
Mobile Sensor Lab

Introduction

The Vision Lab has many projects that involves data collection from

various sensors.These sensors can vary by platform and programming

language. In order to centralize data collection, the Robot Operating

System (ROS) is applied to the Clearpath Husky robot. The Husky is

made for multi-terrain transport and can be modified to carry multiple

sensors. The Robot Operating System is not an operating system but

is a network centralized library. ROS provides background services

and different language libraries that allow sensors and languages to

communicate to a common location. In addition, the libraries can let

the user to receive data from the central network thus allowing

multiple cross language platform communication. An application of

these components can assist in data collection for environment 3D

reconstruction. Environment 3D reconstruction requires depth

imagery, RGB imagery, and orientation of the camera. The Husky

provides estimated orientation to ROS and ROS supports the

Microsoft Kinect. With open source coding, the Husky can be coded

to collect the necessary data for 3D reconstruction.

Brandon Hampshire and Vijayan K. Asari

ROS and Data Collection

In order to collect the necessary data, the robot is controlled by a

computer with a specialized Linux Ubuntu OS with ROS built in for

controlling the Husky. Installing necessary drivers and scripts for the

Kinect are available in the documentation site for ROS. With the

environment set, the only challenge is to create a data recording code

from open sourcing the code used to 3D recontruct an environment

shown below.

Applications

The applications for ROS and the Mobile Sensor Lab are only limited

by the vast hardware support of ROS.

Hardware The original code reads from a single file in this format below:

/**

*Format is:

* int64_t:Orientation/timeStamp

* int32_t:depthSize

* int32_t:imageSize

*depthSize *unsigned char:depth_compress_buf

* imageSize *unsigned char:encodedImage->data.ptr

*/

The new code writes from a single file for each frame in this format

below:
snprintf(filename,sizeof(filename),"rosDataLogImage%d.klg",frameCount);

FILE * logFile = fopen(filename,"wb+");

fwrite(&timeStamp,sizeof(uint64_t),1,logFile);

fwrite(&depthSize,sizeof(int32_t),1,logFile);

fwrite(&imageSize,sizeof(int32_t),1,logFile);

fwrite(depth_compress_buf,depthSize,1,logFile);

fwrite(imageBuffer,imageSize,1,logFile);

fwrite(¤tOrientationAngle,sizeof(float),1,orientationLogFile);

What were the issues? Optimization!

The nature that ROS code retrieves and sends data is limited by cycles.

The rate that the code was able to record error free data was limited

to 10 frames per a second. Recording the data into a single file just like

the original code was causing severe time delays and hook ups late

into recording. By changing the code to record individual files, the rate

of recording became consistent and only required changing the original

code to read in the files into a single file.

The following changes were made to the callback functions for

receiving data from ROS in order to make the system record 25

frames per a second.

• The data comes as a vector so instead of reading into array, they

were assigned pointers

• Set the cycle rate of the code to 25 Hz

