Multi-Input Multi-Output (MIMO) Adaptive Control of 9-DOF Hyper-Redundant Robotic Arm

UNIVERSITY of CONTROLLAB CONTROLL

Xingsheng Xu, Advisor: Raúl Ordóñez

School of Electrical and Computer Engineering University of Dayton

Key Words

▶ Degree of freedom (DOF) and Fuzzy system

(a) Degree of freedom (b) Fuzzy system

► Hyper-redundant robots (HRR)

(a) Snake (b) Elephant trunk (c) Tentacle

OBJECTIVE

- ▶ Design both the kinematic and dynamic model of a 9-DOF hyper-redundant arm;
- Apply MIMO adaptive controllers to control the end-effector of the arm in work space.

KINEMATIC MODEL

Dynamic Model

Manipulator Jacobian Matrix: An expression to connect angular velocity ω_n^0 , linear velocity v_n^0 of the end-effector and joint velocity \dot{q} as

$$\omega_n^0 = J_\omega \dot{q},$$
 $v_n^0 = J_v \dot{q},$

where I_{ω} and I_{v} are $3 \times n$ matrices.

Euler-Lagrange Equation:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = \tau_i, i = 1, ..., n,$$

where τ_i is input torque of each motor and the Lagrangian L is given by

$$L = K - P$$
,

where K is the kinetic energy and P is the potential energy.

MIMO Adaptive Control in Workspace

Extra Constraints

SIMULATION RESULTS

▶ 9-DOF Arm Tracking and Disturbance Simulation

Conclusion

- ▶ Take care of the system nonlinearity and uncertainty;
- ▶ Approximate the ideal controller online to the particular system;
- Adjust itself and try to track the reference again after having system disturbance.

REAL 9-DOF ARM PLATFORM

(a) Home position 1

(b) Home position 2