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Two-level atom in an optical parametric oscillator: Spectra of transmitted and fluorescent fields in
the weak-driving-field limit

J. P. Clemens,1 P. R. Rice,1 P. K. Rungta,1 and R. J. Brecha2
1Department of Physics, Miami University, Oxford, Ohio 45056

2Department of Physics, University of Dayton, Dayton, Ohio 45469
~Received 28 July 1999; revised manuscript received 3 March 2000; published 8 August 2000!

We consider the interaction of a two-level atom inside an optical parametric oscillator. In the weak-driving-
field limit, we essentially have an atom-cavity system driven by the occasional pair of correlated photons, or
weakly squeezed light. We find that we may have holes, or dips, in the spectrum of the fluorescent and
transmitted light. This occurs even in the strong-coupling limit when we find holes in the vacuum-Rabi
doublet. Also, spectra with a subnatural linewidth may occur. These effects disappear for larger driving fields,
unlike the spectral narrowing obtained in resonance fluorescence in a squeezed vacuum; here it is important
that the squeezing parameterN tends to zero so that the system interacts with only one correlated pair of
photons at a time. We show that a previous explanation for spectral narrowing and spectral holes for incoherent
scattering is not applicable in the present case, and propose an alternative explanation. We attribute these
anomalous effects to quantum interference in the two-photon scattering of the system.

PACS number~s!: 42.50.Lc, 42.50.Dv, 42.50.Ct

I. INTRODUCTION

In recent years, squeezed light sources have become
available in the laboratory and attention has turned to their
interaction with optical systems. In particular, much attention
has been directed at modifying the radiative properties of an
atom via interaction with squeezed light. Examples include
the seminal work of Gardiner@1#, who showed that the decay
rate of the atomic polarization quadratures was phase-
dependent. Carmichael, Lane, and Walls@2# ~hereafter re-
ferred to as CLW! considered resonance fluorescence when
the atom is immersed in squeezed vacuum. They predicted
that for weak driving fields, independent of the relative phase
between the driving field and the squeezed vacuum, the in-
coherent spectrum would narrow as the amouunt of squeez-
ing was increased. In the limit of strong squeezing, the inco-
herent spectrum is a very narrow peak on top of a very broad
background, essentially ad function. For stronger driving
fields, the central peak of the Mollow spectrum could be
broadened or narrowed, depending on the relative phase be-
tween the strong driving field and the squeezed vacuum. The
photon number distributionP(n) has been calculated by Ja-
gatap and Lawande@3#, showing phase-sensitive behavior
for strong fields.

It was realized early on that experiments would probably
require some sort of cavity system, as it is impractical to
squeeze all of the vacuum modes that interact with an atom.
Several theoretical calculations having to do with squeezing
only some of the vacuum modes have been presented. Sav-
age@4# has calculated that for large Jaynes-Cummings cou-
pling g and strong excitation, the width of the Rabi sidebands
could be narrowed, but not below the natural linewidth. In a
cavity of moderateQ, Courty and Reynaud@5# found that
one of the Rabi sidebands could be suppressed for the proper
detuning, essentially turning off spontaneous emission from
one of the dressed states. Kennedy@6# has found similar
behavior in the many-atom case. Rice and Pedrotti@7# have

considered an extension of the work of CLW, again for an
atom in a cavity of moderateQ. They found that it was
possible to squeeze away the cavity enhancement part of the
linewidth, but that to obtain measurably subnatural line-
widths, the fraction of 4p sr for the cavity mode subtends
must be significant. This system has also been considered by
Cirac @8#, who investigated both the fluorescent spectrum
and the steady-state population inversion, as discussed by
Savage and Lindberg@9#. For very strong driving fields and
finite-bandwidth squeezed light centered on the Rabi side-
bands, Parkins@10# and Cirac and Sanchez-Soto@11# have
found narrowing of one of the Rabi sidebands. Parkinset al.
@12# have calculated the fluorescent spectrum of a strongly
coupled atom-cavity system, where the driving field is tuned
to resonance with the one-photon dressed-state resonance
and have predicted narrowing. One notable example of a
calculation in which the atom interacts with only one mode
that is squeezed is the work of Vyas and Singh@13#, who
considered resonance fluorescence in the weak-field limit
when the coherent driving field was replaced by the squeezed
output of an optical parametric oscillator.

It was then suggested by Jin and Xiao@14,15# that the
atom could be placed inside the source of the squeezing.
They considered phase/intensity bistability in the case of a
two-level atom inside an optical parametric oscillator~OPO!.
Further, they considered the spectrum of squeezing and in-
coherent spectra for that system. It was decided that it would
be fruitful to examine this system in the weak driving field
limit. Agarwal @16# had previously considered the two-level
atom in an OPO, with a strong driving field incident directly
on the atoms, from the side of the cavity. He considered the
strong driving limit when the external field dressed the at-
oms, and found modifications of the Mollow triplet in that
case. Our work is limited to the weak-field limit, and is
closely related to that of Smyth and Swain@17#, who have
found anomalous spectra in optical systems driven by
squeezed light. They have considered the cases of broadband
and narrowband squeezing and both cavity and free-space
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systems. They have found some of their most interesting
results in the weak-field limit. Our results are similar in na-
ture to those but differ in the details. Further, we provide an
illuminating argument why the effects are most prominent in
the weak-field limit.

Experimental work in this area has been pioneered by
Turchetteet al. @18#, who drove an atom-cavity system with
squeezed light and observed phase-dependent spectra, and
the recent work by Luet al. @19#, who have observed the
effects of squeezing directly in such phase-dependent spec-
tra. For an overview of the interaction of squeezed light with
atoms, we refer the reader to two recent reviews by Parkins
@20# and Daltonet al. @21#.

In Sec. II we examine the physical system under consid-
eration. The transmitted spectrum is calculated and discussed
in Sec. III. The spectrum of the fluorescent light is consid-
ered in Sec. IV. In Sec. V we consider the physical explana-
tion of the anomalous spectra we see, and we conclude in
Sec. VI.

II. PHYSICAL SYSTEM

We consider a single two-level atom inside an optical
cavity, which also contains a material with ax (2) nonlinear-
ity. The atom and cavity are assumed to be resonant atv and
the system is driven by light at 2v. The system is shown in
Fig. 1. The interaction of this driving field with the nonlinear
material produces light at the subharmonicv. This light con-
sists of correlated pairs of photons, or quadrature squeezed
light. In the limit of weak driving fields, these correlated
pairs are created in the cavity and eventually two photons
leave the cavity through the end mirror or as fluorescence out
the side before the next pair is generated. Hence we may
view the system as an atom-cavity system driven by the oc-
casional pair of correlated photons. In the language of
squeezed light, we are interested in the limitN→0. As N is
increased, the effects we consider here vanish. We wish to
understand these effects in terms of photon correlations
rather than the usual effects of quadrature squeezed light,
where typically the largest nonclassical effects are seen in
the large-N limit. The system is described by a master equa-
tion in Lindblad form,

ṙ52 i\@H,r#1Ldissr[Lr, ~1!

where the system Hamiltonian is

H5 i\F~a†2
2a2!1 i\g~a†s22as1!1\v~a†a1 1

2 sz!.
~2!

Here,g5m(v0 /\e0V)1/2 is the usual Jaynes-Cummings
atom-field coupling in the rotating wave and dipole approxi-
mations. The cavity-mode volume isV, and the atomic di-
pole matrix element connecting ground and excited states is
md . The effective two-photon driving fieldF is proportional
to the intensityI in(2v0) of a driving field at twice the reso-
nant frequency of the atom~and resonant cavity! and thex (2)

of the nonlinear crystal in the cavity, as

F52 ik inS F
p DA«0VT

\v
eifx (2)I in~2v!. ~3!

The cavity finesse isF, and T and f are the intensity
transmission coefficient and phase change at the input mir-
ror. We also havek in5cT/L as the cavity field loss rate
through the input mirror. The transmission of the input mir-
ror is taken to be vanishingly small, with a largeI in(2v0) so
thatF is finite. Hence we effectively consider a single-ended
cavity. The dissipative Liouvillian describing loss due to the
leaky end mirror and spontaneous emission out the side of
the cavity is

Ldissr5
g

2
~2s2rs12s1s2r2rs1s2!

1k~2ara†2a†ar2ra†a!. ~4!

Here g is the spontaneous-emission rate to all modes
other than the privileged cavity mode, hereafter referred to as
the vacuum modes. The field decay rate of the cavity at the
output mirror isk. As we are working in the weak driving
field limit, we only consider states of the system with up to
two quanta, i.e.,

u02&, u01&, u12&, u11&, u22&. ~5!

Here, the first index corresponds to the excitation of the field
(n5number of quanta! and the second index denotes the
number of energy quanta in the atoms~1 for ground state
and 2 for excited state!. In this basis set we have the fol-
lowing equations for density-matrix elements:

ṙ0,2;0,25gr0,1;0,112kr1,2;1,222A2Fr0,2;2,2 , ~6a!

ṙ0,1;0,152gr0,1;0,112kr1,1;1,122gr0,1;1,2 , ~6b!

ṙ1,2;1,25gr1,1;1,122kr1,2;1,214kr2,2;2,212gr0,1;1,2 ,
~6c!

ṙ1,1;1,152~g12k!r1,1;1,122A2gr1,1;2,2 , ~6d!

ṙ2,2;2,2524kr2,2;2,212A2Fr0,2;2,212A2gr1,1;2,2 ,
~6e!

FIG. 1. A schematic of the physical system under consideration.
We have a single two-level atom in a resonant cavity.F(2v) is a
classical driving field at twice the resonant frequency. The nonlin-
ear crystal has a second-order susceptibilityx (2). g is the atom-field
coupling, k is the field decay rate through the right-hand mirror,
andg is the spontaneous-emission rate to noncavity modes.
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ṙ0,2;1,152~g/21k!r0,2;1,12A2gr0,2;2,22A2Fr1,1;2,2 ,
~6f!

ṙ0,2;2,2522kr0,2;2,212A2F~r0,2;0,22r2,2;2,2!

1A2gr0,2;1,11A2Fr1,1;2,2, ~6g!

ṙ0,1;1,252~g/21k!r0,1;1,22g~r1,2;1,22r0,1;0,1!

12A2kr1,1;2,2 , ~6h!

ṙ1,1;2,252~g/213k!r1,1;2,21A2Fr0,2;1,1

2A2g~r2,2;2,22r1,1;1,1!. ~6i!

The other density-matrix elements are not driven by the
external field and couple only to themselves, hence if they
are initially zero, they remain zero for all time. In the weak-
field limit, one might expect that the population of the
ground state is of order unity. With this in mind, examine
Eq. ~6g!. Here we see that by takingr0,2;0,2'1 and
r0,2;0,2@r2,2;2,2 , we have

ṙ0,2;2,2522kr0,2;2,212A2F1A2gr0,2;1,1

1A2Fr1,1;2,2 . ~7!

Here we see thatr0,2;2,2 is driven by a term of orderF.
This leads us to propose ther0,2;1,1 andr0,2;2,2 scale asF
in the weak-field limit. Carrying this process out in a self-
consistent matter, we arrive at the scalings

r0,2;0,2'1, ~8a!

r0,1;0,1'F2, ~8b!

r1,2;1,2'F2, ~8c!

r1,1;1,1'F2, ~8d!

r2,2;2,2'F2, ~8e!

r0,2;1,1'F, ~8f!

r0,2;2,2'F, ~8g!

r0,1;1,2'F2, ~8h!

r1,1;2,2'F2. ~8i!

These scalings make sense physically, asr2,2;2,2 is a popu-
lation driven byF in the Hamiltonian and is then propor-
tional to F2 to first order. The Jaynes-Cummings couplingg
then couplesr2,2;2,2 to r1,1;1,1 , so both two-photon state
populations scale asF2. Spontaneous emission and cavity
decay are then responsible for coupling the two-photon states
to the one-photon states, makingr0,1;0,1 and r1,2;1,2 of
order F2. The coherencesr0,2;2,2 and r0,2;1,1 are driven
directly byF. Finally the coherencer1,1;2,2 is driven by the

population of the two-photon states, and hence is propor-
tional toF2. Keeping terms to lowest order inF, the relevant
equations become

ṙ0,2;0,250, ~9a!

ṙ0,1;0,152gr0,1;0,112kr1,1;1,122gr0,1;1,2 , ~9b!

ṙ1,2;1,25gr1,1;1,122kr1,2;1,214kr2,2;2,212gr0,1;1,2 ,
~9c!

ṙ1,1;1,152~g12k!r1,1;1,122A2gr1,1;2,2 , ~9d!

ṙ2,2;2,2524kr2,2;2,21A2Fr0,2;2,212A2gr1,1;2,2,
~9e!

ṙ0,2;1,152~g/21k!r0,2;1,12A2gr0,2;2,22A2Fr1,1;2,2 ,
~9f!

ṙ0,2;2,2522kr0,2;2,21A2F1A2gr0,2;1,1 , ~9g!

ṙ0,1;1,252~g/21k!r0,1;1,22g~r1,2;1,22r0,1;0,1!

12A2kr1,1;2,2 , ~9h!

ṙ1,1;2,252~g/213k!r1,1;2,21A2Fr0,2;1,1

2A2g~r2,2;2,22r1,1;1,1!. ~9i!

In what follows, these equations are numerically solved for
the steady-state density-matrix elements of the system. We
note here that^a&ss5r0,2;1,21r1,2;2,250, but ^a†a&ss
5r1,2;1,21r1,1;1,112r2,2;2,2'F2. These results hold in
the weak-field limit, but the mean intracavity field is also
zero for arbitrary driving field states.

III. OPTICAL SPECTRUM
OF THE TRANSMITTED LIGHT

We now turn our attention to a calculation of the spectrum
of squeezing and to the incoherent spectrum; we consider
both transmitted and fluorescent light fields. For the transmit-
ted spectrum, in a rotating frame such thatv50 corresponds
to the simultaneous cavity and atomic resonances, we have

I tr~v!5E
2`

`

dt eiv t^a†~0! a ~t!&

52 ReE
0

`

dt eiv t^a†~0! a ~t!&

52p^a&sŝ a†&ssd~v!

12 ReE
0

`

dt eiv t^Da†~0! Da ~t!&. ~10!

The first term is due to elastic scattering and is zero here,
as^a&ss50, and Re denotes the real part. The second term is
the incoherent, or inelastic spectrum, and is due to two pho-
ton scattering events. For an optical system driven atv by a

TWO-LEVEL ATOM IN AN OPTICAL PARAMETRIC . . . PHYSICAL REVIEW A 62 033802

033802-3



field of strengthE, the coherent spectrum is usually propor-
tional to the driving intensityE2 and the incoherent spectrum
is proportional to the square of the intensity orE4. Here,
however, the external classical driving field produces pairs of
photons via thex (2) nonlinearity of the intracavity crystal.
Thus there are no single-photon scattering events and no
coherent scattering spike, and the height of the incoherent
spectrum depends linearly onI in(2v0)}F2.

By the quantum regression theorem we have

^a†~0! a ~t!&5tr$a~0! A~t!%

5(
i ,n

An11 ^ i ,n11 u A~t! u i ,n&, ~11!

where A(0)5rSSa† and Ȧ5LA. The resulting equations
can be written in the form

dAW

dt
5MJ AW ~12!

with

AW 51
A0,2;0,1

A0,2;1.2

A1,2;0,2

A1,1;0,1

A2,2;1,2

A0,1;0,2

A1,1;1,2

A2,2;01

2 ~13!

with the notationAn,6;m,6[^n,6uAum,6& and initial con-
ditions

An,6;m,6~0!5^n,6ua†rssum,6&5An^n21,6urssum,6&.
~14!

The matrixM is given as

M51
2g/2 2g 0 0 0 0 0 0

g 2k 0 0 0 0 0 0

0 A2F 2k g 2A2k g 0 0

0 0 0 2~g1k! 0 0 2g 2A2g

0 0 0 0 23k 0 A2g g

0 0 2g 0 0 2g/2 2k 0

0 0 0 g 2A2g 0 2~g/212k! 0

A2F 0 0 A2g 2g 0 0 2~g/212k!

2 . ~15!

After taking the Fourier transform of the above equations,
we have

ÃW ~v!5$MJ 2 iv IJ%21AW ~0! ~16!

with ÃW (v) composed of the Fourier transform ofAW (t) and
then we can easily form the spectrum

I tr~v!5(
i ,n

An11 ^ i ,n11 u ReÃ~v! u i ,n&. ~17!

We will also be interested in the spectrum of squeezing,
defined as

S~v,u!5E
2`

`

dt cosvt Re@^Da†~t!Da~0!&

1e2iu^Da†~t!Da†~0!&#. ~18!

Adding two spectra of squeezing, with phase anglesu and
u1p/2, we obtain the following relationship between the
incoherent spectrum and the spectrum of squeezing@22#:

I inc~v!}@S~v,u!1S~v,u1p/2!#. ~19!

For fields whose fluctuations can be described by a classical
stochastic process, bothS(v,u) and S(v,u1p/2) must be
positive. As noted above, for a squeezed quantum field, one
of these spectra is negative over some range of frequencies,
for appropriate choice of the phaseu. To calculate the sec-
ond term in Eq.~18! we must use the quantum regression
theorem for

^Da†~0!Da† ~t!&5tr$a†~0! B~t!%

5(
i ,n

An ^ i ,n21 u B~t! u i ,n&, ~20!

whereB(0)5rSSa† and Ḃ5LB and the nonzero elements
of interest are
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BW 51
B0,2;0,1

B0,2;1.2

B1,1;0,1

B2,2;1,2

B1,1;1,2

B2,2;01

B0,1;0,2

B1.2;0,2

2 . ~21!

The relevant equations are

dBW

dt
5MJ BW . ~22!

The second term dominates, and is proportional toF. The
spectrum of squeezing that is plotted isS(v,0). The spec-
trum of squeezing for the quadraturep/2 out of phase,
S(v,p/2), is equal and opposite in sign to orderF. In the
system under consideration here we find that

S~v,u!52S~v,u1p/2!. ~23!

To first order inF, these two contributions to the incoherent
spectrum cancel, but they differ in terms of orderF2. This
means that the incoherent spectrum is formed by the subtrac-
tion of two quantities in the presence of squeezing.

We now turn to results for the incoherent spectrum. In
Figs. 2–4, we plot the incoherent spectrum fork/g510.0
and various values of atom-field couplingg. In all the fig-
ures, the solid line is the incoherent spectrum and the dotted
line is the spectrum of squeezing for the quadrature in phase

with the driving field. In Fig. 2, forg/g50.1, the spectrum is
essentially the square of a Lorentzian of linewidthk(1
12g2/kg). The linewidth of the spectrum is approximately
0.64k(112g2/kg). In Fig. 3, we see a sequence of plots.
For g/g50.3, a hole appears in the spectrum, which deepens
with further increases ing. As g/g is increased to 3.0, a
small bump appears inside the hole. Increasingg/g to 5.0
leads to the bump inside the hole increasing in size. Asg/g
is increased tog/g510.0, the spectrum appears to have a
double dip in it. These dips appear nearv56g. We note
that this is not a hole due to absorption of energy emitted out
the side of the cavity, as it persists in the limitg→0. Not
only do the holes persist for smallg, I inc(v50.0)50.0 if
g50.0. As one increasesg/g to 50.0, a double-peaked struc-

FIG. 2. Spectrum of the transmitted light fork/g510.0 and
g/g50.1. The dotted line is the spectrum of squeezing for the in-
phase quadrature.

FIG. 3. Spectrum of the transmitted light fork/g510.0 and~a!
g/g50.3, ~b! g/g53.0, ~c! g/g55.0, ~d! g/g510.0. The dimen-
sionlessy axis is deleted for clarity.
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ture appears as in vacuum-Rabi splitting, as shown in Fig. 4.
Each vacuum-Rabi peak has a hole in it, however. These
holes are deepened if we decreaseg relative to k and g.
Again this points out that these holes are not just due to
fluorescence out of the side of the cavity, as the depth of the
holes are maximized forg50.0. In the good-cavity limit,
k/g!1, we find for smallg/g a subnatural width single-
peaked spectrum~Fig. 5!, which evolves into a vacuum-Rabi
doublet with no holes for largeg/g ~Fig. 6!. Hence in the
good-cavity limit, the anomalous effects disappear.

IV. OPTICAL SPECTRUM
OF THE FLUORESCENT LIGHT

In this section, we consider the incoherent part of the
fluorescent spectrum, given by

I fl~v!5E
2`

`

dt eiv t^s1~0! s2 ~t!&

52 ReE
0

`

dt eiv t^s1~0! s2 ~t!&

52p^s1&sŝ s2&ssd~v!

12 ReE
0

`

dt eiv t^Ds1~0! Ds2 ~t!&. ~24!

Again here there is no coherent or elastic scattering lead-
ing to ad-function component of the spectrum at resonance.

By the quantum regression theorem we have

^s1 s2 ~t!&5tr$s2~0! C~t!%5(
n

^1,n u C~t! u2,n&,

~25!

whereC(0)5rSSs1 and Ċ5LA. Hence we can write the
incoherent spectrum as

FIG. 4. Spectrum of the transmitted light fork/g510.0 and
g/g550.0.

FIG. 5. Spectrum of the transmitted light fork/g50.1 and
g/g50.1. The dotted line is the spectrum of squeezing for the in-
phase quadrature.

FIG. 6. Spectrum of the transmitted light fork/g50.1 and
g/g520.0. The dotted line is the spectrum of squeezing for the
in-phase quadrature.

CLEMENS, RICE, RUNGTA, AND BRECHA PHYSICAL REVIEW A62 033802

033802-6



I fl~v!5(
i ,n

An11 ^ i ,n11 u ReÃ~v! u i ,n&. ~26!

The resulting equations can be written in the form

dCW

dt
5MJ CW ~27!

with

CW 51
C0,2;0,1

C0,2;1.2

C0,1;0,2

C1,1;1,2

C1,2;0,2

C1,1;0,1

C2,2;1,2

C2,2;01

2 ~28!

with the notationCn,6;m,6[^n,6uCum,6& and initial con-
ditions

Cn,2;m,6~0!5^n,6us1rssum,6&5^n,1urssum,6&,
~29!

Cn,1;m,650. ~30!

After taking the Fourier transform of the above equations,
we have

C̃W ~v!5$MJ 2 iv IJ%21CW ~0! ~31!

with C̃W (v) composed of the Fourier transform ofCW (t) and
then we can easily form the fluorescent spectrum

S~v!5(
n

^1,nuReC̃~v! u2,n&. ~32!

As before, we will be interested in the spectrum of
squeezing of the fluorescent light,

Sfl~v,u!5E
2`

`

dt cosvt Re@^Ds1~t!Ds2~0!&

1e2iu^Ds1~t!Ds1~0!&#. ~33!

To calculate the second term in the above equation, we
must use the quantum regression theorem for

^Ds1~0!Ds1 ~t!&5tr$s1~0! D~t!%

5(
n

^1,n u D~t! u2,n&, ~34!

whereD(0)5rSSs1 andḊ5LD and the nonzero elements
of interest are

DW 51
D0,2;0,1

D0,2;1.2

D1,1;0,1

D2,2;1,2

D1,1;1,2

D2,2;01

D0,1;0,2

D1.2;0,2

2 . ~35!

The relevant equations are

dDW

dt
5MJ DW . ~36!

In the case of the fluorescent light, in the bad-cavity limit
(k/g@1), we have a single-peaked structure with no holes
for g/g!1, as in Fig. 7~a!. Keepingk/g@1 and withg/g
@1, we have a vacuum-Rabi doublet with no holes as in Fig.
7~b!. So for the flourescent light there are no anomalous
effects in the spectra in the bad-cavity limit. In Fig. 7~c!, we
let k/g!1, and there are no holes forg/g!1. Fork/g!1,
and withg/g@1, we see a vacuum-Rabi doublet with holes
in Fig. 7~d!. The holes are deepened as one goes further into
the good-cavity limit, andI inc(v50.0)50.0 fork50.0. So it
is in the good-cavity limit that we see anomalous effects in
the spectra for the fluorescent light from this system. Recall
that it was the bad-cavity limit that admitted anomalous be-
havior for the transmitted light.

V. PHYSICAL INTERPRETATION

So far we have seen incoherent spectra with a subnatural
linewidth and also ones with spectral holes. Similar types of
spectra have been predicted for a single two-level atom in a
microcavity driven by a weak external field resonant with the
atom and the cavity@22#. That is essentially the system we
consider in the present paper, but without thex (2) crystal,
and driven atv0 and not 2v0. In that case the spectrum of
squeezing was proportional toE2, whereE is the strength of
the driving field atv0 and the incoherent spectrum is pro-
portional toE4. In particular, in the bad-cavity limit of the
previous system, wherek@g,g, it was found there that the
incoherent spectrum of the transmitted light was a Lorentz-
ian squared. The Lorentzian had a linewidth ofd5g(1
12g2/kg), which is the cavity-enhanced spontaneous-
emission rate. As the spectrum is the square of that Lorent-
zian, the linewidth is aboutDv'0.64d. This result is also
obtained for the incoherent spectrum of a driven two-level
atom in free space, i.e., resonance fluorescence. There, for
weak driving fieldsd5g and a subnatural linewidth results
from the squared Lorentzian, as first noted by Mollow@23#.
For that same system in the strong-coupling limit, forg
@k,g a vacuum-Rabi doublet was found, each peak being a
squared Lorentzian withd5(2k1g)/2. In the good-cavity
limit of that driven atom-cavity system,k!g!g, a single-
peaked structure with a hole appeared as the incoherent spec-
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trum. Again the depth of that hole reached zero asg→0 and
so does not represent a loss of photons at line center due to
absorption and emission out the side. These phenomena were
referred to as squeezing-induced linewidth narrowing~SILN!
and squeezing-induced spectral holes~SISH!. Recall that the
incoherent spectrum is the sum of two squeezing spectrap/2
out of phase with one another. In the case of resonance fluo-
rescence, the two spectra of squeezing were both single-

peaked functions, and were equal and opposite to orderE2.
Keeping terms to orderE4, we found there that the two spec-
tra of squeezing were both Lorentzians, but one was negative
~indicating squeezing! and the other positive. Hence the
Lorentzian squared was formed from the subtraction of two
Lorentzians, one with a linewidth ofg/2 from which is sub-
tracted one with a larger width. Spectral holes were shown in
@22# to arise in a similar manner, when the incoherent spec-

FIG. 7. ~a! Spectrum of the fluorescent light fork/g510.0 andg/g53.0. The dotted line is the spectrum of squeezing~scaled down by
a factor of 10) for the in-phase quadrature.~b! Spectrum of the fluorescent light fork/g510.0 andg/g550.0. The dotted line is the
spectrum of squeezing~scaled down by a factor of 10) for the in-phase quadrature.~c! Spectrum of the fluorescent light fork/g50.1 and
g/g50.3. The dotted line is the spectrum of squeezing~scaled down by a factor of 10) for the in-phase quadrature.~d! Spectrum of the
fluorescent light fork/g50.1 andg/g510.0. The dotted line is the spectrum of squeezing~scaled down by a factor of 10) for the in-phase
quadrature.
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trum is the subtraction of two Lorentzian-like structures
which are equal at line center but differ in the wings. These
holes are only nonclassical if the two squeezing spectra are
single-peaked structures, as discussed in@22#.

As the subtraction results from one of the spectra of
squeezing being negative, indicating fluctuations in that
quadrature below the vacuum noise level, it was inferred that
these narrowings and holes result from the fact that the light
emitted in the incoherent spectrum is squeezed. At the time,
theoretical investigations had shown that shining squeezed
light on an optical system could reduce the effective line-
width of spontaneous emission from that system by altering
the vacuum fluctuations to which the unstable excited state is
coupled. So it was proposed that the narrowings/holes seen
in the incoherent spectra resulted from the fact that the ra-
diation reaction force on the optical system was squeezed
instead of the vacuum fluctuations. The amount of squeezing
is vanishingly small in the weak-field limit, and in retrospect
it seems odd that a vanishingly small amount of squeezing
could result in a 33% reduction in linewidth. Further, the
effects of spectral holes and narrowings go away as the driv-
ing field strength is increased and the amount of squeezing
increases. Another example of this is the optical parametric
oscillator ~OPO!. The output spectrum of that device is a
Lorentzian squared for weak pumping fields, withd5k. The
OPO produces a vanishingly small amount of squeezing in
that limit. It is a good source of squeezed light at higher
pump fields, with large amounts of squeezing produced just
below the oscillation threshold. But the linewidth is not nar-
row in that instance. From Figs. 2–4, we see that in the
system under consideration here the physics is probably
more complicated. The spectra of squeezing are complex
structures that do not yield themselves to the type of inter-
pretation suggested in@22#.

We now consider another possible mechanism for holes
and narrowing to appear in incoherent spectra. Recall that
the incoherent spectrum results from a nonlinear scattering
process involving two or more photons. The effect is most
evident for weak driving fields, where two photons are emit-
ted from thex (2) crystal and interact with the atom-cavity
system. After several cavity and/or spontaneous-emission
lifetimes, the interaction is completed by the emission of two
photons. This can happen via emission of two photons into
the cavity mode, one into the cavity mode and one out the
side of the cavity, or both out the side of the cavity. In the
weak-field limit F!g, k, and g, the next pair of photons
from the nonlinear crystal arises long after the previous two-
photon scattering process is completed. The two emitted
photons are highly correlated, as their frequencies must sat-
isfy energy conservationv11v252v0, which requires that
the two photons be emitted at frequenciesv06dv. The
emitted photons momenta must similarly satisfy conserva-
tion of momentum askW11kW252kW0. Single-photon scattering
events lead to thed-function component of the spectrum, the
elastic, or coherent scattering. There is no contribution to
that in our system, but there may be in other nonlinear opti-
cal systems. So the thought occurs that perhaps the root
cause of the anomalous effects~holes and narrowings! is due
to quantum interference between various indistinguishable

emission pathways, akin to similar effects in absorption~e.g.,
electromagnetically induced transparency! and spontaneous
emission from a given initial unstable state.

In the case of resonance fluorescence, it has recently been
shown@24# that the Lorentzian squared results from quantum
interference as the probability to obtain a photon in modek
can be written~in the weak-field limit! as

ucku25U(
k8

cb1k1k81(
k8

cb1k81kU2

. ~37!

FIG. 8. ~a! Conditioned mean intracavity photon number for
g/g51.0, k/g510.0, andF/g50.1. ~b! Conditioned mean intrac-
avity photon number forg/g540.0, k/g510.0, andF/g51.0.
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The first termcb1k is the probability amplitude for scattering
one photon into modek, the coherent scattering. This piece
gives rise to ad function, the so-called coherent spike, to the
spectrum. The other two terms are two-photon scattering
terms, where a pair of photons has been scattered, one into
modek and one into modek8. There are two ways for the
two-photon scattering to happen. Thek photon may come
before or after thek8 photon, as represented bycb1k1k8 and
cb1k81k . If these two probability amplitudes are nonzero over
an overlapping range ofk8 modes, then there is a cross term
that results in Eq.~37!. We propose that this mechanism is
also responsible for the anomalous spectra observed in the
case of the two-level atom inside a weakly driven optical
parametric oscillator, and indeed for all weakly driven non-
linear optical systems.

It is instructive to look at quantum trajectories for this
system. In this case we describe the system by a conditioned
wave function, a non-Hermitian Hamiltonian, and associated
collapse processes. These are given by

ucc~ t !&5 (
n50

`

ag,n~ t !e2 iEg,ntug,n&1ae,n~ t !e2 iEe,ntue,n&,

~38!

HD52 ika†a12 ig/2s11 i\F~a†2
2a2!

1 i\g~a†s22as1!, ~39!

where we also have collapse operatorsCcav5Aka and
Cspon. em.5Ag/2s2 .

In Fig. 8~a!, we plot ^ccondua†auccond& as a function of
time, in a case whereg!k. The system is in steady state,
and then a photon emission occurs out the front of the cavity.
The conditioned photon number rises to unity@25#. This is
because we know that photons are created in pairs in this
system, and detection of one outside the cavity means that
one must remain. We know that the first photon detected is at
v01dv and that the photon that remains inside the cavity is
of frequencyv02dv. However, we are unsure what the
value ofdv is. In particular, isdv greater than or less than
zero? In other words, is the first emission event the photon
that falls to the right or left of the resonant frequency in the
incoherent spectra? It is this indistinguishability that leads to
the spectra we present. We should expect different results for
the fluorescent spectrum in this case. Wheng!k, it is most
likely that the two photons will exit the system through the
cavity mirror. Occasionally, one leaves via the cavity mirror
and one is emitted out the side of the cavity. Even more rare
in this limit is two photons scattered out the side of the
cavity. There is no narrowing or hole in the fluorescent spec-
trum. This is because there is no quantum interference in this
case. The photon detected in fluorescence is most probably
associated with another photon emitted out the cavity mirror.
These photons are distinguishable in the sense that we know

which direction they have been emitted into, and hence no
interference. We see something similar in the limit whereg
@k, where we see anomalous spectra in fluorescence~where
pairs of photons are most likely emitted! and not in transmis-
sion ~where a transmitted photon is most likely paired with a
fluorescent photon!. This lends credence to our proposal that
quantum interference is responsible for the spectral narrow-
ing and holes.

At higher driving field strengths, there are more terms in
Eq. ~37!, which are added and then squared to get the prob-
ability of obtaining the photon at a givenk. The relative
phase of the complex amplitudes is such that the size of the
cross, or ‘‘interference’’ terms, becomes smaller. If, for ex-
ample, we have two two-photon scattering events within a
cavity lifetime, the two photons detected in the output of the
cavity may or may not have been correlated before they were
scattered. This type of behavior can be seen in Fig. 8~b!,
where we plot^ccondua†auccond& as a function of time for
larger driving fields. This will tend to reduce the size of the
effect. Inasmuch as we are considering a system driven by
very weakly squeezed light, if one drives an optical system
with a weakly squeezed field with no coherent component, or
a weakly squeezed vacuum, similar effects should be ob-
tained. This is indeed the case as shown by the work of
Swain et al. @17#. We then conclude that these types of
anomalous spectra in weakly driven nonlinear optical sys-
tems are indeed due to the type of quantum interference in
the manner of Eq.~37!. We note that Hegerfeldtet al. @26#
have seen interference effects in spectra involving squeezed
light. There, however, the interference was between the
squeezed vacuum field and the fluorescence.

VI. CONCLUSION

We have shown that the transmitted and fluorescent inco-
herent spectra of a two-level atom in a weakly driven optical
parametric oscillator can exhibit spectral holes and spectral
narrowing. These types of phenomena have been predicted
for other nonlinear optical systems, but the previous descrip-
tion of why they occur has been found lacking. We propose
an alternative mechanism for these effects, based on recent
work on resonance fluorescence. Further work on this system
and others should lead to a better understanding of such
anomalous spectra, and indeed the difference between a
spontaneous-emission spectrum for a system prepared in a
particular unstable state and the driven type of spectra that
we consider here.
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