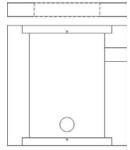

UNIVERSITY of Electricity Generation using Sulfolobus solfataricus in a High-Temperature Microbial Fuel Cell

Henry Lee Aldridge Jr. and Donald Comfort, Ph.D.

Abstract

DAYTON

Microbial fuel cells (MFCs) are an emerging biomass-toenergy technology, which break down organic materials in liquids while generating electricity. This project includes the construction and operation of a membrane-less single chamber microbial fuel cell (ML-SCMFC), using the hyperthermophilic archaeon Sulfolobus solfataricus at 80°C. Use of extremophiles as the fuel cell culture has many potential applications, such as generating electricity in harsh and isolated environments, including deserts and alien space environments. A maximum power density of 0.67 mW·m⁻² (25.3 mW·m⁻³) was obtained using a carbon cloth anode and cellobiose as the substrate. Sustained current densities ranging from 5.63 and 39.9 mA·m⁻² regularly persisted for 4-17 hour durations. Additional changes can potentially improve observed values, including new substrates, inclusion of separators and new anode materials.


$C_6H_{12}O_6 \rightarrow 6CO_2 + 12e^- + 12H^+$ (1)

 $3O_2 + 12H^+ + 12e^- \rightarrow 6H_2O$ (2)

Materials and Methods

- Single Chamber membrane-less MFC (28mL volume) .
- Carbon Cloth and Brush anodes (untreated) .
- Air Cathode with 0.5 mgcm⁻¹ Pt loading
- Sealed with silicone

Operation

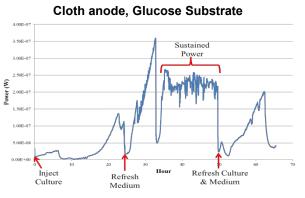

several days at 80°C

medium into chamber

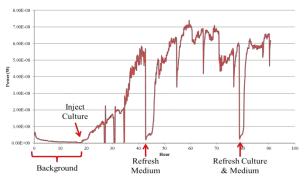
substrate injection

Continuous fed

2.75 ml hr⁻¹



12-24 hours	18-24 hours	32 hours	32 hours
/	۲ Y	1	х Х
Background	Inoculation	Refresh Medium	Refresh Medium & Culture


Results

- Continuous, sustained current and power densities
- Higher performing runs had shorter sustained periods
- Cellobiose –similar substrate, highest output
- Brush anodes: large surface area, lower outputsgreater surface utilization required
- Values comparable to studies with thermophilic and single strain systems.

	Trial Number		
Value	3	5	7
Anode Type	Carbon Cloth	Carbon Cloth	Carbon Brush
Anode Surface Area (Projected, m²)	1.13E-03	1.13E-03	8.83E-02
Substrate	Glucose	Cellobiose	Glucose
Max net current Density (mAm ⁻²)	27.3	33.7	0.12
Max Power Density (mWm ⁻²)	0.46	0.67	0.077
Max Sustained power	0.28	0.24	0.068
density (mWm ⁻²) and duration (hrs)	8.0	6.5	4.7

Cloth anode, Cellobiose Substrate

Conclusion

MFCs are a developing technology that uses microbes to generate electricity from biomass. In this work, continuous electricity generation using S. solfataricus was demonstrated using different substrates and anode types in a single chamber membrane-less MFC. Power and current densities were comparable to or greater than systems at lower temperatures. Continued characterization of hyperthermophiles for MFC use could make them a favorable choice for renewable electricity generationparticularly in extreme settings. Future studies will explore anode pretreatment for bacterial adhesion and use of electron shuttles to aid electron transport.

Acknowledgments

- University of Dayton Honors Program
 - AFRL Minority Leaders Program