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Analyzing major challenges of wind and solar variability in power systems 
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Abstract –Ambitious policy targets together with current and projected high growth rates indicate 
that future power systems will likely show substantially increased generation from renewable energy 
sources. A large share will come from the variable renewable energy (VRE) sources wind and solar 
photovoltaics (PV); however, integrating wind and solar causes challenges for existing power 
systems. In this paper we analyze three major integration challenges related to the structural 
matching of demand with the supply of wind and solar power: low capacity credit, reduced 
utilization of dispatchable plants, and over-produced generation. Based on residual load duration 
curves we define corresponding challenge variables and estimate their dependence on region (US 
Indiana and Germany), penetration and mix of wind and solar generation. Results show that the 
impacts of increasing wind and solar shares can become substantial, and increase with penetration, 
independently of mix and region. Solar PV at low penetrations is much easier to integrate in many 
areas of the US than in Germany; however, some impacts (e.g. over-production) increase 
significantly with higher shares. For wind power, the impacts increase rather moderately and are 
fairly similar in US Indiana and Germany. These results point to the need for a systems perspective in 
the planning of VRE, a further exploration of alternative VRE integration options, such as storage and 
demand side management, and the explicit consideration of integration costs in the economic 
evaluation of VRE. 

 

Keywords: variable renewables, wind, solar, integration, residual load duration curves, capacity 
credit, curtailment 

1. Introduction 
Future power systems will likely show a substantially increased share of renewable energy of which 

a large share will come from the variable renewable energy (VRE) sources wind and solar PV. This is 

indicated by the current high growth rates, future market trends, ambitious policy targets and 

support schemes, and scenario results. 

The expansion of variable renewable electricity is progressing rapidly, with worldwide annual growth 

rates for wind and solar PV of 26% and 54%, respectively, from 2005 to 2011 [1]. In 2012 new power 

generating capacity from renewables exceeded that of conventional fuels (fossil and nuclear) [2]. In 

2012 Denmark, Germany and Spain had a share of renewable electricity of 49%, 23% and 32%, 

respectively, with more than half being from wind and solar energy in each country [1], [3]. For the 
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future policy makers have set renewable energy targets (in 138 countries) and adopted support 

schemes (in 127 countries) for a variety of reasons including climate-change mitigation targets, 

enhanced energy security and to reduce externalities such as air pollution [2]. For example, Denmark 

has a goal of 100% renewables in final energy consumption and Germany is aiming for 80% in the 

power sector by 2050. The EU Commission recently suggested an EU-wide binding target of at least 

27% renewables in final energy in 2030 [4] and in its ‘Energy Roadmap 2050’ it shows shares 

between 50-80% in 2050 (European Commission 2011). In the US, many states have introduced 

renewable portfolio standards that require increased renewable electricity shares. For example, 

California and Colorado have targets of 33% and 30% by 2030, respectively. 

Many long-term integrated assessment scenarios and bottom-up resource assessment studies show 

that renewable energy has the potential to play an important role in achieving ambitious climate 

mitigation targets [5]–[10]. Scenario results summarized in [6] suggest that in the case of future 

policies to mitigate climate change in line with the globally-agreed long-term climate targets, 

renewable energy shares as a fraction of total primary energy consumption will increase from 13% 

to a range of 30%-80% by the middle of the century, with the uncertainty being mainly due to 

variations in assumptions as to which other low-carbon technologies will be available to complement 

renewables. The recent EMF27 model comparison [10] shows that for all but one model, renewables 

provide more than 35% of power supply in the second half of the century, and half of the models 

have a renewables share of 59% or higher. In those scenarios with high overall renewable 

deployment wind and solar PV contribute the major electricity share exceeding 40% in the second 

half of the century. 

Achieving the high shares of wind and solar presented in many scenarios will require integration into 

global power systems. However, VRE differs from conventional power-generating technologies in 

that they exhibit characteristic properties that pose challenges to their integration. There is wide 

consensus that these challenges create no insurmountable technical barriers to high VRE shares, 

however, they cause additional costs at the system level, which are usually termed “integration 

costs” [6], [11]–[15]. There are slight differences in the way many studies classify the cost-driving 

VRE properties, but it is possible to categorize three specific properties of VRE: uncertainty, 

locational specificity, and variability [12], [14]–[18]. Integration studies often estimate the associated 

costs of these properties. We briefly go through the properties and elucidate their technical reason 

and relative importance. 

First, VRE output is uncertain due to the limited predictability (forecast errors) of inherent natural 

variations of wind speeds or solar irradiation. This requires additional short-term balancing services 

and the provision of operating reserve capacity. Some studies review balancing costs estimates for 
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wind and find that they are mostly below about 6€/MWh of wind which is about 10% of their 

levelized costs of generation [12], [19], [20]. 

Second, VRE output is location-specific because the primary energy carrier of wind and solar power 

cannot be transported like fossil or nuclear fuels and consequently additional costs for electricity 

transmission occur to meet spatially distributed demand. Estimates for grid costs are scarce and 

there is no common methodology. It is estimated that annual transmission grid costs of € 1bn may 

be incurred to integrate 39% renewables in Germany’s power sector by 2020 [21], translating to 10 

€/MWh if the total cost is attributed to the increase in renewable generation. For the US, the 

National Renewable Energy Laboratory (NREL) estimates grid investment costs to integrate 80% 

renewable electricity (of which half are VRE) to be about 6 $ per MWh of VRE [22]. Holtinen, et al. 

[12] review a number of European wind integration studies and shows a range of 50-200 €/kW at 

shares below 40%, which translates to 2-7 €/MWh1. In summary, grid costs might be slightly higher 

than balancing costs but still small compared to generation costs of wind. 

Third, the temporal variability of wind and solar has two impacts. The first one is increased ramping 

and cycling requirements of conventional plants because they need to adjust their output more 

often, with steeper ramps and in a wider range of installed capacity. This seems to be of minor 

importance. Studies estimate very low costs [20], [23], [24] or find that ramping and cycling 

requirements are easily met even at high shares of VRE [25]–[27]. However, even if power plants 

could perfectly ramp and cycle, variability would still impose an important second impact. Because 

electricity demand is fairly price-inelastic and electricity cannot easily be stored, demand needs to 

be covered at the time it arises. Thus, the temporal matching of VRE supply profiles with demand is 

crucial to their integration. Designated integration studies tend to neglect this impact and focus on 

balancing, grid, ramping and cycling, while other less technical and more economic studies implicitly 

account for it. They find a significant economic consequence: variability reduces the marginal value 

of wind from about 110% of the average electricity price to about 50-80% as wind increases from 

zero to 30% of annual electricity consumption [18], [28]–[30]. It is this aspect of variability that is the 

focus of this paper. 

This paper contributes to understanding the impact of wind and solar variability on power systems, 

specifically, the impact of the temporal matching of VRE supply and demand profiles. The tool we 

use is the residual load duration curve (RLDC), which is usually applied for illustration purposes. RLDC 

is a purely physical concept, which only requires demand and VRE supply data, yet it captures the 

relation of the different temporal profiles of wind and solar supply and demand and delivers the 
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relevant economic aspects of major integration challenges. We define three challenge variables that 

represent fairly independent impacts of variability on the structure of the RLDC. We aim to analyze 

and compare integration challenges by estimating these variables in a comprehensive analysis for 

different shares of wind and solar and for two regions, Germany and for a US region in Indiana. Only 

based on demand and VRE supply data, we derive essential insights that are independent of model 

assumptions and scenario framings. Our analysis is not meant to be a surrogate for a model analysis. 

Instead, the results can help in understanding and framing model analyses. In addition, this study 

can aid in parameterizing integrated assessment models (IAMs) that cannot explicitly represent the 

short-term variability of wind and solar. 

The paper is structured as follows. The next section introduces the methodology for defining 

integration challenges using RLDCs. Section 3 provides results of our analysis and section 4 provides 

a discussion of our results and conclusions. 

2. Methodology - capturing major integration challenges 
An intuitively appealing technique for representing the load-matching properties of VRE and the 

induced challenges is provided by load duration curves (LDCs) and residual load duration curves 

(RLDCs). These curves are mostly used for illustrative purposes and sometimes indirectly used as a 

model input [31]–[35]. We present here for the first time the application of RLDCs as a direct 

quantitative tool for analyzing systems with arbitrary levels of penetration of both wind and solar 

PV, and demonstrate the intuitive clarity of this approach to thinking about VRE challenges. 

We start by explaining the concept of RLDCs. As a first preparatory step, we introduce the well-

known concept of a load duration curve LDC, which is derived by sorting the load curve i.e. the time 

series of power demand for one year or longer (Figure 1) from highest to lowest values. The y-axis of 

a LDC indicates the minimum capacity required to cover total annual electricity demand, which is 

reflected by the area below the curve. 



 

Figure 1 (schematic): The LDC (right) is derived by sorting the load curve (left) in descending order.  

If a new source is added to the system, in our case wind and solar, the power generated from that 

source at each point in time can be subtracted from the load at that same time to arrive at a time 

series describing the residual load that must be supplied by the rest of the system (Figure 2). The 

RLDC is then derived by sorting this residual load curve in descending order. The area between the 

LDC and the RLDC is the electricity generation from variable renewables (wind and solar). Note that 

the shape of the area does not indicate the temporal distribution of VRE supply, due to different 

sorting of load and residual load, yet this information is not relevant for our current purpose. Also 

ramping and cycling requirements are not captured, since that would require the chronological 

order of the residual load, which is lost in a duration curve. 
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Figure 2: (schematic): The residual load curve (a time series) is derived by subtracting the time series of VRE from the 
time series of power demand (left). The RLDC (right) is derived by sorting the residual load curve in descending order. The 
area in between the RLDC and the LDC equals the potential contribution of VRE. 

RLDCs contain crucial information about the variability of wind and solar supply, as well as 

correlations with demand, thereby capturing three major challenges of integrating VRE into power 

systems, as shown in Figure 3, namely (i) low capacity credit, (ii) reduced full-load hours of 

dispatchable plants, and (iii) overproduction of VRE. 

 

Figure 3: Residual load duration curves capture three main challenges of integrating VRE (illustrative). The 

utilization of conventional plants are reduced, while hardly any generation capacity can be replaced. At higher shares 

VRE supply exceeds load and thus cannot directly be used. Load and renewable feed-in data for Germany is used to 
derive the curves

2
. 

The RLDCs not only illustrate the challenges of VRE but also allow for quantifying three “challenge 

variables” that represent the different and fairly independent integration aspects. We explain the 

challenges and their quantification used in the analysis: 

1) Low capacity credit: Wind and solar contribute energy while only slightly reducing the need for 

total generation capacity, especially at high shares, due to a relatively low capacity value; 

consequently some firm capacity is required complementing VRE (including electricity storage or 
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demand response mechanisms). In other words, the long-term capacity cost savings in a system 

are lower when adding VRE compared to adding a dispatchable plant. There are several similar 

qualitative definitions of capacity credit in the literature [36]–[38] that are in line with the 

following: The capacity value of a generator can be defined as the amount of perfect reliable 

capacity (firm capacity) that can be removed from the system due to the addition of the 

generator, while maintaining the existing level of reliability. The capacity credit is the ratio of 

capacity value and the added capacity. Moreover there are different formal definitions, i.e. 

different methods of actually estimating the capacity credit [38]–[42] . Because we only want to 

rely on load and VRE supply data and to provide full transparency we follow an approximation 

method that was introduced by Garver [43] and has been shown to well-represent actual system 

performance. The method is based on the concept of Effective Load Carrying Capability (ELCC). 

The ELCC of a power plant represents its ability to increase the total generation capacity without 

increasing the existing level of reliability often measured in terms of loss of load probability 

(LOLP). In [43] an approximation for the ELCC is given, which has been used in many analyses to 

express the capacity value or capacity credit (see for example equation (13) in [42], or the 

appendix in [44]): 

      ∑       

 

∑        

 

⁄        (1)  

where   is the capacity credit of the total VRE capacity     ,      and       are the values of 

the (residual) load duration curve at a given instant  . The Garver capacity factor   was chosen 

for both regions to have a typical value of 4% of peak load [39], [44]. By considering the ratio of 

exponentials, the capacity credit as defined in Eq. (1) is to a large part determined by the 

difference between the peaks of the LDC and the RLDC, although there are contributions from 

the rest of the curves.  Our work represents a first thorough treatment of capacity credit for a 

wide range of combinations of solar PV and wind power. 

2) Reduced full-load hours: Wind and solar PV reduce the annual full-load hours (FLH) of 

dispatchable power plants; at high shares this is especially true for intermediate and baseload 

plants. The average utilization and therefore the life-cycle generation per capacity of existing 

and newly build plants is reduced and thus their specific generation costs (per MWh) increase. 

We operationalize this challenge by measuring the decrease in full-load hours of the RLDC at two 

heights as indicated in Figure 4. To capture the effect on intermediate load we chose a height 

equal to half of the peak load and to account for the reduction of baseload FLH we measure at 

the intersection with the x-axis. When       and      are the inverse (residual) load duration 

curves the relative reduction at the two heights can be expressed as follows: 



                       (2)  

                   (3)  

 

Figure 4: With VRE deployment the width of the RLDC is decreasing. We measure this effect at two heights relative 
to peak load: at half height and at the x-axis. 

 

3) Over-production of VRE: At high generation shares there are hours in which combined wind and 

solar PV generation exceeds load, and thus production must be curtailed if it cannot be stored or 

transmitted. Hence, the effective capacity factor3 of VRE decreases and specific per-energy costs 

of VRE increase. We measure over-production as the share of potential total generation of wind 

and solar that exceeds domestic load. This equals the ratio of the negative part of the RLDC 

between the x-intercept    and the maximum      of the data series (e.g. one year) to total 

potential variable renewable generation (     ). 

  ∫        
    

  

      ⁄  (4)  

Note that our approach provides a simplified estimate of curtailment that can be derived from a 

pure data analysis without requiring detailed power system modeling. It may underestimate 

curtailment occurring in the real-world, because grid or minimum-load constraints of 
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dispatchable power plants are neglected, or overestimate curtailment, because it does not 

account for the possibility of long-distance transmission or storage. Some studies focus on over-

production. Ref. [45] uses a similar RLDC methodology and analyze curtailment for New York 

State. For Germany, Ref. [46] estimates storage requirements to limit over-production to various 

levels and uses RLDC to illustrate the model results. 

These three challenges impose costly redundancy on the system. We will show that the magnitude 

of these challenges depends on the renewable source (wind or solar), on the region and becomes 

more severe at higher shares. Note that all “challenge variables” are measured in average and not 

marginal terms i.e. the impacts are distributed across the total wind and solar penetration, rather 

than quantifying them for the last added unit of wind or solar. Marginal impacts can be much higher, 

for example the average capacity credit of all wind and solar plants is higher than that of the last 

unit, because the capacity credit always decreases with increasing penetration. 

Furthermore, in this work we concentrate on the direct impact of variable renewable generation 

from solar PV and wind on the electrical system.  In introducing the quantitative use of RLDCs, we 

assume no possibility for long-distance transmission, and that there is no potential for demand-side 

management (DSM), storage, or other integration options. Hence, the results we present are 

effectively upper limits of the challenges to integration.  The challenges are not to be seen as 

insurmountable barriers, but give insights as to how wind and solar PV might be efficiently deployed, 

and emphasizes the need for an integrated perspective on the integration challenge.  

We look at two specific regions, Germany and the Midwestern United States, in some detail to 

illustrate the RLDC technique and show the regional diversity in results. 

For Germany we use wind and solar generation from actual quarter-hourly feed-in data from 

German Transmission System Operators (TSOs) for 2011, which is publicly available on the 

respective websites4. To simulate higher penetrations we scale up the time series linearly. Hourly 

data for power demand in Germany in 2011 was downloaded from the ENTSO-E website5. The data 

was interpolated linearly to match the quarter hourly resolution of VRE generation. By spatially 

aggregating over the four different TSO zones in Germany we implicitly assume perfect domestic 

transmission (“copper plate assumption”). This is reasonable because Germany is already well 

interconnected and will be even better so after governmental plans are implemented [47]. Even 

though the data we analyze comes from Germany, it is to some extent representative for other 

European power systems due to typical load, solar and partly also wind patterns. 
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Hourly demand data for the US region (near Evansville, Indiana) are taken from documents filed with 

the Federal Energy Regulatory Commission6. Average demand in the chosen region was 750 MW 

during the year 2005, with average demand higher in the summer months, reaching a peak of 1291 

MW. Demand data were interpolated to a ten-minute-interval basis to match the available solar 

data for the same region. 

Solar data for the region are taken from the National Solar Radiation Database [48] and are  based 

on both satellite measurements and ground-based meteorological data having the same long-term 

statistical properties as the measured radiation data sets with which they are validated for a 

relatively small number of sites.  The data used for our analysis is the average global radiation (direct 

plus diffuse) on a horizontal surface, given in units of Wh/m2. Using these data is equivalent to 

averaging over a large number of arrays that may not all be optimally sited, tilted, or oriented – total 

solar output for the region will be given by a multiplicative scaling factor of the global insolation for 

each hour.   

Wind data for the same year for the same geographical region come from the Eastern Wind 

Integration and Transmission Study [49]. Wind speeds at various heights corresponding to chosen 

models of wind turbines are used to then aggregate data to the modeled power output of a wind 

park in that study area.  For both wind and solar data several sites were selected, centered on the 

city of Evansville, to effectively find a regional average for each time step. 

3. Results 
In this section we present the results of the detailed analysis of challenge variables. Before 

discussing each variable in detail, we provide an overview of the results.  
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Figure 5: RLDCs for wind and solar PV for Germany and US Indiana. 

Figure 5 shows the RLDCs for all four combinations of region and technology (wind and solar PV) for 

increasing shares (0% - 50%). For all combinations, the challenges (as illustrated in Fig. 3) become 

more severe at higher penetrations of final electricity consumption7. Although this overall tendency 

is the same there are some noticeable differences between wind and solar PV, and between the two 

regions considered. In Germany at low shares wind has a small capacity credit. The capacity credit of 

solar is even smaller, because solar PV contributes mostly to intermediate load (typically daytime in 

summer) rather than to peak load (typically winter evenings). At higher shares wind continuously 

tilts the RLDC while solar creates a kink in the RLDC so that at high shares most generation is over-

produced. The US picture at low shares is the opposite: wind has a small capacity credit while solar 

contributes significantly to peak load. This is due to the more favorable correlation of peak demand 

occurring at summer days due the deployment of A/C systems with solar power supply. At higher 

shares the shapes become more similar to the results for Germany. The reason for the solar RLDC 

kink is that once summer day load is covered, further solar PV deployment mostly leads to over-
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production. The kink separates sun-intensive days (right side) from less sunny days and nights (left 

side). 

We note as well that for increasing penetrations, and this is especially true for solar PV, the RLDC 

crosses the abscissa at points further to the left, meaning that the number of hours of operation for 

capacity usually designated as baseload is decreased.  The implications of this characteristic are 

discussed below.  On the other hand, it is also clear that even at very high penetrations, there is a 

remanent capacity and time of generation (i.e. total electrical energy) that must be supplied by the 

system beyond that which can be provided by VREs.  This capacity fraction of system requirements 

will necessarily be provided by either conventional thermal capacity, non-variable renewables (e.g. 

hydroelectric power) and, to some extent, demand-side management and storage of over-produced 

VRE. 

We now present each of the challenge variables in more detail, including combinations of wind and 

solar PV, as well as looking in more detail at regional variations. 

The capacity credit 

Figure 6 shows how the capacity credit depends on region, penetration and mix of wind and solar. 

The top panels in Figure 6 show all mixes of wind and solar while the line plots in the bottom panels 

focus on pure solar and wind capacity credits. 



 

Figure 6: The capacity credit (defined in section 2) for different mixes and penetration of wind and solar PV for US 

Indiana (left) and Germany (right). 

For most mixes the level of capacity credit is higher in Indiana than in Germany, mainly driven by a 

high capacity credit of solar of up to 70% for the first solar plants in the system. Apart from the 

overall level the dependency on the mix of wind and (especially) solar shows opposite patterns in 

the two regions. While the capacity credit of solar is high in Indiana it is low in Germany (~20% at 

low penetrations), where wind has a slightly higher capacity credit (~25%). Independent of the mix 

and region the capacity credit decreases rapidly with increasing penetration. However, a sensible 

mix of wind and solar PV can increase the capacity credit compared to a pure deployment of only 

wind or solar. For Germany the maximizing mix contains mainly wind power. Note again that here 

average values are displayed. Marginal values, i.e. the capacity credit of the last unit of wind or solar 

added, would decrease even more. 

The large difference in solar capacity credits is explained with Figure 7, which shows average diurnal 

cycles for solar supply and load in both regions. More precisely it distinguishes between the average 

winter (December-February) and the average summer day (June-August). 



The relation between the solar supply and load data is a free parameter and was chosen to best 

illustrate the findings. The load data is normalized such that the highest average load hour equals 

one. The solar data is normalized such that the summer supply peak equals the summer load peak. 

 

Figure 7: Average diurnal cycles for solar supply and load in US Indiana (left) and Germany (right) in winter 

(December-February) and in summer (June-August). The peaks of load and solar coincide in US Indiana while in 
Germany the load peak is in winter evenings when no sun is shining. 

Solar PV has a low capacity credit in Germany because annual electricity demand in Germany peaks 

during winter evenings. Solar PV supply is highest during summer days and thus contributes to 

intermediate load at low penetrations (as shown in Figure 5). In Indiana as in most parts of the US 

power demand is highest during summer days due to the use of air conditioning. Consequently solar 

power supply is well-correlated with power demand. In particular demand peaks coincide (overlap) 

with significant solar supply and thus solar has a high capacity credit. 

Wind generation does not show such regular patterns. It is more stochastic in the sense that the 

variance of wind output in an hour is very high compared to the mean value and compared to the 

variance of solar output. In other words, it is much harder to rely on wind power output. Hence, the 

matching of the average curves of wind and demand is not as important for wind. In US Indiana and 

Germany the capacity credit is similar even though seasonal demand patterns are different. 

Literature results for capacity credits are in line with the above results. For wind plants there are 

many studies [12], typically showing a large range of capacity credit values from 10% to 35% for 

onshore wind plants at low penetrations that tend to decrease with higher wind shares. Literature 

on the capacity credit of solar PV is scarce. 

Madaeni et al. show values ranging between 52% and 93% for the western US, depending on 

location and the plant’s sun-tracking capability [42]. Perez et al. show estimations for different 



methodologies and diverse electric utility companies in the US [39]. In those areas where summer 

peak load is much higher than in winter the capacity credit is in the range of 60% - 80% for low solar 

penetrations and decrease with higher penetrations. For the area of Portland, Oregon, for example, 

where summer and winter peak are about the same height, the preferred ELCC method gives a 

smaller capacity credit of about 33% and patterns resemble more closely those of the German data. 

This observation confirms that summer cooling demand drives the capacity credit of solar PV and 

thus its cost saving potential. 

Reduced utilization of dispatchable plants 

Figure 8 shows how the utilization of dispatchable plants is reduced for baseload plants (above) and 

intermediate load plants (below). The FLH of intermediate load plants are reduced even at low 

penetrations, while baseload FLH are affected at moderate and high penetrations. The overall 

picture is quite similar for both regions and fairly symmetric for wind and solar. We point to a few 

differences. Wind and solar affect baseload and intermediate load FLH in an opposite way. While 

wind tends to reduce intermediate load, solar has a larger effect on baseload. This asymmetry is 

larger for Germany. 

 



Figure 8: Two variables (defined in section 2) that describe the reduction of full-load hours with increasing 

penetration for different mixes of wind and solar PV for US Indiana (left) and Germany (right). The above variable 

“Baseload” shows that at moderate penetration there is no residual load that needs to be supplied constantly. The 
below variable “Intermediate” shows that wind and solar reduce FLH at an intermediate height of the RLDC. 

Note that the results for the intermediate load variable are sensitive to the chosen reference height 

on the RLDC. We have chosen an intermediate height of 0.5 (see section 2) to focus on the 

intermediate load parts of the RLDC with high FLH. Considering the FLH reduction at higher capacity 

levels would tend to evaluate the peak load part that is to a large extent already covered by the first 

challenge variable, capacity credit. 

The corresponding system impact of those results depends on the dispatchable capacity mix and 

cost structure of existing and new plants. A system with high must-run generation (e.g. high 

minimum load of baseload plants or combined-heat and power plants without thermal storage) can 

face a major challenge when baseload FLH decrease. Wind and solar generation that would reduce 

baseload FLH might not be accommodated unless the system can be made more flexible, i.e. by 

reducing must-run generation. Moreover system costs increase if the existing and planned plants 

have high fixed costs like nuclear or to some extent coal plants. These plants typically have low 

variable costs and rely on a high utilization to recover their investment costs. In contrast a system 

with dispatchable plants with rather low fixed and high variable costs could better cope with 

reduced FLH. 

As a consequence the “baseload” indicator shown in the upper plots in Figure 8 tends to be more 

important than the “intermediate” indicator shown in the bottom. In this respect solar PV might be 

more of a challenge than wind. 

Over-production 

 

Figure 9: Over-production (defined in section 2) for different mixes and penetration of wind and solar PV for US 
Indiana (left) and Germany (right). 



Figure 9 shows how the challenge variable over-production depends on region, penetration and mix 

of wind and solar. Over-production occurs above penetrations of about 20%. For solar PV it increases 

stronger than for wind because once summer day load is covered, further solar PV deployment does 

mostly lead to over-production. This asymmetric effect is much stronger in Germany because of the 

unfavorable matching of solar supply and season load patterns (see above Figure 7). At solar 

penetrations of 40% above 40% of total solar generation would be over-produced, whereas over-

production can be minimized if only wind power was deployed. For the US region there is a 

minimizing ratio of wind and solar PV of about 2:1 (as indicated by the arrow). This is in line with 

[45], which for New York State finds a minimizing ratio of 3:2. 

 

4. Discussion and conclusion 
In this paper we analyze three major challenges of integrating variable generation from wind and 

solar into power systems: the low capacity credit, reduced utilization of dispatchable plants and 

over-production. Using RLDCs for this purpose is both a good heuristic tool and allows for 

quantitative analysis. We introduced corresponding challenge variables and estimate their 

dependence on region (US Indiana and Germany) and on penetration and mix of wind and solar. This 

basic, and at the same time informative, analysis provides insights into fundamental properties of 

the structural matching of demand with wind and solar supply. 

Our results show that challenges associated with increasing wind and solar shares can become 

severe and consequently cannot be neglected in economic analyses and system planning. To a large 

extent these challenges depend on the penetration, mix of wind and solar, and regional 

circumstances.  We summarize the results in the following five points: 

1) All integration challenges increase with penetration independently of mix and region. 

2) Some challenges, namely the over-production and the increasing reduction of the utilization 

of baseload plants, increase stronger for high shares of solar PV (>20%). 

3) At low penetrations, solar PV is much easier to integrate in the US than in Germany. In 

particular it contributes a high capacity credit of up to 70%, while for Germany the capacity 

credit is low and vanishing with higher penetration. 

4) For wind the challenges increase more modestly with increasing penetration than for solar. 

The capacity credit is relatively low even for low wind penetration. 

5) The integration challenges of wind are fairly similar in US Indiana and Germany. 



6) A sensible mix of wind and solar can mitigate some integration challenges such as increasing 

capacity credits or, for US Indiana, decreasing over-production. 

These results show that the deployment and integration of VRE must be planned from a system 

perspective to account for the matching of wind and solar supply with demand. The challenge 

variables are crucial system figures that depend on various parameters. The deployment of wind and 

solar should not purely be based on generation costs. 

This work quantifies challenge variables for a broad range of boundary conditions. The next step 

should be translating these estimates into economic costs. This would require some kind of energy 

system model that accounts for existing capacities (generation and transmission). Moreover a time 

frame of the analysis needs to be defined in which new capacities are built and the system adjusts to 

the increasing share of variable generation from wind and solar. Such an analysis should consider 

potential mechanisms that might reduce integration challenges like energy storage, long-distance 

transmission and demand side management. 

Climate change mitigation policies will certainly require dramatically increased levels of electricity 

produced from variable renewable sources, as described at the beginning of this paper.  Although 

the focus of this work is on the challenges to integration of VRE in the existing system, the 

potentially large negative externalities of anthropogenic climate change, together with the known 

negative externalities of current energy systems indicate that an energy system transformation will 

be necessary over the next few decades. The acceptance and success of this transformation will be 

enhanced if foreseeable consequences are examined carefully and early in the process such that 

options for avoiding problems can be developed in parallel with the ramp-up of VRE deployment. 
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