Performance Evolution of GPU versus CPU in Iterative Algorithms

Hassan Alsaad

Advisor: Mohammadjafar Esmaeili, Ph.D.
Department of Engineering Management, Systems, and Technology, University of Dayton

Objectives

■ Evaluate Graphics Processing Unit (GPU) and Central Processing Unit (CPU), two of the main technologies used in high performance computing.

- Determine the advantages and disadvantages of GPU and CPU in multi-threaded applications.

Methodology

1. Develop a C+ code for an iterative program using a multi-threaded algorithm and analyze the execution times in both GPU and CPU.
2. Examine the performance of CPU and GPU under different iterative programs.

Figure 1:
GPU (Left) and CPU (Right) Characteristics

Figure 2:
Screenshot of the code on Visual Studio.
3. Develop the same testing platform using OpenCL and analyze the GPU and CPU performance using GPU-Intel 4000 HD and CPU Intel Core i7 3570M.

Results

Matrix multiplication and division adopted for 1 billion, 100 million, 10 million and 1 million iterations.

Figure 2: GPU Verse CPU execution time in the multiplication multi-threaded.

Figure 3: GPU Verse CPU execution time in the division multi-threaded.

Conclusions

1. CPU is more efficient in small-scale iterative algorithms. 2. GPU performance is better than CPU in large-scale parallel computing iterations.
2. The combination of a GPU and CPU can deliver much better performance.
