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EXAMINING MECHANISMS REGULATING MICROTUBULE 

ASSEMBLY AND FUNCTION 

Melissa Pamula, Ph.D. 

The Rockefeller University 2019 

Microtubules are cytoskeletal polymers assembled from α and β tubulin subunits 

that function in essentially all cellular activities. Microtubules can act as “tracks” for 

intracellular cargo transport, are required for cilia- and flagella-based motility, and 

establish cell morphology in specialized cells such as neurons. In dividing cells, a bipolar 

spindle assembles from microtubules and partitions genetic material into two daughter 

cells. Proper microtubule function in these diverse contexts depends on the assembly 

dynamics of microtubules and their organization into specialized arrays. Both intrinsic 

factors including the tubulin isotype composition of microtubules and extrinsic factors 

including microtubule-associated proteins (MAPs) can impact microtubule assembly 

dynamics. However, the contribution of tubulin isotype composition to microtubule 

dynamics is not well understood. 

In the first part of this thesis, I explore the impact of specific β tubulin isotypes on 

microtubule dynamics. Microtubules undergo dynamic instability, an intrinsic property in 

which filaments in bulk equilibrium switch between periods of growth and shrinkage. The 

rate of polymerization and depolymerization can be quantified, as well as the frequency of 

switching between these states. I selected the two major β tubulin isotypes (βIIB and βIII) 

expressed in the vertebrate brain for examination. Using an expression and purification 

system developed in our lab, I generated recombinant tubulin heterodimers that were 



 
 

isotypically pure in β tubulin composition. I used in vitro reconstitution and total internal 

reflection fluorescence (TIRF) microscopy to examine the dynamics of individual 

microtubules assembled from these distinct heterodimers. I found that microtubules 

assembled with βIIB are substantially more stable, switching from a state of growth to a 

state of shrinkage (termed catastrophe) three-fold less frequently than their βIII-containing 

counterparts. These two isotypes differ substantially in the C-terminal tail, a region thought 

important for modulating interactions with MAPs but whose contribution to microtubule 

dynamics is not well understood. I found that swapping the C-terminal tails did not 

substantially alter dynamic instability parameters. These data reveal that isotype-specific 

polymerization properties are mediated by residue changes in the structured “core” of 

tubulin, rather than the divergent C-terminal tail.  

In the second part of the thesis, I examine the contribution of microtubule bundles 

to chromosome movement during anaphase. As sister chromosomes separate, a specialized 

array of microtubules called the spindle midzone assembles between the segregating 

chromosomes. Within this structure, microtubules overlap in the antiparallel orientation 

and are cross-linked by the non-motor MAP, Protein Regulator of Cytokinesis 1 (PRC1), 

forming bundles. Current models suggest that the spindle midzone can function to facilitate 

or restrict chromosome movement, however it is unclear how the accumulation of PRC1 

on midzone microtubule bundles impact these activities. Using lattice light sheet 

microscopy, I examined the time-dependent changes in microtubule overlap length that 

accompany anaphase chromosome movement. I then selectively disrupted midzone 

formation by knocking down PRC1 and found that chromosome segregation distance and 

speed increased. These data support a model in which the spindle midzone, rather than 



 
 

aiding in chromosome segregation, instead restricts chromosome movement. Replacing 

endogenous PRC1 with a mutant that has reduced microtubule affinity reveals that the 

change in microtubule overlap length is coupled to the braking function of the midzone.  

My PhD work provides insight into two areas of microtubule assembly regulation. 

The studies detailed in chapters 2 and 3 reveal how changes in tubulin primary sequence 

impact polymerization properties of microtubules in vitro. The studies detailed in chapter 

4 reveal how changes in the organization of microtubules in cells contributes to spindle 

function and chromosome segregation during anaphase.   
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Chapter 1: Microtubule dynamics and the spindle midzone in 

animal cells 
 

1.1 Introduction  

Microtubules are organized into complex arrays that perform essential functions in 

dividing and non-dividing cells. One such example is the mitotic spindle which assembles 

from >1000 microtubules (McIntosh and Landis, 1971) and functions to segregate 

chromosomes during cell division. Individual filaments cycle from polymer to monomer 

form and back while the spindle assembles, partitions the genetic material into two 

daughter cells, and then disassembles (Inoué and Sato, 1967). Microtubule assembly can 

be controlled at least two ways: through interactions with microtubule-associated proteins 

(MAPs) and by altering the tubulin composition of the microtubules (reviewed in(Roll-

Mecak, 2019)).  

This chapter describes the structure and function of the spindle midzone, a 

specialized microtubule-based structure that assembles in anaphase, in the context of 

models for chromosome motion. The primary focus is on data from vertebrate systems, 

contrasting with data from yeast and other invertebrates where appropriate. The impact of 

key MAPs on specific properties of microtubules and the implications for midzone function 

will be discussed. Finally, this chapter reviews how data from in vitro examination of 

filament dynamics and structure inform our current understanding of microtubule 

assembly.  
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1.2 Electron Micrograph Studies of the Anaphase Spindle and Relevance to 

Mechanisms of Anaphase B Spindle Elongation  

Early cytologists examining dividing cells proposed two models for chromosome 

segregation: one that involved pushing from elements between the separating 

chromosomes (proposed by Druner in 1984; see (Rappaport, 1996) p. 22), and one that 

involved pulling from proteins on the cell cortex (proposed by Boveri in 1988; see 

(Schrader, 1949) p. 41). Though over 100 years of research have followed, these two ideas 

still lie at the heart of current models of chromosome movement.  

Chromosome segregation proceeds through two distinct processes. Anaphase A 

refers to the movement of sister chromatids move towards opposite spindle poles (reviewed 

in (Asbury, 2017)). Anaphase B refers to spindle elongation along the pole-to-pole axis, 

further driving chromosome separation (reviewed in (Scholey et al., 2016)). Early 

experiments in insect cells revealed that certain drugs could specifically inhibit anaphase 

B but not anaphase A (Ris, 1943, 1949), suggesting that although these processes occur 

simultaneously in many systems, they are mechanically distinct. It is now clear that 

chromosome-to-pole movement is driven primarily by the shrinkage of the kinetochore-

attached (k-fiber) microtubules. The mechanisms of anaphase A movement have been 

recently reviewed (Asbury, 2017) and will not be discussed in this section. Current models 

suggest that spindle elongation is driven primarily by interactions of non-kinetochore 

microtubules with motor and non-motor proteins, including those that contact the cortex 

(on astral microtubules) and those that cross-link microtubules in the midzone (on 

interpolar microtubules) (Fig. 1.1). This section reviews the data that support this model.  
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Figure 1.1. Cartoon of a human cell in anaphase.  

Kinetochore-fiber microtubules (blue) attach to chromosomes (gray) during mitosis. Non-

kinetochore microtubules include astral microtubules (pink) that contact the cell cortex and 

interpolar microtubules (green) that can interdigitate in between the segregating 

chromosomes.  

 

Background and brief history 

Several models were initially proposed to explain anaphase B spindle elongation. 

In 1967, Inoué postulated that spindles could elongate based on polymerization of 

microtubules alone (Inoué and Sato, 1967). This predicted that spindles would be 

composed of continuous microtubules that span the entire pole-to-pole length. Another 

early theoretical model proposed by McIntosh and colleagues recognized the importance 

of microtubule polarity (Mcintosh et al., 1969): similar to the mechanism of myosin-actin 

interactions during muscle contraction (Huxley, 1963, 1969), the proposed mitotic sliding 

filament model predicted that a motor protein localized to microtubules between 

chromosomes could generate forces to drive chromosome movement. This predicted that 
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only one kind of microtubule orientation could allow for such motion: one in which 

filaments of opposite polarity interdigitate in between the segregating chromosomes. Both 

models presented testable hypotheses that could be examined in subsequent electron 

micrograph studies.  

 

Length and polarity of microtubules in anaphase spindles  

Serial section electron microscopy studies have revealed the 3D ultrastructural 

position of microtubules in anaphase spindles from diverse eukaryotes. Early studies of 

cultured human cells revealed that few, if any, continuous microtubules were present 

(Brinkley and Cartwright, 1971; McIntosh and Landis, 1971), which did not support the 

simple model proposed by Inoué. In these data, the total number of microtubules were 

counted in select sections perpendicular to the pole-to-pole axis and plotted as a function 

of position along the pole-to-pole axis. In anaphase spindles, the planes near the cell 

equator had a higher number of microtubules compared to those on either side. This 

suggested that microtubules interdigitate near the spindle equator, providing early support 

for the sliding filament model.  

Early ultrastructural studies were limited by the inability to assign microtubule 

polarity. Microtubules are intrinsically with distinct plus and minus ends (reviewed in 

section 1.4). The polarity of anaphase microtubules was unambiguously assigned using the 

method of hook decoration (Heidemann and McIntosh, 1980). In these studies, a special 

buffer was used to stimulate the association of tubulin dimers into ribbons. These ribbons 

can associate laterally with the protofilaments of pre-existing microtubules and will appear 

as hooks when looking down the long axis of a microtubule. Depending on the handedness 
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of the hooks, the polarity of the microtubule can be assigned. In permeabilized human cells, 

this approach was used to show that microtubules on opposite sides of the midbody in 

telophase cells were of opposite polarity and associate in an antiparallel organization at the 

cell equator (Fig. 1.2) (Euteneuer and McIntosh, 1980). The same method was applied to 

study microtubules in the Haementhus endosperm phragmoplast, a plant-specific 

microtubules structure that assembles in anaphase, revealing the presence of antiparallel 

microtubules there as well (Euteneuer et al., 1982; McIntosh and Euteneuer, 1984). Similar 

conclusions were made using flagellar dynein, which binds the microtubule lattice with 

identifiable polarity (Telzer and Haimo, 1981). Thus, a key prediction of the sliding 

filament hypothesis was confirmed.  

 

 

Figure 1.2. Cartoon of spindle microtubules in a cell in telophase.  

Microtubules (green) in the midbody interdigitate with plus-ends overlapping (inset).  
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Studies in single-celled organisms, with their relatively small spindles composed 

of only a few dozen or a few hundred microtubules, were informative regarding the 

mechanisms of anaphase B. The spindles of diatom (Diatoma vulgare) are unusual in that 

the k-fiber microtubules attached to chromosomes are spatially separated from interpolar 

microtubules, providing a particularly clear view of the almost paracrystallin array of the 

250-300 microtubules in the spindle midzone (McDonald et al., 1977). Over a period of 

~20 years, serial section electron microscopy was used extensively to examine spindles 

from widely studied model organisms including slime mold (McIntosh et al., 1985), fission 

yeast (Ding et al., 1993), and budding yeast (Winey et al., 1995). These studies revealed 

that the organization of microtubules into a bipolar array, with some microtubules 

associating with chromosomes and others interdigitating in the spindle midzone, is a 

recurring motif throughout eukaryotes (Fig. 1.1).  

 

Evidence for microtubule sliding within midzone microtubule bundles   

Several observations provided support for a sliding filament mechanism of spindle 

elongation. During anaphase, the length of microtubule interdigitation in the midzone 

decreases proportionally as the spindle elongates (McDonald et al., 1977). Importantly, the 

ends of microtubules that overlap in the center of the cell terminate at or very close to the 

spindle pole and could therefore directly push on poles (referred to here as “midzone 

pushing”). Kinetochore fiber microtubules are thought to form a mechanical connection 

between kinetochores and the pericentriolar material at the spindle poles, such that 

movement of the poles is directly coupled to movement of chromosomes (McDonald et al., 
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1992). Together, these data suggest that microtubules are situated such that antiparallel 

sliding in the midzone could drive anaphase B chromosome movement in these organisms.  

Some of the most detailed serial section electron micrograph studies of mammalian 

spindles was published from the McIntosh lab (McDonald et al., 1992; Mastronarde, 1993). 

These studies examined the distribution, lengths, and organization of microtubules in 

different stages of anaphase in mammalian PtK2 (Potorous tridactylis) cells. Cross-

sectional slices were imaged perpendicular to the pole-to-pole axis and individual 

microtubules were tracked through consecutive images. The authors classify microtubules 

into one of two groups: those that associate with kinetochores (hereafter, “k-fiber” 

microtubules), and those that do not (hereafter, “interpolar” microtubules). Consistent with 

observations in lower eukaryotes, a subset of interpolar microtubules in PtK2 cells 

interdigitate, forming bundles of filaments. The region of microtubule overlap in bundles 

decreased in length during anaphase, consistent with microtubules sliding.  

Several observations in PtK2 spindles challenged the hypothesis that microtubule 

sliding is the predominant mechanism of spindle elongation in all eukaryotes. Unlike in the 

small spindles mentioned above, the minus ends of bundled interpolar microtubules are not 

predominantly located near poles and are instead distributed over half of the spindle length. 

Only a small fraction of these minus ends is observed near the pole and only in early stages 

of anaphase. In addition, a fair number of microtubules were observed with two free ends 

(not associated with chromosomes, microtubule bundles, or poles). Microtubule nucleators 

are not conserved in all systems and could explain some of these observations (Kollman et 

al., 2011). Nevertheless, the distribution of the position of minus ends in microtubule 

bundles raised doubts as to whether microtubule sliding was occurring much at all. From 
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metaphase to mid-anaphase, minus-ends moved away from the midplane at the same 

distance that the poles moved away from the midplane. However, from mid anaphase to 

late anaphase, the position of plus-ends relative to the spindle midplane narrows four-fold, 

but the distribution of minus-end positions does not change, suggesting that microtubule 

sliding may not be occurring during this period. Together, these data suggest that different 

structural and functional principles may be guiding chromosome movement in mammals 

and other large spindles compared to those in the small spindles of non-mammalian 

species.  
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1.3 The contribution of microtubule-associated proteins to Anaphase B  

Work by Nicklas provided the first direct measurements of the absolute force 

generated by anaphase spindles. Using calibrated glass microneedles to pull on individual 

chromosomes, Nicklas measured the stall force (the force required to inhibit chromosome 

movement) to be ~700 pN (Nicklas, 1983), over 1000x greater than the estimated force 

required to move a chromosome through the viscous drag of the cytoplasm (~0.1 pN) 

(Nicklas, 1965). The forces that must be overcome in order to stall chromosome movement 

is likely a combination of those involved in both anaphase A and B movement. Anaphase 

A movement is thought to be driven by microtubule depolymerization, which utilizes the 

energy of GTP hydrolysis stored as strain energy in the microtubules lattice (reviewed in 

section 1.4 and 1.5) (Asbury, 2017). Consistent with this hypothesis, experiments using 

permeabilized mammalian (PtK1) cells revealed that anaphase B but not anaphase A 

requires ATP and the loss of anaphase B movement cannot be rescued by addition of excess 

GTP (Cande, 1982). Thus, these two processes are mechanistically distinct.  

Numerous motor and non-motor proteins have been identified that localize to the 

spindle and likely work in concert to coordinate anaphase B motion. In C. elegans, the 

mechanism of anaphase B has been extensively studied. In this system, astral pulling forces 

provide the major mechanism for spindle elongation (Grill et al., 2001, 2003). These forces 

are thought to be generated by microtubule depolymerization as well as dynein motors 

walking toward the minus end of microtubules (Kozlowski et al., 2007; Laan et al., 2012) 

The relative contribution of these proteins, among others (discussed below) in mammalian 

cells spindle elongation and midzone function is still poorly understood.  
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Non-motor proteins required for midzone assembly 

PRC1/Ase1/MAP65/Feo/SPD-1  

MAP65 family members were first identified following biochemical fractionation 

of cytoplasmic extracts in plants as 60-65-kDa microtubule associated proteins capable of 

bundling Taxol-stabilized microtubules (Chang-Jie and Sonobe, 1993). The budding yeast 

homolog was soon identified in a screen for synthetic lethality in a Bik1 null background 

and named Anaphase Spindle Elongation 1 (Ase1) (Pellman, 1995). Mutations in Ase1 

cause the spindle to prematurely fracture and disassemble in mid-anaphase. Homologs 

have since been identified in other organisms including fission yeast, Drosophila, C. 

elegans, and human, all of which are involvedin spindle midzone assembly and anaphase 

B spindle elongation (Jiang et al., 1998; Mollinari et al., 2002; Schuyler et al., 2003; 

Verbrugghe and White, 2004; Vernı̀ et al., 2004; Yamashita et al., 2005). In this section, I 

refer to MAP65/Ase1/PRC1 proteins as PRC1 following convention in mammalian cells.  

PRC1 is a critical regulator of midzone assembly. Whereas the loss of other 

microtubule cross-linking proteins leads to disorganized midzone bundles, the loss of 

PRC1 inhibits the assembly of microtubule bundles in diverse systems (Mollinari et al., 

2002; Schuyler et al., 2003; Verbrugghe and White, 2004; Vernı̀ et al., 2004; Yamashita et 

al., 2005; Mollinari et al., 2005). Three activities have been ascribed to PRC1 family 

members that underlie their function in the spindle midzone: cross-linking microtubules, 

resisting filament sliding, and recruiting proteins to the midzone.  

Microtubule cross-linking lies at the heart of PRC1 function. Unlike several other 

microtubule cross-linking proteins, PRC1 exhibits specificity towards cross-linking 

microtubules in the antiparallel orientation (Loïodice et al., 2005; Gaillard et al., 2008). 
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Several structural studies have provided insight into how microtubule cross-linking is 

achieved (Subramanian et al., 2010, 2013; Kellogg et al., 2016). PRC1 forms a homodimer 

that is likely flexible in solution but becomes rigid upon microtubule binding (Fig. 1.3). 

This rigidity is thought to impose specificity for crosslinking microtubules in the 

antiparallel orientation.  

A second function of PRC1 family proteins is the ability to oppose filament 

movement driven by motor proteins. Yeast PRC1 has been shown to antagonize kinesin-

14 activity to prevent filament sliding (Braun et al., 2011; Janson et al., 2007). In vitro 

studies have provided insight into a possible mechanism. When microtubules that are cross-

linked by budding yeast Ase1 slide apart, the density of Ase1 in regions of microtubule 

overlap increases. This creates an entropic force that can resist filament sliding forces 

generated externally (by lamellar flow) or within microtubule overlaps (by Kinesin-14/Ncd 

motors) (Braun et al., 2011; Lansky et al., 2015). For such a force to be sustained for several 

minutes, the off-rate would need to be low (Braun et al., 2011). Fluorescence recovery after 

photobleaching (FRAP) experiments have shown that Ase1 turnover in the spindle 

midzone is very slow (Schuyler et al., 2003; Fu et al., 2009; Khmelinskii et al., 2009). 

Anaphase in yeast typically lasts ~20 mins and the half-life of Ase1 turnover is > 7 minutes, 

suggesting that it is effectively immobile over the duration of anaphase (Schuyler et al., 

2003). Whether mammalian PRC1 shares this propertyis still unknown.  

Finally, PRC1 regulates the recruitment of dozens of proteins to the midzone via 

direct and indirect interactions (Roostalu et al., 2010). PRC1 directly binds several 

midzone-associated proteins including Kif4 (discussed below), MKLP1, MKLP2, KIF14, 

Plk1 and CLASP (Kurasawa et al., 2004; Gruneberg et al., 2006; Neef et al., 2007; Liu et 
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al., 2009). In addition, other proteins not known to directly bind PRC1 are recruited to the 

midzone in a PRC1-dependent manner and perform important functions during anaphase 

and cytokinesis (Khmelinskii and Schiebel, 2008).  

How does PRC1 mediate the recruitment of proteins to the midzone in anaphase 

but not in metaphase? Anaphase onset initiates the destruction of cyclin B and the 

inhibition of CDK1 kinase. Numerous mitotic proteins are rapidly dephosphorylated, a 

process that is required for proper spindle function and chromosome segregation. In 

particular, phosphoregulation of PRC1 appears to be a conserved element of this regulatory 

mechanism throughout eukaryotes (Roostalu et al., 2010). PRC1 is hyperphosphorylated 

during metaphase, which controls its association with the spindle (Zhu et al., 2006). In 

human cells, premature dephosphorylation causes microtubule hyper-bundling in 

metaphase, and improper phosphorylation of PRC1 in anaphase prevents disrupts midzone 

assembly (Zhu et al., 2006). In yeast, PRC1 phosphorylation directly controls Cin8 (a 

kinesin-5) localization and sliding activity, required for proper spindle elongation 

(Khmelinskii et al., 2009). PRC1 phosphorylation is controlled by at least two kinases, 

CDK1 and Plk1. Inactivation of Plk1 in metaphase by chemical inhibition results in the 

dephosphorylation of PRC1 at Thr-602, causing an anaphase-like midzone to assemble in 

metaphase, marked by the premature recruitment of PRC1 to microtubules and the 

formation of microtubule bundles (Hu et al., 2012). In addition, a number of other midzone-

associated proteins are prematurely recruited including Mklp1 and CENP-E, suggesting 

that dephosphorylation of PRC1 is sufficient to recruit a subset of midzone-associated 

proteins.  
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Figure 1.3. Schematic of microtubule cross-linking proteins.  

PRC1 (pink) forms a homodimer that simultaneously engages two microtubules (gray) in 

the antiparallel orientation. Microtubule plus-ends (+) are indicated. Eg5 (orange) forms a 

bipolar homotetramer that binds each filament with a set of motor domains that can each 

walk toward the plus-end of microtubules. Motor proteins Kinesin-4 (blue), a plus-end 

directed motor, and Kinesin-14 (black), a minus-end directed motor, form homodimers that 

interact with one filament through two motor domains (triangles) and the other filament 

through non-motor C-terminal domains.  

 

Motor proteins that can slide antiparallel filaments apart 

Microtubule sliding between antiparallel microtubules in the midzone contributes 

to anaphase B pole separation in diverse systems and can explain the full extent of pole 

separation in some eukaryotes (Scholey et al. 2016). Experiments using laser microbeams 

revealed that spindle elongation was inhibited following laser ablation of midzone but not 

astral microtubules in both diatom (Leslie and Pickett-Heapes, 1983) and fission yeast 

(Khodjakov et al., 2004; Tolić-Nørrelykke et al., 2004). Combined with the structural data 

https://paperpile.com/c/0g8wxU/Tvrc
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mentioned above, the evidence is particularly compelling that the midzone is the primary 

force generation site in these organisms. 

Several lines of evidence support the idea that a bipolar motor protein, utilizing the 

energy from ATP hydrolysis, could slide apart microtubules to push poles and thus 

chromosomes apart. First, isolated diatom spindles require ATP for anaphase B (Cande 

and McDonald, 1985, 1986). Second, addition of an antibody against a pan-kinesin peptide 

that binds the motor domain on kinesins prevented anaphase spindle elongation (Hogan et 

al., 1993). Substantial effort has been made to identify the proteins responsible for this 

activity. Several candidate molecules are discussed below.  

 

Kinesin-5/Eg5/KIF11/BimC/Cut7/Cin8p/Kip1p/Klp61F/BMK-1 

 BimC from the fungus Aspergillus nidulans was the first kinesin-5 family member 

identified from temperature-sensitive screens for defects in mitosis (Morris, 1975; Enos 

and Morris, 1990). Homologs were identified in other fungal species (Hagan and Yanagida, 

1990, 1992; Hoyt et al., 1992). Mutations in these genes blocked bipolar spindle assembly, 

supporting the hypothesis that proteins in this family are involved in antiparallel 

microtubule interactions (Hagan and Yanagida, 1992; Roof et al., 1992). Later, homologs 

were identified in vertebrates whose depletion from Xenopus egg extracts caused similar 

defects (Sawin et al., 1992) or microinjection of antibodies into human cells (Slangy et al., 

1995). Hereafter, kinesin-5 proteins are referred to as Eg5 following vertebrate convention.  

Drosophila embryonic Eg5 was the first kinesin protein shown to have a bipolar 

structure (Fig. 1.3) (Cole et al., 1994; Kashlna et al., 1996). This protein assembles from 
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four polypeptides to form a dumbbell-shaped homotetramer with motor domains on 

opposite ends capable of cross-linking microtubules. Analogous to a miniature myosin 

filament, the protein was predicted to slide microtubules relative to one another. Elegant in 

vitro experiments revealed that Eg5 moves towards the plus-end on both microtubules that 

it crosslinks (Fig. 1.4) (Kapitein et al., 2005). Markers for microtubule polarity were used 

to show that sliding was specifically observed between microtubules in the antiparallel 

orientation (Fig. 1.4). 

 

 

 

Figure 1.4. Schematic of antiparallel microtubule sliding by Eg5. 

Microtubules (gray) overlap at plus-ends (+). Eg5 motors (orange) drive microtubules apart 

by stepping towards the plus-end on both microtubules it cross-links.  
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The development of selective small molecule inhibitors of Eg5 have been used to 

temporally control the inactivation of the protein and examine its role in different stages of 

mitosis (Mayer et al., 1999; Kapoor et al., 2000). Eg5 plays a clear role in the establishment 

of spindle bipolarity in many systems (Ferenz et al., 2010). Furthermore, it contributes to 

the maintenance of spindle bipolarity as inhibition causes rapid spindle collapse in yeast 

cells, Drosophila embryos, and Xenopus egg extract (Saunders and Hoyt, 1992; Sharp et 

al., 1999; Kapoor et al., 2000). Although injection of Eg5 antibodies into human (HeLa) 

cells does not cause spindle collapse (Slangy et al., 1995), inhibition of Eg5 in other 

vertebrate (LLC-Pk1) cells causes spindle shortening, a phenotype that may have been 

overlooked in the first report (Ferenz et al., 2009). Together, these data are consistent with 

a role for Eg5 in establishing spindle bipolarity by generating an outward-directed force.  

Eg5 is recruited to the midzone after anaphase onset, suggesting that it may function 

to generate outward force to assist in spindle elongation (Sharp et al., 1999; Ferenz et al., 

2010). Investigation of anaphase-specific roles of Eg5 has been complicated by the 

observation that knockdown causes metaphase arrest in many organisms. Two interesting 

exceptions are C. elegans embryos (Saunders et al., 2007) and Dictyostelium (Tikhonenko 

et al., 2008); knockdown does not inhibit bipolar spindle assembly and the rate of anaphase 

B pole separation is increased, suggesting that the protein instead acts to restrict relative 

filament sliding. Similarly, vertebrate (LLC-Pk1) cells treated with an Eg5 inhibitor in 

anaphase exbibit increased rates of pole separation (Collins et al., 2014). How can we 

explain these two apparently disparate functions during mitosis? Elegant in vitro 

experiments revealed that ensembles of Eg5 can either facilitate or inhibit relative filament 

sliding depending on the velocity of sliding (Shimamoto et al., 2015). These observations 
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suggest that forces that facilitate spindle elongation are counteracted by forces that slow it 

down, possibly through the action of Eg5 ensembles in the midzone.  

 

Kinesin-8/Kip3 

Kinesin-8 family members are perhaps best known for their ability to depolymerize 

microtubule ends (Varga et al., 2009). This activity scales with microtubule length and can 

accumulate length-dependent tags at the end of filaments in vitro (Varga et al., 2006; Leduc 

et al., 2012). In addition, budding yeast Kip3 has been shown to mediate antiparallel sliding 

in vitro (Su et al., 2013). Both microtubule sliding and microtubule depolymerization 

activities of Kinesin-8 contribute to spindle elongation during anaphase in budding yeast 

(Su et al., 2013; Rizk et al., 2014). However, the precise role of this protein in vertebrates 

is still unknown.  

 

Kinesin-6/KIF23/Mklp1/CHO1/Pavarotti/ZEN-4 

In vertebrates, kinesin-6 family members play crucial roles during midzone 

assembly and cytokinesis (White and Glotzer, 2012). First identified as the gene that 

encodes the antigen to the CHO1 monoclonal antibody, Drosophila MKLP1 is required for 

mitotic progression (Nislow, 1990; Nislow et al., 1992). Recombinant protein purified 

from bacteria was shown to slide apart antiparallel microtubules in vitro (Nislow et al., 

1992). In higher eukaryotes including flies, worms, and mammals, Mklp1 forms a 

heterotetrameric complex with a Rho GTPase activating protein in a 2:2 ratio to form the 

centralspindlin complex (Mishima et al., 2002). An equivalent complex has not been 
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identified in yeast, although evidence from fission yeast suggests that kinesin-6 molecules 

can form homotetramers that promote anaphase spindle elongation (Fu et al., 2009). Only 

the complete centralspindlin complex has been shown to exhibit motor activity although 

recent evidence suggests that kinesin-6 dimers can cross-link microtubules (Tao et al., 

2016).  

 

Kinesin-4/Kif4/Klp3A 

Like Eg5, vertebrate Kif4 is recruited to the midzone following anaphase onset. No 

known Kif4 homologs have been identified in yeast, suggesting functional specialization 

of the protein in the lineages it is found in. Kif4 is a member of kinesin-4 family of proteins 

that homodimerizes and processively walks toward the plus-end of microtubules (Fig. 1.3). 

the Drosophila Kif4 organizes midzone microtubules and is thought to couple anaphase 

onset with the reduction of poleward microtubule flux.  

Kif4 and PRC1 interact directly to form a stable complex in vitro and are thought 

to ‘measure’ microtubule overlap length in dynamic filament networks (Bieling et al., 

2010; Subramanian and Kapoor, 2012; Subramanian et al., 2013). Evidence for this 

hypothesis has been shown in two studies. Controlled in vitro assays have revealed that 

PRC1/kinesin-4 can autonomously regulate antiparallel overlap length of dynamic 

microtubules (Bieling et al., 2010). In cells, Kif4 is proposed to function as a regulator of 

midzone length by suppressing microtubule plus-end dynamics (Hu et al., 2011). In 

addition, PRC1/kinesin-4 in complex can form micron-sized tags (hereafter, “end-tags”) at 

microtubule plus-ends (Subramanian et al., 2013). The end-tag length is proportional to 

microtubule length in vitro and during anaphase in human cells. Antenna-like models can 
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be used to explain how PRC1/kinesin-4 can detect microtubule length and overlap length 

to regulate end-tag length or inhibit plus-end microtubule growth (Bieling et al., 2010; 

Subramanian et al., 2013). However, we do not know how the length-dependent regulation 

of individual filaments or overlap regions between filaments contributes to spindle 

midzone assembly in human cells.  

A recent report has shown that Kif4 alone can cross-link and slide microtubules but 

has no specificity towards antiparallel or parallel microtubules (Wijeratne and 

Subramanian, 2018). However, in the presence of PRC1, it can specifically slide 

microtubules in the antiparallel orientation and form bundles of filaments with overlap 

lengths proportional to the sum length of the filaments in the bundle. The midzone function 

of Kif4 may involve both filament sliding and suppression of microtubule dynamics.   

 

Antiparallel sliding: pushing or breaking? 

Structural studies as well as in vitro reconstitution approaches mentioned above 

support a model in which microtubules in the midzone can undergo relative filament sliding 

and that this activity is driven by motor proteins in the spindle midzone. However, 

microtubule sliding itself does not reveal the source of the proteins involved in this 

movement. Conceptually, sliding could also result from forces acting outside of the 

midzone that pull the microtubules in opposite directions.  
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Protein activities involved in cortical pulling 

The observation that many microtubule minus-ends in mammalian spindles do not 

reach the spindle poles supported the hypothesis that protein activity outside of the midzone 

could be involved in anaphase B movement (Mastronarde, 1993). Live cell imaging of 

centrosome movement in newt cells (Taricha granulosa) during different stages of mitosis 

revealed that each centrosome maintained a high degree of independence, supporting the 

idea that centrosome separation during vertebrate spindle formation is not produced by 

MT-MT interactions between opposing asters, i.e., that the mechanism is intrinsic to each 

aster (Waters et al., 1993). Two years earlier, experiments using the fungus Nectria 

haematococca revealed direct evidence for the existence of astral pulling forces during 

anaphase B (AIST et al., 1991). Studies were then completed in C. elegans and found 

similar results (Grill et al., 2001). Later, experiments in Ustilago maydis revealed that 

cortically-anchored dynein was identified as a key motor protein involved in this process 

(Fink et al., 2006).  

 

Molecules that can drive parallel sliding 

Dynein/NuMA 

Laser microsurgery experiments have revealed that kinetochore microtubules can 

form lateral attachments to non-kinetochore microtubules (McDonald et al., 1992; Elting 

et al., 2014). In these experiments, a single k-fiber, which is composed of bundled parallel 

microtubules and can be observed using fluorescence microscopy, is severed halfway 

between the pole and the kinetochore. The newly generated plus-ends on the side of the cut 

proximal to the spindle pole undergo rapid depolymerization, but the remaining stub 
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attached to the kinetochore can move toward the pole in a dynein-dependent manner. It is 

attractive to think that such poleward directed forces could act on minus ends of interpolar 

microtubules in bundles. However, the difficulty of tracking minus ends in dividing cells, 

along with the observation that the minus ends of microtubules in a single bundle are 

usually not clustered together, make it difficult to perform a similar experiment on midzone 

microtubules.  

 

Kinesin-12/Kif15 

 Kinesin-12 family members have not been widely examined. Human kinesin-12 can 

form homotetramers that can cross-link microtubules and walk processively toward the 

plus-end (Drechsler et al., 2014). Kinesin-12 motors can cross-link and slide parallel 

microtubules, and can maintain spindle bipolarity in the absence of Eg5 (Drechsler and 

McAinsh, 2016). However, whether it is involved in any aspect of anaphase movement has 

not been explored.  

 Multiple motor and non-motor proteins that interact with microtubules during 

anaphase can work in concert to amplify or antagonize the activity of each other, making 

it difficult to reveal the relative contribution of each to anaphase B movement. While 

fission yeast, for example, rely almost exclusively on midzone-driven microtubule sliding 

for spindle elongation (Ding et al., 1993; Khodjakov et al., 2004; Tolić-Nørrelykke et al., 

2004), same cannot be said for many vertebrate systems (for review, see (Scholey et al., 

2016)). For example, spindle elongation in C. elegans embryo relies primarily on astral 

pulling forces (Grill et al., 2001). Thus, more work is needed to determine the precise 

function of the spindle midzone in human cells.  
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1.4 Microtubule assembly and dynamic instability 

When cells enter mitosis, the interphase microtubule array is rapidly (< 1 min) 

disassembled and new microtubules are assembled around chromosomes to form the 

mitotic spindle (Zhai et al., 1996). These mitotic microtubules are substantially more 

dynamic than their interphase counterparts, a property that appears to be important for 

proper spindle assembly. When microtubule dynamics are perturbed with microtubule-

stabilizing drugs such as paclitaxel or destabilizing drugs such as nocodazole, cells arrest 

in metaphase and will enter apoptosis after prolonged arrest (Jordan et al., 1996). Thus, the 

regulation of microtubule dynamics and turnover is important to ensure proper spindle 

function. It is important to understand the dynamics of microtubules assembled in the 

absence of other regulatory proteins (discussed in sections 1.5 and 1.6), as this forms the 

basis of our understanding of microtubule dynamics in cells.  

 

Overview of dynamic instability 

A fundamental property of microtubules is their ability to undergo dynamic 

instability; microtubules can stochastically switch between periods of growth and 

shrinkage such that both populations co-exist in a bulk steady state (Mitchison and 

Kirschner, 1984). Observed both in vitro and in vivo, dynamic instability is thought to be 

the primary mechanism controlling microtubule assembly (Horio and Hotani, 1986; 

Cassimeris et al., 1988). This process is intrinsic to microtubules and occurs in the absence 

of associated proteins, although numerous microtubules-associated proteins (MAPs) have 

been identified that can strongly modulate dynamics (Akhmanova and Steinmetz, 2015) 

(reviewed in section 1.4 and 1.6). This section will focus on microtubule assembly from 
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tubulin alone, which lays the foundation for understanding how MAPs can impact specific 

aspects of this process.  

Microtubule dynamic instability can be described using four parameters: rate of 

growth (hereafter, “polymerization rate”), rate of shrinkage (hereafter, “depolymerization 

rate”), frequency of switching from growth to shrinkage (hereafter, “catastrophe”) and 

frequency of switching back (hereafter, “rescue”) (Desai and Mitchison, 1997) (Fig. 1.5 

A). Occasionally a fifth parameter is used (called “pause ratio”) which describes the 

fraction of time spent in a state of quiescence during which no detectible length change 

occurs. It is conceivable that such a state represents an intermediate between 

polymerization and depolymerization but could also reflect a state during which the ends 

are being modified but the length changes are below the level of detection of most 

microscope systems (Kerssemakers et al., 2006; Schek et al., 2007).  

Microtubules are assembled from α/β tubulin heterodimers in a head-to-tail 

configuration, which imparts intrinsic polarity to the filament. Both α and β subunits bind 

GTP (Weisenberg et al., 1968), but only β-tubulin hydrolyzes GTP (at the exchangeable 

site, hereafter “E-site”) and releases phosphate following incorporation into the 

microtubule lattice (Weisenberg and Deery, 1976). Microtubule ends were first defined 

based on their distinct dynamics; the faster-growing end was noted as the plus-end and the 

slower-growing end, the minus-end (Allen and Borisy, 1974). When new ends are created 

via microtubule severing, each end has a unique response: the newly generated plus-ends 

rapidly shrink, while the minus-ends are stable and can continue to grow  
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Figure 1.5 Microtubule dynamic instability.  

(A) Cartoon illustrating GTP-tubulin incorporation at microtubule plus-ends (+) and GDP-

tubulin dissociation during depolymerization. Microtubules stochastically switch between 

periods of growth and shrinkage (termed “catastrophe”) and back again (termed “rescue”). 
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 (Walker et al., 1989; Tran et al., 1997). We now know that the plus-end terminates with 

β-tubulin facing out and the minus-end terminates with α-tubulin. Three lines of evidence 

support this claim: First, in vitro experiments showed that GTP-coated beads bind only to 

microtubule plus-ends, presumably at the β-tubulin E-site (Mitchison, 1993). Second, 

negative stain electron microscopy revealed that kinesin motor head binds on the side 

closer to the plus-end (Hirose et al., 1995), and it was previously shown that kinesin motor 

head binds exclusively to β-tubulin (Song and Mandelkow, 1993). Third, beads coated with 

an antibody raised against an N-terminal fragment of α-tubulin bound exclusively to the 

minus-ends of axonemes (Fan et al., 1996). While we have a good understanding of many 

aspects of tubulin polymerization in vitro, a complete understanding of the molecular basis 

of microtubule assembly is still lacking.  

Microtubules elongate by adding GTP-bound tubulin to the ends in a process 

termed polymerization. Important insight into microtubule elongation was provided by 

Walker et al. (1988) who determined the association and dissociation rate constants of 

microtubule elongation by examining individual microtubules assembled from purified 

brain tubulin. These rates can be determined from a plot of microtubule polymerization 

rate over tubulin concentration, which shows a linear dependence (Oosawa, 1975). 

Polymerization rate increases with increasing free tubulin concentration, although the 

steepness of this dependence is typically different for plus- and minus-ends (Walker et al., 

1988). The slope and y-intercept provide the association (a second-order reaction) and 

dissociation (a first-order reaction) rate constants, respectively. By contrast, microtubule 

depolymerization is a unimolecular reaction, insensitive to free tubulin concentration and 

occurs as GDP-bound tubulin dissociates from the microtubule end. The depolymerization 
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rate is thus governed primarily by the dissociation rate constant of GDP-tubulin from the 

microtubule lattice. The association rate constants measured here were 2-6x greater than 

those reported in previous studies (Mitchison and Kirschner, 1984; Gard and Kirschner, 

1987), which were determined using a population assay, which can underestimate the rate 

of elongation due to catastrophe events. These rate constants have since been measured in 

numerous studies and can provide a simple way to compare microtubule polymerization 

dynamics assembled from tubulins of diverse origins.  

 

GTP hydrolysis is required for depolymerization 

GTP hydrolysis is at the heart of microtubule dynamic instability. Single 

microtubules never reach an equilibrium state and thus requires constant energy input in 

the form of nucleotide hydrolysis. The use of slowly-hydrolyzable GTP analogs such as 

GMPCPP have provided insight to how the energy from GTP hydrolysis is partitioned into 

different steps of the polymerization/depolymerization cycle (Hyman et al., 1992). 

GMPCPP binds to the exchangeable (E-site) on β-tubulin and undergoes a negligibly small 

amount of hydrolysis under typical experimental conditions (4 x 10-7 s-1). Microtubules 

assemble from subunits bound to GMPCPP, revealing that the free energy of hydrolysis is 

not required for polymerization. In fact, microtubules assembled with GMPCPP have 

become valuable tools for studies of microtubule behavior in vitro because they can act as 

stable nucleators of microtubule growth (see chapters 2 and 3 for more detail) due to their 

slow rate of disassembly (0.1 s-1 compared to 500 s-1 for GDP-tubulin) (Hyman et al., 

1992). Importantly, GMPCPP microtubules do not undergo dynamic instability.  
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In certain buffer conditions, hydrolysis of GMPCPP in polymerized tubulin can be 

stimulated, after which the microtubule undergoes rapid depolymerization, showing 

unambiguously that the energy from GTP hydrolysis drives dynamic instability (Caplow 

et al., 1994). This study showed that the polymerization of GMPCPP-bound tubulin is more 

favorable than that of the hydrolysis product, GMPCP-bound tubulin by ~4 kcal mol-1. As 

the free energy of hydrolysis is only moderately larger (-5.2 kcal mol-1), this suggested that 

most of the free energy of hydrolysis is harnessed as strain energy in the microtubule lattice 

and used primarily to destabilize microtubules. Later studies have shown that this energy 

can be harnessed to perform work in cells, e.g. the depolymerization of kinetochore-fiber 

microtubules is coupled to and drives anaphase A chromosome-to-pole movement in cells 

(Asbury, 2017). These data suggested that the microtubule lattice composed of GDP-bound 

tubulin is less stable than that composed of GTP-tubulin, likely due to a weakening of the 

inter-tubulin contacts following GTP hydrolysis.  

 

Evidence that a GTP “cap” protects microtubules from disassembly 

Microtubule disassembly is preceded by a catastrophe event in which the growing 

microtubule stochastically switches to a state of rapid shrinkage. Long-standing models of 

catastrophe postulated that it involves the loss of a stabilizing “GTP cap” at the 

microtubules end (Mitchison and Kirschner, 1984). Such a cap would act to stabilize 

microtubules by constraining the unstable GDP lattice. Evidence to support some kind of 

stabilizing cap came in part from microtubule severing experiments (using a laser 

microbeam or glass microneedle) which showed that individual microtubules severed distal 
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from the growing tip rapidly depolymerized at the newly generated plus-ends (Walker et 

al., 1989; Tran et al., 1997).  

In solution, the hydrolysis rate of free tubulin in nonpolymerizing conditions is 

below the level of detection but is stimulated many-fold following incorporation into 

microtubules (0.1-6 s-1) (David-Pfeuty et al., 1977; O’Brien et al., 1987; Caplow and 

Shanks, 1990). A GTP-cap would form if a lag occurs between the incorporation of GTP-

tubulin and the initiation of GTP hydrolysis. If the rate of polymerization is higher, GTP-

bound tubulins can accumulate near the microtubule end. Although it is known that GTP 

hydrolysis occurs relatively rapidly following polymerization, the rate at which GTP 

hydrolysis occurs is likely not fixed. If the GTP hydrolysis rate were constant, then 

catastrophe should be observed only over a very narrow range of concentrations, limited 

most likely to the lowest tubulin concentrations for which microtubule growth is observed. 

This is not the case; catastrophe events are observed over at least a two-fold range of tubulin 

concentrations and increasing tubulin concentration suppresses catastrophe frequency only 

modestly. These data suggest that there is likely some form of coupling between 

polymerization and GTP hydrolysis.  

How many subunits of GTP tubulin must accumulate at the end to efficiently 

stabilize the microtubule from depolymerization? Substantial effort has been made to 

measure the size of the GTP cap. One way to indirectly measure this is to examine the 

behavior of dynamic microtubules by microscopy following rapid dilution of free tubulin. 

The time lag between tubulin washout and catastrophe can provide a readout of the size 

and stability of the GTP cap. This time lag has been shown to be relatively short (1-4 s), 

suggesting that the cap is also small (Walker et al., 1991). These data also showed that the 
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time lag was not dependent on polymerization rate, further supporting the model that 

polymerization rate and GTP hydrolysis are coupled. Later experiments sought to measure 

them minimum number of GMPCPP tubulins (mimicking the GTP tubulin cap) that must 

incorporate at the end of microtubules to stabilize it from depolymerization. These data 

showed that as few as 1-3 GMPCPP subunits at the end of each protofilament could be 

sufficient (Drechsel and Kirschner, 1994; Caplow and Shanks, 1996). However, other 

studies have estimated the size of the cap at over 1000 subunits in each protofilament 

(Seetapun et al., 2012). Without method to directly measure the presence of GTP tubulin 

at the microtubule end, the exact size the of GTP cap remains an open question. 

 

Catastrophe is a multi-step process 

Is the presence of a protective layer of GTP tubulin the only gatekeeper to 

microtubule catastrophe? Probabalistic analysis of the distribution of growth times of 

individual microtubules have revealed an additional level of complexity; microtubules 

were shown to age such that older microtubules are more likely to undergo catastrophe 

than younger microtubules (Odde et al., 1995). Fluorescence and electron micrographs 

show that microtubules become more tapered as microtubules age, suggesting that the 

structure of the microtubule end can contribute to its stability (Coombes et al., 2013). 

Together, these observations can only be explained if catastrophe is viewed as a multi-step 

process.  

Models of microtubule catastrophe have undergone numerous rounds of refinement 

and reimagination as new data become available. Single filament models have been 

proposed that can explain many but not all experimental observation, in part because they 
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do not take into consideration lateral bond associations, and ultimately cannot account for 

the multistep catastrophe process. Current models now account for the hydrolysis state of 

subunits in multiple protofilaments but are still limited to only a subset of the 13 

protofilaments that make up a typical microtubule (Bowne‐Anderson et al., 2013).  

Rescue, the transition from microtubule rapid shrinkage back to growth, is common 

in vivo but rare in vitro (Gardner et al., 2013). Rescues were thought to occur when the 

depolymerizing end encountered local lattice features such as GTP islands, clusters of 

GFP-bound tubulin heterodimers in the microtubule lattice (Dimitrov et al., 2008) (Fig. 1.5 

A). These islands were thought to promote rescue by mimicking the GTP cap, although 

how they were introduced into the lattice were not understood. Recent reports have shown 

that microtubule damage can promote the spontaneous exchange of tubulin subunits in the 

middle of the polymer (Schaedel et al., 2015). Rescue can occur when the disassembling 

end reaches GTP tubulin at the damage site (Aumeier et al., 2016). Similar results have 

been found following protein-mediated removal of tubulin subunits in the microtubule 

lattice by severing proteins including spastin and katanin (Vemu et al., 2018). Using these 

two approaches to promote tubulin exchange at sites distal from the growing end, future 

studies will likely be able to gain insight into the mechanisms of microtubule rescue.  

Together, studies of individual microtubule dynamics in vitro have provided 

valuable insight that has helped shape our understanding of microtubule dynamic 

instability. In the next section, I review structural studies of tubulin and microtubules.  

  



31 

 

1.5 The structure of microtubules  

Microtubules in cells can grow to tens of microns in length. Composed of ~1,600 

tubulin heterodimers per micron, a single microtubule can grow to be 10,000x larger than 

the subunit of which it is composed. To understand how microtubules assemble, we must 

understand how the subunits physically contact each other in the microtubule lattice as well 

as the conformational changes that accompany polymerization.  

 

The helical structure of the microtubule polymer 

In polymer form, tubulin heterodimers are organized such that two kinds of inter-

dimer associations are made: lateral and longitudinal (Kirschner et al., 1974; Chrétien and 

Wade, 1991). Longitudinal interactions are defined by the interface of β- and α-tubulin for 

subunits within a single protofilament, and longitudinal interactions are formed between 

subunits in adjacent protofilaments (Fig. 1.6 A). Microtubules form a B-type lattice 

meaning that the interactions between subunits in adjacent protofilaments are homotypic 

between most protofilaments (α-tubulin contacts α-tubulin and β-tubulin contacts β-

tubulin). In human cells and other eukaryotes, 13-protofilament microtubules are most 

commonly observed by far, although there are notable exceptions (Chaaban et al., 2017). 

In a typical 13-protofilament microtubule, tubulin subunits are displaced longitudinally in 

adjacent protofilaments, creating a 10º pitch (Fig. 1.6 A). This pitch generates a pattern 

known as a three-start helix because a helical path around the microtubule leads back to 

the same position three subunits higher than the starting position (Grimstone and Klug, 

1966) (Fig. 1.6 B). By consequence of this odd-numbered helical pattern, this also  
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Figure 1.6. The helical structure of a 13-protofilament microtubule. 

(A) Cartoon showing the surface lattice of a 13-protofilament microtubule, drawn as if the 

tube were unrolled. There is a 10º pitch between adjacent protofilaments. (B) Cartoon 

representation of a microtubule. The path around the microtubule of one row of monomers 

is highlighted. (C) Non-homotypic interactions are seen between monomers in adjacent 

protofilaments at the seam.  
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generates a microtubule “seam” at which α- and β-tubulin make non-homotypic lateral 

interactions (Fig. 1.6 C). 

The functional relevance of the seam is not well understood, but structural studies 

suggest that it can impact the binding of microtubule-associated proteins. For example, the 

+TIP tracking protein EB3 binds at the interface between protofilaments except at the seam 

(Zhang et al., 2015). It is thought that the interactions between subunits at the seam are 

weaker than between other protofilaments, but whether the presence of the seam can impact 

parameters of dynamic instability is not known.  

 

Tubulin curvature and implications for dynamic instability  

Early cryo-electron microscopy studies of dynamic microtubules revealed that 

protofilaments in the lattice of microtubules are straight, but the structure of microtubule 

ends differs substantially whether the microtubule is growing or shrinking (Mandelkow et 

al., 1991). Depolymerizing microtubules appear to have curved ends in which 

protofilaments appear to be peeling back on themselves. Furthermore, cold 

depolymerization of microtubules has shown that GDP-tubulin can formed ring-like 

oligomers (Melki et al., 1989). The observation of curved protofilaments and oligomers led 

to the hypothesis that GTP-tubulin adopts a straight conformation and GDP-tubulin is 

curved and therefore under strain in the microtubule lattice. However, even growing 

microtubules are not always straight and appear to exhibit gently curving sheets at their 

plus-ends, suggesting that tubulin heterodimers likely undergo several conformational 

changes both during polymerization and depolymerization that involve the adaptation of a 

curved conformation (Chrétien et al., 1995).  
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The tendency for microtubules to spontaneously nucleate and polymerize under 

high tubulin concentration has made crystallizing this protein for X-ray studies 

challenging. The first high-resolution structure of straight tubulin in protofilaments came 

from studies using zinc-induced tubulin sheets (Nogales et al., 1998). High-resolution 

structures of curved tubulin was solved following co-crystallization of α/β heterodimers 

with the stathmin-like domain of Rb3, which interferes with microtubule dynamics (Gigant 

et al., 2000; Ravelli et al., 2004). Comparison between monomers of the same identity in 

the two structures revealed that both α- and β-tubulins adopt different conformations. 

Furthermore, the longitudinal interactions between heterodimers is also impacted. In the 

curved conformation, successive tubulins in a protofilament would be rotated by ~12º, 

which matches the ~12º radius of curvature in the rams-horn-like structures seen at 

depolymerizing microtubule ends (Kirschner et al., 1974).  

Other structural studies have revealed that there are likely additional conformations 

that tubulin heterodimers can adopt during the polymerization cycle. Cryo-electron 

microscopy studies of microtubule ribbons assembled from GMPCPP-tubulin showed that 

heterodimers were arranged with a ~5 degree rotation, suggesting the presence of a possible 

intermediate structure between straight and curved (Wang and Nogales, 2005).  

Three groups have presented high-resolution structures of GTP-tubulin bound to 

different proteins including stathmin/RB3, Stu2p, or DARPin (Nawrotek et al., 2011; Ayaz 

et al., 2012; Pecqueur et al., 2012). In all of these structures, GTP-tubulin appears to adopt 

a curved conformation with a ~12º rotation, inconsistent with previous models proposing 

that only GDP tubulin is curved. Importantly, both stathmin/Rb3 and the TOG domain of 

Stu2p were found to have a similar affinity for both GDP and GTP tubulin, suggesting that 
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it was unlikely that the binding of these proteins to GTP was inducing the curved 

conformation (Honnappa et al., 2003; Ayaz et al., 2012). Furthermore, the binding of 

tubulin to allocolchicine, a derivative of colchicine that fluoresces upon tubulin binding, is 

conformation-dependent, but allocolchicine affinity is independent of nucleotide state 

(Rice et al., 2008). Together, these structural data suggest that tubulin is curved in solution 

independent of nucleotide state, and that the transition to a straight conformation occurs 

following polymerization. 

 

The structure of tubulin in the microtubule polymer 

Solving the structure of tubulin in microtubules is crucial for understanding the 

conformational changes that take place in tubulin during polymerization. The presence of 

the microtubule seam, which breaks the helical symmetry of the microtubule lattice, has 

for many years presented a challenge to structural studies of tubulin subunits. In cells, 13-

protofilament microtubules are common, but microtubules that spontaneously assembly in 

vitro are heterogeneous, with 9-16 protofilament microtubules observed (Pierson et al., 

1978). Early reconstructions relied on the use of 15-protofilament microtubules, which do 

not have a seam, but due to the low abundance of these microtubules in samples, the 

resolution of the reconstructions were limited to ~20 Å (Arnal et al., 1996; Sosa et al., 

1997).  

The development of sophisticated reconstruction methods for cryo-electron 

microscopy along with technological improvements in electron detectors have allowed 

recent structures of tubulin in microtubule polymers to achieve near-atomic resolution 

while bound to various microtubule associated proteins and nucleotides (Nogales and 
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Kellogg, 2017). The first study to show high-resolution (4.7-5.6 Å) structures of 

microtubules assembled from bovine brain tubulin showed microtubules in three different 

states: GDP-bound (in dynamic microtubules), Taxol-stabilized, and GMPCPP-bound 

(Alushin et al., 2014). In each state, the lateral contacts between tubulin subunits are very 

similar. However, the inter-dimer longitudinal contact site is compacted in the GDP-tubulin 

state. These data support a model in which the energy from GTP hydrolysis is stored as 

strain in the lattice and modulated primarily at longitudinal interfaces.  

 

Tubulin primary sequence and microtubule structure 

For decades, purified tubulin was sourced from animal brain, usually of porcine or 

bovine origin, and was the material of choice for many of the abovementioned structural 

studies. However, brain tubulin is a heterogeneous mixture of tubulin heterodimers 

composed of various α- and β-tubulin isotypes (Banerjee et al., 1988). Further attempts to 

purify the mixture to obtain isotypically pure tubulin are limited by the availability of 

different isotypes in the tissue.  

Several lines of evidence point to the non-interchangeability of tubulin isotypes, 

suggesting functional specialization which could manifest as differences in microtubule 

structure and dynamics. In insects, when a β-tubulin from moth, which forms microtubules 

with 15 protofilaments, was expressed in Drosophila, which makes microtubules with 13 

protofilaments, the flies assembled microtubules with 15 protofilaments (Hoyle and Raff, 

1990). This study provided compelling evidence that differences in amino acid sequence 

can directly impact microtubule structure. The development of methods to purify tubulin 

with specific amino acid sequence has aided our understanding of how changes in the 
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amino acid sequence of tubulin can impact microtubule stability and structure (Chaaban et 

al., 2018; Ti et al., 2018). I explore this topic further in chapters 2 and 3.  

 

Through my PhD work, I examine two aspects of microtubule function: intrinsic 

assembly dynamics of individual microtubules in vitro and the function of the spindle 

midzone during mitosis in living cells.  
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Chapter 2: The structured core of human β tubulin confers 

isotype-specific polymerization properties 

Note to readers: A closely related version of the work described below has been 

published in the Journal of Cell Biology (DOI: 10.1083/jcb.201603050). I performed all 

experiments and analysis.  

 

2.1 Summary 

Diversity in cytoskeleton organization and function may be achieved through 

variations in primary sequence of tubulin isotypes. Recently, isotype functional diversity 

has been linked to a tubulin code in which the C-terminal tail, a region of substantial 

sequence divergence between isotypes, specifies interactions with microtubule-associated 

proteins. However, it is not known whether residue changes in this region alter microtubule 

dynamic instability. Here, we examine recombinant tubulin with human β isotype βIIB and 

characterize polymerization dynamics. Microtubules with βIIB have catastrophe 

frequencies ~3-fold lower than those with βIII, a suppression similar to what is achieved 

by regulatory proteins. Further, we generate chimeric β tubulins with native tail sequences 

swapped between isotypes. These chimeras have catastrophe frequencies similar to the 

corresponding full-length construct with the same core sequence. Together, our data 

indicate that residue changes within the conserved β tubulin core are largely responsible 

for the observed isotype-specific changes in dynamic instability parameters and tune 

tubulin’s polymerization properties across a wide range.  
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2.2 Introduction 

Microtubules, polymers of α/β tubulin subunits, carry out a wide range of functions 

in eukaryotes (Desai and Mitchison, 1997; Nogales, 2000). The tubulin gene family has 

expanded substantially in higher eukaryotes, and the expression of different isotypes can 

vary according to cell identity and stage of development (Ludueña, 2013). For example, 

flies encode four α and four β tubulin isotypes, while humans encode at least seven α and 

eight β tubulin isotypes that have distinct expression profiles (Ludueña and Banerjee, 

2008). In particular, βII and βIII are the major β tubulins in the brain (Banerjee et al., 1988), 

and βVI is limited to the hematopoietic cell lineage (Leandro-García et al., 2012; Wang et 

al., 1986). Recent in vivo studies have revealed that β tubulin isotypes have non-

interchangeable roles in development. In Drosophila, when one β tubulin isotype was 

expressed in place of a testes-specific β tubulin, axoneme assembly and meiosis were not 

supported (Hoyle and Raff, 1990). In mice, embryonic knockdown of neuronal βIII 

expression led to neural migration defects that could not be rescued by expression of other 

β tubulin isotypes (Saillour et al., 2014). Together, these studies suggest that having 

multiple tubulin isotypes can be important for achieving diversity in function.  

Differences in amino acid sequence of tubulin isotypes can impact two important 

aspects of tubulin function: the binding to microtubule associated proteins (MAPs), and 

the dynamics of microtubule polymer assembly. Numerous studies examining MAP 

interactions have focused on the ~25 amino acids that comprise the C-terminal 'tail' of 

tubulin where many post-translational modifications are found and where isotype sequence 

differences are concentrated (Westermann and Weber, 2003; Verhey and Gaertig, 2007). 

Thus it has been proposed that tubulin's C-terminal tail may establish a ‘tubulin code’ to 
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direct unique interactions with MAPs (Verhey and Gaertig, 2007). By contrast, it is unclear 

whether residue changes in tubulin's C-terminal tail sequence can directly impact 

microtubule polymerization dynamics. Studies using native tubulin isolated from bovine 

brain have shown that α/β tubulin dimers with different β isotype composition have distinct 

polymerization properties (Banerjee et al., 1992; Lu and Ludueña, 1994; Panda et al., 

1994), which are partially altered after limited proteolysis by subtilisin (Lu and Ludueña, 

1994). However, due to challenges in generating human tubulins with modified amino acid 

sequence from recombinant sources, the basis of the observed changes in polymerization 

dynamics between tubulin isotypes is still unknown.  

Here, we purify recombinant tubulin heterodimers that have human β tubulin 

isotype 2B (βIIB) and provide the first characterization of its biochemical properties and 

assembly dynamics. We quantify parameters of dynamic instability and compare them to 

those of isotype 3 (βIII) heterodimers that we have recently examined (Ti et al., 2016). 

Further, we generate chimeric 'tail-swapped' tubulins by fusing the C-terminal tail domain 

of one isotype to the core of the other and use these proteins to dissect the basis of isotype-

specific changes in dynamic instability.  
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2.3 Results  

Purification of recombinant α/βIIB tubulin heterodimers 

To determine the biochemical and polymerization properties of human β tubulin 

isotypes, we purified recombinant tubulin heterodimers using a protocol we have recently 

developed (Ti et al., 2016). This three-step procedure generated affinity tag-free 

recombinant protein (Fig. 2.1 A-C). We then used mass spectrometry to confirm the 

presence of human βIIB and showed that heterodimers contained an approximately 

equimolar mixture of human and insect α tubulin which are ~97% identical by sequence 

(Fig. 2.2 A). Efforts to tag both α and β tubulin with different affinity tags led to a 

substantially reduced protein yield and this strategy was not pursued further. We find our 

multi-step approach suitable for comparing tubulins with different β isotype compositions 

as done in this study. Hereafter, we refer to the purified recombinant tubulin as α/βIIB, 

highlighting the specific purified human β tubulin isotype.  

We assessed the recombinant α/βIIB tubulin using two approaches. First, size-

exclusion chromatography indicated that α/βIIB existed as a stable dimer in solution (Fig. 

2.3 A), and eluted at a similar volume to bovine tubulin purified using standard methods 

(Al-Bassam et al., 2006; Gell et al., 2011). Second, we examined α/βIIB in the presence of 

compounds that stabilize or destabilize microtubules. We found that the protein 

polymerized to form microtubules in the presence of the drug Taxol (Fig. 2.3 B) and the 

slowly-hydrolyzable GTP analog, GMPCPP (Fig. 2.3 C). Colchicine and related analogs 

bind soluble tubulin at an interface between the α and β subunits and inhibit tubulin 

polymerization (Ravelli et al., 2004). In particular, we examined the binding of our 

recombinant α/βIIB protein to a colchicine analog, allocolchicine, which fluoresces only  
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Figure 2.1. Purification of recombinant α/βIIB tubulin heterodimers.  

(A) Purification scheme. (B) SDS-PAGE analysis (1, lysate; 2, supernatant; 3-5, nickel 

affinity: flow-through (3); elution (4); 5, elution after TEV digest (5); 6-8, TOG affinity: 

flow-through (6); elution (7), 20X amount in lane-7 (8)) (Coomassie stained). (C)  Western 

blot analyses of proteins eluted from nickel affinity (lanes 1, 3, and 5) and TOG affinity 

(lanes 2, 4, and 6) chromatography. Antibodies against α tubulin, β tubulin, and C-terminal 

hexa-histidine tag are indicated. 
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Figure 2.2. Sequence alignment between human and insect α tubulin.  

(A) Alignment of protein sequences from human α tubulin 1B (NP_006073.2) and α 

tubulin from insect cells (ABU94679.1). Peptide fragments that were used to estimate the 

relative amounts of human and insect α tubulin are labeled in red. 
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Figure 2.3. Characterization of recombinant α/βIIB tubulin heterodimers.  

(A) Elution profiles from size-exclusion chromatography. Peak volume: 14.4 ml (α/βIIB); 

14.3 ml (bovine tubulin, used as reference). Void volume (Vo) is 7 ml. (B and C) TIRF 

images of (B) taxol-stabilized or (C) GMPCPP microtubules. Scale bars, 3 μm. (D) SDS-

PAGE analysis of tubulin sedimentation in the presence of allocolchicine (+Allo) or 3% 

DMSO control (-Allo). Pellet (P) and supernatant (S) fractions are indicated. (E and F) 

Equilibrium binding curve for α/βIIB with allocolchicine from (E) one experiment and (F) 

average from three independent experiments. Kd = 1.8 ± 0.42 μM (n=3, mean ± SD). 
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upon binding soluble tubulin and allows for a direct readout of the interaction (Hastie, 

1989; Medrano et al., 1989). We first confirmed that allocolchicine can inhibit the 

assembly of α/βIIB microtubules (Fig. 2.3 D). We next determined equilibrium binding 

and find that α/βIIB tubulin binds allocolchicine with a low-micromolar affinity (Kd = 1.8 

± 0.42 μM, n= 3) (Fig. 2.3 E-F), similar to that reported for bovine brain tubulin (Rice et 

al., 2008). Together, these data indicate that our recombinant α/βIIB protein shares overall 

properties similar to those of bovine tubulin purified using conventional methods.  

 

Polymerization properties of recombinant α/βIIB tubulin heterodimers 

To analyze polymerization dynamics of recombinant α/βIIB, we employed a TIRF-

based single filament assay (Fig. 2.4 A). As a template for microtubule formation, we used 

GMPCPP-stabilized ‘seeds’ assembled from α/βIIB tubulin. We then applied solutions of 

soluble tubulin and observed microtubule assembly off of these 'seeds' over a range of 

tubulin concentrations (Fig. 2.4 B and D). To quantify dynamic instability parameters, we 

generated kymographs from the time lapse images of growing microtubules (Fig. 2.4 C 

and E). Even at the lowest tubulin concentration used (6 M), we observed growth off of 

the plus-ends of all filaments examined. By contrast, assembly of microtubule polymer was 

rarely observed off of the minus-ends at this concentration and only occasionally observed 

at the highest concentration used (13 μM), therefore we did not quantify the polymerization 

properties of tubulin at this end.  

We measured the average polymerization rate at plus-ends of microtubules 

assembled from α/βIIB tubulin and found this rate increased with free tubulin concentration  
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Figure 2.4. Single filament TIRF analysis of α/βIIB tubulin polymerization properties.  

(A) TIRF assay schematic. Microtubule extensions (red) and GMPCPP- ‘seeds’ (green) are 

shown with plus-ends (+) and minus-ends (-) indicated. TIRF image overlays (B and D) 

and kymographs (C and E) of microtubules extensions (red) growing from ‘seeds’ (green) 

(total tubulin: 6 μM (B and C);13 μM (D and E)). (F and G) Plus-end polymerization rates 

(F) and catastrophe frequencies (G) for microtubules composed of α/βIIB at different free 

tubulin concentrations. Table 2.1 summarizes these measurements.  
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 (Fig. 2.4F and Table 1). The measured growth rates were close to the reported values for 

α/βIII (Ti et al., 2016) and for purified bovine brain tubulin (Walker et al., 1988). We then 

fit the data to a simple 1-D model (Oosawa, 1970) whose slope and intercept are the 

apparent association (k+) and dissociation (k-) rate constants of tubulin subunits, 

respectively (k+ = 1.9 ± 0.5 μM-1 s-1 and k- = 2.6 ± 4.2 s-1). 

We next measured the frequency of catastrophe, the transition from a state of 

filament growth to a state of rapid shrinkage. Microtubules assembled from α/βIIB 

heterodimers underwent a catastrophe event infrequently, and we observed a moderate 

decrease in catastrophe frequency as tubulin concentration was increased from 6 μM to 13 

μM (Fig. 2.4 G). We measured a frequency of 0.03 ± 0.006 min-1 at a tubulin concentration 

(10.5 μM) close to physiologic levels. We rarely observed rescue events (the transition 

from rapid shortening to relatively slow growth) under our experimental conditions and 

did not analyze this parameter. When we compared our analysis of recombinant α/βIIB 

tubulin with that of recombinant β tubulin isotype 3 (α/βIII) (Ti et al., 2016), we observed 

key differences. Notably, the catastrophe frequency for α/βIIB was 1.5- to 3-fold lower 

than that of α/βIII at all tubulin concentrations tested (Ti et al., 2016) (p-value <0.02 at 

each concentration).  

Tubulin in cells is a mixture of multiple isoforms of β tubulin. In particular, bovine 

brain β tubulin has been shown to be a mixture of at least four isotypes (β2, β3, β4, and β1 

detected at 58%, 25%, 13%, and 3%, respectively) (Banerjee et al., 1988). Therefore, we 

mixed α/βIIB and α/βIII heterodimers and analyzed polymerization dynamics (Fig 2.5 A-

H). At equal ratios of α/βIIB and α/βIII tubulin (10.5 μM total tubulin), microtubules 

readily polymerized off of GMPCPP seeds (Fig. 2.5 B). The polymerization rate of these  
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Figure 2.5. Single filament TIRF analysis of mixed α/βIIB and α/βIII tubulin 

polymerization properties.  

(A) Overlay images (A-C) and kymographs (D-F) of mixed α/βIIB and α/βIII microtubules 

(α/βIIB: α/βIII ratio is 3:1 (A and D), 1:1 (B and E), or 1:3 (C and F)) (total tubulin: 10.5 

μM). (G and H) Plus-end polymerization rate (G) and catastrophe frequency (H) for 'mixed' 

microtubules (α/βIIB: α/βIII ratio is 1:1, total tubulin: 10.5 μM) with α/βIIB shown as 

reference. The data were pooled from at least two independent experiments. Scale bars: 3 

μm (horizontal), 2 min (vertical). Error bars are SD. For catastrophe frequency (fcat), SD 

were calculated as fcat/√𝑛  (assuming a Poisson distribution), where n is the number of 

catastrophe events. Table 2.1 summarizes these measurements.  
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'mixed' microtubules (14 ± 2 subunit.sec-1) was close to that of α/βIIB microtubules (15 ± 

3 subunit.sec-1) (Fig. 2.5 G) and α/βIII microtubules (Ti et al., 2016) at the same tubulin 

concentration. This suggests that the two isotypes can indeed co-polymerize. If they did 

not, the expected polymerization rate would be ~7-8 subunit.sec-1 as the effective 

concentration would be 5.25 μM for each isotype. The catastrophe frequency at filament 

plus-ends was 0.06 ± 0.01 min-1 at 10.5 μM total tubulin concentration (Fig. 2.5 H). This 

value is intermediate between that for α/βIIB microtubules (0.03 ± 0.01 min-1) (Fig. 2.5 H) 

and that for α/βIII microtubules (Ti et al., 2016). Together, our data indicate that the 

dynamics of microtubules assembled from mixed tubulin populations depends on the 

contribution of each isotype, and that mixing gives a catastrophe frequency intermediate 

between what is observed for either isotype alone.  

 

Characterization of recombinant tubulins containing human β tubulin chimeras 

To examine whether residue changes within tubulin's C-terminal tail, which are 

proposed to specify interactions with MAPs (Sirajuddin et al., 2014), also confer the 

observed isotype-specific catastrophe frequencies, we generated chimeric β tubulin 

constructs with the C-terminal tails  'swapped' (Fig. 2.6 A). We designated the 'core' region 

(aa 1-427) to be equal to the length of tubulin protein resolved in a recent structural study 

(Alushin et al., 2014), and the 'tail' region to be the remaining C-terminal amino acids (aa 

428-445 in βIIB, or 428-450 in βIII). We co-expressed one of the two chimeric β tubulins 

fused to a cleavable hexa-histidine tag along with human β isotype 1B in insect cells and 

generated the following two heterodimers - 'α/βIIB-tail-III' (βIIB core and βIII tail) and 

'α/βIII-tail-IIB' (βIII core with βIIB tail) (Fig. 2.6 B).  
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Figure 2.6. Design of chimeric β tubulin constructs.  

(A) Design of 'tail-swapped' β tubulin constructs, with amino acid sequence derived from 

α/βIIB (black) and α/βIII (grey). (B) Cartoon of tubulin heterodimer indicating β tubulin 

C-terminal tail (black). Amino acid sequences from the C-terminus of βIIB and βIII are 

shown. (C) Percent identity matrix for human β tubulin isotypes.  
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Figure 2.7. Characterization of chimeric β tubulin constructs. (A) SDS-PAGE analysis 

(1, Nickel affinity elution; 2, TOG affinity elution) (Coomassie stained). (B) Protein elution 

profiles from size-exclusion chromatography. Peak volume: 14.2 ml (α/βIIB-tail-III); 14.1 

ml (α/βIII-tail-IIB). Void volume (Vo) is 7 ml. (C-D) Western blot (WB) analyses of 

proteins eluted from nickel affinity (lanes 1, 3, and 5) and TOG affinity (lanes 2, 4, and 6) 

chromatography for (C) α/βIIB-tail-III and (D) α/βIII-tail-IIB. Antibodies against α 

tubulin, β tubulin, and C-terminal hexa-histidine tag are indicated. (E-F) TIRF images of 

(E) Taxol-stabilized or (F) GMPCPP microtubules. Scale bar, 3µm.  
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Using our purification protocol, we generated affinity tag-free recombinant 

chimeric tubulin heterodimers that were of similar purity to that of α/βIIB (Fig. 2.7 A-D). 

Size-exclusion chromatography analysis indicated that the α/βIIB-tail-III and α/βIII-tail-

IIB proteins existed as stable dimers in solution and eluted at a volume similar to the full-

length α/βIIB (Fig. 2.7 B and Fig. 2.3 A). As with the full-length α/βIIB tubulin, we 

analyzed the chimeric proteins using a TIRF microscopy-based assay. We showed that both 

chimeric tubulins assembled readily into microtubules in the presence of Taxol (Fig. 2.7 

E) and GMPCPP (Fig. 2.7 F). These experiments indicated that the chimeric tubulins 

formed stable dimers and polymerized under standard conditions.  

 

Polymerization properties of recombinant tubulins containing β tubulin chimeras  

To determine the intrinsic dynamic properties of recombinant tubulin heterodimers 

containing chimeric β tubulins, we used the same single filament TIRF assays used to 

analyze the full-length α/βIIB construct (Fig. 2.4 A). We first used GMPCPP-stabilized 

seeds assembled from α/βIIB-tail-III and applied solutions composed of different 

concentrations of α/βIIB-tail-III onto the seeds. In separate experiments, we examined 

growth of α/βIII-tail-IIB tubulin off of α/βIII-tail-IIB seeds.  

In the case of α/βIIB-tail-III tubulin, we frequently observed growth at only one of 

the two ends of the seed (Fig. 2.8 A-D), as was noted for full-length α/βIIB. At the plus-

ends, the rate of polymerization for microtubules assembled from α/βIIB-tail-III increased 

with greater concentration of free tubulin (Fig. 2.8 I and Table 2.1). The apparent 

association (k+) and dissociation (k-) rate constants for α/βIIB-tail-III (k+ = 2.0 ± 0.4 μM-1  
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Figure 2.8. Single filament TIRF analysis of chimeric β tubulins.  

TIRF image overlays (A, C, E and G) and kymographs (B, D, F and H) showing 

microtubules extensions (red) growing from GMPCPP seeds (green) assembled with 

α/βIIB-tail-III (A-D) or α/βIII-tail-IIB (E-H). (I and J) Plus-end polymerization rates (I) 

and catastrophe frequencies (J) for chimeric α/βIIB-tail-III or α/βIII-tail-IIB microtubules 

at different free tubulin concentrations. Catastrophe frequency measurements for full-

length α/βIIB (blue dashed line) and α/βIII (red dashed line) is shown as reference. The 

data were pooled from at least three independent experiments. Error bars are SD. For 

catastrophe frequency (fcat), SD were calculated as fcat/√𝑛  (assuming a Poisson 

distribution), where n is the number of catastrophe events. Scale bars: 3µm (horizontal), 2 

min (vertical). Table 2.1 summarizes these measurements. 
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s-1 and k- = 5.5 ± 2.7 s-1) were close to those measured for α/βIIB and for α/βIII (Ti et al., 

2016). 

By contrast, in a solution of α/βIII-tail-IIB tubulin, assembly frequently occurred 

off both ends of seeds at all tubulin concentrations (Fig. 2.8 E-H). This was consistent with 

what we found for full-length recombinant α/βIII, which grows frequently at both seed ends 

under similar experimental conditions (Ti et al., 2016). To compare rates between isotypes, 

we focused on the faster-growing plus-end. The polymerization rate of microtubules 

assembled from α/βIII-tail-IIB tubulin also increased with increasing concentrations of free 

tubulin (Fig. 2.8 I). The apparent association (k+) and dissociation (k-) rate constants for 

α/βIII-tail-IIB (k+ = 1.8 ± 0.5 μM-1 s-1 and k- = 2.4 ± 4.2 s-1) were close to those of both full-

length α/βIIB and full-length α/βIII. These data indicate that each of the chimeric β tubulin 

constructs can elongate into microtubule polymer at rates close to those measured for each 

of the full-length wild-type proteins α/βIIB and α/βIII.  

We next analyzed catastrophe frequency, the dynamic instability parameter that 

differs substantially between α/βIIB and α/βIII. For α/βIIB-tail-III microtubules, the 

catastrophe frequencies are close to those of the full-length α/βIIB at the same tubulin 

concentrations  (Fig. 2.8 J and Fig. 2.4 G). Next, we measured the catastrophe frequencies 

of microtubules assembled from α/βIII-tail-IIB tubulin and found them to be ~1.5- to 3-

fold higher than those of α/βIIB-tail-III microtubules over a range of tubulin concentrations 

(Fig 2.8 J and Table 2.1). These catastrophe frequencies of α/βIII-tail-IIB microtubules 

were close to the reported catastrophe frequencies of microtubules assembled from full-

length α/βIII (Fig. 2.8 J and Table 2.1). Together, these data indicate that the amino acid 
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substitutions within the structured core are crucial for establishing isotype-specific 

parameters of dynamic instability.  
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Table 2.1. Dynamic instability parameters for full-length wild-type tubulins and 

chimeric tubulins. Table includes data presented in Fig. 2.4 F and G, Fig. 2.5 G and H, 

and Fig. 2.8 I and J. Mean ± SD are shown. n represents the number of filaments 

analyzed (for polymerization rate) or catastrophe events (for catastrophe frequency). 

Asterisks indicate data from (Ti et al., 2016). 

 

Total tubulin 

concentration 

Recombinant 

protein 

Polymerization 

rate                   

(subunit.sec-1) 

Catastrophe frequency   

(min-1) 

6 μM α/βIIB 9 ± 2  (n = 70) 0.06 ± 0.008    (n = 60) 

  α/βIIB-tail-III 6 ± 1  (n = 87) 0.08 ± 0.008   (n = 92) 

  α/βIII-tail-IIB 8 ± 2  (n = 37) 0.12 ± 0.02       (n = 58) 

  α/βIII* 8 ± 3  (n = 77) 0.10 ± 0.01       (n = 105) 

10.5 μM α/βIIB 15 ± 3  (n = 70) 0.03 ± 0.006       (n = 33) 

  α/βIIB-tail-III 14 ± 3  (n = 81) 0.03 ± 0.005     (n = 37) 

  α/βIII-tail-IIB 17 ± 2  (n = 88) 0.10 ± 0.01       (n = 115) 

  α/βIII* 16 ± 6  (n = 75) 0.10 ± 0.01         (n = 104) 

  

Mixed (3:1)            

(α/βIIB: α/βIII) n.d. 0.05 ± 0.008      (n = 41) 

  

Mixed (1:1)            

(α/βIIB: α/βIII) 14 ± 2  (n = 79) 0.06 ± 0.007       (n = 65) 

  

Mixed (1:3)            

(α/βIIB: α/βIII) n.d. 0.12 ± 0.009     (n = 153) 

13 μM α/βIIB 25 ± 4  (n = 52) 0.03 ± 0.006     (n = 20) 

  α/βIIB-tail-III 21 ± 3  (n = 49) 0.008 ± 0.003     (n = 9) 

  α/βIII-tail-IIB 19 ± 3  (n = 53) 0.08 ± 0.01       (n = 62) 

  α/βIII* 19 ± 4  (n = 57) 0.09 ± 0.01       (n = 68) 
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2.4 Discussion 

Our studies suggest that the differences in dynamic instability for microtubules 

assembled from each of the two tubulins can be attributed in large part to varied catastrophe 

frequency. The suppression of catastrophe in α/βIIB microtubules observed in vitro is on 

the order of what can be achieved by regulatory proteins in cells, such as TPX2, and by 

microtubule-stabilizing drugs, such as Taxol (Mohan et al., 2013; Wieczorek et al., 2015). 

Human tubulins βIIB and βIII differ in amino acid identity at ~9% of residues within the 

~450 amino acid polypeptide, and the short ~25 residue C-terminal tail carries a large 

fraction (15 out of 42) of the total residue changes (Fig. 2.9 A). Our analyses of chimeric 

'tail-swapped' tubulins suggest that of these 42 non-identical residues, it is those within the 

structured core of tubulin that are largely responsible for the different dynamics. Recent 

studies examining the effects of residue mutations in tubulin's intermediate domain (Geyer 

et al., 2015) and kinesin-binding site (Ti et al., 2016) are beginning to reveal how subtle 

allostery within the tubulin heterodimer impacts microtubule assembly dynamics. Given 

that there are 27 amino acid differences between the βIIB and βIII isotypes within the 

tubulin core, and that each may affect long-range communication across the dimer, 

structure or sequence alone are not likely to prioritize which residues should be examined. 

Additional studies will be needed to identify which of the 27 amino acid differences, alone 

or in combination with other residues, specify the observed differences in dynamic 

instability.  

There are five β tubulins expressed in the brain (Banerjee et al., 1988; Leandro‐

García et al., 2010). The core sequence of βIIB shares the least amount of similarity to that  
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Figure 2.9. Alignment of βIII and βIIB amino acid sequence. 

(A) Secondary structure topology map corresponds to features derived from PDB listing 

3J6E. Residues on β tubulin within 3Å of intra-tubulin (orange stars), longitudinal (purple 

stars), or lateral (blue stars) contacts or the GMPCPP binding site (black stars) are 

indicated. Residues that differ between isotypes βIII and βIIB are labeled in red.  
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of βIII compared to the other isotypes expressed in the tissue (Leandro‐García et al., 2010) 

(Fig. 2.6 C). We hypothesize that these two tubulin isotypes establish the range of potential 

catastrophe frequencies of neuronal microtubules. In addition, our data indicate that 

recombinant α/βIIB and α/βIII tubulin can co-polymerize and form microtubules comprised 

of 'mixed' isotypes, which have catastrophe frequencies intermediate between those 

measured for microtubules composed of only one tubulin. Based on intrinsic 

polymerization properties alone and a simple model (Verde et al., 1992), the average length 

of microtubules assembled from α/βIIB would be ~3 times longer than those assembled 

from α/βIII (see Materials and Methods), and the average length of 'mixed' microtubules 

would be intermediate. Thus, microtubule dynamics could be 'tuned' to have different 

catastrophe frequencies by varying the ratio of different isotypes in cells. Additional 

functional specialization would come through interactions with MAPs and via post-

translational modifications.  
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Chapter 3: Mutations in human tubulin proximal to the 

kinesin binding site alter dynamic instability at microtubule 

plus- and minus-ends 

 

Note to readers: Some of the work described below has been included in a manuscript 

published in the Developmental Cell (DOI: 10.1016/j.devcel.2016.03.003). Here, I include 

only experiments and analysis that I personally participated in.  

 

3.1 Summary 

The assembly of microtubule-based cellular structures depends on regulated tubulin 

polymerization and directional transport. Here, we purify and characterize tubulin 

heterodimers that have human β-tubulin isotype III (βIII), as well as heterodimers with one 

of two β-tubulin mutations (D417H or R262H). Both point mutations are proximal to the 

kinesin-binding site and have been linked to an ocular motility disorder in humans. 

Compared to wild-type, microtubules with these mutations are substantially more stable, 

reflected in decreased catastrophe frequencies. Examination of the assembly dynamics and 

MAP binding properties of microtubules assembled from mixtures of wild-type and mutant 

tubulins reveals that these mutations have dose-dependent effects on microtubule function. 

Together, our findings reveal how residues on the surface of microtubules, distal from the 

GTP-hydrolysis site and inter-subunit contacts, can alter polymerization dynamics at the 

plus- and minus-ends of microtubules.  
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3.2 Introduction  

Heterodimers of α/β-tubulin undergo guanosine triphosphate (GTP)-dependent 

polymerization to form microtubules, cytoskeletal filaments essential for diverse cellular 

processes including neuronal transport, cell migration, and cell division (Desai and 

Mitchison, 1997; Heald and Khodjakov, 2015; Kapitein and Hoogenraad, 2015). The 

proper organization of microtubules depends on dynamic instability, the stochastic 

transitions of the microtubule between growth and shrinkage, and microtubule-associated 

proteins (MAPs) that can step along these filaments to transport cargoes or regulate 

filament polymerization dynamics (Heald and Khodjakov, 2015; Nogales and Zhang, 

2016). Consistent with these basic functions, mutations in tubulin or MAPs that disrupt 

MAP-microtubule interactions can lead to defective cytoskeletal architectures and have 

been linked to disease (Hirokawa et al., 2009; Niwa et al., 2013; Tischfield et al., 2011).  

We now have good structural models for tubulin heterodimers, microtubules, and 

how motor and non-motor MAPs interact with conserved amino acids on the surface of the 

hollow tube-like filament (Nogales and Zhang, 2016). MAPs such as the end-binding (EB) 

proteins that regulate microtubule polymerization dynamics bind tubulin subunits at sites 

proximal to the GTP-binding pocket of tubulin to sense and modulate changes in nucleotide 

states that directly contribute to polymerization dynamics (Akhmanova and Steinmetz, 

2010; Maurer et al., 2012). In contrast, MAPs such as kinesins that move directionally 

along the microtubule lattice interact with surface-exposed residues that are distal from 

tubulin’s GTP-binding site and the contact regions between different subunits (Nogales 

and Zhang, 2016). Based on structural data alone, we would not expect these surface 

residues to be involved in modulating microtubule polymerization dynamics. However, the 
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effect of mutating residues proximal to the kinesin-binding site on parameters of dynamic 

instability or on tubulin and microtubule conformation is not known.  

Seven α- and eight β-tubulin isotypes have been identified in humans (Ludueña and 

Banerjee, 2008). The distribution of these isotypes varies across different tissues, with β-

tubulin isotype III (βIII) expression mainly limited to developing and mature neurons 

(Jiang and Oblinger, 1992). Heterozygous point mutations in βIII have been identified in 

patients with severe congenital fibrosis of the extraocular muscle type 3 (CFEOM3), an 

ocular motility disorder (Tischfield et al., 2010). Studies in mice and budding yeast suggest 

that the phenotypes associated with heterozygous βIII mutations are likely due to reduced 

binding to kinesins (Niwa et al., 2013; Tischfield et al., 2010). Currently it is difficult to 

establish whether these mutations directly reduce binding to MAPs. It is also unclear 

whether these mutations in tubulin alter polymerization dynamics. This is in large part due 

to the challenges in generating human tubulin from recombinant sources.  

To examine the contribution of surface residues in βIII to the structural and 

biochemical properties of microtubules, we devised a strategy to generate recombinant 

tubulin heterodimers that have human βIII. We determined the high-resolution structure, 

characterized the binding to MAPs, and analyzed the polymerization dynamics of wild-

type and mutant tubulins. Surprisingly, we find that two disease-related point mutations in 

βIII, D417H and R262H, alter polymerization dynamics at microtubule plus- and minus-

ends. By examining the properties of microtubules assembled from mixtures of wild-type 

and mutant tubulins, we dissect how the presence of sub-stoichiometric levels of mutant β-

tubulin can have distinct effects on MAP binding and dynamic instability. 
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3.3 Results  

Purification of Recombinant Tubulin Heterodimers that Have Wild-Type and 

Mutant βIII 

To generate recombinant human tubulin, we first used a recently reported insect 

cell-based strategy (Minoura et al., 2013). However, in our hands this immunoprecipitation 

approach, which generates heterodimers with FLAG-tagged β-tubulin and hexahistidine-

tagged α-tubulin, produced an insufficient yield of pure tubulin. Therefore, to generate 

recombinant tubulin in sufficient yield and to remove any affinity tags, we significantly 

redesigned the method, incorporating a cleavable hexahistidine tag at the C terminus of β-

tubulin, and left α-tubulin untagged. To purify tubulin, we designed a three-step 

purification strategy that employs nickel-affinity chromatography, cleavage of the 

hexahistidine tag on β-tubulin, and TOG-domain affinity chromatography (Widlund et al., 

2012) (Fig. 3.1 A). This protocol typically yielded >95% pure tubulin in amounts sufficient 

for biochemical and biophysical studies (1.5 mg tubulin per liter of cultured insect cells) 

(Fig. 3.1 B). We generated recombinant forms of tubulin heterodimers containing wild-

type βIII and two CFEOM3-linked βIII mutants, D417H and R262H (Fig. 3.1B). Protein 

immunoblots showed that purified recombinant human tubulin has no detectable 

hexahistidine tag (Fig. 3.1 C).  

We next used mass spectrometry to confirm the presence of mutated residues (Fig. 

3.2 A-C) and found that purified α/β-tubulin consisted of >99% recombinant βIII and a 

close to equimolar mixture of recombinant human (isotype α1B) and endogenous insect α-

tubulin (Fig. 3.3 A). As human and insect α-tubulin are ~97% identical by sequence 
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Figure 3.1. Purification and Western Blot Analysis of Recombinant Human βIII. 

(A) Schematic detailing the purification of recombinant human tubulin. Typical tubulin 

purity at key steps is indicated. TEV, tobacco etch virus. (B) SDS-PAGE analysis of 

purified tubulin. WT, wild-type. (C) Immunoblot analyses of proteins eluted from nickel-

affinity and TOG-affinity columns. Antibodies against α-tubulin, β-tubulin, and C-terminal 

hexahistidine tag were used for Western blots (WB), as indicated. 
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Figure 3.2. Mass spectrometry analyses of purified recombinant βIII-wild-type, βIII-

D417H and βIII-R262H.  

(A-C), Peptide fragments from the mass-spectrometry characterization of purified 

recombinant βIII-wild-type (A), βIII-D417H (B) and βIII-R262H (C). Fragments 

identified in trypsin digests (blue) and in chymotrypsin digests (underlined) are 

highlighted. Mutated residues are shown in red.  
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A 
 

Wild-type 

  1 M R E I V H I Q A G Q C G N Q I G A K F W E V I S D E H G I D P S G N Y V G 

 39 D S D L Q L E R I S V Y Y N E A S S H K Y V P R A I L V D L E P G T M D S V 

 77 R S G A F G H L F R P D N F I F G Q S G A G N N W A K G H Y T E G A E L V D 

115 S V L D V V R K E C E N C D C L Q G F Q L T H S L G G G T G S G M G T L L I 

153 S K V R E E Y P D R I M N T F S V V P S P K V S D T V V E P Y N A T L S I H 

191 Q L V E N T D E T Y C I D N E A L Y D I C F R T L K L A T P T Y G D L N H L 

229 V S A T M S G V T T S L R F P G Q L N A D L R K L A V N M V P F P R L H F F 

267 M P G F A P L T A R G S Q Q Y R A L T V P E L T Q Q M F D A K N M M A A C D 

305 P R H G R Y L T V A T V F R G R M S M K E V D E Q M L A I Q S K N S S Y F V 

343 E W I P N N V K V A V C D I P P R G L K M S S T F I G N S T A I Q E L F K R 

381 I S E Q F T A M F R R K A F L H W Y T G E G M D E M E F T E A E S N M N D L 

419 V S E Y Q Q Y Q D A T A E E E G E M Y E D D E E E S E A Q G P K E N L Y F Q 

B 
 

BIII-D417H 

  1 M R E I V H I Q A G Q C G N Q I G A K F W E V I S D E H G I D P S G N Y V G 

 39 D S D L Q L E R I S V Y Y N E A S S H K Y V P R A I L V D L E P G T M D S V 

 77 R S G A F G H L F R P D N F I F G Q S G A G N N W A K G H Y T E G A E L V D 

115 S V L D V V R K E C E N C D C L Q G F Q L T H S L G G G T G S G M G T L L I 

153 S K V R E E Y P D R I M N T F S V V P S P K V S D T V V E P Y N A T L S I H 

191 Q L V E N T D E T Y C I D N E A L Y D I C F R T L K L A T P T Y G D L N H L 

229 V S A T M S G V T T S L R F P G Q L N A D L R K L A V N M V P F P R L H F F 

267 M P G F A P L T A R G S Q Q Y R A L T V P E L T Q Q M F D A K N M M A A C D 

305 P R H G R Y L T V A T V F R G R M S M K E V D E Q M L A I Q S K N S S Y F V 

343 E W I P N N V K V A V C D I P P R G L K M S S T F I G N S T A I Q E L F K R 

381 I S E Q F T A M F R R K A F L H W Y T G E G M D E M E F T E A E S N M N H L 

419 V S E Y Q Q Y Q D A T A E E E G E M Y E D D E E E S E A Q G P K E N L Y F Q 

 

 

C 
 

BIII-R262H 

  1 M R E I V H I Q A G Q C G N Q I G A K F W E V I S D E H G I D P S G N Y V G 

 39 D S D L Q L E R I S V Y Y N E A S S H K Y V P R A I L V D L E P G T M D S V 

 77 R S G A F G H L F R P D N F I F G Q S G A G N N W A K G H Y T E G A E L V D 

115 S V L D V V R K E C E N C D C L Q G F Q L T H S L G G G T G S G M G T L L I 

153 S K V R E E Y P D R I M N T F S V V P S P K V S D T V V E P Y N A T L S I H 

191 Q L V E N T D E T Y C I D N E A L Y D I C F R T L K L A T P T Y G D L N H L 

229 V S A T M S G V T T S L R F P G Q L N A D L R K L A V N M V P F P H L H F F 

267 M P G F A P L T A R G S Q Q Y R A L T V P E L T Q Q M F D A K N M M A A C D 

305 P R H G R Y L T V A T V F R G R M S M K E V D E Q M L A I Q S K N S S Y F V 

343 E W I P N N V K V A V C D I P P R G L K M S S T F I G N S T A I Q E L F K R 

381 I S E Q F T A M F R R K A F L H W Y T G E G M D E M E F T E A E S N M N D L 

419 V S E Y Q Q Y Q D A T A E E E G E M Y E D D E E E S E A Q G P K E N L Y F Q 

 

 

 

 

A 
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Human α-tubulin 1B    1   MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFSETGAGK 

Moth α-tubulin        1   MRECISVHVGQAGVQIGNACWELYCLEHGIQPDGQMPTDKTVGGGDDSFNTFFSETGAGK 
                          ****** ****************************** *** ****************** 

 

Human α-tubulin 1B   61   HVPRAVFVDLEPTVIDEVRTGTYRQLFHPEQLITGKEDAANNYARGHYTIGKEIIDLVLD 

Moth α-tubulin       61   HVPRAVFVDLEPTVVDEVRTGTYRQLFHPEQLITGKEDAANNYARGHYTIGKEIVDLVLD 
                          ************** *************************************** ***** 

 

Human α-tubulin 1B  121   RIRKLADQCTGLQGFLVFHSFGGGTGSGFTSLLMERLSVDYGKKSKLEFSIYPAPQVSTA 

Moth α-tubulin      121   RIRKLADQCTGLQGFLIFHSFGGGTGSGFTSLLMERLSVDYGKKSKLEFAIYPAPQVSTA 
                          **************** ******************************** ********** 

 

Human α-tubulin 1B  181   VVEPYNSILTTHTTLEHSDCAFMVDNEAIYDICRRNLDIERPTYTNLNRLISQIVSSITA 

Moth α-tubulin      181   VVEPYNSILTTHTTLEHSDCAFMVDNEAIYDICRRNLDIERPTYTNLNRLIGQIVSSITA 
                          *************************************************** ******** 

 

Human α-tubulin 1B  241   SLRFDGALNVDLTEFQTNLVPYPRIHFPLATYAPVISAEKAYHEQLSVAEITNACFEPAN 

Moth α-tubulin      241   SLRFDGALNVDLTEFQTNLVPYPRIHFPLVTYAPVISAEKAYHEQLSVAEITNACFEPAN 
                          ***************************** ****************************** 

 

Human α-tubulin 1B  301   QMVKCDPRHGKYMACCLLYRGDVVPKDVNAAIATIKTKRSIQFVDWCPTGFKVGINYQPP 

Moth α-tubulin      301   QMVKCDPRHGKYMACCMLYRGDVVPKDVNAAIATIKTKRTIQFVDWCPTGFKVGINYQPP 
                          **************** ********************** ******************** 

 

Human α-tubulin 1B  361   TVVPGGDLAKVQRAVCMLSNTTAIAEAWARLDHKFDLMYAKRAFVHWYVGEGMEEGEFSE 

Moth α-tubulin      361   TVVPGGDLAKVQRAVCMLSNTTAIAEAWARLDHKFDLMYAKRAFVHWYVGEGMEEGEFSE 
                          ************************************************************ 

 

Human α-tubulin 1B  421   AREDMAALEKDYEEVGVDSVEGEGEEEGEEY 

Moth α-tubulin      421   AREDLAALEKDYEEVGMDSAEGEGEGA EEY 
                          **** *********** ** *****   *** 

 

 

Figure 3.3. Sequence alignment between human and insect α tubulin.  

(A) Protein sequence alignment shows 97% identity between human α-tubulin 1B 

(NP_006073.2) and α-tubulin from moth cells (ABU94679.1). Peptide fragments that 

were used to estimate the relative amount of human and insect α-tubulin are labeled in 

red. 
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(Fig. 3.3 A),  we expect that the presence of insect α-tubulin is not likely to have a 

substantial impact on our analyses. We believe that our recombinant tubulin purification 

strategy is particularly useful for directly comparing wild-type and mutant forms of human 

β-tubulin. Hereafter, to emphasize the specific β-tubulin present in the purified tubulin, we 

refer to our wild-type tubulin as βIII-wild-type and the mutant forms as βIII-D417H and 

βIII-R262H.  

We analyzed the recombinant wild-type and mutant βIII using two approaches. 

First, size-exclusion chromatography indicated that purified recombinant wild-type and 

mutant βIII exist as stable dimers in solution with Stokes radii (43 A° ) similar to that of 

bovine tubulin (Fig. 3.4 A and B) purified using standard methods involving 

polymerization/depolymerization cycles (Al-Bassam et al., 2006; Gell et al., 2011). 

Second, fluorescence microscopy-based analysis indicated that βIII-wild-type, βIII-

D417H, and βIII-R262H polymerized to form microtubules in the presence of Taxol (Fig. 

3.4 C-E). 

 

Disease-Related Point Mutations in βIII Reduce Binding to Motor and Non-motor 

MAPs 

To determine effects of the D417H and R262H tubulin mutations on the binding to 

motor and non-motor MAPs, we first used a total internal reflection fluorescence (TIRF) 

microscopy-based assay (Fig. 3.5 A). We analyzed the association of Taxol-stabilized 

microtubules with GFP-tagged kinesin superfamily proteins that share a motor domain 

conserved in both structure and sequence (Vale and Fletterick, 1997) (kinesin-1ΔC and 

kinesin-5, in the presence of 2 mM MgATP), and two non-motor MAPs that have 
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Figure 3.4. Analysis of recombinant human βIII proteins. 

(A) Elution profiles of βIII-wild-type (peak volume, 14.4 ml) and bovine tubulin (peak 

volume, 14.3 ml) from size-exclusion chromatography. V0, void volume. (B) Elution 

profiles of βIII-D417H (peak volume, 14.3 ml) and βIII-R262H (peak volume, 14.3 ml) 

from size-exclusion chromatography. Bovine tubulin elution profile is shown as reference. 

(C-E) TIRF microscopy images of Taxol-stabilized βIII-wild-type (C), βIII-D417H (D), 

and βIII-R262H (E) microtubules. Fluorescently labeled bovine tubulin (~4%) was added 

to visualize filaments. Scale bars, 2 μm.  
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Figure 3.5. Design of TIRF Microscopy Experiments and Fluorescent Protein 

Constructs.  

(A and B) Schematics for assay (A) and MAP constructs used (B) with microtubule-

binding regions (black), coiled-coil domain (gray) and GFP (green) highlighted.  
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structurally distinct microtubule-binding motifs (PRC1-SC and NuMA tail II) (Fig. 3.5 B) 

(Haren and Merdes, 2002; Subramanian et al., 2010; Forth et al., 2014). We found that all 

of the tested MAPs associate more strongly with wild-type than with mutant βIII 

microtubules (Fig. 3.6 A-B and Fig. 3.7 A-B). The GFP fluorescence intensity per micron 

of microtubule length indicated that under our assay conditions these MAPs have a 5- to 

10-fold reduction in direct association with microtubules polymerized either with βIII-

D417H or βIII-R262H compared to βIII-wild-type microtubules (Fig. 3.8 A-D).  

 

βIII-D417H and βIII-R262H Microtubules Have Altered Intrinsic Polymerization 

Dynamics Compared to Wild-Type Microtubules 

We next employed a TIRF-based single-filament assay to analyze polymerization 

dynamics of βIII-wild-type (Fig. 3.9 A). As a template for microtubule formation, we used 

guanosine-5’-[(α,β)-methyleno]triphosphate (GMPCPP)-stabilized seeds generated with 

βIII-wild-type tubulin. In the presence of soluble tubulin and GTP (1 mM), microtubules 

were observed to grow and shrink at both ends of seeds (Fig. 3.9 B). Kymographs of 

individual microtubules show a noticeable difference in the length and growth rates of 

microtubule polymer assembled from one end of the seed compared to the other (Fig. 3.9 

C). Hereafter, as per convention, the faster-growing end is referred to as the plus-end and 

the slower-growing end as the minus-end. We next measured key parameters of 

microtubule dynamic instability, including rate of growth (polymerization rate) and the 

likelihood of transition from relatively slow growth to rapid shortening (catastrophe 

frequency) (Desai and Mitchison, 1997) at both plus- and minus-ends.  
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Figure 3.6. Analysis of Motor MAP Binding to Microtubules Assembled with 

Recombinant βIII Tubulins.  

(A and B) Images of microtubule and GFP-tagged MAPs, along with two-color overlays 

(microtubule, red; GFP, green), are shown for (A) kinesin-1ΔC-GFP (0.7 nM, 2 mM 

MgATP) and (B) kinesin-5 (0.6 nM, 2 mM MgATP). Scale bars, 2 μm. 
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Figure 3.7. Analysis of Non-motor MAP Binding to Microtubules Assembled with 

Recombinant βIII Tubulins.  

(A and B) Images of microtubule and GFP-tagged MAPs, along with two-color overlays 

(microtubule, red; GFP, green), are shown for (A) GFP-PRC1-SC (16 nM) and (B) GFP-

NuMA tail II (20 nM). Scale bars, 2 μm. 
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Figure 3.8. Point Mutations D417H and R262H in βIII Reduce the Binding of Motor 

and Non-motor MAPs to Microtubules. 

(A–D) GFP fluorescence intensity per micron along the microtubules for kinesin-1ΔC (A), 

kinesin-5 (B), PRC1-SC (C), and NuMA tail II (D) is shown. Data from three independent 

experiments were pooled for each condition and analyzed to determine averages and SD 

(error bars) (n = 62 or greater). 
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Figure 3.9. Intrinsic Polymerization Dynamics of βIII-Wild-Type. 

(A) Schematic for assay used to analyze polymerization dynamics of single microtubules. 

Tubulin (red) incorporates at plus- and minus-ends of GMPCPP-stabilized microtubule 

seeds (green). (B and C) TIRF microscopy image (B) and kymograph (C) of dynamic 

microtubules growing from GMPCPP seeds in the presence of 10.5 μM βIII-wild-type 

(WT). (D) Elongation rates of βIII-wild-type at plus- and minus-ends across three different 

tubulin concentrations. (E) Catastrophe frequency of βIII-wild-type at microtubule plus- 

and minus-ends. Data from three independent experiments were pooled for each condition 

and analyzed to determine averages and SD (error bars) (n = 41 or greater). Elongation 

rates were fitted with the linear equation as a function of the free tubulin concentration. 

Assuming a Poisson distribution, the standard deviations of catastrophe frequency were 

calculated as (observed catastrophe frequency)/(number of events counted)0.5. Horizontal 

scale bars, 2 μm; vertical scale bars, 60 s. See also Table 3.1.  
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The polymerization rate from plus-ends of βIII-wild-type increased with tubulin 

concentration and could be fit to a line (Oosawa, 1970), whose slope and intercept 

suggested the apparent association (k+) and dissociation (k-) rate constants of tubulin 

subunits (k+ = 1.7 ± 0.15 μM-1 s-1 and k- = 1.1 ± 1.5 s-1) in the 1D model (Fig. 3.9 D). By 

contrast, the minus-end polymerization rate of βIII-wildtype was relatively constant across 

the range of tubulin concentrations tested (Fig. 3.9 D). The catastrophe frequency was 0.1 

± 0.01 min-1 for plus-ends and 0.09 ± 0.01 min-1 for minus-ends at a tubulin concentration 

(10.5 μM) close to physiological levels (Fig. 3.9 E). While variation in catastrophe 

frequency was observed at different tubulin concentrations, the scatter in these data did not 

allow for the establishment of a strong correlation between catastrophe frequency and 

concentration. Together, these data demonstrate βIII-wild-type’s dynamic instability and 

yield key parameters, which thus far have not been available for any purified human tubulin 

isotype.  

We next examined the dynamics of mutant βIII microtubules. At equivalent time 

intervals, βIII-D417H and βIII-R262H assembled longer microtubule extensions from 

GMPCPP-stabilized seeds compared to βIII-wild-type across different tubulin 

concentrations (Fig. 3.10 A-D). We first focused on plus-end dynamic instability 

parameters. For βIII-D417H, polymerization rates at plus-ends of microtubules were ~1.7-

fold faster than those for βIII-wild-type (10.5 μM), with a 2-fold higher k+ and a 7-fold 

higher k- (Fig. 3.10 E). These microtubules were substantially more stable, undergoing 

catastrophe ~4-fold less frequently than did microtubules assembled from βIII-wild-type 

(10.5 μM, Fig. 3.10 F). In the case of βIII-R262H, the polymerization rates at plus-ends 

were similar to those measured for βIII-wild-type (Fig. 3.10 E). The catastrophe  
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Figure 3.10. βIII-D417H and βIII-R262H Have Altered Intrinsic Polymerization 

Dynamics Compared to βIII-Wild-Type. 

(A–D) TIRF microscopy images (A and C) and kymographs (B and D) of dynamic 

microtubules growing from GMPCPP seeds in the presence of βIII-D417H (A and B) or 

βIII-R262H (C and D) (10.5 μM). (E–H) Analyses of dynamic instability parameters at 

plus-ends (E and F) and minus-ends (G and H) of βIII-D417H and βIII-R262H 

microtubules: elongation rate (E and G) and catastrophe frequency (F and H) are shown. 

For comparison, the dashed lines indicate the concentration dependence of elongation rates 

and the catastrophe frequencies of βIII-wild-type (see Fig. 3.9 D and E). Data from three 

independent experiments were pooled for each condition and analyzed to determine 

averages and SD (error bars) (n = 41 or greater). Elongation rates were fitted with the linear 

equation as a function of the free tubulin concentration. Assuming a Poisson distribution, 

the standard deviations of catastrophe frequency were calculated as (observed catastrophe 

frequency)/(number of events counted)0.5. Horizontal scale bars, 2 μm; vertical scale bars, 

60 s. See also Table 3.1.  
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requency at microtubule plus-ends was ~3-fold lower than βIII-wild-type (10.5 μM, Fig. 

3.10 F). Based on the model developed by Leibler and colleagues (Verde et al., 1992) and 

these measurements, we estimate that βIII-D417H microtubules would be, on average, ~7 

times longer than βIII-wild-type, and βIII-R262H microtubules would be ~3 times longer 

than βIII-wild-type (detailed calculation is provided in Methods).  

D417H and R262H mutations in βIII not only affect microtubule polymerization 

dynamics at the plus-ends but also alter filament dynamics at the minus-ends. The growth 

rates of βIII-D417H microtubule minus-ends were substantially faster than those we 

measured for βIII-wild-type and varied with tubulin concentration (k+ = 1.4 ± 0.23 μM-1 s-

1 and k- = 1.2 ± 2.1 s-1, Fig. 3.10 G). Furthermore, catastrophe frequency was ~2-fold lower 

for βIII-D417H compared to wild-type tubulin (10.5 μM, Fig. 3.10 H). In the case of βIII-

R262H microtubule minus-ends, the catastrophe frequency was 2-fold lower compared to 

βIII-wild-type (10.5 μM, Fig. 3.10 H). However, substantial differences in minus-end 

polymerization rates were not observed between βIII-wild-type and βIII-R262H (Fig. 3.10 

G). Table 3.1 summarizes these data. Together, our findings reveal that mutations near the 

kinesin-binding site can directly alter microtubule dynamics at both filament ends.  

 

Analyses of Mixtures of Wild-Type and Mutant Tubulins 

To test whether these βIII mutations have dose-dependent effects on microtubule 

function, we mixed wild-type and mutant tubulins and examined both binding to MAPs 

and assembly dynamics. First, we compared MAP binding between mixed mutant and 

wild-type microtubules. At different ratios of βIII-D417H or βIII-R262H and βIII-wild-

type tubulin, microtubules readily polymerized in the presence of Taxol (Fig. 3.11 A-B). 

We added GFP-tagged kinesin-1ΔC to these microtubules and measured the fluorescence 
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intensity per unit filament length. The average GFP fluorescence intensity on mixed 

microtubules was lower than that observed for microtubules assembled from βIII-wild-type 

and decreased further with increasing amounts of βIII-D417H in the polymer (Fig. 3.11 

C). We also examined the binding of GFP-tagged PRC1-SC to these microtubules and 

observed fluorescence intensities that were lower than what we observed for wild-type 

tubulin filaments and higher than what we observed for βIII-D417H filaments (Fig. 3.11 

D). A similar trend was observed for βIII-R262H and βIII-wild-type mixed microtubules 

(Fig. 3.11 A-D).  

Next, we measured dynamic instability parameters in single-filament assays. We 

observed dynamic microtubule extensions at both plus- and minus-ends of GMPCPP seeds 

(Fig. 3.12 A-B). The catastrophe frequency at filament plus-ends was ~0.11 min-1 at equal 

ratios of βIII-D417H and βIII-wild-type, and ~0.09 min-1 at equal ratios of βIII-R262H and 

βIII-wild-type microtubules (10.5 μM total tubulin concentration). These values are similar 

to those measured for microtubules assembled with βIII-wild-type (~0.10 min-1, 10.5 μM 

total tubulin) (Fig. 3.12 C). The catastrophe frequency at the minus-ends of mixed 

microtubules was also similar to that of wild-type alone (Fig. 3.12 D). Together, our data 

suggest that the presence of wild-type tubulin can suppress the altered catastrophe 

frequencies but only partially recover the reduction in MAP binding due to these point 

mutations in βIII. 
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Figure 3.11. Analyses of MAP Binding of Microtubules Polymerized from Mixtures 

of Wild-Type and Mutant Tubulin 

(A and B) Images of microtubules polymerized from equal ratios of βIII-wild-type and 

βIII-D417H (WT/D417H) or βIII-R262H (WT/R262H), associated GFP-tagged MAPs, 

along with two-color overlays (microtubule, red; GFP, green), are shown for (A) kinesin-

1ΔC (0.7 nM, 2 mM MgATP) and (B) PRC1-SC (16 nM). (C and D) GFP fluorescence 

intensity of kinesin-1ΔC (C) and PRC1-SC (D) per micron of Taxol-stabilized 

microtubules polymerized from tubulin with different ratios of βIII-wild-type and mutant 

βIII tubulin. Data from three independent experiments were pooled for each condition and 

analyzed to determine averages and SD (error bars) (kinesin-1ΔC, n = 64 or greater; PRC1-

SC, n = 66 or greater). Scale bar, 2 μm. 
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Figure 3.12. Analyses of Polymerization Dynamics of Microtubules Polymerized from 

Mixtures of Wild-Type and Mutant Tubulin 

(A and B) Kymographs of dynamic microtubule extensions from GMPCPP seeds at equal 

ratios of βIII-D417H and βIII-wild-type (WT) (A) and at equal ratios of βIII-R262H and 

wild-type (B). (C and D) Analyses of catastrophe frequency at the growing plus-ends (C) 

and minus-ends (D) of microtubules. Wild-type and mutant tubulin were mixed in equal 

ratios while the total tubulin concentration was kept at 10.5 μM. For comparison, dashed 

lines indicate catastrophe frequency values for microtubules assembled with wild-type 

(red), βIII-D417H (blue), or βIII-R262H (orange) tubulin (see Fig. 3.9). For C and D, 

data from three independent experiments were pooled for each condition and analyzed to 

determine averages and SD (error bars) (n = 43 or greater). Assuming a Poisson 

distribution, the standard deviations of catastrophe frequency were calculated as 

(observed catastrophe frequency)/(number of events counted)0.5. Horizontal scale bars, 2 

μm; vertical scale bars, 60 s. 
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Table 3.1. Dynamic instability parameters for βIII-wild-type, βIII-D417H and βIII-

R262H.  

TIRF microscopy-based single filament assays were carried out as described in Methods. 

Mean±SD are shown for >65 measurements. The values of catastrophe frequency and 

polymerization rate are from the analyses of experiments with 10.5 μM βIII-wild-type, 

βIII-D417H or βIII-R262H. 

 

 βIII-Wild-type βIII-D417H βIII-R262H 

 Plus-end 
Minus-

end 
Plus-end 

Minus-

end 
Plus-end 

Minus-

end 

k+ (µM-1s-1) 1.7±0.15 N/A 3.8±0.4 1.4±0.23 1.5±0.7 N/A 

k- (s-1) 1.1±1.5 N/A 7.3±3.4 1.2±2.1 0.4±7.2 N/A 

Catastrophe 

frequency (min-1) 

0.10± 

0.01 

0.09± 

0.01 

0.023± 

0.006 

0.038± 

0.007 

0.033± 

0.007 

0.05± 

0.009 

Polymerization 

rate (μm/min) 
0.6±0.2 0.3±0.1 1.0±0.2 0.4±0.1 0.6±0.2 0.2±0.1 
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3.4 Discussion 

Our studies indicate that mutations proximal to the βIII kinesin-binding site alter 

polymerization dynamics. In particular, these mutants suppress catastrophe frequency by 

magnitudes similar to what is achieved by regulatory proteins or microtubule stabilizing 

drugs (Mohan et al., 2013; Wieczorek et al., 2015). Structural and mutagenesis studies 

indicate that residues in helix H7, an element buried in tubulin’s core, are important for 

relaying conformational changes upon GTP hydrolysis during microtubule polymerization 

(Ravelli et al., 2004; Alushin et al., 2014; Geyer et al., 2015). In contrast, the effects of 

mutating residues located in tubulin’s kinesin-binding site on microtubule dynamics had 

not been explored. Our studies reveal a largely unexpected mechanism by which residues 

located on the surface of the microtubule lattice, distal from the nucleotide-binding site and 

from longitudinal and lateral contacts between subunits, can affect polymerization 

dynamics. 

In contrast to the all-or-nothing effect on polymerization dynamics, the impact on 

MAP binding when mixing wild-type tubulin with mutant forms is dose dependent, as 

MAP affinities decrease with increasing amounts of mutant tubulins in the polymer. The 

concentration of tubulin in cells is estimated to be ~10 μM, of which up to ~80% can be in 

the polymerized form (Pipeleers et al., 1977). Based on simple binding principles, the 

fraction of microtubule-bound MAPs that have sub-micromolar binding constants (e.g., 

kinesin) would be reduced by only a very small amount (~5%) for mutant microtubules 

relative to wild-type microtubules. A more substantial difference in the fraction bound to 

wild-type versus mutant microtubules would be observed for MAPs with weak 

microtubule-binding affinities (details on these calculations are provided in Methods). 
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Therefore, we posit that these mutations in tubulin would cause the associated phenotypes 

in only those cells where the functions of weakly binding MAPs are critical. Additional 

cell biological studies are needed to establish whether this hypothesis can help explain 

disease phenotypes (Niwa et al., 2013; Tischfield et al., 2010). 

Our findings reveal that disease-related tubulin mutations alter polymerization 

dynamics at not only the plus-ends but also the minus-ends of microtubules. The regulation 

of microtubule plus-ends by MAPs, such as the EB proteins, has been extensively studied 

(Galjart, 2010; Howard and Hyman, 2007). In contrast, the regulation and function of 

microtubule minus-end polymerization in cells are poorly understood. It has been generally 

accepted that γ-tubulin caps and stabilizes microtubule minus-ends in cells (Kollman et al., 

2011). However, it is now becoming clear that MAPs, such as katanin and spastin, sever 

existing filaments to remodel microtubule networks (Roll-Mecak and McNally, 2010). The 

fate of these new minus-ends is unclear, and we do not know if and when they are capped 

and stabilized. One clue comes from recent studies of calmodulin-regulated spectrin-

associated proteins (CAMSAPs), MAPs that selectively bind microtubule minus-ends, 

showing that newly generated minus-ends in human cells are not immediately capped but 

can grow (Jiang et al., 2014). Furthermore, it has been suggested that minus-end-binding 

proteins have important roles in the development and maintenance of axons and dendrites 

in neurons (Yau et al., 2014). Together, these data suggest that regulation of microtubule 

minus-end polymerization plays a key role in regulating microtubule organization. It is 

likely that access to recombinant human tubulin and different mutant forms should help 

dissect how these microtubule minus-end-binding proteins interact with the end-stabilizing 

cap to control microtubule minus-end polymerization in different cellular contexts. 
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Chapter 4: The spindle midzone functions as a brake to restrict 

chromosome movement in anaphase. 

4.1 Summary 

In anaphase, microtubules from opposite half-spindles form antiparallel bundles in 

the midzone through interactions with PRC1, a conserved non-motor cross-linking protein. 

Microtubule sliding decreases the length of overlap however it is unclear whether this 

change facilitates or restricts spindle elongation and thus chromosome movement. Here, 

we use live cell imaging to examine individual antiparallel bundles during anaphase. We 

find that the length of overlap decreases while the cross-sectional spacing of bundles stays 

the same. Loss of midzone organization by knockdown of PRC1 allows chromosomes to 

hyper-segregate due to increased rates of anaphase spindle elongation. Antiparallel bundle 

formation can be restored by expressing a mutant PRC1 with reduced affinity for 

microtubules. However, the length of overlap does not decrease during anaphase and 

chromosomes still hyper-segregate. Together, these data suggest that the spindle midzone 

in vertebrates primarily acts as a brake to restrict spindle elongation and to properly 

position chromosomes during cell division. 
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4.2 Introduction  

Specialized microtubule arrays perform critical functions in diverse cellular 

contexts. During cell division the spindle midzone, an array of overlapping antiparallel 

microtubules, assembles between segregating sister chromosomes (Khmelinskii and 

Schiebel, 2008). Several motor and non-motor proteins, including kinases and 

phosphatases, that contribute to the assembly and function of the spindle midzone have 

been identified (Glotzer, 2009). The spindle midzone contributes to positioning the cell 

division plane and anaphase chromosome movement (Green et al., 2012). Currently, it is 

not clear if the spindle midzone in human cells generates pushing or braking forces 

regulating anaphase chromosome movement. 

 Spindle midzone microtubules have plus-ends that interdigitate near the cell 

equator and minus-ends proximal to separating spindle poles (Heidemann and McIntosh, 

1980; Euteneuer and McIntosh, 1980). A subset of these filaments associate through cross-

linking proteins to form bundles that have reduced dynamics (Hu et al., 2011). Filaments 

in bundles can undergo relative sliding, as evidenced by both photoactivation studies 

(Saxton and McIntosh, 1987) and serial section electron microscopy showing that the 

length of microtubule overlap in bundles decreases during anaphase (Mastronarde, 1993).  

The change in overlap length can be a consequence of at least two activities. First, 

motor protein cross-linkers could slide apart midzone microtubules to drive spindle 

elongation and consequently chromosome segregation (Mcintosh et al., 1969). Several 

proteins have since been identified, including Eg5 and MKLP1, that can slide antiparallel 

filaments apart in vitro (Nislow et al., 1992; Kapitein et al., 2005) and localize to the 

midzone (Nislow, 1990; Sharp et al., 1999), suggesting that they may function to slide apart 
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microtubules in the spindle midzone. In support of this hypothesis, laser ablation of the 

spindle midzone in human cells decreases the rate of chromosome separation and prevents 

sister chromatid segregation when the connection to one spindle pole is severed (Kajtez et 

al., 2016; Vukušić et al., 2017). Second, cortically-anchored motors could pull on 

microtubules to separate spindle poles and consequently reduce the amount of overlap in 

spindle midzones. In this scenario, protein cross-linkers within overlapping microtubules 

in the spindle midzone would act to resist filament sliding. Consistent with this hypothesis, 

laser ablation of the spindle in C. elegans resulted in faster rates of pole separation (Grill 

et al., 2001). Additionally, ensembles of Eg5 in vitro were found to resist relative filament 

sliding at high velocity, explaining an earlier result that knockdown of the Eg5 ortholog, 

Bmk-1, results in increased rates of pole separation (Saunders et al., 2007; Shimamoto et 

al., 2015). Currently, we do not know how changes in the length of microtubule overlap in 

the spindle midzone of human cells contributes to its function.  

Disruption of the spindle midzone (e.g. by laser cutting) reveals evidence for both 

pushing and braking in different systems. Early laser cutting experiments in fungi and 

diatoms support a model in which the spindle midzone limits the separation rate of 

chromosomes during anaphase (Aist and Berns, 1981; Leslie and Pickett-Heapes, 1983). 

Similar results were observed in the first mitotic division of C. elegans embryos (Grill et 

al., 2001) where molecular dissection has revealed a possible role for motor cross-linking 

proteins in restricting chromosome movement (Collins et al., 2014; Saunders et al., 2007). 

In contrast, human cells exhibit decreased rates of chromosome segregation following 

multiple laser ablations of midzone microtubules in early anaphase (Vukušić et al., 2017). 

In these cells, a specialized array of overlapping microtubules termed “bridging fibers” 
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have been identified that link kinetochore fibers on sister chromatids during metaphase 

(Kajtez et al., 2016). Severing these fibers and the connection to one spindle pole during 

early anaphase prevents the segregation of sister chromatids on the periphery of the spindle 

(Kajtez et al. 2016; Vukušić et al. 2017). However, as fungi, worms, and humans recruit a 

similar set of midzone-associated proteins, it is unclear if differences between species 

represent lineage-specific specializations of the midzone machinery and if so, the 

molecular basis of these changes are still unclear.  

Specific disruption of the spindle midzone can be achieved through knockdown of 

PRC1, a member of the conserved Ase1/PRC1/MAP65 family of microtubule cross-

linking proteins, without preventing bipolar spindle assembly (Roostalu et al., 2010). Loss 

of PRC1 or its orthologs impairs antiparallel microtubule bundle formation in the midzone 

in all organisms examined, in many cases leading to the appearance of two disconnected 

half spindles in anaphase (Maton et al., 2015; Mollinari et al., 2002; Verbrugghe and White, 

2004; Vernı̀ et al., 2004). Interestingly, the impact of loss of PRC1 on chromosome 

segregation is not equivalent in all systems. In budding and fission yeast, Ase1 deletion 

impairs spindle elongation, leading to incomplete chromosome segregation and spindle 

collapse (Pellman, 1995; Schuyler et al., 2003; Yamashita et al., 2005). In contrast, loss of 

function of the C. elegans ortholog of PRC1, SPD-1, increases rates of spindle elongation 

(Verbrugghe and White, 2004). In human cells, the impact of PRC1 knockdown on 

chromosome segregation rates has not been studied.  

Differences in cell division function may be manifested through differences in the 

biochemical or biophysical properties of PRC1 family members. Budding yeast Ase1 

turnover in the midzone is slow (t ½ > 7 min) and in vitro can concentrate in microtubule 

https://paperpile.com/c/0g8wxU/QI4t+hb1d
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overlaps to generate entropic forces that resist filament sliding (Schuyler et al., 2003; 

Lansky et al., 2015). Unlike Ase1, vertebrate PRC1 is not known to concentrate in overlap 

regions. Experiments defining the cellular turnover rate of PRC1 on midzone microtubule 

bundles will likely provide insight into PRC1 function in cells. The localization of PRC1 

on midzone microtubules narrows during anaphase, likely reflecting the change in 

microtubule overlap length. However, the dynamics of individual bundles has not been 

examined in live cells. Furthermore, the basic properties of PRC1, such as microtubule 

binding affinity, and its impact on microtubule overlap length in human cells has not been 

examined. 

Here, we combine live cell imaging with protein knockdown to examine how 

microtubule overlap length in the spindle midzone contributes to chromosome movement. 

We track the 3D organization of dynamic and non-dynamic microtubules tagged by EB1 

or PRC1, respectively. Microtubule bundles maintain a constant nearest-neighbor spacing 

during spindle elongation. Microtubule overlap length decreases during the first half of 

anaphase and reaches a steady-state length that persists for several minutes. Knockdown 

of PRC1 increases chromosome segregation rates due to a ~50% increase in the rate of 

anaphase B spindle elongation. Expression of a mutant PRC1 with reduced microtubule 

binding affinity forms bundles but cannot rescue the chromosome hyper-elongation defects 

observed in knockdown cells alone. Together, our data suggest that the midzone in human 

cells acts as a brake to restrict chromosome separation during anaphase. 
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4.3 Results 

Examining PRC1 and EB1 localization in cross-sectional planes of dividing cells 

The spindle midzone consists of both dynamic and non-dynamic microtubules. The 

plus-ends of dynamic microtubules accumulate plus-end tracking proteins (+TIPs) whereas 

non-dynamic microtubules, including those in midzone bundles, do not (Akhmanova and 

Steinmetz, 2015). To examine both populations of microtubules in dividing cells, we 

generated stable hTERT-RPE1 cells expressing both GFP-tagged EB1 (hereafter, “GFP-

EB1”), a +TIP, and Halo-tagged PRC1 (hereafter, “Halo-PRC1”). Immunofluorescence 

analysis revealed that the pattern of PRC1 localization in cells expressing Halo-PRC1 was 

similar to endogenous protein in control cells (Fig. 4.1 A and B). We imaged dividing cells 

using two-color lattice light sheet microscopy (LLSM) after treating with a Halo-reactant 

dye. Cells were imaged after pole separation began, which is coordinated with anaphase 

onset (sister chromatid separation) in these cells (Su et al., 2016). We collected 58 

consecutive image planes per cell volume (0.35 nm spacing) in two channels at up to 60 

cell volumes/min (see Methods). To generate 3D reconstructions, the datasets were 

processed using a multistep approach that included deskew, deconvolution, and intensity-

based alignment (see Methods) (Chen et al., 2014).  

We generated a maximum intensity projection on a plane incident with the spindle 

pole-to-pole axis (Fig. 4.2 A and B). We examined cells at different stages of anaphase, 

indicated by different pole-to-pole distances. Halo-PRC1 signal intensity was highest near 

the center of the spindle (Fig. 4.2 A and B). The width of signal intensity narrowed with 

increasing pole-to-pole distance, consistent with a reduction in microtubule overlap length 

seen in electron micrographs (Mastronarde, 1993). These data are consistent with our 
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Figure 4.1. Immunofluorescence analysis of PRC1 localization in hTERT-RPE1 

anaphase cells.  

(A-B) Single channel images and overlays show chromosomes (blue), tubulin (green), and 

PRC1 (red) in a mid-anaphase (A) and late anaphase (B) cell. Scale bar, 3 µm. 
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Figure 4.2. 3D tracking of GFP-EB1 spots in dividing cells.  

(A-B) Near-simultaneous two-color lattice light sheet microscopy was used to image Halo-

PRC1 and GFP-EB1 in hTERT-RPE1 cells. Images were captured at 1 sec intervals. A 

single frame (maximum intensity projections) from two different cells in early (A) or late 

(B) anaphase are shown. Single channel images and overlays show Halo-PRC1 (green) and 

GFP-EB1 (magenta). Scale bar, 3 µm. (C) GFP-EB1 trajectories generated by automated 

3D comet tracking. (D) Histogram of GFP-EB1 track velocities during anaphase. Data 

were pooled from from n = 3 cells. Mean velocity: 0.33 +/- 0.08 μm/sec (+/- SD).  
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immunofluorescence staining of hTERT-RPE1 control cells (Fig. 4.1 A) and previous 

studies of fixed cells (Jiang et al., 1998; Mollinari et al., 2002; Zhu et al., 2006; 

Subramanian et al., 2013). GFP-EB1 intensity was highest near the poles and appeared as 

at the ends of interpolar and astral microtubules, as expected (Akhmanova and Steinmetz, 

2008). We performed three-dimensional tracking of EB1 comets over time (Fig. 4.2 C) 

and found that the distribution of track velocities (Fig. 4.2 D) (mean: 0.33 +/- 0.08 µm/sec, 

+/- SD) was similar to that reported in a previous study  (Yamashita et al., 2015).  

We examined cross-sectional slices of the midzone and selected the plane 

equidistant from both spindle poles (Fig. 4.3 A) (hereafter, the “midplane”) for further 

examination (Fig. 4.3 B). Halo-PRC1 and GFP-EB1 both appear as spots of signal intensity 

(Fig. 4.3 C). Two-color overlays showed that PRC1-tagged microtubules and dynamic, 

EB1-tagged microtubules coexist in a dense network in the spindle midzone (Fig. 4.3 C).  

Previous studies have indicated that the total tubulin in polymer is constant from 

metaphase through anaphase as the spindle elongates (Zhai and Borisy, 1994). This change 

in end-to-end could result in compression and reduce the spacing between microtubules 

near the center. We examined PRC1 spots in cross-sections and found that these spots 

frequently appeared to change shape between sequential frames (Fig 4.3 D). Occasionally, 

we observed spots appear to approach one another in consecutive image frames (Fig. 4.3 

E). These spots subsequently appeared to fuse, forming a single spot with higher signal 

density (Fig 4.3 E). Such events could typically be detected once every few frames (~10 

s). We rarely observed events in which spots appeared to split. These data suggest that both 

dynamic and non-dynamic filaments in the spindle midzone undergo changes on similar 

timescales (~10s of seconds).  
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Figure 4.3. Examining PRC1 and EB1 localization in cross-sectional planes of 

dividing cells. 

(A-B) Cartoons of anaphase spindles show PRC1 and EB1 decoration in maximum 

intensity projections (A) or in cross-section (B). The position of the spindle “midplane”, 

the plane equidistant from the two spindle poles and perpendicular to the spindle long axis, 

is indicated (dashed line). (B) Inset shows schematic of nearest neighbor distances 

measured between two PRC1 spots (dashed line), two EB1 spots (dotted line) or between 

one PRC1 and one EB1 spot (solid line). (C) Cross-sectional view of the spindle midplane 

for the cell shown in Fig. 4.2 B at three selected time points. T = 0 s indicates the start of 

imaging. Scale bar, 3 µm. (D) Contrast-enhanced images from the spindle midplane of an 

hTERT-RPE1 expressing GFP-PRC1 at select time points. Time = 0 s was assigned to the 

frame immediately prior to pole separation (see Methods). Scale bar, 3 µm. (E) Inset from 

yellow boxes in (D), magnified 5.3x. The position of two GFP-PRC1 “spots” in 

consecutive frames are indicated (yellow circles).  
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In metaphase, the number of PRC1-tagged microtubule bundles is set by the 

number of chromosome pairs (Polak et al., 2017) and likely corresponds to the number of 

bundles at the start of anaphase. In hTERT-RPE1 cells, which have 46 chromosomes, as 

little as 5 fusion events could decrease the number of bundles by ~ 10%. To investigate 

this possibility, we examined LLSM movies of GFP-PRC1 alone. GFP- PRC1 localization 

was similar to endogenous localization of PRC1 in immunofluorescence images of fixed 

control cells (Fig. 4.1 A). We performed watershed analysis on segmented LLSM images 

of GFP-PRC1 in the midplane and counted the number of spots in each frame (Fig. 4.4 A). 

The total number of spots fluctuated in consecutive image frames but on average did not 

decrease (Fig. 4.4 B). This suggested that fusion between bundles is compensated by the 

assembly of additional microtubule bundles, consistent with previous reports that midzone 

microtubule bundles can assemble in the absence of pre-anaphase microtubules (Canman 

et al., 2000).  

The assembly of additional bundles in anaphase could impact the organization of 

the midzone by decreasing the spacing between microtubule in the midzone. To examine 

this possibility, we performed 2D localization analysis on GFP-EB1 and Halo-PRC1 spots 

and measured the nearest-neighbor distance between spots (Fig. 4.3 B). The average 

nearest-neighbor distance between PRC1 spots was ~1 µm and did not change over the 

course of the movie (100 frames at 1 frame/sec) (Fig. 4.4 C). We observed a similar trend 

for GFP-EB1 spots (Fig. 4.4 D). The average nearest-neighbor distance between PRC1 and 

EB1 spots was smaller, ~0.6-0.7 µm (Fig. 4.4 E). We pooled the data from the first 30 

frames of each movie and plotted the average measurement for each cell (n = 3 cells) (Fig. 

4.4 F) and found this difference to be significant (p < 0.02). Importantly, the S.D. of this  
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Figure 4.4. Analysis of PRC1 and EB1 spots in cross-sectional planes of dividing cells 

(A) Cross-sectional plane of an hTERT-RPE1 expressing GFP-PRC1 signal at select time 

points after watershed image processing. Scale bar, 3 µm. (B) Number of “spots” in 

watershed-processed images in each frame (1 frame/4.4 s) (average +/- S.D.). (C-E) 

Nearest-neighbor distances show average +/- S.D for each frame of the movie for the cell 

shown in Fig. 4.2 B and Fig. 4.3 C. Measurements between pairs of PRC1 spots (C), pairs 

of EB1 spots (D), and PRC1 and EB1 spots (E) are shown. (F) Average nearest-neighbor 

distance measurements, pooled from the first 30 frames of each movie (n = 3 cells) (PRC1-

PRC1: 1.03 +/- 0.12 µm; EB1-EB1: 1.04 +/- 0.09 µm; PRC1-EB1: 0.71 +/- 0.06 µm; **p 

< 0.02; ***p < 0.004). 
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measurement was small, indicating that each of these measurements was similar for cells 

at different stages of anaphase, regardless of the length of microtubule overlap. Our 

observations suggest that the rules that specify spindle midzone architecture are 

independent of spindle length. 

 

Analysis of microtubule overlap length in individual PRC1-tagged microtubule 

bundles in dividing cells 

The length of microtubule overlap decreases during anaphase (Mastronarde, 1993). 

To examine the dynamics of this process and relate it to chromosome segregation distance, 

we used hTERT-RPE1 cells stably expressing GFP-PRC1 and treated the cells with a far-

red DNA dye. As PRC1 has been shown to exhibit selectivity of binding to antiparallel 

overlaps over parallel overlaps or single filaments, we reasoned that the length of PRC1 

decoration on midzone microtubules can be used as a readout of antiparallel overlap length 

in cells (Bieling et al., 2010; Subramanian et al., 2010). LLSM allowed near-simultaneous 

two-color imaging of whole cell volumes (101 frames at 0.4 nm spacing) at up to 20 cell 

volumes/min. We generated 3D reconstructions following a similar process as that done 

for GFP-EB1/Halo-PRC1 cells (see Methods). T = 0 was assigned to the frame 

immediately before the frame with detectable chromatid separation. Maximum intensity 

projections showed GFP-PRC1 localization in between the segregating chromosomes that 

increased in intensity with increasing chromosome segregation distance (Fig. 4.5 A). We 

observed some GFP-PRC1 signal between spindle poles and the cell cortex (Fig. 4.5 A 

panel ii), likely corresponding to “end-tags” on astral microtubules (Subramanian et al,  
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Figure 4.5. Near-simultaneous two-color imaging of GFP-PRC1 and chromosomes in 

dividing cells.  

(A-B) Near-simultaneous two-color lattice light sheet imaging was used to track GFP-

PRC1 and chromosomes during anaphase in hTERT-RPE1 cells. Images were captured at 

3 sec intervals. T = 0 was assigned to the frame immediately prior to that with detectable 

chromatid separation. Single channel images and overlays from selected time points show 

GFP-PRC1 (green) and chromosomes (magenta). Scale bar, 3 μm. (A) Maximum intensity 

projections. (B) Single image planes corresponding to the spindle midplane for the same 

time points of the cell shown in (A). Scale bar, 3 μm. 
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2013). In the midplane, GFP-PRC1 was observed throughout anaphase, but chromosome 

signal was only observed for the first ~90 s, as expected (Fig. 4.5 B).  

To identify individual bundles, we processed the LLSM image data using a 

multistep approach that included 3D watershed and segmentation (see Methods for 

details). Fusion events precluded tracking of single microtubule bundles over time. 

Therefore, we examined the average microtubule overlap length in each frame of each 

movie (n = 5 cells) (Fig. 4.6 A). At anaphase onset, overlap length was ~ 4.5 µm, which 

spans ~40% of the total spindle length. After ~50 s, the length of microtubule overlap began 

to decrease over time and reached a final length by ~210 s into anaphase.  

We then examined the distribution of bundles lengths by pooling the data from each 

cell at select time points (Fig. 4.6 B). We found that while we could observe a statistically 

significant decrease in the average bundle length, the distribution of individual bundle 

lengths was broad. At t = 12 s, the average microtubule bundle length is 4.2 +/- 2.2 µm (n 

= 168 +/- SD), which decreases to 3.3 +/- 2.8 µm at t = 102 s (n = 213 +/- SD, p<0.0002), 

then to 2.4 +/- 1.4 µm at t = 188 s (n = 248, p<0.0002). Most of the bundle length change 

occurs between T = 50 - 150 s, corresponding to a rate of change of ~ 1 µm/min. As 

midzone plus-ends have been shown to be non-dynamic (Hu et al., 2011), the change in 

bundle length likely corresponds to the extent of microtubule sliding.  

We then measured chromosome segregation distance in each frame (see Methods) 

(Fig. 4.6 C). Chromosome segregation speed was determined by fitting a line to data in 

different time intervals (from T = 50 - 250 s, 50 s bin size) (R2 > 0.98) (Fig. 4.6 D). The 

fastest rate of chromosome movement (relative to position immediately before anaphase  
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Figure 4.6. Analysis of microtubule overlap length of individual PRC1-tagged 

microtubule bundles in dividing cells. 

(A) Average bundle length over time. Each point represents the average bundle length in 

one cell at the indicated time in anaphase. Data from select time points are highlighted 

(green points). T = 0 was assigned to the frame immediately prior to that with detectable 

chromatid separation. Data from n = 5 cells are shown. (B) Dot and box plot showing the 

microtubule overlap length for individual microtubule bundles in n = 5 cells. Bundle 

lengths are 4.2 +/- 2.2 μm (t = 12 s, n = 168 +/- SD), 3.3 +/- 2.8 μm (t = 102 s, n = 213 +/- 

SD), and 2.4 +/- 1.4 μm (t = 188 s, n = 248) (average +/- SD) (**p < 0.002). (C) 

Chromosome position over time, measured as the distance moved relative to position at T 

= 0. Data from one of the two chromosome masses are shown. (D) Chromosome 

segregation rates at different time intervals following anaphase onset. (E) Spinning disk 

confocal images of GFP-PRC1 in an hTERT-RPE1 cell. Time relative to photobleaching. 

Scale bar, 3 μm. (F) Plot of normalized recovery for bleached GFP-PRC1 signal (red) and 

unbleached control signal (gray). Data were fit to the following equation: f(x) = A[1-e(-kx)]. 

k = 0.035 (95% confidence bounds: 0.023, 0.047)).   
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onset) occurred between 50 - 100 s (4.3 +/- 0.2 µm/min, n = 5 cells), and decreased with 

time. These analyses revealed that the rate of chromosome separation was ~ 4x faster than 

the rate of overlap length shortening (~ 1 µm/min). Furthermore, chromosomes separate 

by up to 8 µm by T = 150 s, whereas microtubule overlap length decreases by only ~2 µm. 

After this time, a further reduction in bundle length is not observed, but chromosomes 

continue to separate up to an inter-chromosome distance of  12.3 +/- 0.8 µm at T = 250 s, 

when cleavage furrow ingression became apparent in each cell examined (n = 5 cells). 

These data suggest that relative sliding in midzone microtubule bundles can account for 

only ~15% of chromosome motion in anaphase, suggesting that chromosome separation is 

unlikely to be the primary function of the mammalian spindle midzone.  

We examined the dynamics of PRC1 cross-linkers within microtubule bundles 

during early-mid anaphase, when the length of overlap decreases. We used fluorescence 

recovery after photobleaching (FRAP) analysis to determine the turnover of GFP-PRC1 

molecules in bundles (Fig. 4.6 E). In the absence of chromosome markers, we estimated 

time in anaphase based on the length of PRC1-tagged bundles. We selected cells that had 

microtubule bundles between 2-3.5 µm in length. The t½ of GFP-PRC1 turnover was 36 

+/- 9 s (n = 5 cells,+/- SD) (Fig. 4.6 F). This relatively high turnover rate of PRC1 suggests 

that it is unlikely to function as a gas-like brake, as has been hypothesized for Ase1 (Braun 

et al., 2011; Lansky et al., 2015). Together, these data suggest that the spindle midzone is 

both robust and flexible, allowing it to maintain a constant organization throughout 

anaphase while accommodating turnover of its components.  
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PRC1 knockdown results in increased chromosome segregation rates and leads to 

chromosome “hyper-segregation” 

If relative sliding within microtubule bundles contributed to chromosome motion, 

we reasoned that disruption of microtubule bundles through knockdown of PRC1 would 

decrease chromosome segregation distance. We adopted an inducible shRNA-based 

approach as irreversible knockout leads to cumulative defects that result in senescence 

(McKinley and Cheeseman, 2017). Western blots of metaphase-arrested cell lysates 

showed that efficiency of PRC1 knockdown was 95  +/- 1% (n = 3 blots, +/- SD) in HeLa 

cells ~72 hr after shRNA induction (hereafter, “shPRC1”) (Fig. 4.7 A). The mitotic index 

in these cells (4.3% +/- 1.6%, n = 1225 cells, +/- SD) was not significantly different from 

that in HeLa controls (HeLa lacking the shRNA construct) (5.8% +/- 2.0%, n = 2944 cells, 

+/- SD, p > 0.2) (Fig. 4.7 B). Consistent with PRC1’s role in completion of cell division, a 

substantial fraction of cells in this population appeared to have more than one nucleus, 

indicating at least one cell division failure (Fig. 4.7 C).  

We next used immunofluorescence and microscopy-based analyses to examine 

PRC1 knockdown during anaphase. In control cells, endogenous PRC1 localizes to 

microtubules between segregating chromosomes, similar to that observed in hTERT-RPE1 

cells (Fig. 4.7 D). PRC1 signal was detected on 100% of anaphase spindles in control cells 

(n = 77 cells), indicated by a peak in signal intensity at the center of the spindle in linescans 

drawn across the pole-to-pole axis. In contrast, PRC1 signal was not detected over 

background in 32 out of 35 shPRC1 anaphase (Fig 4.7 E). Anaphase cells were detected at 

a similar frequency (~10%) in both shPRC1 and control cells.  
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Figure 4.7. Western blot and immunofluorescence analysis of HeLa cells expressing 

shRNA to PRC1.  

(A) Western blot analysis of cell lysates of HeLa control cells (lanes 1 and 4), and HeLa 

cells containing shRNA to PRC1 before (lanes 2 and 5) and after (lanes 3 and 6) 

tetracycline induction of shRNA construct. Antibodies against α tubulin and PRC1 are 

indicated. Expected position of PRC1 protein is indicated (red asterisk). (B) Mitotic index 

for HeLa cells (control: 5.8% +/- 2.0%, n = 2944 cells) and HeLa cells expressing 

shRNA to PRC1 (shRNA: shRNA: 4.3% +/- 1.6%, n = 1225 cells) (p > 0.2). Average +/- 

SD. (C-E) Immunofluorescence analysis of fixed cells. (C) Overlay image of fixed HeLa 

cells 72 hr after induction of shRNA expression show tubulin (green) and DNA (blue). 

Cells with >1 nucleus are indicated (yellow asterisk). Scale bar, 50 μm. (D-E) Single 

channel images and overlays show chromosomes (blue), tubulin (green), and PRC1 (red) 

in control (D) and shRNA-expressing (E) cell. Scale bar, 3 µm. 
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To examine the consequence of PRC1 knockdown on chromosome position in 

anaphase, we performed live cell imaging using a spinning disk confocal setup. We used 

differential interference contrast (DIC) and fluorescence microscopy to monitor cell 

morphology and chromosome position, respectively (Fig. 4.8 A-D). To confirm that the 

defects associated with PRC1 knockdown were specific, we generated “addback” cells 

expressing both shRNA to endogenous PRC1 and shRNA-resistant GFP-PRC1 (hereafter, 

“GFP-PRC1”) (see Methods). In GFP-PRC1 cells, we also monitored GFP fluorescence 

(Fig 4.8 C). In each cell line, furrow ingression initiated at a similar time following 

anaphase onset (Fig. 4.8 A-C). We did not detect an increased incidence of lagging 

chromosomes in shPRC1 cells (Fig. 4.8 B). GFP-PRC1 cells appeared morphologically 

similar to control cells (Fig. 4.8 C).  

We first tracked chromosome position, taken as the centroid of the chromosome 

mask (Fig. 4.8 D, yellow squares), to monitor inter-chromosome distance (Fig. 4.9 A). 

Almost immediately after anaphase onset, we noticed that the distance between 

chromosomes was consistently larger in shPRC1 cells (n = 19) (Fig. 4.9 A, blue trace) 

compared to control (n = 15) (Fig. 4.9 A, black trace) or GFP-PRC1 cells (n = 14) (Fig. 

4.9 A, gray trace). We examined cells at T = 5 mins which precedes furrow ingression in 

>90% of cells and according to our LLS data is after PRC1-tagged microtubule bundles 

reach an equilibrium length. Chromosomes in shPRC1 cells had segregated 20% further 

than control cells by this time (14.5 +/- 1.4 µm and 11.9 +/- 1.5 µm, respectively, +/- SD) 

(Fig. 4.9 B). This “hyper-segregation” defect was statistically significant (p < 0.003, two-

tailed T-test). Expression of GFP-PRC1 rescued this defect (12.1 +/- 1.5 µm, +/- SD) (Fig. 

4.9 B).  
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Figure 4.8. Live cell imaging of HeLa cells expressing shRNA to PRC1 

(A-C) Live cell imaging of HeLa cells. Single channel (single z slice) and overlay images 

show differential interference contrast (DIC) images (gray), chromosomes (magenta), and 

GFP-PRC1 (green) in HeLa control (A), shPRC1 (B) and GFP-PRC1 (C) cells. T = 0 was 

assigned to the frame immediately prior to that with detectable chromatid separation. Scale 

bar, 3 μm. (D) Segmented binary image showing outline of cortex and chromosome mask 

corresponding to images shown in (B). Overlay shows the position of chromosome centroid 

(yellow squares), the position of the midplane (dotted line), the axis of chromosome 

segregation (gray line), and the distance from chromosome to cortex (pink line) are 

indicated.  
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Figure 4.9. PRC1 knockdown results in increased chromosome segregation rates 

and leads to chromosome “hyper-segregation”.  

(A-H) Analysis of chromosome and cortical position in HeLa control (black), shRNA 

(blue), and GFP-PRC1 (grey) cells. Average +/- SD. (A-B) Inter-chromosome distance 

over time (A) and at T = 5 min (B) (control: 14.5 +/- 1.4 µm; shPRC1: 11.9 +/- 1.5 µm; 

GFP-PRC1: 12.1 +/- 1.5 µm). (p < 0.003). (C-D) Cell length over time (C) and at T = 5 

min (D) (control: 23.9 +/- 1.4 µm; shPRC1: 22.8 +/- 1.4 µm; GFP-PRC1: 24.3 +/- 1.3 µm) 

(p > 0.07). (E-F) Chromosome-to-cortex distance over time (E) and at T = 5 min (F) 

(control: 6.0 +/- 0.9 µm; shPRC1: 4.2 +/- 0.5 µm; GFP-PRC1: 5.9 +/- 0.7 µm) (p << 

0.0001). (G-H) Fraction chromosome distance to cortex over time (G) and at T = 5 min 

(H) (control: 0.50 +/- 0.06; shPRC1: 0.63 +/- 0.04; GFP-PRC1: 0.50 +/- 0.06) (p << 

0.0001).  
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To exclude the possibility that shPRC1 cells are simply larger and thereby are less 

restrictive of spindle elongation, we examined the length of cells during anaphase. Cell 

elongation in all three cell lines and began ~3 µm after anaphase onset (Fig 4.9 C). We 

found that the average length of shPRC1 cells at 5 mins was similar to control cells (22.8 

+/- 1.4 µm and 23.9 +/- 1.4 µm, respectively; p > 0.07) (Fig. 4.9 D). These data suggest 

that PRC1 levels do not impact cell elongation during anaphase.  

We next examined the distance between chromosomes and the cell cortex (Fig. 4.9 

E). Control and GFP-PRC1 cells showed a characteristic decrease in chromosome-to-

cortex distance from anaphase onset to ~5 mins, followed by an increase. This increase 

after ~5 mins was not observed in shPRC1 cells. Compared to control cells, chromosomes 

in shPRC1 cells were positioned closer to the cortex by 5 mins into anaphase (4.2 +/- 0.5 

µm and 6.0 +/- 0.9 µm, respectively; +/- SD) and this difference was significant (p << 

0.0001) (Fig. 4.9 F). The expression of GFP-PRC1 rescued this defect.  

This defect was more apparent when we examined the fraction distance to the 

cortex, measured as the distance between the chromosomes and the cortex (Fig 4.8 D, 

magenta line) divided by the distance between the midplane and the cortex (Fig 4.8 D, gray 

line). The chromosomes in control and GFP-PRC1 cells segregated until reaching ~50% 

of the distance between the midplane and the cortex, while those in knockdown cells moved 

a larger fractional distance (Fig 4.9 G). By 5 mins, this fractional distance was 0.50 +/- 

0.06 and 0.63 +/- 0.04 for control and knockdown cells, respectively, (+/- SD) and this 

difference was significant (p << 0.0001) (Fig 4.9 H). Together, these data suggest that the 

function of the spindle midzone is to act as a “brake” in anaphase to restrict chromosome 

segregation speed and distance.  
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PRC1 knockdown increases rates of pole separation but not kinetochore-to-pole 

movement  

To examine how PRC1 knockdown impacts the rate of chromosome segregation, 

we simultaneously tracked centrosomes and pole position in anaphase spindles. We used 

hTERT-RPE1 cells expressing GFP-Centrin and GFP-CENP-A (hereafter, control cells) 

and compared these rates to those expressing shRNA to PRC1 (hereafter, shPRC1). The 

efficiency of knockdown was 80 +/- 8% and PRC1 signal was absent or below the level of 

detected in 85% of anaphase cells (n = 13 cells). We imaged live cells using a spinning 

disc confocal setup which allowed simultaneous monitoring of spindle poles and 

centrosomes (Fig. 4.10 A-D), as has been extensively done (refs) (Magidson et al., 2011).  

In control cells, GFP fluorescence could be detected on centrosomes and near 

spindle poles (Fig. 4.10 A and B). A similar profile of fluorescence localization was 

observed in shPRC1 cells (Fig. 4.10 C and D). We could often detect two distinct spots 

near spindle poles, likely indicating position of mother and daughter centriole (Fig. 4.10 A 

and C, yellow arrows). Examination of single image planes over time highlight the position 

of centrosomes on sister chromatids during the first 60 s of anaphase (Fig. 4.10 B and D, 

orange and yellow circles). Kymographs generated by drawing linescans across the pole- 

to-pole axis from the time lapse sequences in Figures 4.10 A and C showed that 

chromosomes in shPRC1 cells segregated without an increased incidence of lagging 

chromosomes compared to control (Fig. 4.10 E and F).  
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Figure 4.10. PRC1 knockdown increases rates of pole separation but not kinetochore-

to-pole movement.  

(A-D) Analysis of centromere and pole position by live cell fluorescence microscopy of 

hTERT-RPE1 cells co-expressing GFP-centrin and GFP-CENP-A. Select images from 

time series are shown. (A-B) A control cell. (C-D) A cell expressing shRNA targeting 

PRC1. (A and C) Maximum intensity projections. Mother and daughter centrioles are 

observed as two proximal spots (yellow arrows). (B and D) Single image planes showing 

consecutive images (15s intervals) from a single cell at anaphase. Selected kinetochore 

pairs are highlighted (orange and yellow circles). (E and F) Kymograph ... pole-to-pole 

axis from cells shown in (A) or (C). Horizontal scale bar, 3 um. Vertical scale bar, 2 mins. 

(G-H) Analysis of normalized kinetochore-to-pole distance. Traces from individual 

kinetochores from a representative cell in each condition are shown. Average of all traces 

is shown in bold. Error bars are S.D. (G) Representative control cell. (H) Representative 

knockdown cell. (I) Box and whisker plots with corresponding data fit to a gaussian of 

kinetochore-to-pole velocity. Data were pooled data from all experiments (n = 59 and 111 

kinetochores for control and knockdown cells, respectively). (J) Plots of pole-to-pole 

distance for control (black traces) and knockdown (red traces) cells (n = 12 and 21 cells, 

respectively). (K) Plot of pole separation distance, ΔLength, normalized to the pole-to-pole 

distance at T = 0. (L) Pole separation velocity for control and knockdown cells (*** = p < 

0.003).  
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We reasoned that the observed increase in chromosome segregation speed could be 

due to an increase in anaphase A kinetochore-to-pole shrinkage rates or due to an increase  

in anaphase B pole separation rates. To distinguish between these possibilities, we first 

examined kinetochore-to-pole distance over time using a 3D localization and tracking 

algorithm (see Methods). We were able to track kinetochore position from anaphase onset 

through kinetochore release, identified by a synchronous increase in kinetochore-to-pole 

distance. In control cells, tracks of individual kinetochores revealed a decrease in 

kinetochore-to-pole distance over time (Fig. 4.10 G) which was mirrored in PRC1 

knockdown cells (Fig. 4.10 H). To determine the average rate of kinetochore-to-pole 

movement, we focused on the T = 0.5-3 min time window when this rate is reported to be 

fastest (Su et al., 2016). We pooled the rates for individual kinetochore tracks that had fits 

with R-squared values >= 0.85 (Fig 4.10 I). The average rate of kinetochore-to-pole 

movement for parental cells, 0.78 +/- 0.23 µm/min (n = 59 kinetochores, +/- SD), was not 

significantly different than that for PRC1 knockdown cells, 0.75 +/- 0.23 µm/min (n = 111 

kinetochores, +/- SD; p>0.1). Thus, PRC1 knockdown does not impact the average rate of 

anaphase A kinetochore-to-pole movement.  

We next tracked the pole-to-pole distance as a function of time (Fig. 4.10 J). In 

control cells, the pole-to-pole distance began to increase immediately after anaphase onset 

in control (Fig. 4.10 J, black traces) and PRC1 knockdown cells (Fig. 4.10 J, red traces). 

Traces for all control and knockdown cells are shown (n = 12 and 21 cells, respectively). 

A plot of the change in anaphase spindle length, ∆Length, as a function of time highlighted 

differences in the rate of pole separation (Fig. 4.10 K). Examination of first derivative plots 

of pole-to-pole distances over time revealed that 94% of spindles underwent maximum 
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pole separation velocities between 1-3 mins after anaphase onset (n = 33 cells). We 

therefore determined the pole-to-pole separation rates by fitting the data from T = 1 to T = 

3 to a line for each cell (Fig 4.10 L). Spindles in control cells elongated at an average rate 

of 0.98 +/- 0.31 µm/min (n = 11 cells, +/- SD) whereas spindles in knockdown cells 

elongated ~50% faster at 1.51 +/- 0.41 µm/min (n = 21 cells, +/- SD, p < 0.003). Thus, the 

rates of anaphase B spindle elongation is substantially increased as a result of PRC1 

knockdown. Together, these data show that the midzone brake functions by limiting the 

rate of pole separation. 

 

Mutations in PRC1 that reduce microtubule binding affinity can form microtubule 

bundles but cannot rescue chromosome hyper-segregation defects 

The midzone braking function is likely due to a convolution of microtubule overlap 

length and bundle number. We therefore attempted to find conditions where we could 

selectively perturb overlap length control in the spindle without impacting bundle number. 

Structural studies have revealed the molecular basis for PRC1-microtubule cross-linking 

(Kellogg et al., 2016; Subramanian et al., 2010, 2013). We generated two mutant 

constructs, one with point mutations K387A and K390A in the spectrin domain (hereafter, 

GFP-PRC1AA), and one with a truncation of the terminal 464-620 residues in the 

unstructured C-terminus (hereafter, GFP-PRC1ΔC). The point mutations in GFP-PRC1AA 

are unlikely to disrupt binding to MAPs but reduce microtubule binding affinity ~4-fold. 

The truncation in GFP-PRC1ΔC reduces microtubule binding affinity ~5-fold and also 

likely disrupts interaction with some MAPs that interact with PRC1 at the C-terminus. 
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These constructs have been previously examined in vitro and have been shown to dimerize, 

a necessary prerequisite for microtubule cross-linking (Subramanian et al., 2010, 2013). 

To reveal the function of mutant PRC1 in cells, we knocked down endogenous 

PRC1 using our shRNA-based system and expressed shRNA-resistant PRC1 constructs. 

We examined three constructs, full-length GFP-PRC1 (hereafter, GFP-PRC1FL) and our 

two mutant constructs, GFP-PRC1AA  and GFP-PRC1ΔC. Western blot analysis of 

metaphase-arrested cell lysates showed that the expression levels of the GFP constructs 

were comparable to endogenous PRC1 in control cells (GFP-PRC1FL: 69 +/- 44%, n = 3; 

GFP-PRC1AA: 140 +/- 95%, n = 4) and knockdown efficiency was high (GFP-PRC1FL: 94 

+/- 1%, n = 3; GFP-PRC1AA : 93 +/- 3%, n = 4) (Fig. 4.11 A). Knockdown efficiency of 

GFP-PRC1ΔC could not be reliably measured because GFP-PRC1ΔC ran at a similar 

distance as the endogenous PRC1 protein. However, western blots revealed a GFP-reactant 

band in the expected position, indicating that the protein was expressed in cells (Fig. 4.11 

B). Immunofluorescence analysis of fixed cells showed that the decoration of GFP-PRC1FL 

appeared similar to unmodified control cells (Fig. 4.12 A). GFP-PRC1AA  decorated 

microtubules in the midzone in anaphase cells (Fig. 4.12 B). Despite substantial levels of 

GFP-PRC1ΔC overexpression, we did not detect PRC1 signal above background on any 

anaphase cells (Fig. 4.12 C). These cells looked morphologically similar to knockdown 

alone (Fig. 4.7 E) and we did not examine this line further.  

When comparing cells with equivalent chromosome segregation distances, we 

noticed that the decoration of GFP-PRC1AA  tended to be wider than that of GFP-PRC1FL. 

To quantify this distribution, we measured the full-width at half-maximum signal across  
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Figure 4.11. Western blot analysis of HeLa cells expressing shRNA to PRC1 and 

shRNA-resistant GFP-PRC1 constructs. 

(A-B) Western blot analysis of metaphase-arrested cell lysates from HeLa cell lines. (A) 

Samples from HeLa control cells (ctr), HeLa cells expressing shRNA to PRC1 and GFP-

PRC1FL (FL) or GFP-PRC1AA (AA) 72 hrs after adding tetracycline. Antibodies against α 

tubulin and PRC1 are indicated. Expected position of endogenous PRC1 (single asterisk) 

and GFP-tagged PRC1 (double asterisk) is indicated. (B) Samples from HeLa cells 

expressing shRNA to PRC1 and GFP-PRC1ΔC 72 hrs after adding tetracycline. Antibodies 

against α tubulin and GFP are indicated. 
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Figure 4.12. Mutations in PRC1 that reduce microtubule binding affinity can form 

microtubule bundles but cannot rescue chromosome hyper-segregation defects. 

(A-C) Immunofluorescence analysis of anaphase cells. Single channel images (maximum 

intensity projections) and overlays show chromosomes (blue), PRC1 (red) and tubulin 

(green). GFP fluorescence (maximum intensity projection) is shown as reference (gray). 

HeLa cells co-expressing shRNA to endogenous PRC1 and shRNA-resistant GFP-PRC1FL 

(A), GFP-PRC1AA (B), or GFP-PRC1ΔC (C). Scale bar, 3 μm. (D-E) Analysis of GFP-PRC1 

signal intensity. Plots show intensity of PRC1 signal in linescans drawn across the pole-to-

pole axis. Data were fit to a gaussian (red traces) to determine the full-width at half-

maximum (FWHM) signal. Example traces from cells expressing GFP-PRC1FL (D) and 

GFP-PRC1AA are shown. (F-G) Data from cells expressing GFP-PRC1FL (gray) and GFP-

PRC1 AA (red) are shown. (F) Bar chart of average FWHM, binned by inter-chromosome 

distances. Error bars are SD. (G) Histogram of the number of anaphase cells with a given 

inter-chromosome distance. n = 53 (GFP-PRC1FL) and 28 (GFP-PRC1AA) cells.  

 

 



129 

 

 



130 

 

the pole-to-pole axis from maximum intensity images of fixed cells. Gaussian fits with R2 

values > 0.90 were selected. As cell-to-cell expression levels were variable, this filter also 

excluded cells with little to no detectable GFP fluorescence (manual inspection showed 

that excluded cells typically had SNR values below 2). In each cell, we also measured the 

inter-chromosome distance, and used this to separate the data into 4-µm bins. Example 

plots for cells expressing GFP-PRC1FL (Fig. 4.12 D) and GFP-PRC1AA  (Fig. 4.12 E) are 

shown. The FWHM signal of GFP-PRC1FL  decreased with increasing inter-chromosome 

distance, indicating a reduction in the length of microtubule overlap (Fig. 4.12 F, gray). 

This trend was not observed in cells expressing GFP-PRC1AA . Instead, the FWHM 

measurement was similar for cells with different inter-chromosome distances (Fig. 4.12 F, 

red), indicating that microtubule overlap length did not decrease as chromosomes 

separated. Together, these data suggest that midzone microtubule overlap length can be 

decoupled from chromosome segregation distance by tuning the affinity of PRC1 to 

microtubules.  

Our analyses indicate that the control of microtubule overlap length is impaired in 

cells expressing GFP-PRC1AA . We next asked whether the cross-sectional organization 

was also disrupted. We examined cells in mid-late anaphase (chromosome segregation 

distance 12-16 µm) and determined the number of microtubule bundles in GFP-PRC1FL 

and GFP-PRC1AA  cells. The average number of microtubule bundles was similar (GFP-

PRC1FL: 32 +/- 9, GFP-PRC1AA : 30 +/- 12, +/- SD, p > 0.4) (Fig. 4.12 G). These data 

suggest that GFP-PRC1AA  does not prevent the assembly of microtubule bundles.  

We next examined the distribution of chromosome segregation distance in 

anaphase cells expressing detectable GFP-PRC1FL and GFP-PRC1AA (Fig. 4.12 H). Only 
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a small fraction (<10%) of anaphase cells expressing GFP-PRC1FL were found to exhibit 

inter-chromosome distances greater than 16 um, suggesting that this is the upper limit to 

chromosome segregation distance. (Fig. 4.12 H, gray). By contrast, numerous cells 

expressing GFP-PRC1AA  were observed with this inter-chromosome distances greater than 

16 µm, some up to 20 µm (Fig. 4.12 H, red). This chromosome “hyper-segregation” defect 

was similar to that observed in PRC1 knockdown cells alone (Fig. 4.8 E-F). Given that 

PRC1 knockdown does not prolong the onset of furrow ingression (Fig. 4.8 A-C), this 

result is unlikely to be explained simply by extending the time of anaphase. Together, these 

data suggest that the reduction of overlap length between filament in midzone microtubule 

bundles is required to function as a “brake” to control chromosome segregation during 

anaphase.  

  



132 

 

4.4 Discussion 

Our data show that PRC1-dependent spindle midzone assembly is required for 

proper chromosome segregation. In early anaphase, PRC1-tagged microtubule bundles can 

push sister chromatids apart when the connection to one spindle pole is severed (Vukušić 

et al., 2017). Our data show that when PRC1 is knocked down, midzone microtubule 

bundle assembly is impaired and the speed of chromosome segregation is increased. This 

suggests that PRC1-tagged microtubule bundles can also act as a “brake” to restrict 

chromosome movement in anaphase. We express a mutant PRC1 construct with reduced 

microtubule binding affinity that impacts microtubule overlap length without impacting 

microtubule bundle number. Overlap length does not decrease during anaphase and 

chromosome “hyper-segregation” defects are observed. This suggest that the reduction of 

microtubule overlap length is required for the braking activity of the spindle midzone.  

Our lattice light sheet imaging data reveal that the average microtubule overlap 

length shrinks after anaphase onset until reaching a stable length that persists for several 

minutes. However, the distribution of bundle lengths was broad, even in early anaphase, 

suggesting that both short (< 2 μm) and long (> 4 μm) bundles are present throughout 

anaphase. Examination of individual bundles revealed apparent “fusion” events and 

fluctuations in bundle number that precluded automated tracking of all bundles. However, 

manual tracking of a subset of microtubule bundles near the outer periphery of the spindle 

revealed that long (> 4 μm) overlap typically decreased in length faster than what we 

predicted from the bulk data. Recent studies have revealed that PRC1-tagged microtubule 

bundles in metaphase show a one-to-one association with sister k-fibers (Polak et al., 

2017). We predict that fusion events in anaphase could cause the network of PRC1-tagged 
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microtubule bundles and k-fibers to increase in complexity such that a single bundle could 

become associated with multiple k-fibers during anaphase. Indeed, electron micrograph 

studies have revealed that the minus ends of microtubules in a single midzone bundle often 

terminate in several different k-fibers on one side of the half-spindle (Mastronarde, 1993). 

Together, these data suggest that microtubule bundles in the spindle midzone are flexible 

enough to accommodate chromosome segregation but robust enough to maintain its 

structure.  

How can midzone bundles act as a brake in the face of changing overlap? Budding 

yeast Ase1 can concentrate in microtubule overlap regions as the length of overlap 

decreases, creating an “entropic expansion” force that can resist filament sliding (Braun et 

al., 2011; Lansky et al., 2015). This activity likely depends on a low molecular off-rate of 

Ase1 in overlap (Braun et al., 2011). Our FRAP analysis of GFP-PRC1 in early-mid 

anaphase spindles shows that GFP-PRC1 turnover is relatively fast (t ½ = 36 +/- 9 s), at 

least 10x faster than that observed for GFP-Ase1 in the budding yeast midzone (Schuyler 

et al., 2003), suggesting that PRC1 is unlikely to undergo an Ase1-like compaction. PRC1 

(620 aa) and Ase1 (883 aa) are both members of the same conserved protein family, but 

have a low degree of sequence similarity with only 23% identity over a stretch of 331 

amino acids (Jiang et al., 1998; Mollinari et al., 2002; Schuyler et al., 2003). Divergence 

between Ase1 and PRC1 activity in the midzone is likely a result of functional 

specialization of Ase1 in the yeast lineage. Together, these data suggest that PRC1 likely 

works in concert with other molecules to provide the vertebrate midzone braking activity.  

PRC1 mediates the recruitment of midzone-associated proteins including kinases, 

non-motor microtubule associated proteins (MAPs), and motor MAPs (Roostalu et al., 
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2010). Eg5, a homotetrameric Kinesin-5 family member, is recruited to the midzone in a 

PRC1-dependent manner (Ferenz et al., 2010). Eg5 can slide antiparallel microtubules 

apart and is required in human cells to establish spindle bipolarity in metaphase (Ferenz et 

al., 2010). Inhibition of this protein in anaphase does not cause spindle collapse, suggesting 

that antiparallel sliding activity is not critical for maintaining the spindle midzone. In vitro 

data has revealed that Eg5 can also resist filament sliding, an activity that scales with 

number of molecules and length of overlap (Shimamoto et al., 2015). Our data reveal that 

cells expressing mutant PRC1 form microtubules bundles with longer overlap length, thus 

providing more binding sites to Eg5, which would predict an increase in braking. However, 

we observe the opposite effect as chromosomes in these cells still “hyper-segregate” as 

observed in the knockdown alone, suggesting that the midzone brake is not functional. This 

suggests that the mechanism of PRC1-dependent midzone braking is unlikely to be due to 

an Eg5-like brake.  

In vitro, PRC1 forms a complex with Kif4 and together these proteins can function 

in two ways: to suppress microtubule dynamics and to slide microtubules apart. When the 

minus-ends of microtubules are anchored (preventing filament displacement), PRC1/Kif4 

can form stable microtubule overlaps through Kif4-dependent inhibition of microtubule 

plus-end dynamics (Bringmann et al., 2004; Bieling et al., 2010). This activity is likely 

important in cells, as Kif4 is required to suppress plus-end dynamics of midzone 

microtubules (Hu et al., 2011). Recently, experiments using unanchored, non-dynamic 

microtubules have shown that PRC1-Kif4 complexes can generate relative movement of 

antiparallel microtubules (Wijeratne and Subramanian, 2018). Kif4 alone does not promote 

antiparallel microtubule cross-linking, suggesting that the formation of a sliding competent 
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complex depends on PRC1 interaction with microtubules to move one filament while the 

motor walks on the other. To examine the impact of reducing PRC1 affinity for 

microtubules, we expressed a mutant PRC1 and examined cells in anaphase. In these cells, 

antiparallel microtubules overlap length does not reduce during anaphase, suggesting that 

relative filament sliding is impaired. According to the above model, a reduction in PRC1-

microtubule binding affinity would likely results in a lower “sliding efficiency” as each 

step of the kinesin would not translate to an equivalent distance moved if PRC1 were not 

simultaneously bound to the second MT. These data suggest that the coupling between 

antiparallel microtubules is reduced, resulting in a dissipation of forces (both pushing and 

breaking) generated in antiparallel overlaps. 

How might microtubule in bundles interact with spindle elements that contact the 

poles? The minus-ends of midzone bundles are distal to the site of microtubule overlap and 

are thought to be inhibited by capping proteins that block polymerization. Part of the 

challenge in identifying the position of minus ends in dividing cells is the lack of minus-

end markers. Calmodulin-regulated spectrin-associated protein (CAMSAP)-family 

members have been shown to stabilize minus ends and protect them from kinesin-13 

mediated depolymerization in interphase Drosophila S2 cells and in controlled in vitro 

assays (Goodwin and Vale, 2010; Hendershott and Vale, 2014). Knockdown of Patronin 

leads to mitotic defects in Drosophila S2 cells (Goshima et al., 2007). However, mitotic 

defects were not observed in HeLa cells following knockdown of mammalian CAMSAP2, 

perhaps due to functional redundancy with other expressed CAMSAP proteins (Jiang et 

al., 2014). Furthermore, direct interaction with minus ends of any of these proteins in 

dividing cells has not been shown. Other candidate minus-end interacting molecules 
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include dynein/dynactin and NuMA which form a complex in dividing cells and together 

promote minus-end focusing and pole formation. Newly formed minus ends generated by 

laser cutting are capped by this complex within 15 s (Elting et al., 2014). Dynein generates 

forces on spindles through minus-end directed pulling on astral microtubules from 

cortically anchored position, which is dependent on NuMA. Knockdown of either dynein 

or NuMA results in metaphase spindle defects thus acute chemical inhibition-based 

approaches are needed in order to dissect their anaphase-specific functions.  

In summary, our data reveal that PRC1-dependent microtubule bundle formation is 

required for midzone braking. We further show that this activity depends on the reduction 

in microtubule overlap length. Microtubule bundles are found in diverse cell contexts and 

the recruitment of cross-linking proteins in these arrays is likely to be tightly controlled in 

these contexts as well. Additional work will be needed to examine how other features, such 

as the number or packing of filaments in bundles, impact the function of microtubule 

bundles.  
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Chapter 5: Outlook and Future Directions 

5.1 Overview  

Microtubule dynamic instability is a fundamental property of microtubules required 

for proper microtubule function in diverse cellular activities including cell division. During 

anaphase, a subset of microtubules are selectively stabilized and cross-linked, forming the 

spindle midzone. Understanding the mechanism of dynamic instability is a prerequisite for 

understanding how microtubule-associated proteins modulate dynamics and in turn control 

microtubule architecture in cells. In my PhD work, I first examined microtubule dynamics 

assembled from purified human tubulin in vitro and then examined midzone function 

during anaphase in dividing human cells.  

  



138 

 

5.2 Open questions in dynamic instability  

Both α and β tubulin are conserved proteins found in all eukaryotes studied to date, 

with most organisms expressing multiple isotypes of each tubulin. Current studies suggest 

that tubulin isotypes, in combination with post-translational modifications, regulate tubulin 

dynamics and function in cells (Verhey and Gaertig, 2007; Janke, 2014). Recent advances 

in molecular biology have enabled the purification of recombinant tubulin heterodimers 

(discussed in chapters 2 and 3), which opens the door to dissect how variations in this code 

control microtubule assembly in vitro. However, we still do not know how specific 

sequence alterations impact microtubule dynamics or interactions with MAPs in cells.  

What is the sequence-structure-function relationship for each isotype? In chapter 2, 

I show that that two neuronally expressed β tubulin isotypes have distinct polymerization 

dynamics. Studies in mice have revealed the non-interchangeability of β tubulin isotypes 

(Saillour et al., 2014). Briefly, knockout of the β tubulin βIII leads to defects in cortical 

development that cannot be fully rescued by expression of βIIB and other isotypes. What 

property of βIII is required for proper cortical development? In chapter 2, I generate 

chimeric β tubulins that have the C-terminal tails swapped and show that microtubules 

assembled with these chimeric tubulins exhibit polymerization properties similar to the 

wild-type construct with the identical ‘core’. With this information in hand, experiments 

could be designed whereby different chimeric constructs could be expressed in place of 

specific tubulin isotypes. For example, Crispr/Cas9-mediated gene editing could be used 

to replace βIII with the chimera with the βIII core/βIIB tail or the chimera with the βIII tail/ 

βIIB core could help resolve which part of the protein is more important for βIII function.  
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The phenotype of tubulin isotype knockdown can manifest in two ways. First, it 

can impact the total tubulin level in the cell. Each α tubulin associates with a single β 

tubulin to form a stable dimer, so the total amount of the less abundant subunit determines 

the number of heterodimers that can form. In support of this, mutations in human β tubulins 

have been identified that reduce the capacity of heterodimers to polymerize into 

microtubules (Tischfield et al., 2010). This could impact the effective concentration of free 

tubulin that can assemble into filaments. Similarly, tubulin overexpression is not tolerated 

in many cell types, suggesting that the total tubulin concentration in cells is resistant to 

perturbation. Second, the loss of a specific tubulin isotype could impact the ratio of tubulin 

isotypes in the cell. In chapter 2, I show that by varying the ratio of βIIB to βIII tubulin, 

the polymerization properties of these mixed microtubules can be tuned. However, we 

don’t know whether similar modifications of the ratio of tubulin isotypes can manifest 

changes in polymerization dynamics in cells.  

Currently, we do not know how tubulin isotypes are spatially regulated in cells and 

whether microtubules with distinct isotype composition can form within the same cell. 

Previous studies have shown that different tubulin isotypes can indiscriminately assemble 

into interphase and spindle microtubules (Lewis et al., 1987). However, these studies were 

limited to HeLa cells, which do not normally express all tubulin isotypes. For example, βII 

and βIII are normally expressed in post-mitotic neurons, but their sub-cellular localization 

in these cells has not been examined. Furthermore, the observation that two isotypes can 

co-polymerize does not necessarily mean that all microtubules in a cell that expresses those 

isotypes would be composed of the same mixture of tubulins. For example, work using 

antibodies specific to de-tyrosinated α-tubulin has shown that two populations of 



140 

 

microtubules (tyrosinated and de-tyrosinated) co-exist within higher ordered arrays during 

interphase and mitosis (Gundersen and Bulinski, 1986). Detyrosination protects 

microtubules from kinesin-13-mediated depolymerization, providing a possible 

explanation for how these filaments are stabilized in cells (Peris et al., 2009; Sirajuddin et 

al., 2014). A recent study from our lab has shown that microtubules assembled from βIIB 

are more resistant to MCAK and chTOG-mediated depolymerization than those assembled 

from βIII, suggesting that such a mechanism may also act to stabilize microtubules 

enriched in this isotype in cells (Ti et al., 2018). Examination of fixed cells such as neurons 

by immunofluorescence using antibodies that can discriminate between different tubulin 

isotypes will help resolve these questions.  

Structural studies of cells from various organisms has revealed the plethora of 

microtubule arrays that can form (Chaaban et al., 2017). Textbooks portray a canonical 

9+2 array of microtubules in the axoneme, but the organization of microtubules in many 

organisms have diverged substantially. For example, in the sperm of the matidfly M. perla, 

microtubules assemble with 40 protofilaments (Chaaban et al., 2017). What are the rules 

that specify such noncanonical microtubule assembly? These microtubule structures are 

likely guided by interactions with various MAPs expressed in the tissue. Exactly how 

MAPs specify the architecture and organization of such structures remains unexplored.  
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5.3. Open questions in midzone assembly and function 

In chapter 4, I combine live cell imaging with protein knockdown to investigate the 

contribution of the vertebrate spindle midzone to chromosome movement in anaphase. 

Using lattice light sheet microscopy, I show that the cross-sectional organization of PRC1-

tagged microtubule bundles in the midzone appears similar in early and late anaphase. 

Specifically, the nearest-neighbor distance between PRC1 spots remains constant even as 

the spindle elongates up to 50% of its metaphase length. This is observed despite apparent 

fusion events between bundles. What drives these fusion events, and how is the average 

nearest-neighbor distance established? One way to probe this process is to inhibit late 

mitotic events such as cytokinesis and examine how the organization of microtubule 

bundles responds. We can do this using chemical inhibitors such as Latrunculin to inhibit 

the polymerization of actin filaments, thereby inhibiting furrow ingression.  

I use shRNA-mediated protein knockdown to reduce PRC1 expression in two 

human cell lines (HeLa and hTERT-RPE1). The results from both cell lines were similar: 

chromosomes segregate faster and further in cells following PRC1 knockdown, revealing 

that in vertebrates, the midzone acts as a brake to restrict chromosome movement. What is 

the consequence of these altered chromosome dynamics? We did not observe an increase 

in lagging chromosome frequency, suggesting that the fidelity of chromosome segregation 

is preserved. However, differences could manifest more clearly in the context of perturbed 

chromosome segregation. For example, a recent study has shown that the presence of 

microtubule bundles negatively regulates nuclear envelope reformation (NER) (Liu et al., 

2018). Consequently, lagging chromosomes that are positioned closer to the midzone 

following NER initiation are defective in NER. This effect can be reversed by treatment 
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with nocodazole to disassemble microtubules in early anaphase. PRC1 knockdown 

decreases the density of microtubules in the midzone, suggesting that the total polymer 

level is decreased. This could therefore impact the kinetics of NER, although this has not 

been explored.  

Following shRNA-mediated PRC1 knockdown, I express PRC1 constructs that are 

shRNA-resistant and see distinct phenotypes. Full-length GFP-tagged PRC1 rescues the 

defect in chromosome segregation speed and distance. Expression of a mutant PRC1 

construct (PRC1AA) that has reduced binding affinity to microtubules shows a phenotype 

intermediate between that observed in knockdown and control cells. In PRC1AA cells, 

microtubule bundle assembly is restored, but the chromosome hyper-segregation defect 

associated with PRC1 knockdown persists. This could be a consequence of two activities. 

First, chromosome hyper-segregation could result from an increased rate of chromosome 

segregation, similar to what we observed in knockdown alone. Second, it could result from 

a prolonged period of chromosome segregation. To resolve this question, examination of 

chromosome segregation rates in live cells is therefore a top priority.  

Cells expressing mutant PRC1AA assemble microtubule bundles that do not 

decrease in length during anaphase. This could be a consequence of two activities. First, 

microtubule sliding between filaments in these bundles could be inhibited. Second, if plus-

end dynamics of filaments in bundles are not suppressed, filaments would continue to grow 

and sliding could proceed without a corresponding decrease in overlap length. The use of 

a photoactivatable tubulin would be a good tool to probe this question. Using this construct, 

we could selectively photoactivate tubulin in microtubule bundles between a pair of 

segregating chromosomes in early anaphase and examine the fluorescent “spot”. If 
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microtubule sliding occurs, then the spot should separate into two spots as filaments are 

slid apart, as has been shown previously (Vukušić et al., 2017). Resolving this question 

will be important next step. 

In cells, I also examined a second PRC1 mutant construct (PRC1ΔC) that has a 

similarly reduced binding affinity compared to the mutant mentioned above. However, 

cells expressing this construct do not form midzone microtubule bundles and look 

morphologically similar to knockdown alone. Why this discrepancy? The construct lacks 

the unstructured C-terminal tail of PRC1 but is capable of cross-linking microtubules 

(Subramanian et al., 2010). The C-terminal tail of PRC1 mediates interactions with a subset 

of binding partners including the kinase Plk1 (Neef et al., 2007) and contains multiple Cdk1 

consensus sites whose phosphorylation state is thought to regulate PRC1 activity (Jiang et 

al., 1998; Zhu et al., 2006). The impact on midzone assembly due to reduced microtubule 

binding affinity may therefore be compounded by effects associated with disrupted protein 

recruitment to the midzone. For example, the C. elegans PRC1 homolog was originally 

isolated in a screen for temperature-sensitive cell division defects and it was later shown 

that the allele, Oj5, harbors a mutation in the centralspindlin binding domain, which is in a 

different region than the microtubule binding domain (O’Connell et al., 1998; Verbrugghe 

and White, 2004). In the first division of the C. elegans embryo, the direct interaction 

between PRC1 and centralspindlin is thought to reinforce mechanical resilience of the 

central spindle and prevent the two half-spindles from breaking apart, a phenotype 

associated with PRC1 knockdown in many organisms (Lee et al., 2015). Therefore, to fully 

characterize the impact of mutant PRC1 expression in cells, it will be important to 
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determine the localization of other key midzone-associated proteins, for example 

centralspindlin, Aurora B or Kif4.  
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Materials and Methods 

Purification of recombinant human tubulin 

The cDNA encoding Homo sapiens α tubulin 1B (NP_006073.2) and β tubulin 2B 

(BC001352) or β tubulin 3 (NP_006077.2) were cloned into pFastBac Dual vector (Life 

Technologies). For affinity purification, a sequence encoding a Tobacco Etch Virus (TEV) 

protease site and hexa-histidine tag was fused to the 3’ end of the β tubulin isotype 2B or 

β tubulin isotype 3 cDNA sequence. We used the Bac-to-Bac system (Life Technologies) 

to generate recombinant baculovirus. High Five cells (Life Technologies), grown to 3.0-

3.5x106 cells/ml in Sf-900 II SFM (Life Technologies 10902-096) supplemented with 1X 

Antibiotic-Antimyocotic (Life Technologies 15240-062), were infected with P3 viral 

stocks at a multiplicity of infection (MOI) of 50. Cells were cultured in suspension at 27 

ºC and harvested at 60 hours after infection. The following steps were performed on ice or 

at 4 ºC. We lysed cells in an equal volume of lysis buffer (50 mM HEPES, 20 mM 

Imidazole, 100 mM KCl, 1 mM MgCl2, 0.5 mM DTT, 0.1 mM GTP, 3 U/ml benzonase, 

1X protease inhibitor Roche Complete EDTA-free, pH 7.2) by dounce homogenizer (20 

strokes) and centrifuged the homogenate at 55,000 rpm in a Ti70 rotor (Beckman Coulter) 

for 1 hour. The supernatant was then filtered through a 0.22 μm Millex-GP PES membrane 

(Millipore SLGP033RS) and loaded at 0.8 ml/min onto a 1 ml HisTrap HP column (GE 

life science 17-5247-01) pre-equilibrated with lysis buffer. The column was washed with 

25 ml lysis buffer and then eluted with nickel elution buffer (1X BRB80 (80 mM PIPES, 

1mM MgCl2, 1mM EGTA), 500 mM imidazole, 0.1 mM GTP, 1 mM DTT, pH 6.8). The 

fractions containing proteins were pooled, diluted 10-fold with TOG-column buffer (1X 

BRB80, 1 mM DTT, 0.2 mM GTP, pH 6.8), mixed with 6 mg TEV protease and incubated 
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for 1 hour on ice. The TEV-digested protein solution was loaded at 1 ml/min onto tandem 

chromatography columns consisting of a 1 ml HiTrap SP Sepharose FF column (GE life 

science 17-5054-01) and a 1 ml TOG-affinity column (Widlund et al., 2012) and washed 

with 10 ml TOG column buffer. We removed the 1 ml HiTrap SP Sepharose FF column 

and washed the 1 ml TOG-affinity column with 20 ml of wash buffer 1 (1X BRB80 1 mM 

DTT, 0.1 mM GTP, 10 mM MgCl2, 5 mM ATP, pH 6.8), 20 ml of wash buffer 2 (1X 

BRB80, 1 mM DTT, 0.1 mM GTP, 0.1 % Tween-20, 10% glycerol, pH 6.8) and 10 ml of 

TOG column buffer. The tubulin was eluted with TOG elution buffer (1X BRB80, 500 mM 

(NH4)2SO4, 1 mM DTT, 0.2 mM GTP, pH 6.8). The eluate containing tubulin was pooled, 

quickly exchanged into storage buffer (1X BRB80, 5% glycerol, 1 mM DTT, 0.2 mM GTP, 

pH 6.8), and concentrated to at least 3 mg/ml with an Amicon Ultra 50K MWCO 

centrifugal filter (Millipore UFC901024). A typical preparation yielded 1.5 mg of protein 

from one liter of cultured insect cells, an amount sufficient for biochemical analyses and 

studies of polymerization dynamics. The purified tubulin was snap frozen with liquid 

nitrogen and stored at -80 ºC. 

 

Mass spectrometry analysis 

 Mass spectrometry was performed essentially as described previously (Li et al., 

2012). Dried protein samples were resuspended in LDS sample buffer (Life Technologies), 

reduced and alkylated, and separated on a 4–12% Bis-Tris gradient gel (Life 

Technologies), followed by in-gel trypsin digestion. Tryptic peptides were purified and 

analyzed on an LTQ-Orbitrap XL mass spectrometer (Thermo Scientific). To quantify the 

relative amounts of human and insect alpha tubulin in the final protein, we compared the 
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signal intensities for each pair of peptides that differ by one amino acid and took the 

average for all of the peptide pairs (indicating approximately equimolar amounts of human 

and insect alpha tubulin. To examine the possibility of insect beta tubulin co-purifying in 

our final protein, we used a similar approach. Insect beta tubulin was detected at low 

abundance, indicating that it is not a major contaminant of our final recombinant protein. 

We estimate this fraction of insect tubulin to constitute ~4% of the total beta tubulin.  

 

Microtubule sedimentation assay in the presence of allocolchicine 

Allocolchicine was synthesized by following the established method (Fernholz, 

1950). Purified tubulin was pre-clarified by high-speed centrifugation in a TLA120.1 rotor 

(Beckman Coulter) at 90,000 rpm for 10 minutes at 4 °C. Solutions of pre-clarified tubulin 

(13 M) were prepared in assay buffer (1X BRB80, 33.33% (v/v) glycerol, 1 mM GTP 

and 1 mM TCEP) containing 3 % DMSO and 60 μM allocolchicine or 3 % DMSO alone. 

The reactions were incubated at room temperature for 30 minutes, followed by another 30-

minute incubation at 37 °C, and then subjected to high-speed centrifugation in a TLA 120.1 

rotor (Beckman Coulter) at 90,000 rpm for 10 minutes at 30 °C. The supernatant was 

removed and saved for SDS-PAGE analysis. The pellet was rinsed with 40 μl warm wash 

buffer (1X BRB80, 60% (v/v) glycerol and 1 mM TCEP), and then resuspended in 1X 

Laemmli sample buffer for SDS-PAGE analysis. 

 

The binding of allocolchicine to tubulin 

Purified tubulin was pre-clarified by high-speed centrifugation in a TLA120.1 rotor 

(Beckman Coulter) at 90,000 rpm for 10 minutes at 4°C. Pre-clarified tubulin (3 µM) was 
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mixed with increasing concentrations of allocolchicine (0, 1.3, 2.6, 3.9, 5.2, 7.8, 15.6, 31.2 

or 62.4 µM) in assay buffer (1X BRB80, 5% (v/v) glycerol, 1 mM GTP and 1 mM TCEP). 

After 2 hours of incubation at room temperature, the emission spectra of the reactions were 

collected from 360 nm to 420 nm with 5 nm increments using excitation at 310 nm. The 

measured fluorescence intensity at 400 nm was plotted on the vertical axis versus 

allocolchicine concentration on the horizontal axis. To determine the affinity of tubulin for 

allocolchicine, the unnormalized equilibrium binding curves were fitted with the following 

equation:  

 

Fluorescence  intensity at 400 nm

=
(𝐾𝑑 + [Allo] + [Tubulin]) − √(𝐾𝑑 + [𝐴𝑙𝑙𝑜] + [Tubulin])2 − 4 × [Allo] × [Tubulin]

2 × [Tubulin]

× (𝐹𝑚𝑎𝑥 − 𝐹𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) + 𝐹𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 

 

Where Kd represents the dissociation constant for allocolchicine binding, Fmax 

represents the fluorescence intensity at plateau, and Fbackground represents the background 

fluorescence intensity. 

 

In vitro fluorescence microscopy 

All experiments were performed on a Nikon Eclipse Ti microscope equipped with 

a NA-1.49 100X Plan Apo TIRF objective (Nikon). The microscope setup included a 3-

axis piezo-electric stage (Mad City LabsNano LP-200), an EM-CCD camera (Andor iXon 

DU-897), and two-color TIRF imaging optics (lasers: 488 nm (Spectra-physics) and 561 

nm (Cobalt); Filters: Emission (Semrock FF01-520/35 and FF01-609/54), Dichroic 
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(Semrock Di01-R488/561)). Sample chambers were prepared by first cleaning 18x18 mm 

glass coverslips (Gold Seal Cover Glass, thickness No.1) and 27x46 mm slides (Buehler 

40-80000-01). To prevent nonspecific surface sticking, we then coated the surface of slides 

with nonbiotinylated PEG and the surface of coverslips with a mixture of biotinylated PEG 

and nonbiotinylated PEG following standard protocols. To build flow chambers, we apply 

two strips of double-sided tape to a microscope slide and apply the coverslip. Sample 

chamber volumes were approximately 6-8 L.  

To generate seeds for templated microtubule growth, we polymerized the 

recombinant tubulins at 12 μM concentration along with 8 mol% Alexa-488 and biotin 

labeled bovine tubulin in the presence of 2.5 mM GMPCPP. The polymerized GMPCPP 

'seeds' were immobilized on a coverslip by first coating the surface with NeutrAvidin. After 

a 5 min incubation with κ-casein to block nonspecific binding to the surface, a mixture of 

recombinant tubulin and 4 mol% X-rhodamine labeled bovine tubulin was flowed into the 

TIRF chamber maintained at 30 ºC. Time-lapse images were acquired at a rate of 1 frame 

every 10 seconds for 15 minutes. All assays with dynamic microtubules were done in buffer 

containing 1X BRB80, 1 mM GTP, 4% glycerol, 0.2 mg/ml κ-casein, 0.2% 

methylcellulose, and oxygen scavenging mix (25 mM glucose, 40 mg/ml glucose oxidase, 

35 mg/ml catalase and 0.5% β-mercaptoethanol final concentration in reaction). 

To test MAPs binding, recombinant human tubulin was mixed with 8 mol% X-

rhodamine and biotinylated tubulin and polymerized in the presence of 10 μM Taxol. We 

prepared the TIRF imaging chamber and immobilized the Taxol-stabilized microtubules as 

described above. Assays were done in buffer containing 1X BRB80, 5% sucrose, 1 mM 

MgCl2, 1 mM TCEP, 10 μM Taxol, 0.25 mg/mL κ-casein, oxygen scavenging mix. 2 mM 
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Mg-ATP was added in the buffer for motor MAPs, and 80 mM KCl was added in the buffer 

for kinesin-5-GFP. Experiments using the non-motor MAPs (16 nM GFP-PRC1-SC or 20 

nM NuMA tail-II-GFP) were incubated on microtubules for 5 min before imaging. 

Experiments using the motor MAPs (0.7 nM kinesin-1ΔC-GFP or 0.6 nM kinesin-5-GFP) 

were imaged immediately after flowing the reaction mixture into the chamber. Time-lapse 

images were acquired at a rate of 1 frame/5 sec for 25 sec. All MAPs binding experiments 

were carried out at room temperature. 

Image analysis was performed by creating kymographs from the time lapse TIRF 

images of microtubules using ImageJ. The data were quantified by measuring the slope of 

the growing microtubule extension and using this to determine the average growth speed 

for each filament. The mean polymerization rate was calculated from all microtubules 

analyzed for each condition. The mean and standard deviation are reported in the figures. 

To determine catastrophe frequency, we divided the total number of catastrophe events for 

all filaments by the total polymerization time (the sum of the amount of time that each 

filament was observed with a microtubule extension growing off of a visible GMPCPP 

seed). The standard deviation was estimated as the catastrophe frequency divided by the 

square root of the number of catastrophe events. This assumes that catastrophe events are 

Poisson processes.  
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Estimating the average length of microtubules 

We used a model that described the probability of finding a microtubule of a given 

length at any time, and assumes the four dynamic instability parameters: vg (velocity of 

growth), vs (velocity of shrinkage), fcat (frequency of catastrophe), fres (frequency of rescue) 

(Verde et al., 1992). 

The length probability distribution can be described as: 

p(x) =
1

L
× 𝑒−

𝑥
𝐿  

Where L is the characteristic length. 

From their derivations, L is given by: 

L =
𝑣𝑠𝑣𝑔

(𝑣𝑠𝑓𝑐𝑎𝑡) − (𝑣𝑔𝑓𝑟𝑒𝑠)
 

We make the simplifying assumption that fres = 0; as we rarely observe rescue events. This 

simplifies to: 

L =
𝑣𝑠𝑣𝑔

𝑣𝑠𝑓𝑐𝑎𝑡
=

𝑣𝑔

𝑓𝑐𝑎𝑡
 

 

At 10.5 μM tubulin concentration, the growth rates of α/βIIB microtubules and α/βIII 

microtubules are approximately equal and the catastrophe frequencies are such that:  

𝑓𝑐𝑎𝑡_α/βIIB =
1

3
𝑓𝑐𝑎𝑡_α/βIII 

This implies that the length of α/βIIB microtubules would be approximately 3-fold greater 

than that of α/βIII microtubules.  
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At 10.5 μM tubulin concentration, the measured differences in growth rate and catastrophe 

frequency for microtubules assembled from mutant βIII tubulin are: 

𝑣𝑔(𝛽𝐼𝐼𝐼−𝐷417𝐻) = 1.7 × 𝑣𝑔(𝛽𝐼𝐼𝐼)  

𝑓𝑐𝑎𝑡(𝛽𝐼𝐼𝐼) = 4 × 𝑓𝑐𝑎𝑡(𝛽𝐼𝐼𝐼−𝐷417𝐻) 

𝑓𝑐𝑎𝑡(𝛽𝐼𝐼𝐼) = 3 × 𝑓𝑐𝑎𝑡(𝛽𝐼𝐼𝐼−𝑅262𝐻) 

This implies that: 

𝐿𝛽𝐼𝐼𝐼−𝐷417𝐻 ~ = 7 × 𝐿𝛽𝐼𝐼𝐼   and 𝐿𝛽𝐼𝐼𝐼−𝐷417𝐻 ~ = 3 × 𝐿𝛽𝐼𝐼𝐼  

 

Estimating the fraction of microtubule-bound MAPs in vivo 

In cells, the concentration of tubulin is ~10 μM and up to 80% can be in the 

polymerized form. To estimate the fraction of microtubule-bound MAPs in vivo, we used 

the following simple binding principle that describes the dissociation constant (KD): 

 

𝐾𝐷 =
[𝑀𝐴𝑃𝑠] ×  [𝑀𝑇]

[𝑀𝐴𝑃𝑠_𝑀𝑇]
=

([𝑀𝐴𝑃𝑠]0 − [𝑀𝐴𝑃𝑠𝑀𝑇]) ×  ([𝑀𝑇]0 − [𝑀𝐴𝑃𝑠_𝑀𝑇])

[𝑀𝐴𝑃𝑠_𝑀𝑇]
 

 

When the number of binding sites on microtubules is much larger than the [MAPs], 

we make the simplifying assumption that [MT]0 - [MAPs_MT] = [MT]0. The equation is 

then simplified to: 

𝐾𝐷 =
([𝑀𝐴𝑃𝑠]0−[𝑀𝐴𝑃𝑠𝑀𝑇])×[𝑀𝑇]0

[𝑀𝐴𝑃𝑠_𝑀𝑇]
,       

𝐾𝐷

[𝑀𝑇]0
=  

[𝑀𝐴𝑃𝑠]0

[𝑀𝐴𝑃𝑠_𝑀𝑇]
− 1, 

Fraction of microtubule-bound MAPs =
[𝑀𝐴𝑃𝑠_𝑀𝑇]

[𝑀𝐴𝑃𝑠]0
=  

[𝑀𝑇]0

𝐾𝐷+[𝑀𝑇]0
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When [MT]0 is 10 mM, and the KD of MAPs for wild-type microtubule is 0.1 μM 

and for mutant microtubule is 0.5 μM, the fraction of microtubule-bound MAPs on wild-

type and mutant filaments is 0.99 and 0.95, respectively. 

 

Purification of MAPs 

We purified GST-tagged TOG1/2 and GFP-tagged recombinant kinesin-1ΔC, 

kinesin-5, PRC1-SC and NuMA tail II according to published protocols (Friedman and 

Vale, 1999; Weinger et al., 2011; Widlund et al., 2012; Subramanian et al., 2013; Forth et 

al., 2014). 

 

Cell lines used for LLSM imaging 

Stable hTERT-RPE1 cells expressing GFP-PRC1 were generated by retroviral 

transduction as described previously (Subramanian Cell 2013).  

Stable HeLa Trex Flp-in cells expressing N-terminally tagged Halo-PRC1 were 

generated following standard Invitrogen protocol. The HaloTag sequence (Promega) was 

introduced at the N-terminus of human PRC1 isoform II coding sequence. The construct 

was cloned into the pCDNA5/FRO/TO (Invitrogen) expression plasmid. Expression of 

Halo-PRC1 was induced by adding 2 ug/ml tetracycline into the media 48 hrs before 

imaging.  

 

Cell lines used for PRC1 knockdown and confocal imaging 

 To allow for tetracycline-inducible expression of the shRNA construct in hTERT-

RPE1 cells, we first cloned the TetR sequence into the pMSCVblast expression vector. We 
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generated cells constitutively expressing the tet repressor protein via retroviral 

transduction. The plasmid was first transfected into Ampho-293 cells for retrovirus 

production. The media was then harvested and added directly to hTERT-RPE1 cells in the 

presence of 4 ug/ml polybrene after filtering through a 0.45 um filter. Blasticidin (XXX 

company) was used to select for cells that had stably incorporated the construct into the 

genomic DNA.  

We selected the shRNA target sequence in PRC1 (5’ - 

GTGATTGAGGCAATTCGAG - 3’)  which had been previously shown to suppress PRC1 

in cells (Voets et al. 2015). We generated double stranded oligomers encoding sense and 

antisense target sequence separated by a 9-bp hairpin sequence. The oligomers were cloned 

into the pSuperior.retro.puro (Oligoengine) backbone between the BglII and HindIII 

restriction sites. To generate HeLa and RPE1 cells with tetracycline-inducible control of 

PRC1 shRNA expression, we introduced the shRNA construct by retroviral transduction 

into the appropriate cell lines as described above. Puromycin (Sigma) was used to to select 

for cells that had stably incorporated the construct into the genomic DNA. To induce 

shRNA expression, 2 um/ml tetracycline was added 72 hrs before imaging. The media was 

replaced with fresh tetracycline once 24 hrs before imaging.  

We generated an shRNA-resistant PRC1 construct by introducing three silent 

mutations into the coding sequence for human PRC1 isoform II (REF #XX) (A888C, 

T891A, and A894G, noted as bold letters in the target sequence above). We introduced a 

GFP tag at the N-terminus of PRC1 coding sequence and cloned this construct into the 

pCDNA5/FRT expression plasmid (Invitrogen). To generate HeLa cells constitutively 

expressing shRNA-resistant GFP-PRC1, we transfected the construct into HeLa T-Rex 

https://paperpile.com/c/0g8wxU/18CT
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Flp-in cells that had already stably incorporated the PRC1 shRNA construct following 

standard Invitrogen protocol. Hygromycin B (Invitrogen) was used to select for cells that 

had stably incorporated the construct into the engineered Flp-in site. 

 

Tissue culture 

HeLa T-Rex Flp-in cells were cultured in DMEM (Gibco) media supplemented 

with 10% fetal bovine serum (Sigma) and 2 mM L-Glutamine (Gibco) and incubated in 

5% CO2 at 37°C. hTERT-RPE1 cells were cultured in DMEM/F-12 GlutaMAX (Gibco) 

media supplemented with 10% fetal bovine serum (Sigma) and incubated in 5% CO2 at 

37°C. 

 

Immunological methods 

 Cells were grown on 12 mm diameter glass coverslips for 2 days prior to fixation. 

Cells were fixed in a buffer containing formaldehyde (100 mM PIPES, 1 mM MgCl2, 10 

mM EGTA, 0.2% Triton-X, 4% Formaldehyde, pH 6.8) prewarmed to 37°C for 20 mins. 

Cells were blocked in 1X PHEM + 2% BSA (60 mM K-pipes, 25 mM HEPES, 10 mM 

EGTA, 4 mM MgSO4, 2% bovine serum albumin, pH 6.9) for 2 hrs at room temperature 

or overnight at 4°C. Coverslips were then incubated with anti-PRC1 antibody (raised 

against PRC1 (aa 341-466) in rabbit, affinity purified and used at 0.5 ug/ml) overnight at 

4°C. After 3 washes with 1XPHEM for 5 mins at room temperature, the coverslips were 

incubated for 2 hrs at room temperature with FITC-conjugated mouse anti-tubulin 

monoclonal antibody (Sigma # F2168; 1:1000 dilution). After 3 washes, coverslips were 

incubated in donkey anti-rabbit Texas red conjugated secondary antibody (Jackson 
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Immunoresearch; 1:1000 dilution) in 1X PHEM + 6% donkey serum. After 3 washes, DNA 

was stained with 1 um/ml DAPI for 10 mins at room temperature, mounted (20 mM Tris 

pH 8, 0.5% propyl gallate, 90% glycerol) and sealed with nail polish.  

For Western blot analysis, the anti-PRC1 antibody was used at 0.5 mg/ml and 

monoclonal anti-alpha tubulin antibody was used at 1:1000 dilution (Sigma #T6199). Dye-

conjugated secondary antibodies raised in donkey were purchased from LI-COR.  

 

Fixed cell analysis 

 Images of fixed cells were acquired as z stacks with 0.2 mm spacing using a 100x, 

1.35NA objective on a DeltaVision Image Restoration Microscope (Applied Precision 

Instruments and Olympus). The immunofluorescence micrographs were processed by 

iterative constrained deconvolution (SoftWoRx, Applied Precision Instruments). 

Maximum-intensity projections were converted to tiff files and linescans were generated 

using Fiji software (Schindelin et al., 2012). 

 

Live cell imaging using lattice light sheet microscopy 

Cells were cultured on 5-mm diameter coverslips (Warner Instruments, 64-0700). 

hTERT-RPE1 cells expressing GFP-PRC1 were incubated in 500 nM SiR-DNA in 

standard culture media for 30-60 minutes prior to imaging. HeLa TRex Flp-in cells 

expressing Images were collected on a custom-built instrument. Cells were imaged in 

Leibovitz’s L-15 media (Gibco) supplemented with 10% fetal bovine serum (Sigma) and 

2 mM L-glutamine (Gibco) at 37°C. Dividing cells were selected and the exposure time 

for each channel was adjusted to optimize the signal-to-noise ratio and ranged from 10-40 
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ms. Cells were excited sequentially using a 488 nm laser to visualize GFP-PRC1 and a 642 

nm laser to visualize chromosomes. Three-dimensional stacks consisting of 101 optical 

sections spaced 400 nm apart were captured in each channel. The cells were imaged at a 

rate of up to 20 cell volumes/min.  

 

Live cell imaging using spinning disk confocal 

Cells were cultured on 22-mm square coverslips and mounted in a custom Rose 

chamber or grown on 35 mm glass-bottomed plates. Cells were imaged in Leibovitz’s L-

15 media (Gibco) supplemented with 10% fetal bovine serum (Sigma) and 2 mM L-

glutamine (Gibco) at 35-37°C.  

Confocal GFP fluorescence micrographs of hTERT-RPE1 cells expressing GFP-

Centrin/GFP-CENP-A were acquired using a Nikon TE2000 microscope (Morrell 

Instruments) with a 100x oil objective (PlanApo, 1.4 NA)  equipped with a z piezo stage. 

0.4 um spacing between z planes were taken through the entire cell with a PerkinElmer 

Wallac UltraView confocal head, 488 nm excitation laser (Coherent). Images were 

acquired with an sCMOS Prime95B camera (Photometrics) using NIS-Elements software 

(Nikon). 

Confocal fluorescence and DIC micrographs were acquired using an Inverted Zeiss 

Axiovert 200 microscope (Zeiss/Perkin-Elmer) with a 100x oil objective (PlanApo, 1.4 

NA). Images consisting of single z planes were taken with a PerkinElmer Wallac 

UltraView confocal head using solid-state 491 and/or 644 lasers for excitation (Spectral 

Applied). Images were acquired with an EMCCD iXon camera (Andor) using Metamorph 

software (MDS Analytical Technologies). 
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Fluorescence recovery after photobleaching  

 FRAP experiments were performed on an inverted Axiovert 200 (Zeiss) equipped 

with a spinning disk confocal head (UltraView Perkin-Elmer). hTERT-RPE1 cells 

expressing GFP-PRC1 were excited with a 491 nm solid state laser (Spectral applied) and 

imaged with an NA 1.49 oil immersion 100X objective lens. Fluorescence was detected 

onto an EMCCD camera (iXon Andor). The regions of interest covering bleached areas 

were defined with a micromirror array system (Mosaic ® digital diaphragm system 

Photonics, Inc.). Bleaching was performed with a 2 - 3 s pulse and recovered fluorescence 

was collected every 3 s with a 200 - 300 ms exposure time. Fluorescence recovery, R(t), 

was normalized and fit to the following equation to determine the recovery constant, k : 

R(t) = A*(1-exp(-k*t)) , where A is a constant. All acquisition parameters were controlled 

with MetaMorph software. 

 

Data Analysis on LLSM images  

After image acquisition, several processing steps were necessary before 

quantitative analyses could be performed. First, due to the geometry of the 

excitation/emission objective pair, the raw image data was deskewed in order to obtain 

image stacks in the reference frame of the cell. Data were then deconvolved using a 

Richardson-Lucy algorithm and the system’s point-spread function, measured in 

independent experiments using 100 nm diameter fluorescent beads. We next compensated 

for spindle rotation and translation within the imaging window by applying a rigid 

transform using MATLAB’s imregtform function. This transform was defined and applied 

between subsequent frames in the PRC1 channel and then applied to each DNA-channel 
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frame. We then translated and rotated the data such that the long axis of the spindle was 

aligned to the X axis and centered in the image window. To describe the geometry of single 

microtubule bundles, LLSM data sets were first denoised using third-party bandpass 

function in MATLAB. Next, a watershed routine was applied to segment individual 

bundles and object geometry was extracted using MATLAB’s regionprops3 function.  
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