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Boom or bust? Mapping out the known unknowns of1

global shale gas production potential2

Jérôme Hilairea, Nico Bauera, Robert J. Brechaa,b3

aPotsdam Institute for Climate Impact Research, Potsdam, Germany4

bUniversity of Dayton, Dayton, OH, USA5

Abstract6

To assess the global production costs of shale gas, we combine global top-down

data with detailed bottom-up information. Studies solely based on top-down

approaches do not adequately account for the heterogeneity of shale gas de-

posits and hence, are unlikely to appropriately capture the extraction costs of

shale gas. We design and provide an expedient bottom-up method based on

publicly available US data to compute the levelized costs of shale gas extrac-

tion. Our results indicate the existence of economically attractive areas but

also reveal a dramatic costs increase as lower-quality reservoirs are exploited.

At the global level, our best estimate suggests that, at a cost of 6 US$/GJ, only

39% of the technically recoverable resources reported in top-down studies should

be considered economically recoverable. This estimate increases to about 77%

when considering an optimistic recovery of resources but could be lower than

12% when considering pessimistic ones. The current lack of information on the

heterogeneity of shale gas deposits as well as on the development of future pro-

duction technologies leads to significant uncertainties regarding recovery rates

and production costs. Much of this uncertainty may be inherent, but for energy-

system planning purposes, with or without climate change mitigation policies,

it is crucial to recognize the full ranges of recoverable quantities and costs.
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1. Introduction9

In the 1970s growing concerns about natural gas scarcity led a number of10

policy makers and energy companies to direct their efforts toward extracting11

unconventional gas (Trembath et al., 2012). Three decades later the concur-12

rence of technological improvements and high gas prices sparked a remarkable13

outcome: the recent US shale gas boom (Trembath et al., 2012; Wang and14

Krupnick, 2013). In fact, US shale gas production increased 12-fold in 10 years15

(EIA, 2012) and covered 37% of domestic gas production in 2012 (BP, 2013).16

Despite multiple social, environmental and economic concerns, an official best17

estimate scenario shows that US shale gas production could further increase and18

reach more than 50% of domestic gas production by 2040 while having a pro-19

found impact on global gas markets (EIA, 2014). As a result other parts of the20

world including Argentina, Australia, China, India, South Africa and the EU are21

currently assessing the potential to expand gas supply from domestic shale-gas22

endowments (EIA, 2011; IEA, 2011; Pearson et al., 2012; Nakano et al., 2012).23

In the near future and under propitious conditions one could witness the emer-24

gence of a ”golden age of gas” (IEA, 2012a) during which 15% of global natural25

gas production could be supplied by shale gas in 2035 (IEA, 2012b; BP, 2013;26

IEA, 2013b). Conversely, considering more pessimistic assumptions could lead27

to a more moderate scenario in which US shale gas production peaks around28

2030 (EIA, 2014). Even more dramatic scenarios in which production peaks be-29

tween 2015-2020 have been generated and reported (Richter, 2015; Ikonnikova30

et al., 2015). The large uncertainty reflected in these extreme scenarios is a31

great burden to energy policy makers, investors, and infrastructure planners.32

33

The challenges of energy access, energy security and climate change mitiga-34

tion call for enhancing our knowledge of the role of shale gas within the global35

energy system and its impact on the climate system (McCollum et al., 2014).36

Such a study should not only consider medium-term scenarios but also include37

a longer term-perspective and assess uncertainty within a single framework, an38
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approach that is lacking in the literature to date. In the present article we39

investigate the following research questions: What is the global and long-term40

economic shale gas production potential? What is the associated uncertainty41

range and what are the key uncertainty factors?42

43

Assessing the potential economic production of shale gas in a global and long-44

term context requires information on the costs of production. This information45

is commonly summarized in the form of a cumulative production cost function.46

Constructing a global cumulative production cost function, in a scientific man-47

ner, requires a transparent methodology that accounts for both the limitations48

and uncertainties of publicly available data. To the best of our knowledge such49

a methodology has not yet been published. The present study is a first attempt50

to close this gap. In particular we combine global resource estimates from geo-51

logical surveys with more detailed US techno-economic information to construct52

a cumulative extraction cost function (CECF) and we assess the implications of53

techno-economic data uncertainties on the global economic shale gas production54

potential and identify key uncertainty factors.55

56

In a seminal study Rogner (1997) employed a methodology that divides ag-57

gregated fossil fuel endowments from global geological surveys into a few cost58

categories. The production costs associated with each category are based on59

expert judgments and ad-hoc assumptions. In 2012, new global geological sur-60

veys (USGS, 2000; BGR, 2009, 2011) and production cost data were employed61

to update the original study (Rogner et al., 2012). However only 5 categories62

were used to define shale gas endowments. Using a small number of categories63

neglects the heterogeneity of unconventional deposits and may misrepresent the64

relationship between quantities in situ and extraction costs. US shale gas CECFs65

derived from more detailed approaches seem to confirm this hypothesis (Petak,66

2011; Jacoby et al., 2012).67

68

In this article we present a method (section 2) that rests upon the work of69
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Rogner (1997); Rogner et al. (2012) but allows for a higher disaggregation of70

shale gas endowments using data at the shale gas play level. In section 3 we71

present and discuss the results and in section 4 we conclude.72

2. Methodology73

We first describe the overall procedure to generate a global shale gas CECF.74

We then provide the methodology to compute a detailed US CECF which is75

a prerequisite to obtaining a global one. Lastly we explain the treatment of76

uncertainties.77

2.1. Global CECF78

Constructing a global shale gas CECF is challenging because necessary pub-79

lic data lack systematic reporting and are exclusively or only available for the80

US. Despite large regional differences in below- and above-ground factors, we81

assume that data for the 27 US shale gas plays considered in this study provide82

a representative sample of shale plays. For this reason we develop a thorough83

and transparent method to construct a US CECF that includes the most rele-84

vant factors and their uncertainties in order to identify the key characteristics of85

shale gas CECFs. These characteristics are captured by normalising the CECF86

along the quantity dimension. Scaling the normalized CECF to regional tech-87

nically recoverable resources (TRR) estimates and adjusting extraction costs to88

account for differences in geology and techno-economic characteristics enables89

us to derive a global CECF of shale gas. As such the method improves the90

top-down approach of Rogner (1997) by deriving assumptions on cost classes91

from a detailed analysis of US CECF.92

2.2. US CECF93

The methodology to compute a CECF is depicted in Figure 1. We start94

with a careful review of the grey and peer-reviewed literature that gives us an95

indication of the paucity of data and an overview of methods used by various96

communities - including academia, industry, NGO ... - to estimate shale gas97

extraction costs. We then design a comprehensive approach that accounts for98
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the limits and uncertainties of available data. This enables us to compute US99

shale gas CECFs and importantly, include uncertainties. The main aspects of100

this approach are presented in the following paragraphs. For a more detailed101

description of methods and data, the reader is invited to consult the supple-102

mentary online material.103
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Figure 1: Flow diagram of the methodology employed in the computed tool. Note that EUR
data are used in the Modified Arps’ equation as well as directly in the cumulative extraction
cost curve.

104

We first collect and harmonise data for 11 techno-economic parameters that are105

repeatedly reported in the literature (Block 1 in Figure 1). These parameters106

are divided into 3 categories corresponding to 3 methods required to obtain a107

CECF. The first category contains 4 parameters coloured in light grey: Area108

(A), percentage of area with potential1 (%Pot), percentage of untested area2109

(%Unt) and well density (WD). These parameters are multiplied together to110

1Percent of area that is expected to have technically recoverable resources (EIA, 2013a)
2Percent of total wells left to be drilled (EIA, 2013a)
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obtain the total number of potential wells (Np) in a shale play (p) (Equation 1111

and Method 2.1 in Figure 1)).112

Np = A× %Pot× %Unt×WD (1)

The next 4 techno-economic parameters in white consist of the Estimated Ul-113

timate Recovery (EUR), the hyperbolic factor (b), the initial decline rate (D0)114

and the well lifetime (T ). These are fed to an equation based on the original115

Arps’ equation to compute gas production over time q(t), which is a crucial in-116

termediate step to calculating shale gas production costs (Method 2.2 in Figure117

1).118

119

Using empirical data, Arps devised an equation that describes oil and gas pro-120

duction decline over time (Arps, 1944). Owing to its simplicity, this formula is121

still largely employed in the oil and gas industry, including by shale gas extrac-122

tion companies. Shale gas producers have observed that early gas production123

rates could be reasonably estimated with hyperbolic decline type curves. The124

hyperbolic form of the Arps equation leads however to infinitely decreasing de-125

cline rates and requires the inclusion of additional parameters such as well life126

time to avoid overestimating future production.127

128

Despite continuous debate over the accuracy of the Arps equation, no alterna-129

tive method has yet proven to be superior in predicting gas production. Though130

a promising one recently proposed by Patzek et al. (2013) might turn out to131

be more useful in the future3, most published data currently relate to the Arps132

equation and so we use this well-established and expedient method here.133

134

3Patzek et al. (2013) developed a stylized physical model of a multi-stage hydraulic frac-
tured horizontal shale gas well. With the help of gas production data of more than 8000 US
horizontal wells over 10 years, they employed their model to devise a 2-stage equation that
described gas production over time. The early transient flow regime is modelled by a scaling
curve that is proportional to the inverse of the square root of time. The later boundary flow
regime that starts after the so-called interference time is estimated with a simple exponential
decline curve.
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In its original form the hyperbolic Arps equation states that gas production135

is a function of initial gas production q0 and that it follows a hyperbolic decline136

over time. However, for lack of reported q0 data, we replace q0 by better re-137

ported parameters and effectively modify the Arps equation. In particular EUR138

can be obtained from integrating q(t) over T so we substitute q0 by a function139

of EUR, b, D0 and T to calculate q(t) (See supplementary online material for140

calculation details). This approach enables us to find the unique gas production141

rates q(t) that are consistent with the parameter values of EUR, b, D0 and T .142

The modified equation reads:143

q(t) =
EUR (b−1)D0

(1+bD0T )(b−1)/b−1

(1 + bD0t)
1/b

(2)

144

Next, gas production rates q(t) are combined with Investment Costs (IC), Op-145

eration and Maintenance Costs (OMC), a discount rate (r) and well lifetime146

(T ) to compute the levelized costs of gas (LCOG). The LCOG formula is bor-147

rowed from the field of economics and provides the unit costs of producing shale148

gas over the lifetime of a well (Equation 3 and Method 2.3 in Figure 1).149

LCOG =
IC +

∑T
t=0

q(t)OMC

(1+r)t∑T
t=0

q(t)

(1+r)t

(3)

150

151

Finally, we combine the above equations 1, 2 and 3 to construct a CECF. For152

each play p, EUR probability distributions (Pp(EUR)) are multiplied by the153

total number of potential wells (Np) to identify the number of wells (n) which154

will produce a certain EUR. Sorting then the LCOG of all potential shale gas155

wells in ascending order and combining them with their associated EUR and the156

number of potential wells n yield a cumulative extraction cost function of shale157

gas (Block 3 in Figure 1). Technically Recoverable Resources (TRR), a metric158

common to many shale gas assessment studies, can be obtained by summing159

the EUR of all total potential wells across all shale plays P (Equation 4). In160
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addition, economic recoverable resources (ERR) can be inferred from the curve161

for any given cost threshold.162

TRR =

P∑
p=1

Np × Pp(EUR) × EUR (4)

163

164

165

2.3. Uncertainty166

Techno-economic estimates bear large uncertainties. Those can be partly167

explained by the lack of in situ data but in this study they also stem from a168

lack of public data availability. To test the sensitivity of our results to these un-169

certainties we define lower, best and upper estimates for the 11 techno-economic170

parameters considered in this analysis. The best estimate for the EUR param-171

eter is the result of combining the distributional data from USGS (2012) and172

EIA (2013a) with estimates of Area, well density in those same references. We173

then apply a ±50% change in EUR to define the lower and upper estimates4174

as in (EIA, 2013a). The lower, best and upper estimates of the other param-175

eters including b, D0, T , IC, OMC, r are based on our literature review (See176

supplementary online material for more information). When several estimates177

are available we define the best estimate as the mean, the lower estimate as the178

minimum value and the upper estimate as the maximum value. For some shale179

gas play data could nonetheless not be retrieved. In this case, the best estimate180

is simply the mean across all currently available data (See Table 1).181

182

At the global scale, an additional level of uncertainty on TRR needs to be taken183

into account for the global CECF. We compile the most recent world TRR es-184

timates from Rogner et al. (2012); Pearson et al. (2012); McGlade et al. (2013);185

EIA (2013b) and define best, lower and upper estimates accordingly. We also186

4Note that these sensitivity factors are not supposed to reflect uncertainty but are used
allow discussion.
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Table 1: Estimates of techno-economic parameters. Estimates resulting from a literature
review reflecting the heterogeneity between and across shale plays. These estimates were
applied to shale gas plays with missing data. EUR are not displayed in this table since
distributions are available for each shale gas play and values vary greatly.

Parameter b D0 T IC OMC r
Unit - %/yr years 106 US$/well US$/GJ %

Best estimate 1.1 70 10 5 1.00 12
Lower estimate 0.5 50 2 3 0.50 10
Upper estimate 2.0 300 30 10 2.00 15

add a 50% cost mark-up for non-US regions (Deutsche Bank, 2011; Pearson187

et al., 2012).188

189

The effect of technological change (TC) is an important parameter to consider190

when constructing a long-term cumulative extraction cost curve. To provide191

insights on the potential impacts of technological innovation, we apply a cost192

reduction factor on the cost component of the CECF (e.g. LCOG) and a quan-193

tity increase factor on the other component. McJeon et al. (2014) reviewed194

the literature and found cost reductions ranging from 20% and 45% between195

2035 and 2050 (IEA, 2012a; Rogner et al., 2012; EMF, 2013; Newell and Raimi,196

2014). As a result we assume a cost reduction of 33% and a TRR expansion of197

44% by 2050 as in Rogner et al. (2012).198

199

One should note that future regulations are not explicitely taken into consider-200

ation in this framework. However, the uncertainty analysis provides indications201

on how a decrease in investment costs or an increase in gas flow rates could shift202

the CECF. Additionally, the liquid content of shale gas wells and gas associated203

with shale oil wells are not accounted for in this study.204

205

In the next section we first compute a best estimate cumulative extraction cost206

curve for the US and investigate the effect of shale play heterogeneity. We then207

calculate the economic recoverability of US shale gas for several gas costs and208
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draw conclusions regarding shale gas availability at the global scale.209

3. Results and discussion210

3.1. US shale gas extraction costs211

The CECF resulting from our methodology is shown in orange in Figure 2.212

Our best estimate is indicated by the orange solid line whereas the shaded area213

represent the techno-economic uncertainty range. One can see that extraction214

costs start above 1 US$/GJ and from 300 EJ on exceed 5 US$/GJ, a value215

close to the median well-head gas price over the period 2000-2012 (EIA, 2012).216

Two properties characterize our curve: convexity and asymptotic convergence217

towards TRR, both reflecting the large heterogeneity of shale gas deposits. Fur-218

thermore, extraction cost uncertainties exhibit a large spread which increases219

with cumulative extraction.220

221

Our best estimate curve lies to the left of the bottom-up-derived ones in light222

blue and green (Jacoby et al., 2012; Petak, 2011). Differences between these223

curves can be explained by differences in input data and techno-economic as-224

sumptions that lead to various TRRs and curve shapes. Nevertheless, they all225

present the features described in the previous paragraph, namely low initial226

costs and a sharp cost increase. Conversely, the top-down curve of Rogner et al.227

(2012) in solid dark blue exhibits a different shape5. Extraction costs start at a228

higher value of 3 US$/GJ and increase stepwise but with a linear trend to about229

5.5 US$/GJ, at which point the reserves of 1860 EJ are completely extracted. It230

is also interesting to look at the data reported in IEA (2013a). The authors of231

this study assumed a recovery factor of 40% of the original gas in place reported232

in Rogner (1997) and associated it with costs ranging from about 3 US$/GJ to233

10 US$/GJ. Interestingly, these extraction costs did not change much from an234

earlier study IEA (2009). They are in stark contrast with the 5-10% estimates235

5The resource part of the curve, in dashed dark blue, correspond to quantities assumed to
become available before 2050. The underlying processes yielding this increase remain unclear
and so, we discard it in this analysis.
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reported in Sandrea (2012). In this analysis, 65% of shale gas resources can be236

economically recovered at 6 US$/GJ but this value we decreases to 19% at 3237

US$/GJ. Clearly, the heterogeneity of shale gas deposits is not reflected in the238

outcomes of these top-down studies which could lead to a misrepresentation of239

extraction costs, as well as larger TRR estimates.240

241

As expected technological change induces a shift rightward and downward of242

the CECFs. Nonetheless the differences observed in the previous paragraph243

between bottom-up and top-down studies are still present. Our best estimate244

becomes cheaper than the CECF in Petak (2011) for the first 600 EJ but still245

exhibits a steep cost increase after it. The CECF that accounts for technologi-246

cal change in Rogner et al. (2012) still misses cheap deposits and the steep cost247

increase because of the small number of categories.248

249

As a means of harmonizing the six different results shown in Fig. 2, we nor-250

malize the cumulative extraction cost curves, thereby identifying the fraction251

of assumed TRR that can be economically recovered at a given cost (Fig. 3).252

Differences between all bottom-up curves have faded out to a large extent. Our253

results are more optimistic between 4.5 and 6.5 US$/GJ but our middle curve254

remains within a distance of 20% from the other two. On the contrary, discrep-255

ancies between bottom-up and top-down curves are emphasized on this figure.256

The linear assumption and small number of categories in the top-down study257

is clearly at odds with the exponential increase in bottom-up studies. The two258

curves accounting for technological change are close to each other for production259

costs ranging between 3-6 US$/GJ but the top-down curve does not account for260

the cheap deposits and the steep cost increase.261

262

Given the relatively robust shape of bottom-up curves, we further perform a263

regression on our curve with a 3rd order polynomial in order to facilitate the264

estimation of ERR and the use of the CECF in future studies. (Details are given265

in the supplementary online material) Not only can this equation be employed266
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Figure 2: US shale gas cumulative extraction cost curves from bottom-up and top-down
studies. The uncertainty range is displayed in light color. The hashed area in the background
indicates the range of extraction costs and TRR reported in IEA (2009). This TRR results
from assuming a 40% recovery factor on the original gas in place provided by Rogner (1997).
TRR from bottom-up studies are indicated with a colored triangle at the top of the plot.
Wellhead price range over the period 2000-2012 is indicated on the right side. The lower
and upper ticks indicate the minimum and maximum prices whereas the inner tick and dot
indicate the median and the mean, respectively. Note that the curve from Petak (2011)
originally produced for North America was scaled down to match the US TRR given in the
same study. TC stands for Technological Change

to estimate the fraction of TRR that is economically recoverable at a given cost267

but it also allows the calculation of the amounts of economically recoverable re-268

source by multiplying the resulting fraction by a chosen technically recoverable269

resource value.270

3.2. Sensitivity analysis of the normalized CECF271

To test the sensitivity of our model to variations of input parameters, we272

vary best estimates across all shale plays by +/- 20%. This method allows us273

to identify which individual input parameters as well as combinations of input274

parameters are key in explaining changes in LCOG. It is important to recall that275

this sensitivity analysis only applies to LCOG since EUR is an input parameter276

12



Production costs [US$/GJ]

Figure 3: Economically recoverable fraction of TRR. Same as for Fig. 2.

in our framework. Changes in LCOG are defined as the ratio between LCOGs277

resulting from a change in input parameters and LCOGs resulting from the best-278

estimate case. These changes are summarised in box plots and shown on Figure279

4. Regarding individual parameters, it turns out that EUR, IC and OMC have280

the largest effects on LCOG, though they mostly remain below +/- 20%. As for281

combinations of input parameters, the effect of economic parameters is larger282

than 20% and dominates over that of Arps parameters. Nonetheless combining283

all input parameter sensitivities result in LCOG changes ranging between -20%284

and +80%, far greater than the effects of economic parameters alone. It is also285

important to note that these effects vary along the CECF as indicated by the286

box plots. In particular, the effect of OMC is reduced at higher costs. Given287

the relatively small effect of b, D0 and T , the results suggest that q0 has a large288

impact on LCOG.289
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Figure 4: Sensitivity analysis of the normalized CECF. Economic parameters are in italic
letters whereas non-economic parameters are in bold letters. The effect of single parameters
is shown in the left panel. Combinations of parameters are displayed on the right panel.

3.3. Global shale gas extraction costs290

Since shale gas activities outside the US are still in their infancy, detailed291

techno-economic data are not yet publicly available. As an alternative, one may292

gain insights at the global scale by scaling up the US shale gas CECF using293

global TRR estimates. Global TRRs have been estimated and recently com-294

piled by Pearson et al. (2012) and McGlade et al. (2013). In the present study295

we complete this dataset with other recent estimates from Rogner et al. (2012)296

and EIA (2013b). We compute a best estimate of about 6500 EJ and lower and297

upper estimates of about 2600 EJ and 12100 EJ, respectively (Details on these298

calculations can be found in the supplementary online material).299

300

In this last result section, we apply the previously computed normalized US301

curve to TRR estimates to obtain a global cumulative extraction cost curve. To302

make this extrapolation a bit more realistic, we apply a 50% cost mark-up to303
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Figure 5: Global shale gas cumulative extraction cost curves, TRR and ERR for the (a) best
as well as (b) lower and upper global TRR estimates. Grey-shaded areas represent techno-
economic uncertainties. ERRs are given for 3 cost thresholds highlighted in red on the vertical
axis.

investment costs in order to reflect the less favourable infrastructure, market304

conditions and regulations in non-US regions (Deutsche Bank, 2011; Pearson305

et al., 2012). The on-going development of shale gas extraction in regions out-306

side the US will provide a clearer picture in the future but as for now we have to307

resort to such methods to derive first order information and assess the related308

uncertainty.309

310

We compute global CECFs for the best, lower and upper TRR estimates and311

assume that differences in these estimates can be primarily explained by dif-312

ferences in EURs. More precisely we assume that an increase or a decrease313

in EURs lead to a respective increase or decrease in global TRR as in EIA314

(2012, 2013a). Since similar relationships cannot be established between EUR315

and other parameters (See methodological section), we cluster the remaining316

techno-economic parameters and analyse their effect on CECFs by defining 3317
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parameter combinations best, lower and upper cases that span the range of318

possibilities (See online supplementary online material). In addition, for each319

of the three global CECFs, we provide estimates of economic recoverability6 at320

three different cost thresholds that pertain to the range of US wellhead prices321

between 2000 and 20127: 3, 6, and 9US$/GJ. To sum up, we perform an ex-322

tensive sensitivity analysis of economic recoverability along three dimensions:323

TRR and EUR, techno-economic parameters and costs.324

325

Let us first focus on the global CECF corresponding to the best TRR esti-326

mate and indicated by a red line on Figure 5(a). The associated economic327

recoverability is shown in the lower panel. At 6 US$/GJ, 39% of the TRR328

is economically recoverable which contrasts with the entire shale gas reserves329

that can be extracted in Rogner et al. (2012). The large uncertainties in input330

techno-economic data (grey area) change the recoverability at a cost of US$6/GJ331

to 2% and 82% in the lower and upper cases respectively, highlighting the need332

for better reporting of these parameters. Sensitivity to costs is also substantial.333

At 3 US$/GJ economic recoverability decreases to 5% whereas at 9 US$/GJ it334

increases to 66%, emphasizing the large impact of future gas prices on economic335

recovery.336

337

When the TRR and EUR uncertainty is accounted for economic recoverabil-338

ity is further impacted (Fig. 5(b)). One may first notice the important gap of339

about 10 ZJ between the blue and green curves that correspond to the lower340

and upper TRR and EUR cases. This reflects the lack of knowledge about shale341

gas plays inside and outside the US. The two curves exhibit the same insights342

gathered in the best TRR and EUR case. An additional interesting result is343

the decreasing incremental quantity available from moving from 3 US$/GJ to344

6defined as ERR/TRR
7Wellhead price throughout the 1980s and 1990s was about $2. This was followed by a

large upward swing from 2000-2007 and then a downward trend. http://www.eia.gov/dnav/

ng/hist/n9190us3a.htm
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6 US$/GJ and from 6 US$/GJ to 9 US$/GJ. This diminishing returns effect is345

the result of the shape of the CECFs.346

347

It is interesting to put these estimates into perspective. On the one hand, Henry348

Hub natural gas prices are currently around 4 US$/GJ and are projected to in-349

crease in the future (EIA, 2014). On the other hand, the US had produced about350

50 EJ of shale gas by the end of 2013 (EIA, 2014). These facts invalidate some351

of the CECFS. In particular those resting from lower techno-economic estimates352

and especially in the lower TRR & 0.5xEUR case. It is however worthwhile to353

note that all best techno-economic estimates at 6 US$/GJ which range between354

300 EJ and 6800 EJ are in agreement with current shale gas production.355

4. Conclusion356

In this study, we developed a method based on publicly available data that357

enables us to compute cumulative extraction cost curves of shale gas, derive358

economic recoverability and identify key uncertainties. We offer this method359

in the form of a computing tool8 and also provide 3rd order polynomial fitting360

curves that can be applied to estimates of technically recoverable resources to361

quickly approximate shale gas extraction costs. Our results are found to be in362

good agreement with previous bottom-up studies and highlight the importance363

of accounting for the heterogeneity of shale gas deposits in estimating extraction364

costs. Crucially, our results show that extraction costs are likely not adequately365

represented in previously published top-down studies. More importantly we366

identified initial production, iunvestment costs, and operation and maintenance367

costs as key parameters driving differences in estimates of the levelized costs of368

gas. It is also interesting to note that Arps parameters describing gas flow over369

time have a lesser impact on overall costs than economic ones (e.g. investment370

costs, operation and maintenance costs, and discount rate).371

372

8Please send an e-mail to hilaire@pik-potsdam.de
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For the US, we calculated that about 400 EJ or two thirds of technically recover-373

able resources could be economically recovered at a cost of 6 US$/GJ in the best374

estimate case. This estimate decreases dramatically to 100 EJ at 3 US$/GJ,375

a result that is still in agreement with current production. At the global level376

and at 6 US$/GJ, we obtain economically recoverable resources ranging be-377

tween 300 EJ and 6800 EJ in the case of best techno-economic estimates. It378

is worthwhile to note that the extrapolation of detailed US data to the global379

level, even when including a +50% mark-up on investment costs, cannot fully380

account for the different techno-economic characteristics of other regions. As381

drilling activity starts to take place outside the US and new data will become382

available, estimates could be refined.383

384

Since data availability is an important factor that determines the outcome of385

such analysis, it is necessary to address its scarcity to refine estimates in the386

future. Although the results from this analysis can only be as accurate as the387

information and the assumptions upon which it draws, they suggest that anal-388

yses at the global level and over the 21st century using estimates reported in389

top-down studies could overestimate the future of gas production. This could390

have important repercussions on both climate change mitigation strategies and391

energy security and access.392
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Modified Arps equation 

In this section we show how we derive the numerator of the modified Arps equation. 
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Data, input parameters and assumptions 

In this section, we provide further information about data used and assumptions made in our 

methodology. All data, algorithms and code are available from the authors upon request.  The 

equations presented in our study are repeated here:  

 '( � ) *%,-� *%��� *.� (1) 
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Technically recoverable resources (TRR) 

TRR can be calculated over different geographical areas and is mainly reported for countries. For 

instance US estimates range between 509 EJ and 1863 EJ (see Table 1). The best-estimate taken in 



this study result from the sum of all shale plays TRR reported in ARI (2011) and USGS (2012) (see 

attached dataset). 

Table 1 US shale gas TRR estimates 

Study US TRR (EJ) 

Petak, 2010 1472 

EIA, 2011 791 

Medlock et al, 2011 672 

Petak, 2011 1743 

BGR, 2012 888 

EIA, 2012 509 

Rogner et al, 2012 1863 

Jacoby et al, 2012 691 

EIA, 2013 573 

EIA, 2014 611 

This study (best-estimate) 582 

 

For the whole world, Pearson et al (2012) and McGlade et al (2013) compiled the most recent 

estimates. We further complete their dataset with estimates from Rogner et al (2012) and ARI 

(2013) (see Table 2). 

 

  



Table 2 Global shale gas TRR 

 
Technically Recoverable 

Resources (EJ) 
 

World regions and 

countries 
Low Best High Sources 

Africa (sub-saharan)* 
411 457 512 McGlade et al (2013), Rogner et al (2012) and 

ARI (2013) 

Australia 
149 341 461 McGlade et al (2013), Rogner et al (2012) and 

ARI (2013) 

Canada 
133 412 1047 McGlade et al (2013), Rogner et al (2012) and 

ARI (2013) 

China 
241 917 1336 McGlade et al (2013), Rogner et al (2012) and 

ARI (2013) 

Central and South 

America** 

149 1183 2084 McGlade et al (2013), Rogner et al (2012) and 

ARI (2013) 

Eastern Europe 
159 193 228 Pearson et al (2012), Rogner et al (2012) and 

ARI (2013) 

Former Soviet Union 
429 1034 2235 McGlade et al (2013), Rogner et al (2012) and 

ARI (2013) 

India 
67 81 101 McGlade et al (2013), Rogner et al (2012) and 

ARI (2013) 

Middle East and North 

Africa 
104 665 1062 McGlade et al (2013), Rogner et al (2012) and 

ARI (2013) 

Other developing Asia 
48 271 818 McGlade et al (2013), Rogner et al (2012) and 

ARI (2013) 

USA 
511 582 1863 McGlade et al (2013), Rogner et al (2012) and 

ARI (2013) 

Western Europe 
224 316 429 Pearson et al (2012), Rogner et al (2012) and 

ARI (2013) 

TOTAL 
2624 6454 12175 

 

* In McGlade et al (2013), Africa included North Africa which was also accounted in Middle East. This 

is why we discard this estimate. 

** In this study, Mexico belongs to the Central and South America region. 

The estimate taken from Rogner et al (2012) includes 20% of gas in place that are deemed to 

become recoverable by 2050. 

All estimates provided in this section are in exajoules (EJ) and have been converted (when required) 

by using the unit conversion table in Rogner et al (2012) (Table 7.3, page 437). 

  



Africa (sub-saharan) 

Study Sources Low Best High Comment 

McGlade et al 

(2013) 
ARI (2011)  512   

Rogner et al 

(2012) 
Several  448 671 

we include the East African region 

(EAF), the Western African region 

(WCA) and the South African 

region (SAF) 

ARI (2013)   411  
“Reduced area due to igneous 

intrusions.“ 

This study 

ARI (2011), 

Rogner et al 

(2012), ARI 

(2013) 

411 457 512  

 

We calculate the Best estimate as the mean of Rogner et al (2012), McGlade et al (2013) and ARI 

(2013). We also take as High estimate the value reported by McGlade et al (2013) and take the value 

of ARI (2013) as Low estimate. Compared to McGlade et al (2013), we do not include Algeria, Lybia, 

Tunisia and Morocco in this region because they are already considered in the reference used to 

assess the Middle East region. 

Australia 

Study Sources Low Best High Comment 

McGlade et al 

(2013) 
ARI (2011)  414   

Rogner et al 

(2012) 
Several  149 224 

The region contains also New 

Zealand 

ARI (2013)   461   

This study 
ARI (2011), 

ARI (2013) 
149 341 461  

 

We calculate the Best estimate as the mean of Rogner et al (2012), McGlade et al (2013) and ARI 

(2013). We also take the value in Rogner et al (2012) as Low estimate and we take the value of ARI 

(2013) as High estimate.  

Canada 

Study Sources Low Best High Comment 

McGlade et al 

(2013) 
Several 133 444 1047  

Rogner et al 

(2012) 
Several  186 261  

ARI (2013)   605  “7 basins vs. 12 basins” 

This study 

ARI (2011),  

Rogner et al 

(2012), ARI 

(2013) 

133 412 1047  

 



We calculate the Best estimate as the mean of Rogner et al (2012), McGlade et al (2013) and ARI 

(2013). We keep the Low and High estimates as defined in McGlade et al (2013). 

China 

Study Sources Low Best High Comment 

McGlade et al 

(2013) 
Several 241 659 1336  

Rogner et al 

(2012) 
Several  75 112  

ARI (2013)   1176  
“Better data; higher TOC 

criterion” 

This study 

ARI (2011), 

Rogner et al 

(2012), ARI 

(2013) 

241 917 1336 

We discard Rogner (2012) 

estimates which do not 

reflect results from recent 

assessments. 

 

We calculate the Best estimate as the mean of McGlade et al (2013) and ARI (2013). We exclude the 

estimate from Rogner et al (2012) which appears as an outlier. We keep the Low and High estimates 

defined by McGlade et al (2013). 

Central and South America 

Study Sources Low Best High Comment 

McGlade et al 

(2013) 
Several  1317  

Contains the Central and South 

America region and Mexico 

Rogner et al 

(2012) 
Several  149 224  

ARI (2013)   2084  

Argentina. “Improved dry and wet 

gas areal definitions.” 

Brazil: “New dedicated chapter” 

Venezuela: “Included associated 

gas; better data.” 

Mexico: “Better data on areal 

extent.” 

This study 

ARI (2011), 

Rogner et al 

(2012), ARI 

(2013) 

149 1183 2084  

 

We calculate the Best estimate as the mean of McGlade et al (2013), Rogner et al (2012) and ARI 

(2013). We use the value in Rogner et al (2012) as Low estimate. We defined as High estimates the 

value reported in ARI (2013). For consistency with Rogner et al (2012) we include Mexico in the 

region “Central and South America”. 

Eastern Europe 

Study Sources Low Best High Comment 

Pearson et al 

(2012) 
Several  159   

Rogner et al 

(2012) 
Several  224 336  

ARI (2013)   228  Poland: “Higher TOC criterion, 



better data on Ro.” 

This study 

Pearson et al 

(2012), 

Rogner et al 

(2012), ARI 

(2013) 

159 193 228  

 

We calculate the Best estimate as the mean of Pearson et al (2012), Rogner et al (2012) and ARI 

(2013). We take the estimate from ARI (2013) as High estimate and that from Pearson et al (2012) as 

Low estimate. 

Former Soviet Union 

Study Sources Low Best High Comment 

McGlade et al 

(2013) 
Several  429   

Rogner et al 

(2012) 
Several  2235 3315  

ARI (2013)   438  
Russia: “New dedicated chapter.” 

Ukraine: “Added  major basin in 

Ukraine.” 

This study 

McGlade et al 

(2013), 

Rogner et al 

(2012), ARI 

(2013) 

429 1034 2235  

 

We calculate the Best estimate as a mean of McGlade et al (2013), Rogner et al (2012) and ARI 

(2013). We take the estimate from Rogner et al (2012) as High estimate and that from McGlade et al 

(2013) as Low estimate. 

India 

Study Sources Low Best High Comment 

McGlade et al 

(2013) 
Several  67   

Rogner et al 

(2012) 
Several  75 112  

ARI (2013)   101   

This study 

McGlade et al 

(2013), 

Rogner et al 

(2012), ARI 

(2013) 

67 81 101  

 

We calculate the Best estimate as a mean of McGlade et al (2013), Rogner et al (2012) and ARI 

(2013). We take the estimate from McGlade et al (2013) as High estimate and that from ARI (2013) 

as Low estimate. 

 



Middle East and North Africa 

Study Sources Low Best High Comment 

McGlade et al 

(2013) 
Several 104  1062  

Rogner et al 

(2012) 
Several  298 447 

Contained the North African 

region (NAF) and the Middle East 

region (MEE) 

ARI (2013)   1033  

Algeria: “1 basin vs. 7 basins.” 

Lybia: “Higher TOC criterion; 

moved area to oil. ” 

Egypt: “New dedicated chapter” 

This study 

McGlade et al 

(2013), 

Rogner et al 

(2012), ARI 

(2013) 

104 665 1062  

 

We define as Best estimate the mean of Rogner et al (2012), McGlade et al (2013) (midpoint of the 

low and high estimates) and ARI (2013). For the Low and High estimates we keep those of McGlade 

et al (2013) as Low estimate.  

Other developing Asia 

Study Sources Low Best High Comment 

McGlade et al 

(2013) 
Several 48  818  

Rogner et al 

(2012) 
Several  374 560 

Contains the region Other East 

Asia (OEA), Other South Asia 

(OSA) and Pacific (PAS) 

ARI (2013)   169   

This study 

McGlade et al 

(2013), 

Rogner et al 

(2012), ARI 

(2013) 

48 271 818  

 

We calculate the Best estimate as the mean of Rogner et al (2012) and ARI (2013). For the Low and 

High estimates we keep those in McGlade et al (2013).  

USA 

Study Sources Low Best High Comment 

McGlade et al 

(2013) 
Several 511 714 1766  

Rogner et al 

(2012) 
Several  1863 2683  

EIA (2014)   645   

This study 

McGlade et al 

(2013), 

Rogner et al 

(2012), EIA 

(2014) 

511 582 1863  



 

We take as Best estimate the best-estimate calculated in our study. For the Low estimate we take 

the one from McGlade et al (2013) whereas for the High estimate we take that reported by Rogner 

et al (2012). 

Western Europe 

Study Sources Low Best High Comment 

Pearson et al 

(2012) 
Several  429   

Rogner et al 

(2012) 
Several  224 336  

ARI (2013)   295   

This study see Table 1 224 316 429  

 

We take as Best estimate the mean of Rogner et al (2012), Pearson et al (2012) and ARI (2013). For 

the Low estimates we take the one in Rogner et al (2012) while for the High estimate we take the 

one in Pearson et al (2012).  

 

Area (A), Percentage of Potential Area (%Pot), Percentage of Untested Area 

(%Unt) 

In this study these estimates are taken from the most recent estimates reported in EIA (2013). 

 

Well drainage, well spacing and well density (WD) 

Over a given play the number of potential wells (NPW) is usually computed by multiplying the area 

of the play with well density and factor accounting for potential interest in the play. 

Data has been collected from EIA studies (EIA 2011, EIA, 2012, EIA, 2013) and the resulting NPW is 

shown in Table 3 for the major US shale plays. 

Table 3 Number of Potential Wells in the main US shale gas plays 

NPW Barnett Eagle Ford Fayetteville Haynesville Marcellus Woodford 

EIA, 2011 31211 4451 15844 21151 252531 7621 

EIA, 2012  21285 10181 24627 90216 5428 

EIA, 2013 37126 31860 10927 18895 91400 5568 

 

Estimated ultimate recovery (EUR) 

We rely extensively on a comprehensive and publically available EUR dataset reported by USGS 

(2012) as well as data from EIA (2011). Both reports provide EUR distributions across plays. For most 

shale gas play across the US, truncated log-normal EUR distributions are provided. Other 

publications mention only averaged EUR (Nome and Johnston 2008, Jacoby et al 2012, EIA 2012, EIA, 

2013). We extend this dataset by using updated data from EIA (2013). A compilation of EUR means 

are displayed in Table 4 for the main shale plays. 



It is interesting to note the decrease in average EUR per well between the EIA studies in 2011, 2012, 

2013 and 2014.  

 
Table 4 Estimated Ultimate Recovery in the main US shale gas plays 

EUR (Bcf/well) Barnett Eagle 

Ford 

Fayetteville Haynesville Marcellus Woodford 

Nome and 

Johnston, 2008 

4.3 (2.4) - 2.3 7.0 3.3 4.5 

Baihly et al, 2011 3.0 3.8 1.4 5.9 - 1.7 

EIA, 2011 1.6 (1.2) 5.5 West: 1.15 

Central: 2.25 

6.5 (1.5) 3.5 (1.15) 4.0 

EIA, 2012 - 2.36 1.3 2.67 1.56 2.89 

Sandrea, 2012 1.3 - 1.1 3.0 1.2 3.0 

USGS, 2012 0.334 - 1 1.104 West: 0.47 

Central. 1.104 

2.617 0.129 - 

1.158 

0.785 – 

1.233 

EIA, 2013 1.59 1.95 West: 0.93 

Central: 2.16 

4.16 0.13 – 2.07 2.87 

EIA, 2014 Core: 1.615 

Rest: 0.192 

- 0.627  

0.212 – 

1.786 

West: 0.843 

Central: 1.444  

3.138 – 

3.709 

0.257 – 

1.589 

1.422 

 

Initial decline rate (D0) 

The Society of Petroleum Engineers identifies initial decline rates of shale wells to range between 

30%/yr and 80%/yr or more (SPE 2011). They do not specify however well technology.  Jacoby et al 

(2012) states that “shale wells do show high early decline rates, in some cases by 60–80% in the first 

year”. This statement is further confirmed by values reported in Nome and Johnston (2008) and EIA 

(2011) (see Table 5).  

Swindell (2012) looked at more than 1000 horizontal wells in the Eagle Ford play and he calculated 

an averaged normalized decline rate of 60%/yr for shale gas wells with values ranging between 

51%/yr and 85%/yr. 

In this study we assume initial decline rates to range between 50%/yr and 85%/yr with a best 

estimate of 70%/yr. 

 

 

Table 5 Initial decline rate in the main US shale gas plays 

D0 (%/yr) Barnett Fayetteville Haynesville Marcellus Woodford 

Nome and 

Johnston, 2008 

68 (65) 62 80 65 66 

EIA, 2011 70 - 82 75 - 

 

 



Hyperbolic exponent (b) 

The hyperbolic exponent has been subject to much criticism since its value affects EUR and so TRR. 

Using large b values may indeed lead to an overestimation of TRR. 

The Society of Petroleum Engineers defines in its guidelines that an appropriate value for b could 

range between 0 and 1.5 (SPE 2011). A study of 1957 wells in the major US shale plays (Barnett, 

Fayetteville, Haynesville, Eagle Ford and Woodford) indicates that values above 1 may be 

appropriate in some cases (Baihly et al 2010). 

In the case of the Barnett play, a study focusing on about 8700 wells showed that b values range 

between 1.3 and 1.6 with a mean values of 1.5 (Fan et al 2011).  

In this study, we take a best estimate of 1.1 and lower and upper estimates of 0.5 and 1.5 

respectively for all plays except the Barnett where we use the values reported by Fan et al (2011). 

Estimates in the major US shale gas plays are reported in Table 6. 

 

Table 6 Hyperbolic factor in the main US shale gas plays 

b Barnett Eagle Ford Fayetteville Haynesville Woodford 

Baihly et al., 2011 1.6 1.7 0.6 1.2 0.8 

 

Investment costs (IC) 

Investment costs were compiled from presentations to investors and annual reports (see Table 7). 

We found information for 13 plays out of the 19 plays listed in the EIA report. When data were 

missing we used a value of $MM 5. Moreover we assume that well costs range between $MM 3 and 

$MM 10. 

In addition, Pearson et al (2012) reports that “drilling cost reduction in the order of 30-60% are 

judged feasible”. No estimate could be found regarding potential increases in drilling costs. We 

assume here a maximum cost increase of 50%. 

Table 7 Investment costs in the main US shale gas plays 

IC (million US$) Barnett Fayetteville Haynesville Marcellus Woodford 

Nome and 

Johnston, 2008 
3.10 3.20 7.00 3.75 6.70 

Baihly et al., 

2011 
3.00 2.80 8.00 - 6.70 

EIA, 2011 2.00 – 3.00 1.75 – 3.05 6.00 – 7.00 3.00 – 4.00 4.60 – 8.00 

Sandrea, 2012 3.5 2.8 9.5 6.0 7.00 

This study 3.28 2.67 8.00 5.20 7.15 

 

Operation and Maintenance costs (OMC) 

Data on operation and maintenance costs are relatively scarce. Nome and Johnston (2008) and 

Baihly et al (2011) report them for the major US shale plays (Barnett, Eagle Ford, Fayetteville, 



Haynesville, Marcellus and Woodford). These vary between 0.70 $/mcf and 2.50 $/mcf (see Table 9). 

We assume here a best estimate of 1.35 $/mcf based on the averaged costs across these 6 plays.   

Table 5 Operation and maintenance costs in the main US shale gas plays 

OMC ($/mcf) Barnett Eagle Ford Fayetteville Haynesville Marcellus Woodford 

Nome and 

Johnston, 

2008 

1.85 - 1.30 1.50 0.90 1.25 

Baihly et al., 

2011 

0.70 1.50 1.10 2.50 - 1.15 

This study 1.28 1.50 1.20 2.00 0.90 1.20 

 

Discount rate (r) 

USGS usually employs a 12% annual discount rate for the oil and gas extracting industry (Attanasi 

and Freeman 2010, 2011). Other authors rely often on the concept of internal rate of return or 

return on investment which range between 10% and 20% or more (Almadani 2010, Jacoby et al 

2012, Medlock et al 2012, Duman 2012)  

Here we assume 12% to be the best estimate and 10% and 15% to be the lower and upper estimates 

respectively.  

 

Well’s lifetime (T) 

This parameter is highly uncertain since the history of shale gas production is too recent and 

different for each shale play. In addition it is not often reported in studies. In the JRC report, a 

calculation was done assuming a 30-year lifetime in the Barnett shale play (Pearson et al 2012). 

Baihly et al (2011) reported EUR with a 30-year lifetime. Duman (2012) used a 10-year and 20-year 

time frames in the Marcellus shale play. 

In addition, a couple of 10-year type curves displayed in ARI (2011) indicate that up to 80% of the gas 

is extracted after 10 years.  

More recently, Browning et al (2013) showed that well lifetime varies significantly across the Barnett 

shale play with tier-averaged values ranging between 2 and 25 years. 

Here we assume a value of 2 years for the lower estimate and 30 years for the upper estimate. Our 

best estimate is 10 years. We use these assumptions for all plays except the Barnett where we use 

the range of values from Browning et al (2013).  

Sensitivity analysis 
The Barnett shale play is the cradle of birth of the US shale gas boom. This shale play has the longest 

data record. We perform a sensitivity analysis in two steps, first on the techno-economic parameters 

related to the modified Arps equation and next on the rest of the parameters (LCOG equation). 



Sensitivity to modified Arps parameters 

A sensitivity study on the parameters reveals that taking smaller values for b or T (or increasing D0) 

would move the function the black curve on Figure 2 downwards and would likely improve the 

matching between these two distributions. Interestingly, the hyperbolic exponent b does not seem 

to have a large influence. An explanation for this is simply that the implied well lifetime of 7.5 years 

is quite small and so is the range of b values (1.3 and 1.6). An additional point of interest is that the 

curve becomes increasingly non-linear with increasing and decreasing parameter values. This feature 

would likely modify the standard deviation of the computed distribution. Overall, these results 

suggest that either the EUR distribution provided by EIA (2011) could be based on a different set of 

data or those data limitations that oblige us to keep b, D0 and T constant for a given EUR leads to 

biased results. Another explanation could also be that it is still too early to calculate robust b values 

and that b values smaller than the current minimum of 1.3 should be used instead. The lack of data 

leads to significant uncertainties that prevent us from being conclusive on this point.  

It is interesting to look at differences between q0 distributions. The distribution of initial production 

rates in the Barnett over the period 2005 to 2009 was reported in Jacoby et al (2012) and is 

displayed in orange in the background of Figure 2. We then compute a q0 distribution by taking the 

inverse of equation (3). As expected, the resulting distribution is overall in good agreement with the 

observations thanks to the calibration process. It is however skewed to the left and misses out the 

very high initial production rates contained in the fat tail, as well as the very low initial production 

rates. 

 

 

Figure 1 Sensitivity analysis of decline curve analysis in the Barnett play. The two light blue histograms represent the 

probability density of q0 and EUR as computed by the tool in the best case. The orange histogram displays the observed 



IP rates as reported by Jacoby et al (2012). The black line represents the best case whereas the dashed lines represent 

the lower and upper bound of the range of values reported in the literature for D0 (red), b (green) and T (blue). The 

purple curves and areas correspond to extreme cases in which all parameters were switched to their lower or upper 

estimates. The black triangles on panels (a) and (b) indicate the data points provided in EIA (2011). 

 

Sensitivity to LCOG  parameters 

We then perform a sensitivity analysis on these economic parameters (Figure 3). As expected, an 

increase in IC and/or OMC shifts the curve upwards (green and yellow curves). A counter-intuitive 

result is the increasing extraction costs resulting from increasing well lifetimes. This unexpected 

behavior is driven by the fact that in our fitting technique, an increase of the parameter T requires a 

decrease of gas flow rates in order to match the prescribed EUR. Although this feature may appear 

unrealistic, it simply explains the fact that extraction is continued somewhat longer in case of higher 

gas prices (which in this framework equal LCOGs). Finally, the purple area represents the overall 

uncertainty range when all parameters are moved to their extremes. It is worthwhile to note that 

the variation of the discount rate is negligible because the decline rate of gas flow is much higher 

than the assumed discount rates. 

 

Figure 2 Sensitivity analysis of the LCOG formula. The histogram in light blue color represents the EUR distribution from 

EIA (2011). The black curve represents the best-estimate LCOG output from the tool. Uncertainty ranges for IC, OMC, r 

and T parameters are depicted in green, yellow, red and blue respectively. The uncertainty range corresponding to a 

change in all economic parameters is displayed in grey whereas that combining geophysical and economic parameters is 

shown in violet. The black triangles indicate the data points provided in EIA (2011). 



CECF regressions 
As mentioned in the main text we fit 3

rd
-order polynomials to our CECFs in order to facilitate the 

utilization of our curves. This regression takes the following form: 

;�<=> � ?� � ?�� � ?@�@ � ?A�A 

where ;�<=> is the normalized TRR and C is the LCOG (see Fig. 3 in the main text). 

Case ?� ?� ?@ ?A 

Best-estimate -4.45e-1 2.88e-1 -2.20e-2 5.90e-4 

Lower estimate -1.29e-1 4.32e-1 -7.87e-3 4.65e-4 

Upper estimate -4.60e-1 3.58e-1 -3.12e-2 9.26e-4 

 

Unit conversion 
1 cubic feet of natural gas = 1.055 MJ (Rogner et al 2012) 

1 cubic feet of natural gas = 35.31 cubic meter of gas (Rogner et al 2012) 

 

Glossary 

Model parameters and variables 

Acronym Stands for… Description 

b Hyperbolic factor Factor used in the modified Arps equation (2). 

D0 Initial decline rate Factor used in the modified Arps equation (2). 

CECF Cumulative Extraction 

Cost Function 

Mathematical function that relates cumulative extraction to 

marginal extraction costs in a given region. 

ERR Economic Recoverable 

Resources 

Same as TRR but account for economic factors. (in this 

study we do not include the effect of tax and royalties) 

EUR Estimated Ultimate 

Recovery 

The expected amount of resources to be produced from a 

single well. Used in equation (2). 

LCOG Levelized Cost Of Gas Unit cost of producing one unit of energy including all costs 

over the well lifetime. Result of equation (3). 

TRR Technically Recoverable 

Resources 

The amount of resources that can be produced over an area 

(e.g. shale play) with currently existing technologies, 

discarding any economic factor. Result of equation (4) 

IC investment costs In this study investment costs are represented by average 

well costs. Used in equation (3). 

OMC Operation and 

Maintenance costs 

In this study operation and maintenance costs include field 

operating costs and transportation costs. Used in equation 

(3). 

r Discount rate Used in equation (3). 

A Area Shale play area. Used in equation (1). 

WD Well Density Used in equation (1). 

%Pot Percentage of Potential 

area 

Used in equation (1). 



%Unt Percentage of Untested 

area 

Used in equation (1). 

Institutions 

Acronym Stands for… 

EIA Energy Information Administration 

USGS United States Geological Survey 

IEA International Energy Agency 
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Appendix A: Investment Costs estimates 
The list of documents reviewed to estimate investment costs is given below. 

1. EIA[2011] - ReviewOfEmergingResources.pdf 

2. AnadarkoPetroleumCorp - [11-2012] - 111312APC_BOA Appendix.pdf 

3. ConchoResources - [11-2012] - November Investor Presentation VFinal2.pdf (slide 14) 

4. ClimarexEnergy - [11-2012] - BAML Global Energy Conf Miami.pdf 

5. DevonEnergy - [2011] - DVN_2011AR_Full.pdf (own calculations from p. 14, p. 92) 

6. Abraxas - [11-2012] - Presentation Stephens 11-6-12 v2.pdf 

7. Baytex - [11-2012] - November Corporate Handout - Nov 15.pdf 

8. Continental Resources - [11-2012] - 1pm 3Q12 Investor Presentation as of 11 9 12.pdf 



9. GMX Resources - [10-2012] - Johnson+Rice+2012.pdf 

10. Halcon - [10-2012] - Halcon Elephant Rollout_vFINAL6.pdf 

11. Chesapeake Energy Corp. - [2012] - Annual_Report_2011.pdf 

12. http://info.drillinginfo.com/urb/barnett/uncategorized/2012/07/barnett-showing-some-gray-

yet-still-providing-opportunity/ 

13. http://info.drillinginfo.com/urb/barnett/uncategorized/2012/02/whats-the-scoop-in-the-

barnett-combo-play/ 

14. EOG Resources - [2013-01] - InvPres_010713.pdf 

15. XTO Energy - [2009-06] - casey_patterson.pdf 

16. GMX Resources - [12-2012] - CapitalOne+Southcoast+Conference_FINAL__.pdf 

17. http://info.drillinginfo.com/urb/eagleford/operators/2012/02/eog-talks-eagle-ford-ups-

reserves-discusses-best-practices/ 

18. http://info.drillinginfo.com/urb/eagleford/operators/2011/11/recent-ep-thoughts-cop-

newfield-hess/ 

19. http://info.drillinginfo.com/urb/eagleford/files/2011/10/Slide3.png 

20. http://info.drillinginfo.com/urb/eagleford/operators/2011/07/a-dissection-of-the-newfield-

eagle-ford-program-seismic-science-and-rising-costs/ 

21. http://info.drillinginfo.com/urb/eagleford/operators/2011/07/swift-energy-finds-and-oil-sweet-

spot-increases-lateral-lengths/ 

22. http://info.drillinginfo.com/urb/eagleford/operators/2011/06/forest-oil-gives-insight-into-

eastern-eagle-ford-oil/ 

23. http://info.drillinginfo.com/urb/eagleford/operators/2011/02/rosetta-resources-details-

production-stream-breakout/ 

24. http://info.drillinginfo.com/urb/eagleford/operators/2010/08/quick-look-at-maverick-basin-

eagle-ford-operators-anadarko-and-newfield/ 

25. http://info.drillinginfo.com/urb/eagleford/operators/2010/03/geosouthern-petrohawk-and-

black-hawk-in-dewitt-county/ 

26. Carrizo Oil&Gas Inc. - [11-2012] - Stephens, Inc. 2012 Fall Investment Conference.pdf 

27. ZaZA - [12-2012] - ZaZa Investor Presentation to Capital One Southcoast 2012 Energy 

Conference.pdf 

28. Halcon - [08-2012] - EnerCom_Halcon_vFINAL2.pdf 

29. http://info.drillinginfo.com/urb/granitewash/operators/2011/03/forest-oil-continues-to-be-a-

top-performer-in-the-granite-wash/ 

30. http://info.drillinginfo.com/urb/granitewash/operators/2010/08/linn-energy-holds-2q2010-

conference-call-excited-about-tx-and-ok-granite-wash/ 

31. http://info.drillinginfo.com/urb/haynesville/operators/2011/08/some-operator-notes-eca-gmxr-

qep/ 

32. http://info.drillinginfo.com/urb/haynesville/operators/2011/03/tx-haynesville-snapshot/ 

33. http://info.drillinginfo.com/urb/haynesville/operators/2011/01/to-scale-back-and-to-choke-

back-that-is-the-haynesville-question/ 

34. http://info.drillinginfo.com/urb/haynesville/operators/2010/05/comstock-lease-positions-and-

quarterly-earnings-call/ 

35. GoodrichPetroleum - [11-2012] - 2012_Nov07_RaymondJames.pdf 

36. AnadarkoPetroleumCorp - [11-2012] - 111312APC_BOA Appendix.pdf 
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