. The consequences of 

local/systemic inflammatory responses to ZnONW were investigated. 

 Because the common exposure routes for these particles are skin contact 

(local) and inhalation, the inflammatory responses in the following models were 
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examined. First, local inflammation in the air pouch was used as a skin exposure 

model. Second, to simulate airway exposure, lung inflammation following the 

intra-tracheal instillation of ZnONW was analyzed. Lavage fluids were analyzed 

for inflammatory infiltrates as well as cytokines and chemokines were measured 

to identify the cellular mediators responsible for inducing inflammation. 

AIM II: Defining the cellular mediators and cell types activated by ZnONW 

exposure. 

The specific pathways that could lead to the sterile inflammation in vitro 

were assessed.  Previous studies showed that macrophage-specific (CCL2) and 

eosinophil-specific (CCL11) chemokines and TNF-α and IL-6 cytokines are 

induced upon ZnONP exposure, and because ZnONW share the same chemical 

composition of ZnONP, it was important to explore whether ZnONW induce the 

production of these chemokines and cytokines as well as to investigate the 

cellular and molecular basis for the production of these cytokines and 

chemokines by ZnONW. Using murine primary macrophages (BMDM), 

macrophage cell lines (RAW-264.7 cells), and lung epithelial cell lines (LKR-13), 

ZnONW was exposed to these cell lines, and the chemokine and cytokine 

production in culture supernatants was determined. The results were further 

confirmed using the qRT-PCR. Next to investigate the cellular uptake of ZnONW 

in BMDMs cells, FITC labeled ZnONWs were generated. Confocal microscopy, 

various staining techniques and pharmacological inhibitors were used to define 

the cellular uptake of ZnONW. Lastly, In-vitro toxicity experiments were 
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performed in bone marrow-derived macrophages, RAW-264.7, and LKR13 cells 

to evaluate the cell viability upon ZnONW exposure. 
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Figure 5: Schematic model of ZnONWs-induced sterile inflammation: ZnONWs 

induce inflammation in the lungs and the Air-pouch by recruiting immune cells, 

such as macrophages and eosinophils. The inflammatory exudates contain IL-6, 

TNF-α, CXC, and CCL. The cell types responsible for the production of these 

chemokines and cytokines and the pathways need to be identified. 
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CHAPTER 2 

MATERIALS AND METHODS 

Nanoparticles and Reagents 

Zinc Oxide nanoparticles ZnONPs (10-30 nm) and ZnONWs (100 nm) 

were provided by Advanced Energy Materials, LLC, a nanowire powder 

manufacturing company in Louisville, KY. Silicon dioxide nanoparticles 

(SiO2NPs 7nm &200 nm) was obtained from sigma Aldrich. All particles were 

made endotoxin-free by baking at 200°C overnight. The following 

pharmacological inhibitors were used in the study: Cytocholasin D, (from Sigma-

Aldrich) Bafilomycin-A1 (Santa Cruz). E.coli, LPS (LPS-EK; InvivoGen). 

Mice 

C57BL/6 mice were purchased from Jackson laboratories and bred at the 

University of Louisville. All mice were used in ex-vivo and in-vivo experiments 

were sex and age matched 6-8 weeks. All mice were maintained in a specific 

pathogen free facility and cared for in accordance with the institutional and 

National Institutes of Health (NIH) guidelines. The University of Louisville 

Institutional Animal Care and Use Committee (IACUC) approved all the 

procedures. 
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Fluorescein isothiocyanate (FITC) labeling of ZnONWs 

Four mg of ZnONWs were dispersed in 3 ml anhydrous 

dimethylformamide (DMF). Then a diluted solution of 0.5 μl of amino-propyl-

triethoxy-silane (APTS) in 25 μl DMF was added to the ZnONWs suspensions, 

which was followed by sonication, and stirring under nitrogen at room 

temperature for 20 h. ZnONWs were collected by centrifugation and  removing 

the supernatant. After washing, ZnONWs were re-suspended in 0.5 ml DMF and 

mixed with a solution of 1 mg FITC and 0.5 ml DMF. The suspension was stirred 

for 4 h, and the FITC-labeled ZnONWs were collected by centrifugation. FITC-

labeled. ZnONWs were thoroughly washed with DMF, dried under vacuum and 

stored as dry powders [224]. 

Bone marrow derived macrophages 

Six to eight-week-old C57BL/6 mice were euthanized by using CO2. The 

hind legs were dissected and the bone marrow cells were flushed out with cold 

Dulbeco’s Modified Eagle Medium (DMEM). The bone marrow cells were 

cultured in DMEM containing 10% FBS,100 units/ml penicillin, 100 mg/ml 

streptomycin, 2 mM L-glutamine and 50 mM β -mercaptoethanol supplemented 

with 25 ng/ml recombinant mouse macrophage colony stimulating factor 

(BioLegend; San Diego, CA). The cells were plated at a density of 1 million cells 

per 100-mm tissue culture dishes containing 10 ml of medium. After 3 days, 10 

ml of fresh growth medium was added to replace the medium. The cells were 
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maintained for another 3 days before the experiments. The purity of the cells 

(>99%) was confirmed using flow cytometry by surface staining for F4/80 and 

CD11b. 

Cell culture 

Raw 264.7, mouse macrophage cell line (American Type Culture 

Collection (ATCC), Manassas, VA, USA) and LKR13 cells, murine K-ras mutant 

lung adenocarcinoma cell line were maintained in Dulbecco’s Modified Eagle’s 

Medium (DMEM; Hyclone Laboratories, Inc., South Logan, UT, USA) 

supplemented with 10% heat-activated fetal bovine serum (FBS, Hyclone 

Laboratories Inc.) and 100 units/ml penicillin, 100 μg/ml streptomycin, 2 μM L-

Glutamine and 50 μM β - mercaptoethanol (Gibco®, Invitrogen Corporation, 

Carlsbad, CA, USA) at 37°C in a 5% CO2 incubator. Cells were seeded at 

0.5x106 cells/ well density into six well plates. 

In vitro ZnONWs, ZnONP and SiONP Stimulation Assay 

BMDMs were plated at a density of 0.5x106 cells per well in a six well 

culture dish in 2 ml of DMEM containing 10% FBS and allowed to attach 

overnight. BMDMs were primed with or without 10 ng/ml of LPS (LPS-EK; 

InvivoGen, San Diego, CA) for 3 hours. Cells were washed with pre-wormed 

PBS three times. Then the media was changed to 1% FBS media with final 

volume of 1000µl in 6 well plate. The cells were then pre-treated with or 
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without t h e  pharmacological inhibitors Baf-A1 or CytD at the indicated 

concentrations for 1 hour prior to stimulation with 10 or 20 µg/ml of particles 

for  3-6 hours. 

RAW 264.7 cells were plated at a density of 0.5x 106 cells per well in a six 

well culture dish in 2 ml of Hyclone DMEM containing 10% FBS and allowed to 

attach overnight. The cells were primed with or without 10 ng/ml of LPS for 3 

hours. Cells were washed 3 times with pre-wormed PBS. Then the media was 

changed to 1% FBS media with final volume of 1000 µl in 6 well plate. The cells 

were then treated with 10 or 20 µg/ml of particles for 6-18 hours. 

 

LKR13 cells were plated at a density of 0.5 x106 cells per well in a six well 

culture plate in 2 ml of Hyclone DMEM containing 10% FBS and allowed to 

attach overnight. Cells were washed 3 times with pre-wormed PBS. Then the 

media was changed to 1% FBS media with final volume of 1000 µl in 6 well 

plate. The cells were then treated with 10 or 20 µg/ml of particles for 6 hours. 

 

Enzyme-Linked Immunosorbent Assay (ELISA) 

IL-6, TNF-α and IL-1β in the cell culture supernatants were measured 

using mouse IL-6, TNF-α and IL-1β ELISA MAX Standard Kit (Biolegend). LTB4 

in the cell culture supernatants was measured using LTB4 EIA Kit (Cayman 

Chemicals).  Briefly, Polyvinyl chloride (PVC) microtiter plates were coated with 

anti-cytokine antibody overnight at 4°C. The next day, the plates were washed 

using washing buffer, and non-specific binding blocked using blocking buffer 
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provided by the manufacturer. The standard dilution and the required dilutions 

were made for the following step. Cell culture supernatants were added to the 

coated plates, and plates were incubated for 2 hours at room temperature. The 

secondary antibodies (detection antibody) for IL-6, IL-1β and TNFα were added 

to the respective plates. Then plates were washed. The assay was developed 

according to the manufacturer’s instruction and the intensity of the signal was 

detected using ELISA plate reader at recommended wavelength (405 nm for IL-

6, TNF-α, or IL-1β and at 450nm for LTB4). The data was calculated by 

extrapolating the absorbance of each protein (cytokine) and the standard curve. 

 RT-PCR Assay 

Cells (BMDMS, RAW 264.7 and LKR13) were lysed using TRIzol reagent 

and total RNA was isolated using an RNeasy Mini Kit (Qiagen) using 

manufacturer’s protocol. RNA samples were treated with DNase (Qiagen) to 

remove any trace of DNA from the samples before reverse transcription with 

TaqMan reverse transcription reagents (Applied Biosystems) using random 

hexamer primers. Quantitative PCR was performed using ‘power SYBR-green 

master mix’ Applied Biosystems). Expression of the target genes was 

normalized to GAPDH and the relative fold changes relative to the PBS were 

calculated using the delta delta CT method. Data were representative of 

triplicate cell cultures. GAPDH, CXCL1, CXCL2, CCL2, CCL3, CCL4, CCL5, 

CCL11, TNFα and IL-6 primers obtained from Real Time Primers. 
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MTT assay 

The MTT assay is a colorimetric assay for assessing cell metabolic 

activity. BMDM, LKR13 and RAW264.7 cells were treated with ZnONWs for 

different time points 2, 4, 6, 18 hours. Then 3-[4, 5-dimethyltiazol-2-yl] 2, 5-

diphenyl-tetrazolium bromide (MTT) was added to the cells at the end of each 

time point. After 2h incubation with MTT, DMSO was added for 10 min. 

absorbance was measured at 562 nm using a BioTek microplate reader. 

Immunofluorescence 

BMDMs cells (0.7x106 ) were plated in a 35 mm cover-glass bottom dish 

(World precision Instruments, Sarasota, FL) in DMEM with 10% FBS and grown 

overnight. The media was changed to DMEM with 1% FBS and the cells were 

primed with 10ng/ml LPS for 3 hours. Then cells were treated with 1μM Baf-A1 

for 1h. Then cells were stimulated with 25 µg/ml FITC ZnONW for 3hrs. next 

cells were washed 3X with PBS and fixed with 10% formalin for 15 min. after 

fixation, cells were washed three times with 1X PBS, cells were stained with 

1:500 dilution 594-Cholera toxin Subunit B and 1:1000 dilution DAPI 

(ThermoFisher Scientific) and washed again before analyzing with confocal 

microscopy. The confocal images were captured using Nikon A1R confocal 

microscope at 60 x magnification with appropriate lasers as indicated. A 

minimum of five to six fields were captured for each sample. 
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Acridine orange staining 

Acridine orange is a fluorescence dye that is easily crosses the cell 

membrane. It used to stain acidic vacuoles (lysosomes, endosomes, and 

phagolysosome), with red to orange color and RNA, and DNA with green color in 

living cells.  BMDMs were treated with or without Baf-A1 for one hour followed by 

FITC-ZnONWs. Next cells were washed and loaded with 5 µg/ml acridine orange 

(Sigma- Aldrich) for 30 minutes. Cells were washed with Hank's balanced salt 

solution (HBSS) before imaging using confocal microscopy. 

Antibody staining 

BMDMs were treated with 1Μm BafA-1 for 1 hour followed by 25μg/ml 

FITC-ZnONWs treatment for 3 hours. Then, cells were fixed with 10% formalin 

for 15 min and permeabilized with 0.1% saponin. Non-specific binding was 

blocked using with 1% BSA for 1 hour. Next, cells were incubated with LAMP-1 

antibodies (a rat anti-mouse (1D4B) (abcam) at 1:500 dilution overnight at 40C. 

Later, cells were washed three times with 1X PBS and followed by an Alexa 594-

labeled secondary (rat anti-mouse IgG A-11032: ThermoFisher Scientific) at 

1:500 dilution for 1-2 hours. Cells were washed three times with 1X PBS and 

stained with DAPI. Cells were washed with HBSS before imaging by confocal 

microscopy. 
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Air pouch experiment 

Five ml of sterile air was injected into the back of mice subcutaneously to 

generate an air pouch. Three days later another 3 ml of sterile air was injected 

into the pouch to maintain the air-pouch. After 3 days, 2 mg of particles in 500 μl 

of endotoxin-free PBS was injected into the air pouch. Control animals received 

500 μl of endotoxin-free PBS. After 6 hours of injection, mice were euthanized 

and the air pouch was lavaged with 3 ml of cold PBS.  

 

Particles installation in mouse lungs 

Mice were treated with antibiotics for one-week prior to surgery. Mice 

were surgically instilled (intratracheal) with endotoxin-free PBS (negative control) 

or 0.67 mg of endotoxin-free SiONPs (positive control) or 0.67mg of ZnONWs 

suspended in endotoxin-free PBS. Previous studies have reported the use of 0.2 

μg/mouse [225] and 0.168 μg/mouse of ZnONPs [226]. Particles suspension 

was vortexed before instillation to avoid settling of the particles. Mice were 

continuously maintained on antibiotics until euthanasia two days after instillation. 

Lungs were lavaged with 2 ml of cold PBS and BALF were obtained.  
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Flow Cytometry 

Cells from air-pouch and BALFs were stained with various cell surface 

marker antibodies from BD Biosciences (San Diego, CA) or Biolegend (San 

Diego, CA). Data were acquired on FACS Calibur or FACS Canto (BD 

Biosciences) and analyzed using Flowjo software (Tree Star). Leukocytes were 

identified as CD45+ cells, lung macrophages as CD45+ FSChi CD11chi F4/80+ 

cells, neutrophils as CD45+ CD11c− Ly6Ghi Siglec-F− cells, eosinophil as 

CD11b, CD193, F4/80, Siglec-F, B cells as CD45+ FSClo B220+ cells, CD4 cells 

as CD45+ FSClo CD4+ and CD8 cells as CD45+ FSClo CD8+. In air-pouch 

lavage fluids, leukocytes were identified as CD45+ cells, macrophages as 

CD45+ FSChi F4/80+  CD11bhi Ly6Glocells and neutrophils as CD45+ SSChi 

Ly6Ghicells, eosinophil as  CD11b, CD193, F4/80, and Siglec-F. 

Cytospin 

The cytospin is a high speed centrifuge to concentrate the cells in a 

sample on a slide. It used to analyze the cell morphology and type. The air 

pouch lavage fluid cells and BALFs cells were spun down using Shandon 

Cytospin centrifuge (Shandon Lipshaw) followed by staining with Hema-3 

reagents (ThermoFisher Scientific) according to the manufacturer's 

recommendations. 
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Multiplex analysis 

Lung lavage fluids and Air-pouch lavage from PBS or particles treated 

mice were measured for various levels of inflammatory proteins including TNF-α, 

CXCL1, CXCL2, CCL2, CCL4 and CCL5, CCL11, IL-1β & IL-1α. The analysis 

was accomplished following standard protocols at the Proteomics core facility of 

Medical University of South Carolina. 

Statistical Analysis 

Graph Pad Prism4 Software San Diego, CA was used to analyze the 

Data; Data were expressed as the means ± S.E from at least three independent 

samples. Statistical difference among groups was analyzed using the Mann–

Whitney U-test (in vivo) or Unpaired Student's t-test (in vitro/ex-vivo, RNA 

analysis). Two-tailed P values of <0.05 were considered as significant.
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CHAPTER 3 

ZnONWs INDUCE STERILE INFLMMATION 

IN DIFFERENTMOUSE MODELS 

Introduction: 

Physicochemical properties, such as size and shape, determine the 

interaction between ENMs and immune systems. The morphology of ENMs is 

one of the most important aspects for nano-toxicology. A novel class of a ZnO 

nanomaterials, called ZnONW, are being produced recently in high tonnage. 

They have a unique shape and size that differ from spherical ZnONP, which 

have been on the market for decades. The rapid production rate and enormous 

quantities substantially increase the risk exposure to ZnONW through different 

exposure routes that may vary depending on occupational and environmental 

exposure. During the production of ZnONW, workers could be exposed to free 

ZnONW in the air. 
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On the other hand, public exposure to ZnONW could occur through using 

products that contain ZnONW or through the release of ZnONW into the 

environment. The general exposure routes to ZnONW are inhalation, skin 

contact, and ingestion. The small size and unique shape make their exposure 

unavoidable, and a change in the shape could elicit different immune responses 

and could impact their uptake and recognition by the immune system. Moreover, 

limited data are available related to ZnONW toxicity as well as their acute 

inflammatory potential. In addition, long-term consequences of exposure to 

ZnONW are unknown.  

Therefore, the aim was to assess the adverse effects of ZnONW and their 

ability to induce inflammation. Such studies are required to ensure the safe 

production and use of ZnONW.  

The consequences of local /systemic inflammatory responses to ZnONW 

were investigated. First, the local inflammation in the air pouch was evaluated. 

The air-pouch provides a localized inflammatory setting that mimics skin 

exposure. Also, different cytokines and chemokines responsible for any cellular 

infiltration to the site of exposure were examined. Next, the consequences of 

systemic inflammatory responses to ZnONW were assessed using a lung 

inflammation model. Finally, the cellular mediators involved in the recruitment of 

inflammatory cells into the lungs were analyzed. 
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Results: 

ZnONWs induce inflammation in a murine air-pouch model 

One way that exposure to ZnONW can occur is through dermal contact; 

however, to the best of our knowledge, the possibility for ZnONW to be 

considered inflammatory irritants or to penetrate the skin have not been studied 

yet. Thus, whether exposure to ZnONW could lead to any local inflammatory 

response was explored. A murine air pouch model was used to assess the 

potential localized inflammation caused by ZnONW. The air pouch provides a 

localized environment allowing to study infiltration of immune cells in response to 

any inflammatory agent or irritant. In this experiment, the air pouch was 

established by injecting 5 ml of sterile air subcutaneously into the back of the 

mice. After three days, another 3 ml of sterile air was injected into the pouch. 

Three days later, 2 mg of ZnONW in 500μl of endotoxin-free PBS was injected 

into the air pouch. As controls, PBS alone (negative) or SiONP (2 mg each) were 

injected into the air pouch. The mice were euthanized six hours after particle or 

PBS administration, and air pouch lavage was collected with 3 ml of PBS (Fig. 

6). A flow cytometry analysis and the cytospin of the air-pouch lavage revealed, 

as expected from our previous study, that in SiONP-treated mice, there was 

induced neutrophilic inflammation but no significant infiltration of macrophages 

or eosinophils (Fig.7a&b). In contrast, ZnONW showed a significant increase in 

both macrophages and eosinophils. Although a neutrophil influx was observed 

from ZnONW, it was relatively weaker compared to SiONP-exposed mice. These 
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results suggest that ZnONW-induced inflammation is both qualitatively and 

quantitatively different from that induced by SiONP. 

 

Inflammatory mediators induced by ZnONW exposure in an air pouch 

Because ZnONW induce inflammation by the recruitment of eosinophils 

and macrophages into the air pouch, which cellular mediators contribute to this 

distinct pattern of inflammation in the air-pouch was explored. Therefore, a 

multiplex analysis for the air pouch lavage from PBS or particle-treated mice was 

conducted. The analysis was performed in collaboration with Dr. Twal from the 

Medical University of South Carolina to test the levels of various inflammatory 

proteins. The following cytokines and chemokines were selected based on the 

cells detected in the air pouch: IL-1α, IL-1β, and TNF-α, IL-6, CXCL1, CCL2, 

CCL3, CCL4, and GM-CSF for macrophages; CXCL1-specific neutrophilic 

chemokine; CCL5 and CCL11 for eosinophils; and CCL2, CCL4, and CCL3 

macrophage-specific chemokines. The multiplex analysis showed that in the air 

pouch, there was a significant increase in CCL11, CCL2, and CXCL1 (Fig. 8a) 

and IL-6 and TNF-α, while for IL-1β, it was only detected with SiONPs (Fig. 8b), 

which is consistent with cells types recruited in the air pouch. These findings 

indicate that macrophages and eosinophils are the major cell types that 

contribute to inflammation induced by ZnONW in the air pouch; however, the 

actual events and pathways involved in the inflammation are not yet identified.   
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Lung inflammation induced by ZnONWs 

Inhalation is one of the most common exposure routes for ZnONW. 

Previous studies investigated inflammation induced by ZnONP in lung 

inflammation models; however, ZnONW has different physical properties than 

ZnONP but similar chemical compositions. Thus, whether ZnONW promote lung 

inflammation was examined using an acute two-day lung inflammation model. 

The mice were treated with antibiotics for a week before surgery to avoid 

infection after surgery, and after one week, the mice were surgically instilled 

(intra-tracheal) with endotoxin-free PBS (negative control) or 0.67 mg of 

endotoxin-free SiONP (positive control) or 0.67 mg of ZnONWs suspended in 

PBS without sonication. Particle suspension was vortexed before instillation to 

avoid the settling of the particles. The mice were continuously administered 

antibiotics until euthanized two days later. The lungs were lavaged, and 

bronchial alveolar lavage fluids (BALFs) were obtained. Both SiONP and 

ZnONW led to a massive influx of leukocytes in the lungs. Both the flow 

cytometry analysis and the cytospin of BALFs showed that macrophages and 

eosinophils were the predominant cells infiltrating the lungs with ZnONW, while 

SiONP only recruited neutrophils (Fig 9a). These data indicate that ZnONW 

have the ability to induce sterile inflammation that is distinct from the 

inflammation induced by other sterile nanoparticles, such as SiONP. 

Inflammatory mediators induced by ZnONW exposure in the lungs 

Similar to the air pouch model, the mediators that contribute to this 

distinct pattern of a sterile inflammatory response in the lungs were assessed. A 
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multiplex analysis for BALFs from PBS or particle-treated mice was performed to 

measure various inflammatory proteins. The following cytokines and chemokines 

were selected based on the cells detected in the lungs: IL-1α, IL-1β, TNF-α, IL-6, 

CXCL1, CCL2, CCL3, CCL4, and GM-CSF. For macrophage-specific 

chemokines, CCL2, CCL3, and CCL4 were selected. CXCL1 was selected for 

neutrophils, and CCL5 and CCL11 were selected for eosinophils. In the lungs, 

the levels of IL-6, TNF-α, CCL2, and CCL11 were elevated in ZnONW-treated 

mice; however, significant levels of IL-1β and CXCL1 were detected in BALF, 

which is consistent with neutrophilic inflammation that was induced by the 

SiONP administrated mice. These findings indicate that macrophages and 

eosinophils are the major cell types that contribute to inflammation induced by 

ZnONW in the lungs; however, the actual events and pathways involved in 

inflammation require further investigation.  
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Discussion: 

ZnONW has been introduced as part of everyday consumer products. It is 

important to protect workers and end users from the inhalation of potentially 

innocuous ENMs. To the best knowledge, inadequate data are available in the 

literature regarding the biological effects of ZnONW in vivo. To address this gap 

in knowledge, in this chapter, the consequences of local and systemic 

inflammatory responses to ZnONW investigated using in a mouse model have 

been discussed. Such studies are required to ensure the safe production and 

use of ZnONW. 

Local exposure such as dermal contact is considered a possible common 

exposure mode to ZnONW. Previous studies investigated dermal exposure to 

sunscreens containing ZnONP in both human and animal experimental models 

[227, 228]. ZnONP from sunscreen penetrate only the epidermis outer layer 

(stratum corneum) and were found in skin fold areas though not beyond them. 

These data suggested that skin exposure hazards of ZnONP are minimal and 

limited, and thus it is safe to use ZnONP in sunscreens [229-231]; however, 

most of these studies were done using healthy contact skin. Therefore, the skin 

exposure hazard of ZnONP for compromised and damaged skin is unknown. 

Further studies are necessary to elucidate this issue. 

In this study, and for the first time, a murine air pouch model was used to 

simulate local exposure to ZnONW. Earlier studies from the laboratory showed 

that crystalline silica exposure (CS) induced neutrophilic inflammation in the air 

pouch model with a significant increase in the levels of IL-1β and LTB4 [232]. 
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This type of inflammation observed with CS is linked to lipidosome activation and 

LTB4 production as well as to the NLRP3 inflammasome pathway, leading to 

caspase-1 activation [232, 233]. In this study, ZnONWs-induced inflammation 

resulted in the infiltration of macrophages and eosinophils and the production of 

CCL11, CCL2, IL-6, and TNF-α but not IL-β or LTB4. This is in contrast with 

significant neutrophilic inflammation induced by SiONPs treatment at the site of 

exposure (Fig. 7a, b) and significant levels of IL-β and LTB4 in the air pouch 

lavage (data not shown), as expected. Because IL-6 and TNF-α are produced 

after ZnONWs exposure, it appears that inflammation induced by ZnONWs is 

mediated via the NF-Κβ pathway. 

In addition to skin contact, inhalation is a general exposure route to 

ZnONW. Previous studies with ZnONP revealed that lung inflammation was 

detected in mice and rats exposed to ZnONP [153, 154, 234]. Most ZnONP 

animal studies were performed using allergic airway inflammation models that 

are prone to eosinophilic inflammation [153, 155, 158, 234]. It has been 

suggested that Zn2+ ions dissolved from ZnONP might be involved in ZnONP-

induced lung inflammation [92]. Nevertheless, the change in the morphology of 

ZnONW may influence the cellular uptake mechanisms and may cause a 

different immune response in vivo. Currently, workers are exposed to ZnONW, 

among other ENMs, without any permissible exposure limits. Respiratory 

diseases, such as fibrosis, asbestosis, and lung cancer, have been linked to 

inhalation exposure to fiber materials, such as carbon nanotubes and asbestos 

[235-237]. ZnONW has similar geometry properties as carbon nanotubes and 
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asbestos fibers. The intratracheal instillation of a 50mg/kg dose of CNTs induces 

pulmonary inflammation in mice through the recruitment of neutrophils and the 

activation of B cells [238]. Thus, ZnONW may need to be treated with the same 

caution as known inflammatory and carcinogenic materials, such as carbon 

nanotubes and asbestos. Based on the data from the murine inflammatory 

model, ZnONW induce a significant permeation of eosinophils and macrophages 

in BALFs, which was observed two days after ZnONW instillation without any 

prior sensitization (Fig. 9a, b). Furthermore, CCL11 (Eotaxin) and CCL2 

chemokines were identified as cellular mediators that are responsible for 

recruiting eosinophils and macrophages into the lungs after ZnONW exposure. 

In addition, elevated levels of IL-6 and TNF-α were detected in BALF. Previous 

studies with other ENMs, such as TiO2NP and NiONP, reported eosinophilic 

inflammation in mice with OVA sensitization or at day 4 post-lung instillation, 

respectively [239, 240]. The exposure of rod-like carbon nanotubes (rCNT) also 

triggered eosinophilic inflammation in wild-type mice after 4 h/day for four 

consecutive days of exposure, while tangled CNT (tCNT) did not elicit any 

inflammatory response [241]. The results suggest that the sterile inflammation 

induced by ZnONW is distinct from other ENMs-induced inflammation, and the 

major difference is related to the recruitment of eosinophils at the site of 

exposure by ZnONW compared to neutrophilic inflammation with SiONP. 
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Figure 6: Air pouch Model Experimental set-up. 

 Five ml of sterile air was injected into the back of mice subcutaneously to 

generate an air pouch. To maintain the air pouch 3 ml of sterile air was injected 

into the pouch Three days later. After 3 days, 2 mg of particles in 500 μl of 

endotoxin-free PBS was injected into the air pouch. Control animals received 

500 μl of endotoxin-free PBS. After 6 hours of injection, mice were euthanized 

and the air pouch was lavaged with 3ml of cold PBS. 

5 ml sterile air s.c.

into back of mice

3 ml sterile air to 

maintain air pouch 

• Air pouch is lavaged with 3

ml PBS

• Flow Cytometry.

• Cytospin analysis (analyze

the inflammatory cells).
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3 days

Particles

6 hrs.
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Figure 7: Local inflammation induced by ZnONWs in the air pouch.  

Sterile air was injected s.c. on the back of the wild-type (WT) mice to form an air 

pouch and exposed to nanoparticles (ZnONWs or SiONP) or PBS as described 

in methods. Six hours post particle exposure the air pouch was lavaged with 3ml 

of buffer to assess infiltrating immune cells. The total number of leukocytes and 

differential count for cell types recruited in the air-pouch are indicated (a). 

Cytosine slides showing macrophage (red arrow), neutrophils (blue arrow) and 

eosinophils (black arrow) (b). Data are expressed as mean ± SE. *p<0.05, ***p< 

0.001 non-parametric t-test. Data are representative of at least five mice per 

group. 
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Figure 8: Inflammatory mediators induced by ZnONWs exposure in lung. 

Cytokines and chemokines levels were analyzed in air-pouch lavage from PBS or 

particles treated mice using Multiplex analysis. Levels of various inflammatory 

proteins CCL2, CCL4, CCL11, CXCL1 and CXCL2 levels (a). IL-6, TNF-α and IL-

1β levels (b). Data represent at least 5 mice 656 per group; error bars denote 

mean ± SEM. *P < 0.03, **P < 0.009, ***P < 0.0007; 657 Unpaired t-test. 
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Figure 9: Nano-particle induced acute lung inflammation. 

WT mice were intratracheal instilled with nanoparticles (ZnONW or SiONP) or 

PBS as described in methods. Lungs were lavaged with 3ml of buffer to assess 

infiltrating immune cells as identified by flow cytometry of BALFs (a). Total 

number of leukocytes and differential count for cell types recruited in the lung are 

indicated above. Representative cytospin slides showing macrophages (red 

arrow), neutrophils (blue arrow) and eosinophils (black arrow) (b). Data are 

expressed as mean ± SE. *p<0.05, ***p< 0.001 non-parametric t-test. Data are 

representative of at least five mice per group. 
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Figure 10: Inflammatory mediators induced by ZnONWs exposure in lung. 

Cytokines and chemokines levels were analyzed in BALFs from PBS or particles 

treated mice using Multiplex analysis. Levels of various inflammatory proteins 

CCL2, CCL4, CCL11 and CXCL1 levels (a). IL-6, TNF-α and IL-1β levels (b). 

Data represent at least 5 mice 656 per group; error bars denote mean ± SEM. *P 

< 0.03, **P < 0.009, ***P < 0.0007; 657 Unpaired t-test. 
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CHAPTER 4 

CELLULAR AND MOLECULAR MEDIATORS INDUCED BY 

ZNONWs EXPOSURE 

Introduction: 

ZnONP toxicity has been extensity studies in a different mammalian cell 

lines [242]. The uptake mechanism and biological effect of ZnONP has also 

been studied in several in vivo and in vitro studies; however, novel ZnONW, 

which have a one-dimensional shape, were investigated in this study. The 

uptake and recognition mechanisms of these nanowires have not yet been 

identified. Moreover, most toxicity studies conducted with ZnONP showed that 

their toxicity is due to the solubility of ZnONP to zinc ions [52, 92, 93, 243, 244]. 

Still, the change in the physical properties of ZnONW may actually alter their 

interactions with immune cells. Subsequently, this could impact the uptake 

pathways of ZnONW, leading to differences in biological responses to ZnONW. 
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Very limited data are available related to ZnONW toxicity and 

translocation within the cells. ZnO nano-rods were found to be more toxic than 

ZnONP in Hela cells [243]. Exposure to rod-shaped ZnONP (100-200 nm) 

induces toxicity in human aortic endothelial cells at 10 and 50 μg/mL 

concentrations [244]. Furthermore, ZnONW were found to be toxic to HMMs at a 

concentration of 20μg/ml after 24 hours of exposure [92]. Pathogen uptake and 

degradation occur through the phagosomal maturation pathway such as 

endocytic pathway, and particles undergo the same process. It is a well-

organized process that allows for particle transition into the intracellular 

compartments of the cell. First, it begins with early endocytic vesicles that 

contain the particles in the peripheral cytoplasm. Then, the particles within the 

early endocytic content are delivered to early endosomes (EE) that have a 6.2 

pH level. EEs receive cargo from differed pathways, such as the clathrin and 

caveolar mediated pathways or the EEC and ARF6-dependent pathways. The 

content of EE is carried to large vesicles called late endosomes (LE), where the 

pH level is gradually reduced to 5.5. Next, in the perinuclear region, the plasma 

membrane and other compartments are recycled and sent back to the cell 

surface through recycling endosomes. Lastly, LEs fuse to the lysosomes with a 

final pH level equal to 4.5, and the contents are digested by the lysosomal 

hydrolases [245]. 

 Under acidic conditions, such as the lysosomal vacuoles of the cells, 

ZnO has a highly sensitive dissolution point. The release of the zinc cation from 

ZnONP induces phagosomal membrane destabilization, leading to autophagy 



63 

and cell death [246]. Furthermore, the production of lysosomal proteases 

promotes ROS generation and induces the activation of inflammatory pathways. 

According to Roy et al., ZnONP triggers the production of ROS and enhance 

inflammatory signaling pathways, such as the MAPK kinases and NF-κB 

cascades, as well as the production of pro-inflammatory cytokines, such as IL-8, 

IL-6, and TNF-α [141]. Furthermore, they found that caveolae-mediated 

endocytosis is the primary mechanism in which ZnONP is taken up by peritoneal 

macrophage. 

 In chapter three, it has been demonstrated that ZnONW induced sterile 

inflammation by recruiting macrophages and eosinophils both in lung and air- 

pouch mouse models. In addition, ZnONW induced macrophage-specific (CCL2) 

and eosinophil-specific (CCL11) chemokines and cytokines, such as IL-6 and 

TNF-α, in the air pouch and lungs because tissue-resident macrophages and 

epithelial cells coordinate the inflammatory response. Thus, it is imperative to 

determine which cell types produce these chemokines and cytokines in 

response to ZnONW. The identification and understanding of the cellular 

mediators that are involved in inflammation induced by ZnONW would help in 

defining the underlying inflammatory mechanisms activated by ZnONW. This 

understanding might also provide useful insights into and knowledge of the 

inflammatory potential of other ENMs with similar shapes and sizes as ZnONW. 

In this study, the cellular uptake, subcellular localization, and 

inflammatory and toxic effects of ZnONW on cellular models were investigated. 

To represent phagocytic cells, BMDMs and RAW 264.7 cells were chosen, while 
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LKR13 cells were chosen to represent bronchial epithelial cells. First, to track 

ZnONW’ cellular uptake and localization, it was necessary to generate 

fluorescent-labeled ZnONW (FITC-ZnONW). BMDM was exposed to FITC-

ZnONW, and the uptake and localization of these particles in the lysosomes was 

detected using confocal microscopy. To prevent the solubilization of ZnONW, 

Bafilomycin-A1 (Baf-A1), a macrolide antibiotic isolated from the streptomyces 

species that inhibits the vacuolar H+ATPase (V-ATPase), was used to inhibit the 

acidification of phagosomes. Next, the cell types that are involved in the 

production of IL-6 and TNF-α cytokines and chemokines CCL11 and CCL2, 

which were integrated into the inflammatory response in vivo in mouse models, 

were identified. BMDM, RWA264.7, and LKR13 cell supernatants were used to 

measure the levels of TNF-α, IL-6, IL-1β, and LTB4 and CCL11 and CCL2. 

Then, the requirement of phagocytosis for IL-6 and TNF-α production was 

investigated using CytD. Cell lysate was used to measure the fold changes in 

the expression levels of mRNA of TNF-α, IL-6, CCL2, CCL3, CCL4, CXCL1, and 

CCL11 in BMDMs, RAW 264.7 cells, and LKR13 cells. 
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Results: 

Preparation and characterization 

ZnONWs were synthesized using downstream microwave plasma reactor 

methods with a rapid oxidation of zinc powders in a gas phase [23]. The 

dimensions of ZnONWs as determined by Scanning Electron Microscopy (SEM) 

were around 20-120 nm in diameter and 5000 nm in length (Figure 11). 

Cytotoxicity of ZnONWs for BMDM, LKR13, and RAW 264.7 cells 

Previous studies showed the toxicity of ZnONP for mammalian cells in 

vitro [13, 25-27].  ZnONP induced toxicity in a variety of cells, such as kidney, 

liver, and lung cell lines [12, 13, and 26]. To investigate whether ZnONW exhibit 

distinct cytotoxicity profiles, both dose response and time course studies were 

conducted. The MTT assay was used to measure the metabolic activity of cells. 

First, macrophage cell lines (RAW-264.7 cells) were stimulated with different 

doses of ZnONW of 5, 10, 20, and 100 μg/ml for six hours. It was observed that 

at 5, 10, and 20 μg/ml, and the cells were 95% viable, whereas 100 μg/ml 

reduced the cells’ viability by approximately 20% (Fig. 12a). As a result, 20 μg/ml 

and 100 μg/ml doses were selected to perform the time course studies. As 

shown (Fig. 12b), nearly 100% of the cells were viable after 18 hours of 

treatment with 20 μg/ml dose of ZnONW, whereas more than a 50% cell death 

was observed at 100 μg/ml. The cytotoxicity of ZnONW was also determined in 

other cell types, such as BMDM and LKR13 cells. In LKR13, a similar toxicity 

trend as RAW-264.7 cells was observed, as shown in Fig. 13a. In BMDM, a 20 
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μg/ml concentration of ZnONW induced significant toxicity after 18 hours of 

exposure by a reduction in cell viability up to 30%, whereas 100 μg/ml induced 

toxicity after only 4 hours of ZnONWs stimulation (Fig. 13b). Thus, all further 

studies with different cell types were performed with 20 μg/ml or less doses of 

ZnONW for 6 hours of treatment. 

 

Cellular uptake and translocation of ZnONWs 

  To investigate the cellular uptake of ZnONW in BMDMs cells, FITC-

labeled ZnONW was generated as previously described [20]. Since ZnONW 

tend to dissolve in the acidic condition, we used Baf-A1 to block the acidification 

and to facilitate the visualization of ZnONWs in the cells. In order to investigate 

the effect of Baf-A1 on blocking the acidification of the phagolysosome Acridine 

orange staining was used. Cells were primed with LPS for three hours followed 

by a one-hour pre-treatment with or without Baf-A1. Then, cells were exposed to 

25 µg/ml FITC-labeled ZnONW for three hours and washed. Followed by 

Acridine orange staining and examined by confocal microscopy. As shown in Fig 

14 ZnONWs treated cells showed enlarged lysosomal compartments whereas in 

Baf-A1 treated ZnONWs exposed cells no lysosomal staining was observed. 

These data suggested that Baf-A1 prevent block the acidification of the 

phagolysosome. To evaluate the uptake of the ZnONWs, cells were primed with 

LPS for three hours followed by a one-hour pre-treatment with Baf-A1. Then, 

cells were exposed to 25 µg/ml FITC-labeled ZnONW for three hours and 

washed and examined by confocal microscopy. As shown in Fig 15, intracellular 
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ZnONW was detected only in cells pre-treated with Baf-A1, whereas cells that 

were not treated with Baf-A1 did not show an intracellular accumulation of 

ZnONW particle. These results suggest that the inhibition of phagolysosome 

formation prevents the dissolution of intracellular ZnONWs in the cells. 

Next, to track the trans-location of FITC-ZnONW in the cells, LAMP-1 

staining, LAMP-1 stains late endosomal and lysosomal compartments in the cell, 

was used. Baf-A1-treated BMDMs were stimulated with FITC-ZnONW followed 

by LAMP-1 staining. The ZnONW treatments exhibited lysosomal clumping 

(Fig.16a). The LAMP-1 staining was overlapped by the FITC- ZnONW (Fig.16b). 

ZnONW induces the release of pro-inflammatory mediators by 

macrophages in vitro 

To examine the inflammatory potential of ZnONW, BMDMs were treated 

with ZnONW, and the levels of pro-inflammatory cytokines, such as IL-1β, IL-6, 

and TNF-α, as well as the lipid chemokine LTB4 were measured in culture 

supernatants. Our previous study showed that SiONP induce the production of 

IL-1β and LTB4. Thus SiONP was used as positive controls for the production of 

IL-1β and LTB4 [19, 28]. The treatment of BMDMs with ZnONW or ZnONP did 

not result in any significant accumulation of IL-1β or LTB4 (Fig. 17a). As 

expected, SiONP treatments induced the production of IL-1β and LTB4 in 

BMDMs (Fig. 17a). ZnONW induced a dose-dependent increase in the 

production of the cytokines IL-6 and TNF-α (Fig. 17b). Furthermore, treatment 

with Baf-A1 significantly reduced the ZnONW-induced production of these 
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cytokines (Fig. 17b). A similar dose-dependent cytokine induction profile was 

observed in RAW 264.7 cells treated with ZnONW (Fig 18); however, the 

exposure of lung epithelial cell line LKR13 to ZnONW did not result in either IL-6 

or TNF-α production. These results suggest that ZnONW could induce the 

synthesis of pro-inflammatory cytokines IL-6 and TNF-α but not IL-1β or LTB4. 

The soluble Zn ions are mediating the toxicity of ZnONWs. However, did Zn ions 

induce the production of these cytokines? In order to investigate the ability of 

soluble zinc induce the induction of IL-6 and TNF-α. BMDMs were treated with 

ZnCl₂ for six hours. Then IL-6 and TNF-α were measured in culture supernatants 

supernatant. Interestingly, treatment of cells with ZnCl₂ did not induce the 

production of these cytokines (Fig 19). 

ZnONWs upregulate TNF-α, IL-6, CCL11, and CCL2 at mRNA expression 

level 

Previous studies showed that CS exposure in the lungs leads to an 

increase in LTB4, IL-1β, and many CXC chemokines [232]. Because ZnONW-

induced inflammation is significantly different from that of CS-induced 

inflammation, the mediators that contribute to this distinct pattern of inflammatory 

responses were examined. The mRNA levels of various cytokines and 

chemokines that regulate macrophage and eosinophilic inflammation were 

measured based on the cell types detected in in vivo studies. In BMDMs (Fig 20) 

and RAW 246.7 cells (Fig 21), the ZnONW and ZnONP resulted in significantly 

increased CCL4 and CCL11 and IL-6 and TNF-α expression. In addition, in the 
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culture supernatant, the CCL11 level was significantly increased, whereas CCL2 

was not significant (Fig 20). In contrast, the exposure of the lung epithelial cell 

line LKR-13 led to an enhanced expression of CCL2 and CCL11 mRNAs and 

protein levels in cell supernatants by ZnONW and ZnONP (Fig 22). The CCL11 

protein was upregulated in culture supernatants of ZnONWs exposed BMDMs 

and LKR13 cells (Fig 23). Whereas CCL2 were levels increased only in 

supernatants from LKR13 cells but not in BMDMs (Fig 23).These findings 

suggest a basis for the recruitment of macrophages and eosinophils due to the 

exposure of ZnONW. 

Phagocytosis is required for ZnONWs-induced TNF-α and IL-6 production 

To assess the cellular uptake mechanisms of ZnONW, cells were pre-

treated with cytochalasin D (CytD) (phagocytosis inhibitor) and Baf-A1 [19, 24]. 

CytD treated cells did not show intracellular FITC-ZnONW, suggesting that 

phagocytosis is required for their uptake (Fig 24a).Furthermore, treatment with 

CytD significantly reduced the ZnONWs induced production of IL-6 and TNF-α 

(Fig 24b). 
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Discussion: 

ZnONP has been known to induce toxicity and cell death to different 

mammalian cell lines [12, 32, 40-42]. It has been suggested that the solubility of 

ZnO in the acidic vacuoles is the underlying cause of ZnONP toxicity; however, 

the physical properties play a major role in ENPs toxicity. Thus, whether the 

change in the shape of high aspect ZnONW elicits a different toxicity behavior 

than ZnONP was investigated. It was found that ZnONW induced toxicity in 

different cell types, including BMDM, RAW 267.4, and LKR13 cells (Fig. 12, 13). 

Significant cell death was observed at 20 μg/ml of ZnONW after 18 hours of 

exposure; however, at 100 μg/ml, the cell viability was further reduced even at 

four hours of ZnONW exposure (Fig. 12). These results are in agreement with 

other previous studies, which suggested that ZnONW induce toxicity in cultured 

cells [4, 43]. Thus, all further studies with different cell types were performed at 

20 μg/ml or less doses of ZnONW for six hours of exposure. 

Macrophages play an important role in innate immune responses against 

ENMs [32]. The uptake mechanisms of the ENMs largely depend on the 

physiochemical properties of the particles, such as shape and size. Previous 

studies showed that the cellular uptake of ENMs, such as ZnONP, gold 

nanoparticles, sliver nanoparticles, iron oxide nanoparticles, and carbon 

nanotubes, is facilitated via clathrin, caveolae, and/or scavenger receptor-

mediated endocytic pathways [141, 247-252]. In addition, very little free Zn ions 

exist in the cytosol of healthy cells, and they are mostly found to be bounded to 

proteins, such as metallothionins, or to be sequestered in cellular organelles, 
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such as mitochondria and lysosomes [253]. According to Xia et al., only small 

faint particles remnants were detected in RAW 264.7 after exposure to FITC-

labeled ZnONP [224]. This could be explained by the dissolution of ZnONP 

inside the acidic vacuoles of the cells. Therefore, Baf-A1 was used to block the 

acidification of the acidic compartment of the cells (lysosome). To assess the 

effect of Baf-A1 on lysosomal acidification, acridine orange staining was used. 

Acridine orange emits green fluorescence in nuclear and cytoplasmic 

compartments, while acidic lysosomes or phagolysosome are stained orange to 

red. ZnONW-treated cells showed red enlarged lysosomal compartments. 

Acridine orange staining in the lysosomal compartments was completely absent 

in Baf-A1-treated cells exposed to ZnONW (Fig. 14). This indicated that Baf-A1 

inhibited the acidification of the acidic compartment in the cells. 

ZnONW was detected in intracellular compartments only in the presence 

of Baf-A1 (Fig. 15 a and b), an inhibitor of vacuolar acidification. It was concluded 

that in the absence of Baf-A1, the ZnONW taken up by these cells are readily 

solubilized to generate Zn ions. 

The inflammatory pathways triggered by ENMs, such as SiONP, titanium 

dioxide nanoparticles (TiONP), and carbon nanotubes (CNT), were all linked to 

the activation of the inflammasome –caspase-1 related pathway (NLRP3) and 

the release of the cytokine IL-1 β [95, 96]. The current studies showed that the 

stimulation of BMDMs and RAW 267.4 cells with ZnONW did not induce IL- β or 

LTB4 production, whereas SiONP induced  both IL- β and LTB4 (Fig. 17a), as 

expected. These results suggest that ZnONW do not activate the NLRP3 
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inflammasome pathway; however, ZnONP is known to induce the production of 

IL-6 and TNF-α [138, 254, 255]. The results also showed that ZnONW exposure 

leads to a significant increase in the production of both IL-6 and TNF-α in a dose-

dependent manner in RAW267.4 (Fig. 18) and BMDM but not in LKR13 (Fig.17b) 

cells; however, in the presence of Baf-A1, exposure to ZnONW did not result in 

any IL-6 or TNF-α production, suggesting that soluble Zn ions mediate the 

induction of these cytokines (Fig.17b). Interestingly, the treatment of cells with 

ZnCl2 did not induce the production of these cytokines (data not shown). Thus, 

the uptake of the particles as well as their dissolution within the phagolysosomeal 

compartment appears essential for the induction of cytokines, and the externally 

provided ZnCl2 is not sufficient for activating the production of pro-inflammatory 

cytokines. Furthermore, both ZnONP [138, 254, 255] and ZnONW (current study) 

induced a similar cytokine profile, which suggests that it is the chemical nature 

rather than the shape of the ZnO ENMs that is the primary cause of the observed 

cytokine profile. Together, these results suggest that ZnONW induce a distinct 

inflammatory pathway from SiONP and other ENMs. 

The molecular basis for the in vivo ZnONW-mediated cellular infiltration 

was further analyzed in vitro in different cell types. The CCL11, CCL2, IL-6, and 

TNF-α expression levels in BMDM (Fig. 19), RAW 267.4 (Fig. 20), and LKR13 

cells (Fig. 21) stimulated with ZnONW was examined. The data suggested that 

lung epithelial cells and resident macrophages could be the primary responders 

to ZnONW, producing CCL2 and CCL11 and leading to macrophage and 

eosinophil recruitment to the site of exposure. Moreover, macrophages are 
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considered one of the major sources for TNF-α production upon activation. When 

cells are exposed to TNF-α, NF-kβ is activated, leading to the expression of 

many pro-inflammatory cytokines genes, such as IL-6 [256]. Furthermore, the 

upregulation of CCL11 and CCL2 mRNA expression is mediated via the 

intracellular signaling of TNF-α through the NF-Κβ pathway [257]. Because NF-

Κβ is a transcription factor known to regulate both CCL11 and CCL2 promoters 

and to signal downstream of both the IL-6 and TNF receptors [257-259], further 

studies are needed to define the NF-Κβ signaling pathways that are activated 

upon ZnONW exposure and therefore involved in the production of CCL11, 

CLL2, IL-6, and TNF-α. 

Phagocytosis typically involves the uptake of larger particles (>250nm). 

Aggregates of the FITC-ZnONW in the vacuoles (Fig. 15a) were consistently 

observed, suggesting that they may be taken up by the actin-dependent 

endocytic pathways. Consistent with this notion, treatment with CytD completely 

blocked the uptake of FITC-ZnONW (Fig. 23a). Moreover, CytD exposure to 

ZnONW did not result in any IL-6 or TNF-α production (Fig. 23b), suggesting that 

phagocytosis is required for the uptake and the production of IL-6 and TNF-α. 

In summary, ZnONW induced the production of pro-inflammatory 

cytokines IL-6 and TNF-α and and eosinophil-specific CCL11 in BMDMs. In 

contrast LKE13 cells induce the production of CCL2 and CCL11 only but not IL-6 

and TNF-α. These results suggest that lung epithelial cells could be the primary 

source for CLL2 and CLL11 which lead to recruitment of macrophage and 
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eosinophils to the site of exposure. And macrophages as the secondary 

responder that in turn produce the IL-6, TNF-α and CCL11. 
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Figure 11: Scanning Electron Microscopy (SEM) of ZnONWs. 

Scanning Electron Microscopy (SEM) image of ZnONWs indicating size of 

individual nanowires. The dimensions of ZnONWs as determined by Scanning 

Electron Microscopy (SEM) were around 20-120 nm in diameter with 5000 nm in 

length. 
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Figure 12: Cytotoxicity assessment of ZnONW. 

0.5x106 cells /ml of RAW-264.7 cells were stimulated with different 

concentrations for different times with ZnONW as indicated or with PBS as 

negative control. Cell viability was assessed using MTT test. RAW-264.7 cells 

were stimulated with ZnONW 5, 10, 20 and 100 μg/ml for 6 hours (a). Time 

course study for RAW-264.7 cells, cells were stimulated with ZnONW 20μg/ml & 

100μg/ml concentrations for 2, 4, 6 & 18 hours (b).  Data represented is from 

one of the three experiments. Data are expressed as mean ± SE. **p< 0.01, 

***p< 0.001 non-parametric-test.  
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Figure 13: Cytotoxicity assessment of ZnONW. 

0.5x106 cells /ml of BMDMs from WT mice, LKR13 cells were stimulated with 

different concentrations for different times points with ZnONW as indicated or 

with PBS as negative control. Cell viability was assessed using MTT test. LKR13 

cells were stimulated with ZnONW 20μg/ml & 100μg/ml concentrations for 2, 4, 6 

& 18 hours (a). BMDMs were stimulated with ZnONW 20μg/ml & 100μg/ml 

concentrations for 2, 4, 6 & 18 hours (b). Data represented is from one of the 

three experiments. Data are expressed as mean ± SE. **p< 0.01, ***p< 0.001 

non-parametric-test. 
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Figure 14: Inhibition of phagolysosome formation using Baf-A1 inhibitor. 

LPS-primed BMDMs were stimulated with 25 μg/ml ZnONW for 3 h in the 

presence (b) or absence of Baf-A1 (a). Cells were stained with acridine orange 

for 30 min after ZnONWs exposure. Acridine orange stains the acidic vacuoles in 

the cells such as phagolysosome with orange to red color whereas DNA/RNA or 

cytoplasm of the cell with green color. Cells were visualized by Nikon A1 confocal 

microscopy. A minimum of five fields were captured for each sample in every 

experiment. 
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Figure 15: Cellular uptake of ZnONWs. 

 LPS-primed BMDM cells were stimulated with 30µg/ml FITC-ZnONW for 3h in 

the presence or absence of Baf-A1 (1μg/ml). Cells were stained with cholera-

toxin B (red) and DAPI (blue) for 20min after fixation and visualized by Nikon A1 

confocal microscopy (a). The density of intracellular ZnONW particles was 

calculated as number of particle events/ high power field as indicated in (b). Data 

represented is from one of the three experiments. Data are expressed as mean 

± SE. **p< 0.01, ***p< 0.001 non-parametric-test. 
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Figure 16: Sub-cellular localization of ZnONWs. 

 LPS-primed BMDM cells were stimulated with 30 µg/ml FITC-ZnONW for 3h in 

the presence or absence of Baf-A1 (1 μg/ml). After fixation and permeabilization, 

cells were stained with 1 μg/ml 1 μg/ml anti LAMP-1 antibody followed by Alexa 

594 labeled antibody to visualize lysosomes (red) and DAPI (blue) (a). The 

intensity plot shows the overlapping of green and red signals (b). 
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Figure 17:  ZnONWs exposure induced the release of pro-inflammatory 

mediators by macrophages in vitro.  

Pro-inflammatory cytokines levels from PBS or particles (ZnONP, ZnONW & 

SiONP) exposure in culture supernatants were analyzed using ELISA. IL-1β and 

LTB4 levels were measured in BMDMs exposed for 6hrs.  Cells were primed with 

LPS (10ng/ml) for 3h and washed and then treated with ZnONW, ZnONP, SiONP 

or PBS (a). BMDMs cells were primed with LPS (10ng/ml) for 3h and washed 

then treated with or without Baf-A1. Then cells were treated with ZnONW or PBS 

for 6hrs, IL-6 and TNF-α levels were measured as indicated (b).  Data 

represented is from one of the three experiments. Data are expressed as mean ± 

SE. **p< 0.01, ***p< 0.001 non-parametric-test. 
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Figure 18: ZnONWs exposure induced the release of pro-inflammatory 

mediators by macrophages in vitro.  

Pro-inflammatory cytokine levels from PBS or particles (ZnONP, ZnONW & 

SiONP) treated RAW264.7 cell culture supernatants were analyzed using 

ELISA. RAW 264.7 cells were stimulated with LPS (10 ng/ml) for 3h. Then cells 

were treated with ZnONW, ZnONP, SiONP or PBS for 6hrs (a) or 18 hrs (b) and 

the IL-6 and TNF-α levels were measured in the supernatants. Data represented 

is from one of the three experiments. Data are expressed as mean ± SE. **p< 

0.01, ***p< 0.001 non-parametric-test. 
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Figure 19: ZnCl2 did not induced the release of IL-6 or TNF-α by 

macrophages in vitro. 

BMDM cells were stimulated with LPS (10ng/ml) for 3h. Then cells were treated 

with ZnONW, ZnONP, ZnCL, SiONP or PBS for 6hrs, IL-6 (a) and TNF-α (b) 

levels were measured as indicated in the culture supernatants using ELISA. 

Data represented is from one of the three experiments. Data are expressed as 

mean ± SE. **p< 0.01, ***p< 0.001 non-parametric-test.   
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Figure 20: Inflammatory mediators induced by ZnONWs exposure.  

Cytokines and chemokines expression levels were analyzed in BMDM cells and 

LKR13 cells from PBS or particles treated cells using qRT-PCR. Various level of 

inflammatory genes mainly IL-6, TNF-α, CCL2, CCL4, CCL11, CXCL1 & CXCL2. 

(a) Cytokines and chemokines levels from BMDMs cells. (b) from LKR13 cells. 

Data represented is from one of the three experiments. Data are expressed as 

mean ± SE. **p< 0.01, ***p< 0.001 non-parametric-test. 
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Figure 21: Expression levels of inflammatory marker induced by ZnONWs 

in RAW 264.7 cells. 

Expression of cytokines and chemokines mRNA levels were analyzed in RAW 

264.7 cells exposed to PBS or particles treated cells using qRT-PCR. 

Inflammatory marker IL-6, TNF-α, CCL2, CCL4, CCL11, CXCL1 and CXCL2. 

Data represented is from one of the three experiments. Data are expressed as 

mean ± SE. **p< 0.01, ***p< 0.001 non-parametric-test. 
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Figure 22: Inflammatory mediators induced by ZnONWs exposure.  

Cytokines and chemokines levels were analyzed in LKR13 cells from PBS or 

particles treated cells using qRT-PCR. Various level of inflammatory genes 

mainly IL-6, TNF-α, CCL2, CCL4, CCL11, CXCL1 & CXCL2. Data represented is 

from one of the three experiments. Data are expressed as mean ± SE. **p< 0.01, 

***p< 0.001 non-parametric-test. 
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Figure 23: CCL11 and CCL2 levels induced by ZnONWs in BMDMs and 

LKR13 cells. 

The levels of CCL11 and CCL2 proteins were determined in the culture 

supernatants from (a) BMDM and (b) LKR13 cells using ELISA. Data 

represented is from one of the three experiments. Data are expressed as mean ± 

SE. **p< 0.01, ***p< 0.001 non-parametric-test. 
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Figure 24: Phagocytosis is required for ZnONWs induced TNF-α and IL-6 

production. 

10 ng/ml LPS-primed BMDM cells were stimulated with 25 µg/ml FITC-ZnONW 

for 2h in the presence or absence of CytD (10µg/ml). Cells were stained with 

cholera-toxin B (red) and DAPI (blue) for 20 min after fixation and visualized by 

Nikon A1 confocal microscopy (a). BMDMs cells were primed with LPS 

(10ng/ml) for 3h and washed then treated with or without (1 μM) Baf-A1. Then 

cells were treated with ZnONW or PBS for 6hrs, IL-6 and TNF-α levels were 

measured as indicated (b). Data represented is from one of the three 

experiments. Data are expressed as mean ± SE. **p< 0.01, ***p< 0.001 non-

parametric-test. 
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CHAPTER 5 

CONCLUSIONS 

In the last two decades, with the advent of nanotechnology, the use of 

ENMs have become widespread due to their applicability in many areas 

including industry, agriculture, and medicine. ENMs are materials that were 

created and designed with specific shapes and sizes to produce new materials 

at nano-scale. The rapid development and the increase in use of ENMs in 

consumer products have created a gap and challenge through limited knowledge 

about the safe and sustainable use of ENMs. Previous studies indicated that 

some ENMs can be cytotoxic. Furthermore, some forms of ENMs can cross the 

blood-brain barrier inducing neurotoxicity, brain tissue damage, and 

inflammation [260]. However, the long-term consequences of exposure to most 

of these particles are unknown. 

Zinc oxide (ZnO) has long been employed in many consumer products 

especially in sunscreen [225]. Despite the common use of ZnONP, the safety of 

these particles needs further investigation and the potential biological effects to 

humans are still unclear. 
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Moreover, the tremendous advancement in the field of nanotechnology 

has led to the emergence of new forms of ZnO ENMs called high aspect ratio 

ZnONW. These particles are being developed and introduced to the market with 

production rate estimated by millions of tons per year. The use of ZnONP is 

considered relatively safe, however with ZnONW, there is uncertainty about the 

safety of these ZnONW and their impact at the biological level. The rapid 

production of ZnONW pose a large of risk exposure for public and foundry 

workers. 

Here in this study we found that ZnONW induces toxicity and cell death to 

BMDM, RAW267.4, and LKR13 cells. Significant toxicity was observed at 20 

μg/ml of ZnONWs exposure for 18 hrs. However, at 100 μg/ml the cell viability is 

further reduced even at 4h of ZnONWs exposure. Based on previous studies 

done with ZnONP as mentioned in chapter 1, the toxicity is mainly due to the 

solubility of ZnONP inside the acidic vacuoles of the cells. We speculated that 

ZnONW induce toxicity similar to ZnONP since both ZnONW and ZnONP have 

the same chemical composition. 

The uptake mechanisms of the ENMs largely depend on shape, size and 

physiochemical properties of the particles. Previous studies showed that cellular 

uptake of ENMs such as ZnONPs, gold nanoparticles, sliver nanoparticles, Iron 

oxide nanoparticles and carbon nanotubes is facilitated through different uptake 

mechanism based on the size of ENMs [67, 248-250, 260, 261]. ENMs that have 

size less than 10 nm cross cell membrane via direct diffusion or non-specific 

pathways. Clathrin, caveolae and/or scavenger receptor-mediated endocytic 
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pathways were found mainly with ENMs that have a size between 50- 150 nm. 

Larger ENMs (200-2000 nm) were believed to be internalize thorough 

phagocytosis pathway. Our studies showed that visible uptake of FITC-ZnONW 

aggregate with cells that were treated with Baf-A1. Based on the aggregate size 

we speculated that these FITC-ZnONW aggregate may be taken up by the actin-

dependent endocytic pathways. Consistent with this notion, treatment with CytD 

completely blocked the uptake of FITC-ZnONW. These results indicated that 

phagocytosis appeared to be essential for uptake of ZnONW. 

Direct contact through skin and airway exposure are the most common 

routes of exposure to ZnONW. This current study provided the first experimental 

evidence that ZnONW induce localized inflammation in a murine air-pouch 

model, resulting in a broad inflammatory response by infiltration of 

macrophages, eosinophils, and neutrophils: production of CCL11, CCL2, IL-6 

and TNF-α. In contrast, intra-tracheal instillation of ZnONW in a healthy mouse 

without prior sensitization induced eosinophilic air-way inflammation and a tight 

and regulated inflammation in the lung by a massive influx in macrophages and 

eosinophils as well as remarkable increase in levels of CCL11, CCL2, IL-6 and 

TNF-α that are consistent with cell types infiltrated in the lung. The inflammatory 

response from ZnONW was distinct and different from SiONPs that induce 

neutrophilic inflammation both in lung and air-pouch. 

To have a better understanding of this type of inflammation, the 

inflammatory mediators induced upon ZnONW exposure were investigated. 

Inflammasome (NLRP3) and IL-1β release are considered as common pathway 
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in which ENMs induce sterile inflammation [100]. Previous studies from table 2 

above showed that some ENMs such as SiONP, CNT and TiONP induce the 

production IL-1β throw the activation of Inflammasome (NLRP3) pathway. On 

the other hand most of these studies did not investigated the possibility of 

endotoxin (LPS) contamination of ENMs, LPS contamination could lead to a 

misleading result since LPS could induce the activation of Inflammasome 

(NLRP3) pathway and production of IL-1β.  Here, ZnONW was made endotoxin-

free by baking at 200°C overnight to overcome the possibility of endotoxin (LPS) 

contamination.  Earlier studies from our laboratory showed that crystalline silica 

exposure (CS) induced neutrophilic inflammation in the air pouch model with a 

significant increase in the levels of IL-1β and LTB4 [232]. This type of 

inflammation observed with the CS is linked to the lipidosome activation and 

LTB4 production as well as NLRP3 inflammasome pathway leading to caspase-

1 activation [232]. ZnONW did not induce the production of IL-1β nor LTB4. 

Indication that ZnONW do not activate the inflammasome pathway. Instead 

ZnONW induce the production of IL-6 and TNF-α in a dose-dependent manner. 

Since IL-6 and TNF-α are produced after ZnONWs exposure, it appears that 

inflammation induced by ZnONWs is mediated via NF-Κβ pathway. IL-6 and 

TNF-α level were significantly reduced and after Baf-A1 and CytD treatment, 

suggesting that both the uptake and solubility of ZnONW essential for IL-6 and 

TNF-α. Moreover, exposure of BMDM to ZnONW induced the production of 

CCL11 while LKR13 cells induced both CCL11 and CCL2. The production of 

these chemokines and cytokines were consistent with our previous findings to 
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the cell types recruited in the site of exposure in lung and air-pouch mouse 

model. 

ZnONP toxicity was linked to the solubility of the particles under acidic 

conditions in the cell. However, pre-treatment of BMDMs with Baf-A1 did not 

result of IL-6 or TNF-α production upon ZnONW exposure. These results 

indicated that soluble zinc ions were mediating the production of these 

cytokines. In addition, treatment of BMDMs with ZnCl2 was not sufficient for the 

production of pro-inflammatory cytokines, suggesting that the uptake of ZnONW 

and their dissolution within the phagolysosome compartment is required for the 

activation and production of IL-6 and TNF-α. 

Studying the potential negative health implications for ZnONW exposure 

in animal models might give an insight to the possible adverse outcome for 

exposure to these particles and other ENMs that have similar properties. 
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Figure 25: Graphical summary. 

Cells take up ZnONW by phagocytosis process. During phagosome 

maturation pH drops and ZnONWs starts to dissolve. The intracellular 

dissolution leads to an increase of the Zn ion concentration and lysosomal 

destabilization, leading to toxicity and production of IL-6 and TNF-α, CCL2, 

and CCL11. Blocking the acidification of phagolysosome with Baf-A1 prevents 

the production of these cytokines. 
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FUTURE DIRECTIONS 

This dissertation studied the potential toxicity and inflammatory effects of 

ZnONW in a murine mouse model and cultured cells. Although this study 

outlines only the biological consequences for exposure to ZnONW in vivo and 

ex-vivo, it raises important issues and questions that are needs to be addressed 

and worth investigation. 

Studies presented here indicated that ZnONW induce toxicity and cell 

death to different cell lines. Toxicity of ENMs depends on both the physical and 

chemical properties. Moreover, very little is known and understood about the 

mechanisms of ENM toxicity in mammalian cells lines. The fact that ZnONW 

have sensitive dissolution points in the acidic aqueous conditions in the cells, 

and ZnO dissolution has been shown to play a role in the acute or chronic 

toxicity, the novel 1D morphology of ZnONW could lead to a different 

toxicological profile. Therefore, future studies could be aimed at understanding 

the impacts of the physical properties of ZnONW on toxicity. 

Confocal microscopy images revealed that ZnONW inside the cells were 

taken up as aggregated in presence of Baf-A1 and not as a single individual 

particle. However, we do not know whether this aggression can be reversed or 

how long these can be persisting or how they could activate an inflammatory 

cascade. Thus, mechanistic studies need to be conducted to investigate 

ZnONW’ immunomodulatory effects. 

In our previous study, crystalline silica (CS) induced sterile inflammation 

through the activation of NLRP3- inflammasome pathway and the production of 
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IL-1β and LTB4. Based on our results here, ZnONW induced sterile inflammatory 

responses in lung and air-pouch mouse models that were qualitatively and 

quantitatively distinct from CS and SiONP. ZnONW induced the recruitments of 

eosinophils and macrophages as well as the production of CCL2, CCL11 and IL-

6, and TNF-α. Previous studies with ZnONP revealed that pulmonary exposure 

to ZnONP induce the recruitment of neutrophils in lung. However, here in this 

study, ZnONW did not induce the infiltration of neutrophil in the lung; this could 

be explained by either the overwhelming cellular infiltration or that ZnONW’ 

shape elicit a different response than ZnONP. 

The cellular basis of the production of these chemokine and cytokines 

was investigated. We demonstrated the importance of LKR13 cells in the 

production of CCL11 and CCL2, with BMDMs and RAW 264.7 cells as the main 

source for IL-6 and TNF-α and its contribution to the production of CCL11. 

However, the actual sequence of the production of these chemokines and 

cytokines remains unknown. Future experiments could be aimed at 

understanding how this inflammatory pathway initiates and the molecular 

pathways involved need to be examined using inhibitors of phagocytosis and 

assessed using Western Blotting techniques. 

Lastly, this study could reveal important information about sterile 

inflammatory effects of ZnONW which could apply to similar ENMs that may 

have similar physical or chemical characteristics to ZnONW. 
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ABBREVIATIONS 

NM: Nanometer 

ENMs: Engineered nanomaterials 

ENPs: Engineered nanoparticles 

TiO2NP: Titanium dioxide nanoparticle 

CeO2NP: Cerium dioxide nanoparticle 

Al2O3NP: Aluminum oxide nanoparticle 

SiONP: Silicon dioxide nanoparticle 

ZnONP: Zinc oxide nanoparticle 

CNT: Carbon nanotubes 

CS: Crystalline silica 

ROS: Reactive oxygen species 

DNA: Deoxyribonucleic acid 

TWA: Time weighted average 

STEL: short-term exposure limit 

RNS: Reactive nitrogen species 

DAMP: Damage-associated molecular patterns 

HMGB-1: High mobility group box 1 protein 
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IL-1𝛽: Interleukin-1beta 

TNF-α: Tumor necrosis factor alpha 

Nrf2: Nuclear factor (erythroid-derived 2)-like 2 

MAPK: Mitogen activated protein kinase 

NF-𝜅B: Nuclear factor kappa-light-chain enhancer of activated B cells 

iNOS: Inducible nitric oxide synthase 

ERKs: Extracellular signal-related kinases 

LDH: Lactate dehydrogenase 

HOCl: Hypochlorous acid 

ONOO−: Peroxynitrite 

AM: Alveolar macrophages 

HARN: High aspect ratio nanomaterials 

PARP: Poly-ADP-ribose polymerase 

TLR6: Toll-like receptor 6  

OVA: Allergen ovalbumin  

BALF: Bronchial alveolar lavage fluids  

CRP: Acute phase proteins  

SSR: Signal sequence receptor 
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PRP: Pattern recognition protein 

SR: Scavenger receptor 

MR: Mannose receptor 

CR: Complement receptor 

COPD: Chronic obstructive pulmonary diseases 

NTHi: Haemophilus influenza 

MBP: Major basic protein 

 EPO: Eosinophil peroxidase 

EDN: Eosinophil-derived neurotoxin 

H&E: Hematoxylin and eosin 

Th2: T helper 2 cells 

HMMs: Human monocyte macrophages 

H2O2: Hydrogen peroxide 

O2∙Superoxideanion 

OH∙: Hydroxylradical 

1O2: Singlet oxygen 

MCP-1: Monocyte Chemoattractant protein 1 

CCL11: Chemokine 11 or eosinophil chemotactic protein 
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BMDM: Bone marrow derived macrophage 

RAW 264.7: Macrophage-like, Abelson leukemia virus cells 

LKR13: Murine K-ras mutant lung adenocarcinoma cell line 

LPS: Lipopolysaccharide 

EE: Early endosome 

LE: Late endosome 

 Baf-A1: Bafilomycin-A1 

Cyt D: Cytocholasin D 

MTT: Methylthiazol Tetrazolium Assay 
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