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Protein quality control is essential for cellular homeostasis. The Ubiquitin-Proteasome 

System (UPS) is responsible for the regulated breakdown of intracellular proteins. All proteins 

are not degraded at the same rate in the cell. For instance, global protein turnover rates in 

mammals change with an average time between 1-2 days. On the other hand, a handful of 

proteins such as myelin exhibits limited turnover for months or even years. The UPS recycles 

most of the short-lived proteins in a time range from minutes to days depending on their 

localization and post-translational modifications. The post-translational modification, poly-ADP-

ribosylation has an estimated half-life of only 1-6 min.  

My thesis research aimed to reveal how the substrates of Tankyrase are degraded rapidly. 

Using Drosophila melanogaster, I described the role of Iduna E3 ubiquitin ligase in the 

regulation of Axin and Tankyrase proteolysis.  I found that Iduna controls the proliferation of 

stem cells in the Drosophila midgut. Using a MS-based approach, I identified lysine 598 as an 

ADP-ribose acceptor site in Drosophila Tankyrase and showed that TnksK598A adult flies live 

significantly shorter than control flies. TnksK598A adult flies also reduce their flight, climbing 

abilities, global protein poly-ADP-ribosylation, and the activation of JNK signaling with age. 

Furthermore, I demonstrated that the ubcD1 ubiquitin-conjugating enzyme enhances the 

ubiquitin ligase activity of Iduna. Finally, I proposed a model by which poly-ADP-ribosylation 

brings together Tankyrase, target proteins, E2 ubiquitin-conjugating enzymes, E3 ubiquitin 

ligases and 26S proteasomes to accelerate the breakdown of target proteins.  



My work addresses the general question of how proteins can be rapidly turned over, 

focusing on the role of Tankyrase-mediated poly-ADP-ribosylation. This work provides novel 

mechanistic insights into the regulation of protein quality control. Ultimately, these results may 

be useful to guide the development of new therapies. 
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 1 

1 INTRODUCTION 

1.1 Protein quality control and the Ubiquitin-Proteasome System 

Proteins are essential to execute the diverse cellular functions to maintain cell and 

organismal viability. The proper balance between protein biogenesis and protein degradation is 

crucial for normal cellular function. All living cells must carry out a rigorous quality control 

process in which both nascent and newly synthesized proteins are examined to maintain proper 

cellular functions. Thus, this process is crucial to protect cells against the pathological 

accumulation of unfolded, misfolded and damaged proteins (Narayan et al., 2014).  

Protein quality control can deliver damaged proteins to the lysosomal proteolysis 

pathway or the ubiquitin–proteasome system (UPS) for their degradation in eukaryotic cells 

(Murata et al., 2009; Xie et al., 2010; Glickman and Ciechanover, 2002). Lysosome-mediated 

protein degradation is a bulk process that involves the uptake of extracellular proteins, 

cytoplasmic organelles, or cytoplasmic proteins in the membrane-bound vesicles fusing with the 

lysosome. Eventually, engulfed proteins are exposed to digestive enzymes inside these 

membrane-bound vesicles (Rousseau and Bertolotti, 2018; Narayan et al., 2014).  On the other 

hand, the UPS is highly selective for individual proteins tagged for destruction, and it mediates 

the degradation of most short-lived proteins that control cell cycle, cell survival, cellular 

metabolism, transcription, DNA repair, and apoptosis (Rousseau and Bertolotti, 2018; Narayan 

et al., 2014). The proteasome is also essential for amino acid homeostasis (Rousseau and 

Bertolotti, 2018). Finally, the proteasome particles in the immune system generate major 

histocompatibility complex class I- presented peptides by breaking down the proteins derived 

from intracellular pathogens (Murata et al., 2009; Xie et al., 2010; Glickman and Ciechanover, 

2002). Not only the diversity but also the complexity of the proteasome functions may explain 
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why aberrant proteasome function is often linked to the pathogenesis of human diseases, such as 

cancer, auto-inflammatory disorders and neurodegenerative diseases (Xie et al., 2010; Glickman 

and Ciechanover, 2002).  

 

1.1.1 The composition of the UPS and the ubiquitin pathway 

There are two types of signals for the proteasome-mediated protein turnover. The first 

one is ubiquitylation, which most commonly is in the form of lysine 48-linked poly-ubiquitin 

chains. The second is the presence of unstructured regions in proteins that can act as initiators for 

their degradation (de Bie and Ciechanover, 2011). 

The UPS contains enzymes to modify target proteins by attaching multiple ubiquitin 

chains for their degradation. Ubiquitin (Ub) is a highly conserved 76 amino acid polypeptide that 

is usually attached to lysine residues on target proteins (Glickman and Ciechanover, 2002; de Bie 

and Ciechanover, 2011; Hershko and Ciechanover, 1998).  Conjugation of target proteins with 

poly-Ub chains is a multi-step reaction that is catalyzed by distinct enzymes. These include the 

ubiquitin activating enzymes (E1s), ubiquitin conjugating enzymes (E2s), and ubiquitin ligases 

(E3s). After poly-ubiquitylation, target proteins are destructed by a multi-subunit protease 

termed the 26S proteasome (Murata et al., 2009; Xie et al., 2010; Glickman and Ciechanover, 

2002).  
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Figure 1.1 The Ubiquitin-Proteasome system-mediated protein degradation. Ubiquitylation 

is a crucial step to tag substrates for degradation by the 26S proteasome. Conjugating 

substrates with poly-ubiquitin involves three distinct classes of enzymes, E1, E2, and E3s 

that work in concert to attach distinct ubiquitin chains. The ubiquitin-activating enzyme, E1, 

uses ATP to activate ubiquitin to transfer to the E2, ubiquitin-conjugating enzyme. The last 

step catalyzed by the E3 ubiquitin-ligase taking ubiquitin to link it to a lysine residue on the 

substrate protein. The specificity of degradation is largely mediated by E3 ubiquitin-ligases, 

which are abundant and recognize one or a few specific proteins. Following the 

ubiquitylation, the substrate is degraded by the 26S proteasome. The figure was adapted 

from (Vilchez et al., 2014). 
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In the first step of ubiquitylation, one of the E1’s activates ubiquitin in an ATP-dependent 

manner that generates a high-energy thiol-ester intermediate. Next, one of the E2s receives the 

activated ubiquitin from the E1 and forms a similar thiol-ester ubiquitin intermediate before 

binding to one of the E3s. Finally, the E3 ubiquitin ligase binds to a specific substrate and takes 

the activated ubiquitin from the E2 to transfer that to the target protein (Finley, 2009). Therefore, 

E3 ubiquitin ligases are key to substrate specificity in the UPS. The subsequent additional 

ubiquitin to lysine residues on previously conjugated enzyme forms the poly-ubiquitin chain that 

is recognized by the 26S proteasome.  

The 26S proteasome is the major non-lysosomal protease devoted to protein breakdown 

in eukaryotic cells. This is a sophisticated 2.5 MDa multimeric self-compartementalized protease 

complex. It contains two sub-complexes, the 20S proteasome, which forms the proteolytic core 

particle, and the 19S regulatory particle, which recognizes poly-Ub targets and delivers them in 

an ATP-dependent manner to the core particle (Murata et al., 2009; Xie et al., 2010; Glickman 

and Ciechanover, 2002). The 20S is a cylindrical particle that is formed by axial stacking of four 

hetero-heptameric rings: Two outer α-rings and two inner β-rings, each comprising seven 

structurally similar α- and β- subunits, respectively. β-rings form a proteolytic chamber and α-

rings serve as a gate for entry into the chamber (Murata et al., 2009; Xie et al., 2010; Glickman 

and Ciechanover, 2002). The 19S proteasome contains six ATPase subunits (Rpt1-6) that are 

organized in a hexameric ring and facilitate gate-opening and substrate unfolding by using ATP 

(Murata et al., 2009; Xie et al., 2010; Glickman and Ciechanover, 2002).  
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1.1.2 The regulation of the UPS 

Protein breakdown by the UPS is controlled at different levels. It involves both substrate 

ubiquitylation as well as regulation of proteasome assembly and activity. The attachment of 

ubiquitin to lysine residues allows for branched poly-ubiquitin chains. This branching is tightly 

regulated and results in different biological processes, such as protein degradation by the 26S 

proteasome when ubiquitinylation takes place in lysine 48, and modification of signaling 

cascades when lysine 63 is ubiquitylated (de Bie and Ciechanover, 2011).  

Alternative activators, various interacting proteins and post-translational modifications 

(PTMs) can regulate the assembly and the activity of the 26S proteasome (Rousseau and 

Bertolotti, 2018). While the majority of proteasomes in eukaryotic cells are composed of 20S and 

19S core particles to form the 26S proteasome, populations of proteasomes can be heterogeneous 

in a tissue (Förster et al., 2005).  

PTMs of the proteasome can regulate protein degradation. Protein phosphorylation by 

various kinases and phosphatases can promote or repress the activity of the proteasome (Guo et 

al., 2017; Rousseau and Bertolotti, 2018). Serine 120 of Rpt6 was first demonstrated to be 

phosphorylated by cAMP-dependent protein kinase A (PKA) and dephosphorylated by protein 

phosphatase 1-gamma (Satoh et al., 2001; Pereira and Milk, 1990; Asai et al., 2009; Rousseau 

and Bertolotti, 2018). PKA-mediated phosphorylation of Rpt6 regulates the 26S proteasome, 

possibly by promoting the binding Rpt6 to α-2 subunit of the 20S (Satoh et al., 2001). 

Tankyrase (TNKS)-mediated ADP-ribosylation is another PTM that regulates 26S 

proteasome assembly and activity. PI31 (Proteasome inhibitor 31 kDA) was initially identified 

based on its ability to inhibit 20S proteasome activity in vitro (Chu-Ping et al., 1992; Zaiss et al., 

1999). TNKS ADP-ribosylates PI31, which in turn alters the binding-affinity of PI31 for 20S 
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proteasome alpha subunits and 19S assembly chaperons. As a consequence, PI31-ADP 

ribosylation stimulates 26S proteasome assembly and activity (Park and Steller, 2013). In vivo 

studies of PI31 in Drosophila demonstrated that PI31 is an activator of the 26S proteasome 

(Bader et al., 2011). Loss of PI31 causes accumulation of poly-ubiquitylated proteins in 

Drosophila (Bader et al., 2011).  

Moreover, orthologs of PI31 in yeast and plants have been shown to stimulate 

proteasome activity and protein breakdown (Yashiroda et al., 2015; Yang et al., 2016). Our lab 

has recently found that PI31 plays a role in proteasome transport and is required for synaptic 

structure and function (Liu et al., 2019). PI31 directly couples proteasomes to dynein light chain 

proteins (DYNLL1/2). Depletion of PI31 inhibits proteasome motility in axons and disrupts 

synaptic protein homeostasis, structure, and function (Liu et al., 2019).  

The proteasome can be specialized in certain tissues through the incorporation of specific 

subunits. For example, the immune-proteasome has four additional β-subunits, and the 

thymoproteasome contains a thymus-specific β5-t subunit (Kloetzel, 2004; Tanaka and 

Kasahara, 1998; Murata et al., 2009). These alternative proteasomes have important roles in 

adaptive immunity to present antigens. On the other hand, mammalian and Drosophila testis 

have specific isoforms of 20S proteasome subunits (Belote et al., 1998; Ma et al., 2002; Zhong 

and Belote, 2007). 
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Figure 1.2 Model for increased proteasome assembly upon TNKS-mediated ADP-

ribosylation of PI31. PI31 is regulated by TNKS-mediated ADP-ribosylation, which alters the 

binding affinity of PI31 for 20S proteasome alpha subunits and 19S assembly chaperones. As a 

consequence, PI31-ADP-ribosylation promotes the 26S proteasome assembly and activity. The 

figure was adapted from (Park and Steller, 2013). 
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Figure 1.3 Model for PI31-mediated transport of proteasomes in axons. Proteasomes can 

move rapidly along microtubules to fulfill dynamic local demands for protein degradation in 

different cellular compartments. PI31 is an adaptor protein for proteasome transport in 

Drosophila axons. PI31 directly binds to proteasomes with dynein light chain proteins 

(DYNLL1/2). p38-MAP kinase-mediated PI31 phosphorylation enhances binding of PI31 to 

DYNLL1/2. The figure was adapted from (Liu et al., 2019). 
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1.2 ADP-ribosylation as a post-translational modification  

ADP-ribosylation is a strikingly dynamic and reversible PTM, in which ADP ribose 

(ADP-r) units are attached to acceptor proteins by ADP-r transferases. The first ADP-ribose 

transferase was discovered as a bacterial toxin (Schreiber et al., 2006). Cholera and diphtheria 

toxins are ADP-ribose transferases, inhibiting or enhancing the protein synthesis or GPCR 

signaling in the host cells, respectively (Ruf et al., 1996; Oliver et al., 2004; Hassa et al., 2006; 

Perina et al., 2014). In eukaryotes, ADP-ribosylation affects many cellular processes. Therefore, 

aberrant regulation of ADP-ribosylation causes human diseases including acute central nervous 

system disorders, inflammatory diseases, and cancer (Palazzo et al., 2015; Schreiber et al., 2006).  

Poly-ADP-ribosylation (PARsylation), on the other hand, is an endogenous reversible 

PTM of proteins that is mediated by poly-ADP-ribose polymerases (PARPs). PARPs generate 

negatively charged large polymers by adding ADP-r units to the acceptor proteins. Glu, Asp, 

Lys, Arg, Cys, Thr, or phosphorylated Ser are the amino acid residues that can accept the poly-

ADP-ribose moieties (Daniels et al., 2014; DaRosa et al., 2018; Martello et al., 2016; Zhang et 

al., 2013).  

Nicotinamide adenine dinucleotide (NAD+) is a co-substrate of PARPs to generate ADP-

r polymers on protein acceptors. PARPs transfer multiple ADP-r units to their substrates forming 

both elongated and also branched poly-ADP-ribose modifications (Schreiber, 2006; Ame, 2004). 

Therefore, in contrast to several other PTMs, covalently attached PAR molecules on an acceptor 

protein differ greatly in size up to several hundred ADP-ribose residues with branching and large 

negative charges (Miwa and Masutani, 2007; Miwa et al., 1979; Hayashi et al., 1983). 

PARsylation can influence protein fate through several mechanisms, including a direct effect on 
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protein activity, recruitment of binding partners that recognize PAR or by affecting protein turn 

over (Guettler et al., 2011).  

 
1.2.1 The roles of poly-ADP-ribose polymerases 

At this time, 17 PARP members have been identified from genome sequencing 

(Schreiber et al., 2006). PARP1 is the first investigated PARP, that is involved in DNA repair 

following by its activation in response to single and double strand DNA breaks (Schreiber et al., 

2006). PARP1 activity undergoes an over 500-fold increase upon its binding to DNA strand 

breaks (Eustermann et al., 2015; Nottbohn et al., 2007; Fan et al., 2018). During DNA damage 

repair, PARP1-induced auto-PARsylation acts as a molecular scaffold to recruit DNA damage 

repair proteins to the close proximity of the DNA strand breaks. PARP1 also poly-ADP-

ribosylates histone tails, causing chromatin relaxation. This allows the recruitment of several 

chromatin remodelers through their binding to PAR, which further relax chromatin to 

facilitate DNA repair (Chaudhuri and Nussenzweig, 2017). As a result, DNA damage is 

repaired within several minutes. Hence, Parp1 mutant animals have different vulnerability 

spectrum to the genotoxic mutagens (Menissier et al., 2003; Miwa and Masutani, 2007). 
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Figure 1.4 ADP-ribose transferases (ARTs) use NAD+ to modify their target proteins. 

ADP-ribosylation is a very dynamic and reversible post-translational modification. Target 

proteins can be mono-ADP-ribosylated or poly-ADP-ribosylated by ARTs. ADP-ribosylation has 

an impact on protein fate through several mechanisms including changing localization, activity, 

stability, protein interactions and complex assembly.  
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Figure 1.5 ADP-ribosylation generates a scaffold for DNA damage repair proteins. PARP1-

induced auto-PARsylation acts as a molecular scaffold to recruit DNA damage repair proteins to 

the close proximity of the DNA strand breaks. Furthermore, PARP1 PARylates histone tails, 

which causes chromatin relaxation. This allows the recruitment of several chromatin 

remodelers through their binding to PAR, which further relax chromatin to facilitate DNA 

repair. The figure is adapted from (Beneke et al., 2012). 
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PARP1-dependent PARsylation also controls the nuclear localization of several proteins 

such as pyruvate kinase isoform M2, a glycolytic enzyme that converts phosphoenolpyruvate to 

pyruvate, in EGFR-mutant cancer cells (Li et al., 2016). PKM2 is not a PARsylation target of 

PARP1, however, PKM2 has a canonical PAR-binding motif. PAR binding is required for 

PKM2 nuclear retention. That is crucial for glycolysis and tumor growth. It is also shown that 

PAR level correlates with nuclear localization of PKM2 in EGFR mutant cells (Li et al., 2016). 

Therefore, inhibition of PARP1-dependent PAR generation suppresses the growth of EGFR 

mutant cancers.  

Nuclear PARP1 also facilitates ribosomal biogenesis in Drosophila (Boamah et al., 

2012). PARP1 becomes auto-PARsylated upon each act of transcription start within r-DNA 

gene. Auto-PARsylated PARP1 serves as a chaperoning machine during whole cycle of 

ribosome maturation in nucleus. The dynamic PARP1-mediated PAR scaffold brings a subset of 

nucleolar proteins to the proximity of precursor r-RNA and coordinates the order of events 

including r-RNA processing, modification and loading of subsets of ribosomal proteins to mature 

pre-ribosome in Drosophila (Boamah et al., 2012). Depletion of Parp1 leads to the loss of PAR-

binding proteins from nucleoli, which disrupt processing, modification and folding of ribosomal 

RNA in Drosophila (Boamah et al., 2012). 

Tnks (Parp5) has two isoforms in mammals. Tnks proteins contain a PARP domain at the 

C-terminus, and dimerization of the catalytic domain is required for TNKS activity (Fan et al., 

2018). Immediately upstream of its catalytic domain, there is a SAM, a sterile-alpha motif, 

domain required for the oligomerization of TNKS (Smith et al., 1998; De Rycker and Price, 

2004). The basal activity of the isolated TNKS catalytic domain is extremely low, approximately 

1000-fold lower than PARP1 (Nottbohm et al., 2007). The activity is dramatically elevated by 
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the SAM domain-dependent polymerization (Nottbohm et al., 2007; Fan et al., 2018). The 

stimulation of Wnt signaling by TNKS1/2 is dependent on SAM domain-mediated 

oligomerization, which is important for both TNKS localization and substrate recruitment 

(Marino-Echarri et al., 2016; Fan et al., 2018). The polymerization of TNKS1/2 is inhibited by 

auto-PARsylation (De Rycker and Price, 2004). Finally, there is a large ankyrin repeat domain, 

containing conserved ankyrin repeat clusters (ARCs), which are known for substrate recognition 

and binding (Lehtio et al., 2013). For instance, ARC5 appears essential for TRF1 PARsylation, 

the release of TRF1 from telomeres and telomere elongation (Seimiya et al., 2004). Each 

substrate has a TNKS binding motif (TBM) with an RxxxxG consensus, which mediates binding 

to the ARC domain (DaRosa et al., 2018; Guettler et al., 2011).  

TNKS1/2 play important roles in cellular pathways that are critical for cancer cell 

growth, including telomere cohesion and length maintenance, GLUT-4-mediated vesicle 

transport, the Wnt/β-catenin pathway, as well as apoptosis (Daniels et al., 2014). Studies on 

human Tnks1/2 knock out cell lines indicate that they are necessary to maintain telomere 

cohesion and mitotic spindle integrity (Bhardwaj et al., 2014). The quantitative proteome 

analysis of human TNKS double knockout cells demonstrates Notch1, 2, 3 receptors are the 

targets of TNKS (Bhardwaj et al., 2014).  

Mutations in the immune adaptor protein 3BP2 that impair interaction with TNKS cause 

Cherubism, characterized by progressive, painless, bilateral swelling of the jaw during 

childhood. Loss of TNKS-mediated destruction of 3BP2 through Iduna is the underlying 

mechanism of the disease (Levaot et al., 2011; Guettler et al., 2011 Ueki et al., 2007).  

In contrast to mammals, Drosophila has only a single Tnks gene. The overall similarity 

between Drosophila and human TNKS1/2 proteins is 79% (Wang et al., 2016). While double 
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knockout of Tnks1 and 2 lead to lethality in mice, Drosophila Tnks is not required for viability 

(Feng et al., 2014). TNKS is essential for Axin degradation in vivo but loss-of Tnks does not lead 

to obvious morphological defect in Drosophila (Feng et al., 2014; Yang et al., 2016; Wang et al., 

2016). TNKS antagonizes the β-catenin destruction complex through ADP-ribosylation of Axin 

and APC2 (Kroy et al., 2016). Therefore, the Wnt pathway is regulated by ADP-ribosylation.  

Genetic depletion of Tnks causes Axin elevation that blocks Wingless signaling in 

enterocytes and activates JAK-STAT signaling to promote intestinal stem cell proliferation in the 

Drosophila midgut (Wang et al., 2016). Conditional genetic inactivation of Tnks1/2 in mice 

results in a rapid decrease of Lgr5+ intestinal stem cells and promotes cell death in small 

intestinal crypts. As a result of intestine degeneration, increased mice mortality is indicated (Ye 

et al., 2018). On the other hand, TNKS can stimulate apoptosis in the Drosophila eye and wing 

by activating JNK signaling (Feng et al., 2018).  

TNKS also has other PTMs but their impacts on TNKS are not well understood. 

Mitogen-activated protein kinase phosphorylates TNKS1 on its serine residues by after insulin or 

growth factor stimulation (Chi and Lodish, 2000). TNKS can be hydroxylated by hypoxia-

inducible factor asparagine hydroxylase (FIH), although precise functions of these PTMs are not 

clear (Cockman et al., 2009). Finally, auto-PARsylation of TNKS provides a recognition signal 

for ubiquitylation and 26S-proteasome-mediated degradation through the Iduna (RNF146) 

(Gultekin and Steller, 2019; Callow et al., 2011; Zhang et al., 2011). 

 

1.2.2 Regulation of ADP-ribosylation 

As a highly dynamic and reversible PTM, poly-ADP-ribosylation has an estimated half 

live of only 1-6 min (Alvarez-Gonzales et. al., 1989). PAR glycohydrolase (PARG), Nudix type 
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motif 16 (NUDIX16) and NUDIX9 can remove PARsylation (Slade et al., 2011; Lin et al. 1997; 

Slade et al., 2011; Palazzo et al., 2015).  

The opposing effects of PARPs and PARG in regulating protein PARsylation are 

important in a variety of cellular processes, including chromatin modeling, DNA repair, 

transcription regulation and cell death (Ahel et al, 2008; Andrabi et al., 2006; Frizzell et al., 

2009; Sing et al., 2017). Impairments in the hydrolysis of PAR chains, therefore, involve in 

various human disorders such as cancer, neurodegeneration, oxidative stress, neural injury, and 

regeneration (Deng, 2009; Hanai et al., 2004; Martire et al., 2015; Brochier et al., 2015).  

Interestingly, PAR, some PARPs as well as PARG can be found in cytoplasmic stress granules 

and may regulate micro-RNA-dependent translational repression and mRNA cleavage (Gagne et 

al, 2008; Kotova et al., 2009; Leung et al., 2011). Mutations on RNA-binding proteins such as 

heterogeneous nuclear riboprotein A1 and TAR DNA binding 43kDA (TDP-43) enhance protein 

aggregation in mouse and fly models of familial amyotrophic lateral sclerosis (ALS) and 

frontotemporal dementia (FTD) (Kim et al., 2013; Neumann et al., 2006). TNKS-mediated 

PARsylation modulates stress granule assembly, phase separation and neurotoxicity of ALS-

related RNA binding proteins hnRNP A1 and TDP43 (McGurk et al., 2018; Duan et al., 2018).  

There are also other enzymes that cleave mono-ADP-ribose moieties on target proteins. 

For instance, Terminal ADP-ribose glycohydrolase (TARG1) can remove mono-ADP-ribose on 

glutamate residues (Sharifi et al., 2013). Homozygous mutations of TARG1 are associated with 

severe neurodegeneration in human patients (Sharifi et al., 2013). The source of ADP-ribose 

units is NAD+, which has been shown in a variety of systems to be neuroprotective and increases 

health-span (Lehmann et al., 2016; Ocampo et al., 2013; Verdin, 2015; Wang et al., 2008; Zhang 

et al., 2016). 
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Figure 1.6 TNKS-mediated ADP-ribosylation largely stimulates ubiquitinylation and 

substrate degradation by the 26S proteasome. TNKS is conserved from flies to human. Fly 

genome encodes a single Tnks gene. In contrast, mammalian cells have two TNKS isoforms. 

Both structure and amino acid composition of fly TNKS are similar to mammalian TNKSs. 

Ankyrin repeat clusters (ARCs) are responsible for recognizing and binding to the substrate 

proteins. α-sterile-alpha motif is required for TNKS oligomerization. Poly-ADP-ribose 

polymerase domain is the catalytic region of TNKS. TNKS makes a complex with Iduna E3 

ubiquitin ligase. Then, TNKS binds to its target protein and ADP-ribosylates that by using 

NAD+. When the modification in the target protein is iso-or poly-ADP-ribose, Iduna E3 

ubiquitin ligase is activated and ubiquitinylates the target protein. Finally, the poly-

ubiquitinylated target protein is degraded by 26S proteasomes. The functional domain image of 

TNKSs is adapted from (Wang et al., 2016).  
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Depletion of NAD+ leads to failure to generate ATP, a major requirement for many cellular 

processes. Therefore, recycling and production of NAD+ is crucial.   

NAD+ producing pathways include de novo synthesis from tryptophan, and a salvage 

pathway, which recycles nicotinamide and nicotinic acid from the diet. PARPs, c-ADP-ribose 

synthases and Sirtuins are general NAD+ consumers (Cantó et al., 2013). For instance, CD157 or 

Bst-1 is an ectoenzyme on Paneth cells in the mouse small intestine. Caloric restriction increases 

NAD+ levels (Guarente and Picard, 2005). Upon caloric restriction, elevated Bst1 is thought to 

promote stem cell proliferation through converting NAD+ to cyclic ADP-ribose (cADRP) 

(Yilmaz et al., 2012; Igarashi and Guarente, 2016).  

Dietary nicotinic acid (Na) and nicotinamide (Nam) intake significantly alters NAD+ 

levels in organisms (Belenky et al., 2007; Elhassan et al., 2017). The salvage pathway is crucial 

to metabolize the dietary NAD+ precursors, Na and Nam. Nicotinamide mononucleotide 

adenylyltransferase (NMNAT) is an essential enzyme, participating in the synthesis of NAD+ 

from Na or Nam. Genetic depletion of nmnat results in lethality in Drosophila. Interestingly, the 

salvage pathway-mediated NAD+ boost increases longevity in various model systems (Lin et al., 

2000; McClure et al., 2012; Ocampo et al., 2013). Therefore, NAD+ metabolism is important for 

poly-ADP-ribosylation.  

 

1.2.3 RNF146/Iduna E3 ubiquitin ligase 

Iduna, an evolutionarily conserved protein, is a unique E3 ubiquitin ligase that 

specifically promotes the degradation of PARsylated proteins (Zhou et al., 2011; Wang et al., 

2012; He et al., 2012; DaRosa et al., 2014; Zhang et al., 2011; Callow et al., 2011).  
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Under normal physiological conditions, Iduna is found as an inactive enzyme. Binding to 

TNKS mediated iso- or poly-ADP-ribosylated proteins is an allosteric activation signal of Iduna-

dependent ubiquitylation and the 26S proteasome-mediated degradation (DaRosa et al., 2014). 

Iduna is a positive regulator of Wnt signaling since it promotes Axin poly-ubiquitylation and 

degradation. Depletion of zygotic Rnf146 with a translational blocking morpholino in Xenopus 

causes anteriorized development (Zhu et al., 2017). Conditional inactivation of Iduna promotes 

osteoclast activity and inflammation in mouse bone (Matsumoto et al., 2017a). On the other 

hand, Iduna depletion reduces proliferation of osteoblasts and promotes adipogenesis in the 

mouse skeleton (Matsumoto et al., 2017b).  

TNKS and Iduna have received considerable attention as potential targets for cancer 

therapy. Overexpression of Iduna in non-small cell lung cancer enhances proliferation and 

invasion of tumors through the Wnt/β-catenin pathway (Gao et al., 2014). Furthermore, knock 

down of Tnks1/2 stabilizes the tumor suppressor PTEN, reduces AKT phosphorylation and 

inhibits cell proliferation and glycolysis in vitro and tumor growth in vivo. TNKS1/2 are 

upregulated and negatively correlated with PTEN expression in human colon carcinomas (Li et 

al., 2015). Finally, TNKS and Iduna are positive regulators of Hippo-YAP signaling identified 

through a CRISPR screen (Wang et al., 2016). YAP is an oncoprotein whose expression is 

elevated in several human cancers. Small molecule inhibitors of TNKS suppress the oncogenic 

of YAP through stabilizing angiomotin family proteins via TNKS-Iduna axis (Wang et al., 2015; 

Wang et al., 2016). 

On the other hand, Iduna protects mice against glutamate excitotoxicity and stroke 

(Andrabi et al., 2011). It also preserves cells from environmental stress-induced cell death by 

scavenging PARs (Zhou et al., 2011; Andrabi et al., 2011; Gerö et al., 2014; Kang et al., 2011; 
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Wang et al., 2011; Xu et al., 2013). Iduna has a neuroprotective role against NMDA toxin 

induced cell death. NMDA induces PAR polymers in the nucleus. Accumulated PAR diffuses 

into cytoplasm that interacts with apoptosis inducing factor (AIF). That leads to AIF release from 

mitochondria outer membrane. AIF then enters to nucleus and causes DNA fragmentation and 

cell death. Over-expression of Iduna in the mouse brain prevents the interaction of PARs with 

AIF. This abrogates AIF-release and blocks neuronal cell death in mice (Andrabi et al., 2011). 

Iduna is also highly expressed in the brain of patients that suffers from Alzheimer’s Disease 

(AD) (von Rotz et al., 2005). Hence, Iduna may play a role for protection against stress-induced 

cell death and neurodegeneration.  

 

1.3 The Wnt/β-catenin (Wingless) signaling pathway 

Wnt/β−catenin (Wingless) signaling is an evolutionarily conserved pathway from 

invertebrates to vertebrates. This pathway has critical functions during embryonic development, 

stem cell self-renewal and differentiation, adipogenesis, neural maturation, as well as tissue and 

animal regeneration (Nusse and Clevers, 2017).  

The key process in the canonical pathway is to control of β-catenin concentration by a 

destruction complex, which is composed of Axin/GSK3, APC and Casein Kinase I (Kimelman 

and Xu, 2006; Nakamura et al., 1998; Hart et al., 1998; Ikeda et al., 1998). When there is no Wnt 

ligand, the destruction complex associates with β-catenin and enhances the degradation of 

phosphorylated and poly-ubiquitylated β−catenin through the 26S proteasome (Zeng et al., 

1997). On the other hand, if there is a Wnt ligand, it binds to Frizzled and LRP receptors on the 

cell membrane. β-catenin is then stabilized with its degradation complex on the cell membrane, 
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accumulates in the cytoplasm and finally trans-locates into the nucleus to induce expression of 

the pathway-associated genes (Lee et al., 2003; Zeng et al., 1997).  

Axin is the central scaffold protein in the destruction complex. It binds the components of the 

complex through its different domains (Nakamura et al., 1998; Hart et al., 1998; Ikeda et al., 

1998; Zeng et al., 1997). Axin is present at a lower level than the other components of the 

complex and over-expression of Axin in cultured cells promotes the degradation of β-catenin 

(Lee et al., 2003). Hence, Axin is a rate-limiting factor of the pathway and its level is tightly 

controlled (Lee et al., 2003; Zeng et al., 1997). There is an Axin threshold in a time and tissue-

dependent manner in Drosophila. To observe functional alterations in Wingless activity in the 

developing embryo of Drosophila, there should be Axin elevation more than its endogenous 

protein level. This threshold is 3-6 fold of endogenous Axin level to observe abnormal wing 

development. On the other hand, adult Drosophila midgut is more sensitive tissue to reduced 

Wingless signaling (Feng et al., 2014; Wang et al., 2016; Yang et al., 2016). It is therefore 

required to degrade the rate-limiting protein Axin through the UPS to prevent the attenuation of 

Wnt signaling (Li et al., 2012).  

Axin degradation depends on the combined actions of TNKS poly-ADP-ribose 

polymerase and Iduna (Zhang et al., 2011). UPS-dependent degradation of Axin occurs in a 

specific temporal order. As an initial step, Iduna binds to TNKS but Iduna initially exists in an 

inactive state in the complex. Once Axin binds to the Iduna-TNKS complex through its TBM, 

TNKS ADP-ribosylates Axin by using NAD+. After Axin has iso- or poly-ADP-ribose, Iduna 

changes its confirmation to recognize and bind to Axin through its WWE domain and poly-

ubiquitylates Axin. After the ADP-ribosylation and ubiquitylation, post-translationally modified 

Axin is rapidly degraded by the 26S proteasome (DaRosa et al., 2014; Wang et al., 2016a and 
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2016b; Croy et al., 2016; Callow et al., 2011). This tight control suggests an important function 

for Iduna to regulate the Wnt/β-catenin pathway.  

 

1.4 Intestinal stem cells in the adult Drosophila midgut 

Adult stem cells are essential for maintaining basal tissue integrity and are a resource for 

tissue regeneration upon injury. Tissue homeostasis requires a tight control to coordinate the 

actions between the removal of old or damaged cells, and the production of new cells. The 

intestinal epithelium has a remarkable regeneration potential. The small intestinal epithelium of 

the mouse completely renews itself every 3-5 days (Barker et al., 2007; Barker et al., 2012).   

The Drosophila adult midgut has similar structure and function with the mammalian 

small intestine (Micchelli and Perrimon, 2006; Ohlstein and Spradling, 2006; Barker et al., 

2007). Similar to the mammalian intestine, the fly midgut provides essential physiological 

functions, including food digestion, nutrient absorption and solid waste elimination, and 

displaying key endocrine, immune and metabolic roles (Perochon et al., 2018).  

The Drosophila midgut has intestinal stem cells (ISCs) (Micchelli and Perrimon, 2006; 

Ohlstein and Spradling, 2006). Paracrine Wingless signaling controls self-renewal of Drosophila 

midgut stem cells (Perochon et al., 2018; Herr et al., 2012; Lin and Xi, 2008).  

Under homeostatic conditions, reduced Wingless signaling causes over-proliferation of 

ISC in Drosophila. (Kramps et al., 2002; Wang et al., 2016 a, b; Tian et al., 2016; Gultekin and 

Steller, 2019). Non-cell autonomous mechanisms also orchestrate tissue remodeling in the 

Drosophila midgut, highlighting the importance of the stem cell niche as a sensor of organismal 

physiology. The JAK-STAT pathway can be non-cell autonomously activated to promote 

proliferation of stem cells in the Drosophila midgut (Gultekin and Steller, 2019; Herrera and 
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Bach, 2019; Zeidler et al., 2000; Zoranovic et al., 2013; Markstein et al., 2014; Zhou et al., 2013; 

Tian et al., 2016).  

In response to genetically or pharmacologically induced stress, bacterial infection, and 

apoptosis, enterocytes and enteroblasts have been shown to express and secrete Unpaired (UPD) 

cytokines. Secreted UPDs then bind to the Domeless receptor on enteroblasts or intestinal stem 

cells to activate the JAK-STAT pathway in stem cells (Herrera and Bach, 2019; Ghiglione et al., 

2002; Zhou et al., 2013; Xu et al., 2011). Moreover, other conserved signaling pathways 

including JNK, Hippo, EGRF, Hh, Dpp/BMP signaling have been shown to mediate damage or 

stress-induced intestinal regeneration in Drosophila (Jiang and Edgar, 2011; Naszai et al., 2015; 

Apidianakis et al., 2009; Jiang et al., 2009; Buchon et al., 2009; Shaw et al., 2010). 
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Figure 1.7 ADP-ribosylation activates the Wnt/β−catenin signaling pathway. When Wnt is 

``off``, the destruction complex, composed of Axin/GSK3, APC and Casein Kinase I associates 

with β−catenin and enhances the degradation of phosphorylated and poly-ubiquitylated 

β−catenin through the 26S proteasome (1). On the other hand, if Wnt is ``on``, WNT ligand 

binds to Frizzled and LRP receptors on the cell membrane (2). β−catenin is then stabilized with 

its degradation complex on the cell membrane, accumulates in the cytoplasm and finally trans-

locates into the nucleus to induce expression of the pathway-associated genes (3). On the other 

side, TNKS PARsylates Axin, the rate limiting protein of the Wnt pathway. Finally, PARsylated-

Axin is poly-ubiquitylated by RNF146/Iduna for its turnover (4). The figure is adapted from 

(McCubrey et al., 2014).  
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Figure 1.8 Intestinal stem cells reside in the Drosophila midgut epithelium. A- Just as the 

mammalian intestine, the Drosophila midgut has several intestinal regions including the foregut, 

anterior midgut, the posterior midgut, and the hindgut. B- Drosophila intestine has stem cells 

(ISCs), which give rise to all intestinal compartments. ISCs give rise to daughter cells: 

undifferentiated enteroblasts (EBs) and terminally differentiated enterocytes (ECs) and 

enteroendocrine (EEs) cells. C- The Wingless pathway is necessary to maintain midgut 

homeostasis in Drosophila. Axin is a rate-limiting factor in the Wingless pathway. There is an 

Axin threshold to observe functional consequences of altered Wingless signaling in a time and 

tissue-dependent manner in Drosophila. Adult Drosophila midgut is more sensitive tissue to 

reduced Wingless signaling.  
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1.5 Relevance to this thesis 

The UPS degrades most of the short-lived proteins in the cell. The rates of proteolysis 

often correlate with cellular functions, cellular localization as well as post-translational 

modifications (PTM) of a protein. Poly-ADP-ribosylation is a highly dynamic and reversible 

PTM, affecting protein activity and stability. For instance, poly-ADP-ribosylated TRF1, a 

negative regulator of telomere length localized on the telomeres, has not been detected in vivo, 

owing to its rapid degradation (Ye and de Lange, 2004).  

My graduate thesis has aimed to address the questions on why target proteins of TNKS 

have short half-lives and how they are degraded rapidly. I am interested in understanding the 

mechanism that allows for very fast and efficient degradation of labile proteins. I have 

hypothesized that PTM of proteins by ADP-ribosylation provides a molecular scaffold to 

assemble them together with a specific E3 ubiquitin ligase and proteasomes, thereby locally 

concentrating all “players” and causing accelerated degradation of target proteins (Fig 1.6).  

I have proposed that TNKS forms a complex with Iduna, which is inactive when bound to 

non-PARylated TNKS in the cell. After substrate binding to TNKS and subsequent PARylation, 

Iduna binds an internal unit of PAR. This binding causes a conformational change in the RING 

domain of Iduna, activating its ubiquitin ligase activity and enabling the poly-ubiquitylation of 

the substrate. As a consequence, TNKS may be promoted for its PARsylation activity to 

assemble PARsylation scaffold. Finally, I suggest that PI31 may play a role in proteasome 

recruitment. 26S proteasomes, therefore, can be recruited to the scaffold and concentrating them 

in the local environment for the rapid breakdown of the target proteins (Fig 1.6).  

The overarching goal of this thesis is to understand the mechanisms that allow for rapid 

and efficient protein degradation. I combined the power of fly genetics with that of molecular 
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and cellular tools to investigate the regulatory functions of PARsylation and Iduna on TNKS-

coupled protein degradation. I, therefore, i) determined the physiological role(s) of Iduna by 

generating loss-of-function mutants, ii) understood the role of Iduna for TNKS-coupled 

PARsylation and proteolysis, iii) investigated whether ADP-ribosylation served as a molecular 

scaffold to accelerate the proteolysis of TNKS target proteins by mapping ADP-ribose acceptor 

site(s) of TNKS and its possible substrates, and finally iv) identified the possible regulatory 

proteins that have an impact on PARsylation-mediated protein breakdown.  

This thesis addresses the role of PARsylation in TNKS-mediated rapid protein 

degradation. This work, therefore, provides novel mechanistic insights into the regulation of 

protein quality control. Ultimately, these results may also provide a conceptual basis to guide the 

development of new therapies.  
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Figure 1.9 Hypothetical working model. ADP-ribosylation provides a molecular scaffold to 

assemble them together with the specific E3 ubiquitin ligase and proteasomes, thereby locally 

concentrating all “players” and causing accelerated degradation of target proteins. We propose 

that TNKS forms a complex with Iduna, which is inactive when bound to non-PARylated TNKS 

in the cell. After substrate binding to TNKS and subsequent PARylation, Iduna binds an internal 

unit of PAR. This binding causes a conformational change in the RING domain of Iduna, which 

activates its ubiquitin ligase activity, enabling the poly-ubiquitinylation of the substrate. As a 

consequence, TNKS may be promoted for its ribosylation activity to assemble poly-ADP-ribose 

scaffold. Finally, we suggest that PI31 may have a role in proteasome recruitment. 26S 

proteasomes, therefore, can be recruited to the scaffold and concentrated in a local environment 

for rapid break down of the target protein. 
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2 Axin proteolysis by Iduna is required for the regulation of stem cell 

proliferation and intestinal homeostasis in Drosophila 

2.1 Summary 

The self-renewal of intestinal stem cell is controlled by Wingless/Wnt-β catenin signaling 

in both Drosophila and mammals. Since Axin is a rate-limiting factor in Wingless signaling its 

regulation is essential. Iduna is an evolutionarily conserved ubiquitin E3 ligase that has been 

identified as a critical regulator for degradation of ADP-ribosylated Axin and thus of Wnt/β-

catenin signaling. However, its physiological significance remains to be demonstrated. Here, I 

generated loss-of-function mutants of Iduna to investigate its physiological role in Drosophila. I 

show genetic depletion of Iduna causes the accumulation of both TNKS and Axin. Increase of 

Axin protein in enterocytes non-autonomously enhanced stem cell divisions in the Drosophila 

midgut. Enterocytes secreted Unpaired and thereby stimulated the activity of the JAK-STAT 

pathway in intestinal stem cells. A decrease in Axin gene expression suppressed both the over-

proliferation of stem cells and restored their numbers to normal levels in Iduna mutants. These 

findings suggest that Iduna-mediated regulation of Axin proteolysis is essential to maintain tissue 

homeostasis in the Drosophila midgut. 
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2.2 Introduction 

The evolutionarily conserved Wnt/β-catenin signaling pathway is a main regulator of 

animal development. It controls proliferation, differentiation and regeneration of adult tissues 

(Herr et al., 2012; Nusse and Clevers, 2017). The Wingless pathway is also involved in adult 

tissue self-renewal in Drosophila (Lin et al., 2008). Genetic depletion of proteins in the Wingless 

pathway, such as Tcf, arr, dsh and pygo, leads to inhibition of Wingless signaling activation 

which in turn causes over-proliferation of stem cells in the Drosophila midgut (Kramps et al., 

2002; Wang et al., 2016 a, b; Tian et al., 2016). However, inactivation of Wnt signaling in the 

mouse small intestine decreases the proliferative potential of stem cells (Fevr et al., 2007; 

Korinek et al., 1998). On the other hand, mutations resulting in the over-activation of the Wnt/β-

catenin pathway promote tumorigenesis (Clevers and Nusse, 2012; Andreu et al., 2005; Korinek 

et al., 1997 and 1998; Morin et al., 1997). For instance, mutations in the adenomatous polyposis 

coli (APC) gene cause a hereditary colorectal cancer syndrome called familial adenomatous 

polyposis (Kinzler et al., 1991; Nishisho et al., 1991). Axin loss-of-function mutations are found 

in hepatocellular carcinomas, while oncogenic β-catenin mutations are described in colon cancer 

and melanoma (Rubinfeld et al., 1997). Consequently, intense efforts have been made to target 

this pathway for therapeutic purposes (Clevers and Nusse, 2012). 

A key feature of the Wnt/β-catenin pathway is the regulated proteolysis of the 

downstream effector β-catenin by the β-catenin degradation complex. The principal components 

of this complex are APC, Axin and Glycogen synthase kinase 3β (GSK3β) (Kramps et al., 2002; 

Hamada et al., 1999; Salic et al., 2000; Lee at al., 2003). Axin, a critical scaffold protein in the β-

catenin degradation complex, is the rate-limiting factor of Wnt signaling and its protein levels 

are regulated by the Ubiquitin-Proteasome System (UPS) (Li et al., 2012). Axin is targeted for 
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degradation by the combined action of the TNKS and the ubiquitin E3-ligase Iduna/Ring finger 

protein 146 (RNF146) (Zhang et al., 2011). Both genetic and pharmacological studies suggest 

that UPS-dependent degradation of Axin occurs in a specific temporal order. Iduna initially 

exists in an inactive state but binding to its iso- or PARsylated targets causes allosteric activation 

of the enzyme (DaRosa et al., 2014). In the first step, TNKS binds to Axin and ADP-ribosylates 

Axin using NAD+. Then, Iduna recognizes and binds to ADP-ribosylated Axin via its WWE 

domain and poly-ubiquitylates Axin. Following the ADP-ribosylation and ubiquitination, post-

translationally modified Axin is rapidly degraded by the proteasome (DaRosa et al., 2014; Wang 

et al., 2016 a, b; Croy et al., 2016; Callow et al., 2011). This tight control suggests a crucial 

function for Iduna to regulate the Wnt-β catenin pathway.  

Because the stability of Axin is partially regulated by TNKS-mediated ADP ribosylation, 

specific small-molecule inhibitors have been developed to inhibit Wnt-signaling (Lu et al., 2009; 

Huang et al., 2009). For example, XAV939 targets the ADP-ribose polymerase activity of TNKS 

and increases Axin levels, which in turn destabilizes β-catenin to inhibit Wnt signaling (Huang et 

al., 2009). There are two TNKS isoforms in mammalian cells (Hsiao et al., 2006). Tnks1-/- and 

Tnks2-/- mice are overall normal; however, double knockout of Tnks1/2 causes early embryonic 

lethality, which indicates their redundancy in mouse development (Hsiao et al., 2006; Chiang et 

al., 2008). On the other hand, inactivation of the single Drosophila Tnks gene produces viable 

flies that have slightly increased Axin levels and abnormal proliferation of intestinal stem cells, 

but otherwise display no overt defects (Wang et al., 2016 a, b; Feng et al., 2014; Yang et al., 

2016; Tian et al., 2016). The exact physiological function of Iduna, however, remains to be 

determined. In order to address this question, I generated and characterized Drosophila Iduna 
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loss-of-function mutants and demonstrate a critical function of this pathway for stem cells in the 

Drosophila intestinal tract. 

The Drosophila genomes encode four isoforms of CG8786/Iduna/RNF146, which is 

evolutionarily conserved from Drosophila to human. In this study, I concentrated on the 

physiological function of Iduna in the adult Drosophila midgut, which shares several striking 

similarities with the mammalian small intestine but offers greater anatomical and genetic 

accessibility (Micchelli and Perrimon, 2006; Ohlstein and Spradling, 2006; Markstein et al., 

2014). Under normal conditions, Wingless signaling controls stem cell proliferation and cell fate 

specification in adult midgut (Tian et al., 2016). Here, I showed that Iduna has a physiological 

function to regulate the proteolysis of both TNKS and Axin. Inactivation of Iduna results in 

increased numbers of midgut stem cells and progenitors due to over-proliferation. I found that 

Axin accumulation in enterocytes promotes the secretion of Unpaired, a cytokine that binds to 

the Domeless receptor and activates the JAK-STAT pathway in stem cells and thereby promotes 

stem cell division. Significantly, reducing Axin expression by half restores the numbers of ISC. 

These findings indicate that regulation of Axin proteolysis by Iduna is necessary to control 

intestinal homeostasis in Drosophila, and it provides physiological evidence for the idea that the 

functions of TNKS and Iduna are tightly coupled. 
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2.3 Results 

2.3.1 Iduna plays a role in Axin degradation 

To examine the in vivo function of Drosophila Iduna, CRISPR-Cas9 genome editing was 

used to generate Iduna mutants. Iduna is located on the 3rd chromosome of Drosophila. I 

designed a specific guide RNA that targets Iduna`s first exon and identified two mutant alleles 

by Sanger sequencing: Iduna17 and Iduna78, which have 4-nucleotides and 2-nucleotides 

deletions, respectively (Fig 2.1A-B). These deletions are close to the translation start side of 

Iduna. 

Next, I assessed the levels of mRNA and protein expression in these mutants.  Using 

reverse transcript PCR analyses, I found significantly reduced amounts of Iduna transcripts in the 

Iduna78 mutant.  On the other hand, I was unable to detect any Iduna B and C/G transcripts in the 

Iduna17 allele (Fig 2.1C). Moreover, no Iduna protein was detected in either of these mutants, 

indicating that they represent null-mutations (Fig 2.1D).  Finally, genetic analyses of these alleles 

in trans to a larger deletion indicate that both alleles are complete loss-of-function mutations. 

Iduna mutants were crossed to Drosophila deficiency lines [Df(3L) Exel6135, Df(3L) ED228)] 

and also to each other and all combinations were viable as trans-heterozygotes.  

I examined the larval development of Iduna mutants and Oregon R but did not observe 

any differences in the numbers of hatched eggs (Fig 2.2A-B), pupated larvae or eclosed adult 

Drosophila (Fig 2.2C) between Iduna mutants and wild type. Iduna-null adult flies had no overt 

morphological defects when compared with wild type controls, although, Iduna mutants did not 

live as long as control flies (Fig 2.3A). Iduna inactivation, therefore, decreased average lifespan 

compared to wild type (Fig 2.3B).  
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Figure 2.1 Iduna17 and Iduna78 are null mutants. A- Iduna17 and Iduna78 have deletions of 4 

and 2 nucleotides, respectively, introduced early stop codons and led to truncations of Iduna 

protein. sgRNA against Iduna was designed to generate small nucleotide deletions, close to its 

translation initiation site. The three nucleotides were highlighted with red to indicate the location 

of Cas9 cleavage site. B- Iduna loss-of-function mutants, Iduna17 and Iduna78, were isolated by 

Sanger sequencing. C- Iduna17 had no detectable Iduna transcripts, and Iduna78 had severely 

reduced Iduna mRNA based on RT-PCR. 7-day-old adult females were analyzed for expressions 

of Iduna, Ribosomal protein 49 (a house keeping gene) and Ornitate aminotransferase. D- 

Iduna17 and Iduna78 have no detectable protein. Endogenous Iduna protein was detected by 

immunoblotting. Anti-Iduna antibody was generated in guinea pigs and 20µg total protein lysates 

of 7-day-old adult females were analyzed by immunoblotting. β-actin was used as a loading 

control. Both Iduna alleles have no detectable protein and behave genetically as null-alleles.   
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Figure 2.1
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Figure 2.2 Iduna inactivation does not cause developmental defects in Drosophila. A- Iduna 

mutants (Iduna-/-: Iduna17/17) did not have defects in hatching their eggs. n>250 for each 

genotype. B- Iduna transheterozygous (Iduna-/-: Iduna17/78) mutants did not have defects in 

hatching their embryos. n>100 for each genotype. C- Iduna mutant larvae could be pupated and 

eclosed to adult Drosophila. n>100 for each genotype. Oregon R flies used as wild type flies. 

Two-tailed Student`s t-test was used for statistical analyses. Error bars represented as means ± 

s.d. ``ns`` means ``not significant``.

Figure 2.2
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Figure 2.3 Loss-of-function mutants of Iduna display increased mortality under reduced 

nutrient conditions. A- Iduna17/17 mutant flies lived slightly shorter than wild type flies. B- 

Iduna inactivation decreased average lifespan compared to wild type flies. Flies were aged 

matched at 24-250C. n>100 from each genotype. C- Iduna17/78 flies were analyzed on 5% sucrose 

diet. For statistical analyses, I used the Mantel-Cox and Gehan-Breslow-Wilcoxon tests to 

compare survival curves between Iduna mutants and Oregon R wild type flies. 2-day-old mutant 

or wild type female flies were collected and kept on 5% sucrose diet at 280C. n=100 from each 

genotype.  

Figure 2.3
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However, they displayed increased mortality upon nutrient deprivation. I challenged two-day-old 

mutant and wild type adult females with a 5% sucrose diet at 280C. Mutant flies died within 17 

days, while 70-80% of wild type flies were still viable at this time (Fig 2.3C).  

Iduna is one of the key components of the machinery that degrades Axin whose ADP-

ribosylation by TNKS is crucial for mammalian Wnt-β catenin signaling (Li at al., 2012). I 

detected increased levels of endogenous Axin in the lysates from Iduna mutant midguts 

compared to controls (Fig 2.4A). Mammalian Iduna recognizes both ADP-ribosylated (ADPR) 

TNKS and Axin via the R163 residue in its WWE domain (Zhang et al., 2011). The R163 

residue is conserved in evolution and corresponds to R252 in the Drosophila WWE domain (Fig 

2.4B). To examine the level of endogenous ADPR-Axin in Iduna mutants, ADPR-Axin was 

pulled down with wild type-WWE or R252A-WWE-mutant recombinant proteins (Fig 2.4C). 

This analysis revealed that Iduna mutants had a more than two-fold increase in ADPR-Axin in 

their midguts compared to the wild type (Fig 2.4D-E). These results suggest that Iduna promotes 

Axin degradation in vivo. To further understand the contribution of Iduna inactivation for both 

TNKS and Axin proteolysis in Drosophila, UAS-Flag-Tnks and UAS-GFP-Axin transgenes were 

mis-expressed under an eye-specific driver, GMR, in an Iduna mutant background (Fig 2.5A). To 

detect mis-expressed GFP-Axin and Flag-TNKS levels, total proteins were extracted from 5-day-

old male heads and analyzed by immunoblotting (Fig 2.5C and E). I found that Iduna mutants 

had 2.5-fold more mis-expressed GFP-Axin protein when compared to the control (Fig 2. 5D). 

These mutants also had 3.5-fold more ectopic expressed Flag-tagged TNKS as well (Fig 2. 5F). 
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Figure 2.4 Iduna inactivation leads to increased Axin protein levels in the midgut. A- Iduna 

mutant midguts have elevated levels of Axin protein compared with controls. Midguts of 7-day-

old adult females were dissected, lysed and analyzed by Axin immunoblotting. β-Actin was used 

as a loading control. B- Mammalian Iduna recognizes ADP-ribosylated (ADPR) Axin via the 

R163 residue in its WWE domain. The R163 residue is conserved in evolution and corresponds 

to R252 in the Drosophila WWE domain. Hs, Homo sapiens; Mm, Mus musculus; Dm, 

Drosophila melanogaster. C- Recombinant wild type and R252A mutants were used as 

biochemical sensors to pull down the ADPR-Axin from Drosophila midguts. Myc-tagged WWE 

proteins were expressedand purified from Drosophila S2R+ cells by immunoprecipitation. D- 

Inactivation of Iduna leads to accumulation of ADPR-Axin. Wild-type Myc-tagged-WWE 

protein pulled down ADPR-Axin. In contrast, the R252A mutant did not interact with modified 

Axin. Following immunoprecipitation (IP), eluted proteins were analyzed with an anti-PAR 

antibody. The 50 kDa heavy chain IgG is indicated on the blot. E- Iduna inactivation results in 

2.3-fold more ADPR-Axin protein in the midgut. Western blot quantification of two independent 

experimental replicates; ADPR-Axin levels were normalized to the control lines. Flies were fed 

with regular diet at 24-25°C. Two-tailed Student`s t-test was used for statistical analyses. Error 

bars represented as means ± s.d. p<0.001 is indicated as *** and p<0.0001 was marked as ****.  
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Figure 2.4
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Figure 2.5 Iduna depletion leads to increased Axin and TNKS protein levels in the 

Drosophila eye. A- Mis-expression of GFP-Axin in 5-day-old adult male eyes did not result in 

an obvious eye phenotype. B- Mis-expressed TNKS however led to rough eye phenotype in 5-

day-old adult males. Iduna inactivation promoted the eye phenotype. C- Iduna inactivation leds 

to mis-expressed GFP-Axin elevation. A UAS-GFP-Axin reporter transgene was expressed under 

GMR driver in the Iduna mutants or wild type. D- Iduna mutants had 2.5-fold increased GFP-

Axin protein. Quantification of mis-expressed GFP-Axin immunoblottings. Results are based on 

two repeats of independent replicates and Axin protein levels were normalized to β-actin. E- 

Flag-tagged mis-expressed TNKS protein accumulates in Iduna mutants. A UAS-Flag-Tnks 

reporter transgene was expressed under the GMR-Gal4 driver in Iduna mutants or wild type. F- 

Iduna mutants had 3.5-fold increased levels of Flag-tagged TNKS. Quantification of Flag-TNKS 

immunoblottings. 5-day-old adult male heads were dissected and 20µg of total protein lysates 

were analyzed by immunoblotting to assess the levels of GFP-Axin or Flag-tagged TNKS using 

α-GFP or α-Flag antibodies, respectively. Western blot quantification was performed based on 

two independent experimental replicates, and protein levels were normalized with β-actin. 

Oregon R flies were used as a wild type control. Flies were fed with regular diet at 24-250C. 

Two-tailed Student`s t-test was used for statistical analyses. Error bars represented as means ± 

s.d. *** p<0.001  
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Figure 2.5
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When I examined the eye morphology, GFP-Axin mis-expression did not cause an 

obvious eye phenotype (Fig 2.5A). In contrast, mis-expressed Flag-tagged TNKS led to a rough 

eye phenotype, which was more severe when Tnks was mis-expressed in Iduna-/- homozygous 

mutants compared to Iduna-/+ heterozygous animals (Fig 2.5B). Recently, it was also reported 

that mis-expressed TNKS promotes apoptosis in the Drosophila eye due to the activation of JNK 

signaling (Feng et al., 2018).  

In order to examine whether Axin is a target for Iduna-mediated degradation, I also mis-

expressed a UAS-GFP-Axin transgene under the enterocyte (EC) specific temperature sensitive 

Myo1A-Gal4 driver (Fig 2.6A) and saw 2-2.5-fold more Axin in Iduna mutants compared to 

controls (Fig 2.6B). To investigate the cellular levels of Myo1A driven GFP-Axin in ECs, I 

examined FRT80B, Iduna mutant clones and found that mutant EC clones had more GFP-Axin 

when compared to their neighboring cells (Fig 2.6C). Taken together, these observations suggest 

that Iduna plays a role in promoting the degradation of both Axin and TNKS. 

2.3.2 Iduna is required to control the proliferation of intestinal progenitors in the 

Drosophila midgut 

Attenuations in the Wingless pathway affect the proliferation of stem cells in the 

Drosophila midgut. For instance, inactivation of Tcf, arr, armadillo, dsh, and pygo leads to 

suppression of Wingless signaling, which in turn causes more stem cell division (Kramps et al., 

2002; Wang et al., 2016a and 2016b; Tian et al., 2016). Furthermore, Apc and Tnks mutations 

cause elevation of Axin, which reduces Wingless signaling which in turn promoting mitosis of 

stem cells in the Drosophila midgut (Wang et al., 2016 a, b; Tian et al., 2016). Hence, the 

Wingless signaling pathway is required to control ISC proliferation in Drosophila (Xu et al, 

2011; Cordero et al., 2012; Tian et al., 2016).  
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Since Iduna mutants have elevated Axin, I considered that Iduna inactivation might cause 

aberrant proliferation of stem cells in the Drosophila midgut. Just as the mammalian intestine 

(Korinek et al., 1998), the Drosophila midgut has intestinal stem cells (ISCs), which give rise to 

all intestinal compartments (Micchelli and Perrimon, 2006; Ohlstein and Spradling, 2006). ISCs 

specifically give rise to two types of daughter progenitor cells: undifferentiated enteroblast (EBs) 

and pre-enteroendocrine cells (Pre-EE). EBs and pre-EEs differentiate into ECs and EEs cells, 

respectively (Ohlstein and Spradling, 2006; Xu et al., 2011) (Fig 2.7A). ISCs can be 

distinguished from ECs by their cell size and marker proteins (Ohlstein and Spradling 2006; Xu 

et al., 2011). ISCs are small, express cell membrane-associated Armadillo, and lack nuclear 

expression of Prospero (Fig 2.7B). In contrast, nuclear Prospero staining is a marker of small-

sized differentiated EE cells (Fig 2.7B).   

ISCs are also marked by the expression of escargot (esg), a transcription factor, whose 

GFP reporter allows tracing of stem and progenitor cells during development (Ohlstein and 

Spradling, 2006) (Fig 2.7B). Using the esg>GFP marker, I first analyzed 9-day-old female flies 

which were fed with a 5% sucrose diet for seven days at 280C and saw an approximately twofold 

increase in the numbers of esg>GFP positive ISCs/progenitors in the midgut of Iduna mutants 

compared to controls (Fig 2.8A-B). Iduna inactivation increased the numbers of Arm+/Pros- stem 

cells in midguts (Fig 2.8C) upon nutrient deprivation.  
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Figure 2.6 Iduna inactivation causes increased mis-expressed Axin protein levels in the 

midgut. A- Iduna mutant midguts had elevated mis-expressed GFP-Axin protein. Midguts of 7-

day-old adult females, which were expressing GFP-Axin under the temperature sensitive Myo1A-

Gal4 driver, were dissected, lysed and analyzed by GFP immunoblotting. Iduna mutants had 

more Axin protein compared to the wild type. 20µg total intestinal lysates were analyzed by GFP 

immunoblotting and α-tubulin was used as a loading control. B- Loss-of-Iduna resulted in 2.2-

fold GFP-Axin accumulation in the midgut. Western blot quantification was performed based on 

two independent experimental replicates, and protein levels were normalized to α-Tubulin. C- 

Iduna mutant clones have elevated mis-expressed GFP-Axin compared to their WT neighbors. A 

UAS-GFP-Axin transgene was expressed under the temperature sensitive Myo1A-Gal4 driver in 

the FRT80B-Iduna17 mutant. Midgut mutant clones were induced during larval development by 

daily incubation at 37oC for 1h. Adult female FRT80B-Nls-Red/FRT80B-Iduna17 flies were 

collected after eclosion, incubated at 28-290C and analyzed on day 7. Unlabeled cells represent 

Iduna mutant clones, whereas cells stained for nuclear RFP are either wild type or Iduna 

heterozygous. p<0.001 is indicated as *** and p<0.0001 was marked as ****. Two-tailed 

Student`s t-test was used for statistical analyses. Error bars represented as means ± s.d. Scale 

bars: 10µm 
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Figure 2.6
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To test whether the increased number of ISCs was dependent on nutrient deprivation, I 

examined midguts of 7-day-old female mutants and controls on regular diet. I saw again an 

approximately twofold increase in the numbers of both esg>GFP positive (Fig 2.8E-F) and 

Arm+/Pros- stained (Fig 2.8G-H) stem cells-progenitors under these conditions.  Therefore, 

increased ISC numbers in Iduna mutants are independent of diet. 

To exclude the possibility that Iduna mutant flies raised on regular diet had reduced 

nutrient uptake, I monitored fly feeding by an acid blue 9 colorimetric assay (Mattila et al., 

2018). I noticed no decrease in food intake in Iduna mutants kept on regular diet at 24-250C 

compared to controls (Fig 2.8D). These results show that Iduna inactivation promotes the 

numbers of midgut stem cells independent of diet and food intake. Finally, I analyzed the midgut 

cell composition in Iduna mutant and control flies.  I observed a slight increase in the total 

midgut cell number of Iduna mutants (Fig 2.9A). However, there were no significant differences 

in the number of EC and EE cells (Fig 2.9B-C). Therefore, Iduna is not required for 

differentiation of ISCs (Fig 2.9D-E). Collectively, these observations indicate that Iduna 

inactivation selectively affects ISC numbers. 
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Figure 2.7 Intestinal stem cells in the Drosophila midgut give rise to ECs and EE cells. A- 

ISCs give rise to two different types of daughter progenitors, undifferentiated EBs and Pre-EEs. 

EBs and pre-EEs differentiate into ECs and EEs cells, respectively. B- ISCs and ECs can be 

distinguished by their cell sizes, high level of membrane-associated Armadillo, and lack of 

nuclear Prospero. On the other hand, differentiated EEs are small and can be identified by 

nuclear Prospero staining. Finally, small-sized ISCs are stained with Armadillo but not with 

nuclear Prospero. In the image, small ISCs were co-stained with escargot (green), and Armadillo 

(red). Small EEs were shown with the red arrow and stained with Armadillo (red) and nuclear 

Prospero (red). Bigger cells are enterocytes whose cell membrane is stained with Armadillo 

(red). DAPI staining in blue marks the cell nucleus.  

Figure 2.7
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Figure 2.8 Iduna mutants have increased numbers of intestinal stem and progenitor cells in 

their midgut. A- Upon nutrient deprivation, there is an approximately twofold increase in the 

numbers of esg>GFP expressing stem cells/progenitors in the midgut of Iduna mutants 

compared to controls. B- Quantification of esg>GFP positive stem cells and progenitors from 

adult flies of indicated genotypes. n=6 from each genotype. C- Iduna inactivation increases the 

numbers of Arm+/Pros- ISCs upon nutrient deprivation. 9-day-old female flies, fed with 5% 

sucrose diet for seven days at 280C, were examined in A-B and C. D- There is no decrease in 

food intake in Iduna mutant when flies kept under the regular diet. Quantification of adult fly 

nutrient uptake by a calorimetric assay from regular dietary condition in Iduna mutants and 

Oregon R. E- Under normal diet, inactivation of Iduna also promotes the proliferation of the esg-

GFP-labeled intestinal stem and progenitor cells in the Drosophila midgut. F- Quantification of 

esg>GFP+ stem cells and progenitors from adult flies of indicated genotypes. In wild type, 25-

30% of posterior midgut cells are stem cells, as assessed by esg>GFP expression. In contrast, 

55-60% of the total cell population in Iduna mutants expressed the stem marker esg>GFP, 

representing a greater than 2-fold increase. G- Iduna mutants have more Arm+/Pros- ISCs in the 

midgut. H- Quantification of Arm+/Pros- ISCs from adult flies of indicated genotypes. The 

midguts of 7-day-old adult females were analyzed by confocal microscope. For the consistency, 

posterior midgut R5 region was analyzed in this study. Iduna17/+ flies were used as control. n>12 

from each genotype. Two-tailed Student`s t-test was used for statistical analyses. Error bars 

represented as means ± s.d. Scale bars: 10 µm. p<0.001 was indicated as *** and p<0.0001 was 

marked as ****. 
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Figure 2.8
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Figure 2.9 Iduna is not required for differentiation of ISC. A- There were more cells in the 

midgut of Iduna mutants. B- C- No differences in the numbers of ECs and EEs were observed in 

Iduna mutants. D- Iduna is not required for the differentiation of ISCs into ECs. ECs were 

marked with GFP expressed under the control of EC specific driver, Myo1A-Gal4. Control cells 

are shown with nuclear RFP, and Iduna mutant clones are marked with a white line. E- Genetic 

depletion of Iduna did not affect the differentiation of ISCs into EEs. Mutant clones in 7-day-old 

adult midguts were analyzed. Small nuclear Prospero-positive EEs are labeled with yellow 

arrows in Iduna mutant clones. Control cells are labeled with nuclear RFP, and mutant clones are 

marked with a white line. Two-tailed Student`s t-test was used for statistical analyses. Error bars 

represented as means ± s.d. Scale bars: 10µm 

  



57 

Figure 2.9
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The observed increase in stem cell numbers could be the result of aberrant stem cell 

proliferation or inhibition of their differentiation. To distinguish between these possibilities, I 

first assessed cell proliferation by dissecting 7-day-old mutant and wild type females. Following 

an hour EdU-labeling of the dissected midguts, I observed that Iduna mutants had more EdU-

positive cells (Fig 2.10A-C). Moreover, phospho-Ser-Histone H3 (pH3) immunostaining (Fig 

2.10D-E) also revealed a significant increase in pH3+ mitotic cells in the midgut of 7-day-old 

female Iduna mutants (Fig 2.10D-F). These findings suggest that stem cells undergo increased 

proliferation in the midgut of Iduna mutants. To address whether there was an inhibition of 

differentiation in Iduna mutants, I generated FRT80B, Iduna mutant clones (Theodosiou and Xu, 

1998). I found that ECs and EEs were present in the 5-day-old female mutant clones, 

demonstrating that Iduna was not essential for differentiation of ISCs into daughter cells (Fig 

2.9D-E).  

2.3.3 Regulation of Axin proteolysis by Iduna is necessary for normal ISC proliferation 

One possible mechanism by which Iduna may control the proliferation of ISCs in the 

Drosophila midgut is through modulating the concentration of Axin. To determine whether a 

reduction of the elevated Axin levels could reduce ISC numbers in Iduna mutants, they were 

recombined with Axin mutants and then back-crossed with Iduna mutants to generate flies that 

were homozygous mutant for Iduna-/- and heterozygous for Axin+/-. Strikingly, a reduction of the 

Axin gene dosage by 50% restored ISC numbers to wild type levels in Iduna mutants (Fig 

2.11A). Compared to 7-day-old female controls, Iduna mutants had an approximately twofold 

increase in the number of Arm+/Pros- as well as pH3+ mitotic stem cells (Fig 2.11B-C).  
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Figure 2.10 Iduna inactivation enhances proliferation of intestinal stem cells. A-B- Genetic 

depletion of Iduna leads to over-proliferation of intestinal stem cells in the midgut. EdU was 

used as a proliferation marker in 7-day-old mutant or wild type female flies. Following fixation, 

EdU incorporation was analyzed by confocal microscope. C- Increased numbers of EdU+ stem 

cells were seen in Iduna mutants, indicating increased cell proliferation. Posterior midguts were 

analyzed for quantification. D-E- Iduna mutants display elevated phospho-Ser-Histone 3 (pH3)-

positive ISCs. F- Iduna inactivation leads to an increase of pH3+ mitotic stem cells in the midgut. 

Quantification of pH3+ proliferating cells was done in the whole midgut. 7-day-old mutant or 

wild type female flies were examined. Flies were fed with regular diet at 24-25oC. n>12 from 

each genotype. Two-tailed Student`s t-test was used for statistical analyses. Error bars 

represented as means ± s.d. Scale bars: 10µm. p<0.0001 was marked as ****. 
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Figure 2.10
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On the other hand, reducing the Axin gene dosage by 50% in an Iduna-null background yielded 

numbers of ISCs and the pH3+ stem cells comparable to 7-day-old wild type females. These 

results suggest that small changes in the levels of Axin have profound effects on stem cell 

number, and that regulation of Axin degradation by Iduna is necessary for normal ISC 

proliferation.  

I observed that Iduna mutants had 2-fold more Axin in the Drosophila midgut. This 

indicates that defects in Axin degradation might cause over-proliferation of stem cells due to 

inhibition of Wingless signaling. Therefore, I analyzed a reporter for the Wingless pathway 

target gene, frizzled-3 (fz3). It was previously reported that fz3-RFP reporter activity is high at 

the major boundaries between compartments (Buchon et al., 2013; Tian et al., 2016; Wang et al., 

2016 a, b). fz3-RFP was strongly expressed in enterocytes at three distinct sites of the midgut: 

around R1a, R2c, and R5 (Buchon et al., 2013). Therefore, enterocytes are the primary sites of 

the Wingless pathway activation during intestinal homeostasis (Tian et al., 2016). I analyzed 3-

day-old fz3-Gal4>GFP females and consistently observed that fz3>GFP was expressed in 

gradients in the foregut, posterior midgut, as well as the border between the posterior midgut and 

hindgut (Fig 2.11D). Here, I focused on the posterior midgut-hindgut border to investigate the 

effect of Iduna on Wingless signaling. Upon fz3-Gal4 driven RNAi-mediated Iduna depletion, I 

found that fz3>GFP activity decreased significantly (Fig 2.11E). I concluded that Iduna 

stimulates Wingless activity in the posterior midgut by promoting degradation of Axin.  

The proliferation of stem cells in the Drosophila midgut is regulated by intrinsic signals 

and also interactions with neighboring cells (Zhou et al., 2013; Tian et al., 2016).   
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Figure 2.11 A 50% reduction of Axin restores ISC numbers in the Drosophila midgut. A- 

Reducing the Axin gene dosage by half restores the number of Arm+/Pros- ISCs. AxinS044230 is 

a complete Axin-null mutant, and AxinE77 is a loss-of-function truncation allele (Q406X). 

Midguts of 7-day-old adult females of the indicated genotypes were dissected and analyzed by 

confocal microscope following Armadillo, Prospero and DAPI staining. Axin+/-, Iduna17/+ served 

as control. Reducing the Axin gene dosage by 50% in Iduna17/17 mutants decreased the number 

of ISCs to normal levels. B- Quantification of ISC numbers. Reducing the Axin gene dosage by 

half fully suppressed the increased numbers of Arm+/Pros- ISCs in Iduna17/17 null-mutants. C- 

Reducing Axin gene expression suppressed the proliferation of ISCs in the Iduna17/17 null-mutant. 

p<0.0001 was marked as ****. D- frizzled 3 (fz3) is a Wingless target gene and a GFP-reporter 

construct was used here to visualize Wg-activity in the midgut (Buchon et al., 2013; Tian et al., 

2016; Wang et al., 2016 a, b). In wild type, fz3>GFP is highly expressed in a graded fashion in 

the foregut (f), the posterior midgut (p) as well as the posterior midgut-hindgut border, but not in 

the anterior midgut (a) or the hindgut proper (h). Right-hand image is a higher magnification 

image of the fz3>GFP near the midgut-hindgut boundary (Scale bar: 20µm). 7-day-old female 

midguts were analyzed. E- fz3-Gal4 driven Iduna depletion inhibits Wingless activity. RNAi-

mediated down-regulation of Iduna led to significant reduction of fz3>GFP; white-RNAi served 

as a control. The arrow indicates the border between the posterior midgut and the hindgut (b). 3-

day-old female midguts were analyzed. Flies were fed with regular diet at 24-250C. One-way 

ANOVA was used for statistical analyses. Error bars represented as means ± s.d. Scale bars: 

10µm. 
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Figure 2.12 Iduna depletion in ECs leads to over-proliferation of ISCs. A- Over-proliferation 

of ISCs in Iduna mutants is non-cell autonomous. RNAi-mediated Iduna knock-down was 

carried out in the ECs and ISCs/EBs using Myo1A-Gal4 and esg-Gal4 drivers, respectively. B- 

Knock-down of Iduna in ECs using the Myo1A-Gal4 driver led to over-proliferation of 

Arm+/Pros- ISCs.  In contrast, no changes in ISC proliferation were observed upon down-

regulation of Iduna in ISCs using esg-Gal4-driven Iduna RNAi. Myo1A-Gal4>GFP served as a 

control. C- EC-specific knock-down of Iduna increased the number of pH3+ progenitors. D- 

Ectopic expression of Iduna in ECs inhibits over-proliferation of ISCs. A UAS-Myc-tagged 

Iduna C/G transgene was generated to perform rescue experiments. E- F- Expression of the 

UAS-Myc-Iduna C/G transgene with the Myo1A-Gal4 driver resulted in a reduction of the 

numbers of pH3+ (E-) and Arm+/Pros- (F-) ISCs in the midgut of Iduna mutants. Flies were fed 

with regular diet at 24-250C. 7-day-old female midguts were analyzed for ISC and mitotic 

markers.  One-way ANOVA was used for statistical analyses. p<0.0001 was marked as ****. 

Error bars represented as means ± s.d. Scale bars: 10µm. 
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To further investigate whether the observed effects could reflect a cell-autonomous 

requirement of Iduna in ISCs, or alternatively a requirement in other cells of the midgut, Iduna 

was specifically targeted in ECs as well as midgut stem and progenitor cells by using the Myo1A-

Gal4 and esg-Gal4 drivers, respectively (Fig 2.12A-B). I examined 7-day-old females expressing 

Iduna-RNAi under the Myo1A or esg drivers. RNAi-mediated knock-down of Iduna in ECs 

caused a significant increase in Arm+/Pros- stem cell numbers (Fig 2.12B). However, stem 

cell/progenitor cell-specific knock-down of Iduna did not affect either the stem cell numbers or 

mitosis in the midgut (Fig 2.12B-C). This suggests that Iduna inactivation causes stem cell over-

proliferation by a non-cell-autonomous mechanism, and that perhaps ECs are responsible for 

stem cell over-proliferation in Iduna mutants. To further test this idea, I ectopically expressed 

Iduna in ECs and investigated if this could suppress stem cell proliferation in Iduna mutants (Fig 

2.12D). Indeed, consistent with this model, I saw that Myo1A-Gal4 driven UAS-Iduna was able 

to restore normal numbers of stem cells and progenitors (Fig 2.12E-F). Taken together, my 

results indicate that Iduna plays a physiological role to regulate Wingless signaling in ECs, 

which is critical for proper ISC proliferation. 

I found that Iduna mutants have increased mortality upon nutrient deprivation (Fig. 1C). 

Following 7 days on a 5% sucrose diet at 280C, Iduna mutants had more esg>GFP positive cells 

in the midgut (Fig 2.8A-C). Therefore, I considered that under reduced nutrient diet, hyper-

proliferation of ISCs might be responsible for elevated mortality. To test this idea, I first 

inactivated Iduna in enterocytes by expression of three different RNAi lines under the Myo1A 

driver.  
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Figure 2.13 RNAi-mediated Iduna depletion in ECs does not cause mortality upon nutrient 

deprivation. A- Three different Iduna RNAi lines were expressed under the Myo1A driver. 

white-RNAi was used as a control.  B- There was no significant change on the mean lifespan 

between white and Iduna-RNAi expressing flies. n=60 for each genotype. C- Iduna-RNAi in 

EBs also did not result in increased lethality upon 5% sucrose diet at 280C. n=70 for each 

genotype. D- Ectopic expression of Iduna under Myo1A driver in ECs does not rescue elevated 

mortality of Iduna mutants under reduced nutrient diet. 2-day-old mutant or wild type female 

flies were collected and kept on 5% sucrose diet at 280C for the experiments in A-D. E- EC-

specific ectopic expression of Iduna rescues the hyper-proliferation of midgut stem cells upon 

nutrient deprivation. 2-day-old females were collected at 24-250C and their regular diet was 

replaced with 5% sucrose diet at 280C. 9-day-old female flies were examined with α-Armadillo 

and Prospero antibodies. One-way ANOVA was used for statistical analyses. Error bars 

represented as means ± s.d. Scale bars: 10µm. For statistical analyses of sucrose diet, I used the 

Mantel-Cox and Gehan-Breslow-Wilcoxon tests to compare survival curves between Iduna 

mutant and control flies. Scale bars: 10µm. 



68 

Figure 2.13



 69 

 

I showed that RNAi-mediated Iduna depletion did not increase lethality compared with 

white-RNAi (Fig 2.13A). There was also no significant change on the mean lifespan between 

white and Iduna-RNAi expressing flies (Fig 2.13B). I also tested EB specific Iduna depletion and 

again found no significant effects on longevity upon nutrient deprivation (Fig 2.13C). 

Finally, I expressed UAS-Iduna transgene under Myo1A driver in ECs to rescue the 

elevated mortality in the mutants. Whereas the Iduna transgene rescued the hyper-proliferation 

phenotype (Fig 2.13E), it failed to rescue the mortality of mutants on 5% sucrose diet (Fig 

2.13D). These findings suggest that Iduna mortality is not caused by dysregulation of midgut 

stem cell proliferation and point to another role of Iduna in promoting survival under stress 

conditions. 

The fly midgut provides essential physiological functions of the living organism including food 

digestion and nutrient absorption. It is also a key organ for lipid uptake and distribution. Under 

normal feeding conditions, lipids digested from dietary food are absorbed by ECs, resynthesized 

into triglyceride (TG), and packaged into lipoprotein particles that are transported to peripheral 

tissues for energy supply or storage in a specialized tissue, known as the fat body (Song et al., 

2014). Upon starvation, flies consume their lipid storages. Since Iduna mutants displayed 

increased mortality on the reduced nutrient diet, I examined adult fat bodies to test if there might 

be a lipid deposition defect in Iduna mutants. 7-day-old adult females were starved for 12h and 

24h. Stored lipids were visualized in the abdominal fat bodies of starved flies by Nile Red 

staining. Remarkably, stored lipid levels in abdominal fat body cells were visibly reduced upon 

starvation in Iduna mutants (Fig 2.14). I found that Iduna mutants constantly lost their fat 

storages during 24h starvation. Although wild type flies also reduced their fat bodies in 12h, they 
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sustained their fat reservoirs in 24h (Fig 2.14). My results suggest that Iduna may also have 

essential role(s) in energy metabolism. 

 

2.3.4 Depletion of Iduna promotes stem cell proliferation through the JAK-STAT pathway  

In order to further investigate the mechanism by which Iduna affected ISC proliferation, I 

explored the function of additional signaling pathways implicated in this system. Because the 

JAK-STAT pathway has a well-known role in stem cell proliferation, I looked for possible 

effects of Iduna mutants here (Zeidler et al., 2000; Zoranovic et al., 2013; Zhou et al., 2013; 

Markstein et al., 2014). I analyzed the JAK-STAT pathway via a 10xStat-GFP reporter in the 

midgut (Bach et al., 2007). Under regular physiological conditions, Stat-GFP reporter expression 

was mainly seen in small sized cell populations in the midgut that appear to represent ISCs for 

several reasons (Fig 2.15). First, Prospero-positive EEs were negative for Stat-GFP (Fig 2.15A). 

Second, ECs stained with Armadillo were also not expressing the Stat-GFP reporter. Finally, 

Delta-lacZ positive but Prospero-negative cells for the most part expressed Stat-GFP. However, a 

minor population of small sized cells was GFP positive but Delta-lacZ negative (white arrows, 

Fig 2.15B). These cells appeared to be undifferentiated progenitors, such as EBs. 7-day-old 

Iduna mutants had more Stat-GFP positive cells when compared to controls (Fig 2.15A-F, Fig 

2.17A-B). I also generated FRT80B, Iduna midgut mutant clones and observed that these clones 

had elevated JAK-STAT signaling (Fig 2.16A-B). 
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Figure 2.14 Iduna inactivation promotes fat body wasting upon starvation. 7-day-old adult 

females were starved for 12h and 24h. Abdominal fat bodies were dissected and stained with 

Nile Red. Compared to control flies, Iduna mutants had severe fat lost during starvation. Oregon 

R was used as wild type flies. 

Figure 2.14
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To confirm elevated JAK-STAT signaling in Iduna mutant stem cells, I stained midguts 

from 7-day-old females for Delta, a previously identified target gene of the JAK-STAT pathway 

(Jiang et al., 2009). I found that there was indeed more Delta protein in Iduna mutants, consistent 

with elevated JAK-STAT activity (Fig 2.16F). 

To test whether activation of JAK-STAT signaling was responsible for aberrant ISC 

proliferation, I knocked down Stat92E, a transcription factor in the JAK-STAT pathway, in ECs 

as well as in ISCs and EBs. I did not detect dramatic changes in the numbers of mitotic cells 

when Stat92E transcription factor was depleted in ECs (Fig 2.17C). Interestingly, knock-down of 

Stat92E in midgut stem and progenitor cells was sufficient to suppress their increased cell 

division (Fig 2.17C). 

My observations raise the question of how ECs signal ISC proliferation. One possibility 

is that ECs secrete a factor that activates the JAK-STAT pathway in neighboring ISCs. The JAK-

STAT pathway can be activated by cytokines, such as unpaired (UPD, UPD2, UPD3) in the 

Drosophila midgut (Ghiglione et al., 2002; Zhou et al., 2013). Since UPD3 is produced in 

differentiated ECs and in differentiating EBs, I explored the possibility that UPD cytokines could 

mediate ISC over-proliferation in Iduna mutants. For this purpose, I first inactivated Iduna with 

the upd3-Gal4 driver and found that RNAi-mediated knock-down of Iduna resulted in a 

significant increase of upd3>GFP reporter expression in the midgut (Fig 2.17E, Fig 2.18A). 

upd3>GFP-positive cells were mainly ECs, and not EEs or ISCs (Fig 2.17E, Fig 2.18B-C). I 

then knocked down Iduna in ECs and performed a q-PCR to test whether Iduna depletion in ECs 

induced unpaired expression. I detected that EC-specific Iduna inactivation resulted in elevated 

upd3 gene expression compared to white-RNAi (Fig 2.17D). To suppress the over-proliferation 

of ISC in Iduna mutants, I finally reduced upd2 and upd3 gene dosages. Strikingly, I found that 
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heterozygosity in Δupd2-upd3 fully suppressed ISC proliferation in Iduna mutants (Fig. 2.17F). 

Secreted UPD proteins bind to the Domeless receptor on ISCs (Ghiglione et al., 2002). 

Therefore, I tested whether decreasing Domeless levels could also suppress stem cell over-

proliferation in Iduna mutants. Again, this prediction was experimentally confirmed (Fig 2.17F). 

Collectively, these observations suggest that Iduna inactivation causes a decrease in 

Wingless signaling in ECs which in turn causes elevated JAK-STAT signaling in ISCs, thereby, 

resulting in their over-proliferation. I concluded that inactivation of Iduna causes decrease in 

Wingless signaling in ECs, which in turn leads to increased secretion of UPD2-3 from these cells 

to stimulate over-proliferation of ISCs through the JAK-STAT pathway (Fig 2.17G). 
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Figure 2.15 Under regular physiological conditions, the Stat-GFP reporter is mainly 

expressed in midgut stem cells and EBs. A- A 10xStat-GFP reporter was mainly positive in 

small sized- cells but Prospero-stained EEs were negative for Stat-GFP in the midguts. B- Delta-

lacZ positive but Prospero negative cells were mainly positive for Stat-GFP expression. A small 

population of cells (white arrow) were small-sized and GFP positive but Delta-lacZ negative. 

Those could be undifferentiated progenitors like EBs. C- Arm+/Pros- small-sized stem and 

progenitor cells have Stat-GFP reporter activity. 5-day-old female flies were dissected and 

stained with α-Armadillo and α-Prospero antibodies. Scale bars: 10µm. 
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Figure 2.16 Iduna mutants have increased numbers of Stat-GFP positive cells. A- Iduna 

mutant clones had elevated Stat-GFP signaling in ISCs. 10xStat-GFP is a reporter for STAT 

signaling activity. Iduna mutant clones displayed strongly increased staining of this reporter. 

Posterior midguts of 7-day-old females were analyzed. B- The quantification of Stat-GFP 

reporter expression in Iduna mutant clones. GFP intensity was measured with Image J and 

normalized with control cells. Iduna mutant clones showed 4-5-fold higher reporter expression. 

C- E- Iduna mutants have more Stat-GFP positive ISCs and progenitors in midguts. Posterior 

midguts of 7-day-old females were analyzed. n>6 for each genotype. p<0.0001 is indicated as 

****. F- Delta protein is elevated in the midguts of Iduna mutants. Posterior midguts of 7-day-

old females were stained for Delta. Flies were collected and kept on regular diet at 24-250C. 

Two-tailed Student`s t-test was used for statistical analyses. Error bars represented as means ± 

s.d. Scale bars: 10µm 
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Figure 2.17 Loss of Iduna activates the JAK-STAT pathway non-cell autonomously to 

promote ISC proliferation. A- Iduna mutants have elevated Stat-GFP signaling in ISCs. 

10xStat-GFP is a reporter for STAT signaling activity. Iduna mutants displayed strongly 

increased GFP reporter. Posterior midguts of 7-day-old females were analyzed. B- The 

quantification of Stat-GFP expressing midgut cells. C- Knock-down of the Stat92E transcription 

factor in ISCs and EBs blocked ISC over-proliferation in Iduna mutants. In contrast, RNAi-

mediated depletion of Stat92E in ECs did not affect proliferation of ISCs. 7-day-old female 

midguts were dissected and analyzed. D- Iduna depletion resulted in the upregulation of upd3 

mRNA expression in ECs. Myo1A driven Iduna-RNAi and white-RNAi expressing 7-day-old 

females were dissected for their midguts. Total RNA was isolated and cDNA libraries were 

prepared. upd3 transcripts were amplified and analyzed by q-PCR. E- RNAi-mediated Iduna 

down-regulation induced upd3>GFP reporter activity. Iduna was knocked-down using RNAi 

driven by upd3-Gal4, and GFP was used as a reporter for upd3 gene expression. ECs were 

stained with α-Armadillo antibody. EEs and ISCs were negative for upd3>GFP expression. 

white-RNAi served as a control. Posterior midguts of 3-day-old females were analyzed. E- 

Reduction of either upd2 and upd3 or their receptor Domeless suppressed over-proliferation of 

ISCs in Iduna mutants.  Upon reduction of upd2 and upd3 gene dosage in Iduna mutants, I 

observed significantly less mitotic stem cells in Iduna mutants, comparable to wild type levels. 

Likewise, a 50% reduction of Domeless resulted in the suppression of ISC over-proliferation in 

Iduna mutants. On the other hand, these reductions in gene dosage of upd2, upd3 and Domeless 

did not affect mitosis of ISCs in a wild type background. 7-day-old female midguts were 

quantified by pH3+ staining. Flies were fed with regular diet at 24-250C. n>12 from each 

genotype. One-way ANOVA was used for statistical analyses. Error bars represented as means ± 



 79 

 

s.d. Scale bars: 10µm. p<0.0001 was marked as ****.  G- Model for the role of Iduna in the 

regulation of ISC proliferation. My model suggests that inactivation of Iduna causes Axin 

elevation which in turn decreases Wingless signaling activation in ECs and increases secretion of 

UPD cytokines from these cells. These cytokines activate JAK-STAT signaling through the 

Domeless receptor on neighboring ISCs and thereby induce ISC proliferation in the Drosophila 

midgut. 
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Figure 2.18 RNAi-mediated Iduna depletion increases upd3>GFP reporter activity. A- 

Knock-down of Iduna results in upregulation of upd3. Iduna was down-regulated by two 

different UAS-RNAi lines (#36029 and #40882) under upd3-Gal4 driver. upd3>GFP was used 

as a reporter for upd3 gene expression. white-RNAi served as control. B- C- upd3 was 

upregulated in the ECs. Dissected midguts were stained with α-Armadillo and α-Prospero 

antibodies. ECs expressed upd3>GFP but EEs and ISCs did not. Posterior midguts of 3-day-old 

females were analyzed. Scale bars: 10µm. 
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2.4 Material and Methods  

Fly stocks: Flies were kept at a 12-hour light/dark cycle. All crosses were performed at 22-25°C 

unless stated otherwise. The following fly stocks were used for this study (Bloomington 

Drosophila Stock Center (BDSC) and Vienna Drosophila Resource Center (VDRC) number (#) 

given in parentheses):  

The stocks used in here: Df(3L)Exel6135 (BDSC# 7614),  Df(3L)ED228 (BDSC# 

8086),  Df(3L)ED229 (BDSC# 8087), esg-Gal4, UAS-GFP (a gift of Dr. Norbert Perrimon; 

Micchelli and Perrimon, 2006), esgK606 (a gift of Dr. Norbert Perrimon; Micchelli and 

Perrimon, 2006), 10xStat-GFP, Bach et al., 2007), UAS-GFP-Axin (BDSC# 7224), FRT82B, 

Axin044230 ( a gift of Dr. Wei Du; Hamada et al., 1999), FRT82B, AxinE77 (a gift of Dr. Jessica 

Treisman; Collins and Treisman, 2000), Myo1A-Gal4, tub-Gal80ts, UAS-GFP (a gift of Dr. 

Norbert Perrimon; Micchelli and Perrimon, 2006), upd3-Gal4, UAS-GFP (a gift of Dr. Norbert 

Perrimon; Markstein et al., 2014), Δupd2/3 (BDSC# 129), ΔDome (BDSC# 12030), UAS-

Stat92E RNAi (BDSC# 26889), UAS-CG8786/dIduna RNAi#1 (BDSC# 40882), UAS-

CG8786/dIduna RNAi#2 (VDRC#43533), UAS-CG8786/dIduna RNAi#3 (VDRC#36028), 

UAS-CG8786/dIduna RNAi#4 (VDRC#36029), and white RNAi (BDSC#33623), fz3-Gal4 

(BDSC#36520). The rest of Drosophila lines, which were studied here, were obtained from 

Steller Lab stocks. Oregon R flies were used as control and only adult female flies were analyzed 

in this study.  

Drosophila egg collection: A 10cm2 apple-agar plate was set up with embryo collection cage to 

provide a substrate for egg laying. Prior to adding the plate, a small quantity of yeast paste was 

smeared onto the center of the apple-agar. To provide moisture, water-soaked tissue paper was 

layered under embryo collection cages. 10-15-day-old adult flies were collected to cages, which 
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were then placed into a fly incubator at 240C for 4 hours. Then, laden eggs were counted and 50 

of them were plated into one corner of 10cm2 apple-agar plates, in which had a straight yeast 

paste smear at the center. Agar plates finally were incubated in the incubator. After 24h, hatched 

eggs were counted.  

To analyze larval development, hatched 1st instar larvae were counted and placed into a fresh 

agar plate with yeast paste until they were reached to the 3rd instar larvae. After counting, larvae 

were placed into vials containing regular food. They were counted both when they pupated and 

again when they eclosed.   

5% sucrose diet: 5mm2 Whatman filter papers were soaked with 1ml 5% sucrose solution and 

placed into the empty vials. The 5% sucrose solution was used as reduced nutrient diet. Eclosed 

adult females were collected at 24-250C. When they were 2-day-old, their regular diet was 

replaced to 5% sucrose diet at 280C. 20 of 2-day-old wild type or Iduna mutant female flies were 

grouped and kept on 5% sucrose solution-soaked filter paper containing vials at 28oC. Following 

the fly count, dead flies were removed and 1ml 5% sucrose-soaked filter papers were replaced 

daily.  

Food intake measurement: Female flies of Iduna mutant and Oregon R were collected after 

they eclosed. Before measuring food intake, the flies were kept on the regular food for 6 days. 

The flies then transferred to the regular food supplemented with 0.5% (w/v) Acid Blue 9 

(erioglaucine disodium salt, Sigma 861146) for 4 hours. Quadruplicates of 5 flies per sample 

were then homogenized in 250µl 1xPBS and cellular debris was removed by centrifugation. 

Food intake was quantified by measuring the absorbance of the supernatant at 630nm and 

normalized to the wet weight of the flies.  
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CG8786/dRNF146/dIduna CRISPR/Cas9 editing: I used the CRISPR optimal target finder 

website (tools.flycrispr.molbio.wisc.edu/targetFinder) to identify an appropriate guide RNA 

(gRNA) target sequence within dIduna (Gratz et al., 2013, 2014). I purchased the forward 5`-

GTCGCTAGCTGCAATCTGCTCTG-3` and reverse 5`-

AAACCAGAGCAGATTGCAGCTAG-3` oligos (IDT, Inc.) annealed, and followed the 

protocol; from Port et al., 2014 to clone the annealed oligos into pCFD3-dU6:3-gRNA plasmid 

(Addgene, plasmid# 49410, Port et al., 2014). Transformants were verified via Sanger 

sequencing (Genewiz, Inc.). The gRNA plasmid was injected into 300 embryos of custom vasa-

Cas9 Drosophila (BestGene, Inc.). The injection was yielded 89 Go progeny, and I established 70 

individual fly lines, a couple of which possible Iduna loss-of-function mutations.  

Isolation of the Iduna mutants and genetic mapping of Iduna –loss-of-function mutations: 

Total DNA was isolated from the 3rd instar (L3) larvae or 5-day-old adults of Iduna homozygous 

mutants and controls by using the Roche genomic DNA extraction kit (Roche). To confirm the 

mutant line, PCR fragments were amplified with specific primers (forward primer 5`-

CAGCCCGAGCTGGTCATACTCAG-3`, reverse primer 5`-CGGCTTTCTGGGCTACCTAC-

3`) binding within 5` UTR of Iduna and within the coding region of the gene. To identify the 

mutation site, the entire coding region was PCR amplified and PCR products were sent for DNA 

sequencing (Genewiz, Inc.). 

Cloning and generation of UAS-CG8786 transgenic Drosophila: Adult flies were directly 

homogenized in 1ml TRIzol (Life Technologies) and total RNA was isolated according to the 

manufacturer’s protocol. cDNA library was prepared from 5 µg total RNA, by using oligo(dT) 

amplification and the Superscript III First Strand synthesis kit (Invitrogen). cDNA library was 

used to amplify the Iduna transcripts with the primers (forward 5`-
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ATGTCGCAACAGCGCTCCACAG-3`; Iduna B isoform reverse primer 5`-

TCAGTAGAGCTTTAGGTATACC-3`; Iduna C/G isoform reverse primer 5`-

TCAGTAGAGCTTTAGGTATACCG-3`). Amplified dIduna transcripts were cloned into 

pUAST (DGRC, Drosophila Genomic Resource Center) and pAc5.1 (Thermo Scientific) vectors 

by considering the appropriate restriction digestion sites.  Following the bacterial transformation, 

all of the cloned genes were sequenced. To generate UAS-CG8786 transgenic Drosophila, Myc-

tagged pUAST-CG8786/dIduna plasmid was injected into w1118 embryos (Best Gene, Inc.) We 

obtained successful transgenic lines. 

Total RNA isolation, cDNA synthesis and Q-PCR: Posterior midguts of 7-day-old adult flies 

were directly homogenized in 1 ml TRIzol (Life Technologies) and total RNA was isolated 

according to the manufacturer’s protocol (miRNeasy mini kit, QIAGEN). cDNA library was 

prepared from 5 µg total RNA, by using oligo(dT) amplification and the Superscript III First 

Strand synthesis kit (Invitrogen). cDNA library was used to amplify Upd3 and Rp32l transcripts 

with the forward 5`-AGGCCATCAACCTGACCAAC-3`, reverse 5`-

ACGCTTCTCCATCAGCTTGC-3` and forward 5`-CCCAAGGGTATCGACAACAGA-3`, 

reverse 5`-CGATCTCGCCGCAGTAAAC-3` primers, respectively. Those primers were 

designed via the online tool of DRSC/TRiP Functional Genomics Resources, Harvard Medical 

School and purchased from IDT, Inc.   

Cloning and generation of the wild type and mutants UAS-Flag-Tnks transgenic 

Drosophila: I previously described Drosophila TNKS (Park and Steller, 2013) and its ORF was 

cloned into pUAST vector from pcDNA3.1-Flag-Tnks. To generate UAS-Flag-Tnks transgenic 

Drosophila, Flag-tagged pUAST-Tnks plasmid was injected into w1118 embryos (Best Gene, 
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Inc.) I obtained successful transgenic Drosophila lines and those were utilized in conjunction 

with tissue-specific Gal4 drivers.  

Nile Red Staining: 7-day-old female midguts and fat bodies were dissected in ice cold 1xPBS 

and kept on ice until required sample size obtained. Tissues were then fixed in ice cold 4% 

paraformaldehyde/PBS for 20 min at room temperature and washed with 1xPBS for 3x10 min. 

Tissues were stained with 0.25ug/ml Nile Red/PBS solution for 30 min at room temperature. 

Following the staining, samples were washed in 1xPBS for 3x10 min at room temperature. 

Specimens were finally mounted in Fluoromount-G (Southern Biotech) and analyzed with 

confocal microscope. 

Clone analyses and RNAi experiments: Mutant clones were utilized to generate mitotic clones. 

2nd instar larvae were subjected to an hour heat shock in a 370C water bath per day until they 

reached the pupa stage and maintained at 240C. 3-day-old adult females were analyzed.  

For RNAi experiment, crosses were performed at 240C and the progeny of the desired genotypes 

were collected on the day of eclosion and maintained at 240C for 7 days before dissection. In the 

case of using temperature sensitive driver, eclosed virgin females were collected and kept at 

290C for 7 days before intestinal dissection.  

Cell culture: S2R+ cells were maintained at 25°C in supplemented Grace’s Insect Medium 

(supplemented with 10% heat inactivated FBS, 100U/ml penicillin, 100µg/ml streptomycin) in 

spinner flasks.  

Development of polyclonal antibodies: Full-length GST-tagged-Iduna C/G protein was 

expressed and purified from BL21 DE3 E. coli strain. Polyclonal antisera were generated in two 

guinea pigs (Cocalico, Inc.). For Western blot analyses, serum was used in 1:1000 dilutions. 
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Western blot analyses: 50-100µg dissected tissues or total larvae/flies were lysed in lysis buffer 

[50mM HEPES-KOH pH 7.4, 150mM NaCl, 0.05% Triton-X100, complete EDTA-free protease 

inhibitor cocktail (Roche)] using a 1 ml tissue grinder. Lysates were cleared by centrifugation at 

13,000 g for 20 min at 4°C. Protein concentrations of supernatants were determined by BCA 

assay (Pierce). 1µg/µl lysate was prepared with 3X sample buffer in 100µl total volume (200mM 

Tris-HCl, pH 6.8, 200mM dithiothreitol (DTT), 8% SDS, 24% glycerol, 0.04% bromophenol 

blue), heated at 95°C for 10 min and samples were separated by SDS-PAGE for 1 h at 120V, by 

using standard 1X SDS Tris base-glycine running buffer. Proteins on the gels were blotted onto a 

PVDF membrane, in a 1X transfer buffer (25mM Tris base, 190mM Glycine, 20% MeOH, 

0.05% SDS), and transferred (Bio-Rad) at 100V for 90 min. Membranes were taken through a 

standard immunoblot protocol followed by enhanced chemiluminescent detection (Crescendo 

ECL, Millipore) using a Lumimager (Fuji, LAS-3000). Primary antibodies: anti-Flag-HRP 

(1/1000, Sigma-Aldrich, A8592), anti-Flag (1/1000, CST, D6W5B 14793), anti-PAR (1/1000, 

Trevigen, 4335-MC-100), anti-Myc tag (1/1000, CST, 9B11, 2276), anti-Axin Drosophila (Santa 

Cruz, dT20, sc15685), anti-tubulin DM1A clone (1/1000, Sigma-Aldrich, T9026), mouse anti-

GFP-HRP (1/2500, clone B2, Santa Cruz Biotechnology, sc-9996-HRP), rabbit anti-β-Actin-

HRP (1/5000, clone 13E5, Cell Signaling Technology, 5125), donkey anti-rabbit-HRP (1/5000, 

Jackson ImmunoResearch, 711-035-152), donkey anti-mouse-HRP (1/5000, Jackson 

ImmunoResearch, 715-035-150), donkey anti-guinea pig-HRP (1:5000, Jackson 

ImmunoResearch, 706 006 148). 

Immunofluorescence: Adult intestines were dissected in 1xPBS and fixed in 4% 

paraformaldehyde in PBS for 45 minutes at room temperature. Tissues then were first washed 

with 0.1% Tween 20-PBS, then washed with 0.1% TritonX-100-PBS and finally permeabilized 
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in 0.5% TritonX 100-PBS for 30 minutes. After blocking with 10% BSA in 0.1% Tween 20-PBS 

for 1 hour at room temperature, primary antibody incubation in 10% BSA in 0.1% Tween 20-

PBS was performed for overnight at 4oC. 3X 5 min 0.1% Tween 20-PBS washed intestines then 

were then incubated in secondary antibodies for 1 hour at room temperature. Specimens were 

finally mounted in Fluoromount-G (Southern Biotech) and analyzed with confocal microscope 

(LSM780, Zeiss). Primary antibodies: mouse anti-Arm (Wang et al., 2016; N2 7A1, DSHB, 

1:50), mouse anti-Prospero (Wang et al., 2016; MR1A, DSHB, 1/50), mouse anti-GFP (GFP-

12A6, DSHB, 1/100), mouse anti-β-galactosidase (Tian et al., 2016); 401A, DSHB, 1/100), 

mouse anti-Delta (Wang et al., 2016; C594.9B, DSHB, 1/100), rabbit anti-phosho-S10-Histone3 

(Wang et al., 2016; 06-570, Millipore, 1/1000). The secondary antibodies were goat anti-mouse-

Alexa 488 plus (Thermo Fisher Scientific, A32723), goat anti-mouse-Alexa 568 (Thermo Fisher 

Scientific, A11031), goat rabbit-Alexa 546 (Thermo Fisher Scientific, A11035), goat rabbit-

Alexa 488 (Thermo Fisher Scientific, A11034), goat anti-rabbit-Alexa 633 (Thermo Fisher 

Scientific, A21071) and used at 1/1000. 

Quantification of Stat-GFP immunostaining intensity: Images from R5 region were taken 

with a 63x objective. Each Stat-GFP+ stem cell was identified using Imaris software (Bitplane). 

The main intensity in those cells within a field (40 µm x 40 µm) surrounding an Iduna mutant 

clone or an equal field at least 50 µm away from the mutant clone was measured. The relative 

intensity was calculated and shown in the figure (Wang et al., 2016). Statistical analyses were 

performed with Prism software (GraphPad).  

Immunoprecipitation: S2R+ cells were seeded at 5x106 cells/10 cm2 culture plates and 

incubated overnight at 250C. Cells were then co-transfected with 5µg of each plasmid by using 

Mirus-insect transfection reagent. Negative controls were transfected with empty plasmids. 48 
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hours later, transfected cells were harvested. The cell pellets were washed within cold 1X PBS. 

This step was repeated 3 times. Pellets were re-suspended in 600µl 1% Triton X-100 lysing 

buffer. Re-suspended pellets were incubated on ice for 15 minutes and mixed gently and 

periodically. Total lysates were centrifuged at 13,000 rpm at 40C for 30 minutes. The supernatant 

was removed and 100µl was stored as total lysate. 25µl Protein A/G (Thermo Scientific) beads 

were washed with lysing buffer for 3 times. 200µl of supernatant was incubated with the mixture 

of washed protein A-G beads on a rotator at 40C for 30 minutes. In a parallel way, 25µl Protein 

A/G was washed with lysing buffer for 3 times. At the end of incubation period, the beads-

supernatant mixture was centrifuged at 2,000 rpm at 40C for 1 minute. Pre-cleaned supernatant 

was collected and added to beads. Antibody was added to supernatant-beads and incubated at 

40C on a rotator for 4 hours. The beads-supernatant-antibody mixture was centrifuged at 2,000 

rpm at 40C for 1 minute and beads were washed with lysing buffer for 3 times. In the final step, 

the beads were re-suspended in 50µl of 3X sample buffer to perform immunoblotting.  

Recombinant protein purification from S2R+ cells: S2R+ cells were seeded at 5x106 cells/10 

cm2 culture plates and incubated overnight at 250C. Then, Flag or Myc-tagged gene of interests 

were transfected and based on the small tag, a recombinant protein was immunoprecipitated with 

Flag or Myc agarose beads as described above. Finally, by using Flag or Myc peptides, tagged 

proteins were eluted and quantified by BCA (Pierce, ThermoFisher Scientific).  

Quantification and statistics: ISC quantification, dissected midguts were stained with 

Armadillo and Prospero. Images of the R5 region (Buchon et al., 2013) were obtained with a 

63X objective and total number of Arm+/Pros- cells in a field were counted. Quantifications of 

immunoblot were done with Image J. Two-tailed Student t-test and One-way ANOVA were used 

as statistical analyses and those were done with Prism (GraphPad) software. 
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3 In vivo functional analyses of lysine 598 in Drosophila TNKS 

3.1 Summary 

ADP-ribosylation is a strikingly dynamic and reversible post-translational modification. 

TNKS is conserved from flies to human. Although auto-poly-ADP-ribosylation is a degradation 

signal for TNKS, regulation of its poly-ADP-ribose activity is still a mystery. The ADP-

ribosylation sites in TNKS have not been mapped to the specific residue(s) yet. Iduna is a 

binding partner of TNKS. Iduna-dependent TNKS degradation requires its PARsylation. My 

work revealed that lysine 598 is an ADP-ribosylation site in Drosophila TNKS. TnksK598A knock-

in flies live significantly shorter compared to control flies. Strikingly, TnksK598A adult flies 

exhibit climbing deficits with age. TnksK598A flies reduced the levels of phosphorylated JNK and 

poly-ADP-ribosylated proteins. Unlike Tnks-null mutants, TnksK598A does not cause hyper-

proliferation of stem cells in the adult midgut. I finally identified that K598A mutation 

prominently reduces the binding of certain proteins. As a result, I suggest that K598 residue is 

essential for building up the interaction between TNKS and certain partners.  
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3.2 Introduction 

ADP-ribosylation is a post-translational modification (PTM) that regulates many 

essential biological functions including DNA repair, chromatin structure, unfolded protein 

response, and apoptosis. ADP-ribose transferases (ARTs) attach ADP ribose (ADP-r) units to 

acceptor proteins by using NAD+. Some ARTs can subsequently add more ADP-r units to target 

proteins to generate poly-ADP-ribose (PAR) chains. Glutamic acid, aspartic acid, lysine, 

arginine, cysteine, or phosphorylated serine amino acid residues can be modified by ARTs 

(DaRosa et al., 2018; Martello et al., 2016; Zhang et al., 2013).  

PAR moieties are negatively charged polymers. Although poly-ADP-ribosylation 

(PARsylation) has an estimated half-live of only 1-6 min, it may influence the fate of proteins 

through several mechanisms, including a direct effect on protein activity, stability, or recruitment 

of binding partners (Guettler et al., 2011). Several enzymes can reverse protein ADP-

ribosylation. NUDIX9 and NUDT16 process both mono-ADP-ribose (MAR) and PAR units. 

Impairments in the hydrolysis of PAR chains involve in various disease conditions such as 

cancer, neurodegeneration, oxidative stress, neural injury, and regeneration (Deng, 2009; Hanai 

et al., 2004; Martire et al., 2015; Brochier et al., 2015). Therefore, protein PARsylation and its 

regulation are essential.  

Tankyrases (TNKS/PARP5) have essential roles in cellular pathways including telomere 

length maintenance, Notch signaling, and Wnt signaling (Bhardwaj et al., 2014). TNKS contains 

catalytic PARP domain, α-steril oligomerization motif (SAM) and large ankyrin repeat clusters 

(ARCs), known for substrate recognition and binding (Smith et al., 1998; De Rycker and Price, 

2004). Although SAM-dependent polymerization strikingly enhances its PARP activity, auto-
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PARsylation inhibits TNKS polymerization (De Rycker and Price, 2004; Nottbohm et al., 2007; 

Fan et al., 2018).  

The fly genome has a highly conserved Tnks gene. Loss-of Tnks is not required for 

viability in Drosophila. TNKS-mediated ADP-ribosylation activates Wingless signaling (Croy et 

al., 2016; Feng et al., 2014; Yang et al., 2016; Wang et al., 2016). Loss-of Tnks, therefore, causes 

Axin elevation that blocks Wingless signaling in enterocytes and activates JAK-STAT signaling 

to promote stem cell division in the fly midgut (Wang et al., 2016). On the other hand, the 

conditional depletion of Tnks1/2 in mice results in a rapid decrease of Lgr5+ stem cells and 

promotes stem cell death in the small intestine. As a result, mortality of double knockout mice 

increases (Ye et al., 2018).  

Here, I showed that Iduna is a TNKS-binding protein that plays an important role in 

TNKS degradation after its auto-PARsylation. Using a mass spectrophotometry-based approach, 

I identified lysine 598 as an ADP-ribosylation site in Drosophila TNKS. I then generated 

TnksK598A knock-in flies by using CRISPR-Cas9 genome engineering to investigate in vivo 

function(s) of K598 residue in Drosophila. Finally, I found that 11 interactors of TNKS have 

considerably reduced binding to the K598A mutant. This points to a critical function of K598 in 

mediating interactions between TNKS and various binding partners.  In the future, it will be 

interesting to determine the functional consequences of these interactions. 
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3.3 Result 

3.3.1 Iduna interacts with TNKS and plays a role in TNKS degradation in Drosophila 

TNKS is a well-defined substrate of Iduna both in both vertebrates and Drosophila. Auto-

PARsylation of TNKS is a degradation signal (Zhang et al., 2011). Loss-of Iduna leads to 

elevation of mis-expressed TNKS in Drosophila eye (Gultekin and Steller, 2019). However, it is 

still a mystery of how TNKS is rapidly destructed. To understand TNKS degradation, I focused 

on PARsylation and Iduna-mediated ubiquitylation of TNKS.  

Iduna recognizes and ubiquitylates the PARsylated proteins through its WWE and RING 

domains, respectively (Fig 3.1A). I deleted the functional RING, WWE, and PAR domains to 

determine the structure and functions of Iduna. These mutants were then co-expressed with 

TNKS in Drosophila S2R+ cells. Wild type Iduna led to degradation of TNKS while the mutants 

did not led destruction of TNKS, resulting in elevated protein levels of TNKS in cells (Fig 3.1B).  

This confirmed that Iduna plays a role in TNKS degradation.  

TNKS recognizes peptide motifs, which consist of six minimal consecutive amino acids. 

The canonical TNKS-binding motif (TBM) is Rxx#DG that starts with arginine in the 1st position 

and ends up glycine as the 6th amino acid residue whereas x can be any amino acid, and # is a 

small hydrophobic amino acid (DaRosa et al., 2018). Iduna has a putative TNKS binding motif, 

RATEDG, in the WWE domain (Fig 3.1C). To test if this motif was necessary for TNKS 

binding, Flag-TNKS was immunoprecipitated with wild type or a motif deficient mutant of Iduna 

in S2R+ cells. The deletion mutants were also co-immunoprecipitated with TNKS (Fig 3.1D). 
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Figure 3.1 Drosophila Iduna interacts with TNKS and ubiquitinylates Drosophila TNKS. A- 

Iduna has evolutionarily conserved WWE, PAR, and RING functional domains, responsible for 

the degradation of its ADP-ribosylated target proteins. Truncation mutants of Iduna were 

generated to conduct structure-function analyses in S2R+ cells. B- Truncation mutants of Iduna 

prevented Drosophila TNKS degradation. TNKS was co-expressed with wild type or the 

truncation mutants of Iduna in S2R+ cells. Labeled proteins were detected by immunoblotting.  

C- Iduna has several putative TNKS-binding motifs (TBMs): On the RING domain RLPCG, and 

RATEDG on the WWE configuration. D- Iduna interacts with TNKS. Flag-TNKS was co-

expressed with wild type or the truncation mutants of Iduna in S2R+ cells. Co-IP was done with 

anti-Flag, and WB was conducted with anti-GFP and anti-Flag. E- Iduna was co-localized with 

TNKS in S2R+ cells. UAS-RFP-Tnks was co-expressed with UAS-AcGFP-Iduna under Act5C 

driver in S2R+ cells. F- Iduna ubiquitylated TNKS in S2R+ cells. Flag-TNKS was co-expressed 

and AcGFP- wild type or Iduna mutants in S2R+ cells. After 24h, S2R+ cells were treated with 

5µM Bortezomib. 10h later, cells were collected and lysed. HA-conjugated A/G beads were used 

to pull down Flag-TNKS. Western blotting was performed with an anti-HA antibody. G- 

Ubiquitin ligase activity of Iduna depended on 141-Histidine and 147-Cysteine residues in the 

RING domain. H- Ubiquitin ligase deficient Iduna did not degrade TNKS. Flag-TNKS was co-

expressed with AcGFP- mutant or wild type Iduna in S2R+ cells. Labeled proteins were 

analyzed by immunoblotting. β-actin was a loading control.  
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Figure 3.2 TNKS degradation requires its poly-ADP-ribosylation and Iduna plays a role in 

TNKS degradation in vivo. A- TNKS ADP-ribosylates its target proteins through its PARP 

domain. B- M1064, H1041, and E1148 are the catalytic PARP residues, conserved from flies to 

human. C- Alanine mutations on these residues led to a deficiency in auto-poly-ADP-

ribosylation (PARsylation). Mutant proteins were purified from Drosophila S2R+ cells by using 

Flag-beads. D- TNKS auto-ADP-ribosylation is necessary for its Iduna-dependent degradation. 

Wild type Drosophila TNKS or the PARP deficient M1064V, H1041A, E1148A mutants of 

TNKS were co-expressed with and without Iduna in S2R+ cells. E- The small molecule inhibitor 

of TNKS, XAV939 blocks the auto-ADP-ribosylation of TNKS that leads to TNKS elevation in 

S2R+ cells. Transfected S2R+ cells were treated with 20µM XAV939. Ribosylated TNKS 

proteins were detected by anti-PAR immunoblotting after TNKS-immunoprecipitation. β-actin 

was a loading control. E- RNAi-mediated Iduna-depletion causes an elevation of miss-expressed 

TNKS in Drosophila. UAS-HA-Tnks transgene was expressed under the temperature sensitive 

Tub>Gal4 driver. Iduna inactivation by RNAi led to TNKS accumulation. 7-day-old female flies 

were lysed. Total proteins were analyzed by Western blotting. white-RNAi was a negative 

control. F- Quantification of Western blotting. The experiment was repeated two times with two 

independent replicates. Lines indicated means ± s.d. (standard deviation) ***p<0.001 Statistical 

analyses were done by two-tailed Student`s t-test. H- Iduna-RNAi caused an accumulation of 

PARsylated TNKS in Drosophila midguts. UAS-Iduna RNAi or white-RNAi and UAS-HA-Tnks 

transgenes were expressed under the temperature sensitive Tub>Gal4 driver. 7-day-old female 

flies were dissected and stained with α-PAR, α-HA and DAPI.  

  



 98 

 

  



 99 

 

That suggests the interaction between Iduna and TNKS is independent of ADP-ribosylation and 

ubiquitylation. Therefore, Iduna has more than one TBMs, one of which is sufficient to bind 

TNKS. In addition to immunoprecipitation, Iduna was co-localized with TNKS in S2R+ cells 

(Fig 3.1E). Taken together, TNKS can work together with Iduna to control the degradation of its 

substrates.  

I next focused on ubiquitin ligase activity of Iduna. I first showed that Iduna 

ubiquitylated TNKS by conducting in vivo ubiquitylation in S2R+ cells (Fig 3.1E). I then 

characterized the RING domain of Iduna. Histidine and cysteine residues in the RING domain 

are responsible for ubiquitin ligase activity in both mouse and human Iduna (Kang et al., 2011). 

Both residues are conserved in Drosophila (Fig 3.1F). I mutated both residues into alanine to test 

their ubiquitin ligase functions. Each mutant (H141A or C147A) partially led to TNKS 

degradation compared to the wild type Iduna (Fig 3.1G). However, the H141/C147-AA mutant 

was completely unable to degrade TNKS (Fig 3.1H). As a result, TNKS degradation requires 

Iduna-dependent ubiquitylation.  

 
3.3.2 Poly-ADP-ribosylation is essential for TNKS degradation 

Auto-ADP-ribosylation is crucial to control TNKS stability. Auto-PARsylation is 

catalyzed by PARP domain (Fig 3.2A), which is 86% similar to its corresponding amino acid 

sequences in mouse and human TNKS. Mammalian PARP of TNKS has several catalytic amino 

acid residues including M1064, H1041, and E1148 (Callow et al., 2011). These residues are 

conserved in Drosophila (Fig 3.2B). Recombinant Flag-M1064A, H1041A, and E1148A TNKS 

were deficient for auto-PARsylation (Fig 3.2C).  

Unlike wild type TNKS, these TNKS mutants were also resistant to degradation in the 

presence of wild type Iduna in S2R+ cells (Fig 3.2D-E). Auto-PARsylation of TNKS is 
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necessary for its stability. As a proof of concept, a small molecule inhibitor of TNKS, XAV939, 

blocked its auto-PARsylation as well as Iduna-dependent-degradation. As a control, the PARP 

deficient H1041A mutant had no auto-PARsylation. Therefore, it was stable to Iduna-dependent 

degradation (Fig 3.2E). RNAi-mediated Iduna inactivation also led to an elevation of miss-

expressed TNKS in vivo (Fig 3.2F-G). Iduna knock-down resulted in an accumulation of 

PARsylated TNKS in the Drosophila midgut (Fig 3.2H). These results together demonstrate that 

ADP-ribosylation is necessary for degradation of TNKS in Drosophila. 

 

3.3.3 Lysine 598 (K598) is an ADP-ribosylation residue in Drosophila TNKS 

ADP-ribosylation is a highly dynamic PTM with an estimated half-life of only 1-6 min 

(Palazzo et al., 2015). Although auto-PARsylation is essential for TNKS degradation, the ADP-

ribosylation site(s) in TNKS have not been mapped to the specific residue(s) yet. To this end, I 

developed a mass spectrophotometry (MS) approach to identify the amino acid residue(s) in 

Drosophila TNKS (Fig 3.4A).  

Since human NUDT16 (hNUDT16) removes both poly- and mono-ADP-ribosylation, 

hNUDT16 cleavage can be a tool to trim the complex protein ADP-ribosylation into an easily 

detectable mark by mass spectrometry (Palazzo et al., 2015). To test if hNUDT16 could exhibit 

phosphodiesterase activity against PARsylated TNKS, I first expressed Drosophila TNKS in 

Drosophila S2R+ cells and hNudt16 in E. coli. Subsequently, I purified both Flag-tagged 

dTNKS and His-tagged hNUDT16 proteins by using cobalt and Flag conjugated beads, 

respectively (Fig 3.3A-B). I first PARsylated TNKS in vitro for 1 hour (Fig 3.4B, lane 1) and 

then incubated the purified hNUDT16 with PARsylated TNKS for 3 hours. Strikingly, the 

recombinant hNUDT16 showed significant ability to remove the PAR signal from TNKS (Fig 
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4.3B). I further tested the range of hNUDT16 concentrations by PAR hydrolysis assay (Fig 3.4B, 

lanes 2-6). PAR modification was visualized by Western blot, using an antibody specifically 

recognizing poly- and oligo chains of ADP-r but not MAR. I detected molecular shifts of TNKS 

with and without modification in an hNUDT16-concentration-dependent manner in vitro. 

hNUDT16, therefore, efficiently hydrolyzes PAR modification in TNKS.   

In my MS approach, following in vitro ADP-ribosylation, PARsylated Drosophila TNKS 

was cleaved by hNUDT16, leaving a ribose-5`-phosphate (R5P) footprint of ADP-ribosylation in 

target amino acids. After trypsin digestion, R5P-containing peptides were enriched via TiO2 pull 

down and analyzed by MS (Fig 3.4A). With MS, R5P can be detectable in the peptides of 

interest (Palazzo et al., 2015). I identified several peptides, having R5P (Fig 3.4C). However, 

only one peptide, GKYDICK, had an R5P molecular marker with an expected molecular size 

(Fig 3.5A). I identified K598 residue as one of the ADP-r acceptor sides in TNKS (Fig 3.5B). 

K598 is the first investigated PARsylation site in TNKS.  

K598 localizes in the ARC4 repeat of Drosophila TNKS (Fig 3.4D and Fig 3.6A-B). I 

first aligned the amino acid sequences of TNKS from different species and found that K598 is 

conserved in evolution. Both human and mouse orthologs of Drosophila TNKS shares high 

identity with ARC4 (Fig 3.4D) suggesting that K598 may have a conserved function. I then 

mutated lysine 598 to alanine (K598A) to examine its PARP activity. I purified Flag-K598A 

TNKS from S2R+ cells and carried out ADP-ribosylation assays. Strikingly, the K598A 

mutation completely blocked auto-PARsylation of TNKS in vitro just like PARP-deficient 

TNKS M1064V, H1041A and E11418A mutants (Fig 3.4E).  
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Figure 3.3 Expression and purification of recombinant Drosophila TNKS and human 

NUDT16. A- UAS-Flag-TNKS was expressed under Actin5C-Gal4 driver in S2R+ cells. After 

48h, transfected S2R+ cells were lysed to purify Flag-tagged TNKS by Flag-antibody conjugated 

beads. Purified TNKS was stained with colloidal blue on the SDS-poly-acrylamide gel. B- 

Expression and purification of His-tagged hNudt16 from E. coli after IPTG induction. Cobalt 

beads were used to purify the His-tagged protein. Colloidal blue staining was used to visualize 

the purified proteins.  
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Figure 3.4 Mass spectrophotometric approach identifies ADP-ribose acceptor residues of 

TNKS. A- I had developed an MS-based approach to identify ADP-ribose acceptor residues in 

TNKS. After in vitro ADP-ribosylation of TNKS, human NUDT16 removed PARsylation in 

TNKS. B- Human NUDT16 cleaves the poly-ADP-ribose modification in TNKS in vitro. By 

using NAD+, purified TNKS auto-poly-ADP-ribosylated in vitro (Lane 1). Recombinant 

hNUDT16 removed the PAR polymers from TNKS. Flag-TNKS was purified from S2R+ cells. 

For 3h, hNUDT16 digested PAR units in TNKS in a concentration-dependent manner (Lanes 2-

6). C- hNUDT16 left a small molecular footprint, ribose-5`-phosphate (R5P) in TNKS. TiO2 pull 

down enriched R5P-containing peptides, which were finally detected by mass spectrophotometry 

(MS). GKYDICK peptide in Drosophila TNKS has a ribose-5`-phosphate molecular marker. D- 

K598 residue is conserved from flies to human. K598 residue in Drosophila TNKS corresponds 

to K604 in human TNKS2. E- K598A mutant TNKS did not PARsylated by itself in the 

presence of NAD+ in vitro. TNKS proteins were expressed and purified from S2R+ cells. PARP 

deficient TNKS mutants (M1064V, H1041A, and E1148A) were also tested in the ribosylation 

assay. The modification was detected with an anti-PAR antibody. Unmodified TNKS was 

recognized by a Flag-immunoblotting. F- Drosophila TNKS PARsylated V5-Axin through 

TNKS-binding motif (TBM) in vitro. On the other hand, TNKS did not modify TBM deleted 

V5-Axin. Flag-TNKS and V5- wild type Axin or V5-D-TBM-Axin were expressed and purified 

from S2R+ cells. ADP-ribosylation was conducted in vitro with the purified proteins from S2R+ 

cells. G- K598A mutant was unable to modify GFP-Axin in vitro. GFP-Axin was expressed 

under the temperature sensitive Tub-Gal4 driver and purified from Drosophila. H- K598 in 

Drosophila TNKS corresponds to K604 in human TNKS2. TBM of Axin is conserved from flies 

to human. Glutamic acid is a negative and lysine is a positive charged amino acid. Hence, the 7th 
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and 8th glutamic acid residues in the TBM of human AXIN can form a strong stable salt bridge 

interaction with K604 in human TNKS2.  
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Figure 3.5 The GKYDICK peptide in Drosophila TNKS has R5P, detected by MS. A- The 

peptide has an expected molecular mass with R5P modification. The K598 in the GKYDICK 

peptide was identified as one of the ADP-ribose acceptor residues. B- Lysine 598 is an ADP-

ribose acceptor residue in Drosophila TNKS.  
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Figure 3.6 Lysine 598 is one of the ADP-acceptor residues in Drosophila TNKS. A-Lysine 

598 localizes in the ARC4 repeat of Drosophila TNKS, that is conserved during evolution. B- 

K598 in Drosophila TNKS is corresponding to K604 residue in human TNKS. C- Drosophila 

Axin has an N-terminus TBM. Axin is a scaffold protein that recruits and interacts with different 

proteins through its various domains. 
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Axin, the rate-limiting factor in the Wingless pathway, is a target protein of TNKS in 

Drosophila as well. Axin also functions as a scaffold as it recruits different proteins through its 

various domains. It interacts with Adenomatous Polyposis Coli (APC) protein via its RGS 

domain and also binds to Shaggy (GSK3 in mammals) and Armadillo (β-catenin in mammals) 

through its BCD domain. TNKS recognizes and binds to Axin through its TNKS-binding motif 

(TBM) (Fig 3.6C).  

I demonstrated that TNKS was unable to PARSylate Axin when its TBM was mutated. 

Hence, TBM is necessary for TNKS-dependent PARsylation of Axin (Fig 3.4F). I next tested 

PARP activity of K598A on its substrate Axin. I purified GFP-tagged Axin from flies and 

conducted in vitro ADP-ribosylation assay with wild type, K598A, and M1064V mutants of 

TNKS. Wild type TNKS PARsylated GFP-Axin as well as itself (Fig 3.4G). However, both 

K598A and M1064V TNKS mutants were unable to modify GFP-tagged Axin in this in vitro 

assay (Fig 3.4G). These results suggest that K598A may be a loss-of-function mutation of 

TNKS.   

K598 residue in Drosophila TNKS corresponds to K604 in human TNKS2 (Fig 3.4H). 

Independent of my investigation, K604 residue in human TNKS2 was shown to be essential for 

AXIN1 interaction (Guettler et al., 2011). Based on fluorescence polarization peptide binding 

assays, the binding of TBM in AXIN1 was indeed highly sensitive to the K604A mutant peptide 

of TNKS2 (Guettler et al., 2011). It suggests that the position 7 and 8- glutamic acid residues in 

the TBM of AXIN can form a robust stabilizing salt bridge interaction with K604 of TNKS2 

(Guettler et al., 2011). Taken together, I suggest that K598 residue may be necessary for ADP-

ribosylation of Axin in Drosophila.  
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Figure 3.7 TnksK598A knock-in mutation is introduced into Drosophila Tnks gene by 

CRISPR-Cas9 genome engineering. A- A specific sgRNA was designed to target K598 

residue. To mutate lysine residue to alanine, single-stranded DNA was designed and injected 

together with the sgRNA into Cas9-expressing embryos. B- I first screened the established fly 

lines with PCR and Styl-RFLP since K598A mutation changed one of the Styl restriction enzyme 

recognition sites. Several Drosophila lines were identified as K598A mutant, whose PCRs failed 

to give 2 DNA fragments (328 and 308 nucleotides). C- Identified TnksK598A knock-in mutants by 

Sanger sequencing. Corresponding Tnks sequences from wild type, heterozygous and 

homozygous flies were compared for K598 codon. D- TnksK598A mutants are viable, fertile and 

do not have obvious morphological defects. TnksK598A knock-in mutants did not have defects in 

hatching their embryos. n>200 for each genotype. E- TnksK598A knock-in mutants did not have 

defects in eclosing their pupae. n>100 for each genotype. Each line indicated means ± s.d. 

Statistical analyses were done with two-tailed Student`s t-test.  
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To investigate the physiological function(s) of K598 residue in Drosophila, I generated 

TnksK598A knock-in mutant, in which the lysine 598 residue in Tnks gene was replaced with an 

alanine residue (Fig 3.7A). Both sgRNA and donor DNA injected into Cas9-expressing embryos. 

I finally established possible TnksK598A knock-in fly lines. After Styl restriction fragment length 

polymorphism (RFLP) analyses and complementary Sanger sequencing (Fig 3.7B), I identified 

TnksK598A mutant flies (Fig 3.7C).  

 

3.3.4 TnksK598A knock-in mutation reduces lifespan and JNK signaling in Drosophila 

I first examined the larval development of TnksK598A and Oregon R flies but did not 

observe any differences in the numbers of hatched embryos (Fig 3.7D), pupated larvae, and 

eclosed adult Drosophila (Fig 3.7E), between TnksK598A mutants and wild type flies.  

Similar to Tnks19 and Tnks503-null mutants, TnksK598A adult flies are viable, fertile, and have no 

apparent morphological defects when compared with wild type flies (Wang et al., 2016). 

Strikingly, both K598A females and males had significantly shorter lifespans compared to 

control flies (Fig 3.8A-B). Surprisingly, TnksK598A adult flies reduce their climbing behavior with 

age (Fig 3.8C, Fig 3.9A-C). Tnks knock-out flies also have prominently shorter lifespan and 

impaired climbing ability due to the JNK pathway (Li et al., 2019). To address if K598 residue 

was important for JNK signaling in Drosophila, I analyzed the protein levels of phosphorylated 

JNK (p-JNK) and indicated that TnksK598A flies have less p-JNK proteins when they were 4-week 

old compared to their controls (Fig 3.8D-E). Only two PARP family members, TNKS and 

PARP-1, exist in Drosophila and modify their substrate proteins via PARsylation (Krishnakumar 

and Kraus, 2010). Consistently, the levels of PARsylated proteins were reduced in the TnksK598A 

mutants compared to their controls (Fig 3.8F-G).   
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Figure 3.8 TnksK598A mutation significantly reduces lifespan in Drosophila. A- K598A 

females and B- males had significantly shorter lifespan than control flies. Both females and 

males TnksK598A mutants were independently analyzed on a regular diet at 24-250C. For statistical 

analyses, I used the Mantel-Cox and Gehan-Breslow-Wilcoxon tests to compare survival curves 

between TnksK598A mutants and control flies. n>100 for each genotype. C- TnksK598A adult flies 

reduced their climbing abilities with age. TnksK598A mutation did not affect climbing behavior in 

flies when they were 3-day-old (Week 0). n>100 for each genotype. Female flies were tested for 

their climbing for 4 weeks. n>100 for each genotype. D- TnksK598A flies have less 

phosphorylated-JNK proteins when they were 4-week old compared to their controls. Whole fly 

protein lysates were used in Western blot analysis. p-JNK levels were detected by antibody. E- 

Quantification of p-JNK levels. Normalization was done with α-Tubulin. F- Protein PARsylation 

was decreased in the TnksK598A mutants compared to their control. PARsylation was detected by 

α-PAR antibody. G- Decline in the global PARsylation was quantified and normalized with α-

Tubulin. Each line indicated means ± s.d. Statistical analyses were done with two-tailed 

Student`s t-test or 2-way ANOVA. ****p< 0.0001 for C. 
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Figure 3.9 TnksK598A mutation significantly reduces their climbing behavior in Drosophila. 

A- TnksK598A mutation did not affect climbing behavior in flies when they were 3-day-old. n>100 

for each genotype. B- TnksK598A adult flies reduced their climbing abilities with age. 45-day-old 

females were tested for their climbing. n>100 for each genotype. C- Image from 45-day-old 

female flies during their climbing assay. n=21 for each genotype. D- TAG levels did not change 

in TnksK598A mutants during aging. Quantification of total triglycerides (TGA). Each line 

indicated means ± s.d. Statistical analyses were done with two-tailed Student`s t-test.  

****p< 0.0001 for B.  
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Figure 3.10 Apc1, pygo, and Arm are indispensable for Wingless-dependent regulation of 

stem cell proliferation in the adult midgut. A- FRT-RFP was a control mutant clones, which 

did not promote the proliferation of esg-LacZ+ stem and progenitor cells. B- Apc1 is required for 

ISC hyper-proliferation in adult fly midguts. FRT82B, Apc1 is an Apc1-null mutant. C- Wingless 

co-transcription factor pygo-null mutants had an increased number of esg-LacZ+ cells. D- 

Armadillo is essential to prevent over-proliferation of stem cells. FRT19A, arm is arm-null 

mutant. Posterior midguts from 7-day-old FRT-RFP animals were dissected and stained with α-

β-gal. FRT-RFP mutant clones did not have RFP signals. These flies carried esg-lacZ reporter in 

their backgrounds. 
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Figure 3.11 Tnks prevents the over-proliferation of ISCs. A- Tnks503 mutant clones had 

increased number of Arm+/Pros- stem cells compared to FRT82B control clones in the 

Drosophila midgut. Posterior midguts from 7-day-old FRT-RFP animals were dissected and 

stained with a-Armadillo and a-Prospero antibodies. Armadillo stained cell membranes. B- Tnks 

deletion in mutant clones resulted in promotion of esg>GFP+ stem and progenitor cell numbers 

in adult midguts compared to FRT82B control clones. Posterior midguts from 7-day-old FRT-

RFP flies were analyzed. Flies had esg>GFP in their backgrounds. Mutant clones were defined 

by the absence of an RFP signal. Scale bar: 10µm. 
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Figure 3.12 Tnks is essential in ECs to prevent hyper-proliferation of midgut stem cells. A- 

TNKS is crucial to control Axin levels in the ECs. Inactivation of Tnks elevated mis-expressed 

Axin levels in adult midguts. GFP-Axin transgene was mis-expressed in ECs under the Myo1A 

driver. 5-day-old flies were dissected. Midguts were lysed to conduct Western blotting. Tubulin 

was used as a loading control. B- Tnks mutants had more esg-LacZ stained midgut stem cells and 

progenitors. C- Tnks deletion promotes the number of esg>GFP cells. D- Ectopic expression of 

UAS-Flag-Tnks transgene in ECs suppressed the increased number of ISCs in Tnks mutants. 

Myo1A-Gal4 was used to express Tnks in ECs. Arm+/Pros- stem cells were quantified from 

posterior midguts. E- Quantification of pH3+ cells in whole midguts. n>5. Both Tnks19/19 and 

Tnks503/503 are Tnks-null flies. Heterozygous flies (Tnks503/+ or Tnks19/+) were used as control 

flies. Each dot represented an animal and lines indicated means ± s.d. ****p<0.0001. Statistical 

analyses were done with One-way ANOVA.  
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Decrease in the global PARsylation suggested that TnksK598A mutants might be a defect 

in energy storage. To test that, I examined levels of total triglycerides (TGA). However, I found 

that TAG levels were not altered in these mutants during aging (Fig 3.9D). I, therefore, reasoned 

that TnksK598A might be a hypomorph of Drosophila TNKS.  

My previous in vitro results suggested that TnksK598A might be a loss-of-function mutant 

that might lead to Axin elevation and the promotion of stem cell proliferation in Drosophila. To 

test this, I analyzed midguts of both Tnks-null and TnksK598A mutants. As indicated previously, 

the Wingless pathway is essential to control midgut stem cell proliferation. ECs are responsible 

for activating Wingless signaling in the midgut. When Wingless signaling decreases due to Axin 

elevation in ECs, midgut stem cells undergo aberrant proliferation under homeostatic conditions.  

Apc1, pygo (Pygorus-Wingless transcription co-factor) and arm (Armadillo-Wingless 

transcription factor, β-catenin in mammals) are indispensable for Wingless-dependent regulation 

of stem cell proliferation in the adult midgut. Therefore, the genetic depletions of them result in 

an increased number of esgcargot-LacZ positive (esg-LacZ+) midgut stem and progenitor cells 

around RFP negative mutant clones compared to FRT-RFP- control clones (Fig 3.10A-D).  

 

3.3.5 Unlike Tnks-null mutants, TnksK598A knock-in mutation does not promote 

proliferation of ISCs in Drosophila 

TNKS is a positive regulator of Wingless signaling. I found that Tnks-null mutant clones 

had an increased number of Arm+/Pros- midgut stem cells (Fig 3.11A) as well as esg>GFP+ stem 

and progenitor cells in Drosophila midguts (Fig 3.11B). Tnks depletion caused accumulation of 

mis-expressed GFP-Axin in ECs (Fig 3.12A). Loss-of Tnks non-autonomously promoted stem 

cell division; as a consequence, there were an increased number of esg>GFP+  
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Figure 3.13 Pharmacological inhibition of Axin degradation suppresses Wingless signaling. 

A- XAV939 and Bortezomib treatment inhibited Axin degradation in Drosophila midguts. 2-

day-old female FRT82B, Axnh, BAC-Axin-V5 flies were treated with Bortezomib or XAV939. 

DMSO was also supplemented in the low melt fly food as a control of drug treatments. Axnh is a 

loss-of function mutant of Axin. This mutation leads to lethality in Drosophila. BAC-Axin-V5 

transgenic line rescues the lethality of Axnh mutant. After 5-day XAV939 or Bortezomib 

treatment, midguts were dissected for V5-immunostaining. Axin accumulation was observed in 

dissected midguts. B- XAV939 treatment caused Axin accumulation. After 5-day XAV939 or 

Bortezomib treatment, total proteins were extracted from these flies and analyzed by V5-

immunoblotting. ``se`` meant short exposure of immunoblotting while ``le`` meant long 

exposure. C- Quantification of V5-Axin immunoblotting upon XAV939 treatment. D- 

Bortezomib treatment resulted in Axin elevation. E- Quantification of V5-Axin immunoblotting 

after Bortezomib treatment. F- Bortezomib inhibited Wingless signaling. fz3>GFP reporter 

activity mainly reduced in the posterior midgut. 5-day Bortezomib-fed female flies were 

dissected, and fz3>GFP-expression in posterior midguts was examined with confocal 

microscope.  
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Figure 3.14 XAV939 and Bortezomib induce JAK-STAT signaling to promote ISC 

proliferation. A- XAV939 and Bortezomib treatments drived stem cell hyper-proliferation in 

adult midguts compared to DMSO-fed flies. B- XAV939 and Bortezomib triggered JAK-STAT 

signaling, traced with a 10xStat-GFP reporter. C- XAV939 and Bortezomib induced upd3>GFP 

expression. D- XAV939 or Bortezomib increased stem cell proliferation in adult midguts. 2-day-

old Oregon R female flies were fed with 50µM XAV939 or Bortezomib for 5 days. Midguts 

were then dissected and stained with α-pH3 antibody. pH3+ mitotic cells were quantified in each 

midgut analyzed. Posterior midguts were imaged by confocal microscope. n>10. Each dot 

represented an animal and lines indicated means ± s.d. ****p< 0.0001. Statistical analyses were 

done with One-way ANOVA. Scale bar: 10µm. 
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Figure 3.15 Bortezomib-mediated ISC proliferation requires JAK-STAT activation. A- 

DMSO treatment did not affect stem cell division in midguts. B- Bortezomib treatment led to 

over-proliferation of midgut stem cells. C- Depletion of the Stat92E transcription factor 

suppressed Bortezomib-induced stem cell division. D- Inactivation of upd2/3 reversed the 

proliferation effect of Bortezomib on stem cells. E- The reduction of JAK-STAT signaling in 

ISCs by the expression of UAS-Socs36E reduced the proliferation response to Bortezomib. A 

UAS-Socs3E transgene expression was driven by esg-Gal4>GFP. 2-day-old Oregon R female 

flies were fed with 50µM XAV939 or Bortezomib for 5 days. These flies had esg-Gal4>GFP in 

their backgrounds. Posterior midguts were imaged by confocal microscope. n>5 for each 

experimental condition. 
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Figure 3.16 TnksK598A knock-in mutation does not affect stem cell proliferation in the adult 

midgut. A- Tnks503-null flies have more Arm+/Pros- midgut stem cells. B- Unlike Tnks-null flies, 

TnksK598A mutation did not affect Arm+/Pros- stem cell numbers. TnksK598A did not caused any 

changes in the JAK-STAT pathway. A 10xStat-GFP reporter fly line was used to monitor JAK-

STAT signaling. C- The quantification of Arm+/Pro- ISCs in midguts of Tnks-null (Tnks503) 

flies. D- The quantification of Arm+/Pro- ISCs in midguts of TnksK598A/+ flies. TnksK598A/+ flies 

were used as control flies. E- TnksK598A flies did not affect upd3>GFP expression. TnksK598A/+ 

flies were used as control flies. F- The quantification of pH3+ mitotic cells. There were no 

differences in the average of pH3+ cell numbers between heterozygous or homozygous TnksK598A 

flies. Oregon R flies were used as wild type flies. Scale bar: 50µm. 7-day-old female flies were 

dissected, and posterior midguts were examined with confocal microscope. Each dot represented 

an animal. Graphs indicated means ± s.d. Statistical analyses were done with two-tailed 

Student`s t-test. ns means not significant. Scale bars: 10µm for A, C and 50µm for E.  
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stem and progenitor cells in adult midguts (Fig 3.12B-E). Ectopic expression of Flag-tagged 

TNKS in ECs suppressed over-proliferation of ISCs in Tnks-null mutants (Fig 3.12D-E).  

Both pharmacological inhibition of Axin ADP-ribosylation by XAV939, and its 26S 

proteasome-dependent degradation by Bortezomib, led to an accumulation of endogenous Axin 

in Drosophila midguts (Fig 3.13A). I also detected increased levels of endogenous Axin in the 

whole-body protein lysates from XAV939 or Bortezomib fed flies (Fig 3.13B-E). High levels of 

Axin suppressed the expression of frizzled3, an indicator of Wingless signaling activity, in the 

midgut. Therefore, I observed more esg>GFP+ stem and progenitor cells after XAV939 or 

Bortezomib treatment (Fig 3.14A). Similar to Tnks-null mutants, XAV939 and Bortezomib 

treatments both triggered the JAK-STAT pathway (Fig 3.14B) and stem cell proliferation (Fig 

3.14D) in Drosophila midguts.   

In response to stress, ECs express and secrete UPD cytokines to activate JAK-STAT 

signaling, which is essential for ISC to proliferate. I, therefore, used upd3-Gal4 enhancer trap to 

monitor upd3 induction in midguts and found that upd3 expression correlated with the effects of 

XAV939 or Bortezomib treatment (Fig 3.14C). 

When I reduced JAK-STAT signaling in esg>GFP+ cells, either by inactivation of 

transcription factor Stat9E and upd2-3 cytokines or by over-expression of Socs36E-the inhibitor 

of the JAK-STAT pathway, Bortezomib treatment-induced hyper-proliferation response was 

suppressed (Fig 3.15). 

I next analyzed 7-day-old female Tnks-null as well as TnksK598A mutants. I only found an 

increase in the numbers of Arm+/Pro- stem cells in Tnks-null midguts compared to control flies 

(Fig 3.16A, C). However, TnksK598A mutant did not promote the numbers of Arm+/Pros- stem 

cells in midguts (Fig 3.16B). I did not indicate any significant change in the number of stem cells 
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(Fig 3.16D) and pH3+ mitotic ISCs in TnksK598A flies (Fig 3.16F). Furthermore, both Stat-GFP 

reporter activity (Fig 3.16D) and upd3>GFP gene expression were not induced by TnksK598A (Fig 

3.16E). Taken together, K598 does not involve in the ADP-ribosylation of Axin as well as its 

degradation in vivo. 

I finally tested the effect of K598 residue on TNKS degradation in S2R+ cells. Unlike 

PARP-deficient mutants, K598A mutant still underwent proteolytic degradation in the presence 

of Iduna in S2R+ cells (Fig 3.17A-B). XAV939 stabilized both K598A and wild type TNKS (Fig 

3.17B). Flag-tagged wild type or K598A TNKS was co-expressed with Iduna in S2R+ cells to 

see the PARsylation levels of TNKS. An equal amount of total proteins was pulled down via 

Flag beads and then immunoblotted with a PAR antibody. While there was less ADP-

ribosylation in K598A compared to wild type TNKS, it was still adequate for its degradation (Fig 

3.17B). Therefore, I suggest that K598 residue in the ARC4 domain may be essential for other 

physiological function(s) instead of Axin and TNKS ADP-ribosylation and their degradations.  

 

3.3.6 Lysine 598 is essential for TNKS-binding to certain proteins 

TnksK598A knock-in mutants have several phenotypes that overlapped with Tnks-null 

mutants. To investigate the most affected molecular target(s) of K598, I conducted Co-IP-MS 

analysis (Fig 3.18A). I expressed Flag-tagged wild type (Fig 3.19A) or K598A TNKS (Fig 

3.19B) in S2R+ cells and pulled down Flag-tagged TNKS to reveal which binding partner(s) 

were significantly reduced for K598A TNKS (Fig 3.18B). We then compared wild type TNKS 

interactome with the interactome of K598A (Fig 3.18B-C). As a result, we identified 11 proteins 

as the most prominently affected binding partners of TNKS.  
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Figure 3.17 K598A TNKS is auto-poly-ADP-ribosylated and degraded in S2R+ cells. A- 

Iduna degraded K598A mutant in S2R+ cells, whereas PARP-deficient mutants were resistant 

against Iduna-dependent TNKS degradation. B- XAV939 treatment inhibited Iduna-mediated 

destruction of K598A mutant protein. TNKS wild type or the mutants were expressed in S2R+ 

cells. 20µM XAV939 and DMSO treatments were done 24h after transfection. Following 48 h of 

XAV939 treatment, S2R+ cells were collected and lysed for Western blotting against Flag-

TNKS. β-actin was used as a loading control. PARsylated TNKS was detected with a PAR 

antibody after Flag-TNKS immunoprecipitation (IP). 
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Figure 3.18 IP-MS identifies 11 proteins as the most prominently affected binding partners 

of TNKS. A- MS-Based approach to identify the binding partners of Drosophila TNKS. B- Flag-

peptide-eluted proteins were analyzed with silver staining before MS analysis. C- K598A 

mutation significantly reduces the binding of several proteins. S2R+ cells expressing wild type 

Flag-TNKS or K598A Flag-TNKS were collected for an anti-Flag Co-IP. Shown here is a 

volcano plot of label-free quantitative MS results. Biological triplicates were conducted and 

analyzed. The cut-off line for significance is P-value<0.001 (-log10P >3) and fold difference 

log2<-1. Statistically significant proteins were labeled in red. D- TNKS K598A mutation 

prominently reduces binding affinity of 11-proteins, identified by IP-MS. Statistically significant 

proteins are listed in this table. Given p-values represent the statistical significance, calculated 

from the three-independent pull-down analyses. Binding abilities of each protein to K598A 

TNKS are compared to the interactions with the wild type TNKS protein. Proteins name and 

their possible functions are searched in the Uniprot’s Drosophila proteome.  
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Figure 3.19 MS-based approach to identify wild type Drosophila TNKS and K598A TNKS 

interactomes. A- Wild type GKYDICK peptide B- GAYDICK peptides were detected by MS. 

GKYDICK peptide is in wild type TNKS, whereas GAYDICK is in K598A TNKS.  
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These proteins are RH07106p Hsp70 binding protein, Caper, Snapin, Receptor-mediated 

endocytosis protein 6 homolog, Prx5, RnpS1, IP12463p putative cADPR synthase, Exu, 

A1Z6G6, U2af50, Pst (Fig 3.18C). These proteins have various suggested functions (3.18D). As 

a result, I suggested that K598 promotes the formation of complexes between TNKS and these 

proteins. It, therefore, points out a critical function of K598 in various biological processes. In 

the future, it will be interesting to investigate the functional consequences of these interactions. 
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3.4 Material and Methods 

Fly stocks: Flies were kept at a 12-hour light/dark cycle. All crosses were performed at 22-25°C 

unless stated otherwise. The following fly stocks were used for this study (Bloomington 

Drosophila Stock Center (BDSC) and Vienna Drosophila Resource Center (VDRC) number (#) 

given in parentheses):  

The stocks used in here: TnksK598A (generated in this study), esg-Gal4, UAS-GFP (a gift of Dr. 

Norbert Perrimon; Micchelli and Perrimon, 2006), esgK606 (a gift of Dr. Norbert Perrimon; 

Micchelli and Perrimon, 2006), 10XStat-GFP (Bach et al., 2007), BAC-AxinV5 (a gift of Jean-

Paul Vincent, Gerlach et al., 2014), FRT 82B, Axnh, BAC-AxinV5 (a gift of Jean-Paul Vincent, 

Gerlach et al., 2014), UAS-GFP-Axin (BDSC# 7224), Myo1A-Gal4, tub-Gal80ts, UAS-GFP (a 

gift of Dr. Norbert Perrimon; Micchelli and Perrimon, 2006), upd3-Gal4, UAS-GFP (a gift of Dr. 

Norbert Perrimon; Markstein et al., 2014), Δupd2/3 (BDSC# 129), ΔDome (BDSC# 12030), 

Tnks503 (a gift of Dr. Yahsi Ahmed, Wang et al., 2016), Tnks19 (a gift of Dr. Yahsi Ahmed, Wang 

et al., 2016), UAS-Tnks-HA (a gift of Dr. Yahsi Ahmed, Wang et al., 2016), UAS-

CG8786/dIduna RNAi#1 (BDSC# 40882), UAS-CG8786/dIduna RNAi#2 (VDRC#43533), 

UAS-CG8786/dIduna RNAi#3 (VDRC#36028), UAS-CG8786/dIduna RNAi#4 (VDRC#36029), 

and white RNAi (BDSC#33623), fz3-Gal4 (BDSC#36520). The rest of Drosophila lines, which 

were studied here, were obtained from Steller Lab stocks. Oregon R flies were used as control 

and only adult female flies were analyzed in this study.  

Drosophila egg collection: Please refer to Chapter 2, Material and methods.    

Fly Climbing: Newly eclosed male or female flies were separated and raised on standard food 

for 3 days or 1 month. Cohorts of 60 flies were pre-divided into 3 groups and transferred, 

without anesthesia, into graduated vials. The vials were gently tapped to force the flies down to 
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the bottom. The climbing behavior was observed for 18 s and repeated 3 times with 2-min 

intervals.  

Low-melt fly food: This fly food was developed by Markstein et al., 2014. They developed this 

fly food formula for mixing drugs in low volumes. It contains low-melt agarose and standard 

agarose in place of agar. Low-melt fly food was prepared with distilled water containing 2% 

(wt/vol) autoclaved yeast, 7% (vol/vol) corn syrup, and 1.5% (wt/vol) agarose (composed of 1 

part standard agarose to 11 parts of low-melt agarose). Following its sterilization, the food was 

stored at 40C, boiled and mixed as liquid with drugs at 370C. The resulting food-plus drug 

mixtures solidified at 300C into soft fly-edible gels.  

CRISPR/Cas9 genome editing for TnksK598A: CRISPR optimal target finder website 

(tools.flycrispr.molbio.wisc.edu/targetFinder) was used to identify an appropriate guide RNA 

(gRNA) target sequence within TNKS-ARC4 domain (Gratz et al., 2013, 2014). I found 

GCAAATATCATACTTTCCCT TGG sgRNA to target lysine 598 in TNKS. By using the 

forward 5`-GTCGCAAATATCATACTTTCCCT-3` and reverse 5`-

AAACAGGGAAAGTATGATATTTG-3` oligos (IDT, Inc.). I cloned the sgRNA into pCFD3-

dU6:3-gRNA plasmid (Addgene, plasmid# 49410, Port et al., 2014). Transformants were 

verified via Sanger sequencing (Genewiz, Inc.). I purchased single strand DNA as a HDR donor 

sequence for K598A mutation- CTATGAGGTAACCGAACTGCTG GTC AAG CAC GGA 

GCC AAT GTA AAT GTA TCG GAT TTG TGG AAG TTT ACT CCT CTT CAT GAA GCT 

GCa GCa AAG GGA gcG TAT GAT ATT TGC AAG CTG CTC TTG AAA CAT GGC GCT 

GAT CCA ATG AAG AAG AAT CGG GAT GGC GCG ACA CCA (IDT, Inc). The gRNA 

plasmid and the HDR donor sequence were injected into 300 embryos of Act5C-Cas9 



 141 

 

Drosophila (BestGene, Inc.). The injection was yielded 95 Go progeny, and I established 125 

individual fly lines, a couple of which could possibly have the TnksK598A mutations.  

Isolation of the TnksK598A mutants: Total DNA was isolated from 5-day-old adults of 

established K598A lines. To screen the mutant lines, PCR fragments were amplified with specific 

primers (forward primer 5`-F: CCCTTGAGGGACTTACGGCCGC-3`, reverse primer 5`-

CTTGTCCTGTGCATTAACATCGGCTC-3`). Amplified PCR products were then digested 

with Styl restriction enzyme, which gave two DNA fragments. PAM sequence mutation on 

sgRNA changed the restriction digestion site. Therefore, StyI did not digest the PCR product. 

Based on Styl-RFLP, I identified more than 10 fly lines. To verify the mutation, amplified PCR 

products were sent for DNA sequencing (Genewiz, Inc.). 

Clone analyses and RNAi experiments: Please refer to Chapter 2, Material and methods.    

Cell culture: Please refer to Chapter 2, Material and methods.    

Western blot analyses: Please refer to Chapter 2, Material and methods.    

Primary antibodies: anti-Flag-HRP (1/1000, Sigma-Aldrich, A8592), anti-Flag (1/1000, CST, 

D6W5B 14793), anti-PAR (1/1000, Trevigen, 4335-MC-100), anti-Myc tag (1/1000, CST, 9B11, 

2276), anti-Axin Drosophila (Santa Cruz, dT20, sc15685), anti-tubulin DM1A clone (1/1000, 

Sigma-Aldrich, T9026), mouse anti-GFP-HRP (1/2500, clone B2, Santa Cruz Biotechnology, sc-

9996-HRP), rabbit anti-β-Actin-HRP (1/5000, clone 13E5, Cell Signaling Technology, 5125), 

donkey anti-rabbit-HRP (1/5000, Jackson ImmunoResearch, 711-035-152), donkey anti-mouse-

HRP (1/5000, Jackson ImmunoResearch, 715-035-150), donkey anti-guinea pig-HRP (1:5000, 

Jackson ImmunoResearch, 706 006 148). 

Immunofluorescence: Please refer to Chapter 2, Material and methods.    
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Primary antibodies: mouse anti-Arm (Wang et al., 2016; N2 7A1, DSHB, 1:50), mouse anti-

Prospero (Wang et al., 2016; MR1A, DSHB, 1/50), mouse anti-GFP (GFP-12A6, DSHB, 1/100), 

mouse anti-β-galactosidase (Tian et al., 2016); 401A, DSHB, 1/100), mouse anti-Delta (Wang et 

al., 2016; C594.9B, DSHB, 1/100), rabbit anti-phosho-S10-Histone3 (Wang et al., 2016; 06-570, 

Millipore, 1/1000). The secondary antibodies were goat anti-mouse-Alexa 488 plus (Thermo 

Fisher Scientific, A32723), goat anti-mouse-Alexa 568 (Thermo Fisher Scientific, A11031), goat 

rabbit-Alexa 546 (Thermo Fisher Scientific, A11035), goat rabbit-Alexa 488 (Thermo Fisher 

Scientific, A11034), goat anti-rabbit-Alexa 633 (Thermo Fisher Scientific, A21071) and used at 

1/1000. 

Immunoprecipitation: Please refer to Chapter 2, Material and methods.    

Recombinant protein purification from S2R+ cells: Please refer to Chapter 2, Material and 

methods.    

Expression and Purification of of human NUDT16: 1.5 ml of transformed Rosetta2 (DE) cells 

were grown in terrific broth (TB) medium in the presence of 100µg/ml kanamycin and 34µg/ml 

chloramphenicol at 37◦C. When the absorbance (A) reached 2.0, the temperature was decreased 

to 180C. When the A reached 3.0, the expression of recombinant protein was induced with 

0.2mM IPTG and continued overnight. Bacterial pellet was prepared by centrifuge at 5000 rpm 

for 5 minutes. The pellet were then re-suspended in a buffer composed by 20mM Tris/HCl, pH 

8.0, 150mM NaCl, 10mM imidazole, 5µM 2-mercaptoethanol, 10% glycerol and supplemented 

with Complete Protease Inhibitor (Roche). Re-suspended bacterial pellet was then sonicatated in 

order to lyse bacterial cells. After 10-15 min ice incubation, the lysate was clarified by 

centrifugation and supernatant applied on 5ml of Cobalt beads (GE Healthcare) for affinity 

purification. The histidine-tagged hNUDT16 was eluted in 300mM imidazole. Finally, the 
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elution buffer of the protein was exchanged with a buffer composed of 25mM Tris, pH 8.0, 

300mM NaCl, 10%glycerol and 1mM DTT. Proteins were then concentrated to 10mg/ml using 

10 kDa Amicon-Ultra centrifugal filter (Millipore). 

In vitro ADP-ribosylation: 20 mgs of Flag-tagged Drosophila TNKS protein (purified from 

S2R+ cells) were automodified in 100 µL of a reaction buffer containing 100mM Tris-HCl pH 

8.0, 10mM MgCl2, 10mM DTT, 25µM NAD+ for 1h at 24-25°C.  

hNUDT16 digestion: After the auto-modification reaction of TNKS, 5 µL of purified hNUDT16 

was added to digest TNKS-bound pADPr (3h at 30 °C). The MgCl2 (Sigma) concentration was 

adjusted to 15mM to allow full Nudix hydrolase activity. Auto-modified TNKS was then 

incubated for 3h at 300C with hydrolytic enzymes in 10 µl of reaction mixture. 

Mass spectrophotometry for ADP-ribose acceptor side identification: Flag-TNKS was 

purified from S2R+ cells and 60mg ADP-ribosylated in vitro. After ADP-ribosylation, it was 

incubated with hNUDT16 for 3h at 300C. After enzymatic reactions, proteins were precipitated 

by cold acetone. Pellets were dissolved in 6M guanidium-chloride (Sigma), reduced with TCEP 

(Pierce) and alkylated with chloroacetamide (Sigma). After a 10-fold dilution with 50mM 

ammonium bicarbonate (Fluka), proteins were digested using 200ng of trypsin Gold (Promega) 

for 16 h at 37◦C. Samples were then desalted. Later, dried samples were reconstituted in 5 µL of 

0.1% trifluoroacetic acid (TFA) and 25 µL of 6%TFA/80%ACN. Twenty microliters of a 

10mg/mL water solution of TiO2 (ZirChrom Separations, Inc.) beads was added to a homemade 

gel-loading tip that contained a glass fiber frit. Gentle air pressure supplied from a syringe was 

applied to speed the flow of solvent and beads were always left wet. Ten microliters of 

6%TFA/80%ACN was used to wash the beads. Sample was passed through the column three 

times and the final elute was collected. Two wash steps were each performed twice: first with 10 
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µL of 6%TFA/80% ACN followed by 10 µL of 0.1% TFA. Each wash elute was collected. Ten 

microliters of 5% ammonium hydroxide was used to elute the capture peptides. Sixty microliters 

of 2% FA was used to immediately adjust the final elution pH. All samples were dried to near 

completion and reconstituted in 5% ACN/ 0.1% FA for mass spectrometry analysis. MS was 

performed by The Rockefeller University Proteomics core facility.  

Co-IP Mass spectrophotometry to identify TNKS-binding partners: S2R+ cells were 

transfected with Act5C-Gal4 and UAS-Flag-Tnks or UAS-Flag-K598A-Tnks. After 72h, S2R+ 

cells were collected and. Act5C-Gal4 expressing S2R+ cells were used as a negative control in IP 

experiment. Both Flag-tagged TNKS and Act5C-Gal4 expressing cells were lysed and 

immunoprecipitated with Flag beads in lysing buffer. Finally, IP samples (3 from control and 3 

from Flag-TNKS expression) were eluted with Flag-peptide. Eluted proteins were cleaned up by 

using SDS-PAGE, reduced (10mM DTT) and alkylated (30mM iodoacetamide), followed by 

digestion with a cocktail of LysC and Trypsin Gold. Digestions were halted by adding 

trifluoroacetic acid (TFA) and digests then were desalted and analyzed by reversed phase nano-

LC-MS/MS using either a Fusion Lumos or a Q-Exactive Plus (Thermo Fisher Scientific) both 

operated in high/high mode. Data were searched and quantified against Uniprot’s Drosophila 

proteome databases using ProteomeDiscoverer v. 1.4.0.288 (Thermo Scientific) combined with 

Mascot v. 2.5.1 (Matrix Science) and/or MaxQuant v. 1.6.0.13. Oxidation of methionine and 

protein N-terminal acetylation were allowed as variable modifications and all cysteines were 

treated as being carbamidomethylated. Peptide matches were filtered using a Percolator-

calculated false discovery rate (FDR) of 5%. 

Statistics: Student t-test and ANOVA were used as statistical analysis and those were done with 

Prism (GraphPad) software. 
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4 ADP-ribosylation by TNKS provides a molecular scaffold for rapid protein 

degradation 

4.1 Summary 

ADP-ribosylation affects the fate of proteins by directly modulating their activity or 

stability. By and large, TNKS-mediated poly-ADP-ribosylation is tightly coupled to the 26S 

proteasome-mediated proteolysis. Auto-poly-ADP-ribosylation is an inhibitory post-translational 

modification for TNKS as well. Here, I find that the ubcD1 E2 ubiquitin-conjugating enzyme (an 

E2 ubiquitin ligase) participates in Iduna-dependent TNKS degradation by binding to a poly-

ADP-ribose scaffold. Strikingly, adding low concentration of poly-ADP-ribose polymers 

provides a signal to stimulate auto-ubiquitylation of Iduna in the presence of ubcD1. Similarly, 

ubcD1 promotes Iduna-dependent ubiquitylation of PARsylated TNKS in vitro. ubcD1-RNAi 

results in elevation of Iduna, Tankyrase, and Axin proteins in Drosophila. These results 

demonstrate that ubcD1 mediates Iduna-dependent degradation of certain proteins. Finally, 

TNKS can colocalize with active 26S proteasomes in the Drosophila midgut. Inhibition of PARP 

activity by XAV939 suppresses this co-localization. As a result, I suggest that poly-ADP-

ribosylation may play a role as a molecular scaffold that brings together TNKS, ubcD1 E2 

ubiquitin-conjugating enzyme, Iduna E3 ubiquitin ligase, and the substrates to close proximity 

for rapid degradation of target proteins.  
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4.2 Introduction 

As one of the poly-ADP-ribose polymerases (PARPs), TNKS consumes NAD+ to 

synthesize poly-ADP-ribose (PAR). Although TNKS-mediated poly-ADP-ribosylation 

(PARsylation) is largely associated with the 26S proteasome-mediated protein degradation, it can 

also promote the activity of several proteins. TNKS-mediated PARsylation of PI31 and JNK 

enhances proteasome assembly and signal transduction, respectively rather than destruction of 

PI31 and JNK in Drosophila (Park and Steller, 2013; Li et al., 2019). Furthermore, several 

TNKS-interacting proteins do not undergo PARsylation. GDP-mannose-4, 6-dehydratase is a 

cytoplasmic TNKS1 binding-protein that inhibits PARP activity of TNKS (Bisht et al., 2012).  

PAR is a negatively charged biopolymer that has an impact on protein stability as well as 

degredation. TNKS can reside in multiple subcellular localizations and participate in various 

biological processes including telomere homeostasis, and Wnt/β-catenin signaling. In 3T3-L1 

adipocytes, TNKS localizes in GLUT4 vesicles near the Golgi (Chi and Lodish, 2000). 

PARsylation can also recruit PAR-binding proteins into a close proximity. PAR-binding 

proteins, ``PAR readers``, recognize PAR polymers through PAR-binding motif (PBM). 

Following the PAR reading, certain proteins co-localize on the PAR scaffold to assemble protein 

complexes during stress granule formation, DNA repair and ribosomal RNA maturation 

(McGurk et al., 2018; Duan et al., 2018; Boamah et al., 2012; Caldecott, 2014; Fatokun et al., 

2014; Hotiger et al., 2015; Hsiao and Smith, 2008; Krietsch et al., 2013; Teloni and Altmeyer, 

2016; Catara et al., 2017; Isabella et al., 2012; Leung et al., 2011). For instance, nuclear PARP1 

facilitates ribosomal RNA (r-RNA) biogenesis in Drosophila. PARP1 becomes automodifed 

upon each act of transcription start within r-RNA gene. Auto-PARsylated PARP1 serves as a 

chaperoning machine during the whole cycle of ribosome maturation in the nucleus. The 



 148 

 

dynamic PARP1-mediated PAR scaffold brings a subset of nucleolar proteins to the proximity of 

precursor r-RNA and coordinates the order of events including r-RNA processing, modification 

and loading of subsets of ribosomal proteins to mature pre-ribosome in Drosophila (Boamah et 

al., 2012). Depletion of Parp leads to removal of PAR-binding proteins from nucleoli, which 

disrupt processing, modification, and folding of ribosomal RNA in Drosophila (Boamah et al., 

2012).  

In this chapter, I demonstrated that ubcD1 E2 ubiquitin ligase is involved in Iduna-

dependent TNKS degradation. Loss-of ubcD1 resulted in an elevation of mis-expressed Iduna, 

and TNKS as well as endogenous Axin in Drosophila. I found that the E2 ubiquitin ligase ubcD1 

promotes auto-ubiquitylation of Iduna in the presence of PAR. However, ubcD1 does not interact 

with Iduna or TNKS, ubcD1 plays a role in Iduna-dependent TNKS ubiquitinylation. Moreover, 

ubcD1 is capable of binding ADP-ribose scaffold because of its PAR-binding motifs. I finally 

showed that TNKS co-localizes with active 26S proteasomes in the Drosophila midgut. Taken 

together, I provided evidence that ADP ribosylation by TNKS brings ubcD1, Iduna, and the 

target protein into close proximity for accelerating degradation of the target protein.  
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4.3 Results 

4.3.1 Proteomic screen to identify TNKS-binding partners for the regulation of its stability  

TNKS-mediated PARsylation is mainly related to UPS-mediated protein destruction. 

PARsylation destabilized both TNKS itself and Axin by recruiting a PAR-directed E3 ubiquitin 

ligase Iduna in Drosophila (Gultekin and Steller, 2019). Thanks to PAR reader proteins, ADP-

ribosylation can mediate the assembly of protein complexes. Therefore, I suggest that ADP-

ribosylation provided by TNKS may provide a molecular scaffold for rapid degradation of 

TNKS itself or its substrates. To this end, I conducted a Co-IP-MS of Flag-tagged TNKS to 

identify its binding partners.  

The Drosophila TNKS interactome was then narrowed down to the proteins, related to 

the Ubiquitin-Proteasome system since they might regulate TNKS degradation. I found that the 

E2 ubiquitin-conjugating enzymes Ben and Morgue, E3 ubiquitin ligase Iduna, deubiquitinating 

enzymes (DUBs) Usp30 and Usp10, and finally 19S proteasome subunits Rpt1, 2, 3, and 6 were 

significantly co-immunoprecipitated with Flag-tagged TNKS in S2R+ cells (Table 4.1). I 

assessed an RNAi-based validation screen to ask if these binding-partners might be involved in 

TNKS degradation. HA-tagged TNKS-expressing transgenic flies were crossed with RNAi lines 

under the temperature sensitive Tub-Gal4 driver. HA-tagged TNKS was then detected via 

immunoblotting from whole-body protein lysate. A screen for compatible E2 ubiquitin 

conjugating enzymes in an in vitro RNF146 auto-ubiquitinylation assay reveals UbcH5a as a 

functional partner for human Iduna (Zhang et al., 2011). Drosophila ubcD1 is ortholog of the 

human UbcH5a gene. Although, Flag-TNKS did not pull down ubcD1 in my IP-MS, I included 

ubcD1 gene into the RNAi screen (Fig 4.2A).  
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Table 4.1 Drosophila TNKS interactome that can be related to TNKS ubiquitinylation and 

degradation.  Drosophila Tankyrase interactome is narrowed down to the proteins that can be 

related to TNKS degradation. Flag-tagged TNKS was expressed under Act5C-Gal4 driver in 

S2R+ cells and pulled down with Flag beads.  
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Figure 4.1 ubcD1 plays a role in TNKS degradation. A- Both Usp30 and Usp10 have roles in 

the regulation of TNKS protein stability. Usp10 depletion by RNAi resulted in TNKS elevation. 

Decrease in the Usp30 gene dosage by half resulted in reduction in the protein level of TNKS. B- 

RNAi-mediated ubcD1 inactivation led to an elevation of HA-tagged TNKS protein. UAS-HA-

Tnks transgene was expressed under the temperature sensitive Tub-Gal4 driver. 7-day-old adult 

females were lysed. Western blotting was done with an anti-HA antibody. C- ubcD1 knockdown 

also resulted in an accumulation of PARsylated TNKS. Western blot was performed with an 

anti-PAR antibody. a-Tubulin was a loading control. D- ubcD1 deficient larvae had more HA-

tagged TNKS. 3rd instar larvae were dissected and midguts were stained against HA and 

Armadillo. E- ubcD1 knockdown resulted in elevation of HA-tagged TNKS as well as PAR 

polymers in adult midguts. 7-day-old adult females were dissected. Dissected midguts were 

stained against HA and PAR. 
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I found that Usp10 depletion by RNAi resulted in TNKS elevation. In contrast, reducing the 

Usp30 gene dosage by half led to decrease in the protein level of TNKS (Fig 4.1A). These results 

suggested that both both Usp30 and Usp10 have roles in the regulation of TNKS protein 

stability. On the other hand, morgue-RNAi did not cause any change in the protein level of 

TNKS. Since Morgue has a putative TNKS-binding motif, RNAi result can suggest that Morgue 

ubiquitin-conjugating enzyme may work together with TNKS to regulate protein stability of one 

of the target proteins of TNKS. However, RNAi-mediated ubcD1 inactivation led to an elevation 

of HA-tagged TNKS (Fig 4.1B). ubcD1 knockdown also resulted in an accumulation of 

PARsylated TNKS (Fig 4.1C). Finally, both larval (Fig 4.1D) and adult midguts (Fig 4.1E) had 

more HA-tagged TNKS as well as PAR polymers when ubcD1 was depleted (Fig 4.1E). 

4.3.2 ubcD1 promotes TNKS degradation 

ubcD1 also known as effete, encodes a 147-amino acid ubiquitin-conjugating enzyme that 

is similar to the mammalian ubcH5 class (Fig 4.2A). As a result of amino acid sequence 

alignment, ubcD1 is conserved from flies to human (Fig 4.2B). I next assessed if ubcD1 

genetically interacted with Iduna, by crossing ubcD1-RNAi flies to Myo1Ats>UAS-GFP-Myc-

Iduna. I found that inactivation of ubcD1 resulted in an elevation of Iduna protein (Fig 4.3A-B). 

Hence, ubcD1 promotes ubiquitinylation activity of Iduna in Drosophila.  

By and large, ubiquitin ligases physically interact with their ubiquitin-conjugating 

enzymes to transfer ubiquitin to their substrates. To test if ubcD1 protein interacted with Iduna, I 

carried out a Co-IP assay. ubcD1 and Iduna co-expressing flies were lysed to pull down AcGFP-

Iduna. Surprisingly, Iduna did not co-immunoprecipitate with ubcD1 in Drosophila (Fig 4.3C).  
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Figure 4.2 ubcD1 is conserved from flies to human. A- ubcD1/effete encodes a 147-amino 

acid ubiquitin-conjugating enzyme that a member of mammalian ubiquitin-conjugating ubcH5 

class. Hs, Homo sapiens; Mm, Mus musculus; Bt, Bos taurus; Dm, Drosophila melanogaster. 

Amino acid sequences were aligned and pyhlogenetic tree was drawn with Clustal Omega 

software. B- ubcD1 is conserved from flies to human.   
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Figure 4.3 ubcD1 regulates the ubiquitin ligase activity of Iduna. A- ubcD1 knockdown 

elevated AcGFP-Iduna in Drosophila midguts. B- The quantification of AcGFP-Iduna protein 

levels upon ubcD1-RNAi.  UAS-AcGFP-Myc-Iduna transgene was expressed under the 

temperature sensitive Myo1A-Gal4 driver. 7-day-old adult females were lysed. Western blotting 

was done with an anti-GFP antibody. C- Iduna did not pull down ubcD1. UAS-AcGFP-Myc-

Iduna or UAS-ubcD1-HA or UAS-AcGFP-Myc-Iduna, UAS-ubcD1-HA transgenes were 

expressed under the temperature sensitive Tub-Gal4 driver. 7-day-old adult females were lysed. 

Immunoprecipitation was conducted with anti-GFP antibody Western blotting was done with 

GFP and HA antibodies.  
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This result suggests Iduna may not directly bind to ubcD1 and TNKS or PAR modification may 

be required for ubcD1 and Iduna to interact.  

To determine if ubcD1 directly mediated Iduna auto-ubiquitylation, I reconstituted 

ubiquitylation reaction in vitro by using recombinant E1, ubcD1, and Iduna. Ubiquitinylation of 

Iduna was detected by immunoblotting against GST-ubiquitin. In this assay, ubcD1 slightly 

promoted Iduna auto-ubiquitinylation. In the presence of PAR polymers, ubcD1 induced auto-

ubiquitinylation of Iduna (Fig 4.4A).  

Next, PARsylated TNKS was used to test if ubcD1 was required for the substrate 

ubiquitinylation of Iduna. Following TNKS ADP-ribosylation in vitro, a ubiquitinylation assay 

was conducted. I found that ubcD1 together with Iduna ubiquitinylated PARsylated TNKS (Fig 

4.4B). These results demonstrate that ubcD1 participates in Iduna-dependent ubiquitinylation and 

PAR or substrate PARsylation promotes this activity. 

 
4.3.3 ubcD1 can bind to PAR polymer  

Although TNKS interacts with its protein partners through TBM, ubcD1 does not have a 

canonical TBM motif. Since ubcD1 did not bind to Iduna directly, I suggested that ubcD1 might 

bind to the PAR polymer. The most common PAR-binding module is the PBM (Teloni and 

Altmeyer, 2016). Alignment of the PBM [HKR]1-x2-x3-[AIQVY]4-[KR]5-[KR]6-[AILV]7-

[FILPV]8 to ubcD1 revealed that it had two putative PBMs: One PBM is MALKRINK in the 

amino terminus and the second PBM is LAREWTRKYAM found in the carboxyl end of 

Drosophila ubcD1 protein (Fig 4.5A). UAS-ubcD1-HA was expressed in the fly midgut. Under 

denaturating conditions, I observed that ubcD1-HA co-immunoprecipitated with PAR polymers 

from fly lysates (Fig 4.5B).  
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Figure 4.4 ubcD1 directly mediates Iduna-dependent ubiquitinylation in the presence of 

PAR. A- The reconstitution of ubiquitinylation reaction in vitro by using recombinant E1, ubcD1, 

and Iduna. Auto-ubiquitinylation of Iduna was detected by GST-immunoblotting. B- ubcD1 is 

involved in Iduna-dependent ubiquitylation of TNKS. Ubiquitinylation was reconstituted in vitro 

using recombinant E1, ubcD1, and Iduna. Flag-tagged TNKS was purified from S2R+ cells and 

was ADP-ribosylated in vitro. Ubiquitylation was detected by GST-immunoblotting. 
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Figure 4.5 ubcD1 binds to PAR polymer through PAR-binding motifs. A- Drosophila ubcD1 

aligned with a canonical PBM that suggested the existence of two PBMs, PBM1-MALKRINK at 

the amino terminus and PBM2-LAREWTRKYAM at the carboxyl terms. B- ubcD1-HA co-

immunoprecipitated with PARsylated proteins from fly lysates. UAS-ubcD1-HA transgene was 

expressed under Myo1A-Gal4 driver. 7-day-old adult flies were dissected and midguts were 

lysed for immunoprecipitation. IP and IB were done with anti-HA and anti-PAR antibodies, 

respectively. IgG pull down was a negative control. C- ubcD1 bound to PAR. Recombinant 

GST-tagged ubcD1 was spotted onto a nitrocellulose membrane with a negative control GST and 

incubated with biotin-PAR polymers. Dot blot was carried with an anti-streptavidin antibody.  
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Figure 4.6 ubcD1 inactivation promotes stem cell division in the Drosophila midgut. A- 

There were slightly more esg>GFP+ stem and progenitor cells in FRT82B, ubcD1-/- clones 

compared to FRT82B control clones. 7-day-old adult females were dissected to analyze esg-

GFP+ cells. B- ubcD1-RNAi midguts had more Arm+/Pros- stem cells compared to white-RNAi. 

UAS-RNAi flies crossed with Myo1A-Gal4 lines. 7-day-old females were dissected to analyze 

stem cell numbers by confocal microscopy. Dissected midguts were stained with anti-Armadillo 

and Prospero antibodies. Posterior midguts were imaged with a confocal microscope.  C- ubcD1-

RNAi resulted in elevation of endogenous Axin. D- The quantification of pH3+-stained cells in 

midguts. 7-day-old female flies were analyzed by pH3 immunostaining. pH3+ cells were counted 

in posterior midguts. E- ubcD1-RNAi induced an upd3>GFP reporter compared to white knock-

down. 14-day-old posterior midguts were analyzed with a confocal microscope for upd3>GFP. 

Statistical analyses was done with the Two-tailed Student`s t-test. n>5. ****p>0.0001. Statistics 

represented as mean ± s.d. Scale bar: 10µm.  
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To ascertain whether ubcD1 could bind to PAR, I carried out a PAR-binding dot blot. 

Recombinant GST-tagged ubcD1 was spotted onto a nitrocellulose membrane with a negative 

control GST and incubated with the biotin-PAR polymer. After immunoblotting with an anti-

streptavidin antibody, I found that ubcD1 bound to PAR (Fig 4.5C). These data suggest that 

ubcD1 is capable of binding ADP-ribose scaffold to mediate Iduna-dependent ubiquitinylation. 

I previously showed that both Tnks and Iduna inactivation lead to Axin elevation and 

stem cell over-proliferation in the Drosophila midgut. To examine the function of ubcD1 in 

midgut stem cells in vivo, I generated mosaic animals with ubcD1-/- by using Flipase/FRT 

system. I found there were slightly more esg>GFP+ stem and progenitor cells around FRT82B, 

ubcD1-/- clones compared to FRT82B control clones (Fig 4.6A). I also demonstrated that ubcD1-

RNAi caused endogenous Axin elevation (Fig4.6B), increased numbers of Arm+/Pros- stem cells 

(Fig 4.6C), increased number of pH3+ cells (Fig 4.6D) and increased upd3>GFP reporter activity 

(Fig 4.6E). These results are consistent with in vitro function of ubcD1 in promoting TNKS and 

Axin degradation. 

 

4.3.4 TNKS-mediated ADP-ribosylation can provide a molecular platform for rapid 

degradation of PARsylated proteins  

My hypothesis suggests that ADP-ribosylation might be a molecular scaffold to 

concentrate the 26S proteasome locally and accelerate the degradation of TNKS or its 

PARsylated substrates. Therefore, I tested if TNKS co-localized with the 26S proteasome in the 

cell. To accomplish this, I miss-expressed UAS-Flag-Tnks in adult fly midguts under Myo1A 

driver, and dissected midguts were incubated with a fluorescent probe (Me4BodipyFL-
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AhxLeu3VS) for 26S proteasome labeling (Berkers et al., 2007). I found that Flag-tagged TNKS 

co-localized with the 26S proteasome in ECs (Fig 4.7A). To address the importance of the 

PARsylation scaffold for the proteasome-TNKS interaction, I treated TNKS-expressing midguts 

with a small molecule inhibitor of TNKS, XAV939. I observed that both Flag-TNKS and 26S 

proteasomes changed their localizations upon XAV939 treatment (Fig 4.7B). TNKS protein level 

increased whereas the cytoplasmic proteasome localization diminished. As a conclusion, this 

result suggested that PARsylation might be a signal for proteasome recruitment into a local 

environment. 

One possible mechanism by which the proteasome might be transported to the ADP-

ribosylation scaffold is through an adaptor protein. Our lab previously demonstrated that PI31 

physiologically required for the optimal 26S proteasome activity in vivo. Loss-of PI31 causes a 

reduction of protein breakdown in several tissues and organismal lethality (Bader et al., 2011). 

PI31 is regulated by several different mechanisms including TNKS-dependent ADP-ribosylation 

and p38-mediated phosphorylation. ADP-ribosylation of PI31, for instance, alters its binding 

affinity for 20S proteasome alpha subunits and 19S assembly chaperones. As a consequence, the 

26S proteasome assembly and activity are enhanced (Park and Steller, 2013). Furthermore, our 

lab has recently demonstrated that PI31 plays a role as an adaptor protein in proteasome 

transport, required for synaptic structure and function (Liu et al., 2019). PI31 binds directly to 

proteasomes with dynein light chain proteins (DYNLL1/2). PI31 depletion, therefore, inhibits 

proteasome movements in axons. Finally, p38 MAP kinase-mediated phosphorylation of PI31 

promotes its binding to DYNLL1/2. Phosphorylation deficient PI31 reduces proteasome 

transport in axons (Liu et al., 2019). I, therefore, tested if PI31 might have a role in ADP-

ribosylation-dependent protein destruction.  
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Figure 4.7 The co-localization of TNKS and proteasomes depends on PARP activity TNKS. 

A- ECs cells expressed Flag-Tnks under Myo1A driver. Dissected midguts were incubated with a 

fluorescent probe (Me4BodipyFL-AhxLeu3VS) for 26S proteasome labeling in a conditioned 

media for 3h. B- Dissected midguts were treated with 20µM XAV939 for 3h. 7-day-old females 

were studied. After 4% PFA fixation, midguts were stained against Flag and analyzed by 

confocal microscope. Scale bar: 10µm.  
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I showed TNKS ADP-ribosylated PI31 in vitro, and this modification was 

sensitive to XAV939 treatment and hNUDT16 cleavage (Fig 4.8A). While TNKS-

mediated ADP-ribosylation is mainly related to the protein breakdown through the 26S 

proteasome, loss-of Tnks did not result in PI31 elevation (Fig 4.8B), suggesting that 

ADP-ribosylation is not a degradation signal for PI31. I also demonstrated the whole 

protein lysate of PI31 mutant larvae did not display Axin accumulation (Fig 4.8C). To 

examine the function of PI31 in Armadillo degradation in vivo, I generated mosaic 

animals with PI31-/- cells by using Flipase/FRT system. PI31 inactivation in mutant 

clones did not affect Armadillo destruction in wing imaginal discs (Fig 4.8D), thereby 

suggesting that PI31 might not affect in PARsylation-mediated protein turn-over in all 

tissues.  

Another possible mechanism to explain how the 26S proteasome might affect 

rapid degradation of PARsylated proteins was that the 26S proteasome might bind to a 

PAR scaffold through PAR-binding module in its subunits. I found that the 19S subunits 

Rpt1, 2, 3, and 6 were significantly co-immunoprecipitated with Flag-tagged TNKS in 

S2R+ cells (Table 4.1). When their amino acid sequences were aligned with the canonical 

PBM, the Rpt proteins of 19S regulatory particle had many essential core lysine-arginine 

amino acids (RR, KK or RK) but not the β-or α-subunits of the 20S proteasome did not. 

Detailed analyses revealed that Rpt2, 3 and 6 had several canonical PBMs (Fig 4.9). I, 

therefore, suggest that PBMs on Rpt subunits may facilitate the binding of 26S 

proteasomes to PARsylation scaffold. As a consequence, PARsylation can bring TNKS, 

Iduna, ubcD1, substrates, and the 26S proteasome together into close proximity, thereby 

accelerating the breakdown of substrates (Fig 4.10). 
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Figure 4.8 PI31 does not affect in Axin and Armadillo degradation in L3 larvae. A- 

TNKS ADP-ribosylated PI31 in vitro. His-tagged Drosophila PI31 was expressed and 

purified from E. coli. ADP-ribosylation of PI31 was a covalent modification that was 

sensitive to XAV939 treatment and hNUDT16 digestion. B- PI31 ADP-ribosylation is 

not a proteolysis signal in Drosophila. Tnks inactivation did not result in PI31 elevation. 

7-day-old males were lysed for PI31 immunoblotting (IB: α-dPI31). C- Depletion of 

PI31 does not affect endogenous Axin levels in L3 larvae. PI31-/-; BAC-Axin-V5 or +/+; 

BAC-Axin-V5 larvae were lysed for immunoblotting (IB: α-V5). α-Tubulin and β-actin 

were loading controls. D- FRT42D, PI31 mutant clones were analyzed for Armadillo 

levels. Dissected 3rd instar wing imaginal discs were stained with an Armadillo antibody. 

I did not observe an elevation of Armadillo in PI31-/- mutant clones. Scale bar: 25µm. 
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Figure 4.9 Rpt2, 3 and 6 subunits of the 19S regulatory particles of the proteasome 

have several canonical PAR-binding motifs. The canonical PBM consists of core lysine 

and arginine residues: AVILMFYM1-X2-KR3-X4-AVILMFYW5-AVILMFYW6-KR7-

KR8-AVILMFYW9-AVILMFYW10. Core residues were highlighted with pink. The 

canonical PBM-containing peptides of Rpt2, 3 and 6 were colored as red.  
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Figure 4.10 ADP-ribosylation by TNKS provides a molecular scaffold that brings 

substrates, E2 and E3 ubiquitin ligases and proteasomes into close proximity, 

thereby accelerating target protein degradation. I propose that TNKS forms a 

complex with Iduna, which is inactive when bound to non-PARylated TNKS in the cell. 

After substrate binding to TNKS and subsequent PARylation, Iduna binds to PAR. This 

binding causes a conformational change in the RING domain of Iduna, which activates its 

ubiquitin ligase activity, enabling the poly-ubiquitinylation of the substrate. The ubcD1 

ubiquitin-conjugating enzyme promotes ubiquitin ligase function of Iduna by binding to 

ADP-ribose. As a consequence, TNKS may increase its PARsylation activity to assemble 

PAR scaffold. Finally, 26S proteasomes may be recruited to the scaffold and 

concentrated in a local environment for rapid destruction of the target protein. 
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4.4 Material and Methods 

Fly stocks: Flies were kept at a 12-hour light/dark cycle. All crosses were performed at 

22-25°C unless stated otherwise. The following fly stocks were used for this study 

(Bloomington Drosophila Stock Center (BDSC) and Vienna Drosophila Resource Center 

(VDRC) number (#) given in parentheses):  

The stocks used in here: esg-Gal4, UAS-GFP (a gift of Dr. Norbert Perrimon; Micchelli 

and Perrimon, 2006), BAC-AxinV5 (a gift of Jean-Paul Vincent, Gerlach et al., 2014), 

FRT 82B, Axnh, BAC-AxinV5 (a gift of Jean-Paul Vincent, Gerlach et al., 2014), UAS-

GFP-Axin (BDSC# 7224), Myo1A-Gal4, tub-Gal80ts, UAS-GFP (a gift of Dr. Norbert 

Perrimon; Micchelli and Perrimon, 2006), upd3-Gal4, UAS-GFP (a gift of Dr. Norbert 

Perrimon; Markstein et al., 2014), Tnks503 (a gift of Dr. Yahsi Ahmed, Wang et al., 2016), 

Tnks19 (a gift of Dr. Yahsi Ahmed, Wang et al., 2016), PI31-/- (Bader et al., 2009), UAS-

ubcD1-HA (Ryoo et al., 2002), UAS-Flag-Tnks (Gultekin and Steller, 2019), UAS-Tnks-

HA (a gift of Dr. Yahsi Ahmed, Wang et al., 2016), UAS-CG8786/dIduna RNAi#1 

(BDSC# 40882), UAS-CG8786/dIduna RNAi#2 (VDRC#43533), UAS-CG8786/dIduna 

RNAi#3 (VDRC#36028), UAS-CG8786/dIduna RNAi#4 (VDRC#36029), and white 

RNAi (BDSC#33623), ubcD1 RNAi (BDSC#31875), ubcD1 RNAi (BDSC#35431), 

morgue RNAi (BDSC#31059). The rest of Drosophila lines, which were studied here, 

were obtained from Steller Lab stocks. Oregon R flies were used as control and only 

adult female flies were analyzed in this study.  

Clone analyses and RNAi experiments: Please refer to Chapter 2, Material and 

methods.    

Cell culture: Please refer to Chapter 2, Material and methods.    
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Western blot analyses: Please refer to Chapter 2, Material and methods.    

Primary antibodies: anti-dPI31 (rabbit, generated in this study, 1/2500), anti-V5 (1/1000, 

Abcam, ab27671), anti-Flag-HRP (1/1000, Sigma-Aldrich, A8592), anti-Flag (1/1000, 

CST, D6W5B 14793), anti-GST HRP (1/1000, GenScript, A00866-100), anti-PAR 

(1/1000, Trevigen, 4335-MC-100), anti-Myc tag (1/1000, CST, 9B11, 2276), anti-Axin 

Drosophila (Santa Cruz, dT20, sc15685), anti-tubulin DM1A clone (1/1000, Sigma-

Aldrich, T9026), mouse anti-GFP-HRP (1/2500, clone B2, Santa Cruz Biotechnology, sc-

9996-HRP), rabbit anti-β-Actin-HRP (1/5000, clone 13E5, Cell Signaling Technology, 

5125), donkey anti-rabbit-HRP (1/5000, Jackson ImmunoResearch, 711-035-152), 

donkey anti-mouse-HRP (1/5000, Jackson ImmunoResearch, 715-035-150), donkey anti-

guinea pig-HRP (1:5000, Jackson ImmunoResearch, 706 006 148). 

Immunofluorescence: Please refer to Chapter 2, Material and methods.    

Primary antibodies: rabbit anti-HA (Sigma, H6908, 1:1000), mouse anti-Flag (Sigma, 

M2-F1804, 1:5000), anti-V5 (Abcam, ab27671, 1:1000), mouse anti-Arm (Wang et al., 

2016; N2 7A1, DSHB, 1:50), mouse anti-Prospero (Wang et al., 2016; MR1A, DSHB, 

1/50), mouse anti-GFP (GFP-12A6, DSHB, 1/100), mouse anti-β-galactosidase (Tian et 

al., 2016); 401A, DSHB, 1/100), mouse anti-Delta (Wang et al., 2016; C594.9B, DSHB, 

1/100), rabbit anti-phosho-S10-Histone3 (Wang et al., 2016; 06-570, Millipore, 1/1000). 

The secondary antibodies were goat anti-mouse-Alexa 488 plus (Thermo Fisher 

Scientific, A32723), goat anti-mouse-Alexa 568 (Thermo Fisher Scientific, A11031), 

goat rabbit-Alexa 546 (Thermo Fisher Scientific, A11035), goat rabbit-Alexa 488 

(Thermo Fisher Scientific, A11034), goat anti-rabbit-Alexa 633 (Thermo Fisher 

Scientific, A21071) and used at 1/1000. 
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Immunoprecipitation: Please refer to Chapter 2, Material and methods.    

Recombinant protein purification from S2R+ cells: Please refer to Chapter 2, Material 

and methods.  

Antibody production against Drosophila PI31: To generate a polyclonal antibody 

against Drosophila PI31, GST-PI31 was expressed in BL21 Star (DE3) E. coli cells 

(Thermo Fisher Scientific, C601003), and purified using Glutathione Sepharose 4B beads 

(GE Healthcare, 17-0756-01). The purified protein was injected into rabbits and the 

antisera were collected (Cocalico).   

In vitro ADP-ribosylation: 20 micrograms of Flag-tagged Drosophila TNKS protein 

(purified from S2R+ cells) were automodified in 100 µL of a reaction buffer containing 

100mM Tris-HCl pH 8.0, 10mM MgCl2, 10mM DTT, 25µM NAD+ for 1h at 24-25°C.  

In vitro ubiquitinylation assays: For Iduna auto-ubiquitinylation, 50ng E1, 100ng T7–

ubcD1, 700ng His-Iduna, and PAR were used in each reaction. For TNKS 

ubiquitinylation, 750ng Flag-tagged TNKS (purified from S2R+ cells, in vitro ADP-

ribosylated and not) 50ng E1, 100ng T7–ubcD1, 100ng His-Iduna, and PAR were used in 

each reaction. In vitro ubiquitinylation assays were carried out in a total volume of 20 µl. 

The reaction mixture contained also 40mM Tris-HCl at pH 7.6, 5mM MgCl2, 1mM 

dithiothreitol, 5mg GST-ubiquitin, 100ng ubiquitin–aldehyde, 2mM ATP. Reactions were 

incubated for 1h at 37 °C before addition of sample buffer and resolution on 4-20 % 

SDS–PAGE gels. Finally, Western blotting was carried out.  

Quantification and statistics: Please refer to Chapter 2, Material and methods.				
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5  DISCUSSION 

5.1 Iduna regulates stem cell proliferation and intestinal homeostasis  

We investigated the in vivo function of Iduna and identified a critical role of this 

enzyme for the control of stem cell proliferation in the Drosophila midgut. Mammalian 

Iduna is an unusual E3 ubiquitin ligase that specifically binds to and poly-ubiquitylates 

ADP-ribosylated substrates to promote their rapid degradation by the proteasome. 

However, the physiological function of Iduna remains largely unclear.  

Here, I generated Drosophila Iduna-null-mutants and used them to show that 

Iduna has a crucial in vivo function for the degradation of ADP-ribosylated TNKS and 

Axin to control stem cell proliferation. In particular, I focused on the role of Iduna in the 

Drosophila midgut. I found that Iduna inactivation caused a slight but significant 

increase in Axin protein levels in ECs, which in turn caused over-proliferation of ISCs. 

This non-cell autonomous effect on stem cell proliferation is depended on UPD2-UPD3 

cytokines that are secreted from ECs. These findings suggest a model in which loss of 

Iduna function, which decreases the Wingless pathway activity due to elevated Axin 

levels in ECs, in turn causes increased secretion of UPD2-3 from these cells to activate 

the JAK-STAT pathway in ISCs. Importantly, a 50% reduction in Axin gene dosage 

blocked the over-proliferation of stem cells in Iduna mutants, demonstrating the necessity 

to tightly regulated Axin levels in this system. Whereas many other cell types appear to 

tolerate fluctuations in the amount of Axin protein, proper Wingless signaling in the 

Drosophila midgut appears to critically depend on restricting Axin levels by Iduna. 

The activity of Iduna depends on binding to ADP-ribosylated substrates via its 

WWE domain. Recognition and binding to its ADP-ribosylated target proteins change the 
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structural confirmation of Iduna. Subsequently, Iduna is activated to ubiquitylate its 

targets for proteasome-mediated degradation. It was previously reported that TNKS 

forms a tight complex with Iduna to control the proteolysis of target proteins (DaRosa et 

al., 2014). I could not detect any obvious morphological differences between Iduna 

mutants and wild type. Although this may seem somewhat surprising, it is consistent with 

complete inactivation of Tnks in Drosophila, which also causes no overt abnormalities 

(Feng et al., 2014; Wang et al., 2016 a,b; Yang et al., 2016).  As for Iduna, Tnks mutants 

have no obvious effects on wing development and the expression of Wingless target 

genes in larval wing discs, despite the fact that Axin levels are increased (Feng et al., 

2014; Wang et al., 2016a and 2016b; Yang et al., 2016). Our interpretation of these 

findings is that most tissues can tolerate relatively modest (2-3-fold) changes of Axin. For 

example, it appears that a greater than 3-fold increase of endogenous Axin is required for 

functional consequences of altered Wingless signaling in Drosophila embryos (Yang et 

al., 2016) and 3-9-fold changes are needed in wing discs (Wang et al., 2016a). On the 

other hand, the Drosophila midgut appears much more sensitive to reduced Wingless 

signaling.  

An independent study demonstrated that inactivation of Drosophila Tnks led to 

increased Axin protein accumulation in the Drosophila midgut and promoted ISC 

proliferation (Wang et al., 2016). These results are consistent with previously reported 

cell-based studies suggesting that Iduna mediates TNKS-dependent degradation of Axin 

and thereby positively regulates Wnt signaling (Huang et al., 2009; Croy et al., 2016; 

Callow et al., 2011). On the other hand, it is notable that inactivation of two highly 

diverse types of enzymes, Tnks, a PARP, and Iduna, an E3 ubiquitin ligase, produced 
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similar phenotypes. Both TNKS and Iduna have many other targets outside the Wnt-

pathway, and based on biochemical observations, it has been proposed that they may play 

roles in DNA repair, telomere length, vesicle trafficking, Notch-signaling, centrosome 

maturation, neuronal protection and cell death (Bai, 2012; Gibson and Kraus, 2012; 

Riffell et al., 2012).  However, Iduna and Tnks mutant flies are viable and do not show 

any obvious defects under normal growth conditions. This indicates that the major non-

redundant physiological function of both Tnks and Iduna in Drosophila is to regulate 

Wingless-mediated intestinal stem cell proliferation, and provides physiological evidence 

for the idea that the function of both proteins is indeed tightly coupled. In addition, our 

study identifies a role of UPD-Domeless in this pathway. These results may have 

implications for the regulation of this highly conserved pathway in mammals. For 

example, conditional inactivation of Iduna in mouse bones leads to increased numbers of 

osteoclasts and inflammation (Matsumoto et al., 2017a). In this system, down-regulation 

of Iduna leads to accumulation of Axin1 and 3BP2. This, in turn, attenuates β-catenin 

degradation and activates SRC kinase, respectively, thereby promoting the release of 

inflammatory cytokines in the bone (Matsumoto et al., 2017a). On the other hand, Iduna 

depletion reduces proliferation of osteoblasts and promotes adipogenesis in the mouse 

skeleton (Matsumoto et al., 2017b). Despite the obvious differences between mammalian 

bone and the Drosophila midgut, both systems show overall striking similarities in the 

use of TNKS/Iduna to restrict Axin levels to achieve proper levels of Wnt/β-catenin 

signaling during tissue homeostasis. Finally, my study indicates that Axin may have a 

more general function as a scaffold protein that recruits multiple proteins and permits a 

crosstalk with other pathways that modulate Wnt/β-catenin signaling. 
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5.2 Iduna can play a role in energy metabolism in Drosophila 

The PARsylation activity of TNKS regulates diverse physiological processes 

including energy metabolism. PARP activity consumes NAD+ as a co-substrate to post-

translationally modify various acceptor proteins including TNKS itself. PARsylation by 

TNKS often tags the acceptors for ubiquitylation and proteasomal degradation. In insulin-

secreting cells, glucose and fatty acid consumptions stimulate the auto-PARsylation of 

TNKS; consequently, its breakdown is promoted. Elevation of NAD+ levels primarily 

mediates this glucose effect on TNKS (Zhong et al., 2015). Furthermore, TNKS binds to 

IRAP1 (insulin-responsive aminopeptidase) and co-localizes with GLUT-4 vesicles near 

the Golgi in 3T3-L1 adipocytes (Chi and Lodish, 2000). Because of its Golgi localization, 

TNKS can have an impact on the exocytosis of specific cargos in adipocytes. Upon 

insulin stimulation, MAP kinase phosphorylates TNKS, which in turn enhances its PARP 

activity in adipocytes. As a result, it is suggested that TNKS-mediated PARsylation of 

Golgi-associated proteins may affect the sorting or stability of GLUT4 vesicles (Chi and 

Lodish, 2000). Moreover, genetic depletion of Tnks in adipose tissue increases glucose 

tolerance and adiponectin levels in female mice (Zhong et al., 2016). Global TNKS 

knockouts also share these phenotypes (Yeh et al., 2009). The similarity between global 

knockout and tissue-specific deletion suggest that the impact of TNKS on systemic 

metabolism largely comes from its PARsylation activity in adipocytes (Zhong et al., 

2016).  

Mice with loss of Iduna within the osteoblast lineage have increased fat stores and 

are glucose intolerant with severe osteopenia because of defective osteoblastogenesis and 
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subsequent impaired osteocalcin production. Hence, Iduna controls bone production, 

glucose, and lipid metabolism (Matsumoto et al., 2017b).  

TNKS also influences lifespan, stress tolerance and energy storage in Drosophila 

(Li et al., 2018). The knockdown of Tnks in muscle causes similar effects to those of 

Tnks-null mutants and its ubiquitous knockdown. They exhibit shortened lifespan, 

impaired climbing ability, increased sensitivity to oxidative stress and starvation, and 

reduced TAG and glycogen storage (Li et al., 2018). Similar to TNKS, Iduna affects 

longevity in Drosophila. Iduna mutants have slightly shorter lifespans than their wild 

type controls. They display increased mortality upon reduced nutrient diet. Remarkably, 

Iduna depletion reduces stored lipids in abdominal fat body cells upon starvation. I have 

shown that Iduna-null flies steadily lost their fat stores during a 24h starvation, while 

wild type control flies were able to sustain their fat reservoirs for 24h. These results point 

out another role of Iduna in promoting survival under stress conditions. I, therefore, 

suggest that Iduna may have an essential function(s) in energy metabolism as well. The 

exact mechanism by which starvation caused increased mortality in Iduna mutants 

remains to be determined.  

 

5.3 Lysine 598 in TNKS affects longevity in Drosophila 

I explored the importance of PARsylation-mediated proteolysis by focusing on 

TNKS-mediated ADP-ribosylation and the E3 ubiquitin ligase function of Iduna. 

PARsylation is a degradation signal for TNKS and Axin. However, the ribosylation and 

the PARsylation-dependent ubiquitylation sites that target TNKS and Axin for 

degradation are not yet known. With an MS-based approach, I reveal that K598 residue is 
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one of the ADP-ribose acceptor sides in Drosophila TNKS. In vitro ADP-ribosylation 

assays suggested that K598A might be a loss-of-function mutation of Tnks since it was 

unable to ADP-ribosylate Drosophila Axin as well as itself in vitro. However, I found 

that K598A mutant was auto-ADP-ribosylated and degraded in S2R+ cells. Lysine 598 is 

located in the ARC4 domain, which is conserved from flies to human. This residue 

corresponds to lysine 604 in human TNKS2. It was previously demonstrated that K604 in 

human TNKS2 might be essential for Axin1-binding as well as its degradation. 

Therefore, it was suggested K604TNKS might form strong salt bridge interactions between 

7th and 8th glutamine residues in Axin`s TBM. Although there are no crystal structures for 

ARC4 to bind Axin1/2 yet, recent reports have demonstrated that ARC1, 3 and 5 repeats 

in human TNKS2 are necessary for Axin recognition and binding.  

TNKS is a negative regulator of Axin. As a result, Tnks-null flies have elevated 

Axin in Drosophila. Loss-of Tnks promotes stem cell proliferation through non-cell 

autonomous JAK-STAT activation. As a consequence, there are more stem and 

progenitor cells in Drosophila midguts. On the other hand, TnksK598A knock-in flies do 

not promote the cell division of ISCs. Hence, TnksK598A is not a complete loss-of-function 

mutation of Tnks. Taken together, I suggest that K598-ADP ribosylation can have an 

essential function(s) for other protein(s) rather than Axin.  

TnksK598A adult flies are viable, fertile, and have no apparent morphological 

defects. However, TnksK598A flies live significantly shorter than their control flies. 

TnksK598A adult flies also decline their climbing abilities with age. Similarly, Tnks-null 

flies have prominently shorter lifespan. Loss-of Tnks or its muscle-specific inactivation 

impairs longevity, stress tolerance, and energy storage in adult flies through regulation of 
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the JNK pathway. TNKS PARsylates JNK, which positively controls JNK signaling. 

PARsylation is not a degradation signal for JNK. Instead, TNKS triggers degradation-

independent K63-ubiquitination of JNK to promote its kinase activity in Drosophila (Li 

et al., 2019). Taken together, I suggest that K598 in TNKS may have a role in JNK 

signaling in the Drosophila muscle.   

I finally conducted a Co-IP-MS to identify the most affected binding protein(s) of 

TNKS when lysine 598 was mutated to alanine. I, therefore, investigated that 11 proteins 

that prominently lost their binding-affinities to TNKS due to this mutation. As a result, I 

suggest that K598 may have various physiological functions together with these binding 

partners. For instance, RH07106p is the most affected binding-partner of TNKS. 

RH07106p is an Hsp70-binding protein. It has a putative transmembrane domain, and is 

expected to localize on the endoplasmic reticulum membrane. Its molecular functions are 

not known yet. Likewise, K598A TNKS does not pull down Snapin, a component of the 

biogenesis of lysosome-related organelles complex-1 (BLOC-1). It functions in different 

biological processes including intracellular protein transport, synaptic vehicles priming, 

and neurotransmitter release.  

In conclusion, my results point out that lysine 598 can be essential to interact with 

several binding-partners of TNKS. Further molecular studies on the affected interaction 

partners of TNKS can be helpful to further investigate the physiological function(s) of 

lysine 598.  
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5.4 ubcD1 ubiquitin-conjugating enzyme promotes ubiquitin ligase activity of Iduna 

I described the ubiquitin-conjugating function of ubcD1 for Iduna-dependent 

ubiquitylation. Loss-of ubcD1 results in elevations of Iduna, TNKS and Axin proteins in 

Drosophila. ubcD1 boosts auto-ubiquitylation of Iduna in the presence of PAR and 

promotes degradation of Iduna, TNKS and Axin in vivo. ubcD1 can bind to PAR scaffold 

through its PBMs.  

I also showed that Flag-tagged TNKS significantly co-immunoprecipitates with 

Ben, morgue, Usp10, and Usp30 in S2R+ cells. Similar to ubcD1, Ben and Morgue are 

ubiquitin-conjugating enzymes. It is possible that they may have functions on TNKS-

dependent protein breakdown although morgue-RNAi does not have an impact on the 

stability TNKS itself. On the other hand, Usp10 and Usp30 are ubiquitin-specific 

proteases, which can remove ubiquitin chains and stabilize proteins. USP25 positively 

regulates Wnt signaling by mediating the deubiquitylation of TNKS in human cells. 

Conversely, si-RNA-dependent USP25 deficiency promotes TNKS degradation, which in 

turn causes suppression of Wnt signaling (Xu et al., 2017). However, the functions of 

usp10 and usp30 on TNKS or its substrates are not known yet. Future work, therefore, is 

required to address the contribution of these E2 ubiquitin ligases and deubiquitinating 

enzymes for TNKS-mediated proteolysis.  
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5.5 ADP-ribosylation can provide a molecular scaffold for TNKS-mediated rapid 

protein degradation 

Finally, I provide evidence that PARsylation can recruit necessary proteins 

including the 26S proteasome in a local environment to maintain rapid protein 

degradation. I found that TNKS can colocalize with the 26S proteasome. Reduction of 

PARsylation by XAV939 blocks cytoplasmic co-localization between TNKS and the 26S 

proteasome. This result suggests that the 26S proteasome by itself may bind to PAR 

polymers. Unlike the 20S core particles, the 19S regulatory Rpt proteins consist of many 

lysine-arginine enrich peptides but Rpt2, 3 and 6 have canonical PBM.  

PAR-binding proteins recognize PAR polymers, thereby, driving the localization 

of proteins and assembly of protein complexes. PARP1-auto-PARsylation provides a 

molecular platform to recruit all essential proteins into close proximity in response to 

DNA damage, rRNA biogenesis, and heat shock. Similarly, TNKS-mediated 

PARsylation is essential for stress granule assembly. TNKS-mediated PARsylation 

promotes TDP45 liquid-liquid phase separation and protect TDP45 from ALS-associated 

phosphorylation (Duan et al., 2018; McGurk et al., 2018).  

Since Nature uses PAR scaffold in different concepts, I propose a mechanism, by 

which PARsylation can bring together TNKS, target proteins, E2 and E3 ubiquitin ligases 

such as ubcD1 and Iduna, respectively and the 26S proteasome into close proximity for 

accelerating the breakdown of PARsylated proteins. Based on my model, TNKS forms a 

complex with Iduna, which is inactive when bound to non-PARylated TNKS in the cell. 

After substrate recognition and binding to the complex, TNKS starts to ADP-ribosylate 

the substrate. When the target protein has multi-ADP-ribose moieties, Iduna binds an 
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internal unit of PAR. This binding causes a conformational change in the RING domain 

of Iduna, which activates its ubiquitin ligase activity, enabling the poly-ubiquitylation of 

the substrate. As a consequence, TNKS is promoted for its PARsylation activity to 

assemble PAR scaffold. Finally, 26S proteasomes can be recruited to the scaffold. As a 

result, rapid protein degradation takes place. 

My data has led to a two-step model for regulation of protein degradation by 

ADP-ribosylation whereby TNKS regulates the formation of the cytoplasmic scaffold of 

ADP-ribosylation and poly-ADP-ribose regulates the recruitment of 26 proteasomes to 

the local environment for degradation of target proteins. I can suggest the scaffold model 

can be a very dynamic and follow the rules of liquid-liquid phase separation. Under 

regular conditions, TNKS with Iduna can form liquid condensates that can mature, 

solidify, and undergo liquid-to-solid transitions—or can nucleate aggregation. The 

oligomerization of TNKS through SAM domain promotes its poly-ADP-ribose 

polymerase activity. The negatively charged poly-ADP-ribose scaffold, therefore, can 

promote liquid-liquid phase separation for TNKS-Iduna degradation complex. 

Importantly, a small molecule inhibitor of TNKS, XAV939 reduces the co-localization of 

poly-ADP-ribose and proteasomes in the cytoplasm. Thus, poly-ADP-ribosylation may 

modulate liquid-liquid phase separation, which can accelerate the target protein 

degradation. Future studies will determine whether TNKS-Iduna complex, ribosylated 

target proteins, and 26S proteasome can co-phase separate in vitro.   
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5.6 Future perspectives of this thesis 

5.6.1 Insights into the in vivo functions of Iduna in Drosophila 

Several in vivo functions of Iduna in Drosophila were uncovered in this study 

including its physiological impacts on midgut stem cells and intestinal homeostasis. 

However, results from this study imply that Iduna has potential regulatory roles in lipid 

metabolism. Yet, the cause of increased mortality of Iduna mutants upon 5% sucrose diet 

remains to be uncovered. Iduna mutants also reduce stored lipids in abdominal fat body 

cells upon 12h or 24h starvation. Iduna-null flies are not able to restore their lipids into 

fat bodies during a 24h starvation, while wild type flies can. These results demonstrate 

that Iduna has an important role in promoting survival during starvation. To uncover the 

physiological relevance of Iduna in Drosophila, I performed an RNA-sequencing 

experiment from the dissected intestines of 15-day-old Iduna mutant and control flies. I 

found that a pancreatic-like lipase, CG6271 was significantly down-regulated in normal 

circumstances (Appendix). Both FlyAtlas and FlyGut-seq databases suggest that the 

expression of CG6271 gene is high in enteroendocrine cells in the Drosophila midgut 

(Chintapalli et al., 2007; Buchon et al., 2013; Marianes et al., 2013; Dutta et al., 2013).  

CG6271 depletion by RNAi under Prospero-Gal4 driver leads to lethality in fly larvae 

(Data not showed). However, the physiological functions of CG6271 remain to be 

determined. I suggest that CG6271 may play a role in lipid metabolism and further 

molecular and cellular studies will address the function of Iduna in lipid metabolism.  
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5.6.2 Age-related physiological roles of lysine 598 in Drosophila TNKS  

This study has led to the identification of one of the first ADP-ribosylation 

acceptor residues in Drosophila TNKS. I found that TnksK598A adult flies are viable, and 

fertile without any obvious phenotypic defects. However, TnksK598A mutants live 

significantly shorter than their controls. TnksK598A adults also decline their climbing 

abilities, JNK activation and global protein poly-ADP-ribosylation with age. Finally, I 

showed that FLAG-tagged K598A TNKS prominently lose its binding-affinity to 11 

proteins including RH07106p Hsp70 binding protein, Caper, Snapin, Receptor-mediated 

endocytosis protein 6 homolog, Prx5, RnpS1, IP12463p putative cADPR synthase, Exu, 

A1Z6G6, U2af50, Pst.  

One of the surprising binding-partner of TNKS is Snapin that does not interact 

with K598A TNKS. Snapin participates in the biogenesis of lysosome-related organelles. 

It is a component of the SNARE complex of proteins that is required for synaptic vesicle 

docking and fusion. Snapin is an essential protein for presynaptic plasticity. Hence, 

Snapin has important functions including intracellular protein transport, synaptic vehicles 

priming, and neurotransmitter release (Starcevuc et al., 2004; Ilardi et al., 1999).  

Since TNKS is a positive regulator in the JNK signaling pathway, changes in the 

activity of JNK signaling can suppress or enhance phenotypes of Tnks mutant flies. 

Therefore, we need further studies to investigate how TnksK598A mutation affects JNK 

signaling during aging and different stress responses including starvation, bacterial 

infections, and chemical toxins. Furthermore, these phenotypes in TnksK598A mutants 

suggest that there might be problems in organismal metabolism during aging. Various 

metabolic tissues including muscle, fat body, neuron, and intestine can sense nutrients 
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and environmental inputs to affect aging-associated cellular functions. Ectopic expression 

of UAS-wild type Tnks in these tissues under tissue-specific drivers can determine the 

major tissue(s) in which TnksK598A play its physiological roles. It was previously 

shown that Tnks knock-down in the muscle with Mef2-Gal4 causes shortened lifespan, 

impaired climbing ability similar to TnksK598A mutant flies. Finally, comparative 

interactome between wild type and K598A result suggests Snapin may be a molecular 

target. Hence, the muscle may be important to further understand the physiological 

role(s) of K598 residue in Drosophila. Cellular and molecular investigations need to 

be performed on neuromuscular junctions and muscle of TnksK598A mutants. 

Complementary electrophysiology experiments need to be can be helpful to 

further investigate the physiological function(s) of lysine 598 in the muscle.  
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6  APPENDIX 

Figure 6.1 RNA sequencing indicates that Iduna depletion down-regulates 

CG6271. 15-day-old adult female flies were dissected for their midguts and directly 

homogenized in 1 ml TRIzol (Life Technologies). Total RNA was isolated 

according to the manufacturer’s protocol. The Rockefeller University Genomics Core 

Facility performed RNA quality control test before RNA-sequencing. RNA-seq libraries 

were generated at The Rockefeller University Genomics Resource Center. Files were 

delivered in fastq format. For data analysis, reads were aligned against the D. 

melanogaster genome dm6 with BWA or tophat2 (for poly(A) and total RNA-seq) in 

standard settings. A- Volcano plot of significantly and differentially expressed genes 

(FDR 10%). A common way to sanity-check the DGE is to see how all genes behave across conditions using a standard 

"volcano plot". This plot is a special case of the scatter plot where each gene is 

represented by an individual dot, X-axis shows the degree of fold-change in logarithmic 

base and the Y-axis is the minus log10 transformation of the raw p-value of statistical 

significance. The horizontal line shows the significance cut-off hence all genes in the top-

left corner are significantly down-regulated and the top-right ones are significantly up-

regulated ones. B- A list of Significantly and differentially expressed genes (DGE) (FDR

10%). The logFC column is the well-known "log fold-change" value. Positive values 

represent up-regulation and negative ones down-regulation. The columns AveExpr, t, 

and B are mostly regarding the DGE statistics and are not informative in terms of the 

biology. The table is sorted based on the raw p-value and can be considered as an ordered 

list of genes where the top one is the most relevant. C- A heat map of significantly and 

differentially expressed genes. We showed the number of reads mapped to each gene 
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using a log-transform for a better color scheme and we will do this for all significant 

genes. This is a bit hard to interpret by eye, but we definitely would like to see the same 

conditions clustering together and as a bonus, we might get some interesting groupings of 

the genes. D- CG6271 is highly expressed in the Drosophila midgut (FlyAtlas database). 

E- CG6271 is expression is enriched in enteroendocrine cells in the R3 region of the 

midgut. It has a high expression in the visceral muscle in the R2 region of the midgut 

(FlyGut-Seq Database). E- CG6271 is a pancreatic-like lipase in Drosophila, which 

shares 47% similarity with human LPL protein.  
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