

Advanced Data Analytics and Optimal Control of Multi-zone Air Handling Units Abinesh Selvacanabady

Advisor: J. Kelly Kissock Ph.D.

Objective: To apply advanced data analytics and optimization algorithms for energy-efficient control of AHUs.

Motivation:

- Buildings-related energy use is 10% of total US energy, 50% of which is HVAC.
- Traditional rules-based controls are the norm but require extensive system level knowledge and continuous M&V for efficient operation.
- There is a clear need for a powerful yet generic framework for intelligent and optimal control of energy systems.

Methodology:

- Acquire, clean and warehouse data.
- Detect faulty data points and discard.
- Generate a system emulator model using ANN or other advanced machine learning algorithms to develop a control surface.
- Use a reinforcement learning framework to navigate the control surface to reach operational optimality while improving the system emulator over time using transfer learning.

System:

System Operation Intuition

Results:

Faulty Data Detection:

a. Time-series Anomaly Detection

b. Statistical Outliers and Inferential Variance Bands

c. Naïve Estimation vs. Expected Operation Curve

System Model:

Reinforcement Learning Framework:

df_predictSP_Upsample [whatif]

Θ
Pseudo R-square=0.9521

0.0 0.5 1.0 1.5 2.0

Optimal AHU SP Setpoint Profile:

