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Abstract 

Historical residential electricity data and natural gas consumption data were collected for, 

respectively, 1200 and 178 residences in a small town in the U.S.  These data were merged with 

local building and weather databases, and energy consumption models were developed for each 

residence, revealing substantial variation in heating and cooling intensity. After estimating 

approximate physical building characteristics, energy profiles for each residence were calculated 

and savings from adoption of the most cost-effective energy efficiency measures for each 

residence were estimated.  Effectively, we wish to leverage commonly available data sets to infer 

characteristics of building envelopes and equipment, without the need for detailed on-site audits.  

This study evaluates the potential energy savings for the residences studied, and by 

extrapolation, for the entire town, as a function of cost if the savings measures were to be 

implemented in rank-order of cost effectiveness to show that savings penetration for the 

community comes with non-linearly increasing cost. The results show nearly a 32% collective 

savings in HVAC energy use could be achieved with a collective levelized cost for energy saving 

measures of $10/mmBTU saved if the most cost effective measures among the entire community 

are implemented first.   
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Introduction   

     Driven partly by climate change concerns and partly by a desire to increase  energy 

independence, the U.S. Department of Energy has established a goal of reducing residential and 

commercial building site-use energy by at least 35%  by 2030 (DoE - EERE 2010). This follows 

decades of experience, with varying degrees of consistency of implementation and of success, 

with programs aimed at increasing energy-efficiency, including regulations such as building 

codes and appliance standards, and educational and informational initiatives (Gillingham, 

Newell, and Palmer 2006).  Energy-efficiency scenarios for the US building sector have 

repeatedly shown that significant savings are achievable (Koomey et al. 2001).  As one example 

that has been widely cited, a 2009 report (Granade et al. 2009) focused on measures that could be 

taken by 2020 with positive net present value and finds the potential for energy-use reduction to 

be 20% with respect to current (2008) levels, and even higher with respect to projected business-

as-usual (BAU) consumption.   A recent paper by the present authors (Brecha et al. 2011) 

showed the value of estimating energy savings for a community based upon a measured average 

energy effectiveness of the stock of residences . These estimates showed that there were 

relatively large behavioral-based energy savings opportunities and relatively long paybacks from 

energy efficiency investments.  

 There have also been some more sober views of the costs of energy efficiency. A 2012 study 

documented the effectiveness of  electricity energy efficiency programs (Arimura et al. 2012), 

concentrating on demand side management (DSM), showing  0.9 percent electricity energy 

savings at a weighted-average cost to utilities (or other program funders) of about 5 cents per 

kWh saved over an 15-year period of time, with the potential for even greater savings if 

programs similar to those analyzed were to be implemented more widely .  A 2009 study 

commissioned by the Electric Power Research Institute (EPRI) suggests that the electric utility 
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industry can only realistically expect to offset 37% of the growth in electricity use (in TWh) by 

2030 with efficiency improvements (Rohmund et al. 2008).   

 It is even possible to question the existence of a real energy-efficiency gap, or from an 

economic perspective, the potential for reductions in energy consumption when factors such as 

opportunity costs and the full costs of governmental incentives are considered.  (Allcott and 

Greenstone 2012).  There is a great deal of heterogeneity in both building stock and in the 

response of consumers and home-owners when it comes to implementation of energy-efficiency 

upgrades.  The current study attempts to move beyond average numbers and to evaluate potential 

savings based on heterogeneous building stocks. 

Whether presenting an optimistic or somewhat dim view of the potential for sizeable energy 

reduction for existing building stock in the U.S., thus far, economic considerations have been 

based upon average utility results or average savings from among a collective group of buildings. 

In contrast, the present study utilizes a collection of residential buildings for which both energy 

and some limited building data are available to show the potential of energy reduction targeted at 

residences (or any building) with the greatest need for energy-efficiency improvements. The 

method starts with minimal input data, avoiding the need for time-consuming and expensive on-

site audits, to evaluate energy-savings potential for a large collection of homes.  The goal is to 

show that when the least energy-effective buildings are targeted for energy reduction first, the 

affordability of energy reduction achieving deep collective savings is much better.   

Methodology Overview 

 

This section describes the analysis utilized to estimate residential energy savings within a 

community, region, or nation as a function of simple payback and as a function of cost per 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Cost-availability curves for hierarchical implementation of residential energy efficiency 

measures 

mmBtu saved annually. The approach used draws from recent research by (Hallinan et al. 2011), 

utilizing an approach that: 1) melds energy, weather, and residential building data sets for a 

community; 2) calculates energy intensity for each residence; 3) disaggregates residential energy 

intensity into weather dependent (heating and cooling) and weather-independent 

(lighting/appliances/water heating) components; 4) compares individual residence performance 

and current energy-use patterns to available regional benchmarks  to evaluate energy 

effectiveness of each residence relative to each energy category (heating/cooling/lighting and 

appliances/water heating); 5) develops individual home energy models calibrated against actual 

energy use; and 6) evaluates energy reduction and the costs to achieve these reductions for each 

home and for both individual savings measures and when two or more savings measures are 

simultaneously implemented.   We briefly describe each of these steps in turn, with derivation 

details left for the Supplementary Online Material (SOM). 

 

Melding of Databases 

 

Five separate datasets are used in this analysis.   Monthly electrical consumption data (in 

kWh) for 24 months are available for a total of nearly 1200 residences.  Although a large 

database of natural gas consumption was available, these data were not address-specific, and 

therefore a smaller set of data from 178 residences was gathered, also for a 24-month period. 

County auditor real estate information was available, and include the age of the house, number of 

floors, type of water heating, square footage, basement and crawl space information, and more.  

Two types of weather data were used for purposes of normalization:  Local hourly dry bulb 

temperature  (NOAA 2013) and local hourly typical meteorological year  (TMY3) dry bulb 

temperatures (NREL 2005).  Temperature data were averaged over the billing period 
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corresponding to the utility data for each residence, thus permitting correlation of monthly 

energy use to average outdoor temperature. 

 

Calculate Energy Intensity 

Both electric and natural gas energy data for each residence were normalized to the area of 

the residence.  Also, the monthly energy use data for a particular month was divided by the 

number of hours in the billing period to produce for each month the average electrical power 

(kW/sf) from the electric utility data and average natural gas power (BTU/hr/sf) from the 

available natural gas data. 

  

Disaggregation of Energy Data for Inverse Energy Modeling  

 

Inverse energy modeling for buildings refers to use of actual data for consumption of energy 

to draw conclusions about the physical properties of the building envelope and energy-related 

equipment.  Fundamentally the modeling assumes that the heat loss/gain from a building is 

linearly dependent upon the difference in temperature between the inside and outside of a 

building.   We make the assumption that input heating and cooling energy also depends linearly 

on outdoor temperature,  as shown in Fig. 1, when respectively the outdoor temperature falls 

below or rises above what is referred to as the heating and cooling balance point temperatures 

(Brecha et al. 2011, Hallinan et al. 2011).  This assumption neglects the possible nonlinearities in 

efficiency of HVAC equipment in converting input energy to final useful energy.  In creating the 

inverse energy models, it is assumed that the building envelope does not change seasonally and 

that energy use can be normalized by floor area of the building.  The latter assumption works 
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best for heating and central cooling, the focus of this study, where the interior temperature is 

maintained fairly constantly throughout a residence, with minimal occupancy influence.  

 

Figure 1 – Schematic representation of the inverse energy model methodology described in the text.  Energy use 

(area-normalized) as a function of temperature leads to temperature-dependent parameters (heating and cooling 

slopes) and temperature-independent (baseline) consumption 

To properly benchmark energy use and ultimately establish an approximate energy model for 

each house, the monthly energy data for each fuel type (if applicable) must be disaggregated into 

weather-dependent and weather-independent components. To this end, five-parameter and three-

parameter regressions of monthly energy versus monthly average temperature (NOAA 2013) 

during each billing period are employed for electric and gas data, respectively.  A swarming 

genetic algorithm optimization approach was used to do the regressions. Output parameters from 

the regressions are shown below in Table 1.   The regression optimization aimed to minimize the 
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R-squared error between predicted actual monthly energy data, subject to an inequality constraint 

requiring that the annual predicted energy (from the regression) be within 1% of the actual 

reported energy for each house. The details of the regression are available in the Supplementary 

Online Material (SOM), Eqns. S1-S3, and in Ref. (Hallinan et al. 2011). 

Table 1. Regression Fit Parameters 

Regression Parameter Description 

    Cooling slope (kWh/month/°C), electric 

         Heating slope (kWh/month/°C), electric and gas 

        Cooling balance point temperature, e.g., outside 
temperature above which there is cooling 

                   Heating balance point temperature, e.g., outside 
temperature below which there is heating 

Eind Temperature independent energy use 
(kWh/month) 

 

With regression parameters developed, the annual heating (electric and natural gas) and 

cooling are estimated.  These are weather-normalized so that cooling and heating energy can be 

compared from year-to-year as the weather changes. A Normalized Annual Consumption (NAC) 

approach is employed (Lammers et al. 2011) to calculate cooling- and heating-degree hours 

(CDH and HDH, respectively) from the estimated balance temperatures and typical weather year  

(TMY3) temperature data, as shown below.   

                 ∑ (          )

    

 

  

                    ∑(             )

    

 

      

where the summation is over every hour in the year and Ti is the typical hourly temperature for a 

specific hour, I , in the year.   

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Cost-availability curves for hierarchical implementation of residential energy efficiency 

measures 

The normalized annual electrical cooling intensity (NECI), for houses where there is 

significant cooling energy consumption, is calculated from 

                                                                    ( ) 

Similarly, the normalized annual electric heating intensity (NEHI) is given by 

                                                                        ( ) 

Finally, for dwellings with natural gas consumption, the normalized heating (NGHI) and baseline 

energy use can likewise be determined from the estimated HSNG, BaselineNG, and Tbalh,NG.  

                                                                 ( ) 

 

Benchmark 

The estimated weather-dependent and weather-independent energy use in each category is 

then compared to the 2005 EIA typical energy-use data for residences in the Midwest North 

Central census region as the appropriate benchmark (EIA 2009). The annual energy intensity in 

each category is shown in Table 2 given as aggregate numbers.     

 Table 2. Midwest North Central Region typical energy use intensity (EIA 2009) 

and average intensities for the sample residences. 

Category Annual Energy Intensity 

 Electric Natural Gas 

Cooling 1.02 kWh/sf (EIA) 

0.77 kWh/sf (sample) 

----- 

Heating 1.8 kWh/sf  (not used for 

upgrade estimations) 

33.9 kBtu/sf (EIA) 

42.0 kBtu/sf (sample) 

 

These data are used as reference points for determining the relative energy efficiency of each 

residence for heating and cooling. 
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Current energy use patterns 

Considering only the residences for which complete energy data were known, cumulative 

distributions of both space heating and cooling energy intensity were developed, and are shown 

in Figs. 2 and 3. It is clear from both figures is that there is wide disparity in energy intensity.  

Int    tin l , t   communit ’     tin   n     effectiveness is far worse than its cooling energy 

effectiveness, with respectively about 1/3 and 2/3 the residences in the sample with heating and 

cooling intensities below typical for this climate.  The most important conclusions to draw in 

comparing local data to EIA benchmarks are that: (i) given that the comparison is fairly close, 

the energy savings estimates in this study will have relevance to other communities; and (ii).the 

large disparity in cooling and heating intensity from the worst to best houses strongly suggests 

big energy reduction opportunities for the least energy effective residences.  This study thus 

considers an energy reduction strategy which would target the worst houses for energy 

improvements first. 

 

Figure 2 - Cumulative distribution of heating energy intensity. 
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Figure 3 - Cumulative distribution of cooling energy intensity. 

 

 

Residential Energy Model 

The final step in the process is to develop a simplified energy model for each residence that can 

be calibrated against actual energy use.  It is assumed that the residential building characteristics 

are approximately equal for the winter season as for the summer season.   This means that the 

estimated HSng and CSe are not independent, being related through the residential overall heat 

transfer coefficient, UAoverall, which is assumed the same for summer and winter seasons. 

               ⁄

                   ⁄
                                                       (4) 

 

Here,  is the efficiency of the heating equipment and SEER is the Seasonal Energy Efficiency 

Rating.  The model developed for each residence requires estimates of physical building 

parameters, which must in turn be derived from the readily available building data such as square 

footage and number of floors. Ideally one would have data for wall area, window area, floor area, 

ceiling area and volume; available building databases do not generally include such information.  
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Thus, to construct an energy model for every residence, it is necessary to make some 

assumptions consistent with typical building practices for the region.  The key geometrical 

assumptions utilized are a typical length to width ratio for houses in the area (1.4) and a typical 

window to wall area fraction (0.15). Based upon these assumptions, the wall, window, and 

ceiling area is estimable for each residence.  Details of the geometrical calculations and 

assumptions are found in the SOM, Eqns. S4-S10. 

With the geometrical properties estimated, a simplified energy model of each residence can 

be constructed, considering energy losses/gains through the ceiling, walls, windows, floor, and 

from air leakage, and neglecting solar and human gains. The simplified model for heating and 

cooling is given by Eqns. (5) and (6).  

 

        
{      
      

      
     

     
    

 
      

      
   ̇                i  t }

         
                        ( ) 

 

        
{      
      

      
     

     
    

 
      

      
   ̇                i  t }

(        )      
                           ( ) 

 

Here, Aj is the area [sq.ft.] of the given envelope component (attic, wall, window, floor) and Rj is 

the corresponding R-value [°F-hr-sq.ft./Btu].  The number of air changes per hour is given by  ̇.  

The density and specific heat for air are given by      and cp, respectively.   The area and height 

of the rooms is also calculated and used as input.  Finally, the SEER, HSPF  and efficiency () 

are estimated as well.   We will not consider upgrades to electric heating systems in what 

follows, due to their relative scarcity in the sample, and therefore the HSPF will not be  used 
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further.  Since we do not  have access to data on residence occupancy, we implicitly make the 

assumption that this does not change during the period over which data are gathered. 

The constructed models for each residence rely upon estimation of the worst, typical, and 

best cooling and heating slopes for each residence.   The worst and best values are obtained from 

Eqns.(5) and (6) with specification of the analogous worst and best energy performance 

parameters shown in Table 3 to yield a set of parameters (CSmin, CSmax, HSmin, HSmax).
 
  

 

Table 3. Minimum, maximum and typical values for house energy characteristics 

Parameter Best case 

values 

Typical case 

values 

Worst case 

values 

Rfloor (
o
F-hr-sq.ft./BTU) 10 5 0 

Rwall (
o
F-hr-sq.ft./BTU) 18 12 3 

Rwin (
o
F-hr-sq.ft./BTU) 3 1 1 

Rattic (
o
F-hr-sq.ft./BTU) 52 18 3 

 ̇ (Air changes/hr) 0.3 0.67 2 

SEER 13 10 6 

Furnace/boiler
a
 

efficiency () 

95% 80% 70% 

a
 These values are certainly optimistic, since leaky ducts will often effectively reduce the furnace 

efficiency significantly 

With these, worst and best normalized cooling and heating energy intensities can be 

calculated according to Eqn. (7).  

                               

                               
                                         (7) 
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The typical heating and cooling energy intensities are based upon the average values of homes in 

the area, which as observed in the presented energy intensity histograms is fairly close to the 

benchmarks quoted previously.  

With worst, typical and best benchmarks for the cooling and heating slopes established, 

estimates for the residential energy performance characteristics can be made. The process for 

determining these estimates is shown in Fig. 4.  The estimated or measured cooling energy 

intensity from the regression analysis, NECI, is compared to the maximum, typical, and 

minimum values estimated for the house.  If the estimated normalized cooling energy intensity is 

high, the assumption here is that the SEER values and furnace/boiler efficiencies are likely low. 

Conversely, if the estimated normalized cooling energy intensity is low, then the SEER and 

furnace/boiler efficiencies are likely high.  The same is true for all other energy performance 

characteristics.  

Here we assume that if the measured cooling and heating energy intensities are high, all 

energy characteristics are poor --- and equally so.  This assumption aligns fairly well with on-site 

assessments, where a low cooling/heating energy intensity house is generally seen to have a good 

building envelope and heating/cooling equipment, and a high cooling/heating energy intensity 

house is seen to have in general a poor building envelope and heating/cooling equipment.
1
 

Further, this analysis seeks only to provide gross estimates of the potential for energy savings for 

various improvements. 

With this simplifying assumption of uniformity, a linear approximation for all energy 

characteristics, Pi (SEER, HSPF,  ,  ̇, Rattic, Rwall,   Rwindow ), is made based upon a comparison 

of the estimated heating slope, HSe,  according to:   

                                                 
1
 Based on the experience of t    ut o  ‘ involv m nt wit  t    uil in   n     C nt    t t    niv   it  o  D  ton 

(http://www.udayton.edu/engineering/building_energy/index.php). 
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               (              )  (          ) (            )          

  (8) 

 

 

 

 

 

 

 

 

 

 

 

Estimating Energy Savings from Adoption of Common Heating/Cooling 

Energy Reduction Measures 

 

Given estimates of each of the energy performance parameters from Eqn. (8), a modeled 

annual energy use is predicted using Eqns. (5) and (6) and the estimated heating and cooling 

degree hours from the regression analysis (Eqns. (1) – (3)).    The energy model developed yields 

a prediction for annual heating and cooling equal to that measured from the regression of actual 

data. 

With the model calibrated against actual energy consumption, specific energy saving 

measures can be considered, either separately or synergistically.  The savings measures 

NECImax 

NECItyp 

NECImin 

NECI 

SEERmax 

SEERtyp 

SEERmin 

max 

typ 

min 

est. 

SEERest 

Figure 4 - Description of methodology for estimating 

SEER and heating system efficiency values. 
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considered here include ceiling, wall, and floor insulation, window replacement, infiltration 

reduction, and furnace replacement.  

The energy savings realized from adoption of any of these measures can be calculated from 

Eqns. (9) and (10) below, respectively, for cooling and heating. In these equations, the improved 

cooling and heating slopes can be determined from Eqns. (5) and (6) with improved values of 

one or all energy parameters. Thus, savings from individual and synergistic measures are 

considered.  In general, savings for each measure are based upon improvement of the relevant 

energy characteristic from the model value to the best value (shown in Table 2).   

               [              ]                                        (9) 

               [                  ]                                         (10) 

 

It is important to note that variations in measured heating and cooling energy intensities for 

each residence can be attributed to behavior influences and to errors resulting from the assumed 

geometrical parameters – particularly the assumed residence length to width aspect ratio of 1.4 

and window area fraction (0.15). The latter error is quantifiable. A sensitivity analysis in 

predicting savings for the walls and windows, given estimated standard deviations for aspect 

ratio and window area fraction, is  15%.  Uncertainty estimates for savings for the HVAC 

equipment is  12%.   Behavior influences certainly contribute to low heating/cooling energy 

intensity buildings. However, the focus of this study is in showing the value of improving the 

worst residences first in achieving community wide energy reduction. Thus, savings from high 

energy intensity residences are most important. Residents who are cutting their thermostats well 

back in the winter and who are using their air conditioning sparingly in the summer will 

inevitably have low energy intensities.  Clear from Figures 2 and 3 is that variation in heating 
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and cooling energy intensity is much greater than the variation from uncertainty in the 

geometrical characteristics.  

 

Methodology for implementing priority heating/cooling savings measures  

To estimate the payback from individual measures, the costs to implement the measure must 

be estimated. Table 4 provides estimates of unit costs for implementation for each of the 

measures considered in this study (NREL 2010).  

 

Table 4.  Retrofit costs for heating/cooling energy reduction retrofits 

Sealing home 

air leaks 

Insulate 

attic 

Upgrade heating 

equipment 
Insulate walls 

Upgrade 

windows 

$0.25/sf $1/sf $1.76/sf $3/sf $21/sf 

 

The cost savings from each measure is simply calculated by multiplying the energy savings 

realized by an assumed energy cost per unit energy - $0.12/kWh and $0.4/ccf for natural gas.  

 

Results  

 

Improvements made individually   

Here we present the results  of each of the savings measures in terms of the levelized cost of 

energy savings (Granade et al. 2009), constructing curves of cost-availability for different 

measures.  These individual curves are essentially a version of the macro-level results presented 

in that report, referred specifically to a given housing stock in a particular region of the country. 
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  To estimate costs, a lifetime of 20 years was assumed for all weatherization 

improvements and 15 years for furnace replacement (Brown et al. 2010). Yearly energy savings 

were assumed constant over the lifetime of each measure.   The results to be presented are 

essentially supply-availability curves for energy efficiency measures. 

Since the goal of this study is to show that the cost effectiveness of a measure depends upon 

the individual condition of a residence, and to show that if the most cost effective measure within 

an entire community is implemented first, cost effectiveness for the energy reduction is 

optimized.  If a policy were in place to promote energy efficiency measures for a whole city,  the 

strategy would be to first implement the savings measure having the lowest levelized cost among 

all potential savings measures for the entirety of residences in the community. Then, the measure 

with the next-best levelized cost would be implemented, and so on.  Energy savings from 

implementation of the ith most effective measure can be calculated as a percentage of total 

energy use for that system; likewise, the collective levelized cost of energy savings for the top i 

measures can be determined, as shown in Eqn. (11) below.  

                       ∑                                      ⁄ 
               (11) 

Alternatively, one can interpret the results presented below as a description of inhomogeneity 

in housing stock, and as a technique for quickly identifying those residences for which upgrades 

can make the largest potential impact. 

In each of the figures to be presented below we show levelized costs of implementation for 

different energy-efficiency measures.  As a reference point, in each figure the estimated average 

cost of that measure as determined from (Granade et al 2009) is shown as a horizontal dashed 

line.  The relevant point for a household to make a decision about undertaking the given upgrade 

is whether, for their particular home, the upgrade can be made at a levelized cost that is less than 
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the price of energy.  As we expect energy prices to increase in the future, and the lifetimes of the 

energy-efficiency upgrades is twenty years, we would also need in principle an estimate of future 

energy costs;  we have chosen not to make that part of our analysis. 

Fig. 5 shows results for infiltration reduction for the houses in the study benefiting from this 

measure. Fig. 5a presents the levelized cost for the infiltration reduction measure ($/mmBTU) 

for each house in ascending order. Fig. 5b shows the collective levelized cost for implementation 

of the infiltration measure for houses 1→ i.  Fig. 5 clearly shows that deeper collective savings 

for the community come with greater cost; however, because the energy savings for the most 

cost effective implementations of infiltration reduction (e.g., for the poorest sealed houses) are 

greatest and achieved with the least cost, their effect on both the collective percentage savings of 

the energy used for energy and the collective levelized cost is dominant. Thus, Fig. 5b illustrates 

a much lower collective levelized cost than for a vast majority of houses as an increasing number 

of houses take advantage of the infiltration reduction measure. Of course, this curve presumes 

that infiltration is reduced first in the worst houses, e.g., those with the lowest levelized cost.  

Fig. 5b also shows that the community could realize nearly a 10% savings in HVAC energy 

were all houses to adopt the infiltration measure, and with a collective levelized cost of less than 

$2.00/mmBTU; as a comparison, heating fuel costs are expected to be in the range of $12-

$14/mmBtu by 2020 (Granade et al. 2009; EIA 2013). This implementation cost is 

comparatively low, driven primarily by the large savings at low costs for the worst houses.  

Thus, implementation of this measure for every house in the community – would have collective 

economic value to the community as a whole.  
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(a) (b) 

Figure 5. Levelized cost for infiltration reduction for: (a) individual houses presented in ascending order of cost 

effectiveness and (b) for the collective grouping of houses presuming that houses are improved in order of levelized 

cost as a function of percentage cumulative HVAC energy savings. 

 

Figs. 6 – 9 present similar results for attic insulation addition, furnace replacement, wall 

insulation addition, and window replacement.  The only difference is that a comparison is drawn 

to predictions of levelized cost inclu    in McKin   ’  2009  tu   (Granade et al. 2009) for the 

attic insulation addition measure (Fig. 6), for a furnace upgrade (Fig. 7), for wall insulation 

addition (Fig. 8) and for window replacement (Fig. 9).  As is apparent in all cases, the collective 

l v liz   co t p   mm     o    c  m   u   i  ‘bi    ’ b  t   low  t in ivi u l  ou   l v liz   

cost per mmBTU.  In all of these figures the relevant decision variable for whether a given 

measure is financially viable is the comparison to the cost of energy (either natural gas or 

electricity).  We have not indicated an energy cost in the figures since these will change over 

time.   

Figs. 6 and 7 illustrate the primary significance of this study. The McKinsey estimate for  

levelized cost for attic insulation addition and furnace upgrades are respectively $5.7 and 

$12.6/mmBtu. As apparent from Fig. 6, a majority of the homes have individual levelized costs 
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for these measures above the McKinsey value. However, the collective levelized cost for the 

community of houses in the study is well below the McKinsey estimate except as the least cost 

effective measures begin to be adopted for houses where this is higher individual levelized cost.   

This result speaks to the importance of targeting energy reduction programs hierarchically; 

improving the “worst” houses first will achieve the highest initial savings and shortest payback 

times.   

Fig. 8 shows analogous results for wall insulation.  Fig. 8b shows that if all houses were to 

have upgrades to the maximum current wall insulation practices for the area, 3-4% collective 

HVAC savings would be realized.  Thus, wall insulation impacts are clearly less than  air-sealing 

and ceiling insulation owing to higher implementation costs.   Fig. 9 shows results for window 

upgrades. It is clear that the levelized cost for window upgrades calculated here are well above 

that included in the McKinsey study. However, the NREL cost source for window upgrades 

(NREL 2010)  seems to match up with expected window replacement costs.  

  

(a) (b) 

Figure 6. Levelized cost for attic insulation addition for: (a) individual houses presented in ascending order of cost 

effectiveness and (b) for the collective grouping of houses presuming that houses are improved in order of levelized 

cost as a function of  cumulative HVAC energy savings. A comparison to the Granade, et al. estimate is included. 
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Figure 7. Levelized cost for furnace upgrades for: (a) individual houses presented in ascending order of cost 

effectiveness and (b) for the collective grouping of houses presuming that houses are improved in order of levelized 

cost as a function of  cumulative HVAC energy savings. 

 

  

(a) (b) 

Figure 8. Levelized cost for wall insulation addition for: (a) individual houses presented in ascending order of cost 

effectiveness and (b) for the collective grouping of houses presuming that houses are improved in order of levelized 

cost as a function of  cumulative HVAC energy savings. 
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(a) (b) 

Figure 9. Levelized cost for whole house window replacement for: (a) individual houses presented in ascending 

order of cost effectiveness and (b) for the collective grouping of houses presuming that houses are improved in 

order of levelized cost as a function of percentage cumulative HVAC energy savings. 

 

 

 

 

Synergistic improvements 

The most cost effective community energy savings would be derived if the measures having 

the lowest levelized cost from among all possible measures within the whole community were 

implemented first; the next best second; and so on. Thus, for example, multiple measures might 

be adopted in the worst house in the community before advancing to the second worst house.  

Figure 10 shows the collective levelized cost for the community versus collective percentage 

energy savings for the entire community.   It is clear from this figure that relatively low 

collective levelized cost for energy savings can be realized quite easily to yield relatively deep 

cumulative HVAC energy savings. For example, for a levelized cost of $2/mmBTU, a 12% 

HVAC energy reduction can be realized for the entire community. Deeper savings come with 

increased cost to the community. A 35% reduction in HVAC energy use can be realized with 
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levelized costs of $10/mmBTU. This cost is still lower than projected  2020 energy costs 

(Granade et al. 2009; EIA 2013).  

 

 

Figure 10. Collective cost as a function of percentage energy reduction for improvements for all measures 

considered. 

 

Moving higher up the savings curve, at each step the marginal savings will be somewhat less; 

decisions on how far to ultimately progress up the curve will depend on the cost of energy 

compared to the levelized costs of the efficiency measures.   Ideally, a homeowner would also 

have extreme foresight and a complete knowledge of both future energy costs and of the external 

social costs of energy systems to make a complete judgment of benefits to specific upgrades, but 

these requirements would only further complicate decision-making.  In reality, however, each of 

these complicating factors are likely to work in such a direction as to enhance the decision to 

take action now. 
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Discussion 

There is one primary observation that can be drawn from this study: a data-driven approach 

to increasing the energy efficiency of buildings will be a necessary part of an economically 

efficient program to reduce household energy costs and mitigate climate change.  Aggregate data 

for housing stock, and thus for energy efficiency improvements is not sufficient; if the worst-

performing buildings are targeted first for energy-use reduction, the affordability of energy 

reduction can be enhanced substantially.  The techniques used in this study are general and may 

be extended to any group of residences where both utility and building characteristic data are 

available. Furthermore, having access to greater amounts of data (mainly on the physical 

properties of the homes) will allow refinements to the procedures presented in this work, 

eliminating the need for estimations to parameters for the building model. 

Given that there are strong differences regionally between energy sources used for heating 

and electricity, and that weather-dependent utility needs vary widely across the country, an 

extension of this work to a national level will require a careful enumeration of the exact goals to 

be pursued within energy policy.  Reductions in greenhouse gas emissions for climate change 

mitigation may not lead to the same policies as a desire to reduce oil imports or costs of energy 

for families.  It will be necessary to determine key long-term goals for energy policy on a local 

or regional level, and then investigate the most economical means of reaching those goals.  To 

the extent that energy savings can be obtained easily and inexpensively through changes that are 

mainly behavioral, there is little downside in pursuing policies that encourage such changes, 

independent of the longer-term goals. In the analysis presented here, as well as that of Ref. 

(Granade et al. 2009), a key point is that the measures adopted are economically sound in that 
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they represent costs of energy savings that are for (the most part) lower than the projected or 

current cost of energy consumption. 

A key challenge to achieving energy reduction targets is that of the implicit discount rate 

shown by consumer behavior.  In the McKinsey analysis cited throughout this paper, a baseline 

discount rate of 7% was assumed in calculating the 22% potential for positive net-present-value 

(NPV) energy costs (with respect to 2008).  In a sensitivity analysis, discount rates of 20% and 

40% were also used, with the latter leading to a nearly a 50% decrease in estimated positive-

NPV potential. On the other hand, other authors find that a suite of efforts that have proven 

successful in motivating change can be used to achieve carbon emissions reductions (their focus) 

of 20% in the residential sector (Dietz et al. 2009).  Effectively, these efforts at changing 

consumer behavior are an attempt to bring implicit discount rates more in line with actual, 

although not “  tion l,”  i count   t   c o  n b  con um    in ot    p  t  o  t  i  liv     While 

some of the measures identified in (Dietz et al. 2009)  involve mechanical systems as described 

in our work, others are better characterized as changes in personal habits.   Brecha et al. compare 

some of these differences within a framework similar to that of the present paper (Brecha et al. 

2011). To the extent that up-front investments are needed to make energy-efficiency upgrades, it 

is likely that innovative financing programs will be necessary to help overcome high implicit 

discount rates; such programs, such as on-bill financing are becoming increasingly common 

(DoE - EERE 2013). The main point is that, whether one is interested in mechanical or personal 

behavior changes, it will be of great relevance to be able to target those homes that will benefit 

most from energy-efficiency upgrades.   

Decarbonization of the energy system over the next several decades will remain a significant 

challenge, but the extent to which energy demand can be reduced will help determine the 
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magnitude of that challenge.  Lower demand and making buildings more energy-efficient can 

also help make the use of renewable energy more attractive in the sense that homeowners can 

potentially generate more of their own energy on-site.  However, the challenge we face is 

dynamic; the cost of renewable energy is decreasing over time, while fossil-fuel costs have been 

rising, with the recent exception of natural gas (which has more recently begun to increase in 

price again).  Decisions about energy efficiency measures, as well as those focusing on 

renewable energy, must remain flexible over time, in what might be termed an adaptive 

management framework.  Crucial to this process is the availability of data, such as the utility data 

used in this study, which can be continuously updated and analyzed 

 

Conclusions 

In this paper we demonstrate a technique cost-effectively prioritizing residential building 

efficiency improvements based on historical billing data for individual dwellings.  The benefits 

arise through targeting the least-efficient residences first, as determined by projections for 

savings estimated through an inverse-modeling of building characteristics.   A 32% reduction in 

HVAC energy at a community-wide cost of $0.1/MMBTU is predicted.  This research above all 

supports development of public building databases that might include envelope and heating and 

cooling characteristics, as well as availability of more complete energy consumption data.  

Providing a methodology for determining cost-effective energy-efficiency improvements 

is only a first step toward actually reducing energy consumption in residences.   Whereas our 

work expands upon that of the 2009 McKinsey report (Granade et al. 2009) in providing a more 

microscopic view of energy savings for a particular region and differentiating between costs for 
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different buildings, that report provided significant detail as to potential programmatic 

possibilities for actually achieving results.  Their recommendations apply equally well to the 

conclusions we draw – in fact, the goal of that report was to investigate how to unlock the known 

potential for energy efficiency.   One point that we wish to emphasize through our work is that 

the data exist at the level of individual households and for a town or city to act on increasing 

energy efficiency in a structured and economically prudent manner.   

Of course, the type of bottom-up engineering approach taken here is in many ways an 

idealized view of a complex socio-economic challenge that requires input from behavioral 

scientists, educators and policy-makers if the end goal of a double-win for economic and 

environmental well-being is to be achieved. 
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Supplementary online material 

I. Fits to monthly natural gas and electric data 

 

Given the monthly natural gas and electric data, normalized to the area of the residence, a regression fit 

can be performed to find the characteristics of the building.  The equation describing electricity 

consumption as a function of temperature, T, is given by 

                                                                       (         ) 

              (         )  (         ) 

 (S1) 

This five-parameter fit describes an increase in electricity consumption with both decreasing and 

increasing temperatures, representing heating and cooling seasons, respectively.  In addition, there is a 

baseline, temperature-independent consumption of electricity (Baselinee).  The increase in consumption 

for cooling starts at a balance temperature, Tbalc, e and with a cooling slope given by CSe.  Similarly, the 

increasing electricity consumption for heating starts at a balance temperature Tbalh,e  and is parameterized 

by a heating slope HSe .   The Heaviside function is given by  

         ( )   {

             
                
               

                                                                    (  ) 

For natural gas consumption a three-parameter fit suffices to describe the baseline (temperature-

independent) consumption  as well as the increase in consumption for heating as a function of decreasing 

temperature: 

                                                                                  

         (          )  (          )   (S3) 
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Baseline consumption is given by Baselineng and the temperature-dependence of natural gas consumption 

is characterized by the heating slope, HSng and the balance temperature for heating, Tbalh,ng.   

 In Fig. S1 we show schematically the various parameters described by equations S1-S3. 

 

Fig. S1 – Natural gas (a) and electricity (b) characteristics for a building.  For both natural gas and 

electricity there is weather-independent (Baseline) consumption and weather-dependent consumption 

for heating (HS) and for cooling (CS). 
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II. Geometrical calculations 

 

The database of housing information available from the county contains only the area of the house and the 

number of floors.  Using this information, and making some assumptions about typical building stock in 

the area, we derive expressions for relative attic, window, and wall areas, as well as total building volume.  

These parameters are then used as inputs that allow construction of the building model. 

Given the total square footage of the house and the number of floors, the area of the attic is: 

                                     ⁄                                       (  ) 

The area of the ground floor is assumed equal to the area of the attic. The length to width ratio of the 

house is assumed 1.4 (typical for all houses in the region). Finally, the width is set equal to the following.  

      √
                               

                     
                                                   

Thus, the length of the residence is determined according to: 

                                                                                 (  ) 

With these assumptions, the total wall area is estimated as: 

            (                )                                                     (  ) 

Above, consistent with the architecture of housing in the community, the height of each floor is assumed 

to be 8 ft. 

Lastly, the window-to-wall-area-percentage is assumed 14%, typical of residential buildings in the 

area, so the area of the windows is: 

                     
           

         
                                       (  ) 



With this assumption, the effective area of the wall used for heat transfer calculations is: 

                                                                                  (  ) 

The volume of the house is then calculated as: 

                                                                            (   ) 
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