

Introduction

>Lung cancer is the leading cause of cancer death in the United States. >Lung cancer usually exhibits its presence with the formation of pulmonary nodules.

 \geq Nodules are round or oval-shaped growth present in the lung. \geq Chest radiographs are used by radiologists to detect and treat such nodules, but nodules are quite difficult to detect with human eye.

Computer Aided Detection (CAD) applied to such data would be very essential and will be of valuable help in lung cancer screening.

>FlyerScan [1] developed at UD serves as the benchmark to this research and its performance results in competition ANODE09 are shown in [2]. \geq In this poster, we present facets of our proposed algorithm.

FlyerScan CAD Algorithm

The algorithmic steps of the CAD system include :

Local contrast enhancement

>Automated anatomical segmentation

- Detection of nodule candidates
- Feature extraction
- Candidate classification

Figure 1 : CAD System block diagram

A COMPUTER BASED DETECTION OF LUNG NODULES IN CHEST RADIOGRAPHS Author: Barath Narayanan Advisor: Russell C. Hardie Co-Advisor: Temesguen M. Kebede

Methodology

> Here, proposed FlyerScan algorithm is implemented for Lung Image Database Consortium (LIDC)- Image Database Resource Initiative (IDRI). > Algorithm is trained and tested using specific sets from the LIDC-IDRI database.

>CAD system is trained based on the centroid of nodules provided by at least one of four board certified radiologists.

 \geq In this research, we later explore into new set of classes and features.

Results

Figure 2: Original chest radiograph

50
100
150
200
250
300
350
400
450
500

50	
100	
150	
200	
250	
300	
350	
400	
450	
500	

> To explore into a new set of features and classes that would aid in nodule classification for each patient. To improve the efficiency of existing FlyerScan CAD algorithm

Dafaranaa Kererences

I. Temesguen M.Kebede, Russell C. Hardie, Steven K. Rogers, "A new computationally efficient CAD system for pulmonary nodule detection in CT imagery", Medical Image Analysis, Vol. 14, No. 3, June 2010, Pages 390-406. 2. http://anode09.grand-challenge.org/results/

Figure 4: Lung Segmentation applied on Local contrast enhancement image

Figure 5: Lung segmentation with centroid of nodules provided by radiologists