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COUNTABLE POSITIVE SOLUTIONS 

OF A CONJUGATE BOUNDARY V AWE PROBLEM 
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Abstract 

In this paper we consider the conjugate type nonlinear boundary value problem 
(-1)"-ku(nl(t} = /(u(t)), 0 < t < 1, 

{ uUl (0) = 0, i = 0, .... k - 1uUl(l) = 0, j = 0, .... n - k - 1 ' 
where n 2: 2 and k E {1, ... ,n -1}, which under certain growth assumptions on /(u) has countably many positive solutions. The results are based on applications of tee 5.xed point theorems d_ue to Krasnosel'skii and Leggett-Williams.

ANIS (MOS) 1991 Mathematics Subject Classification: 34Bl5 
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1 Introduction 

Let n 2 2 and' k E {l, ... , n - l}. We consider the class of (k, n - k) conjugate BVPs,
(1) 

{ u(il (0): 0, i_: 0, ... , k - 1,uUl(l) - 0, J - 0, ... , n - k - 1. (2) 

Let G(t, s) be the Green's function of u(•l = 0 subject to (2). Define an integral operator, T, asfollows 
Tu(t) = (-1r-• l G(t,s)f(u(s))ds, 0 $ t $1. (3) 

Now, if we establish that (3) has a fixed point in a subset of a certain Banach space, then thiswill imply that there exists a solution of (1), (2). The Green's function, G(t, s), of (1) subject to the (k, n - k) conjugate boundary conditions(2) satisfies (-1)"-•G(t,s) > 0, (t,s) E (0,1) x (0,1). For alls E [0,1], define 
IIG(-, s)II = max,c(o,l)IG(t, s)I-

It was shown in [6], that for each fixed s E (0, 1) and all t E [¼, ¾],
(-1r-•c(t,s) 2 <1IIG(-,s)II, (4) 

where <1 = min{.\-, 401_, }. Moreover, for each fixed s E (0, 1) and all t E [¼, ¾J. and -r E [O, 1],
(-1r-•c(t,s) 2 <1G(r,s). (5) 

More on the above stated and other properties of Green's functions can be found in Eloe andHenderson [6]. Let B be a real Banach space. 
Definition 1 A nonempty, closed set P C B is said to be a cone provided:

{i) au+ {Jv E P for all u, v E P and a, /3 2 0, and

{ii) u, -u E P implies u = 0.
Definition 2 A Banach space B is called a partially ordered Banach space provided there exists 
a partial ordering ::, on B satisfying: 

{i) u ::, v for u, v E B implies tu ::, tv for all t 2 0, and

{ii) u1 ::, v1 and u2 ::, V2 /or ui, u2, vi, V2 E B imply u1 + u2 ::, vi + v,.
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One can point out that there is a convenient characterization of cones in terms of partial 
orderings. Let P C B be a cone and define u :, v if and only if u - v E P. Then :, is a partial 
ordering on B and we will say that :, is the partial ordering induced by P. Moreover, B is a 
partially ordered Banach space with respect to :,. 

Let the following hypotheses on the righthand side of (1), f, be satisfied: 

(Hl) f(u(t)) is not identically equal to zero on any subinterval of [O, l] for all u: [O, l]-+ [O, oo).

(H2) f(u) is a c·ontinuous nonnegative function on [O, oo).

Let B = C[O, l] with norm llull = max,e(o,1] lu(t)I
Define a cone, P • C B, by 

P, = {u(t) E Blu(t)? 0 on [O, l], and mintE(¼,¾l? allull}

Definition 3 An operator Tis completely continuous if Tis continuous and compact. 

Based on property (4) of the Green's function for (1), (2) and the hypotheses (Hl) and (H2), 
one can easily establish that, as defined by (3), T: P.-+ P,. An application of tbe Arzela-Ascoli 
Theorem readily shows that T is a completely continuous operator. Our first two results will 
follow from the following central theorem due to Guo [9] and Krasnosel'skii [11]. 

Theorem 1 Let B be a Banach space, and let P C B be a cone in B. Assume n,, 112 are open 
subsets of B with OE 111 , f!1 C 112 , and let 

T: P n (f!2 \ n,) -+ P 

be a completely continuous operator such that, either 

(i} IITul! S: Jlu//, u E P n 8111, and IITull ? !lull, u E P nan, or 

(ii} !ITu/(? ![ufj, u E P-nOO,, ,md l!Tull s: llull, u E p nan •. 

Then T has a fixed point in P n (fl, \ n, }. 

Recently Erbe and Tang [8) established several mu!tiwlicity,esults for pooitive radial solutions 
of a nonlinear Laplace's equation on an annular domaIDII•. h, µr,;,,ing their results they used the 
abwe theorem. Other recent multiplici�y resu.lts belong to Davis, Ela,, and Henderson [4], 
Eloe, and Henderson [7], Avery [2], Henderson and Thompson [lO], Davis and Henderson {5], 
and Chyan and Henderson [3]. They are based on cone-theoretic methods provided by the 
Leggett- Williams Fixed Point Theorem [12) and cover a broad range of nonlinear boundary 
value problems. Just recently Agarwal, O'Reagan and Wong published a book [l] containing 
many results on applications of fixed point methods to a variety of BVP's. 

In addition to the first two countability results, we also develop an alternative approach 
based on an application of the Leggett-Williams Fixed Point Theorem. To this end, we need to 
introduce more definitions. 
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Definition 4 The map o: is a nonnegative continuowi concave functional on -P provided o:: -P ---;
[O, oo) is continuous and

o:(tu + (1 - t)v) � to:(u) + (I - t)o:(v)
for all x, y E -P and O S t S 1.

Definition 5 Let O < a < b be given and o: be a nonnegative continuous concave functional on
the cone -P. Define the convex sets B, and -P(o:, a, b) by

B, = {u E -P: llull < r}

and
-P(o:,a, b) = {u E 'P: a S o:(u), llull Sb}.

Theorem 2 (Leggett- Williams Fixed Point Theorem} Let T: Be ➔ Be be a completely continu
ous operator and let o: be a nonnegative continuous concave functional on -P such that o:(u) S llull
for all u E Be . Suppose there exist O < a < b < d S c such that
{Cl} {-P(o:, a, b): o:(u) > b} # 0 and o:(Tu) > I, for u E -P(o:, a, b),
(C2} IITull < a for llull Sa, and
(C3} o:(Tu) > b for u E -P(o:, a, b), with IITull > d.
Then T has at least three fixed points u,, u,, and u3 such that llu1 II < a, b < o:( u,), and llu3 II > awith o:( u3) < b. 

2 Main Results 

Theorem 3 Assume that (Hl) and (H2) are satisfied. Assume also that there exist sequences
{a;}�

1 
and {b,}�

1 
such that

B 0;+1 < ub, < b; < Ab; < a, for each, EN, (6) 

where

A= cf.' IIG(·, s)llds)-' (7) 

and

B = (o fi1(-I)"-•a("f;,, s)ds)-1•
• 

(8) 

Let, in addition, f satisfy the following conditions:
{H3} f(u(s)) S Aa; on [O, l] for all u E [0, a;] all i EN,
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{H4) f(u(s))?: Bb, on[¼, ¾J for all u E [ub,, b,) all i EN. 
Then (3) has countably infinitely many fixed points in the cone P •. 
Proof. Note that since A< B, the last inequality in (6) is to simply guarantee the existence of 
a function f(u) satisfying the hypotheses (H3) and (H4). 

Consider the sequence {!1,}1':;1 of open sets in B defined by 

for i EN. 

!12,-1 = {u EB: llull < a,}, 
!12; = {u EB: llull < b;} 

Then_ Hull= a, on 8!12,_1 for each i EN. So,
0 S u(s) Sa, 

on 8!12,_1 n P. for s E [O, 1). Hence, since (H3) is satisfied, by (7) 

IITull = II J.' (-1r-•a(-, s)f(u(s))dsll
s J.' max,e10,11IG(t, s)lf(u(s))ds
< A(J.' IIG(·, s)llds)a,a, 
= llull 

on 8!12,_1 n P. for each i E N.
If u E P. n 8!12,, then 

b, = llull ?: u(s)?: min,e[¼,¾J"(s) ?: ullull = ub; 
for alls E [¼, ¾]- Then, since (H4) is satisfied, with the use of (8) we get 

1 (Tu)(
2
) = 

?: 
= 
= 

on an2, n P. fo� each i EN. 

J.' 1 
0 (-l)"-•a(2 ,s)f(u(s))ds
, 1 h. (-1r-•a(2, s)f(u(s))ds
•

B(i¾ (-1)"-•G( �. s)ds)b,
¼ 2 

b, 
llull 

We have IITull $ llull on im2,-1 n P. and IITull C:: llull on an2, n P. with !12,-l and n2, 
such that !12,_, C 02i-t C !12, for all i E N. Therefore, by Theorem 1, T has a fixed point 
in (!12; \ !12,_1) n P., i E N. that is, T has countably many fixed points in the cone P •. 
Furthermore, llui+1 II < llu,11 for all i EN. The proof is complete. 
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From the above theorem we immediately obtain the following corollary. 

Corollary 1 Under the assumptions of Theorem 3 

\im llu;II = 0. 
H<X> 

Proof. It follows from (6) that <l;+1 < a'a1• So, 

lim a;= 0. 
i-+(X) 

Hence 
_lim llu,11 = 0.
H<X> 

Theorem 3 and Corollary 1 establish the existence of countably many positive solutions of 
(1), (2) such that the sequence of their norms is monotone decreasing and converges to zero. In 
order to obtain a monotone increasing (in norm) sequence of positive solutions we just need to 
modify slightly our condition (6). At this point we present our next theorem. 

Theorem 4 Assume that that (HI) and (H2) are satisfied. Assume also that there exist se
quences {a;}f;:;1 

and {b,},;;, such that 

B 
a; < ab, < b, < 

A
b, < a;+i, (9) 

where A and Bare given by (7) and (8), respectively. Let, in addition, f satisfy (H3) and (H4). 
Then (3) has countably many infinitely fized points u; in the cone P •. Moreover, llui+dl > 

llu,11 for all i EN and limi➔,,, llu,11 = oo.

Proof. The proof is almost identical to that of Theorem 3 except the part employing condition 
(9). The last assertion is fulfilled simply because b; > a-•a, for all i E N (which is a trivial 
consequence of (9)). 

Remark 1: Note that a function f satisfying the hypotheses of Theorem 4 is unbounded by 
construction, while a bounded function f can be selected to fulfill the assumptions of Theorem 
3. 

Remark 2: In the situation of Theorem 3, the limit point of a sequence of solutions { u,}<=
1

, 

u(t) = 0, is also a solution of (1), (2). Now define a new cone P by 

P = {u EB:u(t)?: 0, 05tS l}. 

As before, the operator T preserves the cone P. We can now prove prove the following 
theorem. 

Theorem 5 Assume that (HI) and (H2) are satisfied. Let there exist sequences {a;}i=1 , {b,}i= 1 , 
and { c;}i=1 such that 

_limc;=0
H<X> 

and 

B
Ci+1 < a; < b, < 

A
b, < ac; for each i EN (10) 

Let, in addition, the function f satisfy the following hypothesis: 
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(H5} f(u) < A.a, on [O, a;],

(H6) f(u) > Cb, on [b,, ¼b.J, and 
(H7} f(u) < Ac, on [O, c,], where A is given by (7) and 

3 

C = (a min ('(-1)"-•G(t,s)dsJ-1• tE[O,l} }¾ 
{11) 

Then the boundary value problem (1), {2) has three infinite families of positive solutions { uiJ<: i , 
{u,,.};:;1 , and {u,J;:;1 satisfying IJu,,11 < a;, b; < a(u2,), and IJu,,IJ > a;, b, > a(u,,). 
Proof. Observe that {9) makes the use of {H5)-{H7) consistent. As in Definition 5, consider for 
eachiEN 

,. 

B., = {u E1':l!ull <a,}

and 
Be;= {u E 1': IJull < c,}. 

Repeating the argument in the proof of Theorem 3, we can show that T: B., -t Ba, and 
T: Be; -t Be; , i EN. 

Define the nonnegative functional a: 1' ➔ [O, oo) by 
a(u) = min u{t).te[¼,¾l 

A direct computation verifies that a is a nonnegative continuous concave functional on 1', and 
a(u) $ llulJ for all u E Be; for all i E N. 

We would like to apply Theorem 2. First, observe that the assumptions on T and condition 
{C2) of Theorem 2 are satisfied since T: B., -t Ba; and T:Bc; ➔ Be; , i EN. 

Now, as in Definition 5, set 

and 

1 1 1'(a, b;, -b,) = {u E 1': b, $ a(u), !lull $ -b,}, 
(1 (1 

1'(a, b;, c,) = {u E 'P: b, $ a(u), !lull $ c,}, i EN. 
We show that {1'{a, b,, ¼b,): a(u) > b,} f 0 and a(Tu) > b, for u E 'P{a, b,, ¼b,). To 

this end, note that setting u = ¼b,, we trivially have b; < ¼b, = a(u) and !lull = ¼, that is 
{1'(a, b,, ¼b,): a(u) > b,} f 0. 1n addition, by (H6), for any u E 'P(a, b;, ¼b,) we have 

a(Tu) =

= 

min Tu(t) 
tE!¼,¾l 
min 1' (-1)"-•G(t, s)J(u(s))ds

te[¼,¾J o 
' 

? min (• (-1)"-•G(t, s)f(u(s))dstE{¼,¾l /¼ 
1 

> ( min h'(-1)"-•G(t,s)ds)Cb,tE[¼,¾J ¼ 
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Thus, a(u) > b; for all u E P(a, b;, ¾b.), which verifies assumption (Cl) of Theorem 2. 
Assume now that u E P(a, b;, e;) and IITuJI > ¾b,. Then, by (5), for all r E [O, l] we have 

Therefore, 

a(Tu) = min Tu(t) 
tE[h¾l 

a(Tu) 

= min J.' (-1)"-'G(t, s)J(u(s))ds
tE[¼,¾J 0 

� J.1 

min (-1)"-'G(t, s)f(u(s))ds 
0 tE[¼,¾l 

� J.' (-1)"-'o-G(r, s)f(u(s))ds.

> max J.' (-1)"-'aG(t, s)f(s, u(s))ds
TE[0,11 0 

= o- max ITu(r)I 
TE[O,ll 

= o-JITull 
> b,.

That is, a(Tu) > b, for all u E P(a, b,, e;) with JITull > ¾b,. This verifies assumption (C3) of 
Theorem 2. 

Since the hypotheses of Theorem 2 are satisfied, the assertion follows for each i .EN. Together 
with (9), this proves the existence of three families of positive solutions { u,.},,;1 , {u2;},,;,, and 
{u3;}�

1 
such that llu,.11 < a,, b; < a(u2.), and llu3,JI > a;, b; > a(u:,, ) for all i EN. The proof 

is complete. 

3 Concluding Remarks 

We have been able to find conditions under which the BVP (1), (2) admits countably many posi
tive solutions. Under our assumptions sequences of their norms turn out to be either convergent 
to zero or divergent at infinity. This poses the following question: Is it possible to determine a 
function /(u) such that (1), (2) would allow a monotone in C[O, l]-norm sequence of solutions 
with lim,➔00 Jlu,JI = d > O? 
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