
University of Dayton
eCommons

Computer Science Faculty Publications Department of Computer Science

7-2019

An Introduction to Declarative Programming in
CLIPS and PROLOG
Jack L. Watkin
University of Nebraska - Lincoln

Adam C. Volk
University of Nebraska - Lincoln

Saverio Perugini
University of Dayton, sperugini1@udayton.edu

Follow this and additional works at: https://ecommons.udayton.edu/cps_fac_pub

Part of the Graphics and Human Computer Interfaces Commons, and the Other Computer
Sciences Commons

This Conference Paper is brought to you for free and open access by the Department of Computer Science at eCommons. It has been accepted for
inclusion in Computer Science Faculty Publications by an authorized administrator of eCommons. For more information, please contact
frice1@udayton.edu, mschlangen1@udayton.edu.

eCommons Citation
Watkin, Jack L.; Volk, Adam C.; and Perugini, Saverio, "An Introduction to Declarative Programming in CLIPS and PROLOG"
(2019). Computer Science Faculty Publications. 179.
https://ecommons.udayton.edu/cps_fac_pub/179

https://ecommons.udayton.edu?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/cps_fac_pub?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/cps?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/cps_fac_pub?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/cps_fac_pub/179?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu

Int’l Conf. Scientific Computing | CSC’19 | 105

An Introduction to
Declarative Programming in CLIPS and PROLOG

Jack L. Watkin, Adam C. Volk1, and Saverio Perugini2
1Department of Mathematics, University of Nebraska Lincoln, Lincoln, Nebraska, USA

2Department of Computer Science, University of Dayton, Dayton, Ohio, USA

Abstract— We provide a brief introduction to CLIPS—a
declarative/logic programming language for implementing
expert systems—and PROLOG—a declarative/logic program-
ming language based on first-order, predicate calculus. Un-
like imperative languages in which the programmer specifies
how to compute a solution to a problem, in a declarative
language, the programmer specifies what they what to find,
and the system uses a search strategy built into the language.
We also briefly discuss applications of CLIPS and PROLOG.

Keywords: CLIPS, declarative programming, first-order predicate
calculus, logic programming, production system, PROLOG

1. Introduction
CLIPS1 is a declarative/logic programming language for

implementing expert systems. Originally called NASA’s
Artificial Intelligence Language (NAIL), CLIPS started as a
tool for creating expert systems at NASA in the 1980s. An
expert system is a computer program capable of model-
ing the knowledge of a human expert [1]. CLIPS stands
for C Language Integrated Production System. In artificial
intelligence, a production system is a computer system
which relies on facts and rules to guide its decision mak-
ing. Programming in a declarative, rule-based language
like CLIPS is fundamentally different than programming
in more traditional programming languages like C or Java
and more resembles programming in PROLOG [2], [3], [4],
[5]—a declarative/logic language to which we compare
CLIPS throughout this paper.2 Fig. 1 situates CLIPS (and
PROLOG) in relation to other programming paradigms and
languages [6].

2. Declarative/Logic Programming
In the declarative paradigm of programming, rather than

describing how to compute a solution as done when pro-
gramming in, e.g., Java, the programmer describes what a
solution to a problem looks like through the declaration of
facts and rules describing it. While CLIPS and PROLOG are

1http://www.clipsrules.net/
2PROLOG, which stands for PROgramming in LOGic, is a declarative/-

logic programming language developed in the early 1970s for artificial
intelligence applications. The PROLOG interpreter assumed in this paper
is SWI-PROLOG—http://www.swi-prolog.org/.

Programming Languages

Procedural

Imperative

C

Functional

LISP

Non-procedural

Non-declarative

Artificial
Neural
Systems

Declarative

Rule Based

CLIPS

Logic

PROLOG

Fig. 1: A hierarchy of programming paradigms and lan-
guages (adapted from [6]).

both declarative programming language and, thus, involve
the declaration of facts and rules, they each use fundamen-
tally different search strategies.

2.1 Horn Clauses

Logic programming in PROLOG is based on first-order,
predicate calculus—a formal system of logic which uses
variables, predicates, quantifiers, and logical connectives
to produce propositions involving clauses. Clausal form is
a standard (and simplified) form for propositions: B1 ∨
B2 ∨ · · · ∨ Bn ⊂ A1 ∧ A2 ∧ · · · ∧ Am. The As and Bs
are terms. The left hand side is called the consequent,
while the right hand side is called the antecedent. The
interpretation is: if all of the As are true, then at least
one of the Bs must be true. Advantages of representing
propositions in clausal form are (i) existential quantifiers are
unnecessary; (ii) universal quantifiers are implicit in the use
of variables in the atomic propositions; (iii) no operators
other than conjunction and disjunction are required; and
(iv) all predicate calculus propositions can be converted to
clausal form. “When propositions are used for resolution,[—
a rule of inference discussed below—]only a restricted kind
of clausal form called a Horn clause can be used, which
further simplifies the resolution process” [7]. Horn clauses
conform to one of the three forms detailed in Table 1 [8].
All expressions in PROLOG match one of these three forms
for Horn clauses.

Cite as: Watkin, J.L., Volk, A.C., & Perugini, S. (2019). An introduction to declarative programming in CLIPS and PROLOG. In Arabnia,
H.R., Deligiannidis, L., Grimaila, M.R., Hodson, D.D., & Tinetti, F.G. (Eds.), Proceedings of the International Conference on Scientific
Computing (CSC), 105–111. USA: CSREA Press. (Publication of the World Congress in Computer Science, Computer Engineering, and
Applied Computing (CSCE). Available at https://csce.ucmss.com/cr/books/2019/LFS/CSREA2019/CSC2488.pdf.)

http://www.clipsrules.net/
http://www.swi-prolog.org/
https://csce.ucmss.com/cr/books/2019/LFS/CSREA2019/CSC2488.pdf

106 Int’l Conf. Scientific Computing | CSC’19 |

Table 1: Types of Horn clauses.

Form Horn Clause Type PROLOG Name
{} ⊂ B1 ∧ ... ∧Bn, n ≥ 1 Headless Goal
A ⊂ {} Headed Fact
A ⊂ B1 ∧ ... ∧Bn, n ≥ 1 Headed Rule

Fig. 2: Architectural design of CLIPS (adapted from [6]).

2.2 Asserting Facts and Rules
Like PROLOG, in CLIPS expert systems, knowledge is

represented as facts and rules and, thus, a CLIPS or PROLOG
program consists of facts and rules. A fact is an axiom that
is asserted as true. A rule is a declaration expressed in the
form of an IF THEN statement. For example, a fact may
be ‘It is raining.’ In CLIPS this fact is written as:

(assert (weather raining))

The assert keyword defines facts, which are inserted in
FIFO order into the fact-list. Facts can also be added
to the fact-list with the deffacts command. An
example rule is ‘If it is raining, then I carry an umbrella’:

(defrule ourrule
(weather raining)
=>
(assert (carry umbrella)))

The following is the general syntax of a rule [1]3:
(defrule rule_name

(pattern_1) ; IF Condition 1
(pattern_2) ; And Condition 2
.
.
(pattern_N) ; And Condition N
=> ; THEN
(action_1) ; Perform Action 1
(action_2) ; And Action 2
.
.
(action_N)) ; And Action N

The CLIPS shell can be invoked in UNIX-based systems
with the clips command. From within the CLIPS shell,
the user can assert facts, defrules, and (run) the
inference engine. When the user issues the (run) com-
mand, the inference engine pattern matches facts with rules.
If all patterns are matched within the rule, then the actions
associated with that rule are fired. To load facts and rules
from an external file, use the -f option (e.g., clips -f
database.clp). Table 2 is a summary of commands

3Note that ; begins a comment.

Table 2: Essential CLIPS shell commands.

Command Function
(run) Run the inference engine.
(facts) Retrieve the current fact-list.
(clear) Restores CLIPS to start-up state.
(retract n) Retract fact n.
(retract *) Retract all facts.
(watch facts) Observe facts entering or exiting memory.

accessible from within the CLIPS shell and usable in CLIPS
scripts.

For purposes of comparison, we can declare the proposi-
tion ‘It is raining’ in PROLOG with the fact:
weather(raining).

Similarly, we can declare the rule ‘If it is raining, then I
carry an umbrella’ in PROLOG with the rule.
carry(umbrella) :− weather(raining).

Additionally, consider the following set of facts and rule in
PROLOG:
color(red).
color(yellow).
color(blue).

lightcolor(X) :− color(yellow).

These facts assert that red, yellow, and blue are colors. The
rule declares that yellow is a light color.

2.3 Resolution and Unification
The Match-Resolve-Act cycle is the foundation of the

CLIPS inference engine which performs pattern matching be-
tween rules and facts through the use of the Rete Algorithm.
Once the CLIPS inference engine has matched all applicable
rules, conflict resolution occurs. Conflict resolution is the
process of scheduling rules that were matched at the same
time. Once the actions have been performed, the inference
engine returns to the pattern matching stage to search for
new rules that may be matched as a result of the previous
actions. This process continues until a fixed point is reached.

In PROLOG, however, the user gives the inference engine
a goal that it then sets out to satisfy (i.e., prove) based on
the knowledge base of facts and rules. To run a program,
the user supplies one or more goals, each in the form of a
headless Horn clause (see Table 1). The activity of supplying
a goal can be viewed as asking questions of the program
or querying the system as one does with a database system.
When a goal is given, the inference engine attempts to match
the goal with the head of a headed Horn clause, which can
be either a fact or a rule. PROLOG works backward from
the goal using a rule of inference called resolution to find
a series of facts and rules which can be used to prove the
goal. This approach is called backward chaining because
the system works backward from a goal to find a path to
prove that the goal is true. CLIPS, on the other hand, works
in the opposite direction. CLIPS takes asserted facts and

Int’l Conf. Scientific Computing | CSC’19 | 107

attempts to match them to rules to make inferences. This
process is known as forward chaining. The concept of a
goal does not exist in CLIPS. The diagram shown in Fig. 2
illustrates the overall architecture of the CLIPS system [8].
If PROLOG cannot prove a goal, it assumes the goal to be
false—called the closed-world assumption. In either case,
the task of satisfying a goal is left to the inference engine.

For purposes of comparison, we consider resolution in
PROLOG. Given the color fact base above, we can submit
the following queries:
1 ?− color(red).
2 true .
3 ?− color(X).
4 X = red;
5 X = yellow;
6 X = blue;
7 false.
8 ?− color(pink).
9 false.

Note that the case of the first letter of a term indicates
whether it is interpreted as data (lowercase) or as a variable
(uppercase). Variables must begin with a capital letter or an
underscore. Thus, the goal color(X). (on line 3) returns
as many values as we request for which the query is true.4

“This process of determining useful values for variables
is called unification. The temporary assigning of values to
variables to allow unification is called instantiation” [7].

The following is another example of a set of facts (some-
times called a database) that describe a binary tree. Notice
also a path predicate which defines a path between two
vertices, with two rules, to be either an edge from X to Y
(on line 6) or a path from X to Y (on line 7) through some
intermediate vertex Z such that there is also an edge from
X to Z and a path from Z to Y [8].
1 edge(a,b).
2 edge(a,c).
3 edge(b,d).
4 edge(c,e).
5

6 path(X,Y) :− edge(X,Y).
7 path(X,Y) :− edge(X,Z),path(Z,Y).

The user can then query the program by expressing goals to
determine whether the goal is true or to find all instantiations
of variables which make the goal true. For instance, the goal
path(a,c) asks if there exists a path between vertices a
and c.

?− path(a,c).
true .

To prove that goal, PROLOG uses resolution, which includes
unification. When the goal path(a,c) is given, PROLOG
performs its resolution algorithm through the following
steps:

1. {} :− path(a, c).
2. path(X, Y) :− edge(X, Y).
3. path(a, c) :− edge(a, c).
4. edge(a, c) :− {}.
5. path(a, c) :− {}.
6. {} :− {}

4Additional solutions are requested with a ‘n’ or ‘;’ keystroke.

Fig. 3: Resolution graph illustrating an infinite expansion of
the path predicate.

At step 3, PROLOG unifies the clauses path(a,c) and
path(X,Y), which involves instantiating X and Y with the
values a and c, respectively. On steps 4 and 5, the fact
edge(a,c) is resolved with the clause path(a,c) :-
edge(a,c) to deduce that path(a,c) is true. The goal
path(a,E) returns all the values of E that satisfies this
goal.

?− path(a,E).
E = b ;
E = c ;
E = d ;
E = e ;
false.

We can also query for all the paths with the goal
path(X,Y).:

?− path(X,Y).
X = a,
Y = b .

?− path(X,Y).
X = a,
Y = b ;
X = a,
Y = c ;
X = b,
Y = d ;
X = c,
Y = e ;
X = a,
Y = d ;
X = a,
Y = e ;
false.

Consider the following rewrite of the path predicate:
path(X,Y) :− edge(X,Y).
path(X,Y) :− path(Z,Y), edge(X,Z).

While there is no inherent order to clauses in an antecedent
in a proposition in first-order predicate calculus, an im-
plemented system like PROLOG must pursue sub-goals in
the antecedent of a proposition in a deterministic order. In
PROLOG, during resolution, clauses in the antecedent of a
proposition are evaluated from left to right. This, of course,
is problematic with predicates defined in a left-recursive
fashion as is the case with the rewrite of the path predicate

108 Int’l Conf. Scientific Computing | CSC’19 |

above. Specifically, since PROLOG clauses are evaluated
from left to right, Z will never be bound to a value.

?− path(X,Y).
X = a,
Y = b ;
X = a,
Y = c ;
X = b,
Y = d ;
X = c,
Y = e ;
X = a,
Y = d ;
X = a,
Y = e ;
ERROR: Stack limit (1.0Gb) exceeded
ERROR: Stack sizes: local: 1.0Gb, global: 17Kb, trail: 2Kb
ERROR: Stack depth: 12,200,621, last−call: 0%, Choice points: 5
ERROR: Probable infinite recursion (cycle):
ERROR: [12,200,620] user:path(_4520, d)
ERROR: [12,200,619] user:path(_4540, d)

The resolution tree in Fig. 3 illustrates this idea. The left-
to-right evaluation strategy of clauses causes this tree to be
searched in a depth-first fashion, which leads to an infinite
expansion of the rule. Rules are also pursued in a top-
down fashion. Thus, if we reverse the two rules defining
the path predicate given above, the stack overflow occurs
immediately without any output:
path(X,Y) :− path(Z,Y),edge(X,Z).
path(X,Y) :− edge(X,Y).

?− path(X,Y).
ERROR: Stack limit (1.0Gb) exceeded
ERROR: Stack sizes: local: 1.0Gb, global: 16Kb, trail: 2Kb
ERROR: Stack depth: 6,710,347, last−call: 0%,

Choice points: 6,710,342
ERROR: In:
ERROR: [6,710,347] user:path(_4384, _4386)
ERROR: [6,710,346] user:path(_4404, _4406)
ERROR: [6,710,345] user:path(_4424, _4426)
ERROR: [6,710,344] user:path(_4444, _4446)
ERROR: [6,710,343] user:path(_4464, _4466)
ERROR:
ERROR: Use the −−stack_limit=size[KMG]

command line option or
ERROR: ?− set_prolog_flag(stack_limit, 2_147_483_648).

to double the limit.

Thus, it is important to ensure that variables can be bound
to values during resolution before they are used recursively.

3. Going Further in CLIPS
We briefly discuss three programming language concepts

that are helpful in CLIPS programming.

3.1 Variables
Variables in CLIPS are prefixed with a ? (e.g., ?x).

Variables need not be declared explicitly. However, variables
must be bound to a value before they are used. Consider the
following program that computes a factorial:

(defrule factorial
(factrun ?x)
=>
(assert (fact ?x 1)))

(defrule facthelper
(fact ?x ?y)

(test (> ?x 0))
=>
(assert (fact (− ?x 1) (* ?x ?y))))

When the facts for the rule facthelper are pattern
matched, ?x and ?y are each bound to a value. Next, the
bound value for ?x is used to evaluate the validity of the fact
(test (> ?x 0)). When variables are bound within a
rule, that binding exists only within that rule. For persistent
global data, defglobal should be used as follows:

(defglobal ?*var* = "")

Assignment to global variables is done with the bind
operator.

3.2 Templates
Templates are used to associate related data (e.g., facts)

in a single package—similar to structs in C. Templates
are containers for multiple facts, where each fact is a
slot in the template. Rules can be pattern matched to
templates based on a subset of a template’s slots. Below
is a demonstration of the use of pattern matching to select
specific data from a database of facts.

(deftemplate car
(slot make

(type SYMBOL)
(allowed−symbols

truck compact)
(default compact))

(multislot name
(type SYMBOL)
(default ?DERIVE)))

(deffacts cars
(car (make truck)

(name Tundra))
(car (make compact)

(name Accord))
(car (make compact)

(name Passat)))

(defrule compactcar
(car (make compact)

(name ?name))
=>
(printout t ?name crlf))

3.3 Conditional Facts in Rules
Pattern matching need not match an exact pattern. Logical

operators—or (|), and (&), and not (~)—can be applied
to pattern operands to support conditional matches. The
following rule demonstrates the use of these operators:

(defrule walk
(light ~red&~yellow) ; if the light

; is not yellow and
; is not red

(cars none|stopped) ; no cars or stopped
=>
(printout t "Walk" crlf))

4. Applications of CLIPS and PROLOG
We briefly introduce some applications of CLIPS and

PROLOG.

Int’l Conf. Scientific Computing | CSC’19 | 109

4.1 Decision Trees
An application of CLIPS is decision trees. More generally,

CLIPS can be applied to graphs that represent a human
decision-making process. Facts can be thought of as the
edges of these graphs, while rules can be thought of as the
actions or states associated with each vertex of the graph. An
example of this decision-making process is an expert system
that emulates a physician in treating, diagnosing, and ex-
plaining diabetes [9]. The patient asserts facts about herself
including eating habits, blood-sugar levels, and symptoms.
The rules within this expert system match these facts and
provide recommendations about managing diabetes in the
same way a physician may interact with a patient.

4.2 Graphs
We can model graphs in PROLOG using a list whose

first element is a list of vertices and whose second element
is a list of directed edges, where each edge is a list of
two elements—the source and target of the edge. Using
this list representation of a graph, a sample graph is:
[[a,b,c,d],[[a,b],[b,c],[c,d],[d,b]]].

Consider the following definitions of the primitive
append and member predicates, which we use in subse-
quent examples, with sample queries and outputs:
append([], X, X).
append([X|L1], L2, [X|L12]) :− append(L1, L2, L12).

member(X, List) :− append(_, [X|_], List).

?− append([a,b,c], [d,e,f], Y).
Y = [a, b, c, d, e, f].

?− member(4, [2,4,6,8]).
true .

Using the append and member predicates (and others not
defined here, e.g., flatten and makeset), we define a
graph predicate:
graph([Vertices,Edges]) :− checkDuplicateEdge(Edges),

flatten(Edges, X), makeset(X, Y), subset(Vertices, Y).

edge([Vset,Eset], Edge1) :−
graph([Vset,Eset]), member(Edge1, Eset).

vertex([Vset,Eset], Vertex1) :−
graph([Vset,Eset]), member(Vertex1, Vset).

The graph predicate tests whether a given input represents
a valid graph by checking if there are no duplicate edges
and that the defined edges do not use vertices which are
not included in the vertex set. The edge predicate takes a
graph and an edge and returns true if the graph is valid and
the edge is a member of that graph’s edge set, and false
otherwise. The vertex predicate serves the same purpose
for vertices. These predicates serve as building blocks from
which we can construct more interesting predicates. For
example, we can check if one graph is a subgraph of another
one. We can also check whether or not a graph has a cycle
in general or a cycle containing a given vertex. (A chain
is a list of vertices such that each vertex is adjacent to

the next vertex in the list. A cycle is a chain in which the
final vertex is adjacent to the first.) Consider the following
PROLOG predicates:
subgraph([Vset1,Eset1], [Vset2,Eset2]) :−

graph([Vset1,Eset1]), graph([Vset2,Eset2]),
subset(Vset1,Vset2), subset(Eset1,Eset2).

has_cycle(Graph, Vertex) :− chain(Graph, Vertex, Vertex, _).

cycle_vertices(G, [V1|Vset]) :−
has_cycle(G, V1); cycle_vertices(G, Vset).

has_cycle([[V1|Vset], Eset]) :−
cycle_vertices([[V1|Vset],Eset], [V1|Vset]).

Note that the above predicates make use of the chain
predicate which checks if there is a path from a start vertex
to an end vertex in a graph. As stated above, a cycle is a path
where the start vertex and end vertex are the same vertex.
Note that here we model edges of the graph as a list of lists.
If edges are modeled as facts, a different cycle predicate
must be defined:
edge(a,b).
edge(b,a).
edge(a,c).
edge(c,d).
edge(d,a).

cycle(Start, Visited) :−
cycle(Start, Start, [Start], Visited).

cycle(Orig, Start, Path, Visited) :−
edge(Start,Orig), reverse([Orig|Path], Visited).

cycle(Orig, Start, Path, Visited) :−
edge(Start, Next), \+ member(Next, Path),
cycle(Orig, Next, [Next|Path], Visited).

As final examples, we illustrate predicates for identifying
a graph with no edges (or an independent set) and a complete
graph. (An independent set is a graph with no edges, or a set
of vertices with no edges between them. A complete graph
is a graph in which each vertex is adjacent to every other
vertex.) These two classes of graphs are complements of
each other. To identify an independent set, we must check if
the edge set is empty. On the other hand, a complete directed
graph has no loops, but all other possible edges. A complete
directed graph with n vertices has exactly n×(n−1) edges.
Thus, we can check if a graph is complete by verifying that a
valid graph has no self-edges and that the number of edges
satisfies this condition. The following are independent
and complete predicates, and helper count and proper
predicates, for implementing these tests:

/* count number of elements in a list */
count([],0).
count([_|X], Y) :− count(X, Z), Y is Z+1.

/* for graph with X vertices , checks if X(X−1) edges */
proper(Y, X) :− Z is Y − X*(X−1), Z == 0.

/* checks if graph is an independent set */
independent([Vset, []]) :− graph([[Vset], []]).

/* checks if graph is complete (infinite recursion problem) */
complete([Vset,Eset]) :−

graph([Vset,Eset]), not(member([X,X], Eset)),
count(Vset, X), count(Eset, Y), proper(Y, X).

110 Int’l Conf. Scientific Computing | CSC’19 |

Note that infinite recursion may arise. In particular, in some
cases, when a goal is pursued, the program correctly outputs
true. However, if the user presses the semicolon key rather
than the period key, the system will return true, what
appears to be, an infinite number of times. Consider the
following sample goals and corresponding output.

?− graph([[a,b,c],[[a,b],[b,c],[d,a]]]) .
false.
?− edge([[a,b,c],[[a,b],[b,c], [d,a]]], [a,b]) .
true .
?− has_cycle([[a,b,c,d],[[a,b],[b,c],[c,d],[d,b]]]) .
true .
?− has_cycle([[a,b,c,d],[[a,b],[b,c],[c,d],[d,b]]], a).
false.
?− has_cycle([[a,b,c,d],[[a,b],[b,c],[c,d],[d,b]]], d).
true .
?− subgraph([[a,b,c],[[a,b],[a,c],[b,c]]], [[a,b,c],[[a,b],[a,c]]]) .
true .
?− complete([[],[]]).
true .
?− complete([[a,b,c],[[a,b],[a,c],[b,a], [b,c],[c,a],[c,b]]]) .
true .

4.3 Natural Language Processing
One application of PROLOG is natural language process-

ing [10], [11]—the search engine used by PROLOG naturally
functions as a recursive-descent parser. One could conceive
facts as terminals and rules as non-terminals or production
rules. Consider the following simple grammar:

<sentence> ::= <noun phrase> <verb phrase>
<noun phrase> ::= <determiner> <adj noun phrase>
<noun phrase> ::= <adj noun phrase>

<adj noun phrase> ::= <adj> <adj noun phrase>
<adj noun phrase> ::= <noun>

<verb phrase> ::= <verb> <noun phrase>
<verb phrase> ::= <verb>

Using this grammar, a PROLOG program can be writ-
ten to verify the syntactic validity of a sentence. Note
that the candidate sentence is represented as a list where
each element is a single word in the language (e.g.,
sentence(["The","dog","runs","fastly"])).
sentence(S) :−

append(NP, VP, S), noun_phrase(NP), verb_phrase(VP).

noun_phrase(NP) :−
append(ART, NP2, NP), det(ART), noun_phrase_adj(NP2).

noun_phrase(NP) :− noun_phrase_adj(NP).

noun_phrase_adj(NP) :− append(ADJ, NPADJ, NP),
adjective(ADJ), noun_phrase_adj(NPADJ).

noun_phrase_adj(NP) :− noun(NP).

verb_phrase(VP) :− append(V, NP, VP), verb(V), noun_phrase(NP).

verb_phrase(VP) :− verb(VP).

One drawback of using PROLOG to implement a parser
is that left-recursive grammars cannot be implemented for
the same reasons discussed in § 2.3. Other applications of
PROLOG include Petri nets, recommender systems, and deep
learning [10].

5. Conclusion
The declarative nature of programming in CLIPS and

PROLOG sets the languages apart from other programming
languages. Problems are solved by specifying a description
of the solution, not a series of instructions to compute
a solution—a PROLOG “state of mind” [12]. CLIPS oper-
ationalizes this motif with the Rete Algorithm; PROLOG
operationalizes this motif through resolution and unification.
CLIPS is a language which allows for the implementation
of ‘rule of thumb’ knowledge similar to that of a human
expert. These forward-chaining systems help a computer
make heuristic decisions by considering the facts (or lack
of facts) of a situation and drawing conclusions. Because
CLIPS can handle arbitrarily large data, it has an advan-
tage over human experts because humans are limited in
their ability to consider many facts at once. For YouTube
videos of CLIPS and PROLOG presented and recorded by the
authors, visit https://www.youtube.com/watch?
v=XX8Fxze6Np8&t=2s (CLIPS) and https://www.
youtube.com/watch?v=SfXOgyOl3LU (PROLOG).

Appendix
A CLIPS Programming Exercises

The following are programming exercises that involve
essential CLIPS concepts:

1) Build a finite state machine using CLIPS that accepts a
language L consisting of strings in which the number
of a’s in the string is a multiple of three over an
alphabet {a,b}. Use the following state machine for
L:

Examples:
CLIPS> (run)
String? aaabba
Rejected

CLIPS> (reset)
CLIPS> (run)
String? aabbba
Accepted

CLIPS>

2) Rewrite the factorial program in § 3.1 so that only the
fact with the final result of the factorial rule is stored
in the fact list. Note that retract can be used to
remove facts from the fact list.

https://www.youtube.com/watch?v=XX8Fxze6Np8&t=2s
https://www.youtube.com/watch?v=XX8Fxze6Np8&t=2s
https://www.youtube.com/watch?v=SfXOgyOl3LU
https://www.youtube.com/watch?v=SfXOgyOl3LU

Int’l Conf. Scientific Computing | CSC’19 | 111

Examples:
CLIPS> (assert (fact_run 5))
CLIPS> (run)
CLIPS> (facts)
f−0 (fact_run 5)
f−1 (fact 0 120)

CLIPS>

B PROLOG Programming Exercises
The following are programming exercises that involve

essential PROLOG concepts:
1) A multiplexer is a device that selects one of many

inputs to output based on a select line input. Define
a PROLOG predicate that acts as a 4-input 2-bit multi-
plexer.
Examples:

?− mux("1", "2", "3", "4", 1, 1, Output).
Output = "4".

?− mux("1", "2", "3", "4", 0, 1, Output).
Output = "2".

2) Define a PROLOG predicate that takes two cities
and a route and determines if that route is a valid.
Excluding fact declarations, this program should be
approximately 15 lines of code. The roads need not
be implicitly bi-directional.
Sample list of cities:
road(paris, rouen).
road(paris, lyon).
road(lyon, marseille).
road(marseille, nice).
road(paris, bordeaux).
road(paris, caen).
road(bordeaux, madrid).
road(madrid, cuenca).

Examples:
?− route(paris, caen, [paris, caen]).
true .

?− route(paris, cuenca, Route).
Route = [paris, bordeaux, madrid, cuenca].

3) Define a PROLOG predicate which takes an infix
arithmetic expression and an integer and determines

whether the integer results from evaluating the expres-
sion. The predicate need not handle a divide by 0 error.
Use the following grammar:

(r1) <expression> ::= <number> <op> <expression>
(r1) <expression> ::= <number> <op> <number>
(r3) <op> ::= + | - | * | /

Examples:

?− expr([3,*,39,+,3], 120).
true .

?− expr([3,*,39,+,3], 39) .
false.

?− expr([3,*,39,+,3], X).
X = 120.

References

[1] J. C. Giarratano, CLIPS User’s Guide. Cambridge, MA: The MIT
Press, 2008.

[2] P. Brna, “Prolog programming: A first course,” 2001, available from
https://courses.cs.washington.edu/courses/cse341/03sp/brna.pdf [Last
accessed: 22 May 2019].

[3] W. Clocksin and C. Mellish, Programming in Prolog, 5th ed. Berlin,
Germany: Springer-Verlag, 2003.

[4] M. Kifer and Y. Liu, Eds., Declarative Logic Programming: Theory,
Systems, and Applications. New York, NY: ACM and Morgan &
Claypool, 2018.

[5] F. Pereira, “A brief introduction to Prolog,” ACM SIGPLAN Notices,
vol. 28, no. 3, pp. 365–366, 1993.

[6] J. Giarratano and G. Riley, Expert systems principles and program-
ming. Boston, MA: PWS Publishing Company, 1998.

[7] R. Sebesta, Concepts of Programming Languages, 9th ed. Boston,
MA: Addison-Wesley, 2010.

[8] P. Lucas and L. van der Gaag, Principles of expert systems. Boston,
MA: Addison-Wesley, 1991.

[9] M. Garcia, T. Gandhi, J. Singh, L. Duarte, R. Shen, M. Dantu,
S. Ponder, and H. Ramirez, Esdiabetes (an Expert System in Diabetes).
Consortium for Computing Sciences in Colleges, 2001.

[10] J. Eckroth, AI Blueprints: How to build and deploy AI business
projects. Packt Publishing, 2018.

[11] C. Matthews, An introduction to natural language processing through
Prolog. London, United Kingdom: Longman, 1998.

[12] J. Eckroth, “AI education matters: Biductive computing with Prolog,”
AI Matters, vol. 5, no. 1, pp. 14–16, 2019.

https://courses.cs.washington.edu/courses/cse341/03sp/brna.pdf

	University of Dayton
	eCommons
	7-2019

	An Introduction to Declarative Programming in CLIPS and PROLOG
	Jack L. Watkin
	Adam C. Volk
	Saverio Perugini
	eCommons Citation

	Introduction
	Declarative/Logic Programming
	Horn Clauses
	Asserting Facts and Rules
	Resolution and Unification

	Going Further in CLIPS
	Variables
	Templates
	Conditional Facts in Rules

	Applications of CLIPS and PROLOG
	Decision Trees
	Graphs
	Natural Language Processing

	Conclusion
	Appendix
	CLIPS Programming Exercises
	PROLOG Programming Exercises

	References

