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Abstract

By reducing the demand for fossil fuels, climate policy can reduce scarcity rents for fossil resource owners.

As mitigation policies ultimately aim to limit emissions, a new scarcity for “space” in the atmosphere to

deposit emissions is created. The associated scarcity rent, or climate rent (that is, for example, directly

visible in permit prices under an emissions trading scheme) can be higher or lower than the original fossil

resource rent. In this paper, we analyze analytically and numerically the impact of mitigation targets,

resource availability, backstop costs, discount rates and demand parameters on fossil resource rents and

the climate rent. We assess whether and how owners of oil, gas and coal can be compensated by a carbon

permit grandfathering rule. One important finding is that reducing (cumulative) fossil resource use could

actually increase scarcity rents and benefit fossil resource owners under a permit grandfathering rule. For

our standard parameter setting overall scarcity rents under climate policy increase slightly. While low

discount rates of resource owners imply higher rent losses due to climate policies, new developments of

reserves or energy efficiency improvements could more than double scarcity rents under climate policy.

Another important implication is that agents receiving the climate rent (regulating institutions or owners of

grandfathered permits) could influence the climate target such that rents are maximized, rather than to limit

global warming to a socially desirable level. For our basic parameter setting, rents would be maximized at

approximately 650 GtC emissions (50 percent of business-as-usual emissions) implying a virtual certainty

of exceeding a 2◦C target and a likelihood of 4◦C warming.

JEL Codes: Q30, Q38, Q40, Q54

Keywords: global warming, geo rent, Hotelling, carbon budget, fossil resources, renewable energy

∗Corresponding author. Phone: +49-228-73-1841
Email addresses: mkalkuhl@uni-bonn.de (Matthias Kalkuhl), rbrecha1@udayton.edu (Robert Brecha)

Accepted submission to Energy Economics February 26, 2013

*Manuscript
Click here to view linked References

http://ees.elsevier.com/eneeco/viewRCResults.aspx?pdf=1&docID=4079&rev=1&fileID=82174&msid={9125298F-8BD7-4D4F-9F2C-8231FBBFBABC}


1. Introduction

Greenhouse gas emissions from the combustion of fossil fuels are the leading contribution to anthro-

pogenic climate change, as has been comprehensively summarized in the fourth assessment report (AR4)

of the Intergovernmental Panel on Climate Change (IPCC, 2007a, p. 25), along with more recent updates

(e.g. National Research Council (U.S.), 2010). Perhaps more importantly, signals of a changing climate

due to anthropogenic influences are already being observed, and are projected to become more noticeable

in the near- to mid-term future (IPCC, 2007b, pp. 36–45;66–74). Since fossil fuels make up 85% of world

primary energy consumption (IPCC, 2011, p. 35) and contribute more than 55% of warming potential of

anthropogenic greenhouse gases (IPCC, 2007a, p. 28), policies for climate change mitigation concentrate

on the decarbonization of the energy system. Given the large amounts of fossil fuels in the earth, decar-

bonization implies that in the short and medium term either those fossil resources may not be extracted and

burned, or that emitted carbon must be effectively captured and permanently sequestered. As the technical

and geological potential of carbon capture and sequestration is limited (IPCC, 2005), the starting point of

this paper is the necessity of having potential resources remain in the ground to avoid dramatic temperature

increases.

We will briefly summarize estimates of the final equilibrium global temperature change that can be

tolerated without inducing “dangerous anthropogenic interference with the climate system” (UNFCCC,

1992, Article 2), as well as the fraction of the fossil fuel resource that can be combusted while maintaining

consistency with the final tolerable temperature change. After surveying previous related work, we use an

analytical model and a slightly extended numerical application of that model to address two main questions:

First, given the fact that restricting total future carbon emissions, i.e. setting a “carbon budget” for climate

mitigation, amounts to creating an artificial scarcity of fossil-fuel resources, what happens to the rents

for resource owners under climate policy? Second, depending on the stringency of the climate policy,

and therefore on the induced scarcity of fossil fuels, is it possible for resource owners to be compensated

for decreased sales of fossil fuels through potentially increasing scarcity rents? We explore the relevant

parameter space of carbon budgets, discount rates, backstop technology costs and demand growth rates to

determine which are the most crucial determinants for compensation. Our model combines the conventional

Hotelling approach of optimal fossil resource extraction with the political-economy dimension of scarcity

rents that are associated to finite resources and possibly induced rent-seeking behavior. While the analytical

model strengthens the insights in the general dynamics of scarcity rents due to parameter variations, the

numerical model application transfers these insights to a more realistic but specific real-world setting.

The focus on the supply-side and on the fossil resource owners is motivated by the green paradox of
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Sinn (2008).1 The intertemporal profit maximizing behavior of fossil resource owners can render climate

policy measures ineffective. One critical aspect is the occurrence of so-called supply-side leakage, when

unilateral carbon pricing policies induce a re-allocation of fossil resource use via reduced (global) fossil

resource prices (Eichner and Pethig, 2011). Without a globally harmonized policy, mitigation is therefore

barely feasible or will be very expensive. Sinn (2008) suggests a (theoretically) feasible unilateral policy

to subsidize resource stocks in situ; nevertheless, he admits that taxpayers will strongly reject a policy that

transfers large amounts of money to owners of oil, gas and coal. A similar approach is to develop a market

in extraction rights that recognizes the option of foregoing extraction (Harstad, 2010). The starting point for

Harstad is the recognition that many countries may not willingly participate in a global scheme to reduce

emissions (e.g. resource-rich countries), whereas others may be willing to pay for emissions avoidance.

Without providing for trade in deposit extraction rights, climate policies enacted by some set of countries

have the effect, ceteris paribus, of reducing overall demand and therefore prices, potentially stimulating

increased consumption by non-participant countries.

As explicit transfers to resource-rich countries may be politically difficult to implement, policies with

implicit or hidden transfers might be more successful. Asheim (2011) explicitly considers the implication

of climate policy that significant fractions of fossil fuel deposits must necessarily remain in the ground. He

concentrates on the distributional issues of different supply-side policy instruments, assuming full partici-

pation of all actors. The model framework is a standard approach to optimal extraction of finite resources

(Dasgupta and Heal, 1974; Solow, 1974; Stiglitz, 1974), with the assumption that fossil fuel extraction takes

place at zero cost, and that there is no backstop technology. He illustrates how different implementations

of mitigation policies influence resource owners’ pay-off. As we will see in the course of this paper, it is

even possible that climate policy results in net benefits for fossil resource owners (compared to a business-

as-usual scenario). Hence, not only the distribution of rents may be subject to political considerations, but

also the factors that determine the absolute size of rents. This insight could ultimately result in a broader

political discussion about the ownership of natural resource rents as they might be a substantial fraction of

the global added-value.

Our model is based on the common literature of natural resource economics, starting with Hotelling

(1931) and continuing with expanded interest in the 1970s by Dasgupta and Heal (1974) and Solow (1974).

We formulate the climate target as a constraint on cumulative fossil resource extraction which serves as

proxy for temperature changes, as described below. The carbon budget makes fossil resources abundant

(and destroys the associated scarcity rent) and the atmosphere a relatively scarce (and exhaustible) resource

which in turn now receives a scarcity rent – a so-called climate rent. If fossil resource owners jointly commit

1See also van der Werf and Di Maria (2011) for a survey on the green paradox literature.
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to this carbon budget, they will automatically receive this rent. If governments implement an emissions

trading scheme, they receive this rent. By grandfathering the permits to resource owners, they can transfer

this rent (without transferring money explicitly) which may compensate resource owners. Hence, resource

owners might opt for an emissions trading scheme that makes them better-off than without any climate

policy in place. We differ from Asheim (2011) in extending the basic Hotelling model by a backstop

technology, which truncates the iso-elastic demand function if resources prices reach the backstop price.

This backstop price turns out to be a crucial parameter for the possibility to compensate resource owners.

Our innovations are to consider explicitly realistic carbon budgets, as introduced below, compared to actual

fossil resource data, and to map out the parameter space to determine over which ranges a compensation is

possible.

2. Delaying extraction vs. ceasing reserves

There are two different perspectives on fossil fuel use under climate change mitigation: The classical

economic view is that fossil resource use should be slowed down and delayed into the far-distant future

because (i) climate damages are discounted and (ii) CO2 is removed from the atmosphere by biosphere and

ocean uptake (Hoel and Kverndokk, 1996; Sinn, 2008) on longer time scales. If one of these two conditions

holds, it can be efficient to exhaust all fossil resources in infinite time: climate policy is a question of

‘timing’ of fossil resource use rather than a question of the total amount of usable fossil resources.2

The second approach focuses on temperature and concentration targets that are considered to be achiev-

able at moderate economic costs and that avoid the risk of “dangerous anthropogenic interference with the

climate system” (UNFCCC, 1992, Article 2) as revealed by the existence of several irreversible tipping

points in the Earth system (Lenton et al., 2008). The difficulty in quantifying and normatively evaluating

climate damages and their intertemporal development might explain why the public discourse focuses on

temperature and concentration targets rather than on the choice of an appropriate damage function.

Recent papers by Meinshausen et al. (2009) and by Allen et al. (2009) make an important contribution

to the discussion linking (cumulative) emissions pathways for the future and probabilities of equilibrium

global average temperature change. The first key point of the recent work cited above is that equilibrium

temperature changes, as determined by the results from many climate modeling comparisons, are mainly

2The first condition is subject to controversial debates on discounting (Stern, 2007; Nordhaus, 2007; Heal, 2009) and the appropri-

ate use of cost-benefit analysis in the presence of high uncertainties (Weitzman, 2011). The second condition is only true for very long

time horizons: Archer (2005) estimates that 17-33% of the emitted carbon dioxide remains in the atmosphere within approximately

1,000 years. Solomon et al. (2009) report even higher numbers: After stopping carbon emissions immediately, atmospheric carbon

concentration will fall to 40% after 1,000 years. Additionally, the uptake of CO2 by oceans itself leads to acidification that might

seriously damage marine ecosystems (WBGU, 2006).
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sensitive to the cumulative amount of carbon emissions, independent of the exact trajectory over time of

those emissions. Therefore, one can speak of a carbon budget that corresponds to a future temperature

change. A second key point is that, due to the inherent uncertainty of climate models, one must consider

probabilities of exceeding a given target for temperature, given a cumulative emission quantity. Thus, the

chain of logic is such that “if we emit X tons of carbon dioxide in the future, there is a Y percent chance

of exceeding the temperature change target of Z◦C”. Over the course of the past several years, a political

consensus has been emerging that a temperature-change threshold of 2◦C with respect to the early 20th

century represents a planetary boundary within which it would be advisable to remain (UNFCCC, 2009).3

Meinshausen et al. (2009) conclude that cumulative emission of 1440 Gt of CO2 (392 GtC) between

2000 and 2050 results in a 50% likelihood of exceeding the T = 2◦C threshold, and that to reduce the

probability to 25%, the total emission budget is reduced to 1000 Gt CO2 (272 GtC). To gain an idea of

just how stringent these limits are, total emissions from 2000-2009 were 315 Gt CO2 (86 GtC), with 278

Gt CO2 (76 GtC) from fossil fuel combustion and cement production, and the remainder due to land-use

change (Friedlingstein et al., 2010).

Once an agreed-upon carbon budget can be established, there are still many potential energy-system

transformation pathways available to satisfy the carbon emissions target. However, any successful strategy

for mitigation of climate change must come to terms with the fact that greenhouse gas emissions from fossil

fuels must be reduced, and therefore that either those fossil resources may not be extracted and burned, or

that emitted carbon must be effectively captured and permanently sequestered (CCS). For example, in its

most recent edition of the World Energy Outlook, the International Energy Agency estimates that at least

two-thirds of current fossil fuel reserves must remain in the ground if a 2◦C target is to be met (IEA, 2012).

Fig. 1 illustrates the enormous amounts of carbon under ground and shows one possible allocation of

carbon use among fossil energy types consistent with an ambitious 400 ppm CO2-eq. mitigation scenario.

While integrated assessment models differ in the emission quantities allocated to coal, oil, gas and CCS,

they are highly consistent in showing strong reductions of fossil resource consumption (without CCS) to

achieve ambitious concentration targets (see IPCC, 2011, p. 804 and Fig. 10.4).

In the remainder of this paper, we will therefore analyze how this carbon budget and the cumulative

constraint on fossil resource extraction affects the scarcity rents associated to fossil resources.

3It should be noted that, although the link between emissions and temperature change is clear, the exact numerical conversion

factor has a fairly large degree of uncertainty, with best estimates giving a range of T = 3◦C ± 1.5◦C for a doubling of atmospheric

carbon dioxide concentration with respect to pre-industrial levels of 285 ppm. The third parameter Y, effectively the risk we are willing

to accept in not meeting the temperature goal, is a subjective evaluation of risk willingness. In effect, the current generation of humans

living in countries responsible for the majority of emissions will make a risk evaluation for future generations and for those currently

vulnerable to impacts visible today.
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Figure 1: Cumulative historic carbon consumption (1750-2004), estimated carbon stocks in the ground, and estimated future con-

sumption (2005-2100) for business-as-usual (BAU) and an ambitious 400 ppm-CO2-eq. mitigation scenario. Carbon cap-

ture and sequestration technologies (CCS) reduce emissions of coal combustion near zero and lead to negative emissions in

combination with biomass combustion (in total 440 GtC are stored underground by CCS which would be emitted addition-

ally in the BAU scenario). Fossil energy stocks are converted to carbon dioxide emissions by using emission factors from

IPCC (2006). Sources: Reserves: BGR (2009); historic consumption: Boden et al. (2010); scenarios by the intertemporal

optimization model ReMIND, Edenhofer et al. (2010).
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3. Theoretical Analysis

3.1. The Basic Model

For our formal analysis we consider a reduced Hotelling (1931) model with isoelastic demand and

constant supply costs b of a backstop technology. Thus, the demand function for fossil resources reads:

q(p) =


Aeγt p−ε if p < b

0 if p > b
(1)

with −ε < 0 the price elasticity of demand. The exogenous demand growth rate γ results from the product

of the income growth rate g and the income elasticity of fossil-fuel demand θ, i.e. γ = gθ. For constant unit

extraction costs c and discount rate r, the Hotelling resource price evolves according to (see Dasgupta and

Heal, 1974, p. 176):

p(t) = λ0ert + c (2)

The initial resource rent (or use cost) component λ0 is determined from the intertemporal market clearing

condition

S 0 =

∫ T

0
q(p(t)) dt =

∫ T

0
Aeγt

(
λ0ert + c

)−ε
dt (3)

where S 0 is the initial size of the resource base and T = [ln(b − c) − ln(λ0)]/r the year when the resource

price equals the backstop price, i.e. p(T ) = b. Hence, λ0 is exactly the price that leads to a full exhaustion

of fossil resources by the time the switch to the backstop technology occurs. The net-present value of

resources in the ground (hereafter denoted as resource rent) is given by:

π :=
∫ T

0
(p(t) − c)q(t)e−rt dt = λ0

∫ T

0
q(t) dt = λ0S 0 (4)

3.2. Analytical analysis: zero extraction costs, zero demand growth

To derive some analytical results regarding climate mitigation policies, we assume in this subsection

that extraction costs c and demand growth γ are zero. In that case, we can obtain a closed-form solution of

λ0 from solving (3):

λ0 = p0 =

(
b−ε +

rεS 0

A

)−1/ε

= Θ−1/ε (5)

with Θ := b−ε +
rεS 0

A . As there are no extraction costs, the resource price p simply equals the scarcity rent

λ.
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Change in the resource base. Before studying the case of climate policy, we discuss how a change in

S 0 influences the resource rent π. The total derivative is given by dπ/dS 0 = S 0 ∂p0/∂S 0 + p0. On the

one hand, an increase in S 0 leads to higher rents due to a volume effect expressed by the second term: if

more resources are in the ground, more may be sold. On the other hand, a higher resource base lowers

the resource price as ∂p0/∂S 0 < 0 (which follows from (5)). To determine which effects dominates we

calculate π′(S 0) explicitly:

π′(S 0) =
dπ

dS 0
=

(
b−ε +

r(ε − 1)
A

S 0

)
p1+ε

0 (6)

Eq. 6 reveals the non-monotonic behavior of the resource rents as a function of S 0. Setting π′(S ∗0) = 0, we

calculate the critical resource stock size S ∗0 with:

S ∗0 =
A

rbε(1 − ε)
(7)

Hence, S ∗0 is the size of the resource base that maximizes the total rent π. If no backstop technology is

available and demand is inelastic, i.e. if b → ∞ and ε < 1, S ∗0 converges to zero and reducing cumulative

demand does always increase scarcity rents. The lower the backstop costs are, the higher is the rent maxi-

mizing level of S ∗0 and. If S 0 < S ∗0, π′(S 0) > 0. On the other hand, if S 0 > S ∗0, the resource rent decreases

in the size of the resource stock S 0. It is obvious that for ε > 1, resource rents always decrease in S 0 (as

S ∗0 < 0 and S 0 > 0).

The role of climate policy. We consider climate policy as an effective decrease of the usable resource base

to the size S̃ 0 < S 0. For example, resource owners might be forced by an international agreement to extract

only a certain share of their resources. We will elaborate the institutional aspects in more detail below. To

begin with, we calculate the rent incidence Γ of climate policy according to:

Γ :=
π(S̃ 0)
π(S 0)

=

 (Ab−ε + rεS 0)S −ε0

(Ab−ε + rεS̃ 0)S̃ −ε0

1/ε

=
Θ̃−1/εS̃ 0

Θ−1/εS 0
(8)

where the RHS follows from substituting (4–5) and Θ̃ := b−ε + rεS̃ 0/A. If Γ > 1, capping cumulative fossil

resource extraction at S̃ 0 increases the total scarcity rent.

Compensation for climate policy. Even if reducing cumulative extraction increases the scarcity rent, this

does not necessarily imply that the owners of fossil resources actually benefit from doing so. Whether or

not fossil resource owners benefit depends on the design of the policy and the distribution of property rights

associated with S̃ 0. In the following, we consider the case where a government implements an upstream

carbon trading scheme where resource owners need an allowance or permit to to sell one unit of resources.4

4For an efficient climate policy, permits should be related to the carbon content of different fossil fuels and fossil resources with

zero emissions – e.g. due to application of CCS – should be exempted from the trading scheme.
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If the government auctions permits for the carbon budget S̃ 0, the entire scarcity rent π(S̃ 0) belongs to the

government (which may transfer it via tax reductions or public spending to various parts of the society).

On the other hand, if the government grandfathers all carbon permits to the resource owners relative to

their share of the resource base, resource owners receive the scarcity rent completely. Obviously, a hybrid

approach allows for an arbitrary distribution of scarcity rents if a share β of permits is grandfathered and the

remaining share 1−β auctioned by the government. Using (8), we can calculate the share β of grandfathered

permits that exactly compensates resource owners (implying βπ(S̃ 0) = π(S 0)):

β =
1
Γ

=
Θ−1/εS 0

Θ̃−1/εS̃ 0
(9)

In particular, Γ < 1 implies that more certificates must be grandfathered than available (β > 1) and govern-

ments would therefore have to implement additional transfers to compensate resource owners.

Parameter analysis. In the following, we briefly summarize how changes in parameters influence Γ. By

differentiating (8) with respect to b we obtain

dΓ

db
= Γ

rε(S 0 − S̃ 0)
Abε+1ΘΘ̃

> 0 (10)

This expression shows that higher backstop costs increase the scarcity rent under a climate policy regime.

The rationale is that higher backstop costs always lead to higher resource prices (see Eq. 5) and that this

price increase is more pronounced for S̃ 0 than for S 0.5 An important implication from this finding is

that technological progress, which tends to reduce backstop costs, makes it more difficult to compensate

resource owners with grandfathered carbon allowances.

Considering the impact of the discount rate on Γ gives

dΓ

dr
= Γ

S 0 − S̃ 0

AbεΘΘ̃
> 0 (11)

The lower the effective discount rate, i.e. the more far-sighted the resource owners are, the smaller is Γ.

In contrast to the backstop costs, higher discount rates reduce the resource price according to (5). As this

price reduction is now stronger for S 0 than for S̃ 0, the overall effect on Γ is positive. Insecure property

rights (induced by geo-political instabilities or imperfect legal institutions) increase the effective discount

rate used by resource owners by an additional risk-premium mark-up (Sinn, 2008). The absence of futures

markets may also lead to higher effective discounting: If futures contracts for resource extraction in five or

six decades do not exist, the planning horizon of resource owners is truncated. In both cases, compensation

of resource owners becomes easier as Γ increases.

5Formally, ∂π(S 0)/∂b < ∂π(S̃ 0)/∂b as π(S 0)/∂b is decreasing in S 0 and S 0 > S̃ 0.
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Next, we consider the demand scale parameter A. By differentiating Γ with respect to A, we obtain

dΓ

dA
= −Γ

r(S 0 − S̃ 0)
A2bεΘΘ̃

< 0 (12)

Hence, a higher demand parameter A leads to a lower Γ. From Eq. (5) it follows that A influences the

resource price p0 in the opposite direction as r: A higher demand (large A) increases prices and this price

increase is more pronounced for S 0 than for S̃ 0. One important implication of this finding is that a positive

demand shift (i.e. due to economic growth) reduces Γ and thus makes compensation of resources owners

more difficult.

As a direct consequence of (6), the change of Γ with respect to S 0 and S̃ 0 is also non-monotonic and

depends on S 0 and S̃ 0, respectively. Assuming ε < 1, we obtain:6

dΓ

dS 0
= −Γ

r(ε − 1)
AS 0Θ

(S 0 − S ∗0)


< 0 if S 0 < S ∗0

> 0 if S 0 > S ∗0

(13)

dΓ

dS̃ 0
= Γ

r(ε − 1)
AS̃ 0Θ̃

(S̃ 0 − S ∗0)


> 0 if S̃ 0 < S ∗0

< 0 if S̃ 0 > S ∗0

(14)

Politically constrained climate target. Usually, temperature or mitigation targets are derived from a cost-

benefit analysis or some precautionary principle. Real-world policy makers, however, might be constrained

by the fact that the income of fossil resource owners should not be reduced. Although a lump-sum transfer

could compensate fossil resource owners even if Γ < 1, such a transfer might not be politically feasible

because voters would likely oppose direct money transfers to resource owners. Hence, given the constraint

Γ ≥ 1, what climate targets are possible? Due to the complexity of Eq. 8, it is not possible to explicitly

solve the equation analytically for all S̃ 0 that lead to Γ ≥ 1. Nevertheless, with the previous findings it is

possible to derive some qualitative conclusions.

Fig. 2 shows the present-value rent π(S 0) according to Eq. 6 for ε < 1. There is a (unique) maximum

rent at S ∗0 and S 0 is assumed to be higher than S ∗0. As π(0) = 0 and limS 0→∞ π(S 0) = 0, there exists one

additional value S ′0 < S ∗0 < S 0 with π(S ′0) = π(S 0). Hence, all climate targets S̃ 0 ∈ [S ′0, S 0] are able to

(over)compensate resource owners. In contrast, if the resource base is already below the critical value S ∗0,

only S̃ 0 = S 0 leads to Γ = 1 and all more ambitious climate policies (according to Eq. 14) reduce fossil

resource rents unless additional direct transfers are established. As we shall demonstrate using resource

data, the former case is much more likely to hold.

6In case of highly elastic demand, i.e. ε > 1, S ∗0 becomes negative and, thus, S 0, S̃ 0 > S ∗0. From (13–14) follows that dΓ/dS 0 is

always negative and dΓ/dS̃ 0 is always positive.
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Figure 2: Scarcity rents and fossil resource base when the initial resource stock S 0 is higher than the critical value S ∗0.

Another interesting insight from Fig. 2 is that policy makers may want to determine the amount of

fossil resources that maximizes public revenues (due to taxation or auctioning allowances). Similarly,

fossil resource owners might influence the regulator to set a carbon budget that maximizes resource rents

under a grandfathering rule. The ‘optimal’ cumulative amount would be S̃ 0 = S ∗0, provided that the fossil

resource base is higher than the critical value S ∗0. If S 0 > S ∗0, the revenue maximizing strategy is to

auction resource extraction allowances for all resources available. Hence, even without climate policy, a

coordinating resource sector (cartel) or revenue maximizing regulator may limit cumulative fossil resource

consumption below the business-as-usual level.

4. Application and Numerical Analysis

4.1. Extended Model: Considering Extraction Costs and Demand Growth

We now turn to a numerical application of our model which gives us a quantitative indication of the

impact of climate policy on scarcity rents. We consider three fossil resource types – oil, gas and coal –

and constant, positive extraction costs.7 Thus, we study the effect of higher (constant) extraction costs in a

parameter analysis. Furthermore, we allow for exogenously growing demand at the rate γ (induced by GDP

growth). As an analytical solution of π is no longer possible, we use numerical calculations with MATLAB

7We restrict on constant costs mainly for numerical reasons. Increasing cumulative extraction should lead to higher costs as difficult

accessible resource sites have to be used (i.e. Rogner, 1997). However, technological progress may also reduce extraction costs which

could out-balance the former cost increase and lead to constant extraction costs (Stürmer and Schwerhoff, 2011).
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to solve for λ0 from the integral (3):

S 0 =

∫ [ln(b−c)−ln(λ0)]/r

0
Aeγt

(
λ0ert + c

)−ε
dt (15)

While the analytical model helped to understand the general rent dynamics of climate policy, the nu-

merical model allows a quantitative indication under more realistic real-world conditions. A comprehensive

sensitivity analysis generalizes the numerical findings from our standard parametrization to a broad param-

eter space.

4.2. Data

The parameters chosen for the numerical model are listed in Table 1 and explained in detail in the

Appendix. Extraction costs, demand and price elasticities are taken from the literature. The model is

calibrated to replicate current demand (at current prices). Backstop costs were estimated according to the

costs of non-carbon substitutes in the respective sector from several sources, mainly IEA. Values for the

reference resource base (S0) are chosen to be slightly higher than the total of reserves plus recoverable

conventional resources. The overall carbon budget was chosen to achieve a two degree target with 50%

likelihood if no CCS were available; allocation to the specific resource types such that 42% of the emissions

are attributed to oil, 25% to gas and 33% to coal.

Parameter Symbol Oil Gas Coal Total carbon

value unit value unit value unit [GtC]

Current demand q̄ 31.4 Gbbl/yr 0.114 ZJ/yr 4.8 Gtce/yr 9.0

Current price p̄ 78 $/bbl 6.5 $/GJ 100 $/tce

Demand scale factor A 75 0.29 48

Demand growth rate γ 0.024 0.0225 0.03

Price elasticity of demand −ε −0.2 −0.5 −0.5

Discount rate r 0.04 0.04 0.04

Backstop costs b 250 $/bbl 23 $/GJ 400 $/tce

Extraction costs c 50 $/bbl 6 $/GJ 80 $/tce

Resource base S 0 2,000 Gbbl 20 ZJ 1,000 Gtce 1290

Carbon budget S̃ 0 1,600 Gbbl 7 ZJ 190 Gtce 434

Table 1: Parameter values for the standard parametrization. These parameters are varied for the extensive sensitivity analysis below.

Some relevant conversion factors are: 1 Gbbl oil = 5.7 EJ = 0.114 GtC; 1 ZJ Gas = 15.3 GtC; 1 Gtce = 29.3 EJ = 0.76 GtC

(BP, 2012; BGR, 2010).

In the following we present the results for the main variable of interest, Γ, the ratio of total rents with

and without climate policy, for various fossil fuels, using our standard parametrization as a starting point.

In addition, we then perform a sensitivity analysis of our results for each of the main parameters, using the

(a priori unknown) size of the resource base as the independent variable.
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4.3. Results for the Standard Parameter Setting

For our chosen standard parametrization, results are shown in Table 2 and Table 3, the former showing

the results from the reduced analytic model. The results indicate that climate policy (through reducing

the effective size of the fossil resource base) increases fossil resource prices remarkably. Note that the

scarcity value of fossil resources in the ground, π(S 0), is considerable: The value of oil is of the magnitude

of the world’s total GDP in 2010, the value of gas and coal is approximately 20 % of the world’s GDP.

These numbers indicate the dimension of the potential distributional conflict climate policy provokes: By

assigning an explicit property right to the atmosphere (as carbon deposit), fossil resources in the ground are

devalued. Simultaneously, the atmospheric carbon budget S̃ 0 becomes a scarce resource that generates a

scarcity rent. Table 2 and Table 3 indicate that this rent is of a similar magnitude as the fossil resource rent,

although the model specification without demand growth and extraction costs finds higher climate rents

and, in all cases, higher Γ’s.

The difference between Table 2 and Table 3 arises basically from the consideration of demand growth

rather than from extraction costs (see the sensitivity analysis below where extraction costs turn out to be

very insensitive for Γ). From the analytical model, we know that a higher demand parameter A reduces Γ.

Hence, considering demand growth γ > 0 has the same effect as it leads to higher demand in the future.

While in the basic model the climate rent is always significantly higher than the fossil rent in the BAU

scenario, in the extended model this is only clearly the case for gas; however, the other two fossil fuels give

essentially the same result ( i.e. Γ ≈ 1) for climate policy compared to the business-as-usual case. Taking

all fossil resources together, the total amount of scarcity rents increases by 3 percent under climate policy.

This result illustrates the huge rent transformation effect due to reducing fossil resource use: the creation of

the new climate rent is of similar magnitude than the scarcity rents of existing fossil resources that would be

nullified. The slightly larger amount of the total climate rent makes full compensation of resource owners

possible. An emissions trading scheme with grandfathering would make resource owners even better-off.

Another interesting finding concerns the rent maximizing budget S ∗0. In the basic model without demand

growth and extraction costs (Table 2) the S ∗0 values are always greater than the respective S̃ 0 values in

Table 1. Hence, a more ambitious climate policy would even further increase the climate rent and, thus, Γ.

In contrast, if demand grows – analogously to a higher A in Eq. 7 – the critical resource size S ∗0 increases.

Table 3 shows that the rent-maximizing value S ∗0 for oil is close to the original resource base S 0. Climate

policy will therefore in most cases reduce the scarcity rent associated with oil, although a 20 % reduction

of cumulative consumption has almost no effect on Γ. Considering gas, a lower carbon budget S̃ 0 could

increase the rent. While the cumulative BAU emissions amount to 1290 GtC and the emissions under the

400 ppm CO2-eq. target amount to 434 GtC, the rent maximizing carbon consumption is 226 GtC (basic

model; Table 2) and 646 GtC (extended model; Table 3). Hence, according to the full model results, a
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Parameter Symbol Oil Gas Coal Total carbon

value unit value unit value unit value unit

No climate policy (BAU)

Initial rent/price λ0, p0 20.1 $/bbl 0.4 $/GJ 4.6 $/tce

Rent π(S 0) 0.66 GDP2010 0.13 GDP2010 0.07 GDP2010 0.86 GDP2010

Climate policy

Initial rent/price λ̃0, p̃0 31.3 $/bbl 2.1 $/GJ 60.0 $/tce

Rent π(S̃ 0) 0.80 GDP2010 0.23 GDP2010 0.18 GDP2010 1.21 GDP2010

Rent ratio Γ 1.20 1.85 2.48

Rent maximizing budget S ∗0 777 Gbbl 3.0 ZJ 120 Gtce 226 GtC

Table 2: Results for the basic (analytical) model without extraction costs and demand growth. Parameters are chosen according to

Tab. 1. Rent values are calculated as share of the world’s nominal GDP in 2010.

Parameter Symbol Oil Gas Coal Total carbon

value unit value unit value unit value unit

No climate policy

Resource use S 0 2000 Gbbl 20 ZJ 1000 Gtce 1290 GtC

Initial rent λ0 37.1 $/bbl 0.6 $/GJ 15.0 $/tce

Initial price p0 87.1 $/bbl 6.6 $/GJ 95.0 $/tce

Rent π(S 0) 1.18 GDP2010 0.20 GDP2010 0.24 GDP2010 1.62 GDP2010

Climate policy

Carbon budget S̃ 0 1,600 Gbbl 7 ZJ 190 Gtce 434 GtC

Initial rent λ̃0 46.2 $/bbl 2.4 $/GJ 77.1 $/tce

Initial price p̃0 96.2 $/bbl 8.4 $/GJ 157.1 $/tce

Rent π(S̃ 0) 1.17 GDP2010 0.27 GDP2010 0.23 GDP2010 1.67 GDP2010

Rent ratio Γ 0.99 1.32 0.98 1.03

Rent maximizing budget S ∗0 1940 Gbbl 5.6 ZJ 448 Gtce 646 GtC

Table 3: Results for the extended model with extraction costs and demand growth. Parameters are chosen according to Table 1. Rent

values are calculated as share of the world’s nominal GDP in 2010.

revenue maximizing regulator or a rent maximizing fossil resource monopolist would extract considerable

less resources than the (competitive) business-as-usual economy; this could also lead to quite ambitious

emission reductions (approximately 50 percent of BAU emissions) that are, however, still 50 percent higher

than the desired carbon budget to meet a 2◦C target.

4.4. Sensitivity analysis

As there is a great deal of uncertainty in many of the parameters used in the analysis above, it is also

important to have an idea of the sensitivity of the result to the assumptions we have made. Figs. 3–4
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show how different parameters influence Γ for oil, and coal, respectively.8 In each figure, the six parameters

explored are: (i) backstop technology cost (b); (ii) extraction costs (c); (iii) size of the climate policy carbon

budget (S̃ 0); (iv) growth rate in demand (γ); (v) discount rate (r); and (vi) demand elasticity (ε). In each

case the size of the total resource base (S 0) is taken as the independent variable.

We begin by noting that for most parameters, higher resource endowments would increase Γ substan-

tially. Furthermore, the non-monotonic behavior of Γ in S 0 or S̃ 0 with respect to the critical value S ∗0
according to Eqs. (13–14) is reproduced. For coal, gas and oil, and for nearly all values of b, c, S̃ 0, and ε,

compensation is possible even under stringent climate mitigation policies. Although backstop and extrac-

tion costs have a considerable impact on the magnitude of both, π(S 0) and π(S̃ 0), the rent ratio Γ is very

insensitive as the rent changes nearly cancel each other out.9 The analytical finding regarding the impact of

the backstop costs b on Γ in Eq. (10) holds also in the extended numerical model. Regarding the role of the

price elasticity of demand −ε, a more elastic demand leads to a higher Γ. Technological progress and the

possibility of fuel switch between oil, gas, and coal could lead to a higher elasticity than reported by the

empirical studies – at least in the long-term.

The two parameters that the show greatest sensitivity for the possibility of compensation are the discount

rate and the demand growth rate for the fossil fuel. For increasing demand growth of oil and gas, Γ decreases

– as one would expect from the change of Γ in A in Eq. (12). This increase is nearly independent of the

actual size of the resource base; however, one would have to assume growth rates well above historical

norms of the past few decades to reach a regime in which Γ < 1. Coal shows the same qualitative sensitivity

to demand growth rates, but the boundary Γ = 1 lies much closer to our baseline parameter. In fact, for two

decades at the end of the 20th century, coal consumption increased at less than 1%/year. Since 2000, demand

has grown at approximately 5% per year, making compensation for coal resource rent losses very difficult.

Once again, this result shows very little sensitivity to the actual size of the coal resource. When demand for

fossil resources in emerging economies saturates, the income elasticity θ should decrease implying a lower

γ.

As Eq. (11) suggests, sensitivity to the discount rate is such that a smaller value of r leads to a lower

value of Γ. Note that the relevant discount rate to consider here is not necessarily the social discount

rate on consumption (interest rate), but rather the effective discount rate of the resource owners because

the question of compensation depends on the resource owners’ intertemporal preferences and allocation

possibilities and not on that of society as a whole. Insecure property rights, incomplete futures markets

8We omit the figures for gas as they are qualitatively similar to those of oil and coal. They can be found in the Supplementary

Material to this article
9See the Supplementary Material for the change of oil rents π(S 0).
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and impatience may lead to considerably higher discount rates than those a social planner would use for

long-term project evaluation. Interestingly, here we see that for discount rates of 3 - 4%, compensation

for owners of all fossil fuel resources rapidly becomes more favorable. Thus, if a resource owner has a

long-term planning horizon, it will be much more difficult for a compensation scheme to work without

additional transfers. These results are also relatively insensitive to the total resource amount, especially if

those resources tend to be larger than our assumed baseline cases.

Figure 3: Effect of climate policy on oil rents: Γ for several parameter variations.
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Figure 4: Effect of climate policy on coal rents: Γ for several parameter variations.

The qualitative pattern of rent dynamics does not differ between the three resource types as they all use

the same model with only the parameter values being varied. However, the parameters that lead to higher

(Γ > 1) or lower (Γ < 1) resource rents differ. Oil rents show (Fig. 3–B.5) a slightly different pattern in

the sensitivity analysis as the rent-maximizing carbon budget lies within the interval of the resource base

we consider. In contrast, gas and coal resource estimates are much higher and are always greater than the

rent-maximizing carbon budget. Therefore, for oil there is a structural break in the parameter space (to the
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left in Fig. 3; resource base below the rent maximizing budget of 1,940 Gbbl), a pattern that is absent in the

gas and coal figures.

4.5. Discussion of results and model limits

The analytical model as well as the numerical results depend on a basic model setting that incorporates

intertemporal optimization of resource owners, demand growth and backstop technologies in a stylized

manner. Although the model makes a number of simplifying assumptions like competitive markets, exis-

tence of complete futures markets and separability of oil, gas and coal markets, it gives some useful infor-

mation about the qualitative dynamics of scarcity rents and the possible magnitude of rent transformations

due to mitigation.

Nevertheless, market power is currently an important issue characterizing oil and gas markets, while

less so for coal. Technological progress in drilling technologies (shale gas, oil sands, hydraulic fracturing)

is likely to reduce market power. The substitutability between energy types can be ignored if the chosen

resource-specific emission caps represent an optimal allocation (which they are at least within the integrated

assessment model we used for the parametrization of the caps as it is an intertemporal optimization model).

Nevertheless, the sensitivity analysis captures other possibilities for allocating an overall carbon budget to

individual resource-specific budgets.

Exploration activities are not considered explicitly but can be subsumed under changes in the extraction

cost parameter and the size of the reserve. Likewise, technological progress in extraction and backstop

costs has been neglected to keep the number of parameters under consideration manageable. Changes in

(static) extraction and backstop costs give at least a rough idea about the impacts of technological progress.

5. Conclusions

Climate policies consistent with a given physical target will invariably imply the combustion of only a

fraction of the earth’s total fossil fuel resource. In contrast to a hypothetical situation in which the fossil

resource becomes scarce in an absolute sense, leading to, ceteris paribus, increased rents for resource

owners, we concentrate here on scarcity rents associated with a politically mandated carbon budget. A

carbon budget effectively makes the fossil resource in the ground abundant, whereas space in the atmosphere

for absorbing carbon emissions is relatively scarce.

Because there is in either case a relative scarcity of resource availability with respect to potential de-

mand, total rents to the owners of these exhaustible resources are not necessarily reduced, even in the case

of ambitious reductions in fossil-fuel consumption that would be consistent with climate-change mitigation

targets. In fact, for many portions of the parameter space explored here, scarcity rents are substantially

increased. This increase is more pronounced when backstop costs, extraction costs, the discount rate and
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the elasticity of demand are high, and when the demand growth rate is low. While backstop and extraction

costs are fairly insensitive parameters, the demand growth rate – evolving from GDP growth and income

elasticity – has a strong impact on the magnitude of the scarcity rents.

The potential for an increase in rents allows, in principle, for the compensation of resource owners for

the effects of climate policy that requires them to leave resources in the ground. Such a compensation could

be implemented by grandfathering a sufficient fraction of carbon permits to resource owners proportional

to the size of their reserves. For those areas of the parameter space in which total rents are reduced under

climate policy, additional transfers would be required as compensation. Such transfers would likely be

difficult to implement; however, an analogy can be made to currently existing climate change mitigation

programs such as REDD (Reducing Emissions from Deforestation and Degradation). Similar to compensa-

tion payments for conserving forests, owners of fossil resources could be compensated for not extracting all

resources (Sinn, 2008; Harstad, 2010). Whether and to what extent fossil resource owners are compensated,

however, depends also on the relative power of resource owners, tax-paying citizens and political entities.

The interplay of these actors will decide the effective ownership on the atmosphere (which could also be

assigned to all citizens on an equal-per-capita basis).

In addition to the question of compensation, our analysis indicates how rent-seeking aspects may in-

fluence the climate target. A revenue-maximizing regulator or a rent-maximizing fossil-resource cartel

can benefit from a cumulative shortage of fossil resource supply independently from a climate protection

motive. In the first case, the regulator is like a monopolist who maximizes intertemporal revenues by an-

ticipating the reaction function of the economy. But instead of manipulating the time path of extracting all

available resources as in the classic monopolistic extraction setting, the regulator chooses the budget only

ex-ante. This setting is more relevant for climate policy as government institutions may lack the capacity

to determine the rent-maximizing time path. Instead, they might prefer to auction the entire budget at the

initial time to competitive bidders. After the auction an intertemporally efficient permit price (subject to

the budget) evolves due to the competitive intertemporal allowance market. Likewise, if a resource cartel

influences the regulator to set a budget to a revenue-maximizing level, the resource owners can increase

revenues without forming a stable cartel for the entire extraction period. Permanent coordination among

resource owners to establish a cartel that influences the extraction path in each period is generally unstable

due to free-rider effects. Hence, a rent-maximizing carbon budget might be easier to enforce as coordina-

tion is only necessary in the initial period . After the budget was set, a competitive market resource market

prevails where no coordination is necessary and the budget is enforced by the regulator.

If the budget were set to maximize rents it will not be time consistent – after time has passed, or the
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announced budget is depleted, it becomes beneficial for the monopolist to start extracting further amounts.10

As rational market agents anticipate this, the announced budget is not credible. A time-consistent feed-back

strategy, however, would require coordination among resource owners in every period, which is difficult due

to the internal instability of cartels. If, in contrast, the budget were set according to a socially agreed-upon

temperature target, climate policy can serve as a commitment device to reduce cumulative resource supply

in order to increase rents. This commitment device will be stronger in a better institutional setting that can

guarantee the budget over time. The proposal of creating an independent Atmospheric Carbon Trust by

Barnes et al. (2008) would, for example, creates a strong institution to enforce the carbon budget. While

fossil-resource owners might support ambitious carbon budgets in the beginning, they might revise their

support after time has passed and a relaxation of the budget becomes attractive. Hence, the existence of a

strong institution (or internally stable international agreement) enforcing emission cuts is a prerequisite for

successful emission reductions in the long-term.

Whether a global agreement to reduce emissions is achievable and stable is an important question that

goes beyond the scope of this paper. Our aim is to emphasize that climate policy leads to a huge transfor-

mation of rents that is susceptible to extensive rent-seeking not only affecting the distribution of the rent but

also the amount of fossil resource use. Our analysis indicates that carbon-related scarcity rents might even

increase under climate policy and benefit fossil resource owners.

10A regulator would accordingly sell additional allowances.
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Appendix A. Parameters and data sources

Oil. Data on proved reserves are relatively consistent across sources. BGR (2010) quantifies conventional

oil reserves with 1,182 Gbbl and unconventional reserves with 489 Gbbl. A further amount of 3,012 Gbbl

oil resources is expected to be accessible, although economic costs are uncertain and existence and techno-

logical feasibility is not always proven. Extraction costs of oil are in the range of 10-100 $/bbl, transport

amounts to additional 9 $/bbl per 8,000 km shipping (BGR, 2009). We thus employ an average number of

50 $/bbl as extraction costs. With respect to oil, we consider the life-time cost of an electric car as illustra-

tive case of a backstop technology (numbers from IEA, 2011). With 15 ct/kWh consumer electricity price,

an electric car becomes competitive to a conventional internal combustion engine technology if fuel prices

are 250 $/bbl.

Gas. Conventional gas reserves are 7 ZJ and conventional and unconventional gas resources are further 44

ZJ (BGR, 2010). Additionally, BGR (2010) estimates 68 ZJ of (speculative) resources in aquifers and gas

hydrates. BGR (2009) quantifies extraction costs from 0.4–2.4 $/GJ with transportation costs via shipping

or pipeline of 0.9–1.6 $/GJ. In contrast, IEA (2009) uses 4.7 $/GJ as extraction cost in its base scenario;

maximum extraction costs for unconventional gas are 8.5 $/GJ. We use as default 6 $/GJ as extraction costs

as we employ a relatively high resource base for gas (where large amounts of unconventional gas resources

are integrated). Based on IEA (2010a) data on levelized costs of electricity for gas power plants, a gas price

of 23 $/GJ would results in an electricity price of 9 ct/kWh. As many renewable energy technologies can

compete at this price (IEA, 2010b), we chose 23 $/GJ as a backstop price.

Coal. BGR (2010) quantifies coal reserves at 721 Gtce and estimates additional resources at the amount

of 16,233 Gtce. The extraction costs for coal range currently from 15 $/tce (Indonesia) to 80 $/tce (USA)

(BGR, 2009). As easily extractable resources have often to be shipped over the ocean to consuming coun-

tries11 and extraction costs are likely to increase further, we consider 80 $/tce as extraction costs for coal.

We chose a backstop price for coal of 400 $/tce. Similarly to the calculation of the gas backstop price, such

a coal price would result in an electricity price of 9 ct/kWh with IEA (2010b) data.

Demand parameters. The world income elasticity of demand for fossil fuels is 0.7 (IEA, 2009). For specific

fuels, however, this number changes: Several studies estimate income elasticities of demand for oil or

gasoline ranging from 0.09 to 1.54 (Dahl and Sterner, 1991; Krichene, 2002; IEA, 2006) and for gas from

0.78 to 1.6 (Krichene, 2002; IEA, 2009)). We use an average value for the income elasticity of 0.8 for oil,

11Shipping costs are approximately 50 $/tce (IEA, 2009, 2010b).
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0.75 for gas, and 1.0 for coal. With an assumed modest GDP growth rate of 3%, the resulting demand

growth rates γ for consumption of oil, gas and coal are 2.4, 2.25, and 3.0, respectively.

Similarly, price elasticities of demand differ due to different estimation techniques and time horizons

considered: For oil or gasoline, they range from -0.01 to -0.8 (Dahl and Sterner, 1991; Krichene, 2002;

IEA, 2006) and for natural gas from 0.04 (short-term) to -1.1 (long-term). We thus employ price elasticities

for oil and gas of -0.2 and -0.5. As we did not find any numbers for coal, we use the same elasticity as for

gas (as both are similarly used to a certain extend). Due to the high aggregation in our model, ongoning

technological progress and structural shift in economies, the employed elasticities are highly uncertain.

Current worldwide consumption levels of fossil fuels is found in the BP Statistical Review, as are prices in

the recent past. We calculate A according to A = p̄−εq̄ where p̄ and q̄ denotes current prices and current

demand, respectively. We assume as well a discount rate of 4%.

Carbon budget. The carbon budget for a given climate change mitigation target can be estimated (Allen

et al., 2009; Meinshausen et al., 2009); we choose the 2◦ target, to be exceeded with a likelihood of no more

than 50%, as our reference, implying a total of approximately 450 GtC for the period 2010-2100. Within

that target for mitigation, however, there are many pathways that might be followed depending on the

allocation between fossil energy carriers oil, gas and coal and the use of carbon capture and sequestration

(CCS). We start with budgets for individual resources consistent with results from integrated assessment

models (IAMs) taking part in a model comparison project (Edenhofer et al., 2010).12 Our purpose here is

simply to use one resource-resolved scenario that meets the overall budget as a starting point, from which

we will then also perform a sensitivity analysis; IAMs, depending on structure and input assumptions, give a

range of results (see Edenhofer et al. (2010)). For a 400 ppm CO2-eq. stabilization scenario, approximately

1600 Gbbl oil, 7 ZJ gas and 190 Gtce coal (without CCS) are extracted by 2100.13 With respect to the

carbon content of these resources, 430 GtC (1600 Gt CO2) are emitted over the entire time horizon.

Appendix B. Supplementary Figures

Appendix B.1. Change in Gas Rents

Appendix B.2. Value of Oil Rents

12Integrated assessment models combine the science of climate change with socio-economic and technological aspects about energy

use and mitigation options to calculate the costs of mitigation targets and the deployment of different technologies.
13Our model implicitly allows consideration of CCS as an increase in the amount of extractable fossil resources S̃ 0 that is consistent

with a specific climate target.
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Figure B.5: Effect of climate policy on gas rents: Γ for several parameter variations.
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Figure B.6: Discounted oil rents without climate policy (i.e. in situ value of oil) as share of world’s GDP in 2010.
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