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ABSTRACT

ALLEE EFFECTS INTRODUCED BY DENSITY DEPENDENT PHENOLOGY

Timothy James Pervenecki

June 28, 2019

We consider both the nonspatial model and spatial model of a species that

gives birth to eggs at the end of the year. It is assumed that the timing of emer-

gence from eggs is controled by phenology, which is density dependent. In general,

the solution maps for our models are implicit; When the solution map is explicit,

it is extremely complex and it is easier to work with the implicit map. We derive

integral conditions for which the nonspatial model exhibits strong Allee effect. We

also provide a necessary condition and a sufficient condition for the existence of

positive equilibrium solutions. We also numerically explore the complex dynamics

of both models. It is shown that varying a parameter can cause an Allee threshold

to appear/disappear. We also show that the spatial model can have a growth func-

tion with overcompensation, wave solutions, oscillating waves, and nonspreading

solutions. It is also shown that the wave solutions can have constant, oscillating, or

chaotic spreading speeds. We also provide an example where the solutions to the

spatial model are persistent, even though the underlying dynamics of the nonspatial

model is essential extinction.
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CHAPTER 1

INTRODUCTION

Phenology (seasonal biological timing) is a topic of great interest in ecology.

Phenology is studied to help understand how the timing of certain processes (such

as births or transitioning to a new life stage) affects the dynamics of the system. In

ecological systems, changes in phenology can involve changes in the start/end time

of a process and/or changes in the synchrony of that process. Phenology plays a

very important role in the study of invasive species, which is an area of great in-

terest in applied ecology. Logan and Powell (2001), Ward and Masters (2007), and

Robinet et al. (2008) have studied how phenological asynchrony affects the success

of invasion for a variety of species. It was shown for the gypsy moth (Lymantria

dispar), that a cause of asynchrony in the breeding adults was variation in the de-

velopment rates of the juveniles (Robinet et al., 2007, 2008; Gascoigne et al., 2009).

The asynchrony in reproduction makes it possible for some females to miss mating

opportunities, which in turn can slow the spread of the species (Johnson et al., 2006;

Tobin et al., 2007). Gray (2004) showed that variation in the developmental rates

may be caused by genetics. It has also been shown that variation in phenological

events can be caused by environmental conditions, such as temperature or elevation

(Walter et al., 2015).

Ecologists regularly collect data on the begining and duration of life stages of

a species. This data is well represented as a function of time, which makes it easy

to model phenology with time-dependent functions. However, for several plants
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such as Phaseolus Vulgaris L. (Abubaker, 2008) and the cleistogamous flowers of

Impatiens capensis (Schmitt et al., 1987), it has been shown that low (high) den-

sities can delay (advance) flowering. It is also possible that low (high) densities

can advance (delay) flowering for the chasmogamous flowers of Impatiens capensis

(Schmitt et al., 1987), but this result was not statistically significant due to a small

sample size. Due to the fact that population density can effect phenology, we switch

from modeling phenology as purely time-dependent to modeling phenology as both

time- and density-dependent.

A demographic Allee effect is the positive relationship between the overall

individual fitness (often measured in per capita growth rate) and population density

(https://en.wikipedia.org/wiki/Allee_effect). A demographic Allee effect

can be subdivided into two categories, strong Allee effect and weak Allee effect.

For an Allee effect to be strong, there must exist a density threshold that must be

overcome for the species to survive. An example of a discrete map with the strong

Allee effect can be seen below.

2



f(x) =
5x2

5 + x2

Figure 1.1: Example of a map with the strong Allee effect

For an Allee effect to be weak, there must be no density threshold that must

be overcome for the species to survive.

f(x) = xe2(1−x− 3.75
4+8x

)

Figure 1.2: Example of a map with the weak Allee effect

The goal of this dissertation is to show that density dependent phenology can

cause the Allee effect. This is a previously undiscovered mechanism for generating

the Allee effect.

In Chapter 2.1, we define the biological and mathematical assumptions that

we impose on our main model. The structure of the model, the with-in season

dynamics are governed by an ordinary-differential equation and the between-season

dynamics are governed by a multiple of the population that survives to the end

3



of the season (t = 1) is the initial population for the following season, follows the

structure of the models in Eskola and Parvinen (2007, 2010) (discussed below). The

assumptions that we make lead to a nonautonomus scalar model that does not have

an explicit stage structure. The model assumes that the population growth is con-

trolled by phenology, which is density-dependent. The model is highly nonlinear

and in general, can not be explicitly solved. We provide a theorem for the existence

of the Allee effect and if the Allee effect is present, we provide a condition for the

Allee effect to be strong. It is shown that when the Allee effect is present, that it is

caused by the density-dependent phenology. We also provide a necessary condition

and a sufficient condition for the existence of positive equilibrium for the model.

The proofs for all of the results are located in the Appendix. One thing that stands

out about our models is that we are able to generate the Allee effect with only one

equation. Most mechanistic models with the Allee effect use at least two equations

to generate the Allee effect. The mechanism producing the Allee effect in these

models is usually mate finding (e.g., Eskola and Parvinen 2010, 2007; Berec et al.

2007; Courchamp et al. 2008; Boukal and Berec 2002). Some other mechanisms

that produce the Allee effect are group defense, group feeding, and habitat alter-

ation (e.g., Eskola and Parvinen 2007; Courchamp et al. 2002, 2008; Rinella et al.

2012).

With all the possible mechanisms that can cause the Allee effect, a large

portion of the literature is devoted to studying mate finding as the mechanism gen-

erating the Allee effect (e.g., Eskola and Parvinen 2010; Boukal and Berec 2002).

Several examples for mechanistic models where the Allee effect is generated by mate

finding processes can be found in Eskola and Parvinen (2010) (see models (7), (25),

(31), (42), and (48)) and Eskola and Parvinen (2007) (see models (11) and (18)).
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In all of the models in Eskola and Parvinen (2010), it is assumed that adults

and juveniles suffer from natural death at rates µ and λ, respectively; adults suffer

from competition with other adults at a rate γ; juveniles suffer from competition

between adults and other juveniles at rates β and δ, respectively. Eskola and Parvi-

nen use U(t) and v(t) to denote the adult and juvenile densities, respectively, and

xn to denote the initial adult density in the nth year. At the end of the year, t = 1,

it is assumed that the adults die, and the juveniles that survive the winter become

adults at the begining of the following year. The fraction of the juveniles that sur-

vive the winter is denoted by σ.

In models (7) and (25) in Eskola and Parvinen (2010), it is assumed that

reproduction happens continuously and that the adult population consists of two

sexes, females F and males M . It is also assumed that ratio of males to females

remains constant across years. The fraction of the adult population that are female

is denoted by s and the fraction of the adult population that are males is denoted by

1− s. In their model (7), it is assumed that reproduction is a result of interactions

between males and females. In models (25) and (31) in Eskola and Parvinen (2010)

it is further assumed that the interaction between males and females produce fer-

tilized females ,F ∗, and then the fertilized females give birth to juveniles. In model

(31) it is assumed that birth is impulsive at time T ∈ (0, 1] (i.e., birth is modeled

with a δ-peak at time T , v(T ) = AF ∗(T )).

The population dynamics for model (7) in Eskola and Parvinen (2010) are

governed by
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Ḟ = −γF 2 − γFM − µF, F (0) = sxn,

Ṁ = −γM2 − γFM − µM, M(0) = (1− s)xn,

v̇ = αFM − βv(F +M)− δv2 − λv, v(0) = 0,

xn+1 = σv(1).

The population dynamics for model (25) in Eskola and Parvinen (2010) are

governed by

Ḟ = −ρFM, F (0) = sxn,

Ḟ ∗ = ρFM, F ∗(0) = 0,

Ṁ = 0, M(0) = (1− s)xn,

v̇ = αF ∗ − βv(F +M + F ∗)− δv2 − λv, v(0) = 0,

xn+1 = σv(1).

The population dynamics for model (31) in Eskola and Parvinen (2010) are

governed by

Ḟ = −ρTFM, F (0) = sxn,

Ḟ ∗ = ρTFM, F ∗(0) = 0,

Ṁ = 0, M(0) = (1− s)xn,

v̇ = −βv(F +M + F ∗)− δv2 − λv, v(0) = 0 for 0 ≤ t < T, v(T ) = AF ∗(T ),

xn+1 = σv(1).

6



Where

ρT =


ρ, 0 ≤ t < T,

0, t ≥ T

In all three of these models, it is the mating function, FM , that is responsible for

generating the Allee effect. More details about models (7), (25), and (31) and the

proofs that theses models have the strong Allee effect can be found in Eskola and

Parvinen (2010).

In models (42) and (48) in Eskola and Parvinen (2010) it is assumed that the

species is isogamous (males and females are indistinguishable). It is also assumed

that adults search for mates at a rate c. When a mate is found, they form a pair

P . Reproduction is caused by the pair formation and can happen continuously at

a rate α (model (42)) or impulsively at time T ∈ (0, 1] (model (48)). There is no

competition between paired adults and other adults. Juveniles suffer from compe-

tition with single adults but not paired adults.

The population dynamics for model (42) in Eskola and Parvinen (2010) are

governed by

U̇ = −(γ + c)U2 − µU, U(0) = xn,

Ṗ =
1

2
cU2, P (0) = 0,

v̇ = αP − βvU − δv2 − λv, v(0) = 0,

xn+1 = σv(1).

The population dynamics for model (48) in Eskola and Parvinen (2010) are

governed by

7



U̇ = −(γ + cT )U2 − µU, U(0) = xn,

Ṗ =
1

2
cTU

2, P (0) = 0,

v̇ = −βvU − δv2 − λv, v(0) = 0 for 0 ≤ t < T, v(T ) = AP (T )

Where

cT =


c, 0 ≤ t < T,

0, t ≥ T.

In both of these models it is the reproduction by pair formation that gener-

ates the Allee effect. More details models (42) and (48) and the proofs that models

have the strong Allee effect can be found in Eskola and Parvinen (2010).

Eskola and Parvinen (2007) consider resource-consumer models with differ-

ent mate finding mechanisms. All of the models that they consider they use Rn(t)

for the resource population (which they assume is at a quasi-equilibrium through-

out the year), xn(t) for the consumer population, and En(t) for the egg population.

They assume that consumers harvest the resource at a rate β and they assume that

the consumers produce eggs at a rate γ which is proportional to the food intake. It

is also assumed that all of the adults (consumers) die at the end of the year (t = 1)

and that the population at the begining of the next year is the portion of eggs that

survive to the next year.

In model (11) in Eskola and Parvinen (2007), it is assumed that the consumer

population consist of two sexes, males (M) and females (F ), and the consumer pop-

ulation is given by xn(t) = Fn(t) +Mn(t). The within-season population dynamics

8



for model (11) are governed by

Ṙn(t) = αRn(t)f(Rn(t))−Rn(t)β(Fn(t) +Mn(t))

Ėn(t) = γFn(t)p(Mn(t))βRn(t)− δEn(t)− kEn(t)(Fn(t) +Mn(t))

Ḟn(t) = 0

Ṁn(t) = 0

and the between-season dynamics are

Rn+1(0) = ρRn(1)

En+1(0) = 0

Fn+1(0) = sσEn(1) = sxn+1(0)

Mn+1(0) = (1− s)σEn(1) = (1− s)σxn+1(0).

For this model, it is the maiting function Fp(M) that generates the Allee effect.

More details on model (11) and the proof that the model has the Allee effect can

be found in Eskola and Parvinen (2007).

In model (18) in Eskola and Parvinen (2007), it is assumed that the species

is isogamous (males and females can not be distinguished), adults (U) search for

mates at a rate c, and form a pair (P ), and that pairs of adults produce eggs. The

within-season population dynamics for model (18) are governed by

Ṙn(t) = αRn(t)f(Rn(t))−Rn(t)β(Un(t) + 2Pn(t))

Ėn(t) = γPn(t)βRn(t)− kUn(t)En(t)

U̇n(t) = −cUn(t)2

Ṗn(t) =
1

2
cUn(t)2

9



and the between-season dynamics are

Rn+1(0) = ρRn(1)

En+1(0) = 0

Un+1(0) = sσEn(1)

Pn+1(0) = 0.

For this model, it is the pair formation that generates the Allee effect. More detatils

on model (18) and the proof that the model has the Allee effect can be found in

Eskola and Parvinen (2007).

In Section 2.2 we investigate the dynamics of the main model for different

phenology functions. We first investigate the phenology function being the uniform

distribution (Section 2.2.1), the simpliest distribution we consider. For the uniform

distribution (equation (2.4)), we are able to explicitly solve for the year-to-year

mapping and numerically show that the mapping can be monotone (Figures 2.2 (c)

and 2.12 (c)), or can have overcompensation and a cusp (Figures 2.3 (c), 2.4 (c) and

(d), 2.5 (c), 2.6 (c), 2.7 (c), 2.8 (c), 2.9 (c), 2.10 (c), and 2.11 (c)). We also numer-

ically explore how varying a parameter can effect the the dynamics of the model

(Figures 2.2 (a), 2.3 (a), 2.4 (a), 2.5 (a), 2.6 (a), 2.7 (a), 2.8 (a), 2.9 (a), 2.10 (a),

2.11 (a), 2.12 (a)) and can effect the equilibrium points, i.e., causing the existence

of the carrying capacity or the Allee threshold to change or increasing/decreas-

ing the magnitude of the carrying capacity or the Allee threshold (Figures 2.2 (b),

2.3 (b), 2.4 (b), 2.5 (b), 2.6 (b), 2.7 (b), 2.8 (b), 2.9 (b), 2.10 (b), 2.11 (b), 2.12 (b)).

We then investigate the phenology function being the gamma distribution

(Section 2.2.2). We numerically show that the model can have a monotone growth

function (Figures 2.14 (c) and 2.15 (c)) or a smooth growth function with overcom-

pensation (Figures 2.16 (c) and 2.17 (c)). We also numerically explore how varying a
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parameter can effect the the dynamics of the model (Figures 2.14 (a), 2.15 (a), 2.16

(a), and 2.17 (a)) and can effect the equilibrium points, i.e., causing the existence of

the carrying capacity or the Allee threshold to change or increasing/decreasing the

magnitude of the carrying capacity or the Allee threshold (Figures 2.14 (b), 2.15

(b), 2.16 (b), and 2.17 (b)).

In Section 2.2.3, we investigate the phenology function being the general-

ized beta distribution (equation (2.8)). We numerically show that the model can

have a growth function with overcompensation and a cusp (Figure 2.19 (c)). We

also numerically explored how varying a parameter effected the dynamics of model

(2.1) (Figure 2.19 (a)), can cause an Allee threshold to come into existence, and

change the magnitude of the carrying capacity and Allee threshold (Figure 2.19 (b)).

In Chapter 3.1, we further develop model (2.1) by considering movement. It

is assumed that adults move according to random diffusion processes. This gives a

new model where the dynamics are governed by a reaction-diffusion equation. For

this model, we provide a theorem on the existence of a positive unique solution. If

the assumption that phenology is density dependedt is removed, the model becomes

a special case of the model discussed by Otto et al. (2018). In Section 3.2, we

investigate this spatial model spatial model when the phenology function is given

by the uniform distribution (Section 3.2.1), the gamma distribution (Section 3.2.2),

and the generalized beta distribution (Section 3.2.3). When discussing solutions to

our spatial model, we call a nonnegative solution (that is not identically zero) that

spreads in both directions a wave solution. If the wave solution oscillates, and the

oscillations appear to follow a pattern, it is called an oscillating wave solution. If

the wave solution oscillates, and the oscillations do not appear to follow a pattern,

it is called a chaotic wave solution. When the phenology function is the uniform
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distribution (equation (2.4)) we numerically show that the model can exhibit wave

(Figures 3.1 (a), 3.10 (a), and 3.12 (a)), oscillating wave (Figures 3.2 (a), 3.3 (a),

and 3.4 (a)), chaotic wave (Figures 3.5 (a), 3.6 (a), 3.7 (a), and 3.8 (a)), and

nonspreading solutions (Figures 3.9 (a) and 3.11 (a)). We also show that these

solutions can spread with a constant (Figures 3.1 (b), 3.2 (b), 3.3 (b), 3.4 (b),

and 3.12 (b)) or oscillating (Figures 3.5 (b), 3.6 (b), 3.7 (b), 3.8 (b), and 3.10 (b))

spreading speeds. When the phenology function is the gamma distribution (equation

(2.7)) we numerically show that the model can exhibit wave (Figures 3.13 (a) and

3.14 (a)), oscillating wave (Figure 3.17 (a)), and nonspreading (Figures 3.15 (a) and

3.16 (a)). We also show that these solutions can spread with constant (Figures 3.13

(b) and 3.14 (b)) or chaotic (Figure 3.17 (b)) spreading speeds. When the phenology

function is the generalized beta distribution (equation (2.8)) we numerically show

that the model can exhibit chaotic wave solutions (Figure 3.18 (a)) that spreads

with a chaotic spreading speed (Figure 3.18 (b)).
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CHAPTER 2

THE NONSPATIAL MODEL

2.1 THE MODEL

We consider a hybrid dynamical model (Mailleret and Lemesle, 2009; Lewis

and Li, 2012; Otto et al., 2018) of an annual species. The within season adult

density is denoted by A(P, t) for t ∈ [0, 1] and Pn denotes the initial density of eggs

(or seeds) at the begining of the nth year. We consider a population that suffers from

natural death at a rate ν and assume that competition between adults is quadratic

with coefficient β. The emergence of adults is controlled by phenology, which is

density dependent. The phenology kernel is denoted by g(P, t). At the end of the

season, adults give birth to eggs (or produce seeds) and then die and any juveniles

that have not emmerged into adults by this time also die. The average number of

offspring per adult that survive the winter is α. The season ends at time t = 1 after

the adults have given birth. The population dynamics are governed by

At = αg(Pn, t)Pn − νA− βA2, A(Pn, 0) = 0

Pn+1 = A(Pn, 1).

(2.1)

Model (2.1) can also be used to model a few other biological scenarios. One

scenario is an annual species with continuous reproduction within the year and an

implicit juvenile stage that occurs during the winter. For such a case, we assume
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that α (0 < α < 1) is the fraction of the population that survives the winter to

emerge the following year and −ν (ν < 0) is the intrinsic growth rate of the popu-

lation. Another scenario is a non-annual species that hibernates during the winter.

For this case, α (0 < α ≤ 1) is the fraction of the population that survives the win-

ter; −ν (ν < 0) is the intrinsic growth rate of the population; and it is assumed that

there is no interaction between hibernating adults and adults that have emerged

from hibernation.

We make the following hypotheses on model (2.1).

HYPOTHESES 2.1.

i. α and β are positive numbers, and ν is a real number.

ii. For all P, t ≥ 0, g(P, t) is defined, g(P, t) ≥ 0 and
∞∫
0

g(P, t)dt = 1.

iii. ∂
∂P
g(P, t)

∣∣∣
P=0

is defined for all but a finite number of points.

Assuming Hypotheses 2.1 are satisfied, solutions to model (2.1) are of the

form xn+1 = f(xn). In general the function f is implicit; when f is explicit, it is

very complicated and difficult to work with. It is known that a discrete-time model

of the form xn+1 = f(xn) has the Allee effect if f ′′(0) > 0 and that the Allee effect

is strong (i.e., an extinction threshold exists, refered to as an Allee threshold) if

f ′(0) < 1 (e.g. Eskola and Parvinen 2010; Berec et al. 2007). This leads to the

following theorem regarding the existence of the Allee effect for model (2.1).

THEOREM 2.1. Assume that Hypotheses 2.1 are satisfied. Then model (2.1) has

Allee effect if
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1∫
0

([
∂

∂P
g(P, t)

] ∣∣∣
P=0

)
e−(1−t)νdt > αβ

1∫
0

g(0, t)e−(1−t)ν

1∫
t

e−νs
s∫

0

g(0, r)eνrdrdsdt

(2.2)

In addition, the Allee effect is strong if

α

1∫
0

g(0; t)e−(1−t)νdt < 1. (2.3)

The proof for Theorem 2.1 is provided in the appendix.

Condition (2.2) comes from the property that the second derivative of the

solution map evaluated at P = 0 is positive (i.e., the solution map is concave up in

a neighborhood of 0). One consequence of condition (2.2) is that if the upper bound

of the support of g(P, t) is larger than 1, then it is easier to have Allee effect (i.e.,

having only a portion of the eggs, that survived the winter, hatch can make it easier

for a species to have the Allee effect). Condition (2.3) comes from the derivative of

the solution map evaluated at P = 0. When condition (2.3) is satisfied, we have the

trivial solution, P = 0, is stable (i.e., it is impossible for a species to persist with

an initial condition near zero). When both conditions (2.2) and (2.3) are satisfied,

the solution map is concave up (in a neighborhood of 0) with the trivial solution

stable (i.e., model (2.1) has both Allee effect and an extinction threshold that must

be overcome for survival of the species).

COROLLARY 2.1. When model (2.1) has the Allee effect, it is caused by the

density-dependent phenology.
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Note that the right hand side of condition (2.2) is always positive. If the

phenology function is not density dependent, than the left hand side of condition

(2.2) would be 0 and hence the condition would not be satisfied.

PROPOSITION 2.1. Assume that Hypotheses (2.1) are satisfied and ν ≥ 0. Then

a necessary condition for the existence of a positive equilibrium in model (2.1) is

α ≥ 1 and that there exist P > 0 such that α
1∫
0

g(P, t)e−(1−t)νdt ≥ 1.

PROPOSITION 2.2. Assume that Hypotheses 2.1 are satisfied. Furthermore, as-

sume that model (2.1) has the strong Allee effect. Then a sufficient condition for

the existence of a positive equilibrium is that there exists P > 0 such that

αg(P, t)− βP − ν > 0

for all 0 ≤ t ≤ 1, and

1∫
0

(αg(P, s)− βP )e−ν(1−s)ds > 1.

The proofs for the propositions are located in the appendix.

A necessary condition for Proposition 2.2 to be satisfied is that [0, 1] is a

subset of the support of g(P, t). In Section 2.2, there are several simulations that

satisfy Proposition 2.2 (e.g., Figures 2.2 (c), 2.3 (c), 2.4 (c), and 2.15 (c)) and several

that fail Proposition 2.2 but still have a positive equilibrium (e.g., Figures 2.4 (d),

2.7 (c), 2.10 (c), 2.11 (c), and 2.12 (c)).

2.2 NUMERICAL SIMULATIONS FOR MODEL (2.1)

In this section we will investigate the rich dynamics of model (2.1) when the

phenological functions are the uniform distribution (Figures 2.2, 2.3, 2.4, 2.5, 2.6,

2.7, 2.8, 2.9, 2.10, 2.11, and 2.12), gamma distribution (Figures 2.14, 2.15, 2.16, and

2.17), and the generalized beta distribution (Figure 2.19). We show that density-

dependent phenology can produce both the Allee effect with a monotone growth
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function (see Figures 2.2 (c), 2.12 (c), 2.14 (c), and 2.15 (c)) and the Allee effect

with overcompensation, a growth function that is increasing on an interval (0, a)

and decreasing on the interval (a,∞) for some a > 0, (see Figures 2.3 (c), 2.4 (c),

2.5 (c), 2.6 (c), 2.7 (c), 2.8 (c), 2.9 (c), 2.10 (c), 2.11 (c), 2.16 (c), 2.17 (c), and

2.19 (d)). We also investigate how varying the parameters in model (2.1) affect the

dynamics of the model and change equilibrium solutions (Figures 2.2 (b), 2.3 (b),

2.4 (b), 2.5 (b), 2.6 (b), 2.7 (b), 2.8 (b), 2.9 (b), 2.10 (b), 2.11 (b), 2.12 (b), 2.14

(b), 2.15 (b), 2.16 (b), 2.17 (b), and 2.19 (b)).

Recall that low (high) densities can delay (advance) the starting time of

emergence and increase the duration of emergence (Abubaker, 2008; Schmitt et al.,

1987) and that is also possible that low (high) densities can advance (delay) the start

of phenological events. To account for this, we assume that the density-dependent

parameters of the phenological function are either nonincreasing or nondecreasing.

For the bifurcation diagram, we start by fixing all but one parameter in the model,

the parameter that is not fixed (called the bifurcation parameter) is given a lower,

bound bif min, an upper bound, bif max, and a step size (step) is set. We also

need two parameters for ploting, N ignore (the number of generations to ignore)

and N plot (the number of generations to plot). N ignore is usually set around 700

or 800 to allow the dynamics to settle down. To create the bifurcation diagram,

we (numerically) recursively solve model (2.1) N ignore+N plot times, then we plot

the last N plot solutions. Next we move the bifurcation parameter to bif min+step

and repeat this process. This is repeated until the bifurcation parameter reaches

bif max. Similarly, for the fixed point diagrams, we start by fixing all but one

parameter in the model, the parameter that is not fixed (called the bifurcation

parameter) is given a lower, bound bif min, an upper bound, bif max, and a step

size (step bif) is set. We also need to set a range for the population size that is
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being examined. We let the lower bound of the population size be p min and the

upper bound be p max. We also set a step size (step p) and a threshold γ > 0 (used

to test if a value is a fixed point). To create the fixed point diagram we start with

the bifurcation parameter at bif min and the population parameter at p min. We

then numerically solve model (2.1) and test the condition |Pn+1 − Pn| < γ. If the

condition is satisfied we plot a point, if it is not satisfied we do nothing. Then we

move the population parameter to p min+step p, numerically solve the model, and

check if the condition is met. We repeat this process until the population parameter

reaches p max. Then we move the bifurcation parameter to bif min+step bif and

repeat the previous process until the bifurcation parameter reaches bif max. For

the growth function diagram we fix all of the parameters and set a range for the

population size that is being examined. We let the lower bound of the population

size be p min and the upper bound be p max. We also define a step size (step)

used to move from p min to p max. To create the growth function diagram, we

start at p min, numerically solve model (2.1), and plot the solution. Then we move

to p min+step, numerically solve the model, and plot the solution. This process is

repeated until we reach p max.

2.2.1 WHEN THE PHENOLOGY FUNCTION IS THE UNIFORM DISTRIBU-

TION

Consider the uniform distribution given by:

g(P, t) =


1

k(P )− θ(P )
, if θ(P ) ≤ t ≤ k(Pn)

0 , otherwise

(2.4)

It is assumed that 0 ≤ θ(P ) < k(P ), ∀P ≥ 0. For the uniform distribution,
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θ(P ) indicates the time that emergence begins and k(P ) indicates the time that

emergence ends. How these parameters affect the uniform distribution can be seen

in Figure 2.1.

(a) g(P, t) for different values of k

with θ fixed

(b) g(P, t) for different values of θ

with k fixed

Figure 2.1: How the parameters affect the uniform distribution

Since the uniform distribution is piecewise constant, we can solve model

(2.1) and get an explicit year-to-year map for the population. The year-to-year

map Pn+1 = f(Pn) is given in the following proposition.

PROPOSITION 2.3. If the phenology function, g(P, t), is given by the uniform

distribution (equation (2.4)), then the year-to-year mapping Pn+1 = f(Pn) is given

by

f(P ) =


h(1) 1 ≤ k(P )

νh(k(P ))eνk(P )

(ν + βh(k(P )))eν − βh(k(P ))eνk(P )
k(P ) < 1

(2.5)

where

h(t) =

ν
2β

+
J(P ) tanh( 1

2
(

t−θ(P )
k(P )−θ(P )

)J(P ))
2β(k(P )−θ(P ))

1 + ν(k(P )−θ(P ))
J(P )

tanh
(

1
2
( t−θ(P )
k(P )−θ(P )

)J(P )
) +

ν

2β
(2.6)

where

J(P ) =
√

(k(P )− θ(P ))(ν2(k(P )− θ(P )) + 4αβP ).
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The proof for the proposition is located in the appendix.

(a) Attracting Solutions for

model (2.1) with β ∈ [0.1, 0.6]

and P0 = 3

(b) Fixed Points for model (2.1)

with β ∈ [0.1, 0.6]

(c) Numerical Approx-

imation of the Growth

Function for model

(2.1) with β = 0.3

θ(P ) = 0, k(P ) = 3.2− 2.25P
0.4+P

, α = 9, ν = 6, β ∈ [0.1, 0.6]

Figure 2.2: Bifurcation and Fixed Point Diagrams for β ∈ [0.1, 0.6] and Growth

Function for β = 0.3 with g(P, t) given by Equation (2.4)

Consider model (2.1) with the phenology function, g(P, t), as defined in equa-

tion (2.4) and parameters θ(P ) = 0, k(P ) = 3.2 − 2.25P
0.4+P

, α = 9, ν = 6, and

β ∈ [0.1, 0.6]. We see that increasing β (the rate of competition between adults)

decreases the carrying capacity of the species (Figure 2.2 (a) and (b)) while simul-

taneously increasing the Allee threshold (Figure 2.2 (b)). With β ≈ 0.455, the

the carrying capacity and the Allee threshold meet and disappear, and the species

becomes extinct. If we let β = 0.3, we see that model (2.1) has a monotone growth

function and the strong Allee effect (Figure 2.2 (c)).
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(a) Attracting Solutions for

model (2.1) with β ∈ [0.05, 0.3]

and P0 = 9

(b) Fixed Points for model (2.1)

with β ∈ [0.05, 0.3]

(c) Numerical Approx-

imation of the Growth

Function for model

(2.1) with β = 0.1

θ(P ) = 0, k(P ) = 3.2− 3.1P
5+P

, α = 3.4, ν = 1.5, β ∈ [0.05, 0.3]

Figure 2.3: Bifurcation and Fixed Point Diagrams for β ∈ [0.05, 0.3] and Growth

Function for β = 0.1 with g(P, t) given by Equation (2.4)

Consider model (2.1) with the phenology function, g(P, t), as defined in equa-

tion (2.4) and parameters θ(P ) = 0, k(P ) = 3.2 − 3.1P
5+P

, α = 3.4, ν = 1.5, and

β ∈ [0.05, 0.3]. We see that increasing β (the rate of competition between adults)

decreases the carrying capacity of the species, while simultaneously increasing the

Allee threshold (Figure 2.3 (a) and (b)). When β ≈ 0.19 the stable solution bi-

furcates into a period two solution until β ≈ 0.24 when the solution goes through

period undoubling back to a period one solution. When β ≈ 0.28 the stable so-

lution abruptly jumps to the trivial solution (Figure 2.3 (a)) due to the carrying

capacity and Allee threshold intersecting and disappearing (Figure 2.3 (b)). If we

let β = 0.1, we see that model (2.1) has the strong Allee effect and has a growth

function with overcompensation and a cusp (Figure 2.3 (c)).
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(a) Attracting Solutions for model

(2.1) with θ ∈ [0, 0.2] and P0 = 3

(b) Fixed Points for model (2.1) with

θ ∈ [0, 0.2]

(c) Numerical Approximation of the

Growth Function for model (2.1) with

θ = 0

(d) Numerical Approximation of the

Growth Function for model (2.1) with

θ = 0.18

θ ∈ [0, 0.2], k(P ) = 3.2− 3.1P
5+P

, α = 3.3, ν = 0.4, β = 0.21

Figure 2.4: Bifurcation and Fixed Point Diagrams for θ ∈ [0, 0.2] and Growth

Functions for θ = 0 and θ = 0.18 with g(P, t) given by Equation (2.4)

Consider model (2.1) with the phenology function, g(P, t), as defined in equa-

tion (2.4) and parameters θ ∈ [0, 0.2], k(P ) = 3.2 − 3.1P
5+P

, α = 3.3, ν = 0.4, and

β = 0.21. We see that increasing θ (the starting time of emergence) increases the

amplitude of oscillation of the periodic solution (Figure 2.4 (a)) and increases both

the carrying capacity and the Allee threshold (Figure 2.4 (b)). When θ ≈ 0.16

the solution goes through period doubling bifurcation into a period four solution
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(Figure 2.4 (a)). If we let θ = 0, we see that model (2.1) has the strong Allee effect

and has a growth function with overcompensation and a cusp (Figure 2.4 (c)). If we

let θ = 0.18, we see that model (2.1) has the strong Allee effect and has a growth

function with overcompensation and a cusp (Figure 2.4 (d)).

(a) Attracting Solutions for

model (2.1) with ν ∈ [0, 10]

and P0 = 1

(b) Fixed Points for model

(2.1) with ν ∈ [0, 10]

(c) Numerical Approxi-

mation of the Growth

Function for model (2.1)

with ν = 8

θ(P ) = 0, k(P ) = 3.2− 3.1P
0.6+P

, α = 16, ν ∈ [0, 10], β = 1

Figure 2.5: Bifurcation and Fixed Point Diagrams for ν ∈ [0, 10] and Growth Func-

tion for ν = 8 with g(P, t) given by Equation (2.4)

Consider model (2.1) with the phenology function, g(P, t), as defined in equa-

tion (2.4) and parameters θ(P ) = 0, k(P ) = 3.2 − 3.1P
0.6+P

, α = 16, ν ∈ [0, 10], and

β = 1. We see that increasing ν (the rate of natural death) the solution goes

through period doubling bifurcation for ν ≈ 0.2 and shrinks the oscillation of the

periodic solution; the solution becomes chaotic around ν ≈ 2, continuing to increase

ν causes the oscillations to decrease; when ν ≈ 7.6 the dynamics change to essential

extinction (Figure 2.5 (a)). In Figure 2.5 (b), we see that increasing ν decreases the

carrying capacity of the species; for ν ∈ [0, ψ], ψ ≈ 5.5, the only positive solution

is the carrying capacity, with ν ≈ 5.5 an Allee threshold comes into existance and

the Allee threshold increases as ν increases. If we let ν = 8, we see that model (2.1)

has the strong Allee effect and has a growth function with overcompensation and a
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cusp (Figure 2.5 (c)).

(a) Attracting Solutions for

model (2.1) with ν ∈ [0, 10]

and P0 = 1

(b) Fixed Points for model

(2.1) with ν ∈ [0, 10]

(c) Numerical Approxi-

mation of the Growth

Function for model (2.1)

with ν = 8

θ(P ) = 0, k(P ) = 3.2− 3.1P
0.6+P

, α = 15.5, ν ∈ [0, 10], β = 0.97

Figure 2.6: Bifurcation and Fixed Point Diagrams for ν ∈ [0, 10] and Growth Func-

tion for ν = 8 with g(P, t) given by Equation (2.4)

Consider model (2.1) with the phenology function, g(P, t), as defined in equa-

tion (2.4) and parameters θ(P ) = 0, k(P ) = 3.2− 3.1P
0.6+P

, α = 15.5, ν ∈ [0, 10], and

β = 0.97. We see that increasing ν, the rate of natural death, the solution goes

through period doubling bifurcation for ν ≈ 0.2 and shrinks the oscillation of the

periodic solution; the solution becomes chaotic around ν ≈ 2, continuing to increase

ν causes the oscillations to decrease; when ν ≈ 7.5 the dynamics change to essential

extinction (Figure 2.6 (a)). In Figure 2.6 (b), we see that for ν ∈ [0, ψ], ψ ≈ 5.5,

the ony positive solution is the carrying capacity; with ν ≈ 5.5, an Allee threshold

comes into existence. As ν is increased, the carrying capacity decreases and the

Allee threshold increases (after it comes into existence). If we let ν = 8, we see that

model (2.1) has the strong Allee effect and a growth function with overcompensation

and a cusp (Figure 2.6 (c)).
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(a) Attracting Solutions for

model (2.1) with ν ∈ [0, 8]

and P0 = 1.5

(b) Fixed Points for model

(2.1) with ν ∈ [0, 8]

(c) Numerical Approxi-

mation of the Growth

Function for model (2.1)

with ν = 8

θ(P ) = 0.1, k(P ) = 3.2− 3.1P
1+P

, α = 15, ν ∈ [0, 8], β = 0.5

Figure 2.7: Bifurcation and Fixed Point Diagrams for ν ∈ [0, 8] and Growth Func-

tion for ν = 8 with g(P, t) given by Equation (2.4)

Consider model (2.1) with the phenology function, g(P, t), as defined in equa-

tion (2.4) and parameters θ(P ) = 0.1, k(P ) = 3.2 − 3.1P
1+P

, α = 15, ν ∈ [0, 8], and

β = 0.5. We see that increasing ν (the rate of natural death) the solution goes

through period doubling bifurcation for ν ≈ 0.7 and shrinks the oscillation of the

periodic solution; the solution becomes chaotic for ν ≈ 2.1 and continuing to in-

crease ν causes the oscillations to decrease; when ν ≈ 7.4 the dynamics change to

essential extinction (Figure 2.7 (a)). In Figure 2.7 (b) we see that for ν ∈ [0, ψ],

ψ ≈ 5.4, the only positive solution is the carrying capacity, with ν ≈ 5.4 an Allee

threshold comes into existence. As ν is increased, the carrying capacity decreases

and the Allee threshold increases (after it comes into existence). If we let ν = 8,

we see that model (2.1) has the strong Allee effect and a growth function with

overcompensation and a cusp (Figure 2.7 (c)).
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(a) Attracting Solutions for

model (2.1) with α ∈ [0, 50]

and P0 = 1.5

(b) Fixed Points for model

(2.1) with α ∈ [0, 50]

(c) Numerical Approxi-

mation of the Growth

Function for model (2.1)

with α = 17

θ(P ) = 0, k(P ) = 3.2− 3.195P
1+P

, α ∈ [0, 50], ν = 8, β = 0.0001

Figure 2.8: Bifurcation and Fixed Point Diagrams for α ∈ [0, 50] and Growth

Function for α = 17 with g(P, t) given by Equation (2.4)

Consider model (2.1) with the phenology function, g(P, t), as defined in equa-

tion (2.4) and parameters θ(P ) = 0, k(P ) = 3.2 − 3.195P
1+P

, α ∈ [0, 50], ν = 8, and

β = 0.0001. We see that increasing α (the average number of offspring per adult

that survive the winter season) causes the existence of a positive carrying capacity

and an Allee threshold to come into existence for α ≈ 8 (for α ∈ [0, ψ], ψ ≈ 8, the

trivial solution is the only solution for model (2.1)). As α increases, the carrying

capacity increases and the Allee threshold decreases (until α ≈ 24.5 when the Allee

threshold disappears) (Figure 2.8 (b)). In Figure 2.8 (a) we see that for α ∈ [0, ψ],

ψ ≈ 16, the only stable solution is the trivial solution. When α ≈ 16, the dynamics

change to chaos and the magnitude of oscillations increase as α is increased; when

α ≈ 46 the dynamics change to periodic solutions and undergoes period halfing for

α ≈ 47 (Figure 2.8 (a)). If we let α = 17, we see that model (2.1) has the strong

Allee effect and a growth function with overcompensation and a cusp (Figure 2.8

(c)).
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(a) Attracting Solutions for

model (2.1) with β ∈ [0, 1.1]

and P0 = 2.1

(b) Fixed Points for model

(2.1) with β ∈ [0, 1.1]

(c) Numerical Approxi-

mation of the Growth

Function for model (2.1)

with β = 0.4

θ(P ) = 0, k(P ) = 3.2− 3.1P
1+P

, α = 8.5, ν = 6, β ∈ [0, 1.1]

Figure 2.9: Bifurcation and Fixed Point Diagrams for β ∈ [0, 1.1] and Growth

Function for β = 0.4 with g(P, t) given by Equation (2.4)

Consider model (2.1) with the phenology function, g(P, t), as defined in equa-

tion (2.4) and parameters θ(P ) = 0, k(P ) = 3.2 − 3.1P
1+P

, α = 8.5, ν = 6, and

β ∈ [0, 1.1]. We see that increasing β, the rate of competition between adults,

decreases the carrying capacity while simultaneously increasing the Allee threshold

(Figure 2.9 (b)); when β ≈ 1.05 the carrying capacity and Allee threshold intersect

and disappear leaving the trivial solution as the only solution to model (2.1). In

Figure 2.9 (a) we see that the model starts out with chaotic dynamics and increas-

ing β decreases the magnitude of oscillation; with β ≈ 0.805 the population drops

below the Allee threshold and dies out. If we let β = 0.4, we see that model (2.1)

has the strong Allee effect and a growth function with overcompensation and a cusp

(Figure 2.9 (c)).
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(a) Attracting Solutions for

model (2.1) with α ∈ [0, 10]

and P0 = 2

(b) Fixed Points for model

(2.1) with α ∈ [0, 10]

(c) Numerical Approxi-

mation of the Growth

Function for model (2.1)

with α = 2

θ(P ) = 0.9P
1+P

, k(P ) = 0.2 + 4.5P
13+P

, α ∈ [0, 10], ν = 1.3, β = 0.1

Figure 2.10: Bifurcation and Fixed Point Diagrams for α ∈ [0, 10] and Growth

Function for α = 2 with g(P, t) given by Equation (2.4)

Consider model (2.1) with the phenology function, g(P, t), as defined in equa-

tion (2.4) and parameters θ(P ) = 0.9P
1+P

, k(P ) = 0.2 + 4.5P
13+P

, α ∈ [0, 10], ν = 1.3, and

β = 0.1. We see that with α ∈ [0, ψ], with ψ ≈ 1.6, the only equilibrium is the

trivail solution (Figure 2.10 (a)). As we increase α (the average number of offspring

per adult that survive the winter season) a positive equilibrium and Allee threshold

come into existence when α ≈ 1.6 (Figure 2.10 (b)); as α increases, the carrying

capacity increases and the Allee threshold simultaneously decreases until α ≈ 3.1

when the Allee threshold disappears. If we let α = 2, we see that model (2.1) has

the strong Allee effect and a growth function with overcompensation and a cusp

(Figure 2.10 (c)).
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(a) Attracting Solutions for

model (2.1) with ν ∈ [0, 10]

and P0 = 2.5

(b) Fixed Points for model

(2.1) with ν ∈ [0, 10]

(c) Numerical Approxi-

mation of the Growth

Function for model (2.1)

with ν = 1.8

θ(P ) = 0.95P
1+P

, k(P ) = 0.2 + 4.5P
13+P

, α = 2, ν = 1.8, β = 0.05

Figure 2.11: Bifurcation and Fixed Point Diagrams for ν ∈ [0, 10] and Growth

Function for ν = 1.8 with g(P, t) given by Equation (2.4)

Consider model (2.1) with the phenology function, g(P, t), as defined in equa-

tion (2.4) and parameters θ(P ) = 0.95P
1+P

, k(P ) = 0.2 + 4.5P
13+P

, α = 2, ν = 1.8, and

β = 0.05. We see that increasing ν (the rate of natural death) decreases the carrying

capacity until ν ≈ 3.6 when the model enters essential extinction (Figure 2.11 (a));

increasing ν aslo casues an Allee threshold to come into existence when ν ≈ 0.8, the

Allee threshold increases (as ν is increased) until it intersects the carrying capacity,

ν ≈ 5.2, at which point the carrying capacity and the Allee threshold disappear

(Figure 2.11 (b)). If we let ν = 1.8, we see that model (2.1) has the strong Allee

effect and a growth function with overcompensation and a cusp (Figure 2.11 (c)).
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(a) Attracting Solutions for

model (2.1) with α ∈ [0, 30]

and P0 = 2

(b) Fixed Points for model

(2.1) with α ∈ [0, 30]

(c) Numerical Approxi-

mation of the Growth

Function for model (2.1)

with α = 12

θ(P ) = 0.5P
0.5+P

, k(P ) = 0.5 + 0.5P
0.8+P

, α ∈ [0, 30], ν = 6.5, β = 0.5

Figure 2.12: Bifurcation and Fixed Point Diagrams for α ∈ [0, 30] and Growth

Function for α = 12 with g(P, t) given by Equation (2.4)

Consider model (2.1) with the phenology function, g(P, t), as defined in equa-

tion (2.4) and parameters θ(P ) = 0.5P
0.5+P

, k(P ) = 0.5+ 0.5P
0.8+P

, α ∈ [0, 30], ν = 6.5, and

β = 0.5. We see that for α (the average number of offspring per adult that survive

the winter season) between 0 and approximately 14.95, that the trivial solution is

the only stable equilibrium and when α ≈ 14.95 a stable positive equilibrium comes

into existence ant the equilibrium increases as α increases (Figure 2.12 (a)). For α

between 0 and approximately 11.1, the only equilibrium point is the trivial solution.

When α ≈ 11.1, an Allee threshold and carrying capacity come into existence; as α

increases, the carrying capacity increases and the Allee threshold decreases (Figure

2.12 (b)). If we let α = 12, we see that model (2.1) has the strong Allee effect and

a monotone growth function (Figure 2.12 (c)).
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2.2.2 WHEN THE PHENOLOGY FUNCTION IS THE GAMMA DISTRIBU-

TION

Consider the gamma distribution given by:

g(P, t) =
tk(P )−1e−t/θ(P )

Γ(k(P ))θk(P )
(2.7)

Where k(P ) is the shape parameter, θ(P ) is the scale parameter, and Γ(k) is the

gamma function. How these parameters affect the gamma distribution can be seen

in Figure 2.13.

(a) g(P, t) for different values of k

with θ fixed

(b) g(P, t) for different values of θ

with k fixed

Figure 2.13: How the parameters affect the gamma distribution
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(a) Attracting Solutions for

model (2.1) with ν ∈ [0, 2]

and P0 = 4

(b) Fixed Points for model

(2.1) with ν ∈ [0, 2]

(c) Numerical Approxi-

mation of the Growth

Function for model (2.1)

with ν = 0.1

θ(P ) = 0.5, k(P ) = 4− 2P
3+P

, α = 5, ν ∈ [0, 2], β = 0.2

Figure 2.14: Bifurcation and Fixed Point Diagrams for ν ∈ [0, 2] and Growth Func-

tion for ν = 0.1 with g(P, t) given by Equation (2.7)

Consider model (2.1) with the phenology function, g(P, t), as defined in equa-

tion (2.7) and parameters θ(P ) = 0.5, k(P ) = 4− 2P
3+P

, α = 5, ν ∈ [0, 2], and β = 0.2.

We see that increasing ν (the rate of natural death) decreases the carrying capacity

while simultaneously increasing the Allee threshold (Figure 2.14 (b)); with ν ≈ 1.31

the carrying capacity and Allee threshold intersect and then disappear, leaving the

trivial solution as the only solution to model (2.1). In Figure 2.14 (a) we see that

the model starts off with a stable period one solution that decreases as ν is increases;

when ν ≈ 1.29, the population drops below the Allee threshold and becomes extinct

(for ν larger than ≈ 1.31 the trivial solution is the only solution). If we let ν = 0.1,

we see that model (2.1) the strong Allee effect and a monotone growth function

(Figure 2.14 (c)).
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(a) Attracting Solutions for

model (2.1) with ν ∈ [0, 2]

and P0 = 5

(b) Fixed Points for model

(2.1) with ν ∈ [0, 2]

(c) Numerical Approxi-

mation of the Growth

Function for model (2.1)

with ν = 1

θ(P ) = 10− 9.95P
1+P

, k(P ) = 1, α = 8, ν ∈ [0, 2], β = 0.3

Figure 2.15: Bifurcation and Fixed Point Diagrams for ν ∈ [0, 2] and Growth Func-

tion for ν = 1 with g(P, t) given by Equation (2.7)

Consider model (2.1) with the phenology function, g(P, t), as defined in equa-

tion (2.7) and parameters θ(P ) = 10− 9.95P
1+P

, k(P ) = 1, α = 8, ν ∈ [0, 2], and β = 0.3.

We see that increasing ν (the rate of natural death) causes the carrying capacity

to decrease (Figure 2.15 (a)) while simultaneously causing the Allee threshold to

increase. When ν ≈ 1.41, the Allee threshold and carrying capacity intersect and

disappear, leaving the trivial solution as the only equilibrium (Figure 2.15 (b)). If

we let ν = 1, we see that model (2.1) has the strong Allee effect and a monotone

growth function (Figure 2.15 (c)).
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(a) Attracting Solutions for

model (2.1) with ν ∈ [0, 10]

and P0 = 0.08

(b) Fixed Points for model

(2.1) with ν ∈ [0, 10]

(c) Numerical Approxi-

mation of the Growth

Function for model (2.1)

with ν = 5

θ(P ) = 0.1, k(P ) = 1.1 + 125P
1+P

, α = 6, ν ∈ [0, 10], β = 5

Figure 2.16: Bifurcation and Fixed Point Diagrams for ν ∈ [0, 10] and Growth

Function for ν = 5 with g(P, t) given by Equation (2.7)

Consider model (2.1) with the phenology function, g(P, t), as defined in equa-

tion (2.7) and parameters θ(P ) = 0.1, k(P ) = 1.1 + 125P
1+P

, α = 6, ν ∈ [0, 10], and

β = 5. In Figure 2.16 (a), we see that the model starts with chaotic dynamics

and increasing ν (the rate of natural death) the magnitude of oscillations decrease;

when ν ≈ 3.99, the dynamics change to periodic solutions and goes through period

undoubling for ν ≈ 4.05 and ν ≈ 5; for ν larger than ≈ 7.1 the only solution is

the trivial solution. In Figure 2.16 (b), we see that the model starts with only one

positive equilibrium (the carrying capacity) and gains a second positive equilibrium

(the Allee threshold) for ν ≈ 2.5. As ν is increased, the carrying capacity decreases

and the Allee threshold increases (after it comes into existence); with ν ≈ 7.1 the

carrying capacity and Allee threshold intersect and then disappear, leaving the triv-

ial solution as the only equilibrium solution. If we let ν = 5, we see that model (2.1)

has the strong Allee effect and a smooth growth function with overcompensation

(Figure 2.16 (c)).
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(a) Attracting Solutions for

model (2.1) with α ∈ [0, 35]

and P0 = 0.06

(b) Fixed Points for model

(2.1) with α ∈ [0, 35]

(c) Numerical Approxi-

mation of the Growth

Function for model (2.1)

with α = 21

θ(P ) = 0.2, k(P ) = 1.1 + 85P
1+P

, α = 21, ν = 10, β = 6

Figure 2.17: Bifurcation and Fixed Point Diagrams for α ∈ [0, 35] and Growth

Function for α = 21 with g(P, t) given by Equation (2.7)

Consider model (2.1) with the phenology function, g(P, t), as defined in equa-

tion (2.7) and parameters θ(P ) = 0.2, k(P ) = 1.1+ 85P
1+P

, α = 21, ν = 10, and β = 6.

In Figure 2.17 (b) we see that increasing α, the average number of offspring per

adult that survive the winter, increases the carrying capacity while simultaneously

decreasing the Allee threshold. In Figure 2.17 (a) the model has a stable attractor

(which increases while α increases) for α ∈ [15], ψ, ψ ≈ 17; the model goes through

period doubling bifurcation for α ≈ 17 and α ≈ 20.1, with the magnitude of oscilla-

tions increasing as α increases; the model changes to chaotic dynamics when α ≈ 21,

with the oscillations increasing as α increases; when α is greater than ≈ 30, the

only stable solution is the trivial solution. If we let α = 21, we see that model (2.1)

has the strong Allee effect and a smooth growth function with overcompensation

(Figure 2.17 (c)).
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2.2.3 WHEN THE PHENOLOGY FUNCTION IS THE GENERALIZED BETA

DISTRIBUTION

Consider the generalized beta distribution given by:

g(P, t) =


h(P, t) ,if 0 ≤ ta1 ≤ b1a1

1− k(P )

0 , otherwise

(2.8)

Where h(P, t) =
Γ(p1+θ)|a1|ta1p1−1(1−(1−k(P )( t

b1
)a1))θ−1

Γ(p1)Γ(θ)(1+k(P )( t
b1

)a1)p1+θ

Where 0 < k(P ) < 1 and b1, p1, θ > 0, and Γ(k) is the gamma function. The

generalized beta distribution reduces to the beta distribution if a1 = 1, i.e.,

h(P, t) =
Γ(p1 + θ) tp1−1(1− (1− k(P ))( t

b1
))θ−1

Γ(p1)Γ(θ)(1 + k(P )( t
b1

))p1+θ

where p1 and θ are shape parameters and b1
1−k(P )

is the upper bound of the support.

How these parameters affect the generalized beta distribution can be seen in Figure

2.18.
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(a) g(P, t) for different values of k (b) g(P, t) for different values of θ

Figure 2.18: How the parameters affect the generalized beta distribution

(a) Attracting Solutions for

model (2.1) with ν ∈ [0, 15]

and P0 = 0.3

(b) Fixed points for model

(2.1) with ν ∈ [0, 15]

(c) Numerical Approxi-

mation of the Growth

Function for model (2.1)

with ν = 10.5

θ(P ) = 0.5, k(P ) = 1− 0.9P
1+P

, a1 = 2, b1 = 0.5, p1 = 0.5, α = 22, ν ∈ [0, 15], β = 3

Figure 2.19: Bifurcation and Fixed Point Diagrams for ν ∈ [0, 15] and Growth

Function for ν = 10.5 with g(P, t) given by Equation (2.8)

Consider model (2.1) with the phenology function, g(P, t), as defined in equa-

tion (2.8) and parameters θ(P ) = 0.5, k(P ) = 1− 0.9P
1+P

, a1 = 2, b1 = 0.5, p1 = 0.5,

α = 22, ν ∈ [0, 15], and β = 3. In Figure 2.19 (a), we see that the model starts with

a stable period one equilibrium which decreases in magnitude as ν (the rate of nat-
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ural death) is increased; with ν ≈ 4.5 the dynamics change to chaos, the magnitude

of oscillations decrease as ν is increased; for ν larger than ≈ 9, the dynamics change

to essential extinction. In Figure 2.19 (b), we see that the model starts with only

one positive equilibrium, which is the carrying capacity, and the carrying capacity

decreases as ν is increased. When ν ≈ 7.8 an Allee threshold comes into existence

and increases as ν is increased. If we let ν = 10.5, we see that moel (2.1) has the

strong Allee effect and a growth function with overcompensation and a cusp (Figure

2.19 (c)).
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CHAPTER 3

THE SPATIAL MODEL

3.1 THE MODEL

Recall the biological assumptions for model (2.1). That is, the within season

adult density is denoted by A(P, t) for t ∈ [0, 1] and Pn denotes the initial density

of eggs (or seeds) at the begining of the nth year. We consider a population that

suffers from natural death at a rate ν and assume that competition between adults

is quadratic with coefficient β. The emergence of adults is controlled by phenology,

which is density dependent. The phenology kernel is denoted by g(P, t). At the end

of the season, adults give birth to eggs (or produce seeds) and then die and any

juveniles that have not emmerged into adults by this time also die. The average

number of offspring per adult that survive the winter is α. The season ends at time

t = 1 after the adults have given birth. If we add the assumption that the adults

move according to random diffusion processes with diffusion coefficient D > 0,

during the winter there is no dispersal, and that juveniles are immobile (e.g., eggs

or seeds), then the population dynamics are governed by

At = DAxx + αg(Pn, t)Pn − νA− βA2, A(Pn, x, 0) = 0

Pn+1(x) = A(Pn, x, 1).

(3.1)
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We make the following assumption on model (3.1) and provide a theorem on

the existence of solutions to model (3.1).

HYPOTHESES 3.1.

g(P, t) is a probability density function on [0,∞).

THEOREM 3.1. Assume that Hypotheses 3.1 is satisfied. Then model (3.1) has a

unique positive solution.

The proof for Theorem 3.1 is a direct application of Theorem 2.2 in chapter

7 of (Pao) and is therefore omitted.

If the phenology function in model (2.1) is only depended on time (i.e., it is

not density dependent), then model (3.1) becomes model (3.2), which is a special

case of model (1) in Otto et al. (2018). In this case, Otto et al. have shown the

existence of traveling wave solutions and calculated the spreading speed for the

model.

At = DAxx + αg(t)Pn − νA− βA2, A(x, 0) = 0

Pn+1(x) = A(x, 1).

(3.2)

HYPOTHESES 3.2. (Otto et al., 2018)

g(t) is either a piecewise continuous bounded probability density function on [0,∞)

or a Dirac delta function δ(t− temg) with temg > 0.

For model (3.2), Otto et al. defined the moment-generating function, which

is used in calculating the spreading speed.

Λ(µ) = L[e−µx](0), (3.3)
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where L is the solution operator of the linearization of model (3.2). Then,

c∗ = inf
µ>0

ln[Λ(µ)]

µ
(3.4)

where

Λ(µ) = α

1∫
0

g(s)e(µ2D−ν)(1−s)ds (3.5)

(see the Appendix for details on L and Λ(µ))

Otto et al. provided the following theorem regarding the spreading speed

and traveling wave solutions for model (3.2).

THEOREM 3.2. (Otto et al., 2018) Assume that Hypotheses 3.2 are satisfied. Let

Λ(0) > 1. Then, the following statements are valid for model (3.2):

1. There exists a positive constant equilibrium P ∗ > 0.

2. c∗ is the spreading speed in the following sense:

If the continuous initial function P0(x) is zero for all sufficiently large |x|,

P0(x) 6≡ 0, and 0 ≤ P0(x) ≤ P ∗, then for any small positive ε, the solution

Pn(x) has the following properties

(a)

lim
n→∞

[
sup

|x|≥n(c∗+ε)

Pn(x)

]
= 0.

(b)

lim
n→∞

[
sup

|x|≤n(c∗−ε)
|P ∗ − Pn(x)|

]
= 0.

3. There exists a nonincreasing wave Pn(x) = w(x− nc) with w(−∞) = P ∗ and

w(−∞) = 0 if and only if c ≥ c∗.
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The proof of Theorem 3.2 can be found in Otto et al. (2018).

The density dependent phenology makes things very complicated. In the

next section we provide numerical simulations to explore the dpatial dynamics.

3.2 NUMERICAL SIMULATIONS FOR MODEL (3.1)

In this section we will explore some to the complex dynamics of model (3.1)

through numerical simulations when the phenological functions are the uniform

distribution (see Equation (2.4)), gamma distribution (see Equation (2.7)), and the

generalized beta distribution (see Equation (2.8)). When discussing solutions to

our spatial model, we call a nonnegative solution (that is not identically zero) that

spreads in both directions a wave solution. If the wave solution oscillates, and the

oscillations appear to follow a pattern, it is called an oscillating wave solution. If

the wave solution oscillates, and the oscillations do not appear to follow a pattern,

it is called a chaotic wave solution.

We show that model (3.1) can exhibit wave solutions (Figures 3.1 (a), 3.10

(a), 3.12 (a), 3.13 (a), and 3.14 (a)), oscillating wave solutions (Figures 3.2 (a),

3.3 (a), and 3.4 (a)), chaotic wave solutions (Figures 3.5 (a), 3.6 (a), 3.7 (a), 3.8

(a), 3.17 (a), and 3.18 (a)) and nonspreading solutions (Figures 3.9 (a), 3.11 (a),

3.15 (a), and 3.16 (a)). It is also shown that the solutions of model (3.1) can have

constant (Figures 3.1 (b), 3.2 (b), 3.3 (b), 3.4 (b), 3.12 (b), 3.13 (b), and 3.14 (b)),

oscillating (Figures 3.5 (b), 3.6 (b), 3.7 (b), 3.8 (b), and 3.10 (b)), and chaotic

(Figures 3.17 (b) and 3.18 (b)) spreading speed.

As in Section 2.2, we assume that the density-dependent parameters of the

phenological function are either nonincreasing or nondecreasing. All of the numer-

ical simulations for model (3.1) we done in Mathematica. To create the figures

showing the year-to-year population distribution, the built-in function NDSolve
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was used. To numerically calculate the spreading speed, we define a level set, L,

and then minimize the solutions of (Pn(x) − L)2; then we take the difference of

consecutive solutions of the minimization.

We use the indicator function

χA(x) =


1 x ∈ A

0 x /∈ A

to help define the initial distribution P0(x).

3.2.1 WHEN THE PHENOLOGY FUNCTION IS THE UNIFORM DISTRIBU-

TION

(a) Solutions P0(x) through P100(x) for

model (3.1)

(b) Spreading speed for model (3.1)

D = 1, θ(P ) = 0, k(P ) = 3.2 − 2.25P
0.4+P

, α = 9, ν = 6, β = 0.3, P0(x) =

8 cos(πx
6

)χ[−3,3](x), L = 1.

Figure 3.1: Wave Solutions with Constant Spreading Speed for Model (3.1) with

g(P, t) given by Equation (2.4)

Consider the phenology function, g(P, t), as defined in equation (2.4) and

parameters D = 1, θ(P ) = 0, k(P ) = 3.2 − 2.25P
0.4+P

, α = 9, ν = 6, β = 0.3, and

P0(x) = 8 cos(πx
6

)χ[−3,3](x). We see that model (3.1) has wave solutions (Figure 3.1
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(a)) which grow from P0(x) to the carrying capacity and spreads in both directions

with constant spreading speed (Figure 3.1 (b)).

(a) Solutions P0(x) through P100(x) for

model (3.1)

(b) Spreading speed for model (3.1)

D = 1, θ(P ) = 0, k(P ) = 3.2 − 3.1P
5+P

, α = 3.4, ν = 1.5, β = 0.1, P0(x) =

12 cos(πx
6

)χ[−3,3](x), L = 1.

Figure 3.2: Oscillating Wave Solutions with Constant Spreading Speed for Model

(3.1) with g(P, t) given by Equation (2.4)

Consider the phenology function, g(P, t), as defined in equation (2.4) and

parameters D = 1, θ(P ) = 0, k(P ) = 3.2 − 3.1P
5+P

, α = 3.4, ν = 1.5, β = 0.1, and

P0(x) = 12 cos(πx
6

)χ[−3,3](x). We see that solutions of model (3.1) grow from P0(x)

to wave solutions that oscillate around the carrying capacity (Figure 3.2 (b)) and

spreads in both directions with constant spreading speed (Figure 3.2 (a)).
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(a) Solutions P0(x) through P50(x) for

model (3.1)

(b) Spreading speed for model (3.1)

D = 1, θ(P ) = 0, k(P ) = 3.2 − 3.1P
5+P

, α = 3.3, ν = 0.4, β = 0.21, P0(x) =

12.5 cos(πx
6

)χ[−3,3](x), L = 1.

Figure 3.3: Oscillating Wave Solutions with Constant Spreading Speed for Model

(3.1) with g(P, t) given by Equation (2.4)

Consider the phenology function, g(P, t), as defined in equation (2.4) and

parameters D = 1, θ(P ) = 0, k(P ) = 3.2 − 3.1P
5+P

, α = 3.3, ν = 0.4, β = 0.21,

and P0(x) = 12.5 cos(πx
6

)χ[−3,3](x). We see that solutions of model (3.1) grow from

P0(x) to wave solutions that oscillate around the carrying capacity (Figure 3.3 (a))

and spreads in both directions with a constant spreading speed (Figure 3.3 (b)).

(a) Solutions P0(x) through P50(x) for

model (3.1)

(b) Spreading speed for model (3.1)

D = 1, θ(P ) = 0.18, k(P ) = 3.2 − 3.1P
5+P

, α = 3.3, ν = 0.4, β = 0.21, P0(x) =

12.5 cos(πx
6

)χ[−3,3](x), L = 1.
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Figure 3.4: Oscillating Wave Solutions with Constant Spreading Speed for Model

(3.1) with g(P, t) given by Equation (2.4)

Consider the phenology function, g(P, t), as defined in equation (2.4) and

parameters D = 1, θ(P ) = 0.18, k(P ) = 3.2− 3.1P
5+P

, α = 3.3, ν = 0.4, β = 0.21, and

P0(x) = 12.5 cos(πx
6

)χ[−3,3](x). We see that model (3.1) wave solutions (Figure 3.4

(a)) which grow from P0(x), oscillate around the carrying capacity, and spreads in

both directions with a constant spreading speed (Figure 3.4 (b)).

(a) Solutions P0(x) through P50(x) for

model (3.1)

(b) Spreading speed for model (3.1)

D = 1, θ(P ) = 0, k(P ) = 3.2 − 3.1P
0.6+P

, α = 16, ν = 8, β = 1, P0(x) =

3 cos(πx
6

)χ[−3,3](x), L = 0.25.

Figure 3.5: Chaotic Wave Solutions with Oscillating Spreading Speed for Model

(3.1) with g(P, t) given by Equation (2.4)

Consider the phenology function, g(P, t), as defined in equation (2.4) and

parameters D = 1, θ(P ) = 0, k(P ) = 3.2 − 3.1P
0.6+P

, α = 16, ν = 8, β = 1, and

P0(x) = 3 cos(πx
6

)χ[−3,3](x). We see that model (3.1) has chaotic wave solutions

(Figure 3.5 (a)) which grow from P0(x) and spreads in both directions with an

oscillating spreading speed (Figure 3.5 (b)). The wave solutions for model (3.1) are

persistent even though the nonspatial dynamics of model (2.1) is essential extinction.
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(a) Solutions P0(x) through P50(x) for

model (3.1)

(b) Spreading speed for model (3.1)

D = 1, θ(P ) = 0, k(P ) = 3.2 − 3.1P
0.6+P

, α = 15.5, ν = 8, β = 0.97, P0(x) =

3 cos(πx
6

)χ[−3,3](x), L = 0.25.

Figure 3.6: Chaotic Wave Solutions with Oscillating Spreading Speed for Model

(3.1) with g(P, t) given by Equation (2.4)

Consider the phenology function, g(P, t), as defined in equation (2.4) and

parameters D = 1, θ(P ) = 0, k(P ) = 3.2 − 3.1P
0.6+P

, α = 15.5, ν = 8, β = 0.97,

and P0(x) = 3 cos(πx
6

)χ[−3,3](x). We see that model (3.1) has chaotic wave solutions

(Figure 3.6 (a)) which grow from P0(x) and spreads in both directions with an

oscillating spreading speed (Figure 3.6 (b)).

(a) Solutions P0(x) through P50(x) for

model (3.1)

(b) Spreading speed for model (3.1)

D = 0.2, θ(P ) = 0.1, k(P ) = 3.2 − 3.1P
1+P

, α = 15, ν = 8, β = 0.5, P0(x) =

3 cos(πx
6

)χ[−3,3](x), L = 0.1.
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Figure 3.7: Chaotic Wave Solutions with Oscillating Spreading Speed for Model

(3.1) with g(P, t) given by Equation (2.4)

Consider the phenology function, g(P, t), as defined in equation (2.4) and

parameters D = 0.2, θ(P ) = 0.1, k(P ) = 3.2 − 3.1P
1+P

, α = 15, ν = 8, β = 0.5,

and P0(x) = 3 cos(πx
6

)χ[−3,3](x). We see that model (3.1) has chaotic wave solutions

(Figure 3.7 (a)) which grow from P0(x) and spreads in both directions with an os-

cillating spreading speed (Figure 3.7 (b)).

(a) Solutions P0(x) through P50(x) for

model (3.1)

(b) Spreading speed for model (2.1)

D = 2, θ(P ) = 0, k(P ) = 3.2 − 3.195P
1+P

, α = 17, ν = 8, β = 0.0001, P0(x) =

2 cos(πx
6

)χ[−3,3](x), L = 0.25

Figure 3.8: Chaotic Wave Solutions with Oscillating Spreading Speed for Model

(3.1) with g(P, t) given by Equation (2.4)

Consider the phenology function, g(P, t), as defined in equation (2.4) and

parameters D = 2, θ(P ) = 0, k(P ) = 3.2 − 3.195P
1+P

, α = 17, ν = 8, β = 0.0001,

and P0(x) = 2 cos(πx
6

)χ[−3,3](x). We see that model (3.1) has chaotic wave solutions

(Figure 3.8 (a)) which grow from P0(x) and spreads in both directions with an

oscillating spreading speed (Figure 3.8 (b)).
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(a) Solutions P0(x) through P100(x) for

model (3.1)

(b) Spreading speed for model (3.1)

D = 0.1, θ(P ) = 0, k(P ) = 3.2 − 3.1P
1+P

, α = 8.5, ν = 6, β = 0.4, P0(x) =

2 cos(πx
6

)χ[−3,3](x), L = 1.

Figure 3.9: Nonspreading Solution for Model (3.1) with g(P, t) given by Equation

(2.4)

Consider the phenology function, g(P, t), as defined in equation (2.4) and

parameters D = 0.1, θ(P ) = 0, k(P ) = 3.2 − 3.1P
1+P

, α = 8.5, ν = 6, β = 0.4, and

P0(x) = 2 cos(πx
6

)χ[−3,3](x). We see that solutions of model (3.1) grow from P0(x) to

an unstable nonspreading solution, i.e. the solution oscillates but does not spread

in time (Figures 3.9 (a) and (b)).

(a) Solutions P0(x) through P50(x) for

model (3.1)

(b) Spreading speed for model (3.1)

D = 1, θ(P ) = 0.9P
1+P

, k(P ) = 0.2 + 4.5P
13+P

, α = 2, ν = 1.3, β = 0.1, P0(x) =
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3 cos(πx
6

)χ[−3,3](x), L = 1

Figure 3.10: Wave Solutions with Oscillating Spreading Speed for Model (3.1) with

g(P, t) given by Equation (2.4)

Consider the phenology function, g(P, t), as defined in equation (2.4) and

parameters D = 1, θ(P ) = 0.9P
1+P

, k(P ) = 0.2 + 4.5P
13+P

, α = 2, ν = 1.3, β = 0.1, and

P0(x) = 3 cos(πx
6

)χ[−3,3](x). We see that model (3.1) has wave solutions (Figure

3.10 (a)) which grow from P0(x) and spreads in both directions with an oscillating

spreading speed (Figure 3.10 (b)).

(a) Solutions P0(x) through P50(x) for

model (3.1)

(b) Spreading speed for model (3.1)

D = 1, θ(P ) = 0.95P
1+P

, k(P ) = 0.2 + 4.5P
13+P

, α = 2, ν = 1.8, β = 0.05, P0(x) =

3 cos(πx
6

)χ[−3,3](x), L = 1

Figure 3.11: Nonspreading Solution for Model (3.1) with g(P, t) given by Equation

(2.4)

Consider the phenology function, g(P, t), as defined in equation (2.4) and

parameters D = 1, θ(P ) = 0.95P
1+P

, k(P ) = 0.2 + 4.5P
13+P

, α = 2, ν = 1.8, β = 0.05, and

P0(x) = 3 cos(πx
6

)χ[−3,3](x). We see that solutions of model (3.1) grow from P0(x)

to a stable nonspreading solution, i.e. the solution oscillates but does not spread in
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time (Figures 3.11 (a) and (b)).

(a) Solutions P0(x) through P100(x) for

model (3.1)

(b) Spreading speed for model (3.1)

D = 1, θ(P ) = 0.5P
0.5+P

, k(P ) = 0.5 + 0.5P
0.8+P

, α = 12, ν = 6.5, β = 0.5, P0(x) =

12 cos(πx
6

)χ[−3,3](x), L = 1

Figure 3.12: Wave Solution with Constant Spreading Speed for Model (3.1) with

g(P, t) given by Equation (2.4)

Consider the phenology function, g(P, t), as defined in equation (2.4) and

parameters D = 1, θ(P ) = 0.5P
0.5+P

, k(P ) = 0.5 + 0.5P
0.8+P

, α = 12, ν = 6.5, β = 0.5,

and P0(x) = 12 cos(πx
6

)χ[−3,3](x). We see that model (3.1) has wave solutions (Fig-

ure 3.12 (a)) which grow from P0(x) to the carrying capacity and spreads in both

directions with a constant spreading speed (Figure 3.12 (b)).

3.2.2 WHEN THE PHENOLOGY FUNCTION IS THE GAMMA DISTRIBU-

TION
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(a) Solutions P0(x) through P50(x) for

model (3.1)

(b) Spreading speed for model (3.1)

D = 1, θ(P ) = 0.5, k(P ) = 4 − 2P
3+P

, α = 5, ν = 0.1, β = 0.2, P0(x) =

6 cos(πx
6

)χ[−3,3](x), L = 0.01.

Figure 3.13: Wave Solutions with Constant Spreading Speed for Model (3.1) with

g(P, t) given by Equation (2.7)

Consider the phenology function, g(P, t), as defined in equation (2.7) and

parameters D = 1, θ(P ) = 0.5, k(P ) = a − 2P
3+P

, α = 5, ν = 0.1, β = 0.2, and

P0(x) = 6 cos(πx
6

)χ[−3,3](x) We see that model (3.1) has an wave solutions (Figure

3.13 (a)) which grow from P0(x) to the carrying capacity and spreads in both di-

rections with a constant spreading speed (Figure 3.13 (b)).

(a) Solutions P0(x) through P50(x) for

model (3.1)

(b) Spreading speed for model (3.1)

D = 1, θ(P ) = 10 − 9.95P
1+P

, k(P ) = 1, α = 8, ν = 1, β = 0.3, P0(x) =

7 cos(πx
6

)χ[−3,3](x), L = 0.5.
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Figure 3.14: Wave Solutions with Constant Spreading Speed for Model (3.1) with

g(P, t) given by Equation (2.7)

Consider the phenology function, g(P, t), as defined in equation (2.7) and

parameters D = 1, θ(P ) = 10 − 9.95P
1+P

, k(P ) = 1, α = 8, ν = 1, β = 0.3, and

P0(x) = 7 cos(πx
6

)χ[−3,3](x). We see that model (3.1) has wave solutions (Figure

3.14 (a)) which grow from P0(x) to the carrying capacity and spreads in both di-

rections with a constant spreading speed (Figure 3.14 (b)).

(a) Solutions P0(x) through P450(x) for

model (3.1)

(b) Spreading speed for model (3.1)

D = 0.5, θ(P ) = 0.1, k(P ) = 1.1 + 125P
1+P

, α = 6, ν = 5, β = 5, P0(x) =

0.07 cos(πx
6

)χ[−3,3](x), L = 0.01.

Figure 3.15: Nonspreading Solution for Model (3.1) with g(P, t) given by Equation

(2.7)

Consider the phenology function, g(P, t), as defined in equation (2.7) and

parameters D = 0.5, θ(P ) = 0.1, k(P ) = 1.1 + 125P
1+P

, α = 6, ν = 5, and β = 5. We

see that model (3.1) has a stable nonspreading solution, i.e. the solution oscillates

but does not spread in time. If we let P0(x) = 0.07 cos(πx
6

)χ[−3,3](x), we see that

the solutions grows above the stable attractor and slowly shrinks down to the stable

nonspreading solution (it takes about 235 generations before the solution converges
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to the attractor) (Figures 3.15 (a) and (b)). If we let P0(x) = 0.07 cos(πx
6

)χ[−1,1](x),

we see that the solutions quickly grows and converges to the stable attractor (it

takes about 30 generations for the solution to converge to the attractor) (Figures

3.16 (a) and (b)).

(a) Solutions P0(x) through P100(x) for

model (3.1)

(b) Spreading speed for model (3.1)

D = 0.5, θ(P ) = 0.1, k(P ) = 1.1 + 125P
1+P

, α = 6, ν = 5, β = 5, P0(x) =

0.07 cos(πx
2

)χ[−1,1](x), L = 0.01.

Figure 3.16: Nonspreadng Solution for Model (3.1) with g(P, t) given by Equation

(2.7)

(a) Solutions P0(x) through P100(x) for

model (3.1)

(b) Spreading speed for model (3.1)

D = 1.5, θ(P ) = 0.2, k(P ) = 1.1 + 85P
1+P

, α = 21, ν = 10, β = 6, P0(x) =

0.05 cos(πx
6

)χ[−3,3](x), L = 0.01.
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Figure 3.17: Oscillating Wave Solutions with Chaotic Spreading Speed for Model

(3.1) with g(P, t) given by Equation (2.7)

Consider the phenology function, g(P, t), as defined in equation (2.7) and

parameters D = 1.5, θ(P ) = 0.2, k(P ) = 1.1 + 85P
1+P

, α = 21, ν = 10, β = 6, and

P0(x) = 0.05 cos(πx
6

)χ[−3,3](x). We see that solutions of model (3.1) grow from P0(x)

to wave solutions which oscillate around the carrying capacity (Figure 3.17 (a)) and

spreads in both directions with chaotic spreading speed (Figure 3.17 (b)).

3.2.3 WHEN THE PHENOLOGY FUNCTION IS THE GENERALIZED BETA

DISTRIBUTION

(a) Solutions P0(x) through P100(x) for

model (3.1)

(b) Spreading speed for model (3.1)

D = 1, θ(P ) = 0.5, k(P ) = 1− 0.9P
1+P

, a1 = 2, b1 = 0.5, p1 = 0.5, α = 22, ν = 10.5,

β = 3, P0(x) = 1.2 cos(πx
6

)χ[−3,3](x), L = 0.1.

Figure 3.18: Chaotic Wave Solutions with Chaotic Spreading Speed for Model (3.1)

with g(P, t) given by Equation (2.8)

Consider the phenology function, g(P, t), as defined in equation (2.8) and

parameters D = 1, θ(P ) = 0.5, k(P ) = 1− 0.9P
1+P

, a1 = 2, b1 = 0.5, p1 = 0.5, α = 22,
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ν = 10.5, β = 3, and P0(x) = 1.2 cos(πx
6

)χ[−3,3](x). We see that model (3.1) has

chaotic wave solutions (Figure 3.18 (a)) which grow from P0(x) and spreads in both

directions with chaotic spreading speed (Figure 3.18 (b)).
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CHAPTER 4

CONCLUSIONS

In this paper we showed that it is possible for density dependent phenology

to cause both Allee effect and overcompensation and wave solutions with noncon-

stant spreading speeds. In Chapter 2, we gave integral conditions for the existence

of strong Allee effects and showed that if Allee effect is present, it is caused by the

density dependent phenology. We also gave a necessary conditions and a sufficient

condition for the existence of a positive equilibrium for model (2.1). One thing that

sets our models apart from previous models is that we only require one equation

to generate the Allee effect. Most other mechanistic models that have the Allee ef-

fect require at least two equations to generate the Allee effect (e.g., two-sex models).

In Section 2.2.1, we explored the dynamics of model (2.1) when the phe-

nology function, g(P, t), was the uniform distribution (equation (2.4)). Since the

uniform distribution is piecewise constant, we were able to explicitly solve model

(2.1) and give the year-to-year mapping (see equation (2.5)). It was shown that

model (2.1) can have a growth function that is monotone (Figures 2.2 (c) and 2.12

(c)), or has overcompensation and a cusp (Figures 2.3 (c), 2.4 (c) and (d), 2.5 (c),

2.6 (c), 2.7 (c), 2.8 (c), 2.9 (c), 2.10 (c), and 2.11 (c)). We also numerically explored

how varying a parameter effected the the dynamics of model (2.1) (Figures 2.2 (a),

2.3 (a), 2.4 (a), 2.5 (a), 2.6 (a), 2.7 (a), 2.8 (a), 2.9 (a), 2.10 (a), 2.11 (a), 2.12 (a))

and effected the equilibrium points (the carrying capacity and the Allee threshold)

(Figures 2.2 (b), 2.3 (b), 2.4 (b), 2.5 (b), 2.6 (b), 2.7 (b), 2.8 (b), 2.9 (b), 2.10 (b),
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2.11 (b), and 2.12 (b)). It was surprising to find the models exhibiting such rich

dynamics for such a simple phenology function.

In Section 2.2.2, we explored the dynamics of model (2.1) when the phenol-

ogy function, g(P, t), was the gamma distribution (equation (2.7)). It was shown

that model (2.1) can have a monotone growth function (Figures 2.14 (c) and 2.15

(c)) or a smooth growth function with overcompensation (Figures 2.16 (c) and 2.17

(c)). We also numerically explored how varying a parameter effected the dynamics

of the model (Figures 2.14 (a), 2.15 (a), 2.16 (a), and 2.17 (a)) and effected the

equilibrium points (the carrying capacity and the Allee threshold) (Figures 2.14

(b), 2.15 (b), 2.16 (b), and 2.17 (b)).

In Section 2.2.3, we explored the dynamics of model (2.1) when the phenol-

ogy function, g(P, t), was the generalized beta distribution (equation (2.8)). We

showed that model (2.1) can have a growth function with overcompensation and

a cusp (Figure 2.19 (c)). We also numerically explored how varying a parameter

effected the dynamics of model (2.1) (Figure 2.19 (a)) and effected the equilibrium

points (the carrying capacity and the Allee threshold) (Figure 2.19 (b)).

In Chapter 3, we introduced the spatial model (model (3.1)) associated with

model (2.1) if it is assumed that the adults move according to random diffusion

processes. We also numerically explored the dynamics of model (3.1) for different

phenology functions and showed that the model can exhibit wave solutions with

nonconstant spreading speeds.

In Section 3.2.1, we explored the dynamics of model (3.1) when the phenol-

ogy function, g(P, t), was the uniform distribution (equation (2.4)). We showed
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that the model can exhibit wave (Figures 3.1 (a), 3.10 (a), and 3.12 (a)), oscillating

wave (Figures 3.2 (a), 3.3 (a), and 3.4 (a)), chaotic wave (Figures 3.5 (a), 3.6 (a),

3.7 (a), and 3.8 (a)), and nonspreading solutions (Figures 3.9 (a) and 3.11 (a)). It

was also shown that these solutions can spread with a constant (Figures 3.1 (b), 3.2

(b), 3.3 (b), 3.4 (b), and 3.12 (b)) or oscillating (Figures 3.5 (b), 3.6 (b), 3.7 (b),

3.8 (b), and 3.10 (b)) spreading speeds.

In Section 3.2.2, we explored the dynamics of model (3.1) when the phenol-

ogy function, g(P, t), was the gamma distribution (equation (2.7)). We showed that

the model can exhibit wave (Figures 3.13 (a) and 3.14 (a)), oscillating wave (Figure

3.17 (a)), and nonspreading (Figures 3.15 (a) and 3.16 (a)). It was also shown that

these solutions can spread with constant (Figures 3.13 (b) and 3.14 (b)) or chaotic

(Figure 3.17 (b)) spreading speeds.

In Section 3.2.3, we explored the dynamics of model (3.1) when the phenol-

ogy function, g(P, t), was the generalized beta distribution (equation (2.8)). We

showed that the model can exhibit chaotic wave solutions (Figure 3.18 (a)) that

spreads with a chaotic spreading speed (Figure 3.18 (b)).

There are many possible extensions of our models. It would be interesting to

investigate the what would happen if the assumption on movement in model (2.1)

was changed from movement and growth take place simultaneously to movement

and growth take place in nonoverlapping stages. Changing this assumption on

movement and assuming that growth was modeled by model (2.1) would lead to an

integrodifference equation of the form

Pn+1(x) =

∞∫
−∞

k(x− y)f(Pn(y))dy
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where k(x) is the dispersal kernal and f(Pn(x)) is the solution map of model (2.1).

It would also be interesting to investigate how the dynamics changed if a

stage structure was added to model (2.1) (e.g., adding at least one juvenile stage).

This would lead to a model of the form

At = m(t)J − ν1A− β1A
2, A(Pn, 0) = 0

Jt = αg(Pn, t)Pn − (ν2 +m(t))J − β2E
2 J(Pn, 0) = 0

Pn+1 = A(Pn, 1).

where m(t) is a phenology kernel accounting for the conversion of juveniles to adults.

Another interesting modification to model (2.1) would be to remove the

assumption that any unhatched eggs die at the end of the year and see how this

changes the dynamics of the model. This would lead to an equation of the form

At = (αP 1
n + P 2

n + . . . )g(Pn, t)− νA− βA2, A(Pn, 0) = 0

P 1
n+1 = A(Pn, 1).

P 2
n+1 = σ1P

1
n .

...

P k
n+1 = σk−1P

k−1
n

...

where P k
n is the number of k-year-old eggs in year n and σk is the probability that

a k-year-old egg becomes a (k + 1)-year-old egg.
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APPENDIX

A.1 LEMMAS

We begin with some lemmas that are need to prove our main result.

LEMMA A.1.

For model (2.1), A(0,t)=0

Proof.

Setting Pn = 0 in model (2.1) we have

At = −νA− βA2, u(0) = 0

Pn+1 = A(0, 1)

(A.1)

Note that A = 0 is a solution of (A.1), this solution is unique due to the Picard-

Lindelof theorem. We next provide an alternate was to show that A = 0 is the

unique solution of (A.1). If u 6= 0 then we can divide by A2 and make the substi-

tution y = A−1. This yields the equation

y′ − νy = β (A.2)

Solving (A.2) gives us A−1 = y = −β
ν

+ ceνt.

And hence, A = 1

cνeνt−β
ν

.

Solving for c
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0 = A(0, 0) = 1

cν−β
ν

6= 0 =⇒ no solution.

Hence A = 0 is the only solution.

LEMMA A.2.

In model (2.1), ∂
∂P
A(P, 0)

∣∣∣
P=0

= 0

Proof. recall that A(P, 0) = 0 ∀P and A(0, t) = 0 ∀t ≥ 0
∂

∂P
A(P, 0)

∣∣∣
P=0

= lim
h→0

A(h, 0)− A(0, 0)

h

= lim
h→0

0

h

= 0

LEMMA A.3.

In model (2.1), ∂
∂P
A(P, t)

∣∣∣
P=0

= αe−νt
t∫

0

g(0, s)eνsds

Proof. Taking the derivative of (2.1) with respect to P yields:

∂
∂P
At = αg(P,t) + αP ∂

∂P
g(P, t)− ν ∂

∂P
A− 2βA ∂

∂P
A A(P, 0) = 0

solving this for ∂
∂P
A, we get:

∂

∂P
A(P, t) =αe

−
t∫
0

(ν+2βA(P,τ))dτ
t∫

0

(g(P, τ)

+ P
∂

∂P
g(P, τ))e

τ∫
0

(ν+2βA(P,τ))dr
dτ +

(
∂

∂P
A(P, 0)

)
e
−

t∫
0

(ν+2βA(P,τ))dτ

evaluating at P = 0 yields:

∂
∂P
A(P, t)

∣∣∣
P=0

= αe−νt
t∫

0

g(0, τ)eντdτ

A.2 PROOF OF THEOREM 2.1

Recall model (2.1),
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At = αg(Pn, t)Pn − νA− βA2, A(Pn, 0) = 0

Pn+1 = A(Pn, 1).

Solving model (2.1) we have,

A(Pn, t) = αPne
−

t∫
0

(ν+βA(Pn,s))ds
t∫

0

g(Pn, s)e

s∫
0

(ν+βA(Pn,r))dr
ds,

which gives the (implicit) year-to-year mapping

Pn+1 = A(Pn, 1)

= αPne
−

1∫
0

(ν+βA(Pn,t))dt
1∫

0

g(Pn, t)e

t∫
0

(ν+βA(Pn,s))ds
dt

= αPn

1∫
0

g(Pn, t)e
−

1∫
t

(ν+βA(Pn,s))ds
dt

:= f(Pn)

(A.3)

Recall that a model of the form xn+1 = f(xn) has Allee effect if f ′′(0) > 0

and the Allee effect is strong if f ′(0) < 1.

f ′(P ) =α

1∫
0

g(P, t)e
−

1∫
t

(ν+βA(P,s))ds
dt+ αP

1∫
0

∂

∂P
[g(P, t)]e

−
1∫
t

(ν+βA(P,s))ds
dt

− αP
1∫

0

g(P, t)e
−

1∫
t

(ν+βA(P,s))ds ∂

∂P

 1∫
t

(ν + βA(P, s))ds

 dt
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f ′′(P ) =2α

1∫
0

∂

∂P
[g(P, t)]e

−
1∫
t

(ν+βA(P,s))ds
dt

− 2α

1∫
0

g(P, t)e
−

1∫
t

(ν+βA(P,s))ds ∂

∂P

 1∫
t

(ν + βA(P, s))ds

 dt
+ αP

1∫
0

∂2

∂P 2
[g(P, t)]e

−
1∫
t

(ν+βA(P,s))ds
dt

− 2αP

1∫
0

∂

∂P
[g(P, t)]e

−
1∫
t

(ν+βA(P,s))ds ∂

∂P

 1∫
t

(ν + βA(P, s))ds

 dt
− αP

1∫
0

g(P, t)e
−

1∫
t

(ν+βA(P,s))ds ∂2

∂P 2

 1∫
t

(ν + βA(P, s))ds

 dt

f ′′(0) = 2α

1∫
0

([
∂

∂P
g(P, t)

] ∣∣∣
P=0

)
e−(1−t)νdt

− 2αβ

1∫
0

g(0, t)e−(1−t)ν

1∫
t

(
∂

∂P
u(P, s)

) ∣∣∣
P=0

dsdt

= 2α

1∫
0

([
∂

∂P
g(P, t)

] ∣∣∣
P=0

)
e−(1−t)νdt

− 2α2β

1∫
0

g(0, t)e−(1−t)ν

1∫
t

e−νs
s∫

0

g(0, r)eνrdrdsdt

f ′(0) = α

1∫
0

g(0, t)e−(1−t)νdt

Hence, Allee effect is present when:
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f ′′(0) = 2α

1∫
0

([
∂

∂P
g(P, t)

] ∣∣∣
P=0

)
e−(1−t)νdt

− 2α2β

1∫
0

g(0, t)e−(1−t)ν

1∫
t

e−νs
s∫

0

g(0, r)eνrdrdsdt > 0

If Allee effect is present, then the Allee effect is strong if:

f ′(0) = α

1∫
0

g(0, t)e−(1−t)νdt < 1

A.3 PROOF OF PROPOSITION 2.1

Proof.

Consider the implicit map f(P ) as defined in (A.3). In order for a positive equilib-

rium of model (2.1) to exist, there must be some P > 0 such that f(P ) = P .

Assume α < 1 and note that A(P, t) ≥ 0 ∀ P, t ≥ 0.

f(Pn) = αPn

1∫
0

g(Pn, t)e
−

1∫
t

(ν+βA(Pn,s))ds
dt

< Pn

1∫
0

g(Pn, t)e
−

1∫
t

(ν+βA(Pn,s))ds
dt, (α < 1)

≤ Pn

1∫
0

g(Pn, t)dt,

(
e
−

1∫
t

(ν+βA(Pn,s))ds
≤ 1

)

≤ Pn

Hence, ∀P > 0, f(P ) < P .
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αP

1∫
0

g(P, t)e
−

1∫
t

(ν+βA(P,s))ds
dt = P

α

1∫
0

g(P, t)e
−

1∫
t

(ν+βA(P,s))ds
dt = 1

α

1∫
0

g(P, t)e−(1−t)νdt ≥ α

1∫
0

g(P, t)e
−

1∫
t

(ν+βA(P,s))ds
dt = 1

(A.4)

Hence a necessary condition for (2.1) to have a positive equilibrium is

∃P > 0 such that α

1∫
0

g(P, t)e−(1−t)νdt ≥ 1

A.4 PROOF OF PROPOSITION 2.2

Proof.

At = αg(Pn, t)Pn − νA− βA2, A(Pn, 0) = 0, Pn+1 = A(Pn, 1) := f(Pn)

We wish to find conditions for which f(P ) = P has a positive solution. We

assume f ′(0) < 1 (i.e., α
1∫
0

g(0; t)e−(1−t)νdt < 1). Our goal is to find a P > 0 such

that f(P ) > P so that f(P ) = P has a positive solution (note that f ′(0) < 1 implies

that f(P ) < P for small P > 0).

At
P

= αg(P, t)− ν A
P
− βP

(
A
P

)2

Let B = A
P

Bt + νB = αg(P, t)− βPB2

(
Beνt

)
t

= eνt
(
αg(P, t)− βPB2

)
(A.5)
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Assume ∃t0 ∈ (0, 1) such that B(t0) ≥ 1.

We require the following condition:

αg(P, t)− βP − ν > 0 (A.6)

If ∃t1 ∈ (t0, 1] such that B(t1) = 1 and B′(t1) ≤ 0 we derive a contradiction:(
d

dt
(Beνt)

) ∣∣∣
t=t1

= eνt1 (αg(P, t1)− βP )

B′(t1) = αg(P, t1)− βP − ν > 0

(It should be noted, if ν ≤ 0, you could assume αg(P, t)−βP > 0 and get the same

contradiction).

Hence, ∀t ∈ (t0, 1] we have B(t) > 1 and thus B(1) > 1, A(P, 1) > P , f(P ) > P .

If ∀t ∈ [0, 1] B(t) < 1, we derive another contradiction. From (A.5)

d

dt

(
Beνt

)
> eνt (αg(P, t)− βP ) , 0 ≤ t ≤ 1

Beνt >

t∫
0

eνs (αg(P, s)− βP ) ds, 0 ≤ t ≤ 1

B(1) > e−ν
1∫

0

eνs (αg(P, s)− βP ) ds > 1

The last inequality is from
1∫
0

e−νs (αg(P, s)− βP ) ds > e−ν .

Hence, ∃t ∈ [0, 1] such that B(t) > 1

A.5 PROOF OF PROPOSITION 2.3

Recall model (2.1)

At = αg(Pn, t)Pn − νA− βA2, A(Pn, 0) = 0

Pn+1 = A(Pn, 1).

(A.7)
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To obtain equation (2.5), we split model (2.1) into pieces depending on the

values of g(P, t), that is 0 for 0 ≤ t < θ(P ) (if this case even exists), 1
k(P )−θ(P )

for

θ(P ) ≤ t < k(P ), and 0 for t > k(P ) and use the solution of one equation as the

initial condition for the next equation. If θ(P ) > 0, then we start with the equation

At = −νA− βA2, A(Pn, 0) = 0. (A.8)

Solving equation (A.8), we find that A(t) = 0 for 0 ≤ t ≤ θ(P ). Next (or if

θ(P ) = 0), we can return to the ode in model (2.1) but modify the initial condition

to A(P, θ(P )) = 0. This gives us the following equation

At =
αP

k(P )− θ(P )
− νA− βA2, A(Pn, θ(P )) = 0. (A.9)

Solving equation (A.9), we find that A(t) = h(t) for θ(P ) ≤ t ≤ k(P ), where h(t)

is given by equation (2.6). Now we can evaluate this solution at t = k(P ) to find

the initial condition for the next piece of the model, that is A(P, k(P )) = h(k(P )).

This yields the following equation

At = −νA− βA2, A(Pn, k(P )) = h(k(P )). (A.10)

Solving equation (A.10), we find that A(P, t) = νh(k(P ))eνk(P )

(ν+βh(k(P )))eνt−βh(k(P ))eνk(P ) for t ≥

k(P ). Summarizing the solutions that we found,

A(P, t) =


0 , 0 ≤ t < θ(P )

h(t) , θ(P ) ≤ t ≤ k(P )

νh(k(P ))eνk(P )

(ν + βh(k(P )))eνt − βh(k(P ))eνk(P )
, t > k(P ).

(A.11)

Now to obtain the year-to-year mapping, we evaluate the solution (A.11) at t = 1

(note that the first solution in solution (A.11) gets removed since θ(P ) < 1 ∀P ≥ 0),

which yields the map given by formula (2.5).
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A.6 DERIVATION OF Λ(µ)

Linearizing model (3.2) we get

At = DAxx + αg(t)Pn − νA, A(x, 0) = 0

Pn+1(x) = A(x, 1).

(A.12)

Solving model (A.12) we get

A(x, t) = α

t∫
0

∞∫
−∞

1√
4πD(t− s)

exp

[
− (x− y)2

4d(t− s)
− ν(t− s)

]
Pn(y)g(s)dyds

Evaluating at t = 1 gives the year-to-year mapping of the linear model,

Pn+1(x) = α

1∫
0

∞∫
−∞

1√
4πD(1− s)

exp

[
− (x− y)2

4d(1− s)
− ν(t− s)

]
Pn(y)g(s)dyds

:= L[Pn](x)

To find Λ(µ), we first calculate L[e−µx](x).

L[e−µx](x) = α

1∫
0

∞∫
−∞

1√
4πD(1− s)

exp

[
− (x− y)2

4d(1− s)
− ν(t− s)

]
exp [−µy] g(s)dyds

= α

1∫
0

g(s)exp[−ν(1− s)]exp[µ2D(1− s)− µx]ds

Hence,

Λ(µ) = L[e−µx](0)

= α

1∫
0

g(s)e(µ2D−ν)(1−s)ds
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• Jobson A., Kézdy A., Lehel J., Pervenecki T. (in preparation) The intersection

of the maximum cliques in 3-uniform hypergraphs.

ACHIEVEMENTS/AWARDS/GRANTS

• Supported by National Science Foundation Grant Fall 2014 - Summer 2015, Spring 2016

• Graduate Student Council Research Grant ($300) 2014

• University Honors List, University of Southern Indiana

• Academic Achievement Award for Mathematics, University of Southern Indi-

ana 2013

• David W. Kinsey Scholarship 2012 - 2013

One scholarship is awarded each year to a full-time USI math major

• Eagle Scout 2006

SERVICE

• General Education Committee Fall 2018-Present

Mathematics Department, University of Louisville

LEADERSHIP

77



• Vice President December 2018-Present

Pokémon Go - UofL Campus, University of Louisville

• Assisted mentoring undergraduate research Summer 2017

University of Louisville

PRESENTATIONS

• “Density Dependent Phenology May Cause Allee Effect”, American Mathe-

matical Society Student Chapter Meeting, University of Louisville, Louisville,

KY, November 2017

• “Density Dependent Phenology May Cause Allee Effect”, Mathematics As-

sociation of America Sectional Meeting, Berea College, Berea, KY, March

2017

• “Density Dependent Phenology May Cause Allee Effect”, Candidacy Exam,

University of Louisville, Louisville, KY, April 2017

• “Allee Effect and Phenology”, Graduate Student Seminar, University of Louisville,

Louisville, KY, November 2016

• “A Reaction-Diffusion Model with Three Stages”, Mathematical Biology Sem-

inar, University of Louisville, Louisville, KY, March 2016

CONFERENCE ATTENDANCE

78



• Joint Mathematics Meetings, Baltimore, MD, January 2019

• Mathematics Association of America Sectional Meeting, Berea College, Berea,

KY, March 2017

• Annual Mathematics Symposium, Western Kentucky University, Bowling Green,

KY, November 2016

• Mathematics Association of America Sectional Meeting, Perdue University,

West Lafayette, IN, October 2016

• American Mathematical Society Sectional Meeting, University of Louisville,

Louisville, KY, October 2013

REFERENCES

• Dr. Bingtuan Li 502.852.6149 bing.li@louisville.edu

• Dr. Robert Powers 502.852.6103 robert.powers@louisville.edu
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